Science.gov

Sample records for fourth family neutrinos

  1. Dark Coulomb binding of heavy neutrinos of fourth family

    NASA Astrophysics Data System (ADS)

    Belotsky, K. M.; Esipova, E. A.; Khlopov, M. Yu.; Laletin, M. N.

    2015-11-01

    Direct dark matter searches put severe constraints on the weakly interacting massive particles (WIMPs). These constraints cause serious troubles for the model of stable neutrino of fourth generation with mass around 50GeV. Though the calculations of primordial abundance of these particles make them in the charge symmetric case a sparse subdominant component of the modern dark matter, their presence in the universe would exceed the current upper limits by several orders of the magnitude. However, if quarks and leptons of fourth generation possess their own Coulomb-like y-interaction, recombination of pairs of heavy neutrinos and antineutrinos and their annihilation in the neutrinium atoms can play important role in their cosmological evolution, reducing their modern abundance far below the experimental upper limits. The model of stable fourth generation assumes that the dominant part of dark matter is explained by excessive ? antiquarks, forming (???)?? charged clusters, bound with primordial helium in nuclear-interacting O-helium (OHe) dark atoms. The y charge conservation implies generation of the same excess of fourth generation neutrinos, potentially dangerous WIMP component of this scenario. We show that due to y-interaction recombination of fourth neutrinos with OHe hides these WIMPs from direct WIMP searches, leaving the negligible fraction of free neutrinos, what makes their existence compatible with the experimental constraints.

  2. Constraints on Majorana dark matter from a fourth lepton family

    SciTech Connect

    Hapola, Tuomas; Järvinen, Matti; Kouvaris, Chris; Panci, Paolo; Virkajärvi, Jussi E-mail: mjarvine@physics.uoc.gr E-mail: panci@cp3-origins.net

    2014-02-01

    We study the possibility of dark matter in the form of heavy neutrinos from a fourth lepton family with helicity suppressed couplings such that dark matter is produced thermally via annihilations in the early Universe. We present all possible constraints for this scenario coming from LHC and collider physics, underground direct detectors, neutrino telescopes, and indirect astrophysical searches. Although we embed the WIMP candidate within a model of composite dynamics, the majority of our results are model independent and applicable to all models where heavy neutrinos with suppressed couplings account for the dark matter abundance.

  3. Tevatron discovery potential for fourth generation neutrinos: Dirac, Majorana, and everything in between

    SciTech Connect

    Rajaraman, A.; Whiteson, D.

    2010-09-01

    We analyze the power of the Tevatron data set to exclude or discover fourth generation neutrinos. In a general framework, one can have mixed left- and right-handed neutrinos, with Dirac and Majorana neutrinos as extreme cases. We demonstrate that a single Tevatron experiment can make powerful statements across the entire mixing space, extending LEP's mass limits of 60-80 GeV up to 150-175 GeV, depending on the mixing.

  4. Searching for the fourth family quarks through anomalous decays

    NASA Astrophysics Data System (ADS)

    Sahin, M.; Sultansoy, S.; Turkoz, S.

    2010-09-01

    The flavor democracy hypothesis predicts the existence of the fourth standard model family. Because of the high masses of the fourth family quarks, their anomalous decays could be dominant if certain criteria are met. This will drastically change the search strategy at hadron colliders. We show that the fourth standard model family down quarks with masses up to 400-450 GeV can be observed (or excluded) via anomalous decays by Tevatron.

  5. Proposed search for a fourth neutrino with a PBq antineutrino source.

    PubMed

    Cribier, Michel; Fechner, Maximilien; Lasserre, Thierry; Letourneau, Alain; Lhuillier, David; Mention, Guillaume; Franco, Davide; Kornoukhov, Vasily; Schnert, Stefan

    2011-11-11

    Several observed anomalies in neutrino oscillation data can be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few eV(2). We show that this hypothesis can be tested with a PBq (ten kilocurie scale) (144)Ce or (106)Ru antineutrino beta source deployed at the center of a large low background liquid scintillator detector. In particular, the compact size of such a source could yield an energy-dependent oscillating pattern in event spatial distribution that would unambiguously determine neutrino mass differences and mixing angles. PMID:22181722

  6. Constraints on the Fourth-Generation Neutrinos from the Lep Data

    NASA Astrophysics Data System (ADS)

    Kogo, Jun; Tazaki, Yuichi; Tsai, S. Y.

    The LEP data on δNν, the number of neutrino species beyond the known three, are analyzed with a view to obtain constraints on extra neutrinos. The analysis is carried out in a reasonable gauge-model framework in which a fourth-generation left-handed neutrino, νhL, conspires with its right-handed counterpart, NR, to yield two Majorana neutrinos, ξ and ζ, or one Dirac neutrino, νD. It is shown that, from the experimental value of δNν alone, one may derive constraints on mass and life-time of ξ, ζ and νD and on the mixing between νhL and any of the familiar νeL, νμL and vτL.

  7. Possibility of searching for fourth generation neutrino at future ep colliders

    NASA Astrophysics Data System (ADS)

    Senol, A.; Alan, A. T.

    2006-01-01

    We investigate the production of fourth generation neutrino in the context of a new eν4 W magnetic dipole moment type interaction in ep collisions at future lepton-hadron colliders. We have obtained the mass limits of 700 GeV for THERA (√{ S} = 1 TeV) and 2.8 TeV for LC ⊗LHC (√{ S} = 3.74 TeV).

  8. Flavor changing neutral currents with a fourth family of quarks

    SciTech Connect

    Herrera, Johana A.; Benavides, Richard H.; Ponce, William A.

    2008-10-01

    For a model with a fourth family of quarks, new sources of flavor changing neutral currents are identified by confronting the unitary 4x4 quark mixing matrix with the experimental measured values of the familiar 3x3 quark mixing matrix. By imposing as experimental constraints the known bounds for the flavor changing neutral currents, the largest mixing of the known quarks with the fourth family ones is established. The predictions are: a value for |V{sub tb}| significantly different from unity, large rates for rare top decays as t{yields}c{gamma} and t{yields}cZ, the last one reachable at the Large Hadron Collider, and large rates for rare strange decays s{yields}d{gamma} and s{yields}dg, where g stands for the gluon field, both processes reachable at the existing B factories.

  9. From the fourth color to spin-charge separation: Neutrinos and spinons

    NASA Astrophysics Data System (ADS)

    Xiong, Chi

    2015-08-01

    We introduce the spin-charge separation mechanism to the quark-lepton unification models which consider the lepton number as the fourth color. In certain finite-density systems, quarks and leptons are decomposed into spinons and chargons, which carry the spin and charge degrees of freedom respectively. Neutrinos can be related to the spinons with respect to the electric-charge and spin separation in the early universe or other circumstances. Some effective, probably universal couplings between the spinon sector and the chargon sector are derived and a phenomenological description for the chargon condensate is proposed. It is then demonstrated that the spinon current can induce vorticity in the chargon condensate, and spinon zero modes are trapped in the vortices, forming spinon-vortex bound states. In cosmology this configuration may lead to the emission of extremely high energy neutrinos when vortices split and reconnect.

  10. From the Fourth Color to Spin-Charge Separation -- Neutrinos and Spinons

    NASA Astrophysics Data System (ADS)

    Xiong, Chi

    We introduce the spin-charge separation mechanism to the quark-lepton unification models which consider the lepton number as the fourth color. In certain finite-density systems, quarks and leptons are decomposed into spinons and chargons, which carry the spin and charge degrees of freedom respectively. Neutrinos can be related to the spinons with respect to the electric-charge and spin separation in the early universe or other circumstances. Some effective, probably universal couplings between the spinon sector and the chargon sector are derived and a phenomenological description for the chargon condensate is proposed. It is then demonstrated that the spinon current can induce vorticity in the chargon condensate, and spinon zero modes are trapped in the vortices, forming spinon-vortex bound states. In cosmology this configuration may lead to the emission of extremely high energy neutrinos when vortices split and reconnect.

  11. Quasi-degenerate neutrinos from an abelian family symmetry

    SciTech Connect

    Binetruy, P. |; Lavignac, S.; Petcov, S. |; Ramond, P.

    1996-12-31

    The authors show that models with an abelian family symmetry which accounts for the observed hierarchies of masses and mixings in the quark sector may also accommodate quasi-degeneracies in the neutrino mass spectrum. Such approximate degeneracies are, in this context, associated with large mixing angles. The parameters of this class of models are constrained. The authors discuss their phenomenological implications for present and foreseen neutrino experiments.

  12. Family Life: Literature and Films. An Annotated Bibliography. Supplement to Fourth Revision.

    ERIC Educational Resources Information Center

    Pitzer, Ronald L., Ed.

    This supplement to the fourth edition of "Family Life Literature and Films: An Annotated Bibliography" includes materials produced since the publication of the fourth edition (see AC 012 492). The materials are listed under nine topic headings, as follows: I. The American Family: Theoretical, Historical, and Subcultural Perspectives; II. Human…

  13. Split-family SUSY, flavour symmetry and neutrino physics

    NASA Astrophysics Data System (ADS)

    Jones-Pérez, Joel

    2014-02-01

    In split-family SUSY, one can use a symmetry to protect flavour observables in the quark sector from SUSY contributions. However, attempts to extend this procedure to the lepton sector by using an analogous symmetry fail to reproduce the neutrino data without introducing some form of fine-tuning. In this work, we solve this problem by shifting the symmetry acting on leptons towards the second and third generations. This allows neutrino data to be reproduced without much difficulties, as well as protecting the leptonic flavour observables from SUSY. Key signatures are a branching ratio possibly observable in the near future, as well as having selectrons as the lightest sleptons.

  14. Neutrino oscillations from discrete non-Abelian family symmetries

    SciTech Connect

    Schmaltz, M.

    1995-08-01

    I disuss a SUSY GUT model with a non-Abelian discrete family symmetry that explains the observed hierarchical pattern of quark and lepton masses. This SO(10){times}{Delta}(75) model predicts modified quadratic seesaw neutrino masses and mixing angles which are interesting for three reasons: (i) they offer a solution to the solar neutrino problem, (ii) the {tau} neutrino has the right mass for a cosmologically interesting hot dark matter candidate, and (iii) they suggest a positive result for the {nu}{sub {mu}}{r_arrow}{nu}{sub {tau}} oscillation searches by the CHORUS and NOMAD Collaborations. However, the model shares some problems with many other predictive GUT models of quark and lepton masses. The predictions from well-known mass and angle relations, such as the relation {lambda}{sub {ital b}}{sup GUT}={lambda}{sub {tau}}{sup GUT}, fail in many cases. Attempts to correct these relations seem to lead to rather contrived models.

  15. Family Influence: Key to Fruit and Vegetable Consumption among Fourth- and Fifth-Grade Students

    ERIC Educational Resources Information Center

    Gross, Susan M.; Pollock, Elizabeth Davenport; Braun, Bonnie

    2010-01-01

    Objective: To assess social and familial environmental influences on fruit and vegetable (FV) consumption of fourth- and fifth-graders living in a culturally diverse, urban setting. Design: In 2006, students from 9 fourth- and fifth-grade classrooms from a public school in the Washington-Baltimore Metropolitan Region were recruited as part of the…

  16. Family Influence: Key to Fruit and Vegetable Consumption among Fourth- and Fifth-Grade Students

    ERIC Educational Resources Information Center

    Gross, Susan M.; Pollock, Elizabeth Davenport; Braun, Bonnie

    2010-01-01

    Objective: To assess social and familial environmental influences on fruit and vegetable (FV) consumption of fourth- and fifth-graders living in a culturally diverse, urban setting. Design: In 2006, students from 9 fourth- and fifth-grade classrooms from a public school in the Washington-Baltimore Metropolitan Region were recruited as part of the

  17. Family Outing Activities and Achievement among Fourth Graders in Compensatory Education Funded Schools.

    ERIC Educational Resources Information Center

    Griswold, Philip A.

    This study sought to identify the relationship between operationally-defined family outing activities and measures of achievement among fourth grade students from educationally disadvantaged backgrounds. The results, collected for four successive years from 1715 students in urban Los Angeles, indicated that: (1) participation in family activities…

  18. Neutrino oscillations from discrete non-Abelian family symmetries

    SciTech Connect

    Schmaltz, M.

    1994-11-01

    The author discusses a SUSY-GUT model with a non-Abelian discrete family symmetry that explains the observed hierarchical pattern of quark and lepton masses. This SO(10) {times} {Delta}(75) model predicts modified quadratic seesaw neutrino masses and mixing angles which are interesting for three reasons: (1) they offer a solution to the solar neutrino problem, (2) the tau neutrino has the right mass for a cosmologically interesting hot dark matter candidate, and (3) they suggest a positive result for the {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillation searches by the CHORUS and NOMAD collaborations. However, the model shares some problems with many other predictive GUT models of quark and lepton masses. Well-known and once successful mass and angle relations, such as the SU(5) relation {lambda}{sub b}{sup GUT} = {lambda}{sub t}{sup GUT}, are found to be in conflict with the current experimental status. Attempts to correct these relations seem to lead to rather contrived models.

  19. Anomalous production of fourth-family up-quarks at future lepton hadron colliders

    NASA Astrophysics Data System (ADS)

    Alan, A. T.; Senol, A.; Çakir, O.

    2004-06-01

    We investigate the production of fourth-family up-type quarks using effective Lagrangian approach at future lepton-hadron colliders and study the kinematical characteristics of the signal with an optimal set of cuts. We obtain the upper mass limits 500 GeV at THERA and one TeV at Linac otimes LHC.

  20. Thinking beyond Measurement, Description and Judgment: Fourth Generation Evaluation in Family-Centered Pediatric Healthcare Organizations

    ERIC Educational Resources Information Center

    Moreau, Katherine Ann; Clarkin, Chantalle Louise

    2012-01-01

    Background: Although pediatric healthcare organizations have widely implemented the philosophy of family-centered care (FCC), evaluators and health professionals have not explored how to preserve the philosophy of FCC in evaluation processes. Purpose: To illustrate how fourth generation evaluation, in theory, could facilitate collaboration between

  1. Developing Cross-Cultural Competence: A Guide for Working with Children and Their Families. Fourth Edition

    ERIC Educational Resources Information Center

    Lynch, Eleanor W., Ed.; Hanson, Marci J., Ed.

    2011-01-01

    As the U.S. population grows more and more diverse, how can professionals who work with young children and families deliver the best services while honoring different customs, beliefs, and values? The answers are in the fourth edition of this bestselling textbook, fully revised to reflect nearly a decade of population changes and best practices in…

  2. Thinking beyond Measurement, Description and Judgment: Fourth Generation Evaluation in Family-Centered Pediatric Healthcare Organizations

    ERIC Educational Resources Information Center

    Moreau, Katherine Ann; Clarkin, Chantalle Louise

    2012-01-01

    Background: Although pediatric healthcare organizations have widely implemented the philosophy of family-centered care (FCC), evaluators and health professionals have not explored how to preserve the philosophy of FCC in evaluation processes. Purpose: To illustrate how fourth generation evaluation, in theory, could facilitate collaboration between…

  3. A family of new fourth-order solvers for a nonlinear damped wave equation

    NASA Astrophysics Data System (ADS)

    Deng, Dingwen; Zhang, Chengjian

    2013-01-01

    In this paper, we propose a family of new three-level compact alternating direction implicit (ADI) difference schemes for solving a linear wave equation with a nonlinear damping function. By using a fourth-order accurate scheme to approximate the exact solution at the first time level, it is shown through the energy method that these difference schemes have fourth-order accuracy in space and second-order accuracy in time with respect to H1- and L∞-norms. A class of Richardson extrapolation algorithms based on three time-grid parameters are presented to obtain approximate solution of fourth-order accuracy in both time and space in L∞-norm. Numerical experiments are performed to support our theoretical results and test the accuracy and efficiency of our algorithms.

  4. Neutrinos

    SciTech Connect

    D'Olivo, J. C.; Miranda, O. G.

    2006-09-25

    We present a selective overview of neutrino physics with a strong emphasis in the Mexican contribution to this topic. Our scope of the subject put the emphasis on topics like the neutrino oscillations and electromagnetic properties, as well as the treatment of neutrinos in dense media.

  5. Neutrinos

    PubMed Central

    Besson, Dave; Cowen, Doug; Selen, Mats; Wiebusch, Christopher

    1999-01-01

    Neutrinos represent a new “window” to the Universe, spanning a large range of energy. We discuss the science of neutrino astrophysics and focus on two energy regimes. At “lower” energies (≈1 MeV), studies of neutrinos born inside the sun, or produced in interactions of cosmic rays with the atmosphere, have allowed the first incontrovertible evidence that neutrinos have mass. At energies typically one thousand to one million times higher, sources further than the sun (both within the Milky Way and beyond) are expected to produce a flux of particles that can be detected only through neutrinos. PMID:10588680

  6. Searches for heavy neutrinos from Z decays

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Adam, W.; Adami, F.; Adye, T.; Akesson, T.; Alekseev, G. D.; Allen, P.; Almehed, S.; Alvsvaag, S. J.; Amaldi, U.; Anassontzis, E.; Antilogus, P.; Apel, W.-D.; Apsimon, R. J.; Åsman, B.; Astier, P.; Augustin, J.-E.; Augustinus, A.; Baillon, P.; Bambade, P.; Barao, F.; Barate, R.; Barbiellini, G.; Bardin, D. Y.; Baroncelli, A.; Barring, O.; Bartl, W.; Bates, M. J.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Beeston, C. J.; Begalli, M.; Beilliere, P.; Belokopytov, Yu.; Beltran, P.; Benedic, D.; Benlloch, J. M.; Berggren, M.; Bertrand, D.; Bianchi, F.; Bilenky, M. S.; Billoir, P.; Bjarne, J.; Bloch, D.; Blyth, S.; Bocci, V.; Bogolubov, P. N.; Bolognese, T.; Bonapart, M.; Bonesini, M.; Bonivento, W.; Booth, P. S. L.; Boratav, M.; Borgeaud, P.; Borisov, G.; Borner, H.; Bosio, C.; Bostjancic, B.; Botner, O.; Bouquet, B.; Bourdarios, C.; Bozzo, M.; Braibant, S.; Branchini, P.; Brand, K. D.; Brenner, R. A.; Bricman, C.; Brown, R. C. A.; Brummer, N.; Brunet, J.-M.; Bugge, L.; Buran, T.; Burmeister, H.; Buytaert, J. A. M. A.; Caccia, M.; Calvi, M.; Camacho Rozas, A. J.; Campion, A.; Camporesi, T.; Canale, V.; Cao, F.; Carena, F.; Carroll, L.; Caso, C.; Castelli, E.; Castillo Gimenez, M. V.; Cattai, A.; Cavallo, F. R.; Cerrito, L.; Chan, A.; Chapkin, M.; Charpentier, P.; Chaussard, L.; Checchia, P.; Chelkov, G. A.; Chevalier, L.; Chliapnikov, P.; Chorowicz, V.; Cirio, R.; Clara, M. P.; Collins, P.; Contreras, J. L.; Contri, R.; Cosme, G.; Couchot, F.; Crawley, H. B.; Crennell, D.; Crosetti, G.; Crozon, M.; Cuevas Maestro, J.; Czellar, S.; Dagoret, S.; Dahl-Jensen, E.; Dalmagne, B.; Dam, M.; Damgaard, G.; Darbo, G.; Daubie, E.; Dauncey, P. D.; Davenport, M.; David, P.; Defoix, C.; Delikaris, D.; Delorme, S.; Delpierre, P.; Demaria, N.; de Angelis, A.; de Beer, M.; de Boeck, H.; de Boer, W.; de Clercq, C.; de Fez Laso, M. D. M.; de Groot, N.; de La Vaissiere, C.; de Lotto, B.; de Min, A.; Dijkstra, H.; di Ciaccio, L.; Djama, F.; Dolbeau, J.; Doll, O.; Donszelmann, M.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Dufour, Y.; Dulinski, W.; Dzhelyadin, R.; Eek, L.-O.; Eerola, P. A.-M.; Ekelof, T.; Ekspong, G.; Elliot Peisert, A.; Engel, J.-P.; Fassouliotis, D.; Feindt, M.; Fernandez Alonso, M.; Ferrer, A.; Filippas, T. A.; Firestone, A.; Foeth, H.; Fokitis, E.; Folegati, P.; Fontanelli, F.; Forbes, K. A. J.; Forsbach, H.; Franek, B.; Frenkiel, P.; Fries, D. C.; Frodesen, A. G.; Fruhwirth, R.; Fulda-Quenzer, F.; Furnival, K.; Furstenau, H.; Fuster, J.; Galeazzi, G.; Gamba, D.; Garcia, C.; Garcia, J.; Gaspar, C.; Gasparini, U.; Gavillet, P.; Gazis, E. N.; Gerber, J.-P.; Giacomelli, P.; Glitza, K.-W.; Gokieli, R.; Golovatyuk, V. M.; Gomez Y Cadenas, J. J.; Goobar, A.; Gopal, G.; Gorski, M.; Gracco, V.; Grant, A.; Grard, F.; Graziani, E.; Grosdidier, G.; Gross, E.; Grosse-Wiesmann, P.; Grossetete, B.; Guy, J.; Hahn, F.; Hahn, M.; Haider, S.; Hajduk, Z.; Hakansson, A.; Hallgren, A.; Hamacher, K.; de Monchenault, G. Hamel; Harris, F. J.; Heck, B. W.; Henkes, T.; Herbst, I.; Hernandez, J. J.; Herquet, P.; Herr, H.; Hietanen, I.; Higgins, C. O.; Higon, E.; Hilke, H. J.; Hodgson, S. D.; Hofmokl, T.; Holmes, R.; Holmgren, S.-O.; Holthuizen, D.; Honore, P. F.; Hooper, J. E.; Houlden, M.; Hrubec, J.; Hulth, P. O.; Hultqvist, K.; Husson, D.; Ioannou, P.; Isenhower, D.; Iversen, P.-S.; Jackson, J. N.; Jalocha, P.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Johansson, E. K.; Johnson, D.; Jonker, M.; Jonsson, L.; Juillot, P.; Kalkanis, G.; Kalmus, G.; Kapusta, F.; Katsanevas, S.; Katsoufis, E. C.; Keranen, R.; Kesteman, J.; Khomenko, B. A.; Khovanski, N. N.; King, B.; Kjaer, N. J.; Klein, H.; Klempt, W.; Klovning, A.; Kluit, P.; Koch-Mehrin, A.; Koehne, J. H.; Koene, B.; Kokkinias, P.; Kopf, M.; Koratzinos, M.; Korcyl, K.; Korytov, A. V.; Kostiukhin, V.; Kourkoumelis, C.; Kreuzberger, T.; Krolikowski, J.; Kronkvist, I.; Krstic, J.; Kruener-Marquis, U.; Krupinski, W.; Kucewicz, W.; Kurvinen, K.; Lacasta, C.; Lambropoulos, C.; Lamsa, J. W.; Lanceri, L.; Lapin, V.; Laugier, J.-P.; Lauhakangas, R.; Leder, G.; Ledroit, F.; Leitner, R.; Lemoigne, Y.; Lemonne, J.; Lenzen, G.; Lepeltier, V.; Letessier-Selvon, A.; Lieb, E.; Liko, D.; Lillethun, E.; Lindgren, J.; Lipniacka, A.; Lippi, I.; Llosa, R.; Loerstad, B.; Lokajicek, M.; Loken, J. G.; Lopez-Fernandez, A.; Lopez Aguera, M. A.; Los, M.; Loukas, D.; Lounis, A.; Lozano, J. J.; Lutz, P.; Lyons, L.; Maehlum, G.; Magnussen, N.; Maillard, J.; Maltezos, A.; Mandl, F.; Marco, J.; Margoni, M.; Marin, J.-C.; Markou, A.; Marti, S.; Mathis, L.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; Menichetti, E.; Meola, G.; Meroni, C.; Meyer, W. T.; Michelotto, M.; Mitaroff, W. A.; Mitselmakher, G. V.; Mjoernmark, U.; Moa, T.; Moeller, R.; Moenig, K.; Monge, M. R.; Morettini, P.; Mueller, H.; Murray, W. J.; Muryn, B.; Myatt, G.; Naraghi, F.; Nau-Korzen, U.; Navarria, F. L.; Negri, P.; Nielsen, B. S.; Nijjhar, B.; Nikolaenko, V.; Obraztsov, V.; Oesterberg, K.; Olshevski, A. G.; Orava, R.; Ostankov, A.; Ouraou, A.; Paganoni, M.; Pain, R.; Palka, H.; Papadopoulou, T.; Pape, L.; Passeri, A.; Pegoraro, M.; Pennanen, J.; Perevozchikov, V.; Pernicka, M.; Perrotta, A.; Pierre, F.; Pimenta, M.; Pingot, O.; Pol, M. E.; Polok, G.; Poropat, P.; Privitera, P.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Ratoff, P. N.; Read, A. L.; Redaelli, N. G.; Regler, M.; Reid, D.; Renton, P. B.; Resvanis, L. K.; Richard, F.; Richardson, M.; Ridky, J.; Rinaudo, G.; Roditi, I.; Romero, A.; Roncagliolo, I.; Ronchese, P.; Ronnqvist, C.; Rosenberg, E. I.; Rossi, U.; Rosso, E.; Roudeau, P.; Rovelli, T.; Ruckstuhl, W.; Ruhlmann, V.; Ruiz, A.; Rybicki, K.; Saarikko, H.; Sacquin, Y.; Sajot, G.; Salt, J.; Sanchez, E.; Sanchez, J.; Sannino, M.; Schaeffer, M.; Schael, S.; Schneider, H.; Schyns, M. A. E.; Scuri, F.; Segar, A. M.; Sekulin, R.; Sessa, M.; Sette, G.; Seufert, R.; Shellard, R. C.; Siegrist, P.; Simonetti, S.; Simonetto, F.; Sissakian, A. N.; Skaali, T. B.; Skjevling, G.; Smadja, G.; Smirnov, N.; Smith, G. R.; Sosnowski, R.; Spassoff, T. S.; Spiriti, E.; Squarcia, S.; Staeck, H.; Stanescu, C.; Stavropoulos, G.; Stichelbaut, F.; Stocchi, A.; Strauss, J.; Strub, R.; Szczekowski, M.; Szeptycka, M.; Szymanski, P.; Tabarelli, T.; Tavernier, S.; Tchikilev, O.; Theodosiou, G. E.; Tilquin, A.; Timmermans, J.; Timofeev, V. G.; Tkatchev, L. G.; Todorov, T.; Toet, D. Z.; Toker, O.; Torassa, E.; Tortora, L.; Trainor, M. T.; Treille, D.; Trevisan, U.; Trischuk, W.; Tristram, G.; Troncon, C.; Tsirou, A.; Tsyganov, E. N.; Turala, M.; Turchetta, R.; Turluer, M.-L.; Tuuva, T.; Tyapkin, I. A.; Tyndel, M.; Tzamarias, S.; Ueberschaer, B.; Ueberschaer, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Valls Ferrer, J. A.; van der Velde, C.; van Apeldoorn, G. W.; van Dam, P.; van Doninck, W. K.; Varela, J.; Vaz, P.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Vertogradov, L. S.; Vibert, L.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vlasov, E. V.; Vlassopoulos, S.; Vodopyanov, A. S.; Vollmer, M.; Volponi, S.; Voulgaris, G.; Voutilainen, M.; Vrba, V.; Wahlen, H.; Walck, C.; Waldner, F.; Wayne, M.; Weilhammer, P.; Werner, J.; Wetherell, A. M.; Wickens, J. H.; Wikne, J.; Wilkinson, G. R.; Williams, W. S. C.; Winter, M.; Wormald, D.; Wormser, G.; Woschnagg, K.; Yamdagni, N.; Yepes, P.; Zaitsev, A.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zhang, G.; Zimin, N. I.; Zito, M.; Zitoun, R.; Zukanovich Funchal, R.; Zumerle, G.; Zuniga, J.

    1992-01-01

    We have searched for possible fourth family heavy neutrinos, pair produced in Z0 decays, in a sample of about 112 000 hadronic Z0 final states collected with the DELPHI detector. For all mixing matrix elements we exclude a new Dirac neutrino lighter than 44.5 GeV at a 95% confidence level, if the neutrino couples to the electron or muon family, and lighter than 44.0 GeV, if the neutrino couples to the tau family. Depending on the values of the mixing element and to which lepton family the neutrino couples, we obtain mass limits up to 46.2 GeV. For all mixing matrix elements we exclude a new Majorana neutrino lighter than 39.0 GeV, if it couples to the electron or the muon family, and lighter than 38.2 GeV, if it couples to the tau family. Depending on the values of the mixing matrix element and to which lepton family the neutrino couples, we obtain mass limits up to 44.7 GeV. We also exclude stable new Dirac neutrinos lighter than 45.0 GeV and new Majorana neutrinos lighter than 39.5 GeV.

  7. Neutrinos

    NASA Astrophysics Data System (ADS)

    Winter, K.; Murdin, P.

    2000-11-01

    Neutrinos are electrically neutral ELEMENTARY PARTICLES which experience only the weak nuclear force and gravity. Their existence was introduced as a hypothesis by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in radioactive beta decay. Chadwick had discovered in 1914 that the energy spectrum of electrons emitted in beta decay was not monoenergetic but continuous...

  8. A 3-3-1 model with right-handed neutrinos based on the Δ ( 27) family symmetry

    NASA Astrophysics Data System (ADS)

    Hernández, A. E. Cárcamo; Long, H. N.; Vien, V. V.

    2016-05-01

    We present the first multiscalar singlet extension of the original 3-3-1 model with right-handed neutrinos, based on the Δ ( 27) family symmetry, supplemented by the Z4⊗ Z8⊗ Z_{14} flavor group, consistent with current low energy fermion flavor data. In the model under consideration, the light active neutrino masses are generated from a double seesaw mechanism and the observed pattern of charged fermion masses and quark mixing angles is caused by the breaking of the Δ ( 27) ⊗ Z4⊗ Z8⊗ Z_{14} discrete group at very high energy. Our model has only 14 effective free parameters, which are fitted to reproduce the experimental values of the 18 physical observables in the quark and lepton sectors. The obtained physical observables for the quark sector agree with their experimental values, whereas those for the lepton sector also do, only for the inverted neutrino mass hierarchy. The normal neutrino mass hierarchy scenario of the model is disfavored by the neutrino oscillation experimental data. We find an effective Majorana neutrino mass parameter of neutrinoless double beta decay of m_{β β }= 22 meV, a leptonic Dirac CP violating phase of 34°, and a Jarlskog invariant of about 10^{-2} for the inverted neutrino mass spectrum.

  9. A Survey of Fourth-Year Medical Students' Decisions regarding Family Practice as a Career.

    ERIC Educational Resources Information Center

    Montano, Daniel E.; And Others

    1988-01-01

    The Fishbein Model of attitude formation was used as a framework for developing a questionnaire to measure students' attitudes toward a career in family practice and the social support students perceived they had for that career. Both the attitude and social support scales had excellent psychometric characteristics. (Author/MLW)

  10. Correlates of alcohol use and misuse in fourth-grade children: psychosocial, peer, parental, and family factors.

    PubMed

    Loveland-Cherry, C J; Leech, S; Laetz, V B; Dielman, T E

    1996-11-01

    To determine level of alcohol use/misuse and to examine correlates of these behaviors, 1,314 fourth-grade students were surveyed. The questionnaire included 55 items concerning tolerance of deviance, deviant self-image, self-efficacy, susceptibility to peer pressure, personal and peer approval of alcohol use, peer adjustment, parent nurturance and monitoring, family adjustment, parental permissiveness, peer use of alcohol, and exposure to alcohol. The items were factor analyzed and indices constructed. The indices generally had acceptable alpha coefficients (alpha = .61-.91); two exceptions were peer adjustment (alpha = .51) and parental permissiveness (alpha = .42). Tolerance of deviance, deviant self-image, susceptibility to peer pressure, personal and peer approval, peer use and exposure by peers, and parental permissiveness were positively correlated with alcohol use/misuse. Self-efficacy, child-parent interactions, family adjustment, and peer adjustment were negatively correlated with alcohol use/misuse. Implications for the design of family-based alcohol use/misuse prevention programs are discussed. PMID:8910027

  11. Searches for Fourth Generation Fermions

    SciTech Connect

    Ivanov, A.; /Fermilab

    2011-09-01

    We present the results from searches for fourth generation fermions performed using data samples collected by the CDF II and D0 Detectors at the Fermilab Tevatron p{bar p} collider. Many of these results represent the most stringent 95% C. L. limits on masses of new fermions to-date. A fourth chiral generation of massive fermions with the same quantum numbers as the known fermions is one of the simplest extensions of the SM with three generations. The fourth generation is predicted in a number of theories, and although historically have been considered disfavored, stands in agreement with electroweak precision data. To avoid Z {yields} {nu}{bar {nu}} constraint from LEP I a fourth generation neutrino {nu}{sub 4} must be heavy: m({nu}{sub 4}) > m{sub Z}/2, where m{sub Z} is the mass of Z boson, and to avoid LEP II bounds a fourth generation charged lepton {ell}{sub 4} must have m({ell}{sub 4}) > 101 GeV/c{sup 2}. At the same time due to sizeable radiative corrections masses of fourth generation fermions cannot be much higher the current lower bounds and masses of new heavy quarks t' and b' should be in the range of a few hundred GeV/c{sup 2}. In the four-generation model the present bounds on the Higgs are relaxed: the Higgs mass could be as large as 1 TeV/c{sup 2}. Furthermore, the CP violation is significantly enhanced to the magnitude that might account for the baryon asymmetry in the Universe. Additional chiral fermion families can also be accommodated in supersymmetric two-Higgs-doublet extensions of the SM with equivalent effect on the precision fit to the Higgs mass. Another possibility is heavy exotic quarks with vector couplings to the W boson Contributions to radiative corrections from such quarks with mass M decouple as 1/M{sup 2} and easily evade all experimental constraints. At the Tevatron p{bar p} collider 4-th generation chiral or vector-like quarks can be either produced strongly in pairs or singly via electroweak production, where the latter can be enhanced for vector-like quarks. In the following we present searches for both pair and single production of heavy quarks performed by CDF and D0 Collaborations.

  12. Electromagnetic properties of massive neutrinos

    SciTech Connect

    Dobrynina, A. A. Mikheev, N. V.; Narynskaya, E. N.

    2013-10-15

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  13. Phenomenological tests of supersymmetric A4 family symmetry model of neutrino mass

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Romão, J. C.; Skadhauge, S.; Valle, J. W.; Villanova del Moral, A.

    2004-05-01

    Recently Babu, Ma, and Valle proposed a model of quark and lepton mixing based on A4 symmetry [Phys. Lett. B 552, 207 (2003)]. Within this model, the lepton and slepton mixings are intimately related. We perform a numerical study in order to derive the slepton masses and mixings in agreement with present data from neutrino physics. We show that, starting from threefold degeneracy of the neutrino masses at a high-energy scale, a viable low-energy neutrino mass matrix can indeed be obtained in agreement with constraints on lepton flavor violating μ and τ decays. The resulting slepton spectrum must necessarily include at least one mass below 200 GeV which can be produced at the CERN Large Hadron Collider. The prediction for the absolute Majorana neutrino mass scale m0⩾0.3 eV ensure that the model will be tested by future cosmological tests and neutrinoless double beta decay searches. Rates for lepton flavor-violating processes lj→li+γ in the range of sensitivity of current experiments are typical in the model, with BR(μ→eγ)≳10-15 and the lower bound BR(τ→μγ)>10-9. To first approximation, the model leads to maximal leptonic CP violation in neutrino oscillations.

  14. Indirect search for the fourth genration of quarks and leptons

    SciTech Connect

    Bashiry, Vali

    2008-04-21

    It is known that the Standard Model (SM) does not predict the number of fermion families; N. The only restriction comes from the asymptotic freedom of QCD which requires the number of quarks to be less than 17 and, therefore, the number of SM families to be N{<=}8. Before 1990A-circumflex Ss, many authors published articles related to the extra SM families and their phenomenological consequences. In early 1990A-circumflex Ss, the LEP data yields N is almost 3 where the neutral lepton mass for each family is less than half the mass of the Z boson. Generally, this result is interpreted as the exact value of N, since one assumes that the neutrinos must have very small masses. If we disregard this incorrect assumption, the LEP data does not exclude the existence of extra SM families with heavy neutrinos. Meanwhile, few papers arguing the existence of the fourth SM family have been publishing. These arguments are based on the A-circumflex Sflavor democracyA-circumflex S hypothesis. The study of FCNC in B decays can indirectly shed light on the SM4 family in quark sector and LFV is a good candidate to indirect search for 4th generation of leptons.

  15. Fermion masses and neutrino oscillations in SO(10) supersymmetric grand unified theory with D{sub 3}xU(1) family symmetry

    SciTech Connect

    Dermisek, Radovan; Raby, Stuart

    2000-07-01

    Discrete non-Abelian gauge symmetries appear to be the most advantageous candidates for a family symmetry. We present a predictive SO(10) SUSY GUT model with D{sub 3}xU(1) family symmetry (D{sub 3} is the dihedral group of order 6). The hierarchy in fermion masses is generated by the family symmetry breaking D{sub 3}xU(1){yields}Z{sub N}{yields}nothing. This model fits the low energy data in the charged fermion sector quite well and naturally provides large angle {nu}{sub {mu}}-{nu}{sub {tau}} mixing describing atmospheric neutrino oscillation data and small angle {nu}{sub e}-{nu}{sub s} mixing consistent with the small mixing angle MSW solution to the solar neutrino data. In addition, the non-Abelian family symmetry D{sub 3} is sufficient to suppress large flavor violations. (c) 2000 The American Physical Society.

  16. Supporting Low-Income Parents of Young Children: The Palm Beach County Family Study Fourth Annual Report

    ERIC Educational Resources Information Center

    Spielberger, Julie; Rich, Lauren; Winje, Carolyn; Scannell, Molly

    2010-01-01

    The Children's Services Council (CSC) of Palm Beach County funded Chapin Hall at the University of Chicago to conduct a 6-year longitudinal study to examine the use and effectiveness of an array of services in the county in promoting school readiness and school success and improving family functioning among children and families most in need of…

  17. Fourth quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2013-12-01

    In this Letter we will analyze the creation of the multiverse. We will first calculate the wave function for the multiverse using third quantization. Then we will fourth-quantize this theory. We will show that there is no single vacuum state for this theory. Thus, we can end up with a multiverse, even after starting from a vacuum state. This will be used as a possible explanation for the creation of the multiverse. We also analyze the effect of interactions in this fourth-quantized theory.

  18. Family and Community Studies (FACS) Fourth Interim Report, Phase I and Activities and Timelines for Phase II.

    ERIC Educational Resources Information Center

    Espinoza, Renato; And Others

    Discussed in this paper is a preliminary analysis of findings from data gathered during the first phase of a research project exploring the processes whereby the nature of the mother's occupation affects her family life, especially (1) her partnership in decisions about housework, child care and education and (2) the negotiation of the allocation…

  19. Neutrino Experiments

    SciTech Connect

    McKeown, R. D.

    2010-08-04

    Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.

  20. Sterile Neutrino Search with MINOS

    SciTech Connect

    Devan, Alena V.

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1km from the source of the beam and a far detector 734km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three avor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active avors as they propagate through space. This means that a muon type neutrino has a certain probability to later interact as a di erent type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino avors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino avor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile avor may be observed by a de cit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile avor are driven by a large mass-squared di erence, m2s 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  1. Cosmic Neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2008-02-01

    I recall the place of neutrinos in the electroweak theory and summarize what we know about neutrino mass and flavor change. I next review the essential characteristics expected for relic neutrinos and survey what we can say about the neutrino contribution to the dark matter of the Universe. Then I discuss the standard-model interactions of ultrahigh-energy neutrinos, paying attention to the consequences of neutrino oscillations, and illustrate a few topics of interest to neutrino observatories. I conclude with short comments on the remote possibility of detecting relic neutrinos through annihilations of ultrahigh-energy neutrinos at the Z resonance.

  2. Neutrino physics

    SciTech Connect

    Peccei, R. D.

    1999-10-25

    These lectures describe some aspects of the physics of massive neutrinos. After a brief introduction of neutrinos in the Standard Model, I discuss possible patterns for their masses. In particular, I show how the presence of a large Majorana mass term for the right-handed neutrinos can engender tiny neutrino masses for the observed neutrinos. If neutrinos have mass, different flavors of neutrinos can oscillate into one another. To analyze this phenomena, I develop the relevant formalism for neutrino oscillations, both in vacuum and in matter. After reviewing the existing (negative) evidence for neutrino masses coming from direct searches, I discuss evidence for, and hints of, neutrino oscillations in the atmosphere, the sun, and at accelerators. Some of the theoretical implications of these results are emphasized. I close these lectures by briefly outlining future experiments which will shed further light on atmospheric, accelerator and solar neutrino oscillations. A pedagogical discussion of Dirac and Majorana masses is contained in an appendix.

  3. Neutrino oscillations

    SciTech Connect

    Simkovic, Fedor

    2007-11-26

    The field of neutrino oscillations is introduced. The basic elements of the theory of neutrino oscillations in vacuum and matter are presented. The history, current status of neutrino oscillations as well as the prospects for the next generation of neutrino experiments are briefly reviewed.

  4. Neutrino Physics

    DOE R&D Accomplishments Database

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  5. Neutrino physics

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  6. Neutrino oscillations refitted

    NASA Astrophysics Data System (ADS)

    Forero, D. V.; Tórtola, M.; Valle, J. W. F.

    2014-11-01

    Here, we update our previous global fit of neutrino oscillations by including the recent results that have appeared since the Neutrino 2012 conference. These include the measurements of reactor antineutrino disappearance reported by Daya Bay and RENO, together with latest T2K and MINOS data including both disappearance and appearance channels. We also include the revised results from the third solar phase of Super-Kamiokande, SK-III, as well as new solar results from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred global determination of the atmospheric angle θ23 is consistent with maximal mixing. We also determine the impact of the new data upon all the other neutrino oscillation parameters with an emphasis on the increasing sensitivity to the C P phase, thanks to the interplay between accelerator and reactor data. In the Appendix, we present the updated results obtained after the inclusion of new reactor data presented at the Neutrino 2014 conference. We discuss their impact on the global neutrino analysis.

  7. Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2010-01-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(10{sup 21}) muons/year. This prepares the way for a Neutrino Factory (NF) in which high energy muons decay within the straight sections of a storage ring to produce a beam of neutrinos and anti-neutrinos. The NF concept was proposed in 1997 at a time when the discovery that the three known types of neutrino ({nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}) can change their flavor as they propagate through space (neutrino oscillations) was providing a first glimpse of physics beyond the Standard Model. This development prepares the way for a new type of neutrino source: a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  8. Neutrino physics

    SciTech Connect

    Kayser, Boris; /Fermilab

    2005-06-01

    Thanks to compelling evidence that neutrinos can change flavor, we now know that they have nonzero masses, and that leptons mix. In these lectures, we explain the physics of neutrino flavor change, both in vacuum and in matter. Then, we describe what the flavor-change data have taught us about neutrinos. Finally, we consider some of the questions raised by the discovery of neutrino mass, explaining why these questions are so interesting, and how they might be answered experimentally.

  9. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  10. Solar neutrinos and neutrino physics

    NASA Astrophysics Data System (ADS)

    Maltoni, Michele; Smirnov, Alexei Yu.

    2016-04-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ_{12} and Δ m 2 21 have been measured; θ_{13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3 ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  11. Neutrino factory

    NASA Astrophysics Data System (ADS)

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R. J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A. C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that θ13>0 . The measured value of θ13 is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO ν Design Study consortium. EURO ν coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO ν baseline accelerator facility will provide 1 021 muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  12. Neutrino factory

    SciTech Connect

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  13. Neutrino factory

    DOE PAGESBeta

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; et al

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  14. Supernova Neutrinos

    SciTech Connect

    Cardall, Christian Y

    2007-01-01

    A nascent neutron star resulting from stellar collapse is a prodigious source of neutrinos of all flavors. While the most basic features of this neutrino emission can be estimated from simple considerations, the detailed simulation of the neutrinos' decoupling from the hot neutron star is not yet computationally tractable in its full glory, being a time-dependent six-dimensional transport problem. Nevertheless, supernova neutrino fluxes are of great interest in connection with the core-collapse supernova explosion mechanism and supernova nucleosynthesis, and as a potential probe of the supernova environment and of some of the neutrino mixing parameters that remain unknown; hence, a variety of approximate transport schemes have been used to obtain results with reduced dimensionality. However, none of these approximate schemes have addressed a recent challenge to the conventional wisdom that neutrino flavor mixing cannot impact the explosion mechanism or r-process nucleosynthesis.

  15. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  16. Family Child Care Calendar-Keeper[TM] 2001: A Record Keeping System Including Nutrition Information for Child Care Providers. Twenty-Fourth Edition.

    ERIC Educational Resources Information Center

    Beuch, Beth, Ed.; Beuch, Ethel, Ed.; Schloff, Pam, Ed.

    Noting that accurate recordkeeping for tax purposes is extremely important for family child care providers, this calendar provides a format for recording typical family child care expenses and other information. Included are the following: (1) monthly expense charts with categories matching Schedule C; (2) attendance and payment log; (3) payment…

  17. Family Child Care Calendar-Keeper[TM] 2001: A Record Keeping System Including Nutrition Information for Child Care Providers. Twenty-Fourth Edition.

    ERIC Educational Resources Information Center

    Beuch, Beth, Ed.; Beuch, Ethel, Ed.; Schloff, Pam, Ed.

    Noting that accurate recordkeeping for tax purposes is extremely important for family child care providers, this calendar provides a format for recording typical family child care expenses and other information. Included are the following: (1) monthly expense charts with categories matching Schedule C; (2) attendance and payment log; (3) payment

  18. Rapid detection of mutations by conformation sensitive gel electrophoresis: Application to the identification of three new mutations in the type II procollagen gene and a fourth family with the Arg{sub 519}{yields}Cys base substitution

    SciTech Connect

    Williams, C.J.; Rock, M.; McCarron, S.

    1994-09-01

    Conformation sensitive gel electrophoresis (CSGE) detects differences as small as a single base mismatch in DNA heteroduplexes of polymerase chain reaction (PCR) products. The altered migration of heteroduplexes versus homoduplexes is resolved in a polyacrylamide-based gel electrophoresis system. The technique was used here to detect conformational changes in the type II procollagen gene (COL2A1) in patients with growth plate defects. PCR products which displayed heteroduplex species were directly sequenced and all revealed either base substitutions or base deletions. Three of the base substitutions resulted in the identification of new mutations. These include a Gly{sub 691}{yields}Arg substitution in a proband with hypochondrogenesis, a Gly{sub 975}{yields}Ser base substitution in a family with late-onset spondyloepiphyseal dysplasia (SEDT) and precocious osteoarthritis (POA), and a Gly{sub 988}{yields}Arg mutation in another patient with hypochondrogenesis. A fourth substitution was found to be the fourth example of an Arg{sub 519}{yields}Cys point mutation in a family with SEDT and POA. All mutations were confirmed by restriction site analysis. These results illustrate the utility of the CSGE method for the rapid detection of mutations in PCR products without the need for special equipment, primers or sample preparation.

  19. Neutrino counting with the SLD at the Stanford Linear Collider

    SciTech Connect

    Band, H.; Bugg, W.; Chadwick, G.; Coyne, D.; Gyure, M.; Hertzbach, S.; Messner, R.; Mincer, A.; Mockett, P.; Nauenberg, U.

    1989-06-01

    One of the fundamental measurements to be made at the e/sup +/e/sup /minus// colliders, SLC and LEP, is the determination of the number of neutrino families produced in Z/sup 0/ boson decays. In the event that a fourth generation of light Dirac neutrinos exists, the experimental consequences at the Z/sup 0/ resonances are easily seen; the total width will be increased by 171 MeV over its three generation value, to be compared to the /approx/30 MeV precision that should be achievable once the systematic limit has been reached. A reasonable figure of merit for the precision of a neutrino counting measurement of 0.2 standard model generations corresponds to a Z/sup 0/ width measurement error of 35 MeV; close to the limit of anticipated experimental capability. In fact, it is highly desirable to achieve an even higher precision if possible, in order to distinguish potentially small effects due to exotic phenomena from beyond the Standard Model. This paper will address the issue of how to obtain the best measurement of the number of neutrino generations as a function of the size of the available sample of Z/sup 0/ decays. The results presented here were obtained by our study group in an attempt to understand the limitations of a realistic neutrino counting measurement with the SLD at the Stanford Linear Collider. However, many of our findings are general enough to be applicable to any e/sup +/e/sup /minus// detector designed to take data at the Z/sup 0/ resonance. 19 refs., 5 figs., 6 tabs.

  20. GUT implications from neutrino mass

    SciTech Connect

    Carl H. Albright

    2001-06-26

    An overview is given of the experimental neutrino mixing results and types of neutrino models proposed, with special attention to the general features of various GUT models involving intra-family symmetries and horizontal flavor symmetries. Many of the features are then illustrated by a specific SO (10) SUSY GUT model formulated by S.M. Barr and the author which can explain all four types of solar neutrino mixing solutions by various choices of the right-handed Majorana mass matrix. The quantitative nature of the model's large mixing angle solution is used to compare the reaches of a neutrino super beam and a neutrino factory for determining the small U{sub e3} mixing matrix element.

  1. Atmospheric neutrinos and discovery of neutrino oscillations.

    PubMed

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  2. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  3. A theoretical perspective on neutrino physics

    SciTech Connect

    Marciano, W.J. )

    1989-09-01

    A survey of sin{sup 2} {theta}{sub W}, {rho}, CKM matrix, and axial-isoscalar neutral current measurements via neutrino scattering is presented. Loop effects due to heavy top or a fourth generation are described. Neutrino oscillations are discussed in a three generation mixing framework and some motivation for {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillation searches is given. 15 refs., 1 tab.

  4. Neutrino magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2016-01-01

    A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.

  5. Neutrino telescopes

    SciTech Connect

    Costantini, H.

    2012-09-15

    Neutrino astrophysics offers a new possibility to observe our Universe: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos: this young discipline extends in fact the conventional astronomy beyond the usual electromagnetic probe. The weak interaction of neutrinos with matter allows them to escape from the core of astrophysical objects and in this sense they represent a complementary messenger with respect to photons. However, their detection on Earth due to the small interaction cross section requires a large target mass. The aim of this article is to review the scientific motivations of the high-energy neutrino astrophysics, the detection principles together with the description of a running apparatus, the experiment ANTARES, the performance of this detector with some results, and the presentation of other neutrino telescope projects.

  6. Neutrino factories

    SciTech Connect

    Soler, F. J. P.

    2015-07-15

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ{sub 13}. The accelerator facility will deliver 10{sup 21} muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δ{sub CP} that a Neutrino Factory can achieve and the δ{sub CP} coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  7. Search for Fourth Generation Quarks

    SciTech Connect

    Li, S.-W.

    2010-02-10

    It is still a mystery why the Standard Model as we know it has only three families. At new high energy colliders it is worthwhile to search for a new additional family which obviously would have a heavy neutrino to avoid the LEP bounds. This paper discusses new studies made with the CMS detector for the search of new heavy b-like quarks in several different decay modes and for different possible mass regions. These studies are based on detailed detector simulation, including all Standard Model backgrounds. Particular emphasis is given to possible early discoveries, i.e. with 100 pb{sup -1} or less. Projected 95% CL exclusion limits as a function of luminosity are presented as well.

  8. Neutrinoful universe

    NASA Astrophysics Data System (ADS)

    Higaki, Tetsutaro; Kitano, Ryuichiro; Sato, Ryosuke

    2014-07-01

    The Standard Model of particle physics fails to explain the important pieces in the standard cosmology, such as inflation, baryogenesis, and dark matter of the Universe. We consider the possibility that the sector to generate small neutrino masses is responsible for all of them; the inflation is driven by the Higgs field to break B - L gauge symmetry which provides the Majorana masses to the right-handed neutrinos, and the reheating process by the decay of the B - L Higgs boson supplies the second lightest right-handed neutrinos whose CP violating decays produce B - L asymmetry, à la, leptogenesis. The lightest right-handed neutrinos are also produced by the reheating process, and remain today as the dark matter of the Universe. In the minimal model of the inflaton potential, one can set the parameter of the potential by the data from CMB observations including the BICEP2 and the Planck experiments. In such a scenario, the mass of the dark matter particle is predicted to be of the order of PeV. We find that the decay of the PeV right-handed neutrinos can explain the high-energy neutrino flux observed at the IceCube experiments if the lifetime is of the order of 1028 s.

  9. New constraints on neutrino masses from cosmology

    SciTech Connect

    Melchiorri, A.; Serra, P.; Dodelson, S.; Slosar, A.; /Ljubljana U.

    2006-01-01

    By combining data from cosmic microwave background (CMB) experiments (including the recent WMAP third year results), large scale structure (LSS) and Lyman-{alpha} forest observations, we derive upper limits on the sum of neutrino masses of {summation}m{sub v} < 0.17eV at 95% c.l.. We then constrain the hypothesis of a fourth, sterile, massive neutrino. For the 3 massless + 1 massive neutrino case we bound the mass of the sterile neutrino to m{sub s} < 0.26eV at 95% c.l.. These results exclude at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We then generalize the analysis to account for active neutrino masses which tightens the limit to m{sub s} < 0.23eV and the possibility that the sterile abundance is not thermal. In the latter case, the constraints in the (mass, density) plane are nontrivial. For a mass of > 1eV or < 0.05eV the cosmological energy density in sterile neutrinos is always constrained to be {omega}{sub v} < 0.003 at 95% c.l.. However, for a sterile neutrino mass of {omega}{sub v} 0.25eV, {omega}{sub v} can be as large as 0.01.

  10. Unveiling Neutrino Mixing and Leptonic CP Violation

    NASA Astrophysics Data System (ADS)

    Mena, Olga

    We review the present understanding of neutrino masses and mixings, discussing what are the unknowns in the three-family oscillation scenario. Despite the anticipated success coming from the planned long baseline neutrino experiments in unraveling the leptonic mixing sector, there are two important unknowns which may remain obscure: the mixing angle θ13 and the CP-phase δ. The measurement of these two parameters has led us to consider the combination of superbeams and neutrino factories as the key to unveil the neutrino oscillation picture.

  11. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  12. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  13. Large neutrino asymmetries from neutrino oscillations

    SciTech Connect

    Foot, R.; Thomson, M.J.; Volkas, R.R.

    1996-05-01

    We reexamine neutrino oscillations in the early universe. Contrary to previous studies, we show that large neutrino asymmetries can arise due to oscillations between ordinary neutrinos and sterile neutrinos. This means that the big bang nucleosynthesis (BBN) bounds on the mass and mixing of ordinary neutrinos with sterile neutrinos can be evaded. Also, it is possible that the neutrino asymmetries can be large enough ({approx_gt}10{percent}) to have a significant effect on BBN through nuclear reaction rates. {copyright} {ital 1996 The American Physical Society.}

  14. Is cosmology compatible with sterile neutrinos?

    SciTech Connect

    Dodelson, Scott; Melchiorri, Alessandro; Slosar, Anze; /Ljubljana U.

    2005-11-01

    By combining data from cosmic microwave background (CMB) experiments (including the recent BOOMERANG-2K2 results), large scale structure (LSS) and Lyman-{alpha} forest observations, we constrain the hypothesis of a fourth, sterile, massive neutrino. For the 3 massless + 1 massive neutrino case we bound the mass of the sterile neutrino to m{sub s} < 0.55eV at 95% c.l.. These results exclude at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We then generalize the analysis to account for active neutrino masses (which tightens the limit to m{sub s} < 0.51eV) and the possibility that the sterile abundance is not thermal. In the latter case, the constraints in the (mass, density) plane are non-trivial. For a mass of > 1eV or < 0.05eV the cosmological energy density in sterile neutrinos is always constrained to be {omega}{sub {nu}} < 0.005 at 95% c.l.. However, for a sterile neutrino mass of {approx} 0.25 eV, {omega}{sub {nu}} can be as large as 0.015.

  15. Neutrino refraction by the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Díaz, J. S.; Klinkhamer, F. R.

    2016-03-01

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  16. Neutrino magnetic moment

    SciTech Connect

    Chang, D. . Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL ); Senjanovic, G. . Dept. of Theoretical Physics)

    1990-01-01

    We review attempts to achieve a large neutrino magnetic moment ({mu}{sub {nu}} {le} 10{sup {minus}11}{mu}{sub B}), while keeping neutrino light or massless. The application to the solar neutrino puzzle is discussed. 24 refs.

  17. Fourth goal of perinatal medicine.

    PubMed Central

    Ounsted, C; Roberts, J C; Gordon, M; Milligan, B

    1982-01-01

    Reduction in maternal mortality, infant mortality, and infant morbidity have been successively the goals of perinatal medicine. The fourth is to reduce bonding failure. In July 1978 a preventive service was started in the John Radcliffe Maternity Hospital. A twice-weekly round is made. Midwives refer families who cause them concern. In the first year the referral rate ws 20.5 per 1000 liveborn babies. The referred sample differed from the hospital population in terms of maternal psychiatric history, marital state and babies' admission to special care. The main reasons for referral were: doubt about parenting ability (27%), psychiatric history (15%), disturbed behaviour in hospital (14%), and diffuse social and medical problems (17%). Long-term care was needed for only 14% of families. At their first birthdays, six babies were placed away from their natural parents; the sample had had a slightly higher than expected admission rate to hospital; the distribution of weights did not differ from the expected; doctors and health visitors were still concerned about one-quarter of the families. Seven cases of screening failure were found among those not referred to our service, but only one was seriously abused. No child referred in the first year has been seriously neglected or abused. PMID:6802338

  18. Neutrinos: Theory and Phenomenology

    SciTech Connect

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  19. Naturalness and the neutrino matrix

    SciTech Connect

    Sayre, J.; Wiesenfeldt, S.

    2008-03-01

    The observed pattern of neutrino mass splittings and mixing angles indicates that their family structure is significantly different from that of the charged fermions. We investigate the implications of these data for the fermion mass matrices in grand-unified theories with a type-I seesaw mechanism. We show that, with simple assumptions, naturalness leads to a strongly hierarchical Majorana mass matrix for heavy right-handed neutrinos and a partially cascade form for the Dirac neutrino matrix. We consider various model building scenarios which could alter this conclusion, and discuss their consequences for the construction of a natural model. We find that including partially lopsided matrices can aid us in generating a satisfying model.

  20. Neurosurgery. Fourth edition

    SciTech Connect

    Simon, L.; Thomas, D.G.T.; Clark, W.K.

    1987-01-01

    The Fourth Edition of this volume in the Operative Surgery Series has been considerably revised to accommodate the many changes which have changed the practice of neurosurgery in the past eight years. There have been advances in technology, such as the wider application of CT scanning, in surgical technique, and in the design of new implantable materials. All these developments have substantially affected both the practice of neurosurgery and the prognosis for the patient and are fully reflected in the new edition.

  1. Calculating Neutrino Oscillations with Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Linehan, Bryan

    2014-09-01

    In particle physics, it is currently known that three types of neutrinos exist that interact via the weak force. Referred to as ``flavors,'' they are distinguishable and named for the lepton they produce through charged current interactions: electron, muon, and tau. In a process called neutrino oscillation, one flavor of neutrino can change into another flavor as it propagates through space. At the moment, mild discrepancies between expected and measured neutrino oscillations suggest that more types of neutrinos that do not interact via the weak force exist: sterile neutrinos. The goal of this project was to calculate non-sterile flavor oscillation probabilities when 1, 2 or 3 sterile neutrinos were assumed to exist. An application has been written in Mathematica that calculates these probabilities with the neutrino masses, linear relationships between mass and flavor states, values of CP symmetry violating constants, and constant densities of media in which the neutrinos propagate set as parameters. The application was published online for researchers to use as a tool when considering the existence of sterile neutrinos. In the immediate future, the insights this application gives into neutrino oscillations will be studied and reported. In particle physics, it is currently known that three types of neutrinos exist that interact via the weak force. Referred to as ``flavors,'' they are distinguishable and named for the lepton they produce through charged current interactions: electron, muon, and tau. In a process called neutrino oscillation, one flavor of neutrino can change into another flavor as it propagates through space. At the moment, mild discrepancies between expected and measured neutrino oscillations suggest that more types of neutrinos that do not interact via the weak force exist: sterile neutrinos. The goal of this project was to calculate non-sterile flavor oscillation probabilities when 1, 2 or 3 sterile neutrinos were assumed to exist. An application has been written in Mathematica that calculates these probabilities with the neutrino masses, linear relationships between mass and flavor states, values of CP symmetry violating constants, and constant densities of media in which the neutrinos propagate set as parameters. The application was published online for researchers to use as a tool when considering the existence of sterile neutrinos. In the immediate future, the insights this application gives into neutrino oscillations will be studied and reported. Mentored by Dr. Michael Kordosky and supported by the National Science Foundation under Grant No. PHY-1359364.

  2. Solar Neutrinos Before and After Neutrino 2004

    NASA Astrophysics Data System (ADS)

    Bahcall, John N.; Gonzalez-Garcia, M. C.; Pena-Garay, Carlos

    2004-08-01

    We compare, using a three neutrino analysis, the allowed neutrino oscillation parameters and solar neutrino fluxes determined by the experimental data available Before and After Neutrino 2004. New data available after Neutrino 2004 include refined KamLAND and gallium measurements. We use six different approaches to analyzing the KamLAND data. We present detailed results using all the available neutrino and anti-neutrino data for Deltam221, tan 2theta12, sin 2theta13, and sin 2eta (sterile fraction). Using the same complete data sets, we also present Before and After determinations of all the solar neutrino fluxes (which are treated as free parameters), an upper limit to the luminosity fraction associated with CNO neutrinos, and the predicted rate for a 7Be solar neutrino experiment. The 1sigma (3sigma) allowed range of Deltam221 = 8.2+0.3-0.3(+1.0-0.8) × 10-5 eV2 is decreased by a factor of 1.7 (5), but the allowed ranges of all other neutrino oscillation parameters and neutrino fluxes are not significantly changed. Maximal theta12 mixing is disfavored at 5.8sigma and the bound on the mixing angle theta13 is slightly improved to sin 2theta13<0.048 at 3sigma. The predicted rate in a 7Be neutrino-electron scattering experiment is 0.665+/-0.015 (+0.045-0.040) of the rate implied by the BP04 solar model in the absence of neutrino oscillations. The corresponding predictions for p-p and pep experiments are, respectively, 0.707+0.011-0.013(+0.041-0.039) and 0.644+0.011-0.013(+0.045-0.037). In order to clarify what measurements constrain which parameters best, we also analyze the solar neutrino data separately and the reactor anti-neutrino data separately, both Before and After Neutrino 2004. We derive upper limits to CPT violation in the weak sector by comparing reactor anti-neutrino oscillation parameters with neutrino oscillation parameters. We also show that the recent data disfavor at 91% CL a proposed non-standard interaction description of solar neutrino oscillations. We have verified that our results are insensitive (changes much less than 1sigma) to which of six approaches we use in analyzing the KamLAND data, which of the published 8B neutrino energy spectra we adopt, and the precise value of the gallium solar neutrino event rate.

  3. Testing constrained sequential dominance models of neutrinos

    NASA Astrophysics Data System (ADS)

    Björkeroth, Fredrik; King, Stephen F.

    2015-12-01

    Constrained sequential dominance (CSD) is a natural framework for implementing the see-saw mechanism of neutrino masses which allows the mixing angles and phases to be accurately predicted in terms of relatively few input parameters. We analyze a class of CSD(n) models where, in the flavour basis, two right-handed neutrinos are dominantly responsible for the ‘atmospheric’ and ‘solar’ neutrino masses with Yukawa couplings to ({ν }e,{ν }μ ,{ν }τ ) proportional to (0,1,1) and (1,n,n-2), respectively, where n is a positive integer. These coupling patterns may arise in indirect family symmetry models based on A 4. With two right-handed neutrinos, using a χ 2 test, we find a good agreement with data for CSD(3) and CSD(4) where the entire Pontecorvo-Maki-Nakagawa-Sakata mixing matrix is controlled by a single phase η, which takes simple values, leading to accurate predictions for mixing angles and the magnitude of the oscillation phase | {δ }{CP}| . We carefully study the perturbing effect of a third ‘decoupled’ right-handed neutrino, leading to a bound on the lightest physical neutrino mass {m}1{{≲ }}1 meV for the viable cases, corresponding to a normal neutrino mass hierarchy. We also discuss a direct link between the oscillation phase {δ }{CP} and leptogenesis in CSD(n) due to the same see-saw phase η appearing in both the neutrino mass matrix and leptogenesis.

  4. Underground neutrino astronomy

    SciTech Connect

    Schramm, D.N.

    1983-02-01

    A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium.

  5. Neutrinos in Nuclear Physics

    SciTech Connect

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  6. The cosmic neutrino background

    NASA Technical Reports Server (NTRS)

    Dar, Arnon

    1991-01-01

    The cosmic neutrino background is expected to consist of relic neutrinos from the big bang, of neutrinos produced during nuclear burning in stars, of neutrinos released by gravitational stellar collapse, and of neutrinos produced by cosmic ray interactions with matter and radiation in the interstellar and intergalactic medium. Formation of baryonic dark matter in the early universe, matter-antimatter annihilation in a baryonic symmetric universe, and dark matter annihilation could have also contributed significantly to the cosmic neutrino background. The purpose of this paper is to review the properties of these cosmic neutrino backgrounds, the indirect evidence for their existence, and the prospects for their detection.

  7. Fourth Generation Parity

    SciTech Connect

    Lee, Hye-Sung; Soni, Amarjit

    2013-01-01

    We present a very simple 4th-generation (4G) model with an Abelian gauge interaction under which only the 4G fermions have nonzero charge. The U(1) gauge symmetry can have a Z_2 residual discrete symmetry (4G-parity), which can stabilize the lightest 4G particle (L4P). When the 4G neutrino is the L4P, it would be a neutral and stable particle and the other 4G fermions would decay into the L4P leaving the trace of missing energy plus the standard model fermions. Because of the new symmetry, the 4G particle creation and decay modes are different from those of the sequential 4G model, and the 4G particles can be appreciably lighter than typical experimental bounds.

  8. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  9. Generating θ13 from sterile neutrinos in μ -τ symmetric models

    NASA Astrophysics Data System (ADS)

    Rivera-Agudelo, Diana C.; Pérez-Lorenzana, Abdel

    2015-10-01

    The smallness of the θ13 mixing angle as observed in neutrino oscillation experiments can be understood through an approximated μ -τ exchange symmetry in the neutrino mass matrix. Using recent oscillation neutrino data, but assuming no C P violation, we study μ -τ breaking parameter space to establish the conditions under which such a breaking could have a perturbative origin. According to the so-obtained conditions, we suggest that a sterile neutrino, matching LSND/MiniBooNE neutrino oscillation results, could provide the necessary ingredients to properly fix atmospheric and θ13 mixing angles to observable values, without exceeding the sterile neutrino fraction bound in solar oscillations. In such a scenario, we analyze the general effect of a fourth neutrino on the prediction for the effective me e majorana mass parameter.

  10. Eating Attitudes in Fourth-, Sixth-, and Eighth-Grade Girls.

    ERIC Educational Resources Information Center

    Rhyne-Winkler, Martha C.

    1994-01-01

    Examined eating attitudes of fourth-, sixth-, and eighth-grade girls (n=379) and relationship between those attitudes and achievement scores, school ability, absenteeism, family income, grade level, family size, age, height/weight ratio, diet history, weight satisfaction, appearance satisfaction, and school anxiety. Found that eating-disordered…

  11. The history of neutrinos, 1930-1985. What have we learned about neutrinos? What have we learned using neutrinos?

    SciTech Connect

    Steinberger, J.

    2012-12-15

    An attempt to remember some of the main events which highlight the evolution of our knowledge of the neutrinos and their properties, the 'families' of particles, a few of the very interesting persons who contributed to this progress, as well as the contribution of neutrino beam experiments to the validation of the electro-weak and quantum-chromo-dynamic theories, and the structure of the nucleon. - Highlights: Black-Right-Pointing-Pointer Early history: continuity of {beta}-spectrum, Pauli letter, universal Fermi interaction. Black-Right-Pointing-Pointer Neutrino beams and the discovery of the muon neutrino. Black-Right-Pointing-Pointer Gargamelle, the discovery of the neutral current and the verification of the quark-gluon nature of the parton. Black-Right-Pointing-Pointer Deep inelastic scattering at higher energies: scaling, quantitative verification of QCD, structure functions.

  12. Neutrino Physics at Fermilab

    ScienceCinema

    Saoulidou, Niki

    2010-01-08

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  13. Neutrino Physics at Fermilab

    SciTech Connect

    Saoulidou, Niki

    2008-04-09

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino 'hi-story', describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments. NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  14. Neutrino Physics at Fermilab

    SciTech Connect

    Saoulidou, Niki

    2008-04-09

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  15. Brief Neutrino Physics Update

    NASA Astrophysics Data System (ADS)

    Valle, J. W. F.

    2004-08-01

    The discovery of neutrino mass establishes the need for physics beyond the Standard Model. I summarize the status of two- and three-neutrino oscillation parameters from current solar, atmospheric, reactor and accelerator data. Future neutrinoless double beta decay experiments will probe the nature of neutrinos, as well as the absolute scale of neutrino mass, also tested by tritium beta decay spectra and cosmological observations. Sterile neutrinos do not provide a good way to account for the LSND hint, which needs further confirmation. Finally I sketch the main theoretical ideas for generating neutrino mass.

  16. Neutrino mass, a status report

    SciTech Connect

    Robertson, R.G.H.

    1993-08-01

    Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

  17. Experimental Neutrino Physics: Final Report

    SciTech Connect

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  18. Solar Neutrino Problem

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  19. Neutrino Oscillation Physics

    SciTech Connect

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  20. Solar neutrino experiments

    NASA Astrophysics Data System (ADS)

    Derbin, A. V.

    2014-05-01

    The main results of solar neutrino experiments are presented, ranging from the pioneering Cl - Ar experiment up to the most recent Borexino data. Solar neutrino fluxes and spectra are given for two versions of the standard solar model, and radiochemical and electronic detectors are briefly described. The results of ^7Be- and pep-neutrino detection by Borexino are presented. The LMA-MSW oscillation solution of the solar neutrino problem is considered.

  1. Speedy neutrinos, again

    NASA Astrophysics Data System (ADS)

    Goodman, Frank

    2012-02-01

    I am writing with regard to the OPERA collaboration's recent publicizing of experimental results suggesting that neutrinos have been observed travelling faster than light (see "Superluminal neutrinos split OPERA collaboration", November 2011 pp12-13 "The brave new-media world", ibid p19; and "Speedy neutrinos", December 2011 pp20-21).

  2. Reactor Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Inoue, K.

    2004-02-01

    Previous searches for neutrino oscillations with reactor neutrinos have been done only with baselines less than 1 km. The observed neutrino flux was consistent with the expectation and only excluded regions were drawn on the neutrino-oscillation-parameter space. Thus, those experiments played important roles in understanding neutrinos from fission reactors. Based on the knowledge from those experiments, an experiment with about a 180 km baseline became possible. Results obtained from this baseline experiment showed evidence for reactor neutrino disappearance and finally provide a resolution for the long standing solar neutrino problem when combined with results from the solar neutrino experiments. Several possibilities to explore the last unmeasured mixing angle θ13 with reactor neutrinos have recently been proposed. They will provide complementary information to long baseline accelerator experiments when one tries to solve the degeneracy of oscillation parameters. Reactor neutrinos are also useful to study the neutrino magnetic moment and the most stringent limits from terrestrial experiments are obtained by measuring the elastic scattering cross section of reactor neutrinos.

  3. Reactor Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Inoue, K.

    Previous searches for neutrino oscillations with reactor neutrinos have been done only with baselines less than 1 km. The observed neutrino flux was consistent with the expectation and only excluded regions were drawn on the neutrino-oscillation-parameter space. Thus, those experiments played important roles in understanding neutrinos from fission reactors. Based on the knowledge from those experiments, an experiment with about a 180 km baseline became possible. Results obtained from this baseline experiment showed evidence for reactor neutrino disappearance and finally provide a resolution for the long standing solar neutrino problem when combined with results from the solar neutrino experiments. Several possibilities to explore the last unmeasured mixing angle θ13 with reactor neutrinos have recently been proposed. They will provide complementary information to long baseline accelerator experiments when one tries to solve the degeneracy of oscillation parameters. Reactor neutrinos are also useful to study the neutrino magnetic moment and the most stringent limits from terrestrial experiments are obtained by measuring the elastic scattering cross section of reactor neutrinos.

  4. Neutrino observations from the Sudbury Neutrino Observatory

    SciTech Connect

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O'Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  5. Neutrino Observations from the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  6. Constraining sterile neutrinos using reactor neutrino experiments

    NASA Astrophysics Data System (ADS)

    Girardi, Ivan; Melon, Davide; Ohlsson, Tommy; Zhang, He; Zhou, Shun

    2014-08-01

    Models of neutrino mixing involving one or more sterile neutrinos have resurrected their importance in the light of recent cosmological data. In this case, reactor antineutrino experiments offer an ideal place to look for signatures of sterile neutrinos due to their impact on neutrino flavor transitions. In this work, we show that the high-precision data of the Daya Bay experiment constrain the 3+1 neutrino scenario imposing upper bounds on the relevant active-sterile mixing angle sin2 2 θ 14 ≲ 0.06 at 3 σ confidence level for the mass-squared difference Δm {41/2} in the range (10-3, 10-1) eV2. The latter bound can be improved by six years of running of the JUNO experiment, sin2 2 θ 14 ≲ 0.016, although in the smaller mass range Δm {41/2} ∈ (10-4, 10-3) eV2. We have also investigated the impact of sterile neutrinos on precision measurements of the standard neutrino oscillation parameters θ 13 and Δm {31/2} (at Daya Bay and JUNO), θ 12 and Δm {21/2} (at JUNO), and most importantly, the neutrino mass hierarchy (at JUNO). We find that, except for the obvious situation where Δm {41/2} ≲ Δm {31/2}, sterile states do not affect these measurements substantially.

  7. Neutrino - Link Between the Microcosmos and the Macrocosmos, a Study in Two Parts: (1) Theoretical - Look at the Tau Neutrino Mass and Other Quantum Electrodynamical Effects in Third Family Lepton Interactions and (2) Experimental - Astronomy in Hawai'i, the Short Prototype String of the Deep Underwater Muon and Neutrino Detector Project (hawaii)

    NASA Astrophysics Data System (ADS)

    Babson, John Freeman

    The nineteen eighties has been a time in which Cosmology and Particle Physics have come together. This dissertation reflects that trend. It does so in two ways. First, in Chapters 1 through 3, there is a theoretical investigation into some aspects of generational universality. The consequences of a third lepton, namely the tauon, and an associated tau neutrino, are explored in terms of phenomenology (mass and V-A consistency) that may shed insight into questions of neutrino mass and increased symmetry at higher energies. Second, in Chapters 4 through 11, there is an experimental investigation in the form of constructing and operating the first stage of the DUMAND (Deep Underwater Muon and Neutrino Detection) project which was a ship suspended muon and neutrino telescope called the SPS (Short Prototype String). This detector is of the water Cherenkov type and is the first time such an instrument has been successfully built and tested for use in the ocean. Chapters 6 through 10 are devoted to the detailed documentation of the parts of the SPS and its technology integration that I designed, prototyped, and debugged. In particular, a complete description is given to the command and control communications system of the string, the digital control electronics and associated software for the Optical, Calibration, and Power modules as well as the fast digitizing electronics or String Bottom Controller (SBC). This includes the development of a microcontroller language UHPS (Underwater Hawai'i Programming System). Finally, Chapter 11 is an analysis of SPS data in terms of ascertaining a purely statistically based downward traveling muon rate at a depth of 4.0 Km yielding (2.06 +/- 0.68) times 10^{-2 } Hz. Assuming a muon flux at 4.0 Km of 7 times 10^{-5 } m^{-2} s ^{-1} sr^ {-1} this corresponds to an effective area of Aeff = 3 +/- 1 times 10^2m^2. Additionally, the power index (n) of the cosine of the zenith angle of the downward traveling muons is found to be n = 5.3 which is consistent with previously reported results from deep mine experiments.

  8. Nucleosynthesis and Neutrinos

    SciTech Connect

    Kajino, Toshitaka

    2011-05-06

    Neutrinos play the critical roles in nucleosynthesis of light-to-heavy mass nuclei in core-collapse supernovae. We study the nucleosynthesis induced by neutrino interactions and find suitable average neutrino temperatures in order to explain the observed solar system abundances of several isotopes {sup 7}Li, {sup 11}B, {sup 138}La and {sup 180}Ta. These isotopes are predominantly synthesized by the supernova {nu}-process. We also study the neutrino oscillation effects on their abundances and propose a method to determine the unknown neutrino oscillation parameters, i.e. {theta}{sub 13} and mass hierarchy.

  9. Neutrinos from AGN

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The great penetrating power of neutrinos makes them ideal probe of astrophysical sites and conditions inaccessible to other forms of radiation. These are the centers of stars (collapsing or not) and the centers of Active Galactic Nuclei (AGN). It has been suggested that AGN presented a very promising source of high energy neutrinos, possibly detectable by underwater neutrino detectors. This paper reviews the evolution of ideas concerning the emission of neutrinos from AGN in view of the more recent developments in gamma-ray astronomy and their implications for the neutrino emission from these class of objects.

  10. Mass determination of neutrinos

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1988-01-01

    A time-energy correlation method has been developed to determine the signature of a nonzero neutrino mass in a small sample of neutrinos detected from a distant source. The method is applied to the Kamiokande II (Hirata et al., 1987) and IMB (Bionta et al., 1987) observations of neutrino bursts from SN 1987A. Using the Kamiokande II data, the neutrino rest mass is estimated at 2.8 + 2.0, - 1.4 eV and the initial neutrino pulse is found to be less than 0.3 sec full width, followed by an emission tail lasting at least 10 sec.

  11. Neutrino masses and oscillations

    NASA Astrophysics Data System (ADS)

    Valle, J. W. F.

    2005-12-01

    I summarize the status of three-neutrino oscillations that follow from combining the relevant world's data. The discussion includes the small parameters α ≡ ΔmSOL2/ΔmATM2 and sin2 θ13, which characterize the strength of CP violation in neutrino oscillations, the impact of oscillation data on the prospects for probing the absolute scale of neutrino mass in ββ0ν and the robustness of the neutrino oscillation interpretation itself in the presence of non-standard physics. I also comment on the theoretical origin of neutrino mass, mentioning recent attemps to explain current oscillation data.

  12. Update on atmospheric neutrinos

    SciTech Connect

    Gonzalez-Garcia, M.C.; Nunokawa, H.; Peres, O.L.; Valle, J.W.; Gonzalez-Garcia, M.C.; Stanev, T.

    1998-08-01

    We discuss the impact of recent experimental results on the determination of atmospheric neutrino oscillation parameters. We use all published results on atmospheric neutrinos, including the preliminary large statistics data of Super-Kamiokande. We reanalyze the data in terms of both {nu}{sub {mu}}{r_arrow}{nu}{sub {tau}} and {nu}{sub {mu}}{r_arrow}{nu}{sub e} channels using new improved calculations of the atmospheric neutrino flux. We compare the sensitivity attained in atmospheric neutrino experiments with those of accelerator and reactor neutrino oscillation searches, including the recent CHOOZ experiment. We briefly comment on the implications of atmospheric neutrino data in relation to future searches for neutrino oscillations with long baselines, such as the K2K, MINOS, ICARUS, and NOE experiments. {copyright} {ital 1998} {ital The American Physical Society}

  13. A New Neutrino Oscillation

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2011-07-01

    Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) divided by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected background of 1.5 events. The probability that the 6 events are all background is only about 0.7%. Stated differently, this is a 2.7{sigma} indication that the parameter that controls the oscillation, the neutrino mixing angle {theta}{sub 13}, is nonzero, just shy of the 3{sigma} requirement to claim 'evidence for.' Nevertheless, this experiment provides the strongest indication to date that this oscillation actually occurs in nature.

  14. Neutrino physics with JUNO

    NASA Astrophysics Data System (ADS)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations. Detection of neutrinos from all past core-collapse supernova explosions in the visible universe with JUNO would further provide valuable information on the cosmic star-formation rate and the average core-collapse neutrino energy spectrum. Antineutrinos originating from the radioactive decay of uranium and thorium in the Earth can be detected in JUNO with a rate of ˜400 events per year, significantly improving the statistics of existing geoneutrino event samples. Atmospheric neutrino events collected in JUNO can provide independent inputs for determining the MH and the octant of the {θ }23 mixing angle. Detection of the 7Be and 8B solar neutrino events at JUNO would shed new light on the solar metallicity problem and examine the transition region between the vacuum and matter dominated neutrino oscillations. Regarding light sterile neutrino topics, sterile neutrinos with {10}-5 {{{eV}}}2\\lt {{Δ }}{m}412\\lt {10}-2 {{{eV}}}2 and a sufficiently large mixing angle {θ }14 could be identified through a precise measurement of the reactor antineutrino energy spectrum. Meanwhile, JUNO can also provide us excellent opportunities to test the eV-scale sterile neutrino hypothesis, using either the radioactive neutrino sources or a cyclotron-produced neutrino beam. The JUNO detector is also sensitive to several other beyondthe-standard-model physics. Examples include the search for proton decay via the p\\to {K}++\\bar{ν } decay channel, search for neutrinos resulting from dark-matter annihilation in the Sun, search for violation of Lorentz invariance via the sidereal modulation of the reactor neutrino event rate, and search for the effects of non-standard interactions. The proposed construction of the JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics in a timely and cost-effective fashion. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one of the building blocks of our Universe.

  15. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  16. MINOS Sterile Neutrino Search

    SciTech Connect

    Koskinen, David Jason; /University Coll. London

    2009-09-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the {nu}{sub {mu}} {yields} V{sub {tau}} transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling {approx}2.5 x 10{sup 20} protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  17. Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows

    SciTech Connect

    Tamborra, Irene; Raffelt, Georg G.; Hüdepohl, Lorenz; Janka, Hans-Thomas E-mail: raffelt@mpp.mpg.de E-mail: thj@mpa-garching.mpg.de

    2012-01-01

    Motivated by recent hints for sterile neutrinos from the reactor anomaly, we study active-sterile conversions in a three-flavor scenario (2 active + 1 sterile families) for three different representative times during the neutrino-cooling evolution of the proto-neutron star born in an electron-capture supernova. In our ''early model'' (0.5 s post bounce), the ν{sub e}-ν{sub s} MSW effect driven by Δm{sup 2} = 2.35eV{sup 2} is dominated by ordinary matter and leads to a complete ν{sub e}-ν{sub s} swap with little or no trace of collective flavor oscillations. In our ''intermediate'' (2.9 s p.b.) and ''late models'' (6.5 s p.b.), neutrinos themselves significantly modify the ν{sub e}-ν{sub s} matter effect, and, in particular in the late model, νν refraction strongly reduces the matter effect, largely suppressing the overall ν{sub e}-ν{sub s} MSW conversion. This phenomenon has not been reported in previous studies of active-sterile supernova neutrino oscillations. We always include the feedback effect on the electron fraction Y{sub e} due to neutrino oscillations. In all examples, Y{sub e} is reduced and therefore the presence of sterile neutrinos can affect the conditions for heavy-element formation in the supernova ejecta, even if probably not enabling the r-process in the investigated outflows of an electron-capture supernova. The impact of neutrino-neutrino refraction is strong but complicated, leaving open the possibility that with a more complete treatment, or for other supernova models, active-sterile neutrino oscillations could generate conditions suitable for the r-process.

  18. Fourth Light at Paranal!

    NASA Astrophysics Data System (ADS)

    2000-09-01

    VLT YEPUN Joins ANTU, KUEYEN and MELIPAL It was a historical moment last night (September 3 - 4, 2000) in the VLT Control Room at the Paranal Observatory , after nearly 15 years of hard work. Finally, four teams of astronomers and engineers were sitting at the terminals - and each team with access to an 8.2-m telescope! From now on, the powerful "Paranal Quartet" will be observing night after night, with a combined mirror surface of more than 210 m 2. And beginning next year, some of them will be linked to form part of the unique VLT Interferometer with unparalleled sensitivity and image sharpness. YEPUN "First Light" Early in the evening, the fourth 8.2-m Unit Telescope, YEPUN , was pointed to the sky for the first time and successfully achieved "First Light". Following a few technical exposures, a series of "first light" photos was made of several astronomical objects with the VLT Test Camera. This instrument was also used for the three previous "First Light" events for ANTU ( May 1998 ), KUEYEN ( March 1999 ) and MELIPAL ( January 2000 ). These images served to evaluate provisionally the performance of the new telescope, mainly in terms of mechanical and optical quality. The ESO staff were very pleased with the results and pronounced YEPUN fit for the subsequent commissioning phase. When the name YEPUN was first given to the fourth VLT Unit Telescope, it was supposed to mean "Sirius" in the Mapuche language. However, doubts have since arisen about this translation and a detailed investigation now indicates that the correct meaning is "Venus" (as the Evening Star). For a detailed explanation, please consult the essay On the Meaning of "YEPUN" , now available at the ESO website. The first images At 21:39 hrs local time (01:39 UT), YEPUN was turned to point in the direction of a dense Milky Way field, near the border between the constellations Sagitta (The Arrow) and Aquila (The Eagle). A guide star was acquired and the active optics system quickly optimized the mirror system. At 21:44 hrs (01:44 UT), the Test Camera at the Cassegrain focus within the M1 mirror cell was opened for 30 seconds, with the planetary nebula Hen 2-428 in the field. The resulting "First Light" image was immediately read out and appeared on the computer screen at 21:45:53 hrs (01:45:53 UT). "Not bad! - "Very nice!" were the first, "business-as-usual"-like comments in the room. The zenith distance during this observation was 44° and the image quality was measured as 0.9 arcsec, exactly the same as that registered by the Seeing Monitoring Telescope outside the telescope building. There was some wind. ESO PR Photo 22a/00 ESO PR Photo 22a/00 [Preview - JPEG: 374 x 400 pix - 128k] [Normal - JPEG: 978 x 1046 pix - 728k] Caption : ESO PR Photo 22a/00 shows a colour composite of some of the first astronomical exposures obtained by YEPUN . The object is the planetary nebula Hen 2-428 that is located at a distance of 6,000-8,000 light-years and seen in a dense sky field, only 2° from the main plane of the Milky Way. As other planetary nebulae, it is caused by a dying star (the bluish object at the centre) that shreds its outer layers. The image is based on exposures through three optical filtres: B(lue) (10 min exposure, seeing 0.9 arcsec; here rendered as blue), V(isual) (5 min; 0.9 arcsec; green) and R(ed) (3 min; 0.9 arcsec; red). The field measures 88 x 78 arcsec 2 (1 pixel = 0.09 arcsec). North is to the lower right and East is to the lower left. The 5-day old Moon was about 90° away in the sky that was accordingly bright. The zenith angle was 44°. The ESO staff then proceeded to take a series of three photos with longer exposures through three different optical filtres. They have been combined to produce the image shown in ESO PR Photo 22a/00 . More astronomical images were obtained in sequence, first of the dwarf galaxy NGC 6822 in the Local Group (see PR Photo 22f/00 below) and then of the spiral galaxy NGC 7793 . All 8.2-m telescopes now in operation at Paranal The ESO Director General, Catherine Cesarsky , who was present on Paranal during this event, congratulated the ESO staff to the great achievement, herewith bringing a major phase of the VLT project to a successful end. She was particularly impressed by the excellent optical quality that was achieved at this early moment of the commissioning tests. A measurement showed that already now, 80% of the light is concentrated within 0.22 arcsec. The manager of the VLT project, Massimo Tarenghi , was very happy to reach this crucial project milestone, after nearly fifteen years of hard work. He also remarked that with the M2 mirror already now "in the active optics loop", the telescope was correctly compensating for the somewhat mediocre atmospheric conditions on this night. The next major step will be the "first light" for the VLT Interferometer (VLTI) , when the light from two Unit Telescopes is combined. This event is expected in the middle of next year. Impressions from the YEPUN "First Light" event First Light for YEPUN - ESO PR VC 06/00 ESO PR Video Clip 06/00 "First Light for YEPUN" (5650 frames/3:46 min) [MPEG Video+Audio; 160x120 pix; 7.7Mb] [MPEG Video+Audio; 320x240 pix; 25.7 Mb] [RealMedia; streaming; 34kps] [RealMedia; streaming; 200kps] ESO Video Clip 06/00 shows sequences from the Control Room at the Paranal Observatory, recorded with a fixed TV-camera in the evening of September 3 at about 23:00 hrs local time (03:00 UT), i.e., soon after the moment of "First Light" for YEPUN . The video sequences were transmitted via ESO's dedicated satellite communication link to the Headquarters in Garching for production of the clip. It begins at the moment a guide star is acquired to perform an automatic "active optics" correction of the mirrors; the associated explanation is given by Massimo Tarenghi (VLT Project Manager). The first astronomical observation is performed and the first image of the planetary nebula Hen 2-428 is discussed by the ESO Director General, Catherine Cesarsky . The next image, of the nearby dwarf galaxy NGC 6822 , arrives and is shown and commented on by the ESO Director General. Finally, Massimo Tarenghi talks about the next major step of the VLT Project. The combination of the lightbeams from two 8.2-m Unit Telescopes, planned for the summer of 2001, will mark the beginning of the VLT Interferometer. ESO Press Photo 22b/00 ESO Press Photo 22b/00 [Preview; JPEG: 400 x 300; 88k] [Full size; JPEG: 1600 x 1200; 408k] The enclosure for the fourth VLT 8.2-m Unit Telescope, YEPUN , photographed at sunset on September 3, 2000, immediately before "First Light" was successfully achieved. The upper part of the mostly subterranean Interferometric Laboratory for the VLTI is seen in front. (Digital Photo). ESO Press Photo 22c/00 ESO Press Photo 22c/00 [Preview; JPEG: 400 x 300; 112k] [Full size; JPEG: 1280 x 960; 184k] The initial tuning of the YEPUN optical system took place in the early evening of September 3, 2000, from the "observing hut" on the floor of the telescope enclosure. From left to right: Krister Wirenstrand who is responsible for the VLT Control Software, Jason Spyromilio - Head of the Commissioning Team, and Massimo Tarenghi , VLT Manager. (Digital Photo). ESO Press Photo 22d/00 ESO Press Photo 22d/00 [Preview; JPEG: 400 x 300; 112k] [Full size; JPEG: 1280 x 960; 184k] "Mission Accomplished" - The ESO Director General, Catherine Cesarsky , and the Paranal Director, Roberto Gilmozzi , face the VLT Manager, Massimo Tarenghi at the YEPUN Control Station, right after successful "First Light" for this telescope. (Digital Photo). An aerial image of YEPUN in its enclosure is available as ESO PR Photo 43a/99. The mechanical structure of YEPUN was first pre-assembled at the Ansaldo factory in Milan (Italy) where it served for tests while the other telescopes were erected at Paranal. An early photo ( ESO PR Photo 37/95 ) is available that was obtained during the visit of the ESO Council to Milan in December 1995, cf. ESO PR 18/95. Paranal at sunset ESO Press Photo 22e/00 ESO Press Photo 22e/00 [Preview; JPEG: 400 x 200; 14kb] [Normal; JPEG: 800 x 400; 84kb] [High-Res; JPEG: 4000 x 2000; 4.0Mb] Wide-angle view of the Paranal Observatory at sunset. The last rays of the sun illuminate the telescope enclosures at the top of the mountain and some of the buildings at the Base Camp. The new "residencia" that will provide living space for the Paranal staff and visitors from next year is being constructed to the left. The "First Light" observations with YEPUN began soon after sunset. This photo was obtained in March 2000. Additional photos (September 6, 2000) ESO PR Photo 22f/00 ESO PR Photo 22f/00 [Preview - JPEG: 400 x 487 pix - 224k] [Normal - JPEG: 992 x 1208 pix - 1.3Mb] Caption : ESO PR Photo 22f/00 shows a colour composite of three exposures of a field in the dwarf galaxy NGC 6822 , a member of the Local Group of Galaxies at a distance of about 2 million light-years. They were obtained by YEPUN and the VLT Test Camera at about 23:00 hrs local time on September 3 (03:00 UT on September 4), 2000. The image is based on exposures through three optical filtres: B(lue) (10 min exposure; here rendered as blue), V(isual) (5 min; green) and R(ed) (5 min; red); the seeing was 0.9 - 1.0 arcsec. Individual stars of many different colours (temperatures) are seen. The field measures about 1.5 x 1.5 arcmin 2. Another image of this galaxy was obtained earlier with ANTU and FORS1 , cf. PR Photo 10b/99. ESO Press Photo 22g/00 ESO Press Photo 22g/00 [Preview; JPEG: 400 x 300; 136k] [Full size; JPEG: 1280 x 960; 224k] Most of the crew that put together YEPUN is here photographed after the installation of the M1 mirror cell at the bottom of the mechanical structure (on July 30, 2000). Back row (left to right): Erich Bugueno (Mechanical Supervisor), Erito Flores (Maintenance Technician); front row (left to right) Peter Gray (Mechanical Engineer), German Ehrenfeld (Mechanical Engineer), Mario Tapia (Mechanical Engineer), Christian Juica (kneeling - Mechanical Technician), Nelson Montano (Maintenance Engineer), Hansel Sepulveda (Mechanical Technican) and Roberto Tamai (Mechanical Engineer). (Digital Photo). ESO PR Photos may be reproduced, if credit is given to the European Southern Observatory. The ESO PR Video Clips service to visitors to the ESO website provides "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clip 05/00 ("Portugal to Accede to ESO (27 June 2000). Information is also available on the web about other ESO videos.

  19. Solar neutrino detection

    NASA Astrophysics Data System (ADS)

    Miramonti, Lino

    2009-04-01

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  20. Disentangling neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Cohen, Andrew G.; Glashow, Sheldon L.; Ligeti, Zoltan

    2009-07-01

    The theory underlying neutrino oscillations has been described at length in the literature. The neutrino state produced by a weak decay is usually portrayed as a linear superposition of mass eigenstates with, variously, equal energies or equal momenta. We point out that such a description is incorrect, that in fact, the neutrino is entangled with the other particle or particles emerging from the decay. We offer an analysis of oscillation phenomena involving neutrinos (applying equally well to neutral mesons) that takes entanglement into account. Thereby we present a theoretically sound proof of the universal validity of the oscillation formulæ ordinarily used. In so doing, we show that the departures from exponential decay reported by the GSI experiment cannot be attributed to neutrino mixing. Furthermore, we demonstrate that the ‘Mössbauer’ neutrino oscillation experiment proposed by Raghavan, while technically challenging, is correctly and unambiguously describable by means of the usual oscillation formalæ.

  1. Physics of Massive Neutrinos

    NASA Astrophysics Data System (ADS)

    Valle, J. W. F.

    2005-12-01

    I summarize the present status of global analyses of neutrino oscillations, including the most recent KamLAND and K2K data, as well as the latest solar and atmospheric neutrino fluxes. I give the allowed ranges of the three flavour oscillation parameters from the current worlds' global neutrino data sample, their best fit values and discuss the small parameters α≡ΔmSOL2/ΔmATM2 and sinθ, which characterize the strength of CP violation in neutrino oscillations. I briefly discuss neutrinoless double beta decay and the LSND neutrino oscillation hint, as well as the robustness of the neutrino oscillation results in the presence of non-standard physics.

  2. Solar neutrino detection

    SciTech Connect

    Miramonti, Lino

    2009-04-30

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  3. The AMANDA Neutrino Detector

    SciTech Connect

    Wischnewski, R.; Andres, E.; Askebjer, P.; Barwick, S.; Bay, R.; Bergstrom, L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Cowen, D.; Costa, C.; Dalberg,E.; Deyoung, T.; Edsjo, J.; Ekstrom, P.; Goobar, A.; Gray, L.; Hallgren,A.; Halzen, F.; Hardtke, R.; He, Y.; Hill, G.; Hulth, P.; Hundertmark,S.; Jacobsen, J.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold,M.; Lindahl, P.; Liss, T.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.; Miocinovic, P.; Mock, P.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren, D.; de, los, Heros, CP.; Porrata, R.; Price, P.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering,C.; Steffen, P.; Stokstad, R.; Streicher, O.; Thollander, L.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch, C.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    1999-08-23

    The first stage of the AMANDA High Energy Neutrino Detectorat the South Pole, the 302 PMT array AMANDA-B with an expected effectivearea for TeV neutrinos of similar to 10(4) m(2), has been taking datasince 1997. Progress with calibration, investigation of ice properties,as well as muon and neutrino data analysis are described. The next stage20-string detector AMANDA-II with similar to 800 PMTs will be completedin spring 2000.

  4. Neutrinos in Cosmology

    SciTech Connect

    Wong, Yvonne Y. Y.

    2008-01-24

    I give an overview of the effects of neutrinos on cosmology, focussing in particular on the role played by neutrinos in the evolution of cosmological perturbations. I discuss how recent observations of the cosmic microwave background and the large-scale structure of galaxies can probe neutrino masses with greater precision than current laboratory experiments. I describe several new techniques that will be used to probe cosmology in the future.

  5. Neutrinos: Nature's Ghosts?

    SciTech Connect

    Lincoln, Don

    2013-06-18

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  6. High intensity neutrino beams

    NASA Astrophysics Data System (ADS)

    Ichikawa, A. K.

    2015-07-01

    High-intensity proton accelerator complex enabled long baseline neutrino oscillation experiments with a precisely controlled neutrino beam. The beam power so far achieved is a few hundred kW with enourmorous efforts of accelerator physicists and engineers. However, to fully understand the lepton mixing structure, MW-class accelerators are desired. We describe the current intensity-frontier high-energy proton accelerators, their plans to go beyond and technical challenges in the neutrino beamline facilities.

  7. Neutrinos from gravitational collapse

    SciTech Connect

    Mayle, R.; Wilson, J.R.; Schramm, D.N.

    1986-05-01

    Detailed calculations are made of the neutrino spectra emitted during gravitational collapse events (Type II supernovae). Those aspects of the neutrino signal which are relatively independent of the collapse model and those aspects which are sensitive to model details are discussed. The easier-to-detect high energy tail of the emitted neutrinos has been calculated using the Boltzmann equation which is compared with the result of the traditional multi-group flux limited diffusion calculations. 8 figs., 28 refs.

  8. Neutrinos: Nature's Ghosts?

    ScienceCinema

    Lincoln, Don

    2014-08-12

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  9. Neutrino oscillation studies with reactors.

    PubMed

    Vogel, P; Wen, L J; Zhang, C

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  10. Neutrino oscillation studies with reactors

    PubMed Central

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  11. Novel Ideas for Neutrino Beams

    SciTech Connect

    Peach, Ken

    2007-04-23

    Recent developments in neutrino physics, primarily the demonstration of neutrino oscillations in both atmospheric neutrinos and solar neutrinos, provide the first conclusive evidence for physics beyond the Standard Model of particle physics. The simplest phenomenology of neutrino oscillations, for three generations of neutrino, requires six parameters - two squared mass differences, 3 mixing angles and a complex phase that could, if not 0 or {pi}, contribute to the otherwise unexplained baryon asymmetry observed in the universe. Exploring the neutrino sector will require very intense beams of neutrinos, and will need novel solutions.

  12. Neutrino oscillation studies with reactors

    SciTech Connect

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  13. Neutrino oscillation studies with reactors

    DOE PAGESBeta

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  14. Neutrinos in supernovae

    SciTech Connect

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs.

  15. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  16. Bolometric detection of neutrinos

    NASA Technical Reports Server (NTRS)

    Cabrera, B.; Krauss, L. M.; Wilczek, F.

    1985-01-01

    Elastic neutrino scattering off electrons in crystalline silicon at 1-10 mK results in measurable temperature changes in macroscopic amounts of material, even for low-energy (less than 0.41-MeV) pp neutrinos from the sun. New detectors for bolometric measurement of low-energy neutrino interactions, including coherent nuclear elastic scattering, are proposed. A new and more sensitive search for oscillations of reactor antineutrinos is practical (about 100 kg of Si), and would lay the groundwork for a more ambitious measurement of the spectrum of pp, Be-7, and B-8 solar neutrinos, and of supernovae anywhere in the Galaxy (about 10 tons of Si).

  17. Nonlinear growing neutrino cosmology

    NASA Astrophysics Data System (ADS)

    Ayaita, Youness; Baldi, Marco; Führer, Florian; Puchwein, Ewald; Wetterich, Christof

    2016-03-01

    The energy scale of dark energy, ˜2 ×10-3 eV , is a long way off compared to all known fundamental scales—except for the neutrino masses. If dark energy is dynamical and couples to neutrinos, this is no longer a coincidence. The time at which dark energy starts to behave as an effective cosmological constant can be linked to the time at which the cosmic neutrinos become nonrelativistic. This naturally places the onset of the Universe's accelerated expansion in recent cosmic history, addressing the why-now problem of dark energy. We show that these mechanisms indeed work in the growing neutrino quintessence model—even if the fully nonlinear structure formation and backreaction are taken into account, which were previously suspected of spoiling the cosmological evolution. The attractive force between neutrinos arising from their coupling to dark energy grows as large as 106 times the gravitational strength. This induces very rapid dynamics of neutrino fluctuations which are nonlinear at redshift z ≈2 . Nevertheless, a nonlinear stabilization phenomenon ensures only mildly nonlinear oscillating neutrino overdensities with a large-scale gravitational potential substantially smaller than that of cold dark matter perturbations. Depending on model parameters, the signals of large-scale neutrino lumps may render the cosmic neutrino background observable.

  18. Sealing the fate of a fourth generation of fermions

    NASA Astrophysics Data System (ADS)

    Djouadi, Abdelhak; Lenz, Alexander

    2012-09-01

    The search for the effects of heavy fermions in the extension of the Standard Model with a fourth generation is part of the experimental program of the Tevatron and LHC experiments. Besides being directly produced, these states affect drastically the production and decay properties of the Higgs boson. In this Letter, we first reemphasize the known fact that in the case of a light and long-lived fourth neutrino, the present collider searches do not permit to exclude a Higgs boson with a mass below the WW threshold. In a second step, we show that the recent results from the ATLAS and CMS Collaborations which observe an excess in the γγ and 4ℓ± search channels corresponding to a Higgs boson with a mass MH ≈ 125 GeV, cannot rule out the fourth generation possibility if the H → γγ decay rate is evaluated when naively implementing the leading O (GF mf‧2) electroweak corrections. Including the exact next-to-leading order electroweak corrections leads to a strong suppression of the H → γγ rate and makes this channel unobservable with present data. Finally, we point out that the observation by the Tevatron Collaborations of a ≳ 2 σ excess in the mass range MH = 115- 135 GeV in the channel qqbar → WH → Wbbbar can definitely not be accommodated by the fourth generation fermion scenario. All in all, if the excesses observed at the LHC and the Tevatron are indeed due to a Higgs boson, they unambiguously exclude the perturbative fermionic fourth generation case. In passing, we also point out that the Tevatron excess definitely rules out the fermiophobic Higgs scenario as well as scenarios in which the Higgs couplings to gauge bosons and bottom quarks are significantly reduced.

  19. Neutrinos from collapsars

    NASA Astrophysics Data System (ADS)

    Vieyro, F. L.; Romero, G. E.; Peres, O. L. G.

    2013-10-01

    Context. Long gamma-ray bursts (GRBs) are associated with the gravitational collapse of very massive stars. The central engine of a GRB can collimate relativistic jets that propagate inside the stellar envelope. The shock waves produced when the jet disrupts the stellar surface are capable of accelerating particles up to very high energies. Aims: If the jet has hadronic content, neutrinos will be produced via charged pion decays. The main goal of this work is to estimate the neutrino emission produced in the region close to the surface of the star, taking pion and muon cooling into account, along with subtle effects arising from neutrino production in a highly magnetized medium. Methods: We estimate the maximum energies of the different kinds of particles and solve the coupled transport equations for each species. Once the particle distributions are known, we calculate the intensity of neutrinos. We study the different effects on the neutrinos that can change the relative weight of different flavors. In particular, we consider the effects of neutrino oscillations, and of neutrino spin precession caused by strong magnetic fields. Results: The expected neutrino signals from the shocks in the uncorking regions of Population III events is very weak, but the neutrino signal produced by Wolf-Rayet GRBs with z < 0.5 is not far from the level of the atmospheric background. Conclusions: The IceCube experiment does not have the sensitivity to detect neutrinos from the implosion of the earliest stars, but a number of high-energy neutrinos may be detected from nearby long GRBs. The cumulative signal should be detectable over several years (~10 yr) of integration with the full 86-string configuration.

  20. Extremely high energy cosmic neutrinos and relic neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2006-03-01

    I review the essentials of ultrahigh-energy neutrino interactions, show how neutral-current detection and flavor tagging can enhance the scientific potential of neutrino telescopes, and sketch new studies on neutrino encounters with dark matter relics and on gravitational lensing of neutrinos.

  1. High Energy Neutrinos with a Mediterranean Neutrino Telescope

    SciTech Connect

    Borriello, E.; Cuoco, A.; Mangano, G.; Miele, G.; Pastor, Sergio; Pisanti, O.; Serpico, Pasquale Dario; /Fermilab

    2007-09-01

    The high energy neutrino detection by a km{sup 3} Neutrino Telescope placed in the Mediterranean sea provides a unique tool to both determine the diffuse astrophysical neutrino flux and the neutrino nucleon cross section in the extreme kinematical region, which could unveil the presence of new physics. Here is performed a brief analysis of possible NEMO site performances.

  2. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2007-01-01

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

  3. Cosmological Neutrino Mass Detection: The Best Probe of Neutrino Lifetime

    SciTech Connect

    Serpico, Pasquale D.

    2007-04-27

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence, on neutrino secret interactions with (quasi)massless particles as in Majoron models. On the other hand, neutrino decay may provide a way out to explain a discrepancy < or approx. 0.1 eV between cosmic neutrino bounds and lab data.

  4. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  5. Neutrinos for Peace

    NASA Astrophysics Data System (ADS)

    Cribier, M.

    2015-04-01

    The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

  6. Reactor monitoring with Neutrinos

    NASA Astrophysics Data System (ADS)

    Cribier, Michel

    2011-12-01

    The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

  7. Ice fishing for neutrinos

    NASA Astrophysics Data System (ADS)

    Robinson, Lief J.

    1994-07-01

    A new telescope, the Antarctic Muon and Neutrino Dtector Array (AMANDA), at the South Pole is attempting to collect 'ghost' particles from some of the highest energy sources in the universe. The goal is to transform a piece of the south-polar icecap into a telescope that will map the locations of high-energy neutrinos in the sky. Ten kilometer-long strings beaded with 20 multiplier tubes along their lower 200 meters make up AMANDA. Occasionally a neutrino, racing through the 3-km-thick Antarctic icecap, interacts with an atom and spawns a muon, which emits an expanding cone of Cherenkov light as it continues along nearly the same track as the neutrino itself. By timing when this light is detected by various photomultipliers, the neutrino's origin in the sky can be determined. AMANDA records light flashes from muons created by neutrinos that have passed through the Earth to arrive at the South Pole from the northern sky. If the neutrinos come from enduring sources, such as black holes, detections will cluster around 'hot spots' in the sky. Background 'noise' from neutrinos born in Northern Hemisphere cosmic-ray showers will be distributed randomly. Other aspects AMANDA are discussed.

  8. Physics of neutrino flavor transformation through matter-neutrino resonances

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Duan, Huaiyu; Qian, Yong-Zhong

    2016-01-01

    In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  9. Neutrinos and dark matter

    SciTech Connect

    Ibarra, Alejandro

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  10. Summary: Neutrinos and nonaccelerator physics

    SciTech Connect

    Hoffman, C.M.

    1991-01-01

    This paper contains brief synopsis of the following major topics discussed in the neutrino and nonaccelerator parallel sessions: dark matter; neutrino oscillations at accelerators and reactors; gamma-ray astronomy; double beta decay; solar neutrinos; and the possible existence of a 17-KeV neutrino. (LSP)

  11. Solar neutrinos: Probing the sun or neutrinos

    SciTech Connect

    Wilkerson, J.F.

    1991-01-01

    The decade of the 1990's should prove to be a landmark period for the study of solar neutrino physics. Current observations show 2-3 times fewer neutrinos coming from the sun than are theoretically expected. As we enter the decade, new experiments are poised to attempt and discover whether this deficit is a problem with our understanding of how the sun works, is a hint of new neutrino properties beyond those predicted by the standard model of particle physics, or perhaps a combination of both. This paper will review the current status of the field and point out how future measurements should help solve this interesting puzzle. 11 refs., 3 figs., 1 tab.

  12. Search for Majorana Neutrinos in B-→π+μ-μ- Decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dorosz, P.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Falabella, A.; Färber, C.; Farinelli, C.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Hafkenscheid, T. W.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luisier, J.; Luo, H.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Manzali, M.; Maratas, J.; Marconi, U.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neubert, S.; Neufeld, N.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Pessina, G.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Roberts, D. A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spinella, F.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiechczynski, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.; LHCb Collaboration

    2014-04-01

    A search for heavy Majorana neutrinos produced in the B-→π+μ-μ- decay mode is performed using 3 fb-1 of integrated luminosity collected with the LHCb detector in pp collisions at center-of-mass energies of 7 and 8 TeV at the LHC. Neutrinos with masses in the range 250 to 5000 MeV and lifetimes from zero to 1000 ps are probed. In the absence of a signal, upper limits are set on the branching fraction B(B-→π+μ-μ-) as functions of neutrino mass and lifetime. These limits are on the order of 10-9 for short neutrino lifetimes of 1 ps or less. Limits are also set on the coupling between the muon and a possible fourth-generation neutrino.

  13. Search for Majorana neutrinos in B- → π+ μ- μ- decays.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Bauer, T; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, C; Cenci, R; Charles, M; Charpentier, P; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dorosz, P; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, C; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, P; Gianelle, A; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Y; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Hafkenscheid, T W; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Manzali, M; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spinella, F; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-04-01

    A search for heavy Majorana neutrinos produced in the B- → π+ μ- μ- decay mode is performed using 3  fb(-1) of integrated luminosity collected with the LHCb detector in pp collisions at center-of-mass energies of 7 and 8 TeV at the LHC. Neutrinos with masses in the range 250 to 5000 MeV and lifetimes from zero to 1000 ps are probed. In the absence of a signal, upper limits are set on the branching fraction B(B- → π+ μ- μ-) as functions of neutrino mass and lifetime. These limits are on the order of 10(-9) for short neutrino lifetimes of 1 ps or less. Limits are also set on the coupling between the muon and a possible fourth-generation neutrino. PMID:24745405

  14. Recent Results in Solar Neutrinos

    NASA Astrophysics Data System (ADS)

    Saldanha, Richard

    2011-10-01

    Solar neutrinos are an invaluable tool for studying neutrino oscillations in matter as well as probing the nuclear reactions that fuel the Sun. In this talk I will give an overview of solar neutrinos and discuss the latest results in the field. I will highlight the recent precision measurement of the ^7Be solar neutrino interaction rate with the Borexino solar neutrino detector and present the status of the analysis of pep and CNO neutrinos. I will also briefly describe future experiments and their potential to detect low energy solar neutrinos.

  15. Majorana neutrino versus Dirac neutrino in e +e - → W +W - through radiative corrections

    NASA Astrophysics Data System (ADS)

    Katsuki, Y.; Marui, M.; Najima, R.; Saito, J.; Sugamoto, A.

    1995-02-01

    Radiative corrections to e +e - → W +W - from Majorana neutrinos are studied in the context of the see-saw mechanism. Focusing on the effects of the fourth generation neutrinos, we calculate W-pair form factor, the differential cross sections and the forward-backward asymmetries for the polarized electrons at one-loop level. The behaviour of the form factors at the threshold of Majorana particle pair production is found to differ from that of Dirac particle pair production. In the cross section for unpolarized electrons, the radiative corrections, depending on the mass parameters of the see-saw mechanism, are found to be ∼ 0.5% at the energy range of the LEP200 and the next generation linear colliders.

  16. Neutrino mass and mixing with discrete symmetry.

    PubMed

    King, Stephen F; Luhn, Christoph

    2013-05-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A₄, S₄ and Δ(96). PMID:23645075

  17. Neutrino mass and mixing with discrete symmetry

    NASA Astrophysics Data System (ADS)

    King, Stephen F.; Luhn, Christoph

    2013-05-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A4, S4 and Δ(96).

  18. Astroparticle physics with solar neutrinos

    PubMed Central

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758

  19. Coherent scattering of cosmic neutrinos

    NASA Technical Reports Server (NTRS)

    Opher, R.

    1974-01-01

    It is shown that cosmic neutrino scattering can be non-negligible when coherence effects previously neglected are taken into account. The coherent neutrino scattering cross section is derived and the neutrino index of refraction evaluated. As an example of coherent neutrino scattering, a detector using critical reflection is described which in principle can detect the low energy cosmic neutrino background allowed by the measured cosmological red shift.

  20. Topics in neutrino astrophysics

    NASA Astrophysics Data System (ADS)

    Chan, Man Ho

    2009-06-01

    In this thesis, we investigate observable consequences of active and sterile neutrinos, in galactic, cluster, and cosmological scales. We assume that sterile neutrinos with masses of order 10's eV, 10's keV, and MeV were formed by oscillation of active neutrinos in the early universe. If sterile neutrinos with mass ~ 30 eV exist, they affect the structure of galaxies and explain the flatness of their rotation curves. Also, the existence of decaying sterile neutrinos with mass 16 -- 18 keV and decay rate G = (5 ± 1) × 10^-17 s -1 can simultaneously be the cause of heating at the Milky Way center, the supermassive blackhole mass and velocity dispersion relation, the lack of cooling flow in clusters, and reionization in the universe. Lastly, we make of the observed 511 keV annihilation flux line at the Milky Way center to constrain properties of sterile neutrinos of MeV mass scale. We also derive a relation among several cluster observables assuming the existence of an active neutrino halo, which agrees with the observational data in 103 clusters.

  1. Neutrinos: Nature's Identity Thieves?

    ScienceCinema

    Dr. Don Lincoln

    2013-07-22

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  2. Neutrinos: Nature's Identity Thieves?

    ScienceCinema

    Lincoln, Don

    2014-08-07

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  3. Neutrino Physics in Supernovae

    NASA Astrophysics Data System (ADS)

    Dineva, Tamara Simeonova

    1997-11-01

    The models of exploding stars-supernovae-do not explode. This dissertation investigates the transfer of energy from the interior to the outer layers in such stars to try to understand what is missing in these models that would solve the supernova problem. Hydrodynamic instabilities and aspects in the microphysics of the neutrino transport in postcollapsed stellar matter are considered. In Chapter II we derive criteria for the presence of doubly diffusive instabilities believed to be essential for producing a supernova explosion. Contrary to the widely accepted view, we find that the core, if unstable, is unstable to semiconvection, rather than to neutron fingers. A critical value for the lepton fraction, Yl, is found for a given density and entropy, below which the stellar core is completely stable to instabilities. A considerable fraction of the stellar core is found to lie below the critical Yl. As the core evolves this fraction quickly encompasses the entire core. Thus doubly diffusive instabilities of any kind are unlikely to play a role in the supernova explosion mechanism. A strong magnetic field may modify the neutrino-nucleon absorption rates which are critical for shock reheating. In Chapter III we derive the cross section of neutrino absorption on neutrons in the presence of a strong magnetic field. We calculate values for the neutrino inverse mean free path and numerically compare them to the values in the non magnetic case. We find that they exhibit an oscillatory behavior, with huge peaks present due to discontinuities in the density of state. We conclude that the presence of a strong magnetic field does not yield a dramatic reduction in the inverse mean free paths which would be necessary to substantially increase the neutrino luminosity and revive the shock. Neutrino-neutrino scattering in the vicinity of the neutrino sphere may modify the neutrino luminosities and therefore affect shock reheating. In the last Chapter we calculate the neutrino-neutrino scattering cross sections, incorporating them into the source term of the Boltzmann equation for subsequent numerical computation. Inclusion of these scattering rates in transport codes will increase the accuracy of neutrino transport calculations.

  4. Neutrinos from neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    A calculation of the flux of ultra-high energy neutrinos from galactic neutron stars is presented. The calculation is used to determine the number of point sources detectable at the sensitivity threshold of a proposed deep underwater muon and neutrino detector array. The detector array would have a point source detection threshold of about 100 eV/sq cm-sec. Analysis of neutrino luminosities and the number of detectable sources suggests that the deep underwater detector may make a few discoveries. In particular, a suspected neutron star in the Cyg X-3 source seems a promising target for the deep underwater array.

  5. Neutrinos: Nature's Identity Thieves?

    SciTech Connect

    Dr. Don Lincoln

    2013-07-11

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  6. Fourth International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R. (Compiler)

    1997-01-01

    This Conference Publication contains 84 papers presented at the Fourth International Microgravity Combustion Workshop held in Cleveland, Ohio, from May 19 to 21, 1997. The purpose of the workshop was twofold: to exchange information about the progress and promise of combustion science in microgravity and to provide a forum to discuss which areas in microgravity combustion science need to be expanded profitably and which should be included in upcoming NASA Research Announcements (NRA).

  7. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (Compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  8. Measurable neutrino mass scale in A{sub 4}xSU(5)

    SciTech Connect

    Antusch, S.; Spinrath, M.; King, Stephen F.

    2011-01-01

    We propose a supersymmetric A{sub 4}xSU(5) model of quasidegenerate neutrinos which predicts the effective neutrino mass m{sub ee} relevant for neutrinoless double beta decay to be proportional to the neutrino mass scale, thereby allowing its determination approximately independently of unknown Majorana phases. Such a natural quasidegeneracy is achieved by using A{sub 4} family symmetry (as an example of a non-Abelian family symmetry with real triplet representations) to enforce a contribution to the neutrino mass matrix proportional to the identity. Tribimaximal neutrino mixing as well as quark CP violation with {alpha}{approx_equal}90 deg. d a leptonic CP phase {delta}{sub MNS{approx_equal}}90 deg. arise from the breaking of the A{sub 4} family symmetry by the vacuum expectation values of four 'flavon' fields pointing in specific postulated directions in flavor space.

  9. Neutrino energy loss in stellar interiors. V - Recombination neutrino process

    NASA Astrophysics Data System (ADS)

    Kohyama, Yasuharu; Itoh, Naoki; Obama, Akihiko; Mutoh, Haruhiko

    1993-09-01

    The neutrino energy loss rates due to recombination neutrino process are calculated for nonrelative electrons in the framework of the Weinberg-Salam theory. The Coulomb distortion effects for the electrons in the continuum states are accurately taken into account. These effects reduce the neutrino energy loss rates drastically, by more than 1.5 orders of magnitude. Comparison with other neutrino processes is made. It is found that the recombination neutrino process is a dominant neutrino process for relatively large Z-values at relatively low densities and low temperatures. The results of the calculation are expressed by an analytical fitting formula.

  10. ICFA neutrino panel report

    NASA Astrophysics Data System (ADS)

    Long, K.

    2015-07-01

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments." In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel's findings from the three Regional Town Meetings. The Panel's initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  11. Light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y. F.; Zavanin, E. M.

    2015-03-01

    The theory and phenomenology of light sterile neutrinos at the eV mass scale is reviewed. The reactor, gallium and Liquid Scintillator Neutrino Detector anomalies are briefly described and interpreted as indications of the existence of short-baseline oscillations which require the existence of light sterile neutrinos. The global fits of short-baseline oscillation data in 3 + 1 and 3 + 2 schemes are discussed, together with the implications for β-decay and neutrinoless double-β decay. The cosmological effects of light sterile neutrinos are briefly reviewed and the implications of existing cosmological data are discussed. The review concludes with a summary of future perspectives. This review is dedicated to the memory of Hai-Wei Long, our dear friend and collaborator, who passed away on 29 May 2015. He was an exceptionally kind person and an enthusiastic physicist. We deeply miss him.

  12. Light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y. F.; Zavanin, E. M.

    2016-03-01

    The theory and phenomenology of light sterile neutrinos at the eV mass scale is reviewed. The reactor, gallium and Liquid Scintillator Neutrino Detector anomalies are briefly described and interpreted as indications of the existence of short-baseline oscillations which require the existence of light sterile neutrinos. The global fits of short-baseline oscillation data in 3 + 1 and 3 + 2 schemes are discussed, together with the implications for β-decay and neutrinoless double-β decay. The cosmological effects of light sterile neutrinos are briefly reviewed and the implications of existing cosmological data are discussed. The review concludes with a summary of future perspectives. This review is dedicated to the memory of Hai-Wei Long, our dear friend and collaborator, who passed away on 29 May 2015. He was an exceptionally kind person and an enthusiastic physicist. We deeply miss him.

  13. ICFA neutrino panel report

    SciTech Connect

    Long, K.

    2015-07-15

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: <<neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments. >>>In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel’s findings from the three Regional Town Meetings. The Panel’s initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  14. Detecting the Neutrino

    NASA Astrophysics Data System (ADS)

    Arns, Robert G.

    In 1930 Wolfgang Pauli suggested that a new particle might be required to make sense of the radioactive-disintegration mode known as beta decay. This conjecture initially seemed impossible to verify since the new particle, which became known as the neutrino, was uncharged, had zero or small mass, and interacted only insignificantly with other matter. In 1951 Frederick Reines and Clyde L. Cowan, Jr., of the Los Alamos Scientific Laboratory undertook the difficult task of detecting the free neutrino by observing its inverse beta-decay interaction with matter. They succeeded in 1956. The neutrino was accepted rapidly as a fundamental particle despite discrepancies in reported details of the experiments and despite the absence of independent verification of the result. This paper describes the experiments, examines the nature of the discrepancies, and discusses the circumstances of the acceptance of the neutrino's detection by the physics community.

  15. Neutrino self-interactions

    NASA Astrophysics Data System (ADS)

    Hasenkamp, Jasper

    2016-03-01

    We propose a theory that equips the active neutrinos with interactions among themselves that are at least 3 orders of magnitude stronger than the weak interaction. We introduce an Abelian gauge group U (1 )X with vacuum expectation value vx≲O (100 MeV ) . An asymmetric mass matrix implements the active neutrinos as massless mass eigenstates carrying "effective" charges. To stabilize vx, supersymmetry breaking is mediated via loops to the additional sector with the only exception of xHiggs terms. No Standard Model interaction eigenstate carries U (1 )X charge. Thus, the dark photon's kinetic mixing is two-loop suppressed. With only simple and generic values of dimensionless parameters, our theory might explain the high-energy neutrino spectrum observed by IceCube including the PeV neutrinos. We comment on the imposing opportunity to incorporate a self-interacting dark matter candidate.

  16. Neutrinos and Nuclei

    NASA Astrophysics Data System (ADS)

    Fuller, George M.

    2001-10-01

    There have been of late startling revelations in experimental and observational neutrino physics and astrophysics, and there is an expectation of more to come. In fact, we may be well on our way to disentangling the neutrino mass and mixing spectrum. The implications of these developments for nuclear physics, especially as regards the origin of nuclei, are potentially profound. For example, our models for the central event of nuclear physics, the core collapse supernova phenomenon and associated nucleosynthesis of heavy nuclei, may be impacted by neutrino flavor transformation effects. Likewise, our pictures for the physics of the early universe at the time of Big Bang Nucleosynthesis could also be impacted. A key issue, both in the experiments and in the attempts to model astrophysical phenomena, is the interaction between neutrinos and nuclei. Here we will discuss these issues.

  17. The AMANDA neutrino telescope

    SciTech Connect

    Andres, E.C.; Askebjer, P.; Barwick, S.W.; Bay, R.C.; Bergstrom,L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson,M.; Chinowsky, W.; Chirkin, D.; Conrad,J.; Costa, C.G.S.; Cowen, D.; Dalberg, E.; DeYoung, T.; Edsjo, J.; Ekstrom, P.; Goobar, A.; Gray, L.; Hallgren, A.; Halzen, F.; Hardtke, R.; Hart, S.; He, Y.; de, los, Heros,C.P.; Hill, G.; Hulth, PO.; Hundertmark, S.; Jacobsen, J.; Jones, A.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.C.; Miocinovic, P.; Mock, P.C.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren,D.; Porrata, R.; Potter, D.; Price, P.B.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering, C.; Steffen, P.; Stokstad, R.; Streicher, O.; Taboada, I.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch,C.H.; Wischnewski, R.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.; AMANDACollaboration

    1999-04-01

    With an effective telescope area of order 10(4) m(2) for TeVneutrinos, a threshold near similar to 50 GeV and a pointing accuracy of2.5 degrees per muon track, the AMANDA detector represents the first of anew generation of high energy neutrino telescopes, reaching a scaleenvisaged over 25 years ago. We describe early results on the calibrationof natural deep ice as a particle detector as well as on AMANDA'sperformance as a neutrino telescope.

  18. Cosmological and supernova neutrinos

    SciTech Connect

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  19. Nonthermal cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Chen, Mu-Chun; Ratz, Michael; Trautner, Andreas

    2015-12-01

    We point out that, for Dirac neutrinos, in addition to the standard thermal cosmic neutrino background (C ν B ), there could also exist a nonthermal neutrino background with comparable number density. As the right-handed components are essentially decoupled from the thermal bath of standard model particles, relic neutrinos with a nonthermal distribution may exist until today. The relic density of the nonthermal (nt) background can be constrained by the usual observational bounds on the effective number of massless degrees of freedom Neff and can be as large as nν nt≲0.5 nγ. In particular, Neff can be larger than 3.046 in the absence of any exotic states. Nonthermal relic neutrinos constitute an irreducible contribution to the detection of the C ν B and, hence, may be discovered by future experiments such as PTOLEMY. We also present a scenario of chaotic inflation in which a nonthermal background can naturally be generated by inflationary preheating. The nonthermal relic neutrinos, thus, may constitute a novel window into the very early Universe.

  20. Neutrinos as astrophysical probes

    NASA Astrophysics Data System (ADS)

    Cavanna, Flavio; Costantini, Maria Laura; Palamara, Ornella; Vissani, Francesco

    2004-01-01

    The aim of these notes is to provide a brief review of the topic of neutrino astronomy and in particular of neutrinos from core collapse supernovae. They are addressed to a curious reader, beginning to work in a multidisciplinary area that involves experimental neutrino physics, astrophysics, nuclear physics and particle physics phenomenology. After an introduction to the methods and goals of neutrinos astronomy, we focus on core collapse supernovae, as (one of) the most promising astrophysical source of neutrinos. The first part is organized almost as a tale, the last part is a bit more technical. We discuss the impact of flavor oscillations on the supernova neutrino signal (=the change of perspective due to recent achievements) and consider one specific example of signal in detail. This shows that effects of oscillations are important, but astrophysical uncertainties should be thought as an essential systematics for a correct interpretation of future experimental data. Three appendices corroborate the text with further details and some basics on flavor oscillations; but no attempt at a complete bibliographical survey is made (in practice, we selected a few references that we believe are useful for a "modern" introduction to the subject and suggest the use of public databases for papers [e.g. SPIRES database http://www-spires.slac.stanford.edu/spires/hep/; NASA/ESO database http://esoads.eso.org/abstract service.html] and for experiments [see SPIRES in previous entry and the PaNAGIC site at http://www.lngs.infn.it/] for more complete information).

  1. The Sudbury Neutrino Observatory

    SciTech Connect

    Norman, E.B.; Chan, Y.D.; Garcia, A.; Lesko, K.T.; Smith, A.R.; Stokstad, R.G.; Zlimen, I. ); Evans, H.C.; Ewan, G.T.; Hallin, A.; Lee, H.W.; Leslie, J.R.; MacArthur, J.D.; Mak, H.B.; McDonald, A.B.; McLatchie, W.; Robertson, B.C.; Skensved, P.; Sur, B. . Dept. of Physics); Bonvin, E.; Earle, E.D.; Hepburn, D.; Milton, G.M. (Atomic Energ

    1992-11-01

    Two experiments now in progress have reported measurements of the flux of high energy neutrinos from the Sun. Since about 1970, Davis and his co-workers have been using a [sup 37]Cl-based detector to measure the [sup 7]Be and [sup 8]B solar neutrino flux and have found it to be at least a factor of three lower than that predicted by the Standard Solar Model (SSM). The Kamiokande collaborations has been taking data since 1986 using a large light-water Cerenkov detector and have confirmed that the flux is about two times lower than predicted. Recent results from the SAGE and GALLEX gallium-based detectors show that there is also a deficit of the low energy pp solar neutrinos. These discrepancies between experiment and theory could arise because of inadequacies in the theoretical models of solar energy generation or because of previously unobserved properties of neutrinos. The Sudbury Neutrino Observatory (SNO) will provide the information necessary to decide which of these solutions to the solar neutrino problem'' is correct.

  2. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  3. Core-collapse supernova neutrinos and neutrino properties

    SciTech Connect

    Gava, J.; Volpe, C.

    2008-08-29

    Core-collapse supernovae are powerful neutrino sources. The observation of a future (extra-)galactic supernova explosion or of the relic supernova neutrinos might provide important information on the supernova dynamics, on the supernova formation rate and on neutrino properties. One might learn more about unknown neutrino properties either from indirect effects in the supernova (e.g. on the explosion or on in the r-process) or from modifications of the neutrino time or energy distributions in a detector on Earth. Here we will discuss in particular possible effects of CP violation in the lepton sector. We will also mention the interest of future neutrino-nucleus interaction measurements for the precise knowledge of supernova neutrino detector response to electron neutrinos.

  4. Vanishing effective Majorana neutrino mass and light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Verma, Surender

    2016-02-01

    We examine the possibility of vanishing effective Majorana mass Mee in the presence of one or two sterile neutrinos taking into account the recent data on neutrino masses and mixings, particularly, on θ13. Also, within the framework of standard three active neutrinos, we find that effective Majorana mass Mee can be vanishingly small if neutrino masses observe normal hierarchy. However, the same is not valid for inverted hierarchical neutrino masses. The predictions for Majorana phases α and β have also been obtained and shown as scatter plots. We also examine the condition Mee = 0 within the framework wherein fermion sector has been extended by the addition of either one or two sterile neutrinos. The condition of vanishing effective Majorana mass is found to be inconsistent with the recent measurement of θ13 in these classes of models except for 1 + 3, 2 + 3 neutrino mass scheme for small values of the lightest neutrino mass, mlight.

  5. Neutrino Masses and SO10 Unification

    NASA Astrophysics Data System (ADS)

    Minkowski, P.

    We present the embedding of the SM gauge group in SO10, a simple, compact unifying gauge group, with each of the three basic spin 1/2 families forming a unitary, irreducible 16-dimensional representation of spin10, which is complex, i.e. chiral. Subtle differences to the mixed representations of SU5, contained in the SO10 scheme, are pointed out. These have consequences for neutrino flavors, which become paired in a light SU2L-active doublet mode and a heavy SM singlet mode, one ν, 𝒩-pair per family.

  6. No-neutrino double beta decay: more than one neutrino

    SciTech Connect

    Rosen, S.P.

    1983-01-01

    Interference effects between light and heavy Majorana neutrinos in the amplitude for no-neutrino double beta decay are discussed. The effects include an upper bound on the heavy neutrino mass, and an A dependence for the effective mass extracted from double beta decay. Thus the search for the no-neutrino decay mode should be pursued in several nuclei, and particularly in Ca/sup 48/, where the effective mass may be quite large.

  7. Massive neutrinos in the standard model and beyond

    NASA Astrophysics Data System (ADS)

    Thalapillil, Arun Madhav

    The generation of the fermion mass hierarchy in the standard model of particle physics is a long-standing puzzle. The recent discoveries from neutrino physics suggests that the mixing in the lepton sector is large compared to the quark mixings. To understand this asymmetry between the quark and lepton mixings is an important aim for particle physics. In this regard, two promising approaches from the theoretical side are grand unified theories and family symmetries. In the first part of my thesis we try to understand certain general features of grand unified theories with Abelian family symmetries by taking the simplest SU(5) grand unified theory as a prototype. We construct an SU(5) toy model with U(1) F ⊗Z'2 ⊗Z'' 2⊗Z''' 2 family symmetry that, in a natural way, duplicates the observed mass hierarchy and mixing matrices to lowest approximation. The system for generating the mass hierarchy is through a Froggatt-Nielsen type mechanism. One idea that we use in the model is that the quark and charged lepton sectors are hierarchical with small mixing angles while the light neutrino sector is democratic with larger mixing angles. We also discuss some of the difficulties in incorporating finer details into the model without making further assumptions or adding a large scalar sector. In the second part of my thesis, the interaction of high energy neutrinos with weak gravitational fields is explored. The form of the graviton-neutrino vertex is motivated from Lorentz and gauge invariance and the non-relativistic interpretations of the neutrino gravitational form factors are obtained. We comment on the renormalization conditions, the preservation of the weak equivalence principle and the definition of the neutrino mass radius. We associate the neutrino gravitational form factors with specific angular momentum states. Based on Feynman diagrams, spin-statistics, CP invariance and symmetries of the angular momentum states in the neutrino-graviton vertex, we deduce differences between the Majorana and Dirac cases. It is then proved that in spite of the theoretical differences between the two cases, as far as experiments are considered, they would be virtually indistinguishable for any space-time geometry satisfying the weak field condition. We then calculate the transition gravitational form factors for the neutrino by evaluating the relevant Feynman diagrams at 1-loop and estimate a neutrino transition mass radius. The form factor is seen to depend on the momentum transfer very weakly. It is also seen that the neutrino transition mass radius is smaller than the typical neutrino charge radius by a couple of orders of magnitude. In the final part of my thesis, some of the recent neutrino observations and anomalies are revisited, in the context of sterile neutrinos. Among our aims is to understand more clearly some of the analytic implications of the current global neutrino fits from short baseline experiments. Of particular interest to us are the neutrino disappearance measurements from MINOS and the recent indications of a possibly non-vanishing angle, theta13 , from T2K, MINOS and Double-CHOOZ. Based on a general parametrization motivated in the presence of sterile neutrinos, the consistency of the MINOS disappearance data with additional sterile neutrinos is discussed. We also explore the implications of sterile neutrinos for the measurement of | Umu3| in this case. We then turn our attention to the study of |Ue3| extraction in electron neutrino disappearance and appearance measurements. In particular, we study the effects of some of the additional CP phases that appear when there are sterile neutrinos. We observe that the existence of sterile neutrinos may induce a significant modification of the theta13 angle in neutrino appearance experiments like T2K and MINOS, over and above the ambiguities and degeneracies that are already present in 3-neutrino parameter extractions. There are reactor experiments, for instance those measuring nu e disappearance like Double-CHOOZ, Daya Bay and RENO, where this modification is less significant and therefore the extracted | Ue3| value when sterile neutrinos are present is close to the one that would be obtained in the 3-neutrino case. Based on our study, we also conclude that the results from T2K imply a 90% C.L. lower-bound on |Ue3|, in the "3 + 2" neutrino case, which is still within the sensitivity of future reactor neutrino experiments like Daya Bay, and consistent with the one-sigma range of sin22theta 13 recently reported by the Double-CHOOZ experiment. Finally, we argue that for the recently determined best-fit parameters, the results in the "3 + 1" scenario would be very close to the medium/long baseline results obtained in the "3 + 2" case analyzed in this work.

  8. Fourth order deformed general relativity

    NASA Astrophysics Data System (ADS)

    Cuttell, Peter D.; Sakellariadou, Mairi

    2014-11-01

    Whenever the condition of anomaly freedom is imposed within the framework of effective approaches to loop quantum cosmology, one seems to conclude that a deformation of general covariance is required. Here, starting from a general deformation we regain an effective gravitational Lagrangian including terms up to fourth order in extrinsic curvature. We subsequently constrain the form of the corrections for the homogeneous case, and then investigate the conditions for the occurrence of a big bounce and the realization of an inflationary era, in the presence of a perfect fluid or scalar field.

  9. Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters

    SciTech Connect

    Fernandez-Martinez, Enrique; Giordano, Gerardo; Mocioiu, Irina; Mena, Olga

    2010-11-01

    The main goal of the IceCube Deep Core array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.

  10. LIMITS ON NEUTRINO OSCILLATIONS FROM MUON-DECAY NEUTRINOS

    SciTech Connect

    Nemethy, P.; Burman, R.L.; Cochran, D.R.F.; Duclos, J.; Frank, J.S.; Hargrove, C.K.; Hughes, V.W.; Kaspar, H.; Moser, U.; Redwine, R.P.; Willis, S.E.

    1980-06-01

    No evidence for neutrino oscillations is seen in our experiment which observed neutrinos from muon-decays at rest. Upper limits on oscillation parameters are presented for neutrino mixing of the kind {nu}{sub e}{leftrightarrow}{nu}{sub {mu}} and also of the kind {nu}{sub e}{leftrightarrow}{nu}{sub i}, i{ne}{mu}.

  11. Hadronization processes in neutrino interactions

    NASA Astrophysics Data System (ADS)

    Katori, Teppei; Mandalia, Shivesh

    2015-10-01

    Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

  12. Gravitational Lensing of Supernova Neutrinos

    SciTech Connect

    Mena, Olga; Mocioiu, Irina; Quigg, Chris; /Fermilab

    2006-10-01

    The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

  13. Neutrino sea scope takes shape

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2016-03-01

    A consortium of European physicists building a vast neutrino detector on the floor of the Mediterranean Sea has unveiled the science it will carry out. The Cubic Kilometre Neutrino Telescope (KM3NeT) will use strings of radiation detectors arranged in a 3D network to measure the light emitted when neutrinos very occasionally interact with the surrounding sea water.

  14. Neutrinos from supernovae.

    NASA Astrophysics Data System (ADS)

    Burrows, A. S.

    First, the author presents a short history of supernova neutrino theory. Then, the theory of core collapse supernovae is reviewed. Because of the profound opacity to light of the dense core that experiences collapse, we "see" this core directly only through its neutrino signature. Every bump and wiggle echoes the internal convulsions of the event and can provide clues about both the supernova mechanism and the neutron star that remains. The author discusses the only neutrino observations of a supernova so far, SN 1987A. While the agreement with calculations has been gratifying, there remain, of course, plenty of outstanding issues in supernova theory to be tested. These are high-lighted throughout the text. Since neutrinos give us the only real access to the physics inside the collapse, it is important that observation of these particles continue. In an appendix the author describes some of the available or contemplated neutrino detectors capable of good time resolution and therefore of shedding light on supernova mechanisms.

  15. Vetoing atmospheric neutrinos in a high energy neutrino telescope

    SciTech Connect

    Schoenert, Stefan; Resconi, Elisa; Schulz, Olaf; Gaisser, Thomas K.

    2009-02-15

    We discuss the possibility to suppress downward atmospheric neutrinos in a high energy neutrino telescope. This can be achieved by vetoing the muon which is produced by the same parent meson decaying in the atmosphere. In principle, atmospheric neutrinos with energies E{sub {nu}}>10 TeV and a zenith angle up to 60 deg. can be vetoed with an efficiency of >99%. Practical realization will depend on the depth of the neutrino telescope, on the muon veto efficiency, and on the ability to identify downward-moving neutrinos with a good energy estimation.

  16. Neutrino magnetic moments and the solar neutrino problem

    SciTech Connect

    Akhmedov, E.Kh. |

    1994-08-01

    Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2{theta}{sub o} {approx_gt} 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar {bar {nu}}{sub e}`s.

  17. Neutrino physics: Summary talk

    SciTech Connect

    Marciano, W.J.

    1989-04-01

    This paper is organized as follows: First, I describe the state of neutrino phenomenology. Emphasis is placed on sin/sup 2/ /theta//sub W/, its present status and future prospects. In addition, some signatures of ''new physics'' are described. Then, kaon physics at Fermilab is briefly discussed. I concentrate on the interesting rare decay K/sub L/ /yields/ /pi//sup 0/e/sup +/e/sup /minus// which may be a clean probe direct CP violation. Neutrino mass, mixing, and electromagnetic moments are surveyed. There, I describe the present state and future direction of accelerator based experiments. Finally, I conclude with an outlook on the future. Throughout this summary, I have drawn from and incorporated ideas discussed by other speakers at this workshop. However, I have tried to combine their ideas with my own perspective on neutrino physics and where it is headed. 49 refs., 3 figs., 4 tabs.

  18. Modulated bimaximal neutrino mixing

    NASA Astrophysics Data System (ADS)

    Roy, S.; Singh, N. N.

    2015-08-01

    The present article is an endeavor to look into some fruitful frameworks based on "bimaximal" (BM) neutrino mixing from a model-independent stand. The possibilities involving the correction or attenuation of the original BM mixing matrix followed by grand-unified-theory-inspired charged-lepton correction are invoked. The "symmetry basis," thus, constructed accentuates some interesting facets such as a modified quark lepton complementarity relation, θ12+θc≈π/4 -θ13cos (n π -δC P) , a possible linkup between neutrino and charged-lepton sectors, θ13ν=θ12l˜O (θC), or that between neutrinos and quarks, θ13ν=θC. The study vindicates the relevance of the bimaximal mixing as a first approximation.

  19. Phenomenology of atmospheric neutrinos

    NASA Astrophysics Data System (ADS)

    Fedynitch, Anatoli

    2016-04-01

    The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  20. Three neutrino oscillations applied to solar and long baseline experiments

    NASA Astrophysics Data System (ADS)

    Hayward, Scott Kelly

    1998-11-01

    Details of the Standard Solar model and experiments measuring neutrinos produced inside the sun and in the upper atmosphere are reviewed. Inconsistencies between theoretical calculations and experimental measurements are discussed, establishing the need for new physics beyond the Standard model of Particle Physics. Neutrino oscillations are introduced as a viable solution and the phenomenology in the two flavour case is reviewed. Calculations of neutrino oscillations at long baseline experiments are performed using realistic spectra and source/detector combinations. Both vacuum and matter enhanced oscillations of solar neutrinos are computed to account for the solar neutrino data, and allowed regions of parameter space are found. New analytical results are presented which determine the three family hamiltonian in matter. Oscillation probabilities in vacuum are calculated, and methods to account for matter effects are outlined. A numerical treatment to determine the CKM parameters in matter is shown to be identical to existing analytical results in the literature. Computer codes developed to calculate long baseline neutrino oscillation experiments through the earth's variable density are discussed. Several techniques used in a second set of programs written to determine solar neutrino survival probabilities in the three neutrino case are also reviewed. Symmetries between four different mass hierarchies which have two well-separated mass scales are studied. A two- fold degeneracy noted in the literature is shown to be inherent in experiments which only measure muon neutrino oscillations, and an expression relating the two sets of CKM parameters is calculated. Detailed computations illustrate how long baseline experiments can determine the CKM parameters. First order matter effects are included and numerical work shows where matter effects are likely to break some of the symmetries. The phenomenon of CP violation in both vacuum and matter is studied in the three neutrino scenario. Existing work on first order matter and CP corrections to oscillation probabilities at long baseline experiments is extended to second order. It is argued that since CP effects are very likely to be smaller than matter, second order corrections are necessary. In detailed calculations, second order effects are clearly apparent. At high energies the approximation breaks down, but numerical results yield accurate answers allowing further study. Several strategies to isolate CP violation from competing matter effects are suggested, including tuning the neutrino beam energy and a novel approach which combines data sets from accelerator and reactor based experiments. Finally, new analytical work is presented showing that CP violation may modify the ratio of μ-type to e-type neutrinos in the atmospheric flux. The magnitude of the effect is estimated and found to be significant. New techniques allow solar neutrino survival probabilities to be calculated including three mixing angles and two mass scales. A preliminary survey is performed assuming one relevant mass scale but including the three angular parameters. A distinct three neutrino solution is found by allowing the large neutrino mass squared difference to drop somewhat below the atmospheric neutrino data's best fit solution of 3×10-4 eV2. Then the high energy tail of the 8B neutrino flux is converted to ντ by a second resonance in the sun, leaving unique spectral characteristics to differentiate it from two neutrino models.

  1. The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties

    SciTech Connect

    Väänänen, Daavid; Volpe, Cristina E-mail: volpe@ipno.in2p3.fr

    2011-10-01

    Core-collapse supernova neutrinos undergo a variety of phenomena when they travel from the high neutrino density region and large matter densities to the Earth. We perform analytical calculations of the supernova neutrino fluxes including collective effects due to the neutrino-neutrino interactions, the Mikheev-Smirnov-Wolfenstein (MSW) effect due to the neutrino interactions with the background matter and decoherence of the wave packets as they propagate in space. We predict the numbers of one- and two-neutron charged and neutral-current electron-neutrino scattering on lead events. We show that, due to the energy thresholds, the ratios of one- to two-neutron events are sensitive to the pinching parameters of neutrino fluxes at the neutrinosphere, almost independently of the presently unknown neutrino properties. Besides, such events have an interesting sensitivity to the spectral split features that depend upon the presence/absence of energy equipartition among neutrino flavors. Our calculations show that a lead-based observatory like the Helium And Lead Observatory (HALO) has the potential to pin down important characteristics of the neutrino fluxes at the neutrinosphere, and provide us with information on the neutrino transport in the supernova core.

  2. Relic neutrinos: Physically consistent treatment of effective number of neutrinos and neutrino mass

    NASA Astrophysics Data System (ADS)

    Birrell, Jeremiah; Rafelski, Johann

    2014-03-01

    It is well known that the effective number of cosmic neutrinos, N?, is larger than the standard model number of neutrino flavors N?f = 3 due a small flow of entropy into neutrinos from e +/- annihilation. Observational bounds from both BBN and the CMB suggest a value of N? that is larger than the current theoretical prediction of N? = 3 . 046 . We show in a model independent way how N? relates to the neutrino kinetic freeze-out temperature, Tk, which we treat as parameter. We derive the relations that must hold between N?, the photon to neutrino temperature ratio, the neutrino fugacity, and Tk. Our results imply that measurement of neutrino reheating, as characterized by N?, amounts to the determination of Tk. We follow the free streaming neutrinos down to a temperature on the order of the neutrino mass and determine how the cosmic neutrino properties i.e. energy density, pressure, particle density, depend in a physically consistent way on both neutrino mass and N?. We continue down to the present day temperature and characterize the neutrino distribution in this regime as well. See arXiv:1212.6943, PRD in press. This work has been supported by a grant from the U.S. Department of Energy, No. DE-FG02-04ER41318 and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  3. Fourth European Congress of Mathematics

    NASA Astrophysics Data System (ADS)

    2004-02-01

    The Fourth European Mathematical Congress will take place in Stockholm from 27 June through 2 July 2004. Further information can be found at the site http://www.math.kth.se/4ecm/. The chairman of the Scientific Committee is Lennart Carleson, and the chairman of the Organizing Committee is Ari Laptev. The motto of the congress is: "Mathematics in Science and Technology". Several Nobel prize winners have agreed to address the congress on the role of mathematics in their fields of research. Some satellite conferences are planned to be held around the time of the congress. At the congress ten awards will be given to the best young mathematicians. Nina Ural'tseva (St. Petersburg) is chairperson of the Prize Committee. The Felix Klein Award will be presented; the formation of the Prize Committee is now complete.

  4. Fourth Personnel Dosimetry Intercomparison Study

    SciTech Connect

    Dickson, H.W.

    1980-02-01

    The fourth Personnel Dosimetry Intercomparison Study was held at the Oak Ridge National Laboratory's Dosimetry Applications Research Facility during March 15-23, 1978. The Health Physics Research Reactor (HPRR) used unshielded, with a 12-cm-thick Lucite shield, a 20-cm-thick concrete shield, or a 5-cm-thick steel and 15-cm-thick concrete shield, and provided four neutron and gamma-ray spectra. Then the dose was calculated based on the HPRR neutron spectra and dose conversion factors which had been determined previously for the four spectra. The results of these personnel dosimetry intercomparison studies reveal that estimates of dose equivalent vary over a wide range. The standard deviation of the mean of participants data for gamma measurements was in the range of 29 to 43%; for neutrons it was 57 to 188%. (PCS)

  5. NOνA Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Jediny, Filip

    2015-06-01

    The NOνA experiment is a long-baseline accelerator-based neutrino oscillation experiment. It uses the upgraded NuMI beam from Fermilab and measures electron-neutrino appearance and muon-neutrino disappearance at its far detector in Ash River, Minnesota. Goals of the experiment include measurements of θ13, mass hierarchy and the CP violating phase. NOνA has begun to take neutrino data and first neutrino candidates are observed in its detectors. This document provides an overview of the scientific reach of the experiment, the status of detector operation and physics analysis, as well as the first data.

  6. Review of Reactor Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Bong

    New generation of reactor neutrino experiments, Daya Bay and RENO, have made definitive measurements of the smallest neutrino mixing angle θ13 in 2012, based on the disappearance of electron antineutrinos. More precise measurements of the mixing angle and reactor neutrino spectra have been made and presented. A rather large value of θ13 has opened a new window to find the CP violation phase and to determine the neutrino mass hierarchy. Future reactor experiments, JUNO and RENO-50, are proposed to determine the neutrino mass hierarchy and to make highly precise measurements of θ12, Δm212, and Δm312.

  7. Backreaction in growing neutrino quintessence

    NASA Astrophysics Data System (ADS)

    Führer, Florian; Wetterich, Christof

    2015-06-01

    We investigate the cosmological effects of neutrino lumps in growing neutrino quintessence. The strongly nonlinear effects are resolved by means of numerical N-body simulations which include relativistic particles, nonlinear scalar field equations, and backreaction effects. For the investigated models with a constant coupling between the scalar field and the neutrinos, the backreaction effects are so strong that a realistic cosmology is hard to realize. This points toward the necessity of a field-dependent coupling in growing neutrino quintessence. In this case realistic models of dynamical dark energy exist which are testable by the observation or nonobservation of large neutrino lumps.

  8. Are neutrinos their own antiparticles?

    SciTech Connect

    Kayser, Boris; /Fermilab

    2009-03-01

    We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

  9. Solar Neutrinos. II. Experimental

    DOE R&D Accomplishments Database

    Davis, Raymond Jr.

    1964-01-01

    A method is described for observing solar neutrinos from the reaction Cl{sup 37}(nu,e{sup -})Ar{sup 37} in C{sub 2}Cl{sub 4}. Two 5 00-gal tanks of C{sub 2}Cl{sub 4} were placed in a limestone mine (1800 m.w.e.) and the resulting Ar{sup 37} activity induced by cosmic mesons( mu ) was measured to determine the necessary conditions for solar neutrino observations. (R.E.U.)

  10. Experimental data on solar neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-04-01

    Neutrino physics continues to be a very active research field, full of opened fundamental questions reaching even beyond the Standard Model of elementary particles and towards a possible new physics. Solar neutrinos have played a fundamental historical role in the discovery of the phenomenon of neutrino oscillations and thus non-zero neutrino mass. Even today, the study of solar neutrinos provides an important insight both into the neutrino as well as into the stellar and solar physics. In this section we give an overview of the most important solar-neutrino measurements from the historical ones up to the most recent ones. We cover the results from the experiments using radio-chemic (Homestake, SAGE, GNO, GALLEX), water Cherenkov (Kamiokande, Super-Kamiokande, SNO), and the liquid-scintillator (Borexino, KamLAND) detection techniques.

  11. Presymmetry in the Standard Model with adulterated Dirac neutrinos

    NASA Astrophysics Data System (ADS)

    Matute, Ernesto A.

    2015-08-01

    Recently we proposed a model for light Dirac neutrinos in which two right-handed (RH) neutrinos per generation are added to the particles of the Standard Model (SM), implemented with the symmetry of fermionic contents. The ordinary one is decoupled via the high scale type-I seesaw mechanism, while the extra pairs off with its left-handed (LH) partner. The symmetry of lepton and quark contents was merely used as a guideline to the choice of parameters because it is not a proper symmetry. Here we argue that the underlying symmetry to take for this correspondence is presymmetry, the hidden electroweak symmetry of the SM extended with RH neutrinos defined by transformations which exchange lepton and quark bare states with the same electroweak charges and no Majorana mass terms in the underlying Lagrangian. It gives a topological character to fractional charges, relates the number of families to the number of quark colors, and now guarantees the great disparity between the couplings of the two RH neutrinos. Thus, Dirac neutrinos with extremely small masses appear as natural predictions of presymmetry, satisfying the ’t Hooft’s naturalness conditions in the extended seesaw where the extra RH neutrinos serve to adulterate the mass properties in the low scale effective theory, which retains without extensions the gauge and Higgs sectors of the SM. However, the high energy threshold for the seesaw implies new physics to stabilize the quantum corrections to the Higgs boson mass in agreement with the naturalness requirement.

  12. An Experimentalist's Overview of Solar Neutrinos

    NASA Astrophysics Data System (ADS)

    Oser, Scott M.

    2012-02-01

    Four decades of solar neutrino research have demonstrated that solar models do a remarkable job of predicting the neutrino fluxes from the Sun, to the extent that solar neutrinos can now serve as a calibrated neutrino source for experiments to understand neutrino oscillations and mixing. In this review article I will highlight the most significant experimental results, with emphasis on the latest model-independent measurements from the Sudbury Neutrino Observatory. The solar neutrino fluxes are seen to be generally well-determined experimentally, with no indications of time variability, while future experiments will elucidate the lower energy part of the neutrino spectrum, especially pep and CNO neutrinos.

  13. Overview of Neutrino Mixing Models and Their Mixing Angle Predictions

    SciTech Connect

    Albright, Carl H.

    2009-11-01

    An overview of neutrino-mixing models is presented with emphasis on the types of horizontal flavor and vertical family symmetries that have been invoked. Distributions for the mixing angles of many models are displayed. Ways to differentiate among the models and to narrow the list of viable models are discussed.

  14. Neutrino flux predictions for cross section measurements

    SciTech Connect

    Hartz, Mark

    2015-05-15

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

  15. Review of the physics of the neutrino

    SciTech Connect

    Robertson, R.G.H.

    1986-01-01

    The status of knowledge with respect to neutrinos is reviewed. Questions covered briefly include whether or not a neutrino is its own antiparticle and neutrino mass. Experimental studies are also considered, including neutrino oscillations, double beta decay, and direct neutrino mass measurements. (LEW)

  16. The neutrino electron accelerator

    SciTech Connect

    Shukla, P.K.; Stenflo, L.; Bingham, R.; Bethe, H.A.; Dawson, J.M.; Mendonca, J.T.

    1998-01-01

    It is shown that a wake of electron plasma oscillations can be created by the nonlinear ponderomotive force of an intense neutrino flux. The electrons trapped in the plasma wakefield will be accelerated to high energies. Such processes may be important in supernovas and pulsars. {copyright} {ital 1998 American Institute of Physics.}

  17. Neutrino Trapped Stellar Matter

    SciTech Connect

    Panda, P.K.; Menezes, D.P.; Providencia, C.

    2004-12-02

    The equation of state for hybrid stars with trapped neutrinos is studied. We use the quark meson coupling model for the hadron matter and two possibilities for the quark matter phase, namely, the unpaired quark phase and the color-flavor locked phase. A comparison with other relativistic equation of state is done.

  18. Neutrino Deep Inelastic Scattering

    SciTech Connect

    Naples, D.

    2007-12-21

    This paper presents neutrino cross section and structure function measurements. The recent results from NuTeV and Chorus experiments are discussed. The status of the MINOS measurements of the cross section energy dependence and of the structure functions are summarized. Finally, plans of the Miner{nu}a experiment to measure the structure functions on a range of nuclear targets are presented.

  19. Neutrino Physics in 2020

    NASA Astrophysics Data System (ADS)

    Goodman, Maury

    2015-03-01

    Many talks at the 16th Lomonosov Conference, dedicated to Bruno Pontecorvo, detail the remarkable progress in neutrino physics over the last two decades. In this paper, I give an opinionated, and therefore likely inaccurate, review of the future, with some opinions on how both the physics situation and future facilities will develop, focusing on the year 2020.

  20. Supernovae and neutrinos

    SciTech Connect

    John F. Beacom

    2002-09-19

    A long-standing problem in supernova physics is how to measure the total energy and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  1. Neutrino-nucleon scattering

    SciTech Connect

    Garvey, G.T.

    1994-05-01

    In the following, the author tries to summarize the current status of neutrino-nucleon scattering as it bears on contemporary issues regarding the spin structure of the nucleon. It is straightforward to express the electroweak current of a hadron in terms of its underlying electroweak partonic currents. The matrix elements of these currents are, of course, presently uncalculable but may be characterized by form factors extracted from experiment. When neutrinos are used as probes, there are several problems associated with carrying out the required cross section measurements. Active neutrino detectors of necessity contain nuclei more complex than hydrogen. These nuclei create additional backgrounds and create complications of interpretation that make these experiments challenging. However, given the continued demonstrated difficulty of measuring and extracting the spin structure functions, it appears that there are no easy measurements to investigate the nucleon spin structure save the earlier experiments that fixed the axial vector form factors of well-known baryon decays (neutron, lambda, etc.). With the emergence of the provocative results from the EMC group on the spin structure function of the proton, there has been renewed interest in the information contained in the cross sections for neutral current neutrino-nucleon scattering. The theoretical background for describing this process has been worked out in detail. It is presented in briefest outline below to define the terms needed to describe experimental results.

  2. Supernovae and neutrinos

    NASA Astrophysics Data System (ADS)

    Beacom, John F.

    2003-04-01

    A long-standing problem in supernova physics is how to measure the total energy and temperature of νμ, ντ, νμ, and ντ. While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, ν + p --> ν + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with Tp ≌ 2Eν2/Mp, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from νe + p --> e++n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos. These results are now published: J. F. Beacom, W. M. Farr and P. Vogel, Phys. Rev. D 66, 033001 (2002) [arXiv:hep-ph/0205220], the details are given there [1].

  3. Chlorine solar neutrino experiment

    SciTech Connect

    Rowley, J.K.; Cleveland, B.T.; Davis, R. Jr.

    1984-01-01

    The chlorine solar neutrino experiment in the Homestake Gold Mine is described and the results obtained with the chlorine detector over the last fourteen years are summarized and discussed. Background processes producing /sup 37/Ar and the question of the constancy of the production rate of /sup 37/Ar are given special emphasis.

  4. Neutrino Factory Downstream Systems

    SciTech Connect

    Zisman, Michael S.

    2009-12-23

    We describe the Neutrino Factory accelerator systems downstream from the target and capture area. These include the bunching and phase rotation, cooling, acceleration, and decay ring systems. We also briefly discuss the R&D program under way to develop these systems, and indicate areas where help from CERN would be invaluable.

  5. Duality in Neutrino Reactions

    SciTech Connect

    Lalakulich, Olga; Praet, C.; Jachowicz, N.; Ryckebusch, Jan; Melnitchouk, Wolodymyr; Paschos, Emmanuel

    2007-12-01

    On the basis of the phenomenological model for baryon resonance production in lepton nucleon and lepton nucleus scattering we investigate to what extent quark hadron duality is applicable to the neutrino structure functions and how it compares with duality in electron scattering.

  6. Becoming Better Parents. Fourth Edition.

    ERIC Educational Resources Information Center

    Balson, Maurice

    In response to new problems facing parents and families, this book provides democratic parenting strategies that diverge from traditional autocratic methods and reflect the values of respect, shared responsibility, self-discipline, and social equality. The goal of the book is to create a new tradition in child raising that will help to foster the…

  7. Fourth order spatial derivative gravity

    NASA Astrophysics Data System (ADS)

    Bemfica, F. S.; Gomes, M.

    2011-10-01

    In this work, we study a modified theory of gravity that contains up to fourth order spatial derivatives as a model for the Hořava-Lifshitz gravity. The propagator is evaluated and, as a result, one extra pole is obtained, corresponding to a spin-2 nonrelativistic massless particle, an extra term which jeopardizes renormalizability, besides the unexpected general relativity unmodified propagator. Then unitarity is proved at the tree level, where the general relativity pole has been shown to have no dynamics, remaining only the 2 degrees of freedom of the new pole. Next, the nonrelativistic effective potential is determined from a scattering process of two identical massive gravitationally interacting bosons. In this limit, Newton’s potential is obtained, together with a Darwin-like term that comes from the extra nonpole term in the propagator. Regarding renormalizability, this extra term may be harmful by power counting, but it can be eliminated by adjusting the free parameters of the model. This adjustment is in accord with the detailed balance condition suggested in the literature and shows that the way in which extra spatial derivative terms are added is of fundamental importance.

  8. Fourth order spatial derivative gravity

    SciTech Connect

    Bemfica, F. S.; Gomes, M.

    2011-10-15

    In this work, we study a modified theory of gravity that contains up to fourth order spatial derivatives as a model for the Horava-Lifshitz gravity. The propagator is evaluated and, as a result, one extra pole is obtained, corresponding to a spin-2 nonrelativistic massless particle, an extra term which jeopardizes renormalizability, besides the unexpected general relativity unmodified propagator. Then unitarity is proved at the tree level, where the general relativity pole has been shown to have no dynamics, remaining only the 2 degrees of freedom of the new pole. Next, the nonrelativistic effective potential is determined from a scattering process of two identical massive gravitationally interacting bosons. In this limit, Newton's potential is obtained, together with a Darwin-like term that comes from the extra nonpole term in the propagator. Regarding renormalizability, this extra term may be harmful by power counting, but it can be eliminated by adjusting the free parameters of the model. This adjustment is in accord with the detailed balance condition suggested in the literature and shows that the way in which extra spatial derivative terms are added is of fundamental importance.

  9. Search for a light sterile neutrino at Daya Bay.

    PubMed

    An, F P; Balantekin, A B; Band, H R; Beriguete, W; Bishai, M; Blyth, S; Butorov, I; Cao, G F; Cao, J; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chasman, C; Chen, H; Chen, Q Y; Chen, S M; Chen, X; Chen, X; Chen, Y X; Chen, Y; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, Y Y; Diwan, M V; Draeger, E; Du, X F; Dwyer, D A; Edwards, W R; Ely, S R; Fu, J Y; Ge, L Q; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, X H; Hackenburg, R W; Han, G H; Hans, S; He, M; Heeger, K M; Heng, Y K; Hinrichs, P; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H; Huang, X T; Huber, P; Hussain, G; Isvan, Z; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiang, H J; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Lai, W C; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, A; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Lin, Y C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Liu, Y B; Lu, C; Lu, H Q; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; McDonald, K T; McFarlane, M C; McKeown, R D; Meng, Y; Mitchell, I; Monari Kebwaro, J; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Nemchenok, I; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tam, Y H; Tang, X; Themann, H; Tsang, K V; Tsang, R H M; Tull, C E; Tung, Y C; Viren, B; Vorobel, V; Wang, C H; Wang, L S; Wang, L Y; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Webber, D M; Wei, H Y; Wei, Y D; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C C; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Yeh, Y S; Young, B L; Yu, G Y; Yu, J Y; Yu, Z Y; Zang, S L; Zeng, B; Zhan, L; Zhang, C; Zhang, F H; Zhang, J W; Zhang, Q M; Zhang, Q; Zhang, S H; Zhang, Y C; Zhang, Y M; Zhang, Y H; Zhang, Y X; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, Z Y; Zhuang, H L; Zou, J H

    2014-10-01

    A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9 GW(th) nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the 10(-3) eV(2)<|Δm(41)(2) |< 0.3 eV(2) range. The relative spectral distortion due to the disappearance of electron antineutrinos was found to be consistent with that of the three-flavor oscillation model. The derived limits on sin(2) 2θ(14) cover the 10(-3) eV(2) ≲ |Δm(41)(2)| ≲ 0.1 eV(2) region, which was largely unexplored. PMID:25325631

  10. Precision Solar Neutrino Measurements with the Sudbury Neutrino Observatory

    SciTech Connect

    Oblath, Noah

    2007-10-26

    The Sudbury Neutrino Observatory (SNO) is the first experiment to measure the total flux of active, high-energy neutrinos from the sun. Results from SNO have solved the long-standing 'Solar Neutrino Problem' by demonstrating that neutrinos change flavor. SNO measured the total neutrino flux with the neutral-current interaction of solar neutrinos with 1000 tonnes of D{sub 2}O. In the first two phases of the experiment we detected the neutron from that interaction by capture on deuterium and capture on chlorine, respectively. In the third phase an array of {sup 3}He proportional counters was deployed in the detector. This allows a measurement of the neutral-current neutrons that is independent of the Cherenkov light detected by the PMT array. We are currently developing a unique, detailed simulation of the current pulses from the proportional-counter array that will be used to help distinguish signal and background pulses.

  11. Flavor oscillations with sterile neutrinos and in dense neutrino environments

    NASA Astrophysics Data System (ADS)

    Hollander, David

    Many experiments have provided evidence for neutrino flavor oscillations, and consequently that neutrinos are in fact massive which is not predicted by the Standard Model. Many experiments have been built to constrain the parameters which determine flavor oscillations, and for only three flavors of neutrinos the mixing parameters are well known, aside from the CP violating phase for two mass hierarchies. Most experimental data can be well explained by mixing between three flavors of neutrinos, however oscillation anomalies from several experiments, most notably from LSND (Liquid Scintillator Neutrino Detector) have suggested that there may be additional flavors of neutrinos beyond those in the Standard Model. One of the focuses of this dissertation is the possibility of adding new flavors of right-handed neutrinos to the Standard Model to account for oscillation anomalies, and exploring the consequences of sterile neutrinos for other experiments. Sensitivities to a particular model of sterile neutrinos at the future Long-Baseline Neutrino Experiment will be determined, in which CP effects introduced by the sterile neutrinos play an important role. It will be demonstrated how, by combining data from the Long-Baseline Neutrino Experiment along with data from Daya Bay and T2K, it is possible to provide evidence for or rule out this model of sterile neutrinos. A chi-squared analysis is used to determine the significance of measuring the effects of sterile neutrinos in IceCube; it will be shown that it may be possible to extract evidence for sterile neutrinos from high energy atmospheric neutrinos in IceCube. Furthermore it will be demonstrated how measuring neutrino flavor ratios from astrophysical sources in IceCube can help to distinguish between the three flavor scenario and a beyond the Standard Model (BSM) scenario involving sterile neutrinos. Measuring astrophysical as well as atmospheric neutrinos can evince the existence of sterile neutrinos. Despite the fact that the mixing parameters for the three Standard Model neutrino flavors are well known, some implications of neutrino interactions for flavor oscillations are not well understood. Neutrinos can interact with one another in a similar way to how neutrinos interact with normal matter. Neutrino-neutrino forward scattering can lead to a flavor swap for the propagating neutrino, or the propagating neutrino can retain its original flavor. These interactions contribute an effective potential to the Hamiltonian describing the flavor evolution which depends on a background neutrino density. In normal matter the neutrino density is very low which allows for neutrino-neutrino interactions to be ignored, however these interactions can dominate over vacuum and normal matter interactions in very dense environments such as core-collapse supernovae and early universe scenarios. Neutrino-neutrino interactions give rise to terms quadratic in neutrino densities in the equations of motion, and can give rise to what is called collective oscillations resulting from interference with vacuum and normal matter effects. The non-linearity has made the problem of solving for collective oscillations analytically intractable without simplifying assumptions, and has made this a problem relegated to supercomputer simulations. This dissertation is concerned with analytic methods for solving the equations of motion for core-collapse neutrino propagation. It will be shown here that, by keeping only nunu-interactions at initial distances outward from the supernova core, it is possible to solve the equations of motion by factorizing vacuum oscillations and the effects of nunu-interactions. Furthermore, it will be shown how using this factorization scheme it is possible to predict where flavor oscillations become unstable. This is an important development because it can allow one to predict the neutrino flux in Earth experiments from core-collapse supernovae, while at the same time gaining an understanding of the underlying physics involved in complicated processes such as collective oscillations and the rapid growth of oscillations at medium range distances. Using the factorization ansatz together with a measured supernova spectrum it is possible in principle to determine the thermal spectra inside of the supernova.

  12. Fourth Graders' Understanding of Personal Narrative Discourse.

    ERIC Educational Resources Information Center

    Pollard, Rita

    A study investigated what fourth grade students understand about composing personal narrative discourse. Specifically, the study explored what the subjects understood about structuring personal narrative texts and about evaluating a narrated experience for an audience. Subjects were 13 fourth grade students, and the methodology consisted of…

  13. Fourth Grade Level Science Sample Curriculum.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    This document presents a sample of the Arkansas science curriculum and identifies the content standards for physical science systems, life science systems, and Earth science/space science systems for fourth grade students. Each content standard is explained and includes student learning expectations, fourth grade benchmarks, assessments, and…

  14. Brief introduction of the neutrino event generators

    SciTech Connect

    Hayato, Yoshinari

    2015-05-15

    The neutrino interaction simulation programs (event generators) play an important role in the neutrino experiments. This article briefly explains what is the neutrino event generator and how it works.

  15. Neutrinos, Oscillations and New Physics: An Introduction

    SciTech Connect

    Tayloe, Rex

    2006-07-11

    An introduction to the neutrino and neutrino oscillations and their role in the standard model of particle physics is presented. Current results and a plan for future experiments in neutrino physics are summarized.

  16. On the Detection of the Free Neutrino

    DOE R&D Accomplishments Database

    Reines, F.; Cowan, C. L., Jr.

    1953-08-06

    The experiment previously proposed [to Detect the Free Neutrino] has been initiated, with a Hanford pile as a neutrino source. It appears probable that neutrino detection has been accomplished, and confirmatory work is in progress. (K.S.)

  17. Relating quark mixing neutrino mixing and δlep

    NASA Astrophysics Data System (ADS)

    Barr, S. M.; Chen, Heng-Yu

    2013-05-01

    It is proposed that all flavor mixing is caused by the mixing of the three quark and lepton families with vectorlike fermions in 5 + 5 multiplets of SU(5). The entire 3 × 3 complex mass matrix of the neutrinos Mν is then found to have a simple expression in terms of two complex parameters and an overall scale. Thus, all the presently unknown neutrino parameters are predicted. The best fits are for θatm <~ 40° The leptonic Dirac CP phase is found to be somewhat greater than π.

  18. Relating quark mixing neutrino mixing and {delta}{sub lep}

    SciTech Connect

    Barr, S. M.; Chen Hengyu

    2013-05-23

    It is proposed that all flavor mixing is caused by the mixing of the three quark and lepton families with vectorlike fermions in 5+5-bar multiplets of SU(5). The entire 3 Multiplication-Sign 3 complex mass matrix of the neutrinos M{sub {nu}} is then found to have a simple expression in terms of two complex parameters and an overall scale. Thus, all the presently unknown neutrino parameters are predicted. The best fits are for {theta}{sub atm} Less-Than-Or-Equivalent-To 40 Degree-Sign The leptonic Dirac CP phase is found to be somewhat greater than {pi}.

  19. Neutrino-neutrino scattering and matter-enhanced neutrino flavor transformation in supernovae

    SciTech Connect

    Qian, Yong-Zhong; Fuller, G.M.

    1994-08-01

    The authors examine matter-enhanced neutrino flavor transformation ({nu}{sub {tau}({mu})}{l_equilibrium} {nu}{sub e}) in the region above the neutrino sphere in Type II supernovae. Their treatment explicitly includes contributions to the neutrino-propagation Hamiltonian from neutrino-neutrino forward scattering. A proper inclusion of these contributions shows that they have a completely negligible effect on the range of {nu}{sub e}-{nu}{sub {tau}({mu}}) vacuum mass-squared difference, {delta}m{sup 2}, and vacuum mixing angle, {theta}, or equivalently sin{sup 2}{theta}, required for enhanced supernova shock re-heating. When neutrino background effects are included, the authors find that r-process nucleosynthesis from neutrino-heated supernova ejecta remains a sensitive probe of the mixing between a light {nu}{sub e} and a {nu}{sub {tau}({mu})} with a cosmologically significant mass. Neutrino-neutrino scattering contributions are found to have a generally small effect on the ({delta}m{sup 2}, sin{sup 2}{theta}) parameter region probed by r-process nucleosynthesis. They point out that the nonlinear effects of the neutrino background extend the range of sensitivity of reprocess nucleosynthesis to smaller values of {delta}m{sup 2}.

  20. Unparticle physics and neutrino phenomenology

    SciTech Connect

    Barranco, J.; Bolanos, A.; Miranda, O. G.; Moura, C. A.; Rashba, T. I.

    2009-04-01

    We have constrained unparticle interactions with neutrinos and electrons using available data on neutrino-electron elastic scattering and the four CERN LEP experiments data on mono photon production. We have found that, for neutrino-electron elastic scattering, the MUNU experiment gives better constraints than previous reported limits in the region d>1.5. The results are compared with the current astrophysical limits, pointing out the cases where these limits may or may not apply. We also discuss the sensitivity of future experiments to unparticle physics. In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei could provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks. We also discuss the case of future neutrino-electron experiments as well as the International Linear Collider.

  1. Gauge Trimming of Neutrino Masses

    SciTech Connect

    Chen, Mu-Chun; de Gouvea, Andre; Dobrescu, Bogdan A.; /Fermilab

    2006-12-01

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.

  2. Overview of the Neutrino Factory

    NASA Astrophysics Data System (ADS)

    Wurtele, Jonathan

    2001-04-01

    The beam physics and technology challenges of a neutrino source based on a muon storage ring will be presented. Much this talk will summarize what was learned from recent neutrino factory feasibility studies sponsored FNAL and BNL and undertaken by the Muon Collaboration. In these studies, the performance of possible neutrino factory designs was quantified. The neutrino factory has technically challenging features for most components of the accelerator complex. This includes the proton driver and target, capture and cooling beamlines, and accelerator and storage rings that can accommodate the large phase space volume of the muon beam. An overview will be given of the worldwide R&D program addressing many of these issues. The differences between the neutrino factories under study in Europe and Japan and the Muon Collaboration neutrino factory design will be presented. The talk will conclude with a presentation of possible paths towards the most difficult R&D need, a demonstration of ionization cooling.

  3. Solar neutrino experiments: An update

    SciTech Connect

    Hahn, R.L.

    1993-12-31

    The situation in solar neutrino physics has changed drastically in the past few years, so that now there are four neutrino experiments in operation, using different methods to look at different regions of the solar neutrino energy spectrum. These experiments are the radiochemical {sup 37}Cl Homestake detector, the realtime Kamiokande detector, and the different forms of radiochemical {sup 71}Ga detectors used in the GALLEX and SAGE projects. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models (although in the case of the gallium detectors, the statistical errors are still relatively large). This paper reviews the basic principles of operation of these neutrino detectors, reports their latest results and discusses some theoretical interpretations. The progress of three realtime neutrino detectors that are currently under construction, SuperKamiok, SNO and Borexino, is also discussed.

  4. Invisible axion and neutrino masses

    SciTech Connect

    Dias, Alex G.; Pleitez, V.

    2006-01-01

    We show that in any invisible axion model due to the effects of effective nonrenormalizable interactions related to an energy scale near the Peccei-Quinn, grand unification or even the Planck scale, active neutrinos necessarily acquire masses in the sub-eV range. Moreover, if sterile neutrinos are also included and if appropriate cyclic Z{sub N} symmetries are imposed, it is possible that some of these neutrinos are heavy while others are light.

  5. Muon Colliders and Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  6. Muon colliders and neutrino factories

    SciTech Connect

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  7. Astrophysical and cosmological constraints to neutrino properties

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

    1989-01-01

    The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.

  8. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Mathews, G. J.; Nakamura, K.; Suzuki, T.

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  9. Neutrino pion production off deuteron

    NASA Astrophysics Data System (ADS)

    Myhrer, F.; Pastore, S.

    2016-03-01

    Experimental investigations of neutrino properties, using neutrino beams generated at accelerators facilities, necessitate a detailed and precise knowledge of neutrinonucleus reaction mechanisms. In the energy region of nuclear quasi-elastic scattering, pion-production reactions constitute an important background process. A theoretical understanding of these processes is then required in order to correctly determine the produced neutrino energy spectrum. In the first stage of our research project, we study neutrino induced pion-production off deuterons. The choice of the deuteron minimizes the complications of the nuclear dynamics associated with larger nuclear systems. We evaluate the pion-production reaction near threshold using heavy baryon chiral perturbation theory.

  10. Magnus approximation in neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Acero, Mario A.; Aguilar-Arevalo, Alexis A.; D'Olivo, J. C.

    2011-04-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some anomalous experimental observations. In a four-neutrino (three active plus one sterile) mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos with energies of the order of a few GeV, taking into account the matter effect for a varying terrestrial density.

  11. The Enigmatic Neutrino

    NASA Astrophysics Data System (ADS)

    Lincoln, Don; Miceli, Tia

    2015-09-01

    Through a century of work, physicists have refined a model to describe all fundamental particles, the forces they share, and their interactions on a microscopic scale. This masterpiece of science is called the Standard Model. While this theory is incredibly powerful, we know of at least one particle that exhibits behaviors that are outside of its scope and remain unexplained. These particles are called neutrinos and they are the enigmatic ghosts of the quantum world. Interacting only via the weak nuclear force, literally billions of them pass through you undetected every second. While we understand that particular spooky behavior, we do not understand in any fundamental way how it is that neutrinos can literally change their identity, much as if a house cat could turn into a lion and then a tiger before transitioning back into a house cat again.

  12. Gravity triggered neutrino condensates

    SciTech Connect

    Barenboim, Gabriela

    2010-11-01

    In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced gravitational attraction triggers the formation of a right-handed neutrino condensate, inducing dynamical symmetry breaking and generating a Majorana mass for the right-handed neutrino at a scale appropriate for the seesaw mechanism. The composite field formed by the condensate phase could drive an early epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by additional powers in G of higher order terms can be compensated, boosting them up to their lowest order counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns out to be in the expected range for a successful seesaw scenario.

  13. Birth of Neutrino Astrophysics

    SciTech Connect

    2010-05-07

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  14. Natural Neutrino Dark Energy

    SciTech Connect

    Gurwich, Ilya

    2010-06-23

    1 construct a general description for neutrino dark energy models, that do not require exotic particles or strange couplings. With the help of the above, this class of models is reduced to a single function with several constraints. It is shown that these models lead to some concrete predictions that can be verified (or disproved) within the next decade, using results from PLANK, EUCLID and JDEM.

  15. Experimental Neutrino Physics

    ScienceCinema

    Walter, Chris [Duke University, Durham, North Carolina, United States

    2010-01-08

    In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties.  I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions.  I will particularly emphasize the relationship between various experimental techniques.

  16. Birth of Neutrino Astrophysics

    ScienceCinema

    None

    2011-10-06

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  17. Neutrinos and flavor symmetries

    SciTech Connect

    Tanimoto, Morimitsu

    2015-07-15

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  18. Resonant solar neutrino oscillation versus laboratory neutrino oscillation experiments

    SciTech Connect

    Lim, Chong-Sa

    1987-02-01

    The interplay between resonant solar neutrino oscillations and neutrino oscillations in laboratory experiments is investigated in a 3 generation model. Due to the assumed hierarchy of neutrino masses, together with our choice of a convenient parameterization of the 3 generation mixing matrix, we can derive a simple analytic formula which reduces the solar neutrino problem to an effective 2 generation problem. The reduction makes it apparent that the allowed range of mixing and mass parameters crucially depend on whether the survival probability of solar neutrinos S satisfies S greater than or equal to 1/3 or not. The formulae for probabilities of laboratory neutrino oscillations are also greatly simplified. We argue that a combination of the observed solar neutrino depletion and data obtained from reactor experiments seems to rule out some range of neutrino masses. If a sizable nu/sub ..mu../ ..-->.. nu/sub e/ oscillation is observed at accelerators, as suggested at this Workshop, it severely restricts the range of 2 mixing angles.

  19. Implications of Neutrino Oscillations on the Dark-Matter World

    NASA Astrophysics Data System (ADS)

    Hwang, W.-Y. Pauchy

    2014-01-01

    According to my own belief that "The God wouldn't create a world that is so boring that a particle knows only the very feeble weak interaction.", maybe we underestimate the roles of neutrinos. We note that right-handed neutrinos play no roles, or don't exist, in the minimal Standard Model. We discuss the language to write down an extended Standard Model - using renormalizable quantum field theory as the language; to start with a certain set of basic units under a certain gauge group; in fact, to use the three right-handed neutrinos to initiate the family gauge group SUf (3). Specifically we use the left-handed and right-handed spinors to form the basic units together with SUc (3) × SUL (2) × U (1) × SUf (3) as the gauge group. The dark-matter SUf (3) world couples with the lepton world, but not with the quark world. Amazingly enough, the space of the Standard-Model Higgs Φ (1 , 2), the family Higgs triplet Φ(3, 1), and the neutral part of the mixed family Higgs Φ0 (3 , 2) undergoes the spontaneous symmetry breaking, i.e. the Standard-Model Higgs mechanism and the "project-out" family Higgs mechanism, to give rise to the weak bosons W± and Z0, one Standard-Model Higgs, the eight massive family gauge bosons, and the remaining four massive neutral family Higgs particles, and nothing more. Thus, the roles of neutrinos in this extended Standard Model are extremely interesting in connection with the dark-matter world.

  20. Neutrino mass and mixing: Summary of the neutrino sessions

    SciTech Connect

    Bowles, T.J.

    1993-01-01

    A great deal of experimental and theoretical effort is underway to use neutrinos as a probe for Physics Beyond the Standard Model. Most of these efforts center on the questions of the possible existence of non zero neutrino mass and mixing. Sessions at the Moriond conferences have dealt with these questions at most of the meetings during the last several years and this year was no exception. Presentations covering most of the current and planned research in this field were presented and discussed. Although there is, at present, no definitive evidence for a non zero neutrino mass and mixing, several unresolved problems (in particular solar neutrinos) do seem to be indicating the likely existence of new neutrino properties. It is likely that before the end of this decade, efforts now being initiated will be able to determine whether or not the hints we are now seeing are really due to new physics.

  1. Vacuum neutrino oscillations of solar neutrinos and lepton mass matrices

    NASA Astrophysics Data System (ADS)

    Tanimoto, Morimitsu

    1999-01-01

    We consider the case that the solar neutrino deficit is due to vacuum oscillations. The lepton mass matrices with nearly bimaximal mixings are needed in order to explain both the solar and atmospheric neutrino deficit. A texture with the symmetry of flavor democracy or S3 has been investigated by taking account of the symmetry breaking terms of the charged lepton mass matrix. It is found that predicted mixings can be considerably changed from the neutrino mixings sin22θsolar~=1 and sin22θatm~=8/9 at the symmetric limit. The correlation between \\|Ue3\\| and \\|Ue1U*e2\\| is also presented. The test of the model is discussed by focusing on the three flavor analyses in the solar neutrinos, atmospheric neutrinos, and long baseline experiments.

  2. Constraining neutrino superluminality from searches for sterile neutrino decays

    NASA Astrophysics Data System (ADS)

    Gorbunov, D. S.; Nugaev, E. Ya.

    2012-07-01

    Superluminal neutrinos are expected to lose energy due to bremsstrahlung. It is dominated by e+e--pair production if kinematically allowed. The same signature was used in searches for 3-body decays of hypothetical heavy sterile neutrinos. From the published analyses of these searches performed by CERN PS191 and CHARM experiments we set upper limits on the neutrino velocity in the energy range from 0.2 GeV to 280 GeV. Our limits are well below the neutrino velocity favored by the recent OPERA results. For energy-independent neutrino velocity the limits obtained in this Letter are stronger than those coming from ICARUS experiment and observations of Supernova SN1987a.

  3. Radiative neutrino mass model with degenerate right-handed neutrinos

    NASA Astrophysics Data System (ADS)

    Kashiwase, Shoichi; Suematsu, Daijiro

    2016-03-01

    The radiative neutrino mass model can relate neutrino masses and dark matter at a TeV scale. If we apply this model to thermal leptogenesis, we need to consider resonant leptogenesis at that scale. It requires both finely degenerate masses for the right-handed neutrinos and a tiny neutrino Yukawa coupling. We propose an extension of the model with a U(1) gauge symmetry, in which these conditions are shown to be simultaneously realized through a TeV scale symmetry breaking. Moreover, this extension can bring about a small quartic scalar coupling between the Higgs doublet scalar and an inert doublet scalar which characterizes the radiative neutrino mass generation. It also is the origin of the Z_2 symmetry which guarantees the stability of dark matter. Several assumptions which are independently supposed in the original model are closely connected through this extension.

  4. ANIS: High energy neutrino generator for neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Gazizov, A.; Kowalski, M.

    2005-11-01

    We present the high-energy neutrino Monte Carlo event generator ANIS (All Neutrino Interaction Simulation). The program provides a detailed and flexible neutrino event simulation for high-energy neutrino detectors, such as AMANDA, ANTARES or ICECUBE. It generates neutrinos of any flavor according to a specified flux and propagates them through the Earth. In a final step neutrino interactions are simulated within a specified volume. All relevant standard model processes are implemented. We discuss strengths and limitations of the program. Catalogue identifier:ADWF Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWF Program is obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer on which the program has been thoroughly tested: Intel-Pentium based Personal Computers Operating system:Linux Programming language used:C++ Memory required to execute:13 megabyte Number of lines in distributed program, including test data, etc.:912 424 Number of bytes in distributed program, including test data, etc.: 6 876 631 Distribution format:tar.gz Libraries used by ANIS:HepMC [M. Dobbs, J.B. Hansen, Comput. Phys. Comm. 134 (2001) 41], CLHEP vector package [http://wwwinfo.cern.ch/asd/lhc++/clhep] Nature of physical problem:Monte Carlo neutrino event generator for high-energy neutrino telescopes. Method of solution:Neutrino events are first sampled according a specified flux, then propagated through the Earth and finally are allowed to interact inside a detection volume. Restrictions of the program:Neutrino energies range from 10 to 1012 GeV. Typical running time:104 events require typically a 1-GHz CPU time of about 300 s.

  5. Solar Neutrinos, SNO and SNOLAB

    NASA Astrophysics Data System (ADS)

    McDonald, A. B.

    2007-06-01

    The Sudbury Neutrino Observatory has completed operation in its third phase with an array of neutron detectors in 1000 tonnes of heavy water and Cherenkov light detection 2 km underground in INCO's Creighton mine near Sudbury, Ontario, Canada. Data from the third phase is now being analyzed. In the first two phases of the project reported previously, the neutral current reaction on deuterium was used to determine the total flux of active neutrinos and the charged current reaction on deuterium provided a measure of the flux and energy spectrum of solar electron neutrinos. The flux of electron neutrinos was found to be only about one third of the total flux, providing clear evidence of neutrino flavour change. The total flux of active neutrinos was found to be in agreement with solar model calculations. The underground laboratory is being expanded to create an international facility known as SNOLAB that will be completed at the end of 2007. Proposed future experiments for the detection of lower energy solar neutrinos, geo-neutrinos, dark matter and double beta decay are described.

  6. Is There a Massive Neutrino?

    ERIC Educational Resources Information Center

    Selvin, Paul

    1991-01-01

    Discussed is the question of whether "heavy" neutrinos really do exist based on the evidence supplied by four research groups. The implications of its existence on the disciplines of particle physics, astrophsyics, and cosmology are discussed. Background information on the different types of neutrinos is provided. (KR)

  7. Neutrino Astrophysics at 1020 EV

    NASA Astrophysics Data System (ADS)

    Weiler, Thomas J.

    2003-03-01

    Neutrinos offer a particularly promising view of the extreme Universe. Since neutrinos are not attenuated by the intervening CMB and other radiation fields, they are messengers from the very distant and very young universe. Since neutrinos are not degraded or absorbed by the source material at production, they carry information about central engine dynamics. Since neutrinos are not deflected by cosmic magnetic fields, they should point to their sources. This will allow astronomy to be performed. The neutrino cross-section at extreme-energy (≳ 1020 eV) may also offer a window to new particle physics above thresholds inaccessible to terrestrial accelerators. Measurement of an anomalously large neutrino cross-section would indicate new physics (e.g. low string-scale, extra dimensions, precocious unification), while a smaller than expected cross-section would reveal an aspect of QCD evolution. Here I focus on the significance of the neutrino cross-section at extreme-energy (EE), and how it may be determined; and on hints in the EE cosmic ray data which may already implicate ≳ 1020 eV neutrinos.

  8. Neutrino cross-sections: Experiments

    SciTech Connect

    Sánchez, F.

    2015-07-15

    Neutrino-nucleus cross-sections are as of today the main source of systematic errors for oscillation experiments together with neutrino flux uncertainties. Despite recent experimental and theoretical developments, future experiments require even higher precisions in their search of CP violation. We will review the experimental status and explore possible future developments required by next generation of experiments.

  9. Oscillations of solar atmosphere neutrinos

    SciTech Connect

    Fogli, G. L.; Lisi, E.; Mirizzi, A.; Montanino, D.; Serpico, P. D.

    2006-11-01

    The Sun is a source of high-energy neutrinos (E(greater-or-similar sign)10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations (in vacuum and in matter) on solar atmosphere neutrinos, and calculate their observable fluxes at Earth, as well as their event rates in a kilometer-scale detector in water or ice. We find that peculiar three-flavor oscillation effects in matter, which can occur in the energy range probed by solar atmosphere neutrinos, are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, we find that the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged vacuum oscillations, dominated by a single mixing parameter (the angle {theta}{sub 23})

  10. Reactor Monitoring with Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Casimiro Linares, Edgar

    2011-09-01

    The study of the use of neutrino detectors to monitor nuclear reactors is currently a very active field of research. While neutrino detectors located close to reactors have been used to provide information about the global performance of the reactors, a general improvement of the technique is needed in order to use it in a practical way to monitor the fissile contents of the fuel of the nuclear reactors or the thermal power delivered. I describe the current status of the Angra Neutrino Project, aimed to building a low-mass neutrino detector to monitor the Angra II reactor of the Brazilian nuclear power plant Almirante Alvaro Ramos in order to explore new approaches to reactor monitoring with neutrino detectors.

  11. Neutrinos Get Under Your Skin

    SciTech Connect

    Kayser, Boris

    2005-08-30

    The enigmatic neutrinos are among the most abundant of the tiny particles that make up our universe. They are a billion times more abundant than the particles of which the earth and we humans are made. Thus, to understand the universe, we must understand the neutrinos. Moving ghostlike, almost invisibly, through matter, these particles are very hard to pin down and study. However, dramatic progress has recently been made. In this lecture, the neutrinos will be introduced. Their behavior, so different from that of everyday objects, will be explained, and recent discoveries will be described. The open questions about neutrinos, forthcoming attempts to answer these questions, and the role of neutrinos in shaping the universe and making human life possible, will all be explained.

  12. Thermodynamic Laws of Neutrino and Photon Emission.

    ERIC Educational Resources Information Center

    Walsh, P. J.; Gallo, C. F.

    1980-01-01

    Compares neutrino and photon emissions, develops the thermodynamic blackbody laws of neutrino emission analogous to laws governing photon emission, points out that combined radiation from a "true blackbody" consists of both photon and neutrino emissions of comparable magnitude, and speculates upon the existence of blackbody neutrino emitters in…

  13. Neutrino mass models and CP violation

    SciTech Connect

    Joshipura, Anjan S.

    2011-10-06

    Theoretical ideas on the origin of (a) neutrino masses (b) neutrino mass hierarchies and (c) leptonic mixing angles are reviewed. Topics discussed include (1) symmetries of neutrino mass matrix and their origin (2) ways to understand the observed patterns of leptonic mixing angles and (3)unified description of neutrino masses and mixing angles in grand unified theories.

  14. Thermodynamic Laws of Neutrino and Photon Emission.

    ERIC Educational Resources Information Center

    Walsh, P. J.; Gallo, C. F.

    1980-01-01

    Compares neutrino and photon emissions, develops the thermodynamic blackbody laws of neutrino emission analogous to laws governing photon emission, points out that combined radiation from a "true blackbody" consists of both photon and neutrino emissions of comparable magnitude, and speculates upon the existence of blackbody neutrino emitters in

  15. Models of neutrino mass, mixing and CP violation

    NASA Astrophysics Data System (ADS)

    King, Stephen F.

    2015-12-01

    In this topical review we argue that neutrino mass and mixing data motivates extending the Standard Model (SM) to include a non-Abelian discrete flavour symmetry in order to accurately predict the large leptonic mixing angles and {C}{P} violation. We begin with an overview of the SM puzzles, followed by a description of some classic lepton mixing patterns. Lepton mixing may be regarded as a deviation from tri-bimaximal mixing, with charged lepton corrections leading to solar mixing sum rules, or tri-maximal lepton mixing leading to atmospheric mixing rules. We survey neutrino mass models, using a roadmap based on the open questions in neutrino physics. We then focus on the seesaw mechanism with right-handed neutrinos, where sequential dominance (SD) can account for large lepton mixing angles and {C}{P} violation, with precise predictions emerging from constrained SD (CSD). We define the flavour problem and discuss progress towards a theory of favour using GUTs and discrete family symmetry. We classify models as direct, semidirect or indirect, according to the relation between the Klein symmetry of the mass matrices and the discrete family symmetry, in all cases focussing on spontaneous {C}{P} violation. Finally we give two examples of realistic and highly predictive indirect models with CSD, namely an A to Z of flavour with Pati-Salam and a fairly complete A 4 × SU(5) SUSY GUT of flavour, where both models have interesting implications for leptogenesis.

  16. Supernova observations for neutrino mixing parameters

    SciTech Connect

    Dighe, Amol

    2011-10-06

    The neutrino spectra from a future galactic core collapse supernova could reveal information on the neutrino mixing pattern, especially on {theta}{sub 13} and the mass hierarchy. I briefly outline our current understanding of neutrino flavor conversions inside a supernova, and point out possible signatures of various neutrino mixing scenarios that the neutrino detectors should look for. Supernova neutrinos provide a probe for {theta}{sub 13} and mass hierarchy that is complementary to, and sometimes even better than, the current and proposed terrestrial neutrino oscillation experiments.

  17. ANTARES deep sea neutrino telescope results

    SciTech Connect

    Mangano, Salvatore; Collaboration: ANTARES Collaboration

    2014-01-01

    The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.

  18. A search for supernova neutrinos with the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Heise, Jaret Curt

    The Sudbury Neutrino Observatory (SNO) is an underground Cerenkov detector designed to detect neutrinos from astrophysical sources. The fiducial mass of the detector consists of 1000 tonnes of D2O, which provides sensitivity to all neutrino flavours. Since much of the energy released in the supernova burst is expected to be carried by the muon and tau neutrinos, the supernova signal recorded by the SNO detector is of particular importance. In addition, SNO is also sensitive to the prompt electron neutrino signal expected from capture processes during core collapse. Various supernova models are investigated and predictions of the SNO supernova signal are studied using simulated Monte Carlo data. A data analysis program to identify neutrinos from a galactic supernova burst has been installed in the online system at SNO. The program automatically analyzes burst data and it is anticipated that a manual alert to the Supernova Early Warning System could be issued within 20--30 minutes with negligible possibility of a false alarm. The burst identification algorithm currently in use both online and offline provides detection sensitivity beyond the far edge of our galaxy. A search for supernova neutrinos was performed using 241.0 days of data collected over the time period between November 2, 1999 and January 4, 2001. No candidate bursts were observed over this period, which places a 90% confidence level upper limit of <3.5 galactic supernovae per year.

  19. Sterile Neutrinos in Cold Climates

    SciTech Connect

    Jones, Benjamin J.P.

    2015-09-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin224≤ 0.02 at m2 ~ 0.3 eV 2, and the LSND and MiniBooNE allowed regions are excluded at >99% confidence level.

  20. Neutrino-induced muons observed with MINOS

    SciTech Connect

    Habig, A.; /Minnesota U., Duluth

    2005-07-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's Far Detector has been operational since July 2003, taking cosmic ray and atmospheric neutrino data from its location in the Soudan Mine Underground Lab. Numerous neutrino-induced muons have been observed. The detector's magnetic field allows the first determination by a large underground detector of muon charge and thus neutrino versus anti-neutrino on an event by event basis.

  1. Youth at Risk: A Prevention Resource for Counselors, Teachers, and Parents. Fourth Edition.

    ERIC Educational Resources Information Center

    Capuzzi, David, Ed.; Gross, Douglas R., Ed.

    The fourth revision of this text offers both tested prevention strategies for work with diverse at-risk populations and counseling techniques that address the complexities of destructive behavior from individual, family, school, and community perspectives. Drawing on the wisdom of 24 experts, this book provides concrete advice for creating and…

  2. Experimental Anomalies in Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Palamara, Ornella

    2014-03-01

    In recent years, experimental anomalies ranging in significance (2.8-3.8 σ) have been reported from a variety of experiments studying neutrinos over baselines less than 1 km. Results from the LSND and MiniBooNE short-baseline νe /νe appearance experiments show anomalies which cannot be described by oscillations between the three standard model neutrinos (the ``LSND anomaly''). In addition, a re-analysis of the anti-neutrino flux produced by nuclear power reactors has led to an apparent deficit in νe event rates in a number of reactor experiments (the ``reactor anomaly''). Similarly, calibration runs using 51Cr and 37Ar radioactive sources in the Gallium solar neutrino experiments GALLEX and SAGE have shown an unexplained deficit in the electron neutrino event rate over very short distances (the ``Gallium anomaly''). The puzzling results from these experiments, which together may suggest the existence of physics beyond the Standard Model and hint at exciting new physics, including the possibility of additional low-mass sterile neutrino states, have raised the interest in the community for new experimental efforts that could eventually solve this puzzle. Definitive evidence for sterile neutrinos would be a revolutionary discovery, with implications for particle physics as well as cosmology. Proposals to address these signals by employing accelerator, reactor and radioactive source experiments are in the planning stages or underway worldwide. In this talk some of these will be reviewed, with emphasis on the accelerator programs.

  3. Sterile neutrinos as dark matter

    SciTech Connect

    Dodelson, S. ); Widrow, L.M. . Dept. of Physics Toronto Univ., ON . Canadian Inst. for Theoretical Astrophysics)

    1993-03-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed or sterile neutrinos. This model has been studied extensively in the context of the hot dark matter scenario. We reexamine this model and find that hot, warm, and cold dark matter are all possibilities. We focus on the case where sterile neutrinos are the dark matter. Since their only direct coupling is to left-handed or active neutrinos, the most efficient production mechanism is via neutrino oscillations. If the production rate is always less than the expansion rate, then these neutrinos will never be in thermal equilibrium. However, they may still play a significant role in the dynamics of the Universe and possibly provide the missing mass necessary for closure. We consider a single generation of neutrino fields ([nu][sub L], [nu][sub R]) with a Dirac mass, [mu], and a Majorana mass for the right-handed components only, M. For M [much gt] [mu] we show that the number density of sterile neutrinos is proportional to [mu][sup 2]/M so that the energy density today is independent of M. However M is crucial in determining the large scale structure of the Universe. In particular, M [approx equal] 0.1--1.0 key leads to warm dark matter and a structure formation scenario that may have some advantages over both the standard hot and cold dark matter scenarios.

  4. Sterile neutrinos as dark matter

    SciTech Connect

    Dodelson, S.; Widrow, L.M. |

    1993-03-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed or sterile neutrinos. This model has been studied extensively in the context of the hot dark matter scenario. We reexamine this model and find that hot, warm, and cold dark matter are all possibilities. We focus on the case where sterile neutrinos are the dark matter. Since their only direct coupling is to left-handed or active neutrinos, the most efficient production mechanism is via neutrino oscillations. If the production rate is always less than the expansion rate, then these neutrinos will never be in thermal equilibrium. However, they may still play a significant role in the dynamics of the Universe and possibly provide the missing mass necessary for closure. We consider a single generation of neutrino fields ({nu}{sub L}, {nu}{sub R}) with a Dirac mass, {mu}, and a Majorana mass for the right-handed components only, M. For M {much_gt} {mu} we show that the number density of sterile neutrinos is proportional to {mu}{sup 2}/M so that the energy density today is independent of M. However M is crucial in determining the large scale structure of the Universe. In particular, M {approx_equal} 0.1--1.0 key leads to warm dark matter and a structure formation scenario that may have some advantages over both the standard hot and cold dark matter scenarios.

  5. Updating neutrino magnetic moment constraints

    NASA Astrophysics Data System (ADS)

    Cañas, B. C.; Miranda, O. G.; Parada, A.; Tórtola, M.; Valle, J. W. F.

    2016-02-01

    In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Λi and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 ×10-11μB at 90% C.L. This corresponds to the individual transition magnetic moment constraints: |Λ1 | ≤ 5.6 ×10-11μB, |Λ2 | ≤ 4.0 ×10-11μB, and |Λ3 | ≤ 3.1 ×10-11μB (90% C.L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.

  6. Neutrino and Anti-neutrino Cross Sections at MiniBooNE

    SciTech Connect

    Dharmapalan, Ranjan

    2011-10-06

    The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH{sub 2}). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

  7. Superbeams vs. neutrino factories

    NASA Astrophysics Data System (ADS)

    Huber, P.; Lindner, M.; Winter, W.

    2002-11-01

    We compare the physics potential of planned superbeams with the one of neutrino factories. Therefore, the experimental setups as well as the most relevant uncertainties and errors are considered on the same footing as much as possible. We use an improved analysis including the full parameter correlations, as well as statistical, systematical, and degeneracy errors. Especially, degeneracies have so far not been taken into account in a numerical analysis. We furthermore include external input, such as improved knowledge of the solar oscillation parameters from the KamLAND experiment. This allows us to determine the limiting uncertainties in all cases. For a specific comparison, we choose two representatives of each class: for the superbeam, we take the first conceivable setup, namely, the JHF to SuperKamiokande experiment, as well as, on a longer time scale, the JHF to HyperKamiokande experiment. For the neutrino factory, we choose an initially conceivable setup and an advanced machine. We determine the potential to measure the small mixing angle sin 22 θ13, the sign of Δm231, and the leptonic CP phase δCP, which also implies that we compare the limitations of the different setups. We find interesting results, such as the complete loss of the sensitivity to the sign of Δm231 due to degeneracies in many cases.

  8. Analyzing Atmospheric Neutrino Oscillations

    SciTech Connect

    Escamilla, J.; Ernst, D. J.; Latimer, D. C.

    2007-10-26

    We provide a pedagogic derivation of the formula needed to analyze atmospheric data and then derive, for the subset of the data that are fully-contained events, an analysis tool that is quantitative and numerically efficient. Results for the full set of neutrino oscillation data are then presented. We find the following preliminary results: 1.) the sub-dominant approximation provides reasonable values for the best fit parameters for {delta}{sub 32}, {theta}{sub 23}, and {theta}{sub 13} but does not quantitatively provide the errors for these three parameters; 2.) the size of the MSW effect is suppressed in the sub-dominant approximation; 3.) the MSW effect reduces somewhat the extracted error for {delta}{sub 32}, more so for {theta}{sub 23} and {theta}{sub 13}; 4.) atmospheric data alone constrains the allowed values of {theta}{sub 13} only in the sub-dominant approximation, the full three neutrino calculations requires CHOOZ to get a clean constraint; 5.) the linear in {theta}{sub 13} terms are not negligible; and 6.) the minimum value of {theta}{sub 13} is found to be negative, but at a statistically insignificant level.

  9. MUON STORAGE RINGS - NEUTRINO FACTORIES

    SciTech Connect

    PARSA,Z.

    2000-05-30

    The concept of a muon storage ring based Neutrino Source (Neutrino Factory) has sparked considerable interest in the High Energy Physics community. Besides providing a first phase of a muon collider facility, it would generate more intense and well collimated neutrino beams than currently available. The BNL-AGS or some other proton driver would provide an intense proton beam that hits a target, produces pions that decay into muons. The muons must be cooled, accelerated and injected into a storage ring with a long straight section where they decay. The decays occurring in the straight sections of the ring would generate neutrino beams that could be directed to detectors located thousands of kilometers away, allowing studies of neutrino oscillations with precisions not currently accessible. For example, with the neutrino source at BNL, detectors at Soudan, Minnesota (1,715 km), and Gran Sasso, Italy (6,527 km) become very interesting possibilities. The feasibility of constructing and operating such a muon-storage-ring based Neutrino-Factory, including geotechnical questions related to building non-planar storage rings (e.g. at 8{degree} angle for BNL-Soudan, and 3{degree} angle for BNL-Gran Sasso) along with the design of the muon capture, cooling, acceleration, and storage ring for such a facility is being explored by the growing Neutrino Factory and Muon Collider Collaboration (NFMCC). The authors present overview of Neutrino Factory concept based on a muon storage ring, its components, physics opportunities, possible upgrade to a full muon collider, latest simulations of front-end, and a new bowtie-muon storage ring design.

  10. Strongly coupled fourth generation at the LHC

    SciTech Connect

    Burdman, G.; Da Rold, L.; Eboli, O. J. P.; Matheus, R. D.

    2009-04-01

    We study extensions of the standard model with a strongly coupled fourth generation. This occurs in models where electroweak symmetry breaking is triggered by the condensation of at least some of the fourth-generation fermions. With focus on the phenomenology at the LHC, we study the pair production of fourth-generation down quarks, D{sub 4}. We consider the typical masses that could be associated with a strongly coupled fermion sector, in the range (300-600) GeV. We show that the production and successive decay of these heavy quarks into final states with same-sign dileptons, trileptons, and four leptons can be easily seen above background with relatively low luminosity. On the other hand, in order to confirm the presence of a new strong interaction responsible for fourth-generation condensation, we study its contribution to D{sub 4} pair production, and the potential to separate it from standard QCD-induced heavy quark production. We show that this separation might require large amounts of data. This is true even if it is assumed that the new interaction is mediated by a massive colored vector boson, since its strong coupling to the fourth generation renders its width of the order of its mass. We conclude that, although this class of models can be falsified at early stages of the LHC running, its confirmation would require high integrated luminosities.

  11. Supernova neutrino three-flavor evolution with dominant collective effects

    SciTech Connect

    Fogli, Gianluigi; Marrone, Antonio; Tamborra, Irene; Lisi, Eligio E-mail: eligio.lisi@ba.infn.it E-mail: irene.tamborra@ba.infn.it

    2009-04-15

    Neutrino and antineutrino fluxes from a core-collapse galactic supernova are studied, within a representative three-flavor scenario with inverted mass hierarchy and tiny 1-3 mixing. The initial flavor evolution is dominated by collective self-interaction effects, which are computed in a full three-family framework along an averaged radial trajectory. During the whole time span considered (t = 1-20 s), neutrino and antineutrino spectral splits emerge as dominant features in the energy domain for the final, observable fluxes. The main results can be useful for SN event rate simulations in specific detectors. Some minor or unobservable three-family features (e.g., related to the muonic-tauonic flavor sector), as well as observable effects due to variations in the spectral input, are also discussed for completeness.

  12. Bruno Pontecorvo and the neutrino

    NASA Astrophysics Data System (ADS)

    Bilenky, S. M.

    2014-05-01

    This paper commemorates the 100th anniversary of the birth of the great scientist and neutrino researcher Bruno Pontecorvo. His major contributions are reviewed, including the radiochemical method of neutrino detection, the idea of the ν-{ e} universality of the weak interaction, and the proposal of an accelerator experiment to prove that ν e and ν_μ are different particles. Pontecorvo's fundamental idea of neutrino masses, mixing, and oscillations is discussed in detail, as is the development of this idea by Pontecorvo and Gribov and Pontecorvo and the author.

  13. Neutrino magnetic moment and supernovae

    SciTech Connect

    Ayala, Alejandro; Torres, Manuel; D'Olivo, Juan Carlos

    1999-10-25

    For neutrinos with a magnetic moment, we calculate the production rate of right handed neutrinos in a hot and dense plasma via the quirality flip ({nu}{sub L}{yields}{gamma}*{nu}{sub R}) and the plasmon decay ({gamma}*{yields}{nu}{sub L}{nu}{sub R}) processes. The rate for these processes is computed in terms of a resummed photon propagator which consistently incorporates the background effects. Applying the results to the case of supernova collapse, our results can be used to place an upper limit on the neutrino magnetic moment {mu}{sub {nu}}<(0.1-0.4)x10{sup -11}{mu}{sub B}.

  14. Non-Standard Neutrino Interactions

    NASA Astrophysics Data System (ADS)

    Ohlsson, Tommy

    2009-11-01

    In this talk, I will review non-standard interactions in neutrino physics, especially I will emphazise the impact of non-standard interactions on neutrino oscillations. First, I will give a brief introduction about non-standard interactions and what they are. Then, I will present what has been performed in the literature, what I have done in the field, and what could be done in the future. Next, I will discuss how important non-standard interactions are for neutrino cross-sections. Finally, I will give a summary of the field.

  15. Neutrino interactions in neutron matter

    NASA Astrophysics Data System (ADS)

    Cipollone, Andrea

    2012-12-01

    Neutrino flow is the dominant mechanism of energy transfer in the latest stages of supernovae explosions and in compact stars. The Standard Model of particle physics and accelerator data, provide a satisfactory description of neutrino physics in vacuum up to TeV scale. Nevertheless modeling the dynamics of neutrino interaction in the nuclear environment involves severe difficulties. This thesis in mainly aimed at obtaining the weak response of infinite matter, using both the Correlated Basis Function theory and Landau Theory of Fermi liquid to take into account properly nucleon-nucleon hard core potential and long range correlation (quasi-particle, collective modes, ecc.)

  16. Report on solar neutrino experiments

    SciTech Connect

    Davis, R. Jr.; Cleveland, B.T.; Rowley, J.K.

    1984-01-01

    A summary is given of the status of solar neutrino research that includes results of the Brookhaven chlorine detector, a discussion of the development of the gallium, bromine, and lithium radiochemical detectors, and some proposals for direct counting detectors. The gallium and bromine radiochemical detectors are developed and are capable of giving critical information of interest about neutrino physics and the fusion reactions in the interior of the sun. A plan for building these detectors is outlined and a rough cost estimate is given. A review is given of the plans in the Soviet Union in solar neutrino research.

  17. Tanaka Dissertation Award Talk: Evidence for Neutrino Flavor Oscillations in the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Marino, Alysia

    2006-04-01

    This talk will discuss the evidence for neutrino oscillations, with an emphasis on the results from the Sudbury Neutrino Observatory (SNO). With its unique heavy-water volume, SNO can simultaneously measure the electron neutrino flux and the total active neutrino flux coming from the Sun. The SNO results provide compelling model- independent evidence for neutrino flavor changes, providing a solution to the long-standing ``solar neutrino problem.'' While these results solve one mystery, there are many remaining questions about neutrinos. This talk will conclude with a discussion of the potential of current and future neutrino experiments.

  18. Neutrino-induced Reactions and Neutrino Scattering with Nuclear Targets

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Ha, Eunja; Yang, Ghil-Seok; Kim, Kyungsik; Kajino, T.

    2016-02-01

    We reviewed present status regarding experimental data and theoretical approaches for neutrino-induced reactions and neutrino scattering. With a short introduction of relevant data, our recent calculations by distorted-wave Born approximation for quasielastic region are presented for MiniBooNE data. For much higher energy neutrino data, such as NOMAD data, elementary process approach was shown to be useful instead of using complicated nuclear models. But, in the low energy region, detailed nuclear structure model, such as QRPA and shell model, turn out to be inescapable to explain the reaction data. Finally, we discussed that one step-process in the reaction is comparable to the two-step process, which has been usually used in the neutrino-nucleosynthesis.

  19. Arbitrarily massive sterile neutrinos at the neutrino factory

    SciTech Connect

    Meloni, Davide; Tang Jian; Winter, Walter

    2011-10-06

    We study the effects of one additional sterile neutrino at the Neutrino Factory. On the one hand, we do not impose any constraint on the additional mass squared splitting, which is different from earlier discussions where LSND motivated Q(1)eV{sup 2} is always assumed. We find that a combination of near detectors and long baselines is good at searching for arbitrarily massive sterile neutrinos at the neutrino factory. On the other hand, we compare our sensitivities of mixing angles with the MINOS results where |{Delta}m{sub 41}{sup 2}|>>{Delta}m{sub 31}{sup 2}| is assumed and the fast oscillations in the far detectors are averaged out.

  20. Aging without agency: theorizing the fourth age.

    PubMed

    Gilleard, Chris; Higgs, P

    2010-03-01

    This article looks at the "fourth age" as a manifestation of the fragmentation of "old age". We argue that the fourth age emerges from the institutionalization of the infirmities of old age set against the appearance of a third-age culture that negates past representations of old age. We outline the historical marginalization of old age from early modern society to the contemporary concentration of infirmity within long-term care which makes of old age an undesirable "social imaginary". As "old age" fades from the social world, we liken this to the impact of a "black hole" distorting the gravitational field surrounding it, unobservable except for its traces. Within this perspective, the fourth age can be understood by examining not the experience itself but its impact on the discourses that surround and orientate themselves to it. PMID:20336545

  1. Neutrino mass hierarchy extraction using atmospheric neutrinos in ice

    SciTech Connect

    Mena, Olga; Mocioiu, Irina; Razzaque, Soebur

    2008-11-01

    We show that the measurements of 10 GeV atmospheric neutrinos by an upcoming array of densely-packed phototubes buried deep inside the IceCube detector at the South Pole can be used to determine the neutrino mass hierarchy for values of sin{sup 2}2{theta}{sub 13} close to the present bound, if the hierarchy is normal. These results are obtained for an exposure of 100 Mton years and systematic uncertainties up to 10%.

  2. Muon Neutrino to Electron Neutrino Oscillation in NOnuA

    NASA Astrophysics Data System (ADS)

    Sachdev, Kanika

    NOvA is a long-baseline neutrino oscillation experiment optimized for electron neutrino (nue) appearance in the NuMI beam, a muon neutrino (numu) source at Fermilab. It consists of two functionally identical, nearly fully-active liquid-scintillator tracking calorimeters. The near detector (ND) at Fermilab is used to study the neutrino beam spectrum and composition before oscillation, and measure background rate to the nu e appearance search. The far detector, 810 km away in Northern Minnesota, observes the oscillated beam and is used to extract oscillation parameters from the data. NOnuA's long baseline, combined with the ability of the NuMI beam to operate in the anti-neutrino mode, makes NOnuA sensitive to the last unmeasured parameters in neutrino oscillations- mass hierarchy, CP violation and the octant of mixing angle theta23. This thesis presents the search for nue appearance in the first data collected by the NOnuA detectors from October 2013 till May 2015. Studies of the NuMI neutrino data collected in the NOnuA near detector are also presented, which show large discrepancies between the ND simulation and data. Muon-removed electron (MRE) events, constructed by replacing the muon in numu charged current interactions by a simulated electron, are used to correct the far detector nue appearance prediction for these discrepancies. In the analysis of the first data, a total of 6 nue candidate events are observed in the far detector on a background of 1, a 3.46 sigma excess, which is interpreted as strong evidence for nue appearance. The results are consistent with our expectation, based on constraints from other neutrino oscillation experiments. The result presented here differs from the officially published nu e appearance result from the NOnuA experiment where the systematic error is assumed to cover the MRE correction.

  3. Sterile neutrinos beyond LSND at the neutrino factory

    SciTech Connect

    Meloni, Davide; Tang Jian; Winter, Walter

    2010-11-01

    We discuss the effects of one additional sterile neutrino at the Neutrino Factory. Compared to earlier analyses, which have been motivated by Liquid Scintillator Neutrino Detector (LSND) results, we do not impose any constraint on the additional mass squared splitting. This means that the additional mass eigenstate could, with small mixings, be located among the known ones, as it is suggested by the recent analysis of cosmological data. We use a self-consistent framework at the Neutrino Factory without any constraints on the new parameters. We demonstrate for a combined short and long baseline setup that near detectors can provide the expected sensitivity at the LSND-motivated {Delta}m{sub 41}{sup 2}-range, while some sensitivity can also be obtained in the region of the atmospheric mass splitting from the long baselines. We point out that limits on such very light sterile neutrinos may also be obtained from a reanalysis of atmospheric and solar neutrino oscillation data, as well as from supernova neutrino observations. In the second part of the analysis, we compare our sensitivity with the existing literature using additional assumptions, such as |{Delta}m{sub 41}{sup 2}|>>|{Delta}m{sub 31}{sup 2}|, leading to averaging of the fast oscillations in the far detectors. We demonstrate that while the Neutrino Factory has excellent sensitivity compared to existing studies using similar assumptions, one has to be very careful interpreting these results for a combined short and long baseline setup where oscillations could occur in the near detectors. We also test the impact of additional {nu}{sub {tau}} detectors at the short and long baselines, and we do not find a substantial improvement of the sensitivities.

  4. Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

    SciTech Connect

    Marino, Alysia Diane

    2004-08-10

    The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while {approx}2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 {+-} 0.065(stat.){+-}{sub 0.068}{sup 0.065}(sys.){+-}0.02(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}, via the elastic-scattering interaction is [2.21{+-}0.22(stat.){+-}{sub 0.12}{sup 0.11}(sys.){+-}0.01(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}, and via the neutral-current interaction is [5.05{+-}0.23(stat.){+-}{sub 0.37}{sup 0.31}(sys.){+-}0.06(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}. The electron-only flux seen via the charged-current interaction is more than 7{sigma} below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation.

  5. Neutrino decays and neutrino electron elastic scattering in unparticle physics

    NASA Astrophysics Data System (ADS)

    Zhou, Shun

    2008-01-01

    Following Georgi's unparticle scheme, we examine the effective couplings between neutrinos and unparticle operators. As an immediate consequence, neutrinos become unstable and can decay into the unparticle stuff. Assuming the dimension transmutation scale is around Λ˜1 TeV, we implement the cosmological limit on the neutrino lifetime to constrain the neutrino unparticle couplings for different scaling dimensions d. In addition, provided that the electron unparticle coupling is restricted due to the precise measurement of the anomalous magnetic moment of electron, we calculate the unparticle contribution to the neutrino electron elastic scattering. It is more important to jointly deal with the couplings of the unparticle to the standard model particles rather than separately. Taking into account both electron and neutrino unparticle couplings, we find that the scaling dimension of the scalar unparticle should lie in the narrow range 1

  6. Research in Neutrino Physics

    SciTech Connect

    Busenitz, Jerome

    2014-09-30

    Research in Neutrino Physics We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for 13 based on 100 days of data from the far detector. Our data indicates that 13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2 (2 13) = 0.086 ± 0.041 (stat) ± 0.030 (syst) The null oscillation hypothesis is excluded at the 94.6% C.L. This result1 has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2 (2 13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will eventually succeed Double Chooz and MiniBooNE as the main foci of our efforts. The Stancu group plans to become re–involved in LBNE and possibly also to join NO A, and the Busenitz group has begun to explore joining a direct dark matter search.

  7. Electron Neutrino Appearance in the MINOS Experiment

    NASA Astrophysics Data System (ADS)

    Sanchez, Mayly C.

    2008-02-01

    MINOS is a long-baseline neutrino oscillation experiment tasked to make a precision measurement of the neutrino mixing parameters associated with the atmospheric neutrino mass splitting. Using a high powered neutrino beam from the Main Injector (NuMI) facility at Fermilab, it compares the neutrino energy spectrum for neutrino interactions observed in two large detectors located at Fermilab and in the Soudan mine in northern Minnesota at a distance of 735 km. We have recently presented muon-neutrino disappearance results after two years of data taking. Beyond those results there is the possibility that for a mixing angle related to electron-neutrino appearance in the vicinity of the current experimental limit, MINOS could make an initial measurement of this parameter. We present a method for particle identification of electron neutrinos and show several techniques being used to study the background contributions for this analysis in the non-oscillated data at the Near Detector.

  8. The many aspects of neutrino physics

    SciTech Connect

    Frieman, J.A.

    1992-01-01

    In mid-November, over seventy physicists gathered at Fermilab for an informal workshop on the Many Aspects of Neutrino Physics, which dovetailed with and also helped lay the groundwork for the succeeding more narrowly focused conference on Long Baseline Neutrino Oscillations. The workshop indeed covered many of the interrelated aspects of neutrino physics: 17 keV neutrinos (experiments, theoretical models, and astrophysical constraints), neutrino properties (double beta decay experiments, neutrino magnetic moments), neutrinos from/as weakly interacting massive particles (WIMPs) in cosmology and astrophysics, atmospheric neutrinos, and solar neutrinos. In the following, I provide a brief and thoroughly biased account of only some of the many interesting developments discussed at the workshop.

  9. Coherent neutrino interactions in a dense medium

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Weiss, Nathan

    1997-11-01

    Motivated by the effect of matter on neutrino oscillations (the MSW effect) we study in more detail the propagation of neutrinos in a dense medium. The dispersion relation for massive neutrinos in a medium is known to have a minimum at nonzero momentum p~GFρ/2. We study in detail the origin and consequences of this dispersion relation for both Dirac and Majorana neutrinos both in a toy model with only neutral currents and a single neutrino flavor and in a realistic ``standard model'' with two neutrino flavors. We find that for a range of neutrino momenta near the minimum of the dispersion relation, Dirac neutrinos are trapped by their coherent interactions with the medium. This effect does not lead to the trapping of Majorana neutrinos.

  10. Neutrinos and Cosmology: An Update

    SciTech Connect

    Pisanti, Ofelia; Serpico, Pasquale D.

    2005-10-12

    We review the current cosmological status of neutrinos, with particular emphasis on their effects on Big Bang Nucleosynthesis, Large Scale Structure of the universe and Cosmic Microwave Background Radiation measurements.

  11. The Fermilab neutrino beam program

    SciTech Connect

    Rameika, Regina A.; /Fermilab

    2007-01-01

    This talk presents an overview of the Fermilab Neutrino Beam Program. Results from completed experiments as well as the status and outlook for current experiments is given. Emphasis is given to current activities towards planning for a future program.

  12. Neutrino facility hits new hurdle

    NASA Astrophysics Data System (ADS)

    Padma, T. V.

    2015-04-01

    Just months after receiving the green light from the Indian government, the India-based Neutrino Observatory (INO) has been dealt a blow after a court writ was filed against the facility's new site by local environmentalists and politicians.

  13. Supersymmetric origin of neutrino mass

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Valle, J. W. F.

    2004-07-01

    Supersymmetry with breaking of R-parity provides an attractive way to generate neutrino masses and lepton mixing angles in accordance with the present neutrino data. We review the main theoretical features of the bilinear R-parity breaking (BRpV) model, and stress that it is the simplest extension of the minimal supersymmetric standard model (MSSM), which includes lepton number violation. We describe how it leads to a successful phenomenological model with hierarchical neutrino masses. In contrast with see-saw models, the BRpV model can be probed at future collider experiments, such as the Large Hadron Collider or the Next Linear Collider, since the decay pattern of the lightest supersymmetric particle provides a direct connection with the lepton mixing angles determined by neutrino experiments.

  14. Quasidegenerate neutrinos in SO(10)

    SciTech Connect

    Joshipura, Anjan S.; Patel, Ketan M.

    2010-08-01

    We propose a specific ansatz for the structure of Yukawa matrices in SO(10) models that lead to quasidegenerate neutrinos through the type-I seesaw mechanism. Consistency of this ansatz is demonstrated through detailed fits to fermion masses and mixing angles, all of which can be explained with reasonable accuracy in a model that uses the Higgs fields transforming as 10, 120, and 126 representations of SO(10). The proposed ansatz is shown to follow from an extended model based on the three generations of the vectorlike fermions and an O(3) flavor symmetry. Successful numerical fits are also discussed in earlier proposed models, which used a combination of the type-I and type-II seesaw mechanisms for obtaining quasidegenerate neutrinos. Large neutrino mixing angles emerge as a consequence of neutrino mass degeneracy in both these cases.

  15. Unparticle effects in neutrino telescopes

    SciTech Connect

    Gonzalez-Sprinberg, G.; Martinez, R.; Sampayo, Oscar A.

    2009-03-01

    Recently H. Georgi has introduced the concept of unparticles in order to describe the low energy physics of a nontrivial scale invariant sector of an effective theory. We investigate its physical effects on the neutrino flux to be detected in a kilometer cubic neutrino telescope such as IceCube. We study the effects, on different observables, of the survival neutrino flux after through the Earth, and the regeneration originated in the neutral currents. We calculate the contribution of unparticle physics to the neutrino-nucleon interaction and, then, to the observables in order to evaluate detectable effects in IceCUbe. Our results are compared with the bounds obtained by other nonunderground experiments. Finally, the results are presented as an exclusion plot in the relevant parameters of the new physics stuff.

  16. First measurement of the flux of solar neutrinos from the sun at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wittich, Peter

    2000-12-01

    The Sudbury Neutrino Observatory (SNO) is a second generation solar neutrino detector. SNO is the first experiment that is able to measure both the electron neutrino flux and a flavor-blind flux of all active neutrino types, allowing a model-independent determination if the deficit of solar neutrinos known as the solar neutrino problem is due to neutrino oscillation. The Sudbury Neutrino Observatory started taking production data in November, 1999. A measurement of the charged current rate will be the first indication if SNO too sees a suppression of the solar neutrino signal relative to the theoretical predictions. Such a confirmation is the first step in SNO's ambitious science program. In this thesis, we present evidence that SNO is seeing solar neutrinos and a preliminary ratio of the measured vs predicted rate of electrons as induced by 8B neutrinos in the νe, + d --> p + p + e charged-current (CC) reaction.

  17. Modelling tribimaximal neutrino mixing

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Morisi, S.; Valle, J. W. F.

    2009-01-01

    We model tribimaximal lepton mixing from first principles in a way that avoids the problem of the vacuum alignment characteristic of such models. This is achieved by using a softly broken A4 symmetry realized with an isotriplet fermion, also triplet under A4. No scalar A4 triplet is introduced. This represents one possible realization of general schemes characterized by the minimal set of either three or five physical parameters. In the three parameter versions the neutrinoless double beta mass parameter mee vanishes, while in the five parameter schemes the absolute scale of neutrino mass, although not predicted, is related to the two Majorana phases. The model realization we discuss is potentially testable at the LHC through the peculiar leptonic decay patterns of the fermionic and scalar triplets.

  18. Possible number of different neutrinos

    SciTech Connect

    Manko, V.I.; Markov, M.A.

    1986-05-01

    It is hypothesized that the number of different types of neutrinos may be related to the dimensionality of the space. This relationship is illustrated by a model of a four-dimensional relativistic oscillator which is an element of a relativistic string. It is shown that the total number of different neutrinos may vary from three to five (depending on the model), in agreement with astrophysical data. 5 references.

  19. Invariants of collective neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Pehlivan, Y.; Balantekin, A. B.; Kajino, Toshitaka; Yoshida, Takashi

    2011-09-01

    We consider the flavor evolution of a dense neutrino gas by taking into account both vacuum oscillations and self-interactions of neutrinos. We examine the system from a many-body perspective as well as from the point of view of an effective one-body description formulated in terms of the neutrino polarization vectors. We show that, in the single angle approximation, both the many-body picture and the effective one-particle picture possess several constants of motion. We write down these constants of motion explicitly in terms of the neutrino isospin operators for the many-body case and in terms of the polarization vectors for the effective one-body case. The existence of these constants of motion is a direct consequence of the fact that the collective neutrino oscillation Hamiltonian belongs to the class of Gaudin Hamiltonians. This class of Hamiltonians also includes the (reduced) BCS pairing Hamiltonian describing superconductivity. We point out the similarity between the collective neutrino oscillation Hamiltonian and the BCS pairing Hamiltonian. The constants of motion manifest the exact solvability of the system. Borrowing the well established techniques of calculating the exact BCS spectrum, we present exact eigenstates and eigenvalues of both the many-body and the effective one-particle Hamiltonians describing the collective neutrino oscillations. For the effective one-body case, we show that spectral splits of neutrinos can be understood in terms of the adiabatic evolution of some quasiparticle degrees of freedom from a high-density region where they coincide with flavor eigenstates to the vacuum where they coincide with mass eigenstates. We write down the most general consistency equations which should be satisfied by the effective one-body eigenstates and show that they reduce to the spectral split consistency equations for the appropriate initial conditions.

  20. 40 years of neutrino physics

    NASA Astrophysics Data System (ADS)

    Reines, Frederick

    Wolfgang Pauli and Enrico Fermi pioneered the hypothesis and characteristics of the weak interaction and the elementary particle called the neutrino. Since its discovery some forty years ago the neutrino has been shown to be a fundamental constituent of matter with a surprisingly rich, and in very many ways unexpected, set of characteristics ranging from basic roles in the generation of energy in the sun to supernovæ.

  1. Solar Neutrinos: Status and Prospects

    NASA Astrophysics Data System (ADS)

    Haxton, W. C.; Hamish Robertson, R. G.; Serenelli, Aldo M.

    2013-08-01

    We describe the current status of solar neutrino measurements and of the theory—both neutrino physics and solar astrophysics—employed in interpreting measurements. Important recent developments include Super-Kamiokande's determination of the ν-e elastic scattering rate for 8B neutrinos to 3%; the latest Sudbury Neutrino Observatory (SNO) global analysis in which the inclusion of low-energy data from SNO I and II significantly narrowed the range of allowed values for the neutrino mixing angle θ12; Borexino results for both the 7Be and proton-electron-proton (pep) neutrino fluxes, the first direct measurements constraining the rate of proton-proton (pp) I and pp II burning in the Sun; global reanalyses of solar neutrino data that take into account new reactor results on θ13; a new decadal evaluation of the nuclear physics of the pp chain and CNO cycle defining best values and uncertainties in the nuclear microphysics input to solar models; recognition of an emerging discrepancy between two tests of solar metallicity, helioseismological mappings of the sound speed in the solar interior, and analyses of the metal photoabsorption lines based on our best current description of the Sun's photosphere; a new round of standard solar model calculations optimized to agree either with helioseismology or with the new photospheric analysis; and, motivated by the solar abundance problem, the development of nonstandard, accreting solar models, in order to investigate possible consequences of the metal segregation that occurred in the proto-solar disk. We review this progress and describe how new experiments such as SNO+ could help us further exploit neutrinos as a unique probe of stellar interiors.

  2. Neutrino Oscillations and New Physics

    NASA Astrophysics Data System (ADS)

    Valle, J. W. F.

    2005-08-01

    I discuss the theoretical background and the status of neutrino oscillation parameters from the current worlds' global data sample and latest flux calculations. I give their allowed ranges, best fit values and discuss the small parameters α≡ΔmSOL2/ΔmATM2 and sinθ, which characterize CP violation in neutrino oscillations. I mention the significance of ββ0ν (neutrinoless double beta decay) and current expectations in view of oscillation results.

  3. Coherence effects in neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Nussinov, Schmuel; Weiss, Nathan

    1996-01-01

    We study the effect of coherent and incoherent broadening on neutrino oscillations both in vacuum and in the presence of matter (the MSW effect). We show under very general assumptions that it is not possible to distinguish experimentally neutrinos produced in some region of space as wave packets from those produced in the same region of space as plane waves with the same energy distribution.

  4. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam E-mail: jdolence@astro.princeton.edu

    2013-07-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K{sub r} {approx} K{sub {theta}} + K{sub {phi}}). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  5. Voids in massive neutrino cosmologies

    NASA Astrophysics Data System (ADS)

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo; Sutter, P. M.

    2015-11-01

    Cosmic voids are a promising environment to characterize neutrino-induced effects on the large-scale distribution of matter in the universe. We perform a comprehensive numerical study of the statistical properties of voids, identified both in the matter and galaxy distributions, in massive and massless neutrino cosmologies. The matter density field is obtained by running several independent N-body simulations with cold dark matter and neutrino particles, while the galaxy catalogs are modeled by populating the dark matter halos in simulations via a halo occupation distribution (HOD) model to reproduce the clustering properties observed by the Sloan Digital Sky Survey (SDSS) II Data Release 7. We focus on the impact of massive neutrinos on the following void statistical properties: number density, ellipticities, two-point statistics, density and velocity profiles. Considering the matter density field, we find that voids in massive neutrino cosmologies are less evolved than those in the corresponding massless neutrinos case: there is a larger number of small voids and a smaller number of large ones, their profiles are less evacuated, and they present a lower wall at the edge. Moreover, the degeneracy between σ8 and Ων is broken when looking at void properties. In terms of the galaxy density field, we find that differences among cosmologies are difficult to detect because of the small number of galaxy voids in the simulations. Differences are instead present when looking at the matter density and velocity profiles around these voids.

  6. Neutrino Factory R&D

    NASA Astrophysics Data System (ADS)

    Long, K.

    2006-04-01

    Elegant experiments are being carried out, or are in preparation, to improve the precision with which the solar and atmospheric neutrino-oscillation parameters are known, and to attempt to make a first measurement of the small mixing angle θ13. The compelling case for the development of an accelerator-based neutrino source to serve the programme of precision measurements of neutrino oscillations and sensitive searches for leptonic-CP violation that is required to follow these experiments is briefly reviewed. The Neutrino Factory, an intense high-energy neutrino source based on a stored muon beam, is widely believed to yield a precision and sensitivity superior to other proposed second-generation facilities. The alternatives are identified and the case for a critical comparison of the performance of the various options is presented. Highlights of the exciting international R&D programmes which are designed to demonstrate the feasibility of the required techniques are then reviewed. The steps that the international community is taking to produce, by the end of the decade, a full conceptual design for the facility are described. The ambition of the Neutrino Factory community is to demonstrate the feasibility of a cost-effective design such that, should forthcoming measurements show that it is required, the facility could be brought into operation in the second half of the next decade.

  7. High-energy neutrino astronomy

    NASA Astrophysics Data System (ADS)

    Montaruli, Teresa

    2012-07-01

    Neutrino astronomy, conceptually conceived four decades ago, has entered an exciting phase for providing results on the quest for the sources of the observed highest energy particles. IceCube and ANTARES are now completed and are scanning in space and time possible signals of high energy neutrinos indicating the existence of such sources. DeepCore, inside IceCube, is a playground for vetoed neutrino measurement with better potential below 1 TeV. A larger and denser detector is now being discussed. ARA, now in test phase, will be composed by radio stations that could cover up to ~ 100 km2 and aims at the highest energy region of cosmogenic neutrinos. The non observation of cosmic events is on one side a source of disappointment, on the other it represents by itself an important result. If seen in the context of a multi-messenger science, the combination of photon and cosmic ray experiment results brings invaluable information. The experimental upper bounds of the cubic-kilometer telescope IceCube are now below the theoretical upper bounds for extragalactic fluxes of neutrinos from optically thin sources. These are responsible for accelerating the extragalactic cosmic rays. Such limits constrain the role of gamma-ray bursts, described by the fireball picture, as sources of ultra-high energy cosmic rays. Neutrino telescopes are exciting running multi-task experiments that produce astrophysics and particle physics results some of which have been illustrated at this conference and are summarized in this report.

  8. Extraterrestrial high energy neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  9. Neutrino mass and New physics

    NASA Astrophysics Data System (ADS)

    Smirnov, A. Yu

    2006-11-01

    Reconstruction of the neutrino mass and flavor spectrum is described. Essentially two processes are relevant for interpretation of the neutrino results which were used in determination of neutrino parameters: oscillations (averaged and non-averaged) in vacuum and matter and the adiabatic flavor conversion in matter (the MSW-effect). Detailed physics picture of these processes is elaborated and their realizations in solar and atmospheric neutrinos as well as in K2K, KamLAND and MINOS experiments are described. Important bounds have been obtained from neutrinoless double beta decay and cosmology. Implications of the obtained results to fundamental physics are discussed. Among various mechanisms for small neutrino masses we consider the seesaw (which has the highest priority) and overlap suppression in extra dimensions. The observed pattern on neutrino mixing may testify for existence of new symmetries of nature. One of the key issues on the way to underlying physics is comparison of the quarks and lepton masses and mixing. In this connections concepts of quark-lepton symmetry and unification, quark-lepton universality and quark-lepton complementarity are described.

  10. Neutrinos from hell. [Detected from supernova

    SciTech Connect

    Schorn, R.A.

    1987-05-01

    The detection of neutrinos is studied. The use of the Kamiokande II detector, which is a cylindrical tank holding about 3000 tons of highly purified water, for neutrino detection is examined. The operation and capabilities of the Kamiokande II detector are described. The Kamiokande II and Irvine-Michigan-Brookhaven detector observed the neutrinos from SN 1987A. The relation between the supernova and the neutrinos is analyzed. Particular consideration is given to the shock wave and the energies of the neutrinos. Additional data provided by the neutrino observations are discussed.

  11. Status of non-standard neutrino interactions.

    PubMed

    Ohlsson, Tommy

    2013-04-01

    The phenomenon of neutrino oscillations has been established as the leading mechanism behind neutrino flavor transitions, providing solid experimental evidence that neutrinos are massive and lepton flavors are mixed. Here we review sub-leading effects in neutrino flavor transitions known as non-standard neutrino interactions (NSIs), which is currently the most explored description for effects beyond the standard paradigm of neutrino oscillations. In particular, we report on the phenomenology of NSIs and their experimental and phenomenological bounds as well as an outlook for future sensitivity and discovery reach. PMID:23481442

  12. Neutrino scattering and flavor transformation in supernovae.

    PubMed

    Cherry, John F; Carlson, J; Friedland, Alexander; Fuller, George M; Vlasenko, Alexey

    2012-06-29

    We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse supernova environments. We show that the standard treatment for collective neutrino flavor transformation is adequate at late times but could be inadequate in early epochs of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are affected by the scattered neutrinos. Taking account of this effect, and the way it couples to entropy and composition, will require a new approach in neutrino flavor transformation modeling. PMID:23004955

  13. The Egyptian Press: An Official Fourth Estate.

    ERIC Educational Resources Information Center

    Lawhorne, Clifton O.

    A descriptive study based on Egyptian law, printed sources, and interviews clarifies our picture of the Egyptian Press by examining its status as a constitutionally mandated "Fourth Estate." The constitutional amendment, the resultant Egyptian Press Law, and the "Law Of Shame" (all passed in 1980), are designed to create a heavily controlled press…

  14. Sex Differences in Cognitive Abilities. Fourth Edition

    ERIC Educational Resources Information Center

    Halpern, Diane F.

    2011-01-01

    The fourth edition of "Sex Differences in Cognitive Abilities" critically examines the breadth of research on this complex and controversial topic, with the principal aim of helping the reader to understand where sex differences are found--and where they are not. Since the publication of the third edition, there have been many exciting and

  15. Business Management for Independent Schools. Fourth Edition.

    ERIC Educational Resources Information Center

    National Association of Independent Schools, Boston, MA.

    This fourth edition of a guide for independent school business managers has been produced in looseleaf format so that changes may be made promptly as decisions of regulatory bodies require modifications in current practice. Fourteen chapters are organized under three broad topic headings. Chapters in part 1, Accounting and Financial Reporting,…

  16. Vocabulary Strategies for a Fourth Grade Classroom

    ERIC Educational Resources Information Center

    Howell, Gina

    2012-01-01

    For this project I worked with twelve of my fourth grade students from a local school in the southwestern part of Stokes County, North Carolina on increasing their vocabulary skills through the development and implementation of seven vocabulary strategies. During the Literature Review I came across the following seven strategies: Prediction;…

  17. Literature for Today's Young Adults. Fourth Edition.

    ERIC Educational Resources Information Center

    Nilsen, Alleen Pace; Donelson, Kenneth L.

    Designed to help teachers open young minds to literature, this book presents criteria for evaluating books in all genres and their suggested classroom uses, an examination of hotly debated topics, and an overview of the significance of young adult literature. The fourth edition of the book features 30 boxed inserts containing essays by some of the…

  18. Children, Play, and Development. Fourth Edition

    ERIC Educational Resources Information Center

    Hughes, Fergus P.

    2010-01-01

    Children, Play, and Development, Fourth Edition, discusses the relationship of play to the physical, social, intellectual, and emotional growth of the child. Author Fergus P. Hughes focuses on the historical, sociocultural, and ethological context of play; the role of development in play; and the wide range of theories that provide a framework for…

  19. Sex Differences in Cognitive Abilities. Fourth Edition

    ERIC Educational Resources Information Center

    Halpern, Diane F.

    2011-01-01

    The fourth edition of "Sex Differences in Cognitive Abilities" critically examines the breadth of research on this complex and controversial topic, with the principal aim of helping the reader to understand where sex differences are found--and where they are not. Since the publication of the third edition, there have been many exciting and…

  20. "Researching" with Third- and Fourth-Graders.

    ERIC Educational Resources Information Center

    Liston, Barbara

    1970-01-01

    In order to instill in children the skills which will be basic to their school experience, words implying a process (such as "hemp,""parasite," and "vanilla") may be "researched" by third and fourth graders through the use of a dictionary, an encyclopedia, a supplementary book on the subject, and an interview with an adult. The child makes a…

  1. Teaching Fourth Generation Evaluation through Monologue Interpretation.

    ERIC Educational Resources Information Center

    Hepburn, Eric; Sparks, Cheryl

    1992-01-01

    This article illustrates the use of monologue interpretation, in which an interpreter illuminates issues in a speaker's monologue to translate theoretical pedagogical material into usable classroom applications. The example shows how the tenets of Guba and Lincoln's (1989) Responsive Constructivist Fourth Generation Model were presented via…

  2. Welcome to pandoraviruses at the ‘Fourth TRUC’ club

    PubMed Central

    Sharma, Vikas; Colson, Philippe; Chabrol, Olivier; Scheid, Patrick; Pontarotti, Pierre; Raoult, Didier

    2015-01-01

    Nucleocytoplasmic large DNA viruses, or representatives of the proposed order Megavirales, belong to families of giant viruses that infect a broad range of eukaryotic hosts. Megaviruses have been previously described to comprise a fourth monophylogenetic TRUC (things resisting uncompleted classification) together with cellular domains in the universal tree of life. Recently described pandoraviruses have large (1.9–2.5 MB) and highly divergent genomes. In the present study, we updated the classification of pandoraviruses and other reported giant viruses. Phylogenetic trees were constructed based on six informational genes. Hierarchical clustering was performed based on a set of informational genes from Megavirales members and cellular organisms. Homologous sequences were selected from cellular organisms using TimeTree software, comprising comprehensive, and representative sets of members from Bacteria, Archaea, and Eukarya. Phylogenetic analyses based on three conserved core genes clustered pandoraviruses with phycodnaviruses, exhibiting their close relatedness. Additionally, hierarchical clustering analyses based on informational genes grouped pandoraviruses with Megavirales members as a super group distinct from cellular organisms. Thus, the analyses based on core conserved genes revealed that pandoraviruses are new genuine members of the ‘Fourth TRUC’ club, encompassing distinct life forms compared with cellular organisms. PMID:26042093

  3. On the Compound Structures of the Neutrino Mass and Charge

    NASA Astrophysics Data System (ADS)

    Sharafiddinov, Rasulkhozha S.

    2014-03-01

    The nature has been created so that to any type of charged lepton corresponds a kind of neutrino. Such pairs are united in families of a definite flavor, confirming that the same neutrino possesses simultaneously both mass and charge. This in turn implies that the force of gravity of the Newton between the two neutrinos may be expressed through the force of the Coulomb among these particles and vice versa. If a given situation follows from a unified principle, the mass and charge of a particle correspond to the most diverse form of the same regularity of the nature of this field. Such a correspondence principle expresses the mass-charge duality. From its point of view, each of all possible types of charges testifies in favor of the existence of a kind of inertial mass. Therefore, to show their features, we have established the compound structures of mass and charge. They can explain also the availability of fundamental differences in the masses as well as in the charges of Dirac and Majorana neutrinos. Thereby, findings show clearly that the standard model construction is not quite in line with nature.

  4. Flavor distribution of UHE cosmic neutrino oscillations at neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-Zhong

    2009-04-01

    If the ultrahigh-energy (UHE) cosmic neutrinos produced from a distant astrophysical source can be measured at a km-size neutrino telescope such as the IceCube or KM3NeT, they will open a new window to understand the nature of flavor mixing and to probe possible new physics. Considering the conventional UHE cosmic neutrino source with the flavor ratio φe:φμ:φτ=1:2:0, I point out two sets of conditions for the flavor democracy φeT:φμT:φτT=1:1:1 to show up at neutrino telescopes: either θ13=0 and θ23=π/4 (CP invariance) or δ=±π/2 and θ23=π/4 (CP violation) in the standard parametrization of the 3×3 neutrino mixing matrix V. Allowing for slight μ-τ symmetry breaking effects characterized by Δ∈[-0.1,+0.1], I find φeT:φμT:φτT=(1-2Δ):(1+Δ):(1+Δ) as a good approximation. Another possibility to constrain Δ is to detect the ν flux of E≈6.3PeV via the Glashow resonance channel νe→W→anything. I also give some brief comments on (1) possible non-unitarity of V in the seesaw framework and its effects on the flavor distribution at neutrino telescopes and (2) a generic description and determination of the cosmic neutrino flavor composition at distant astrophysical sources.

  5. Neutrino factories: realization and physics potential

    SciTech Connect

    Geer, S.; Zisman, M.S.; /LBL, Berkeley

    2006-12-01

    Neutrino Factories offer an exciting option for the long-term neutrino physics program. This new type of neutrino facility will provide beams with unique properties. Low systematic uncertainties at a Neutrino Factory, together with a unique and precisely known neutrino flavor content, will enable neutrino oscillation measurements to be made with unprecedented sensitivity and precision. Over recent years, the resulting neutrino factory physics potential has been discussed extensively in the literature. In addition, over the last six years the R&D necessary to realize a Neutrino Factory has been progressing, and has developed into a significant international activity. It is expected that, within about five more years, the initial phase of this R&D program will be complete and, if the community chooses to build this new type of neutrino source within the following decade, neutrino factory technology will be ready for the final R&D phase prior to construction. In this paper (1) an overview is given of the technical ingredients needed for a Neutrino Factory, (2) beam properties are described, (3) the resulting neutrino oscillation physics potential is summarized, (4) a more detailed description is given for one representative Neutrino Factory design, and (5) the ongoing R&D program is summarized, and future plans briefly described.

  6. Atmospheric Neutrinos in the MINOS Far Detector

    SciTech Connect

    Howcroft, Caius L.F.

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  7. Neutrino masses: from fantasy to facts

    NASA Astrophysics Data System (ADS)

    Valle, J. W. F.

    Theory suggests the existence of neutrino masses, but little more. Facts are coming close to revealing our fantasy: solar- and atmospheric-neutrino data strongly indicate the need for neutrino conversions, while LSND provides an intriguing hint. The simplest ways to reconcile these data in terms of neutrino oscillations invoke a light sterile neutrino in addition to the three active ones. Out of the four neutrinos, two are maximally mixed and lie at the LSND scale, while the others are at the solar-mass scale. These schemes can be distinguished at neutral-current-sensitive solar- and atmospheric-neutrino experiments. I discuss the simplest theoretical scenarios, where the lightness of the sterile neutrino, the nearly maximal atmospheric-neutrino mixing and the generation of Δm {⊙/2} and Δm {atm/2} all follow naturally from the assumed lepton-number symmetry and its breaking. Although the most likely interpretation of the present data is in terms of neutrino-mass-induced oscillations, one still has room for alternative explanations, such as flavor-changing neutrino interactions, with no need for neutrino mass or mixing. Such flavor-violating transitions arise in theories with strictly massless neutrinos and may lead to other sizeable flavor non-conservation effects, such as μ → e + γ, μ - e conversion in nuclei, unaccompanied by neutrinoless double-beta decay.

  8. Summary of the Fourth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.; Morrison, Joseph H.; Mavriplis, Dimitri J.; Murayama, Mitcuhiro

    2010-01-01

    Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.

  9. Can neutrino-electron scattering tell us whether neutrinos are Dirac or Majorana particles

    SciTech Connect

    Kayser, B.

    1988-04-01

    There has recently been interest in the possibility that neutrino-electron scattering experiments could determine whether neutrinos are Dirac or Majorana particles by providing information on their electromagnetic structure. We try to explain why studies of neutrino electromagnetic structure actually cannot distinguish between Dirac and Majorana neutrinos. 9 refs.

  10. Observation of electron neutrino appearance in a muon neutrino beam.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F D M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Floetotto, L; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L J; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2014-02-14

    The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm(32)(2) and a CP violating phase δ(CP). In this neutrino oscillation scenario, assuming |Δm(32)(2)|=2.4×10(-3)  eV(2), sin(2)θ(23)=0.5, and Δm322>0 (Δm(32)(2)<0), a best-fit value of sin(2)2θ(13)=0.140(-0.032)(+0.038) (0.170(-0.037)(+0.045)) is obtained at δ(CP)=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of θ(13) from reactor experiments, some values of δ(CP) are disfavored at the 90% C.L. PMID:24580687

  11. Evidence of electron neutrino appearance in a muon neutrino beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abgrall, N.; Aihara, H.; Akiri, T.; Albert, J. B.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Boyd, S.; Brailsford, D.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; Day, M.; de André, J. P. A. M.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Dobson, J.; Drapier, O.; Duboyski, T.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jung, C. K.; Kaboth, A.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J. Y.; Kim, J.; Kim, S. B.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kowalik, K.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laing, A.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nicholls, T. C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Obayashi, Y.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pinzon Guerra, E. S.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shibata, M.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. A.; Tanaka, M. M.; Tanaka, M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2013-08-01

    The T2K Collaboration reports evidence for electron neutrino appearance at the atmospheric mass splitting, |Δm322|≈2.4×10-3eV2. An excess of electron neutrino interactions over background is observed from a muon neutrino beam with a peak energy of 0.6 GeV at the Super-Kamiokande (SK) detector 295 km from the beam’s origin. Signal and background predictions are constrained by data from near detectors located 280 m from the neutrino production target. We observe 11 electron neutrino candidate events at the SK detector when a background of 3.3±0.4(syst) events is expected. The background-only hypothesis is rejected with a p value of 0.0009 (3.1σ), and a fit assuming νμ→νe oscillations with sin⁡22θ23=1, δCP=0 and |Δm322|=2.4×10-3eV2 yields sin⁡22θ13=0.088-0.039+0.049(stat+syst).

  12. Observation of Electron Neutrino Appearance in a Muon Neutrino Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L. J.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-02-01

    The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm322 and a CP violating phase δCP. In this neutrino oscillation scenario, assuming |Δm322|=2.4×10-3 eV2, sin2θ23=0.5, and Δm322>0 (Δm322<0), a best-fit value of sin22θ13=0.140-0.032+0.038 (0.170-0.037+0.045) is obtained at δCP=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of θ13 from reactor experiments, some values of δCP are disfavored at the 90% C.L.

  13. Salt Neutrino Detector for Ultrahigh-Energy Neutrinos

    SciTech Connect

    Chiba, M.; Yasuda, O.; Kamijo, T.; Chikashige, Y.; Kon, T.; Takeoka, Y.; Yoshida, R.

    2004-11-01

    Rock salt and limestone are studied to determine their suitability for use as a radio-wave transmission medium in an ultrahigh energy (UHE) cosmic neutrino detector. A sensible radio wave would be emitted by the coherent Cherenkov radiation from negative excess charges inside an electromagnetic shower upon interaction of a UHE neutrino in a high-density medium (Askar'yan effect). If the attenuation length for the radio wave in the material is large, a relatively small number of radio-wave sensors could detect the interaction occurring in the massive material. We measured the complex permittivity of the rock salt and limestone by the perturbed cavity resonator method at 9.4 and 1 GHz to good precision. We obtained new results of measurements at the frequency at 1.0 GHz. The measured value of the radio-wave attenuation length of synthetic rock salt samples is 1080 m. The samples from the Hockley salt mine in the United States show attenuation length of 180 m at 1 GHz, and then we estimate it by extrapolation to be as long as 900 m at 200 MHz. The results show that there is a possibility of utilizing natural massive deposits of rock salt for a UHE neutrino detector. A salt neutrino detector with a size of 2 x 2 x 2 km would detect 10 UHE neutrino/yr generated through the GZK process.

  14. Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux

    SciTech Connect

    Park, Jaewon

    2013-01-01

    Neutrino-electron elastic scattering is used as a reference process to constrain the neutrino flux at the Main Injector (NuMI) beam observed by the MINERvA experiment. Prediction of the neutrino flux at accelerator experiments from other methods has a large uncertainty, and this uncertainty degrades measurements of neutrino oscillations and neutrino cross-sections. Neutrino-electron elastic scattering is a rare process, but its cross-section is precisely known. With a sample corresponding to $3.5\\times10^{20}$ protons on target in the NuMI low-energy neutrino beam, a sample of $120$ $\

  15. Neutrino properties and fundamental symmetries

    SciTech Connect

    Bowles, T.J.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using {sup 3}He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs.

  16. Probing Neutrino Hierarchy and Chirality via Wakes

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Inman, Derek

    2016-04-01

    The relic neutrinos are expected to acquire a bulk relative velocity with respect to the dark matter at low redshifts, and neutrino wakes are expected to develop downstream of the dark matter halos. We propose a method of measuring the neutrino mass based on this mechanism. This neutrino wake will cause a dipole distortion of the galaxy-galaxy lensing pattern. This effect could be detected by combining upcoming lensing surveys with a low redshift galaxy survey or a 21 cm intensity mapping survey, which can map the neutrino flow field. The data obtained with LSST and Euclid should enable us to make a positive detection if the three neutrino masses are quasidegenerate with each neutrino mass of ˜0.1 eV , and a future high precision 21 cm lensing survey would allow the normal hierarchy and inverted hierarchy cases to be distinguished, and even the right-handed Dirac neutrinos may be detectable.

  17. Neutrino masses, mixing, moments, and matter

    SciTech Connect

    Marciano, W.J.

    1988-01-01

    The present status of neutrino masses, mixing, and electromagnetic moments is surveyed. Potential enhancements of neutrino oscillations, decay, and spin-flavor precession due to their interactions with matter are described.

  18. Particle physics confronts the solar neutrino problem

    SciTech Connect

    Pal, P.B.

    1991-06-01

    This review has four parts. In Part I, we describe the reactions that produce neutrinos in the sun and the expected flux of those neutrinos on the earth. We then discuss the detection of these neutrinos, and how the results obtained differ from the theoretical expectations, leading to what is known as the solar neutrino problem. In Part II, we show how neutrino oscillations can provide a solution to the solar neutrino problem. This includes vacuum oscillations, as well as matter enhanced oscillations. In Part III, we discuss the possibility of time variation of the neutrino flux and how a magnetic moment of the neutrino can solve the problem. WE also discuss particle physics models which can give rise to the required values of magnetic moments. In Part IV, we present some concluding remarks and outlook for the recent future.

  19. Neutrinos and cosmology: a lifetime relationship

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2008-06-01

    We consider the example of neutrino decays to illustrate the profound relation between laboratory neutrino physics and cosmology. Two case studies are presented: In the first one, we show how the high precision cosmic microwave background spectral data collected by the FIRAS instrument on board of COBE, when combined with Lab data, have greatly changed bounds on the radiative neutrino lifetime. In the second case, we speculate on the consequence for neutrino physics of the cosmological detection of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a detection at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on some models of neutrino secret interactions.

  20. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    SciTech Connect

    Cooper, N.G.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  1. Neutrino-nucleus reactions in supernovae

    NASA Astrophysics Data System (ADS)

    Dzhioev, Alan A.; Vdovin, A. I.

    2016-01-01

    We study thermal effects on neutrino-nucleus reactions occurring under supernova conditions. The approach we use is based on the QRPA extended to finite temperature by the thermofield dynamics formalism. For the relevant supernova conditions we calculate inelastic neutrino scattering and neutrino absorption cross sections for two sample nuclei, 56Fe and 82Ge. In addition, we apply the approach to examine the rate of neutrino-antineutrino pair emission by hot nuclei.

  2. Sterile neutrinos in the early universe

    SciTech Connect

    Malaney, R.A. ); Fuller, G.M. . Dept. of Physics)

    1990-11-14

    We discuss the role played by right-handed sterile neutrinos in the early universe. We show how well known {sup 4}He constraint on the number of relativistic degrees of freedom at early times limits the equilibration of the right handed neutrino sea with the background plasma. We discuss how this allows interesting constraints to be placed on neutrino properties. In particular, a new limit on the Dirac mass of the neutrino is presented. 12 refs.

  3. From Neutrino Factory to Muon Collider

    SciTech Connect

    Geer, S.; /Fermilab

    2010-01-01

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  4. Have massive cosmological neutrinos already been detected

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1980-01-01

    The possibility is investigated that the decay of massive cosmological neutrinos may have produced a spectral signature which has already been detected in observations of the ultraviolet background radiation. Various implications are discussed including a possible implied neutrino mass of 13.8-14.8 eV. A lower limit is also placed on the lifetime of heavy neutrinos with respect to decay into light neutrinos and gamma rays based on the cosmic UV observations.

  5. Current and future liquid argon neutrino experiments

    SciTech Connect

    Karagiorgi, Georgia S.

    2015-05-15

    The liquid argon time projection chamber (LArTPC) detector technology provides an opportunity for precision neutrino oscillation measurements, neutrino cross section measurements, and searches for rare processes, such as SuperNova neutrino detection. These proceedings review current and future LArTPC neutrino experiments. Particular focus is paid to the ICARUS, MicroBooNE, LAr1, 2-LArTPC at CERN-SPS, LBNE, and 100 kton at Okinoshima experiments.

  6. Neutrino mass hierarchy and octant determination with atmospheric neutrinos.

    PubMed

    Barger, Vernon; Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Marfatia, Danny; Prakash, Suprabh; Raut, Sushant K; Sankar, S Uma

    2012-08-31

    The recent discovery by the Daya-Bay and RENO experiments, that ?(13) is nonzero and relatively large, significantly impacts existing experiments and the planning of future facilities. In many scenarios, the nonzero value of ?(13) implies that ?(23) is likely to be different from ?/4. Additionally, large detectors will be sensitive to matter effects on the oscillations of atmospheric neutrinos, making it possible to determine the neutrino mass hierarchy and the octant of ?(23). We show that a 50 kT magnetized liquid argon neutrino detector can ascertain the mass hierarchy with a significance larger than 4? with moderate exposure times, and the octant at the level of 2-3? with greater exposure. PMID:23002822

  7. Detection of supernova neutrinos with neutrino-iron scattering

    SciTech Connect

    Samana, A. R.; Bertulani, C. A.

    2008-08-15

    The {nu}{sub e}-{sup 56}Fe cross section is evaluated in the projected quasiparticle random phase approximation (PQRPA). This model solves the puzzle observed in RPA for nuclei with mass around {sup 12}C, because it is the only RPA model that treats the Pauli Principle correctly. The cross sections as a function of the incident neutrino energy are compared with recent theoretical calculations of similar models. The average cross section weighted with the flux spectrum yields a good agreement with the experimental data. The expected number of events in the detection of supernova neutrinos is calculated for the LVD detector, leading to an upper limit for the electron neutrino energy of particular importance in this experiment.

  8. Multipole expansion method for supernova neutrino oscillations

    SciTech Connect

    Duan, Huaiyu; Shalgar, Shashank E-mail: shashankshalgar@unm.edu

    2014-10-01

    We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  9. The BAIKAL neutrino project: status report

    NASA Astrophysics Data System (ADS)

    Balkanov, V.; Belolaptikov, I.; Budnev, N.; Bezrukova, L.; Chensky, A.; Chernovd, D.; Danilchenko, I.; Dzhilkibaev, Zh.-A.; Domogatskya, G.; Dyachok, A. N.; Gaponenko, O.; Gress, O.; Gress, T.; Klabukov, A.; Klimov, A.; Klimushin, S.; Konischev, K.; Koshechkin, A.; Kuzmichev, L.; Kulepov, V.; Kuznetzov, Vy.; Lubsandorzhiev, B.; Mikheyev, S.; Milenin, M.; Mirgazov, R.; Moseikod, N.; Osipova, E.; Pavlov, A.; Pan'kov, G.; Pan'kov, L.; Panfilov, A.; Parfenov, Yu.; Pliskovsky, E.; Pokhil, P.; Polecshuk, V.; Popova, E.; Prosin, V.; Rosanov, M.; Rubtzov, V.; Semeney, Y.; Shaibonov, B.; Spiering, Ch.; Streicher, O.; Tarashanky, B.; Vasiliev, R.; Vyatchin, E.; Wischnewskih, R.; Yashin, I.; Zhukov, V.

    2003-04-01

    We review the present status of the Baikal Neutrino Project and present results on upward going atmospheric neutrinos, results of a search for high energy extraterrestrial neutrinos as well as preliminary results of searching for acoustic signals from EAS in water. We describe the moderate upgrade of NT-200 planned for the next years and discuss a possible detector on the Gigaton scale.

  10. The BAIKAL neutrino project: status report

    NASA Astrophysics Data System (ADS)

    Balkanov, V. A.; Belolaptikov, I. A.; Bezrukov, L. B.; Budnev, N. M.; Chensky, A. G.; Danilchenko, I. A.; Dzhilkibaev, Zh.-A. M.; Domogatsky, G. V.; Doroshenko, A. A.; Fialkovsky, S. V.; Gaponenko, O. N.; Gress, O. A.; Kiss, D. D.; Klabukov, A. M.; Klimov, A. I.; Klimushin, S. I.; Koshechkin, A. P.; Kulepov, V. F.; Kuzmichev, L. A.; Kuznetzov, Vy. E.; Ljaudenskaite, J.; Lubsandorzhiev, B. K.; Milenin, M. B.; Mirgazov, R. R.; Moseiko, N. I.; Netikov, V. A.; Osipova, E. A.; Panfilov, A. I.; Parfenov, Yu. V.; Pankov, L. V.; Pavlov, A. A.; Pliskovsky, E. N.; Pokhil, P. G.; Poleshuk, V. A.; Popova, E. G.; Prosin, V. V.; Rozanov, M. I.; Rubzov, V. Yu.; Semenei, Yu. A.; Sokalski, I. A.; Spiering, Ch.; Streicher, O.; Tarashansky, B. A.; Thon, T.; Toht, G.; Vasiljev, R. V.; Wischnewski, R.; Yashin, I. V.; Zhukov, V. A.

    We review the present status of the Baikal Neutrino Project and present preliminary results of a search for upward going atmospheric neutrinos, WIMPs and magnetic monopoles obtained with the detector NT-200 during 1998. Also the results of a search for very high energy neutrinos with partially completed detector in 1996 are presented.

  11. What we Really Know about Neutrino Speeds

    NASA Astrophysics Data System (ADS)

    Altschul, Brett

    2014-01-01

    OPERA's claim to have seen faster-than-light neutrinos made a big splash in 2011. However, indirect arguments, based on gauge invariance, phase coherence in neutrino oscillations, and observations of electrons, could have already been used to rule out the OPERA claim. In fact, indirect constraints on neutrino velocities are many orders of magnitude better than direct ones.

  12. The Renaissance of Neutrino Interaction Physics

    SciTech Connect

    Gallagher, Hugh R.

    2009-12-17

    The advent of high intensity neutrino beams for neutrino oscillation experiments has produced a resurgence of interest in neutrino interaction physics. Recent experiments have been revisiting topics not studied since the bubble chamber era, and are exploring many interesting questions at the boundaries of particle and nuclear physics.

  13. Nonadiabatic three-neutrino oscillations in matter

    SciTech Connect

    DOlivo, J.C.; Oteo, J.A.

    1996-07-01

    Oscillations of three neutrinos in matter are analyzed by using the Magnus expansion for the time-evolution operator. We derive a simple expression for the electron-neutrino survival probability which is applied to the examination of the effect of a third neutrino on the nonadiabatic flavor transformations. {copyright} {ital 1996 The American Physical Society.}

  14. THE SEARCH FOR MASSIVE NEUTRINOS - Short Contribution

    NASA Astrophysics Data System (ADS)

    Kirsten, T.

    Double beta decay (DBD) has the potential to distinguish whether neutrinos are Majorana or Dirac particles. However, neutrinoless DBD (in violation of lepton number conservation) has not yet been observed. From the respective upper limits, limits on the neutrino restmass can be deduced if the neutrino is of Majorana type.

  15. Fourth-generation photovoltaic concentrator system development

    SciTech Connect

    O`Neill, M.J.; McDanal, A.J.

    1995-10-01

    In 1991, under a contract with Sandia for the Concentrator Initiative, the ENTECH team initiated the design and development of a fourth-generation concentrator module. In 1992, Sandia also contracted with ENTECH to develop a new control and drive system for the ENTECH array. This report documents the design and development work performed under both contracts. Manufacturing processes for the new module were developed at the same time under a complementary PVMaT contract with the National Renewable Energy Laboratory. Two 100-kW power plants were deployed in 1995 in Texas using the newly developed fourth-generation concentrator technology, one at the CSW Solar Park near Ft. Davis and one at TUE Energy Park in Dallas. Technology developed under the Sandia contracts has made a successful transition from the laboratory to the production line to the field.

  16. Mars vehicle design: The fourth generation

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    1993-09-01

    Powerful new computational tools and small, expert teams have produced unprecedented levels of design detail in the latest cycle of engineering planning for human expeditions to Mars. This article reports on a study contract for NASA-MSFC which evolved mature fourth-generation Mars mission vehicle concepts, a set based on nuclear electric, solar electric, and nuclear thermal propulsion methods. The concept described in this article covers propulsion vehicle and lander design, transfer vehicle design, engines and propulsion components, crew habitats, and the earth-to-orbit (ETO) flight plan. The vehicle design integration has taken full advantage of modern numerical capabilities, including the following: supercomputer flight dynamics calculations; automated radiation dose analysis; and computer-aided design, drafting, performance modeling, and image representation. Fourth-generation methodology has established a challenging benchmark against which future concepts will be judged.

  17. Generalized perturbations in neutrino mixing

    NASA Astrophysics Data System (ADS)

    Liao, Jiajun; Marfatia, D.; Whisnant, K.

    2015-10-01

    We derive expressions for the neutrino mixing parameters that result from complex perturbations on (1) the Majorana neutrino mass matrix (in the basis of charged lepton mass eigenstates) and on (2) the charged lepton mass matrix, for arbitrary initial (unperturbed) mixing matrices. In the first case, we find that the phases of the elements of the perturbation matrix, and the initial values of the Dirac and Majorana phases, strongly impact the leading-order corrections to the neutrino mixing parameters and phases. For experimentally compatible scenarios wherein the initial neutrino mass matrix has μ -τ symmetry, we find that the Dirac phase can take any value under small perturbations. Similarly, in the second case, perturbations to the charged lepton mass matrix can generate large corrections to the mixing angles and phases of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. As an illustration of our generalized procedure, we apply it to a situation in which nonstandard scalar and nonstandard vector interactions simultaneously affect neutrino oscillations.

  18. GRB neutrino search with MAGIC

    SciTech Connect

    Becker, Julia K.; Rhode, Wolfgang; Gaug, Markus

    2008-05-22

    The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescope was designed for the detection of photon sources > or approx. 50 GeV. The measurement of highly-inclined air showers renders possible the search for high-energy neutrinos, too. Only neutrinos can traverse the Earth without interaction, and therefore, events close to the horizon can be identified as neutrino-induced rather than photon-induced or hadronic events. In this paper, Swift-XRT-detected GRBs with given spectral information are used in order to calculate the potential neutrino energy spectrum from prompt and afterglow emission for each individual GRB. The event rate in MAGIC is estimated assuming that the GRB happens within the field of view of MAGIC. A sample of 568 long GRBs as detected by BATSE is used to compare the detection rates with 163 Swift-detected bursts. BATSE has properties similar to the Gamma-ray Burst Monitor (GBM) on board of GLAST. Therefore the estimated rates give an estimate for the possibilities of neutrino detection with MAGIC from GLAST-triggered bursts.

  19. Muon neutrino disappearance at MINOS

    SciTech Connect

    Armstrong, R.; /Indiana U.

    2009-08-01

    A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be {Delta}m{sub 32}{sup 2} = 2.45{sub +0.12}{sup -0.12} x 10{sub -3} eV{sup 2} and sin{sup 2}(2{theta}{sub 32}) = 1.00{sub -0.04}{sup +0.00} (> 0.90 at 90% confidence level).

  20. Fourth High Alpha Conference, volume 2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The goal of the Fourth High Alpha Conference, held at the NASA Dryden Flight Research Center on July 12-14, 1994, was to focus on the flight validation of high angle of attack technologies and provide an in-depth review of the latest high angle of attack activities. Areas that were covered include high angle of attack aerodynamics, propulsion and inlet dynamics, thrust vectoring, control laws and handling qualities, and tactical utility.

  1. Fourth NASA Langley Formal Methods Workshop

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael (Compiler); Hayhurst, Kelly J. (Compiler)

    1997-01-01

    This publication consists of papers presented at NASA Langley Research Center's fourth workshop on the application of formal methods to the design and verification of life-critical systems. Topic considered include: Proving properties of accident; modeling and validating SAFER in VDM-SL; requirement analysis of real-time control systems using PVS; a tabular language for system design; automated deductive verification of parallel systems. Also included is a fundamental hardware design in PVS.

  2. Fourth High Alpha Conference, volume 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The goal of the Fourth High Alpha Conference was to focus on the flight validation of high angle-of-attack technologies and provide an in-depth review of the latest high angle-of-attack activities. Areas that were covered include: high angle-of-attack aerodynamics, propulsion and inlet dynamics, thrust vectoring, control laws and handling qualities, tactical utility, and forebody controls.

  3. Documentation of the Fourth Order Band Model

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.; Hoitsma, D.

    1979-01-01

    A general circulation model is presented which uses quadratically conservative, fourth order horizontal space differences on an unstaggered grid and second order vertical space differences with a forward-backward or a smooth leap frog time scheme to solve the primitive equations of motion. The dynamic equations for motion, finite difference equations, a discussion of the structure and flow chart of the program code, a program listing, and three relevent papers are given.

  4. Fourth order difference methods for hyperbolic IBVP's

    NASA Technical Reports Server (NTRS)

    Gustafsson, Bertil; Olsson, Pelle

    1994-01-01

    Fourth order difference approximations of initial-boundary value problems for hyperbolic partial differential equations are considered. We use the method of lines approach with both explicit and compact implicit difference operators in space. The explicit operator satisfies an energy estimate leading to strict stability. For the implicit operator we develop boundary conditions and give a complete proof of strong stability using the Laplace transform technique. We also present numerical experiments for the linear advection equation and Burgers' equation with discontinuities in the solution or in its derivative. The first equation is used for modeling contact discontinuities in fluid dynamics, the second one for modeling shocks and rarefaction waves. The time discretization is done with a third order Runge-Kutta TVD method. For solutions with discontinuities in the solution itself we add a filter based on second order viscosity. In case of the non-linear Burger's equation we use a flux splitting technique that results in an energy estimate for certain different approximations, in which case also an entropy condition is fulfilled. In particular we shall demonstrate that the unsplit conservative form produces a non-physical shock instead of the physically correct rarefaction wave. In the numerical experiments we compare our fourth order methods with a standard second order one and with a third order TVD-method. The results show that the fourth order methods are the only ones that give good results for all the considered test problems.

  5. Family Policies and Children's School Achievement in Single- versus Two-Parent Families.

    ERIC Educational Resources Information Center

    Pong, Suet-Ling; Dronkers, Jaap; Hampden-Thompson, Gillian

    2003-01-01

    Investigates the gap in math and science achievement of third- and fourth-graders who live with a single parent versus those who live with two parents in 11 countries. Finds single parenthood to be less detrimental when family policies equalize resources between single- and two-parent families. Concludes that national family policies can offset…

  6. Transport equations for oscillating neutrinos

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfan; Burrows, Adam

    2013-11-01

    We derive a suite of generalized Boltzmann equations, based on the density-matrix formalism, that incorporates the physics of neutrino oscillations for two- and three-flavor oscillations, matter refraction, and self-refraction. The resulting equations are straightforward extensions of the classical transport equations that nevertheless contain the full physics of quantum oscillation phenomena. In this way, our broadened formalism provides a bridge between the familiar neutrino transport algorithms employed by supernova modelers and the more quantum-heavy approaches frequently employed to illuminate the various neutrino oscillation effects. We also provide the corresponding angular-moment versions of this generalized equation set. Our goal is to make it easier for astrophysicists to address oscillation phenomena in a language with which they are familiar. The equations we derive are simple and practical, and are intended to facilitate progress concerning oscillation phenomena in the context of core-collapse supernova theory.

  7. Decaying neutrinos in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Splinter, Randall J.; Persic, Massimo; Salucci, Paolo

    1993-01-01

    The DM profile in clusters of galaxies was studied and simulated using the Harrison-Zel'dovich spectrum of density fluctuations, and an amplitude previously derived from numerical simulations and in agreement with microwave background fluctuations. Neutrino DM densities, with this amplitude normalization cluster, are comparable to observed cluster DM values. It was concluded that given this normalization, the cluster DM should be al least largely composed of neutrinos. The constraint of Davidson et al., who argued that the failure to detect uv photons from the dark matter (DM) in cluster A665 excludes the decaying neutrino hypothesis, could be somewhat weakened by the presence of baryonic DM; but it cannot be eliminated given our assumptions.

  8. Decaying neutrinos in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Splinter, Randall J.; Persic, Massimo; Salucci, Paolo

    1994-01-01

    Davidsen et al. (1991) have argued that the failure to detect UV photons from the dark matter (DM) in cluster A665 excludes the decaying neutrino hypothesis. Sciama et al. (1993) argued that because of high central concentration the DM in that cluster must be baryonic. We study the DM profile in clusters of galaxies simulated using the Harrison-Zel'dovich spectrum of density fluctuations, and an amplitude previously derived from numerical simulations (Melott 1984b; Anninos et al. 1991) and in agreement with microwave background fluctuations (Smoot et al. 1992). We find that with this amplitude normalization cluster neutrino DM densities are comparable to observed cluster DM values. We conclude that given this normalization, the cluster DM should be at least largely composed of neutrinos. The constraint of Davidsen et al. can be somewhat weakened by the presence of baryonic DM; but it cannot be eliminated given our assumptions.

  9. The Low Energy Neutrino Factory

    SciTech Connect

    Bross, Alan; Geer, Steve; Ellis, Malcolm; Fernandez Martinez, Enrique; Li, Tracey; Pascoli, Silvia; Mena, Olga

    2010-03-30

    We show that a low energy neutrino factory with a baseline of 1300 km and muon energy of 4.5 GeV has an excellent physics reach. The results of our optimisation studies demonstrate that such a setup can have remarkable sensitivity to theta{sub 13} and delta for sin{sup 2}(2theta{sub 13})>10{sup -4}, and to the mass hierarchy for sin{sup 2}(2theta{sub 13})>10{sup -3}. We also illustrate the power of the unique combination of golden and platinum channels accessible to the low energy neutrino factory. We have considered both a 20 kton totally active scintillating detector and a 100 kton liquid argon detector as possible detector technologies, finding that a liquid argon detector with very good background rejection can produce sensitivity to theta{sub 13} and delta with that of the International Design Study neutrino factory.

  10. Recent developments in neutrino physics

    SciTech Connect

    Garvey, G.T.

    1991-01-01

    I shall attempt to summarize recent developments in the experimental situation in neutrino physics. The paper will deal with recent results, drawing on either published work or research that has been presented in preprint form, as there is an adequate supply of interesting and controversial data restricting oneself to these generally more reliable sources. The discussion of the theoretical implication of these experimental results will be presented in the following paper by Boris Kayser. The topics to be covered in this presentation are: direct measurements of {bar {nu}}{sub e} mass via beta endpoint studies; status of solar neutrino observations; status of 17-keV neutrino'' reports; and the use of {nu}p elastic scattering to determine the strange quark'' content of the proton. 2 refs., 15 figs., 9 tabs.

  11. Neutrino-axion-dilaton interconnection

    NASA Astrophysics Data System (ADS)

    Bertolini, Stefano; Di Luzio, Luca; Kolešová, Helena; Malinský, Michal; Vasquez, Juan Carlos

    2016-01-01

    We show that a recently proposed framework that provides a simple connection between Majorana neutrinos and an invisible axion in minimal scalar extensions of the standard electroweak model can be naturally embedded in a classically scale-invariant setup. The explicit breaking of the scale invariance à la Coleman-Weinberg generates the Peccei-Quinn and electroweak scales. The spontaneous breaking of the chiral U (1 )PQ triggers the generation of neutrino masses via Type-II seesaw and, at the same time, provides a dynamical solution to the strong C P problem as well as the axion as a dark matter candidate. The electroweak and neutrino mass scales are obtained via a technically natural ultraweak limit of the singlet scalar interactions. Accordingly, a realistic and perturbatively stable scalar spectrum, possibly in the reach of the LHC, is naturally obtained. A very light pseudodilaton characterizes such a setting. The vacuum stability of the extended setup is discussed.

  12. Neutrino oscillations in noisy media

    SciTech Connect

    Loreti, F.N.; Balantekin, A.B.

    1994-05-27

    The authors develop the Redfield equation for delta-correlated gaussian noise and apply it to the case of two neutrino flavor or spin precession in the presence of a noisy matter density or magnetic field, respectively. The criteria under which physical fluctuations can be well approximated by the delta-correlated gaussian noise for the above cases are examined. Current limits on the possible neutrino magnetic moment and solar magnetic field suggest that a reasonably noisy solar magnetic field would not appreciably affect the solar electron neutrino flux. However, if the solar electron density has fluctuations of a few percent of the local density and a small enough correlation length, the MSW effect is suppressed for a range of parameters.

  13. 7. DETAIL OF SOUTHEAST SIDE OF FOURTH STREET VIADUCT SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF SOUTHEAST SIDE OF FOURTH STREET VIADUCT SHOWING ORNAMENTAL LIGHTING AND STAIRS AT MISSION STREET OVERCROSSING. LOOKING NORTHEAST. - Fourth Street Viaduct, Spanning Los Angeles River, Los Angeles, Los Angeles County, CA

  14. Estimation of atmospheric neutrinos background in Borexino

    NASA Astrophysics Data System (ADS)

    Atroshchenko, V. S.; Litvinovich, E. A.

    2016-02-01

    Atmospheric neutrinos are produced in interactions of cosmic rays with atomic nuclei in the Earth's atmosphere. Although their flux is too low for studying in Borexino, atmospheric neutrinos act as a background for other processes. This paper presents the theoretical expected yield of atmospheric neutrinos in Borexino for three neutrino detection reactions: νp-ES, νe-ES and inverse, β-decay, as well as the status of Monte-Carlo simulation for ν12C interaction channels. Calculations were performed based on the only currently known detailed model of atmospheric neutrinos flux at very low energies.

  15. Solar and Terrestrial Neutrino Results from Borexino

    NASA Astrophysics Data System (ADS)

    Calaprice, Frank; Borexino Collaboration

    2012-08-01

    Borexino is a low background liquid scintillation detector currently acquiring solar and terrestrial neutrino data at the LNGS underground laboratory in Italy. In the three years since the start of operations in 2007, Borexino has produced measurements of 7Be and 8B solar neutrinos, as well as measurements of terrestrial and long-baseline reactor anti-neutrinos. The measurements of sub-MeV neutrinos were possible owing to a breakthrough in low background methods. Current results and prospects for future measurements with lower background and higher accuracy are discussed in the context of exploring the transition from vacuum to matter enhanced neutrino oscillations.

  16. Renormalization group running of neutrino parameters

    NASA Astrophysics Data System (ADS)

    Ohlsson, Tommy; Zhou, Shun

    2014-10-01

    Neutrinos are the most elusive particles in our Universe. They have masses at least one million times smaller than the electron mass, carry no electric charge and very weakly interact with other particles, meaning that they are rarely captured in terrestrial detectors. Tremendous efforts in the past two decades have revealed that neutrinos can transform from one type to another as a consequence of neutrino oscillations—a quantum mechanical effect over macroscopic distances—yet the origin of neutrino masses remains puzzling. The physical evolution of neutrino parameters with respect to energy scale may help elucidate the mechanism for their mass generation.

  17. Renormalization group running of neutrino parameters.

    PubMed

    Ohlsson, Tommy; Zhou, Shun

    2014-01-01

    Neutrinos are the most elusive particles in our Universe. They have masses at least one million times smaller than the electron mass, carry no electric charge and very weakly interact with other particles, meaning that they are rarely captured in terrestrial detectors. Tremendous efforts in the past two decades have revealed that neutrinos can transform from one type to another as a consequence of neutrino oscillations--a quantum mechanical effect over macroscopic distances--yet the origin of neutrino masses remains puzzling. The physical evolution of neutrino parameters with respect to energy scale may help elucidate the mechanism for their mass generation. PMID:25322932

  18. Single-Parent Families. Sage Sourcebooks for the Human Services Series, Volume 24.

    ERIC Educational Resources Information Center

    Kissman, Kris; Allen, Jo Ann

    More than one fourth of all families today are one-parent families, and almost 90 percent of those families are headed by women. This book focuses on assessment and intervention with one-parent families, particularly mother-headed families, based on gender-sensitive principles combined with other family-centered strategies to help accentuate the…

  19. Neutrino masses from modified bimaximal mixing

    NASA Astrophysics Data System (ADS)

    Damanik, Asan

    2015-09-01

    The bimaximal (BM) neutrino mixing matrix was formulated in order to accommodate the data of the experimental results which indicate that both solar and atmospheric neutrino oscillation in vacuum are near maximal. But, after the T2K and Daya Bay Collaborations reported that the mixing angle θ13 is nonzero and relatively large, many authors have modified the neutrino mixing matrix in order to accommodate experimental data. We modified the BM mixing matrix by introducing a simple perturbation matrix into BM mixing matrix. The modified BM mixing matrix can proceed the mixing angles which are compatible with the global fit analysis data and by imposing the μ-τ symmetry into mass matrix from modified BM, we have the neutrino mass in normal hierarchy (NH): m1 < m2 < m3. Using the neutrino masses that obtained from neutrino mass matrix in the scheme of modified BM and imposing the constraint exact μ-τ symmetry into neutrino mass matrix, we cannot have compatible squared-mass differences for both Δm212 and Δm322 as dictated by experimental results. In order to proceed the neutrino masses that can predict correctly the squared-mass difference, we introduce a small parameter λ into neutrino mass matrix. The obtained neutrino masses are in agreement with the squared-mass difference as dictated by experimental results. The predicted neutrino effective mass: = 0.166eV in this paper can be tested in the future neutrinoless double beta decay.

  20. Neutrino Oscillations: Eighty Years in Review

    NASA Astrophysics Data System (ADS)

    Bowers, Rebecca Lyn

    In order to discuss neutrino oscillations, it is necessary to have knowledge of the developments in the field spanning the last eighty years. The existence of the neutrino was posited by Wolfgang Pauli in 1930 to account for the mass defect in beta decay, and to this day physicists are still endeavoring to answer fundamental questions about this enigmatic particle. The scope of this thesis includes a historical background of neutrino physics and a discussion of neutrinos and the Standard Model; subsequent to this is a discussion of the Solar Neutrino Problem, which provided the impetus for the proposal of neutrino oscillations. Bolstering the theory of neutrino oscillations (which is developed in the body of this thesis) are neutrino detector experiments and their results; these include the Homestake experiment, SNO, Kamiokande and Super-Kamiokande, MINOS, and Double-Chooz. We also include relevant derivations, most particularly of the quantum mechanics of neutrino oscillations as treated in the wave packet formalism. We have amassed here the principle theories and experimental results -- a mere tip of the iceberg -- that have brought us to our current understanding of neutrino oscillations. We have also studied the quantum mechanics of neutrino oscillations and developed for ourselves the wave packet formalism describing the phenomenon.

  1. Neutrino radiation hazards: A paper tiger

    SciTech Connect

    Cossairt, J.D.; Grossman, N.L.; Marshall, E.T.

    1996-09-01

    Neutrinos are present in the natural environment due to terrestrial, solar, and cosmic sources and are also produced at accelerators both incidentally and intentionally as part of physics research programs. Progress in fundamental physics research has led to the creation of beams of neutrinos of ever-increasing intensity and/or energy. The large size and cost associated with these beams attracts, and indeed requires, public interest, support, and some understanding of the `exotic` particles produced, including the neutrinos. Furthermore, the very word neutrino (`little neutral one`, as coined by Enrico Fermi) can lead to public concern due to confusion with `neutron`, a word widely associated with radiological hazards. Adding to such possible concerns is a recent assertion, widely publicized, that neutrinos from astronomical events may have led to the extinction of some biological species. Presented here are methods for conservatively estimating the dose equivalent due to neutrinos as well as an assessment of the possible role of neutrinos in biological extinction processes. It is found that neutrinos produced by the sun and modern particle accelerators produce inconsequential dose equivalent rates. Examining recent calculations concerning neutrinos incident upon the earth due to stellar collapse, it is concluded that it is highly unlikely that these neutrinos caused the mass extinctions of species found in the paleontological record. Neutrino radiation hazards are, then, truly a `paper tiger`. 14 refs., 1 fig., 1 tab.

  2. Atmospheric neutrinos observed in underground detectors

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.

    1985-01-01

    Atmospheric neutrinos are produced when the primary cosmic ray beam hits the atmosphere and initiates atmospheric cascades. Secondary mesons decay and give rise to neutrinos. The neutrino production was calculated and compared with the neutrino fluxes detected in underground detectors. Contained neutrino events are characterized by observation of an interaction within the fiducial volume of the detector when the incoming particle is not observed. Both the neutrino flux and the containment requirement restrict the energy of the neutrinos observed in contained interactions to less than several GeV. Neutrinos interact with the rock surrounding the detector but only muon neutrino interactions can be observed, as the electron energy is dissipated too fast in the rock. The direction of the neutrino is preserved in the interaction and at energies above 1 TeV the angular resolution is restricted by the scattering of the muon in the rock. The muon rate reflects the neutrino spectrum above some threshold energy, determined by the detector efficiency for muons.

  3. An ''archaeological'' quest for galactic supernova neutrinos

    SciTech Connect

    Lazauskas, Rimantas; Volpe, Cristina E-mail: Cecilia.Lunardini@asu.edu

    2009-04-15

    We explore the possibility to observe the effects of electron neutrinos from past galactic supernovae, through a geochemical measurement of the amount of Technetium 97 produced by neutrino-induced reactions in a Molybdenum ore. The calculations we present take into account the recent advances in our knowledge of neutrino interactions, of neutrino oscillations inside a supernova, of the solar neutrino flux at Earth and of possible failed supernovae. The predicted Technetium 97 abundance is of the order of 10{sup 7} atoms per 10 kilotons of ore, which is close to the current geochemical experimental sensitivity. Of this, {approx} 10-20% is from supernovae. Considering the comparable size of uncertainties, more precision in the modeling of neutrino fluxes as well as of neutrino cross sections is required for a meaningful measurement.

  4. The Giant Radio Array for Neutrino Detection

    NASA Astrophysics Data System (ADS)

    Martineau-Huynh, Olivier; Kotera, Kumiko; Bustamente, Mauricio; Charrier, Didier; De Jong, Sijbrand; de Vries, Krijn D.; Fang, Ke; Feng, Zhaoyang; Finley, Chad; Gou, Quanbu; Gu, Junhua; Hanson, Jordan C.; Hu, Hongbo; Murase, Kohta; Niess, Valentin; Oikonomou, Foteini; Renault-Tinacci, Nicolas; Schmid, Julia; Timmermans, Charles; Wang, Zhen; Wu, Xiangping; Zhang, Jianli; Zhang, Yi

    2016-04-01

    High-energy neutrino astronomy will probe the working of the most violent phenomena in the Universe. The Giant Radio Array for Neutrino Detection (GRAND) project consists of an array of ˜ 105 radio antennas deployed over ˜ 200 000 km2 in a mountainous site. It aims at detecting high-energy neutrinos via the measurement of air showers induced by the decay in the atmosphere of τ leptons produced by the interaction of cosmic neutrinos under the Earth surface. Our objective with GRAND is to reach a neutrino sensitivity of 5 × 10-11E-2 GeV-1 cm-2 s-1 sr-1 above 3 × 1016 eV. This sensitivity ensures the detection of cosmogenic neutrinos in the most pessimistic source models, and up to 100 events per year are expected for the standard models. GRAND would also probe the neutrino signals produced at the potential sources of UHECRs.

  5. Neutrino Oscillations Effects in the Context of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Malkus, Annelise

    2013-10-01

    Neutrino oscillation effects due to the interaction of neutrinos with one another are diverse and depend strongly on having high densities of neutrinos. Accretion disks, which can arise from neutron star mergers or certain supernovae, are a setting where neutrino emission is high enough to be home to many of the neutrino-neutrino interaction effects seen in the early universe and supernova settings. Meanwhile, they lend themselves to additional effects not seen in other settings. We look in depth at one such effect, where the neutrino-neutrino interaction occurs at the same scale as the neutrino-electron interaction that can also influence oscillation.

  6. Neutrino Physics at J-PARC

    NASA Astrophysics Data System (ADS)

    Friend, Megan

    The physics motivation, status, and prospects of currently running and proposed neutrino experiments at J-PARC are shown. This includes the currently running T2K (Tokai-to-Kamioka) long-baseline neutrino oscillation experiment and a proposed Sterile Neutrino Search. The currently running T2K experiment detects oscillated ν μ to ν e appearance and unoscillated ν μ to ν μ disappearance neutrino events from an off-axis beam of primarily muon neutrinos produced at J-PARC. Propagated neutrinos are detected in a Near Detector complex, which sits 280 m from the neutrino source and is used to constrain the neutrino flux and measure neutrino cross sections, and in the Super-Kamiokande (SK) far detector, a 22.5 kT fiducial volume water Cherenkov detector with excellent performance in sub-GeV ν e/ν μ particle ID that sits 295 km from the neutrino source and is used to monitor neutrino oscillations. T2K has recently released a series of very interesting and important results, including the world's first definitive observation of neutrino appearance (ν e appearance from a ν μ beam), an observation which was made with only 8% of the proposed total data. T2K has continued to accumulate data since releasing these results, and has many exciting prospects, including potentially having sensitivity to show a first hint of CP violation in the lepton sector. These T2K recent results and future prospects will be shown. A brief overview of the prospects of a proposed future Sterile Neutrino Search, which plans to utilize the J-PARC Materials and Life Science Experimental Facility to initially search for sterile neutrinos with a large mass splitting, will also be shown.

  7. CP violation in fourth generation quark decays

    SciTech Connect

    Arhrib, Abdesslam; Hou Weishu

    2009-10-01

    We show that, if a fourth generation is discovered at the Tevatron or LHC, one could study CP violation (CPV) in b{sup '}{yields}s decays. Asymmetries could reach 30% for b{sup '}{yields}sZ for m{sub b{sup '}} < or approx. 350 GeV, while it could be greater than 50% for b{sup '}{yields}s{gamma} and extend to higher m{sub b{sup '}}. Branching ratios are 10{sup -3}-10{sup -5}, and CPV measurement requires tagging. Once measured, however, the CPV phase can be extracted with little theoretical uncertainty.

  8. Fourth International Symposium on Magnetic Suspension Technology

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)

    1998-01-01

    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Fourth International Symposium on Magnetic Suspension Technology was held at The Nagaragawa Convention Center in Gifu, Japan, on October 30 - November 1, 1997. The symposium included 13 sessions in which a total of 35 papers were presented. The technical sessions covered the areas of maglev, controls, high critical temperature (T(sub c)) superconductivity, bearings, magnetic suspension and balance systems (MSBS), levitation, modeling, and applications. A list of attendees is included in the document.

  9. Neutrino Event Generators: A Review

    SciTech Connect

    Gallagher, Hugh R.

    2009-11-25

    Event generators play an important role in the design, optimization, and execution of neutrino experiments. In this paper I will review the status of event generators used in this field, focusing on advances since the start of the NuINT conference series in 2001.

  10. Sterile neutrinos and global symmetries

    SciTech Connect

    Sayre, J.; Wiesenfeldt, S.; Willenbrock, S.

    2005-07-01

    We use an effective-field-theory approach to construct models with naturally light sterile neutrinos, due to either exact or accidental global symmetries. The most attractive models we find are based on gauge symmetries, either discrete or continuous. We give examples of simple models based on Z{sub N}, U(1){sup '}, and SU(2){sup '}.

  11. FIRST NEUTRINO POINT-SOURCE RESULTS FROM THE 22-STRING ICECUBE DETECTOR

    SciTech Connect

    IceCube Collaboration; Klein, Spencer

    2009-05-14

    We present new results of searches for neutrino point sources in the northern sky, using data recorded in 2007-08 with 22 strings of the IceCube detector (approximately one-fourth of the planned total) and 275.7 days of livetime. The final sample of 5114 neutrino candidate events agrees well with the expected background of atmospheric muon neutrinos and a small component of atmospheric muons. No evidence of a point source is found, with the most significant excess of events in the sky at 2.2 {sigma} after accounting for all trials. The average upper limit over the northern sky for point sources of muon-neutrinos with E{sup -2} spectrum is E{sup 2} {Phi}{sub {nu}{sub {mu}}} < 1.4 x 10{sup -1} TeV cm{sup -2}s{sup -1}, in the energy range from 3 TeV to 3 PeV, improving the previous best average upper limit by the AMANDA-II detector by a factor of two.

  12. Extraction of active and sterile neutrino mixing parameters with the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Tesic, Gordana

    The Sudbury Neutrino Observatory (SNO) is a 1 kilotonne heavy-water Cerenkov detector designed to study fundamental properties of neutrinos produced by thermonuclear fusion reactions in the core of the Sun. The uniqueness of SNO resides in its capability to distinctively measure the total flux of all active neutrino flavours as well as the flux of electron neutrinos, through the Neutral-Current (NC) and Charged-Current (CC) interactions of neutrinos on deuterium, respectively. The measurements of the NC and CC fluxes for neutrinos originated from 8B disintegration inside the Sun unambiguously proved that neutrinos change their flavour while traveling to the Earth. These results are consistent with predictions from a neutrino oscillation hypothesis on neutrino flavour transitions due to the mixing of massive neutrino states. The NC measurement from SNO also solved the long-standing Solar Neutrino Problem (SNP). in this dissertation, the measurements of the fundamental properties of neutrinos, in particular their mixing parameters, are presented. Data samples from SNO and other experiments are used to extract the mixing parameters of active and sterile neutrino states. Under the assumption on the two-neutrino oscillation hypothesis, the mixing parameters for active neutrinos (the squared-mass difference Deltam2 and the mixing angle theta) are obtained from a global analysis of solar and reactor neutrino data. The extracted mixing parameters from this analysis are Dm2=7.59+0.21-0.19x 10-5eV2 and q=34.4+1.3-1.2 degrees. The errors on both parameters are reduced compared to the previous results from SNO, that further constrains the solar neutrino mixing parameter region. The mixing parameters for the sterile neutrino state (the ratio RD=Dm201/D m221 and the mixing angle sin2 2alpha) are determined by comparing the predictions from a weakly mixed sterile neutrino model with the solar neutrino data. For the first time a complete parameter region for the weakly mixed sterile state is fully scanned numerically to place the error on RDelta and to set an upper limit at 90% CL on sin2 2alpha. A global solar neutrino analysis yields RD=0.11+0.04-0.03 and places an upper limit of sin2 2alpha < 9.9 x 10-3 at 90% CL. This result shows that the rare effects from physics beyond the three active neutrino scenario cannot be excluded, yet. Future prospects and challenge in solar neutrino physics are also summarized.

  13. Primary solitary lymphoma of the fourth ventricle

    PubMed Central

    Hsu, Huang-I; Lai, Ping-Hong; Tseng, Hui-Hwa; Hsu, Shu-Shong

    2015-01-01

    Introduction Primary central nervous lymphoma(PCNSL) is a rare form of non-Hodgkin lymphoma confined to the central nervous system. Most of the lesions are supratentorial and periventricular, often involving deep structures such as corpus callosum and basal ganglion. Isolated intraventricular lymphoma is rare and only a few case reports. We report, to the best of our knowledge, the seventh case of isolated PCNSL in the fourth ventricle in an immunocompetent patient. Presentation of case A 61-year-old male presenting with 3 months of headache and dizziness followed with unsteady gait for days. The MR imaging of brain revealed a homogeneously enhancing lesion occupying almost the whole 4th ventricle.The tumor was removed subtotally via suboccipital craniotomy. Histopathology revealed the lesion be a diffuse large B-cell lymphoma. Discussion PCNSL is an important consideration in the differential diagnosis of intracranial mass lesion. The unusual location in surgically accessible fourth ventricle in posterior fossa, the isolation of the tumor may present a compelling indication for surgical resection. Conclusion We suggest that primary lymphoma should be considered with homogenous lesions of the 4th ventricle. Also aggressive surgical resection in this surgically accessible location, instead of biopsy only, is rational. PMID:26209757

  14. Coronal Neutrino Emission in Hypercritical Accretion Flows

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mineshige, S.; Kawanaka, N.

    2008-03-01

    Hypercritical accretion flows onto stellar mass black holes (BHs) are commonly believed to be as a promising model of central engines of gamma-ray bursts (GRBs). In this model a certain fraction of the gravitational binding energy of accreting matter is deposited to the energy of relativistic jets via neutrino annihilation and/or magnetic fields. However, some recent studies have indicated that the energy deposition rate by neutrino annihilation is somewhat smaller than that needed to power a GRB. To overcome this difficulty, Ramirez-Ruiz and Socrates proposed that high-energy neutrinos from the hot corona above the accretion disk might enhance the efficiency of the energy deposition. We elucidate the disk corona model in the context of hypercritical accretion flows. From the energy balance in the disk and the corona, we can calculate the disk and coronal temperature, Td and Tc, and neutrino spectra, taking into account the neutrino cooling processes by neutrino-electron scatterings and neutrino pair productions. The calculated neutrino spectra consist of two peaks: one by the neutrino emission from the disk and the other by that from the corona. We find that the disk corona can enhance the efficiency of energy release but only by a factor of 1.5 or so, unless the height of the corona is very small, Hll r. This is because the neutrino emission is very sensitive to the temperature of the emitting region, and then the ratio Tc/Td cannot be very large.

  15. Probing the Absolute Mass Scale of Neutrinos

    SciTech Connect

    Prof. Joseph A. Formaggio

    2011-10-12

    The experimental efforts of the Neutrino Physics Group at MIT center primarily around the exploration of neutrino mass and its significance within the context of nuclear physics, particle physics, and cosmology. The group has played a prominent role in the Sudbury Neutrino Observatory, a neutrino experiment dedicated to measure neutrino oscillations from 8B neutrinos created in the sun. The group is now focusing its efforts in the measurement of the neutrino mass directly via the use of tritium beta decay. The MIT group has primary responsibilities in the Karlsruhe Tritium Neutrino mass experiment, expected to begin data taking by 2013. Specifically, the MIT group is responsible for the design and development of the global Monte Carlo framework to be used by the KATRIN collaboration, as well as responsibilities directly associated with the construction of the focal plane detector. In addition, the MIT group is sponsoring a new research endeavor for neutrino mass measurements, known as Project 8, to push beyond the limitations of current neutrino mass experiments.

  16. Recent results from the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Van Elewyck, Véronique

    2014-04-01

    The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern Hemisphere. Its main scientific target is the detection of high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the diffuse neutrino flux. Its location allows for surveying a large part of the Galactic Plane, including the Galactic Centre. In addition to the standalone searches for point-like and diffuse high-energy neutrino signals, ANTARES has developed a range of multi-messenger strategies to exploit the close connection between neutrinos and other cosmic messengers such as gamma-rays, charged cosmic rays and gravitational waves. This contribution provides an overview of the recently conducted analyses, including a search for neutrinos from the Fermi bubbles region, searches for optical counterparts with the TAToO program, and searches for neutrinos in correlation with gamma-ray bursts, blazars, and microquasars. Further topics of investigation, covering e.g. the search for neutrinos from dark matter annihilation, searches for exotic particles and the measurement of neutrino oscillations, are also reviewed.

  17. Status of global fits to neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Maltoni, Michele; Schwetz, Thomas; Tórtola, Mariam; Valle, José W. F.

    2004-09-01

    We review the present status of global analyses of neutrino oscillations, taking into account the most recent neutrino data including the latest KamLAND and K2K updates presented at Neutrino 2004, as well as state-of-the-art solar and atmospheric neutrino flux calculations. We give the two-neutrino solar + KamLAND results, and the two-neutrino atmospheric + K2K oscillation regions, discussing in each case the robustness of the oscillation interpretation against departures from the Standard Solar Model and the possible existence of non-standard neutrino physics. Furthermore, we give the best-fit values and allowed ranges of the three-flavour oscillation parameters from the current worlds' global neutrino data sample and discuss in detail the status of the small parameters agr equiv DgrmSOL2/DgrmATM2 as well as sin2 thgr13, which characterize the strength of CP violating effects in neutrino oscillations. We also update the degree of rejection of four-neutrino interpretations of the LSND evidence in view of the most recent developments.

  18. Dark matter and the solar neutrino problem: Can particle physics provide a single solution

    SciTech Connect

    West, G.B. )

    1989-01-01

    We show how a relatively simple extension of the standard model can give a natural'' explanation for both the solar neutrino and dark matter problems. What is required is a new stable neutral lepton with a mass in the 4--8 GeV range. One possibility is a fourth generation neutrino interacting with matter either electromagnetically or via higgs-exchange (in addition, of course, to Z{degree}-exchange). In the former case, a new charged lepton with mass {approximately}10GeV would be required in order to generate a sufficiently large magnetic moment. The present experimental situation makes this possibility rather doubtful. In the latter case, a light higgs with mass {approximately}1GeV is required; this is still not ruled out experimentally. In any case, direct (or indirect) detection of dark matter will, during the next year, seal the fate of this model. 29 refs.

  19. Ecological, Psychological, and Cognitive Components of Reading Difficulties: Testing the Component Model of Reading in Fourth Graders across 38 Countries

    ERIC Educational Resources Information Center

    Chiu, Ming Ming; McBride-Chang, Catherine; Lin, Dan

    2012-01-01

    The authors tested the component model of reading (CMR) among 186,725 fourth grade students from 38 countries (45 regions) on five continents by analyzing the 2006 Progress in International Reading Literacy Study data using measures of ecological (country, family, school, teacher), psychological, and cognitive components. More than 91% of the…

  20. BEAMING NEUTRINOS AND ANTI-NEUTRINOS ACROSS THE EARTH TO DISENTANGLE NEUTRINO MIXING PARAMETERS

    SciTech Connect

    Fargion, Daniele; D'Armiento, Daniele; Paggi, Paolo; Desiati, Paolo E-mail: paolo.desiati@icecube.wisc.edu

    2012-10-10

    A result from MINOS seemed to indicate that the mass splitting and mixing angle of anti-neutrinos is different from that of neutrinos, suggesting a charge-parity-time (CPT) violation in the lepton sector. However, more recent MINOS data reduced the {nu}{sub {mu}}-{nu}-bar{sub {mu}} differences leading to a narrow discrepancy nearly compatible with no CPT violation. However, the last few years of OPERA activity on the appearance of a tau lepton (one unique event) still has not been probed and more tools may be required to disentangle a list of parameters ({mu}-{tau} flavor mixing, tau appearance, any eventual CPT violation, {theta}{sub 13} angle value, and any hierarchy neutrino mass). Atmospheric anisotropy in muon neutrino spectra in the DeepCore, at ten to tens of GeV (unpublished), can hardly reveal asymmetry in the eventual {nu}{sub {mu}}-{nu}-bar{sub {mu}} oscillation parameters. Here we considered how the longest baseline neutrino oscillation available, crossing most of Earth's diameter, may improve the measurement and at best disentangle any hypothetical CPT violation occurring between the earliest (2010) and the present (2012) MINOS bounds (with 6{sigma} a year), while testing {tau} and even the appearance of {tau}-bar at the highest rate. The {nu}{sub {mu}} and {nu}-bar{sub {mu}} disappearance correlated with the tau appearance is considered for those events at the largest distances. We thus propose a beam of {nu}{sub {mu}} and {nu}-bar{sub {mu}} crossing through the Earth, within an OPERA-like experiment from CERN (or Fermilab), in the direction of the IceCube-DeepCore {nu} detector at the South Pole. The ideal energy lies at 21 GeV to test the disappearance or (for any tiny CPT violation) the partial {nu}-bar{sub {mu}} appearance. Such a tuned detection experiment may lead to a strong signature of {tau} or {tau}-bar generation even within its neutral current noise background events: nearly one {tau}-bar or two {tau} a day. The tau appearance signal is above (or within) 10{sigma} a year, even for a 1% OPERA-like experiment. Peculiar configurations for {theta}{sub 13} and the hierarchy neutrino mass test may also be better addressed by a DeepCore-PINGU array detector beaming {nu}{sub {mu}} and observing {nu}{sub e} at 6 GeV neutrino energy windows.

  1. Fourth Meeting on CPT and Lorentz Symmetry

    NASA Astrophysics Data System (ADS)

    Kostelecký, V. Alan

    2008-03-01

    Improved tests of Lorentz and CPT symmetry using noble-gas masers / A. Glenday, D. F. Phillips, and R. L. Walsworth -- A modern Michelson-Morley experiment using actively rotated optical resonators / S. Herrmann et al. -- Rotating experiments to test Lorentz invariance in the photon sector / M. E. Tobar et al. -- Lorentz violation, electrodynamics, and the cosmic microwave background / M. Mewes -- High energy astrophysical tests of Lorentz invariance / B. Altschul -- Fundamental physics experiments in space (within ESA) / T. J. Sumner -- The experimental foundations of the Dirac equation / C. Lämmerzahl -- Perspectives on Lorentz and CPT violation / V. A. Kostelecký -- Search for Lorentz and CPT violation effects in muon spin precession / B. L. Roberts -- Lorentz violation in a diffeomorphism-invariant theory / R. Jackiw -- Studies of CPT symmetry with ASACUSA / R. S. Hayano -- Neutrino oscillations and Lorentz violation with MiniBooNE / R. Tayloe and T. Katori -- Testing Lorentz and CPT invariance with MINOS near detector neutrinos / B. J. Rebel and S. L. Mufson -- Einstein-ther gravity: theory and observational constraints / T. Jacobson -- Tests of Lorentz-invariance violation in neutrino oscillations / K. Whisnant -- Search for CPT violation in neutral kaons at KLOE: status and perspectives / A. Di Domenico et al. -- Search for CPT violation in B[symbol]-B¯[symbol] oscillations with BABAR / D. P. Stoker -- Theoretical topics in spacetime-symmetry violations / R. Lehnert -- A second-generation co-magnetometer for testing fundamental symmetries / S. J. Smullin et al. -- Nambu-Goldstone and massive modes in gravitational theories with spontaneous Lorentz breaking / R. Bluhm -- The ALPHA antihydrogen experiment / N. Madsen et al. -- Atom interferometry tests the isotropy of post-Newtonian gravity / H. Müller et al. -- Probing Lorentz symmetry with gravitationally coupled matter / J. D. Tasson -- Torsion balance test of preferred-frame and weak coupling to polarized electrons / B. R. Heckel et al. -- Seeking a solution of the pioneer anomaly / M. M. Nieto and J. D. Anderson -- Testing Lorentz symmetry with gravity / Q. C. Bailey -- Preferred frame effects in relativistic binary pulsars / M. Kramer and N. Wex -- APOLLO: next generation lunar laser ranging / T. W. Murphy, Jr. et al. -- Constraints on Lorentz violation from gravity Probe B / J. M. Overduin -- Preliminary results from a test of CPT and Lorentz symmetry using a K-[symbol]He co-magnetometer / T. W. Kornack, G. Vasilakis, and M. V. Rornalis -- Constraining quantum gravity with GLAST / F. Kuehn, R. Hughes, and B. Winer -- Renormalization of Lorentz-violating theories / D. Anselmi -- Renormalization of gauge theories with Lorentz violation / D. Colladay and P. McDonald -- A POEM-based test of the WEP using a Sounding Rocket (SR-POEM) / R. D. Reasenberg and J. D. Phillips -- Testing alternative oscillation scenarios with atmospheric neutrinos using AMANDA-II data from 2000 to 2003 / J. Ahrens and J. L. Kelley -- Measurement of the ground-state hyperfine splitting of antihydrogen / B. Juhász and E. Widmann -- Spontaneous Lorentz violation and baryogenesis / J. Shu -- Lorentz invariance tested with fast optical ion clocks in a storage ring / G. Gwinner et al. -- Bose-Einstein condensates and Lorentz violation / D. Colladay and P. McDonald -- Embedding geometry and decomposition of gravity / T. E. Clark et al. -- The first lunar laser ranging constraints on gravity sector SME parameters / J. B. R. Battat, J. F. Chandler, and C. W. Stubbs -- A theory of gravity from Lorentz violation / R. Potting -- Search for Lorentz violation in a high-frequency gravitational experiment below 50 microns / W. A. Jensen, S. M. Lewis, and J. C. Long -- Lorentz violation and torsion / N. Russell -- Probing Lorentz invariance using coherent optical phenomena / J. P. Cotter, M. P. Hill, and B. T. H. Varcoe -- Constraint analysis of bumblebee models / N. Gagne and A. Vrublevslcis -- Ives-Stilwell for the new millennium / M. A. Nohensee, D. F. Phillips, and R. L. Walsworth -- Test for Lorentz violation in the MiniBooNE neutrino oscillation experiment / T. Katori and R. Tayloe -- Doppler-effect experiments and Lorentz violation / C. D. Lane -- Complementary Michelson-Morley experiments: coordinate and field redefinitions / H. Müller et al. -- A POEM progress report / R. D. Reasenberg and J. D. Phillips -- Data tables for Lorentz and CPT violation / V. A. Kostelecký and N. Russell.

  2. Structures of neutrino flavor mixing matrix and neutrino oscillations at CHORUS and NOMAD

    SciTech Connect

    Tanimoto, M.

    1996-06-01

    We study structures of the neutrino flavor mixing matrix focusing on the neutrino oscillations at CHORUS and NOMAD as well as the one at LSND (or KARMEN). We assume two typical neutrino mass hierarchies {ital m}{sub 3}{approx_equal}{ital m}{sub 2}{gt}{ital m}{sub 1} and {ital m}{sub 3}{gt}{ital m}{sub 2}{gt}{ital m}{sub 1} (or {approx_equal}{ital m}{sub 1}). Taking into account the seesaw mechanism of neutrino masses, reasonable neutrino flavor mixing patterns are discussed. The observation of the neutrino oscillation at CHORUS and NOMAD presents an important constraint for the structure of the neutrino flavor mixing matrix. The atmospheric neutrino anomaly is discussed in relation to the CHORUS and NOMAD experiments. {copyright} {ital 1996 The American Physical Society.}

  3. Measurement of Neutrino Oscillation Parameters from Muon Neutrino Disappearance with an Off-Axis Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodrguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jung, C. K.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kim, S. B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Snchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; ?muda, J.

    2013-11-01

    The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.011020 protons on target. In the absence of neutrino oscillations, 20517 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin?2(?23)=0.5140.082 and mass splitting |?m322|=2.44-0.15+0.1710-3eV2/c4. Our result corresponds to the maximal oscillation disappearance probability.

  4. Constraints on the relic neutrino abundance and implications for cosmological neutrino mass limits

    SciTech Connect

    Bell, Nicole F.; /Fermilab

    2004-01-01

    The authors examine a mechanism which can lead to flavor transformation of neutrino-antineutrino asymmetries in the early universe, a process which is unavoidable when the neutrino mixing angles are large. This sets the best limit on the lepton number of the universe, and hence on the relic neutrino abundance. They also consider the consequences for the relic neutrino abundance if extra neutrino interactions are allowed, e.g., the coupling of the neutrinos to a light (compared to m{sub {nu}}) boson. For a wide range of couplings not excluded by other considerations, the relic neutrinos would annihilate to bosons at late times, and thus make a negligible contribution to the matter density today. This mechanism evades the neutrino mass limits arising from large scale structure.

  5. The modified correlation mass method for detecting neutrino mass from astrophysical neutrino bursts

    NASA Technical Reports Server (NTRS)

    Chan, Kwing L.; Chiu, Hong-Yee; Kondo, Yoji

    1989-01-01

    A modified correlation mass method for calculating the value of a possible neutrino mass from neutrino bursts of astrophysical origin is proposed which can more sensitively detect small neutrino masses than previous methods. Application of the method to the neutrinos detected from SN 1987 A yields a value of 3.6 + or - 0.3 eV for the neutrino mass energy with a confidence level of 97 percent. Assuming a neutrino mass of 3.6 eV, and transforming all of the detected neutrino events back to the point of emission, it is shown that bursts are composed of a short initial pulse (which lasts for about 0.1 sec and contains 30-40 percent of the total neutrinos) and an extended emission lasting for about 10 sec.

  6. PREFACE: Neutrino physics at spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Avignone, F. T.; Chatterjee, L.; Efremenko, Y. V.; Strayer, M.

    2003-11-01

    Unique because of their super-light masses and tiny interaction cross sections, neutrinos combine fundamental physics on the scale of the miniscule with macroscopic physics on the scale of the cosmos. Starting from the ignition of the primal p-p chain of stellar and solar fusion reactions that signal star-birth, these elementary leptons (neutrinos) are also critical players in the life-cycles and explosive deaths of massive stars and the production and disbursement of heavy elements. Stepping beyond their importance in solar, stellar and supernova astrophysics, neutrino interactions and properties influence the evolution, dynamics and symmetries of the cosmos as a whole. Further, they serve as valuable probes of its material content at various levels of structure from atoms and nuclei to valence and sea quarks. In the light of the multitude of physics phenomena that neutrinos influence, it is imperative to enhance our understanding of neutrino interactions and properties to the maximum. This is accentuated by the recent evidence of finite neutrino mass and flavour mixing between generations that reverberates on the plethora of physics that neutrinos influence. Laboratory experiments using intense neutrino fluxes would allow precision measurements and determination of important neutrino reaction rates. These can then complement atmospheric, solar and reactor experiments that have enriched so valuably our understanding of the neutrino and its repertoire of physics applications. In particular, intermediate energy neutrino experiments can provide critical information on stellar and solar astrophysical processes, along with advancing our knowledge of nuclear structure, sub-nuclear physics and fundamental symmetries. So where should we look for such intense neutrino sources? Spallation neutron facilities by their design are sources of intense neutrino pulses that are produced as a by-product of neutron spallation. These neutrino sources could serve as unique laboratories to enrich our knowledge of neutrino physics and the multifaceted science it interfaces. In fact, the neutrino energy spectra expected at spallation neutron facilities overlap remarkably with those emanating from distant supernovae and these sources seem `made to order' for terrestrial studies of supernova reactions. They are also in a suitable energy regime to pursue neutrino-mediated studies of nuclear structure, fundamental symmetries and solar reactions. Recent research indicates neutrino-nuclear reactions may be even more influential in supernova dynamics and detection than hitherto believed. The need for in-depth understanding of the individual neutrino-nuclear reactions that collectively have dramatic effects on the large-scale dynamics of evolving stars points to laboratory measurements of neutrino reactions on various nuclei as a premier requirement of neutrino-nuclear astrophysics. Such experimental data can improve our input to the extensive modelling projects that investigate the evolutionary stages of exploding supernovae and further our understanding of their internal physics. State-of-the-art simulations exploring the neutrino-reheating phases fail to produce explosions---yet clearly nature explodes her supernovae. Matters pertaining to the galactic abundance of very p-rich nuclei and the various isotope ratios are by no means well defined and demand further research, as do the intricacies of the nucleo-synthesis channels. Neutrino-nuclear experiments are also essential for proper development and calibration of appropriate supernova detectors. Solar neutrino research and detection have contributed vastly to our current understanding of neutrino science and have helped to validate the standard solar model. The chapter is by no means closed and experiments with intense neutrino fluxes could enrich valuably our understanding of both neutrino and solar physics. Neutrino nuclear reactions are not only important for their role in nuclear astrophysics, but also for the insight they provide on nuclear structure and the theoretical models used to calculate nuclear excitations by neutrinos. They can also provide better precision for the elastic axial form factor and serve as effective probes of the strangeness content of nuclei. Neutrino interactions with charged leptons can add significantly to our understanding of electroweak physics and neutrino-electron elastic cross sections measured at intense pulsed sources can provide precision constraints on the electroweak parameters. The intrinsic properties of the neutrino, including mass values and oscillations, form a subject of critical current interest and research. The parameter space for neutrino oscillations and studies of electroweak interactions that could be accessed at spallation neutron sources would complement the research undertaken at higher energy neutrino facilities and neutrino factories. The following collection of articles highlights the physics research that could be undertaken with neutrinos at spallation neutron facilities. It addresses open questions that need research and some of the experimental aspects and detector features associated with conducting that research. We feel this will be an effective and timely enterprise in the light of renewed international interest in spallation neutron sources (one is under construction at Oak Ridge, TN, USA and others are being considered in Europe and Japan), and the critical role of intermediate energy neutrino physics in particle, nuclear and astrophysics. The collection is by no means exhaustive or complete, but we hope it will provide a unique and valuable compendium for reference and guidelines as nuclear, particle and condensed matter scientists join hands for basic research at shared facilities. We would like to take this opportunity to thank the authors who have taken time from their various commitments to contribute to this special section and A Mezzacappa and W R Hix for providing the cover image displaying the interplay between microscopic neutrino-nuclear processes and the macroscopic supernova dynamics. We would also like to thank Journal of Physics G: Nuclear and Particle Physics for hosting this section and apologize for any errors or credits that we may have missed.

  7. A simple grand unified relation between neutrino mixing and quark mixing

    NASA Astrophysics Data System (ADS)

    Barr, S. M.; Chen, Heng-Yu

    2012-11-01

    It is proposed that all flavor mixing is caused by the mixing of the three quark and lepton families with vectorlike fermions in 5+bar{5} multiplets of SU(5). This simple assumption implies that both V CKM and U M N S are generated by a single matrix. The entire 3 × 3 complex mass matrix of the neutrinos M v is then found to have a simple expression in terms of two complex parameters and an overall scale. Thus, all the presently unknown neutrino parameters are predicted. The best fits are for θ atm ≲ 40°. The leptonic Dirac CP phase is found to be somewhat greater than π.

  8. Measuring neutrino oscillation parameters using $\

    SciTech Connect

    Backhouse, Christopher James; /Oxford U.

    2011-02-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters ({Delta}m{sub atm}{sup 2} and sin{sup 2} 2{theta}{sub atm}). The oscillation signal consists of an energy-dependent deficit of {nu}{sub {mu}} interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the {nu}{sub {mu}}-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the {nu}{sub {mu}}-disappearance analysis, incorporating this new estimator were: {Delta}m{sup 2} = 2.32{sub -0.08}{sup +0.12} x 10{sup -3} eV{sup 2}, sin {sup 2} 2{theta} > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly {bar {nu}}{sub {mu}} beam, yielded somewhat different best-fit parameters {Delta}{bar m}{sup 2} = (3.36{sub -0.40}{sup +0.46}(stat.) {+-} 0.06(syst.)) x 10{sup -3}eV{sup 2}, sin{sup 2} 2{bar {theta}} = 0.86{sub -0.12}{sup _0.11}(stat.) {+-} 0.01(syst.). The tension between these results is intriguing, and additional antineutrino data is currently being taken in order to further investigate this apparent discrepancy.

  9. Dynamical Collective Calculation of Supernova Neutrino Signals

    SciTech Connect

    Gava, Jerome; Kneller, James; Volpe, Cristina; McLaughlin, G. C.

    2009-08-14

    We present the first calculations with three flavors of collective and shock wave effects for neutrino propagation in core-collapse supernovae using hydrodynamical density profiles and the S matrix formalism. We explore the interplay between the neutrino-neutrino interaction and the effects of multiple resonances upon the time signal of positrons in supernova observatories. A specific signature is found for the inverted hierarchy and a large third neutrino mixing angle and we predict, in this case, a dearth of lower energy positrons in Cherenkov detectors midway through the neutrino signal and the simultaneous revelation of valuable information about the original fluxes. We show that this feature is also observable with current generation neutrino detectors at the level of several sigmas.

  10. Neutrino observables from predictive flavour patterns

    NASA Astrophysics Data System (ADS)

    Cebola, Luís M.; Emmanuel-Costa, David; Felipe, Ricardo González

    2016-03-01

    We look for predictive flavour patterns of the effective Majorana neutrino mass matrix that are compatible with current neutrino oscillation data. Our search is based on the assumption that the neutrino mass matrix contains equal elements and a minimal number of parameters, in the flavour basis where the charged lepton mass matrix is diagonal and real. Three unique patterns that can successfully explain neutrino observables at the 3\\upsigma confidence level with just three physical parameters are presented. Neutrino textures described by four and five parameters are also studied. The predictions for the lightest neutrino mass, the effective mass parameter in neutrinoless double beta decays and for the CP-violating phases in the leptonic mixing are given.

  11. Reconciling sterile neutrinos with Big Bang nucleosynthesis

    SciTech Connect

    Foot, R.; Volkas, R.R.

    1995-12-01

    We reexamine the big bang nucleosynthesis (BBN) bounds on the mixing of neutrinos with sterile species. These bounds depend on the assumption that the relic neutrino asymmetry {ital L}{sub {nu}} is very small. We show that for {ital L}{sub {nu}} large enough (greater than about 10{sup {endash}5}) the standard BBN bounds do not apply. We apply this result to the sterile neutrino solution to the atmospheric neutrino anomaly and show that for {ital L}{sub {nu}}{approx_gt}7{times}10{sup {minus}5} it is consistent with BBN. The BBN bounds on sterile neutrinos mixing with electron neutrinos can also be weakened considerably. {copyright} {ital 1995 The American Physical Society.}

  12. Efficiently extracting energy from cosmological neutrinos

    SciTech Connect

    Hedman, M.M.

    2013-09-01

    Detecting the extremely low-energy neutrinos that form the Cosmic Neutrino Background (CNB) presents many experimental challenges, but pursuing this elusive goal is still worthwhile because these weakly-interacting particles could provide a new window into the structure and composition of the early universe. This report examines whether cosmological neutrinos can deposit sufficient energy into a target system to be detectable with plausible extensions of current bolometric technologies. While the macroscopic wavelengths of cosmological neutrinos can greatly enhance their cross sections with dense targets, such interactions can only be detectable if they transfer a significant fraction of each neutrino's kinetic energy into the detector system. We find that a large array of dense target masses coupled to suitable motion-sensitive circuits could potentially satisfy both of these conditions and thus might be able to serve as the basis for a more practical cosmological neutrino detector.

  13. Dynamical collective calculation of supernova neutrino signals.

    PubMed

    Gava, Jérôme; Kneller, James; Volpe, Cristina; McLaughlin, G C

    2009-08-14

    We present the first calculations with three flavors of collective and shock wave effects for neutrino propagation in core-collapse supernovae using hydrodynamical density profiles and the S matrix formalism. We explore the interplay between the neutrino-neutrino interaction and the effects of multiple resonances upon the time signal of positrons in supernova observatories. A specific signature is found for the inverted hierarchy and a large third neutrino mixing angle and we predict, in this case, a dearth of lower energy positrons in Cherenkov detectors midway through the neutrino signal and the simultaneous revelation of valuable information about the original fluxes. We show that this feature is also observable with current generation neutrino detectors at the level of several sigmas. PMID:19792628

  14. Recent results from the ANTARES neutrino telescope

    SciTech Connect

    Eberl, Thomas; Collaboration: ANTARES Collaboration

    2014-11-18

    The ANTARES detector, located in the deep sea 40 km off the French coast, is the largest neutrino telescope in the northern hemisphere. It consists of an array of 885 photomultipliers detecting the Cherenkov light induced by charged leptons created in neutrino interactions in and around the detector. The main goal of ANTARES is to search for astrophysical neutrinos in the TeV-PeV range. This comprises searches for a diffuse cosmic neutrino flux and for fluxes from possible galactic and extragalactic sources of neutrinos. The search program also includes multi-messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES detector is sensitive to a wide range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles.

  15. Measuring anisotropies in the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Safdi, Benjamin R.; Tully, Christopher G.

    2014-10-01

    Neutrino capture on tritium has emerged as a promising method for detecting the cosmic neutrino background (C ν B ). We show that relic neutrinos are captured most readily when their spin vectors are antialigned with the polarization axis of the tritium nuclei and when they approach along the direction of polarization. As a result, C ν B observatories may measure anisotropies in the cosmic neutrino velocity and spin distributions by polarizing the tritium targets. A small dipole anisotropy in the C ν B is expected due to the peculiar velocity of the lab frame with respect to the cosmic frame and due to late-time gravitational effects. The PTOLEMY experiment, a tritium observatory currently under construction, should observe a nearly isotropic background. This would serve as a strong test of the cosmological origin of a potential signal. The polarized-target measurements may also constrain nonstandard neutrino interactions that would induce larger anisotropies and help discriminate between Majorana versus Dirac neutrinos.

  16. Neutrino and Antineutrino Cross sections at MiniBooNE

    SciTech Connect

    Dharmapalan, Ranjan; /Alabama U.

    2011-10-01

    The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH2). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

  17. Low-energy neutrino-nucleus interactions and beta-beam neutrino

    SciTech Connect

    Jachowicz, N.; Pandey, V.

    2015-05-15

    We present an overview of neutrino-nucleus scattering at low energies with cross sections obtained within a continuum random phase approximation (CRPA) formalism. We highlight potential applications of beta-beam neutrino experiments for neutrino astrophysics. Our calculations are compared with MiniBooNe data at intermediate energies.

  18. Why solar anti-neutrino data are very sensitive to Majorana neutrino magnetic moment?

    NASA Astrophysics Data System (ADS)

    Miranda, O. G.; Rashba, T. I.; Rez, A. I.; Valle, J. W. F.

    2005-06-01

    We discuss the enhanced anti-neutrino production in the solar random magnetic fields of turbulent nature. In this scenario and using the recent KamLAND bound on the solar anti-neutrino flux one obtains a stringent constraint on the intrinsic Majorana neutrino magnetic moment down to the level of few ×10μ.

  19. Neutrino masses, the μ -term, and PS L 2(7 )

    NASA Astrophysics Data System (ADS)

    Chen, Gaoli; Pérez, M. Jay; Ramond, Pierre

    2015-10-01

    Using an S O (10 )-inspired form for the Dirac neutrino mass, we map the neutrino data to the right-handed neutrino Majorana mass matrix, M , and investigate a special form with seesaw tribimaximal mixing; it predicts a normal hierarchy, and the values of the light neutrino masses. It may be generated by mapping he top quark hierarchy onto the vacuum values of familon fields transforming under the family group PS L 2(7 ) . Next, we investigate the hypothesis that these familons play a dual role, generating a hierarchy in the supersymmetric μ -mass matrix of Higgs bosons carrying family quantum numbers. A special PS L 2(7 ) invariant coupling produces a μ matrix with a hierarchy of thirteen orders of magnitude. Only one Higgs field (per hypercharge sector) is light enough (with a μ mass ˜10 - 100 GeV ) to be destabilized by supersymmetry soft breaking at the TeV scale, and upon spontaneous symmetry breaking, gives tree-level masses for the heaviest family.

  20. Fourth-generation Mars vehicle concepts

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    1994-09-01

    Conceptual designs for fourth-generation crew-carrying Mars transfer and excursion vehicles, fully integrated to state-of-the-art standards, are presented. The resulting vehicle concepts are sized for six crew members, and can support all opposition and conjunction opportunities in or after 2014. The modular, reusable transfer ship is launched to Earth orbit on six 185-ton-class boosters and assembled there robotically. Its dual nuclear-thermal rocket engines use liquid hydrogen propollant. The payload consists of a microgravity habitation system and an expendable lift-to-drag = 1.6 lander capable of aeromaneuvering to sites within +/- 20 deg of the equator. This lander can deliver either an expendable, storable-bipropellant crew-carrying ascent vehicle, or 40 tons of cargo, and it is capable of limited surface mobility to support base buildup. Multiple cargo landers sent ahead on robotic transfer vehicles deliver the supplies and equipment required for long-duration surface missions.

  1. Accelerator-based neutrino oscillation searches

    SciTech Connect

    Whitehouse, D.A.; Rameika, R.; Stanton, N.

    1993-10-01

    This paper attempts to summarize the neutrino oscillation section of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Beam Facilities. There were very lively discussions about the merits of the different oscillation channels, experiments, and facilities, but we believe a substantial consensus emerged. First, the next decade is one of great potential for discovery in neutrino physics, but it is also one of great peril. The possibility that neutrino oscillations explain the solar neutrino and atmospheric neutrino experiments, and the indirect evidence that Hot Dark Matter (HDM) in the form of light neutrinos might make up 30% of the mass of the universe, point to areas where accelerator-based experiments could play a crucial role in piecing together the puzzle. At the same time, the field faces a very uncertain future. The LSND experiment at LAMPF is the only funded neutrino oscillation experiment in the United States and it is threatened by the abrupt shutdown of LAMPF proposed for fiscal 1994. The future of neutrino physics at the Brookhaven National Laboratory AGS depends the continuation of High Energy Physics (HEP) funding after the RHIC startup. Most proposed neutrino oscillation searches at Fermilab depend on the completion of the Main Injector project and on the construction of a new neutrino beamline, which is uncertain at this point. The proposed KAON facility at TRIUMF would provide a neutrino beam similar to that at the AGS but with a much increase intensity. The future of KAON is also uncertain. Despite the difficult obstacles present, there is a real possibility that we are on the verge of understanding the masses and mixings of the neutrinos. The physics importance of such a discovery can not be overstated. The current experimental status and future possibilities are discussed below.

  2. Future possibilities with Fermilab neutrino beams

    SciTech Connect

    Saoulidou, Niki

    2008-01-01

    We will start with a brief overview of neutrino oscillation physics with emphasis on the remaining unanswered questions. Next, after mentioning near future reactor and accelerator experiments searching for a non zero {theta}{sub 13}, we will introduce the plans for the next generation of long-baseline accelerator neutrino oscillation experiments. We will focus on experiments utilizing powerful (0.7-2.1 MW) Fermilab neutrino beams, either existing or in the design phase.

  3. MUON COLLIDERS: THE ULTIMATE NEUTRINO BEAMLINES.

    SciTech Connect

    KING,B.J.

    1999-03-29

    It is shown that muon decays in straight sections of muon collider rings will naturally produce highly collimated neutrino beams that can be several orders of magnitude stronger than the beams at existing accelerators. We discuss possible experimental setups and give a very brief overview of the physics potential from such beamlines. Formulae are given for the neutrino event rates at both short and long baseline neutrino experiments in these beams.

  4. MINERνA neutrino detector calibration

    SciTech Connect

    Patrick, Cheryl

    2015-05-15

    MINERνA is a neutrino scattering experiment that uses Fermilab’s NuMI beamline. Its goal is to measure cross-sections for neutrino scattering from different nuclei. Precise knowledge of these cross-sections is vital for current and future neutrino oscillation experiments. In order to measure these values to a high degree of accuracy, it is essential that the detector be carefully calibrated. Here, we describe in-situ calibration and cross-checks.

  5. Dynamical seesaw mechanism for Dirac neutrinos

    NASA Astrophysics Data System (ADS)

    Valle, José W. F.; Vaquera-Araujo, C. A.

    2016-04-01

    So far we have not been able to establish that, as theoretically expected, neutrinos are their own anti-particles. Here we propose a dynamical way to account for the Dirac nature of neutrinos and the smallness of their mass in terms of a new variant of the seesaw paradigm in which the energy scale of neutrino mass generation could be accessible to the current LHC experiments.

  6. Neutrino Clustering and the Z-Burst Model.

    SciTech Connect

    McKellar, Bruce H. J.; Garbutt, M.; Stephenson, G. J. , Jr.; Goldman, T.

    2001-01-01

    The possibility that the observed Ultra High Energy Cosmic Rays are generated by high energy neutrinos creating 'Z-bursts' in resonant interactions with the background neutrinos has been proposed, but there are difficulties in generating enough events with reasonable incident neutrino fluxes. We point out that this difficulty is overcome if the background neutrinos have coalesced into 'neutrino clouds' -- a possibility previously suggested by some of us in another context. The limitations that this mechanism for the generation of UHECRs places on the high energy neutrino flux, on the masses of the background neutrinos and the characteristics of the neutrino clouds are spelled out.

  7. Detection of extended galactic sources with an underwater neutrino telescope

    SciTech Connect

    Leisos, A.; Tsirigotis, A. G.; Tzamarias, S. E.; Lenis, D.

    2014-11-18

    In this study we investigate the discovery capability of a Very Large Volume Neutrino Telescope to Galactic extended sources. We focus on the brightest HESS gamma rays sources which are considered also as very high energy neutrino emitters. We use the unbinned method taking into account both the spatial and the energy distribution of high energy neutrinos and we investigate parts of the Galactic plane where nearby potential neutrino emitters form neutrino source clusters. Neutrino source clusters as well as isolated neutrino sources are combined to estimate the observation period for 5 sigma discovery of neutrino signals from these objects.

  8. Gamma-ray limits on neutrino lines

    NASA Astrophysics Data System (ADS)

    Queiroz, Farinaldo S.; Yaguna, Carlos E.; Weniger, Christoph

    2016-05-01

    Monochromatic neutrinos from dark matter annihilations (χχ→ νbar nu) are always produced in association with a gamma-ray spectrum generated by electroweak bremsstrahlung. Consequently, these neutrino lines can be searched for not only with neutrino detectors but also indirectly with gamma-ray telescopes. Here, we derive limits on the dark matter annihilation cross section into neutrinos based on recent Fermi-LAT and HESS data. We find that, for dark matter masses above 200 GeV, gamma-ray data actually set the most stringent constraints on neutrino lines from dark matter annihilation and, therefore, an upper bound on the dark matter total annihilation cross section. In addition, we point out that gamma-ray telescopes, unlike neutrino detectors, have the potential to distinguish the flavor of the final state neutrino. Our results indicate that we have already entered into a new era where gamma-ray telescopes are more sensitive than neutrino detectors to neutrino lines from dark matter annihilation.

  9. Neutrino pair emission from excited atoms

    SciTech Connect

    Yoshimura, M.

    2007-06-01

    We explore a possibility of measuring the absolute magnitude and the nature (Majorana vs Dirac) of neutrino masses, by using a novel process of neutrino pair emission from metastable excited atoms. Except lepton number nonconserving processes, the neutrino pair ({nu}{nu}) emission is the unique process to directly distinguish the Majorana neutrino from the Dirac neutrino, using the interference effect of identical fermions. The small energy difference between atomic levels makes it easier to measure small neutrino masses as indicated by neutrino oscillation experiments. The crucial point is how to enhance the rate of pair emission without enhancing the radiative decay. We discuss two particular cases; (1) laser irradiated pair emission from metastable atoms, and (2) microwave irradiated emission from circular Rydberg states. A new mechanism of the parametric amplification to enhance the neutrino pair emission is pointed out when Rydberg atoms are irradiated by microwave, while the radiative process may be inhibited by the cavity QED effect. A great variety of measurable neutrino parameters and a variety of experimental methods make this investigation attractive.

  10. Neutrino pair emission from excited atoms

    NASA Astrophysics Data System (ADS)

    Yoshimura, M.

    2007-06-01

    We explore a possibility of measuring the absolute magnitude and the nature (Majorana vs Dirac) of neutrino masses, by using a novel process of neutrino pair emission from metastable excited atoms. Except lepton number nonconserving processes, the neutrino pair (νν¯) emission is the unique process to directly distinguish the Majorana neutrino from the Dirac neutrino, using the interference effect of identical fermions. The small energy difference between atomic levels makes it easier to measure small neutrino masses as indicated by neutrino oscillation experiments. The crucial point is how to enhance the rate of pair emission without enhancing the radiative decay. We discuss two particular cases; (1) laser irradiated pair emission from metastable atoms, and (2) microwave irradiated emission from circular Rydberg states. A new mechanism of the parametric amplification to enhance the neutrino pair emission is pointed out when Rydberg atoms are irradiated by microwave, while the radiative process may be inhibited by the cavity QED effect. A great variety of measurable neutrino parameters and a variety of experimental methods make this investigation attractive.

  11. Neutrinos from Supernovas and Supernova Remnants

    SciTech Connect

    Costantini, M.L.; Vissani, F.

    2005-10-12

    Supernovae (SN) and supernova remnants (SNR) have key roles in galaxies, but their physical descriptions is still incomplete. Thus, it is of interest to study neutrino radiation to understand SN and SNR better. We will discuss: (1) The {approx}10 MeV thermal neutrinos that arise from core collapse SN, that were observed for SN1987A, and can be seen with several existing or planned experiments. (2) The 10-100 TeV neutrinos expected from galactic SNRs (in particular from RX J1713.7-3946) targets of future underwater neutrino telescopes.

  12. Neutrino mass determination using circulating heavy ions

    NASA Astrophysics Data System (ADS)

    Yoshimura, M.

    2016-01-01

    We study the process of radiative neutrino pair emission |e ⟩→|g ⟩+γ +ν ν ¯ from coherently excited heavy ions (quantum mixture of two ionic states—ground and excited states) in circular motion. Determination of the neutrino mass is found to be possible with simultaneous detection of the photon and one of the neutrinos in the pair down to the level of the smallest neutrino mass of order 5 meV in the three-flavor scheme.

  13. Neutrino-nucleus scattering off 136Xe

    NASA Astrophysics Data System (ADS)

    Ydrefors, E.; Suhonen, J.; Zhao, Y. M.

    2015-01-01

    Background: Theoretical estimates of the cross sections for the neutrino-nucleus scattering off relevant nuclei for supernova neutrinos are essential for many applications in neutrino physics and astrophysics. The double-β -decaying nucleus 136Xe nucleus is used by the EXO Collaboration in the search for neutrinoless double-β decay. A ton-scale experiment based on 136Xe could also be used for studies of supernova neutrinos and/or solar neutrinos. Purpose: The purpose of the present work is, thus, to perform a study of the charged-current and neutral-current nuclear responses to supernova neutrinos for 136Xe . Method: The cross sections are computed by using the well-established framework for studies of semileptonic processes in nuclei introduced by O'Connell, Donnelly, and Walecka [Phys. Rev. C 6, 719 (1972), 10.1103/PhysRevC.6.719]. The nuclear wave functions of the initial and the final nuclear states for the neutral-current neutrino-nucleus scattering in 136Xe are computed by using the quasiparticle random-phase approximation (QRPA). Similarly, the pnQRPA is adopted to construct the initial and final nuclear states which are relevant for the charged-current reactions. The nuclear responses to supernova neutrinos are subsequently computed by folding the cross sections with appropriate energy spectra for the incoming neutrinos. Results: We present results for the cross sections of the charged-current and neutral-current neutrino and antineutrino scatterings off 136Xe . Nuclear responses to supernova neutrinos are also given. For the considered scenario for the neutrino mixing we have found that neutrino interactions with matter and so-called collective neutrino oscillations enhance significantly the neutrino and antineutrino flux-averaged cross sections. Conclusions: We have found that for the charged-current and neutral-current neutrino scatterings off 136Xe transitions mediated by the 1+ multipole are the most important ones. However, for the charged-current antineutrino channel 0+ and 1+ transitions are largely suppressed due to the large neutron excess. Transitions to 1- and 2- final nuclear states are thus relatively more important for the charged-current antineutrino scattering.

  14. Low Temperature Detectors for Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Nucciotti, A.

    2014-09-01

    Recent years have witnessed many exciting breakthroughs in neutrino physics. The detection of neutrino oscillations has proved that neutrinos are massive particles but the assessment of their absolute mass scale is still an outstanding challenge in today particle physics and cosmology. Due to their abundance as big-bang relics, massive neutrinos strongly affect the large-scale structure and dynamics of the universe. In addition, the knowledge of the scale of neutrino masses, together with their hierarchy pattern, is invaluable to clarify the origin of fermion masses beyond the Higgs mechanism. The mass hierarchy is not the only missing piece in the puzzle. Theories of neutrino mass generation call into play Majorana neutrinos and there are experimental observations pointing to the existence of sterile neutrinos in addition to the three ones weakly interacting. Since low temperature detectors were first proposed for neutrino physics experiments in 1984, there have been impressive technical progresses: today this technique offers the high energy resolution and scalability required for leading edges and competitive experiments addressing the still open questions.

  15. Search for Neutrinos from the Sun

    DOE R&D Accomplishments Database

    Davis, Raymond Jr.

    1968-09-01

    A solar neutrino detection system has been built to observe the neutrino radiation from the sun. The detector uses 3,900,000 liters of tetrachloroethylene as the neutrino capturing medium. Argon is removed from the liquid by sweeping with helium gas, and counted in a small low level proportional counter. The recovery efficiency of the system was tested with Ar{sup 36} by the isotope dilution method, and also with Ar{sup 37} produced in the liquid by fast neutrons. These tests demonstrate that Ar{sup 37} produced in the liquid by neutrino capture can be removed with a 95 percent efficiency by the procedure used.

  16. Massive Dirac neutrinos and SN 1987A

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Gandhi, Raj; Turner, Michael S.

    1992-01-01

    The wrong-helicity states of a Dirac neutrino can provide an important cooling mechanism for young neutron stars. Based on numerical models of the early cooling of the neutron star associated with SN 1987A which self-consistently incorporate wrong-helicity neutrino emission, it is argued that a Dirac neutrino of mass greater than 30 keV (25 keV if it is degenerate) leads to shortening of the neutrino burst that is inconsistent with the Irvine-Michigan-Brookhaven and Kamiokande II data. If pions are as abundant as nucleons in the cores of neutron stars, the present limit improves to 15 keV.

  17. Effects of Neutrino Decay on Oscillation Probabilities

    NASA Astrophysics Data System (ADS)

    Leonard, Kayla; de Gouvêa, André

    2016-01-01

    It is now well accepted that neutrinos oscillate as a quantum mechanical result of a misalignment between their mass-eigenstates and the flavor-eigenstates. We study neutrino decay—the idea that there may be new, light states that the three Standard Model flavors may be able to decay into. We consider what effects this neutrino decay would have on the observed oscillation probabilities.The Hamiltonian governs how the states change with time, so we use it to calculate an oscillation amplitude, and from that, the oscillation probability. We simplify the theoretical probabilities using results from experimental data, such as the neutrino mixing angles and mass differences. By exploring what values of the decay parameters are physically allowable, we can begin to understand just how large the decay parameters can be. We compare the probabilities in the case of no neutrino decay and in the case of maximum neutrino decay to determine how much of an effect neutrino decay could have on observations, and discuss the ability of future experiments to detect these differences.We also examine neutrino decay in the realm of CP invariance, and found that it is a new source of CP violation. Our work indicates that there is a difference in the oscillation probabilities between particle transitions and their corresponding antiparticle transitions. If neutrino decay were proven true, it could be an important factor in understanding leptogenesis and the particle-antiparticle asymmetry present in our Universe.

  18. Quantum treatment of neutrino in background matter

    NASA Astrophysics Data System (ADS)

    Studenikin, A. I.

    2006-05-01

    Motivated by the need of elaboration of the quantum theory of the spin light of neutrino in matter (SL?), we have studied in more detail the exact solutions of the Dirac equation for neutrinos moving in background matter. These exact neutrino wavefunctions form a basis for a rather powerful method of investigation of different neutrino processes in matter, which is similar to the Furry representation of quantum electrodynamics in external fields. Within this method we also derive the corresponding Dirac equation for an electron moving in matter and consider the electromagnetic radiation ('spin light of electron in matter', (SLe)) that can be emitted by the electron in this case.

  19. The Pesky Neutrino (426th Brookhaven Lecture)

    SciTech Connect

    Jaffe, David

    2007-06-27

    The speaker will describe the past, present and possible future of the 'pesky' neutrino, the existence of which was first hypothesized in 1930 to rescue energy conservation in the radioactive beta decay of nuclei. Although difficult to detect, the neutrino has played an essential role in the understanding of the subatomic world of weak interactions. Recent evidence that neutrinos are massive is the only experimental evidence in particle physics that is inconsistent with the Standard Model. There is the possibility that the neutrino will shed light on the origin of fermion mass and the matter-antimatter asymmetry of the universe.

  20. From super beams to neutrino factories

    SciTech Connect

    Bross, Alan; /Fermilab

    2009-11-01

    The Neutrino Factory, which produces an extremely intense source of flavor-tagged neutrinos from muon decays in a storage ring, arguably gives the best physics reach for CP violation, as well as virtually all parameters in the neutrino oscillation parameter space. I will briefly describe the physics capabilities of the baseline Neutrino Factory as compared to other possible future facilities ({beta}-beam and super-beam facilities), give an overview of the accelerator complex and describe in detail the current international R&D program.

  1. Dips in the diffuse supernova neutrino background

    SciTech Connect

    Farzan, Yasaman; Palomares-Ruiz, Sergio E-mail: Sergio.Palomares.Ruiz@ific.uv.es

    2014-06-01

    Scalar (fermion) dark matter with mass in the MeV range coupled to ordinary neutrinos and another fermion (scalar) is motivated by scenarios that establish a link between radiatively generated neutrino masses and the dark matter relic density. With such a coupling, cosmic supernova neutrinos, on their way to us, could resonantly interact with the background dark matter particles, giving rise to a dip in their redshift-integrated spectra. Current and future neutrino detectors, such as Super-Kamiokande, LENA and Hyper-Kamiokande, could be able to detect this distortion.

  2. Very low-energy neutrino interactions

    SciTech Connect

    Suzuki, Toshio

    2015-05-15

    Neutrino-nucleus reaction cross sections are now evaluated rather accurately by shell-model (SM) or SM+RPA calculations based on recent advances in nuclear structure studies. Due to these achievements, reliable constraints on super-nova neutrino temperatures as well as neutrino oscillation parameters become possible. Supernova neutrino tempeatures are constrained from abundances of elements obtained by using new ν-nucleus reaction cross sections. A possibility of constructing supernova neutrino spectrum from beta-beam measurements is pointed out. Neutrino mass hierarchy and mixing angle θ{sub 13} can be determined from abundance ratio of {sup 7}Li/{sup 11}B, which is sensitive to the MSW matter oscillation effects in supernova explosions. Inverted mass hierarchy is shown to be statistically more favored based on a recent analysis of presolar grains. Effects of neutrino-neutrino interactions are also shown to play important roles in r-process nucleosynthesis. Importance and possibilities of direct measurements of ν-induced cross sections on {sup 40}Ar and {sup 208}Pb are discussed for future supernova neutrino detections. Recent calculations of the cross sections for ν-{sup 40}Ar are presented. The need for new theoretical evaluations of the cross sections for ν-{sup 208}Pb is pointed out. Challenges to experiments on coherent elastic scattering are presented.

  3. Neutrinos from supernova 1987A

    NASA Astrophysics Data System (ADS)

    Kahana, S. H.; Cooperstein, J.; Baron, E.

    1987-10-01

    The neutrino detection associated with the recent supernova SN1987A is reexamined in terms of a newtonian cooling model, and the results confronted with the so far fragmentary theoretical simulations of post-explosion cooling. We find a binding energy for the compact remnant of (2.0 +/- 0.50) 1053 erg, a mass 1.1-1.7 Msolar, and an initial cooling temperature of 5.0 +/- 0.6 MeV. T extraction of a neutrino mass limit is considered in this framework and found, in agreement with some previous work, to give a slightly superior limit to present terrestrial experiments. Address after 1 September 1987: State University of New York at Stony Brook, Stony Brook, NY 11794, USA.

  4. Neutrino Project X at Fermilab

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2008-07-01

    In this talk I will give a brief description of Project X and an outline of the Neutrino Physics possibilities it provides at Fermilab. Project X is the generic name given to a new intense proton source at Fermilab. This source would produce more than 2 MW of proton power at 50 to 120 GeV, using the main injector, which could be used for a variety of long baseline neutrino experiments. A new 8 GeV linac would be required with many components aligned with a possible future ILC. In addition to the beam power from the main injector there is an additional 200 kW of 8 GeV protons that could be used for kaon, muon, experiments.

  5. Bipair Neutrino Mixing and Leptogenesis

    NASA Astrophysics Data System (ADS)

    Kitabayashi, Teruyuki

    2013-03-01

    We estimate the baryon-photon ratio in the Universe via the leptogenesis scenario in the framework of the minimal seesaw model with a minimally modified bipair neutrino mixing. We assume that one of the elements of the 3 × 2 Dirac mass matrix mD is exactly zero. It turns out that the lepton asymmetry as well as baryon number of the Universe definitely depends on the reactor neutrino mixing angle in the cases of (mD)11 = 0 and (mD)12 = 0. The allowed region of the Majorana CP phase is separated into three regions related to the assumption of either (mD)11 = 0, (mD)21, 31 = 0 or (mD)12 = 0.

  6. Cosmological constraints on bulk neutrinos.

    PubMed

    Abazajian, Kevork N; Fuller, George M; Patel, Mitesh

    2003-02-14

    Recent models invoking extra space-like dimensions inhabited by (bulk) neutrinos are shown to have significant cosmological effects if the size of the largest extra dimension is R greater, similar 1 fm. We consider effects on cosmic microwave background anisotropies, big bang nucleosynthesis, deuterium and 6Li photoproduction, diffuse photon backgrounds, and structure formation. The resulting constraints can be stronger than either bulk graviton overproduction constraints or laboratory constraints. PMID:12633285

  7. Antarctic radio Askaryan neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Connolly, Amy

    2012-03-01

    There are strong motivations for a detectable flux of ultra-high energy (UHE) cosmic neutrinos above 10^17-18 eV. Neutrinos in this regime are expected from interactions between the highest energy cosmic rays and cosmic microwave background photons, and can also originate from the UHE sources themselves. Radio Cerenkov technique is the most promising technique for instrumenting a detection volume large enough to detect the low expected fluxes. The RICE experiment pioneered the radio Cerenkov technique with antennas deployed along strings of the AMANDA experiment deep in the South Pole ice. New radio arrays being deployed in the Antarctic ice are designed to measure dozens of these unique cosmic messengers to exploit the rich particle physics and astrophysical information that they carry. I will discuss the status and results from initial deployments of the Askaryan Radio Array (ARA) near the South Pole, and the ARIANNA array on the Ross Ice Shelf. I will also describe how these experiments could measure neutrino-nucleon cross sections at energies that exceed those probed by the LHC.

  8. Neutrino lighthouse at Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Barger, A. J.; Barger, V.; Lu, R.; Peterson, A. D.; Salvado, J.

    2014-09-01

    We investigate whether a subset of high-energy events observed by IceCube may be due to neutrinos from Sagittarius A*. We check both spatial and temporal coincidences of IceCube events with other transient activities of Sagittarius A*. Among the seven IceCube shower events nearest to the Galactic center, we have found that event 25 has a time very close to (around three hours after) the brightest x-ray flare of Sagittarius A* observed by the Chandra X-ray Observatory with a p-value of 0.9%. Furthermore, two of the seven events occurred within one day of each other (there is a 1.6% probability that this would occur for a random distribution in time). Thus, the determination that some IceCube events occur at similar times as x-ray flares and others occur in a burst could be the smoking gun that Sagittarius A* is a point source of very-high-energy neutrinos. We point out that if IceCube Galactic center neutrino events originate from charged pion decays, then TeV gamma rays should come from neutral pion decays at a similar rate. We show that the CTA, HAWC, H.E.S.S. and VERITAS experiments should be sensitive enough to test this.

  9. Majorana neutrinos with point interactions

    NASA Astrophysics Data System (ADS)

    Cai, Chengfeng; Zhang, Hong-Hao

    2016-02-01

    We propose a realistic model with Majorana neutrinos in the framework of unifying the three generations of fermions by point interactions in an extra dimension. This model can simultaneously explain the origin of fermion generations, fermion masses and mixing, and the smallness of the masses of Majorana neutrinos. We show that there are two mechanisms working together to suppress the neutrino masses significantly, so we do not have to introduce a very large extra-dimension cutoff scale. One is the type-I seesaw mechanism and the other is the overlap integration of localized lepton wave functions. A singlet scalar with an exponential-like vacuum expectation value plays a central role in these two mechanisms. For consistency in this model we introduce a U (1 )' gauge symmetry, which will be broken by the singlet scalar. Parameters of our model can fit the masses and flavor mixing data well. These parameters can also predict all C P violating phases including the Majorana ones and accidentally rescue the proton from decay.

  10. California's population geography: lessons for a fourth grade class.

    PubMed

    Rushdoony, H A

    1978-11-01

    Purpose of this paper is to present a model for teaching fourth grade children some aspects of the population geography of California from a nontextual approach. The objective is to interest and instruct children in the mobility of the people, and on the reasons why so many families have moved to California from other states. Students should be alerted not only to internal migration problems, but to the excess of births over deaths. Materials necessary for the lessons are transparencies, overhead projector, marking pencils, chalk and chalkboard. After showing the students that California population has approximately doubled every 20 years, the students should be encouraged to find reasons explaining why people have moved to the state, should be able to categorize those reasons under the terms industrial/manufacturing, agricultural, urban or recreational, should learn how to plot population distribution on a California regional outline map, and should attempt to explain why certain parts of California are more popular than others. The teaching model described in this paper may be replicated with modfications for any grade level and area of study. PMID:12178554

  11. Black rings with fourth dipole cause less hair loss

    NASA Astrophysics Data System (ADS)

    Chowdhury, Borun D.

    2012-07-01

    An example of entropy enigma with a controlled CFT dual was recently studied in [1]. The enigmatic bulk configurations, considered within the STU model, can be mapped under spectral flow into black rings with three monopole and dipole charges. Even though the bulk and CFT configurations existed in the same region of parameter space, the Bekenstein-Hawking entropy of the bulk configurations was found to be lower than the microscopic entropy from the CFT. While it is possible that the difference in entropy is due to the bulk and boundary configurations being at different points in the moduli space, it is also possible that the bulk configurations embeddable within the STU model are not the most entropic. New families of BPS black ring solutions with four electric and four dipole magnetic charges have recently been explicitly constructed in [2]. These black rings are not embeddable within the STU model. In this paper we investigate if these black rings can be entropically dominant over the STU model black rings. We find that the new black rings are always entropically subdominant to the STU-model black rings. However, for small fourth dipole charge these black rings continue to be dominant over the BMPV in a small region of parameters and are thus enigmatic.

  12. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    SciTech Connect

    2013-03-01

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV–PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

  13. 13. FOURTH FLOOR ROASTING ROOM, SHOWING CLERESTORY. VIEW TO SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. FOURTH FLOOR ROASTING ROOM, SHOWING CLERESTORY. VIEW TO SOUTH. - Commercial & Industrial Buildings, McFadden Coffee & Spice Company, Factory & Warehouse, 145 First Street, Dubuque, Dubuque County, IA

  14. 95. ROOM 402 (LAW LIBRARY), EAST WING, FOURTH FLOOR, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. ROOM 402 (LAW LIBRARY), EAST WING, FOURTH FLOOR, LOOKING SOUTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  15. Evidence for neutrino mass: A decade of discovery

    SciTech Connect

    Heeger, Karsten M.

    2004-12-08

    Neutrino mass and mixing are amongst the major discoveries of recent years. From the observation of flavor change in solar and atmospheric neutrino experiments to the measurements of neutrino mixing with terrestrial neutrinos, recent experiments have provided consistent and compelling evidence for the mixing of massive neutrinos. The discoveries at Super-Kamiokande, SNO, and KamLAND have solved the long-standing solar neutrino problem and demand that we make the first significant revision of the Standard Model in decades. Searches for neutrinoless double-beta decay probe the particle nature of neutrinos and continue to place limits on the effective mass of the neutrino. Possible signs of neutrinoless double-beta decay will stimulate neutrino mass searches in the next decade and beyond. I review the recent discoveries in neutrino physics and the current evidence for massive neutrinos.

  16. Child Care and Child Welfare. Joint Hearing before the Subcommittee on Human Resources of the Committee on Ways and Means and the Subcommittee on Early Childhood, Youth, and Families of the Committee on Economic and Educational Opportunities. House of Representatives, One Hundred Fourth Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Ways and Means.

    This document outlines the joint hearing before the House of Representatives, between the Committee on Ways and Means, Subcommittee on Human Resources and the Committee on Economic and Educational Opportunities, Subcommittee on Early Childhood, Youth and Families. The hearing was scheduled out of concern by Congress members over the proliferation…

  17. Youth Violence: Examining the Role of the Federal Government and Nongovernment Organizations in Establishing Solutions for Combatting Juvenile Crime. Hearing before the Subcommittee on Children and Families of the Committee on Labor and Human Resources. Senate, One Hundred Fourth Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Subcommittee on Children and Families.

    A hearing was held before the Senate Subcommittee on Children and Families of the Committee on Labor and Human Relations to discuss possible solutions to the problem of juvenile crime. An opening statement by parents whose young child was murdered by an adolescent set the scene for the panel discussion that followed. James Fox, a professor of…

  18. Neutrino Processes in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be included within the Green’s function formalism. Softening of the pion mode with an baryon density increase is explicitly incorporated. We show examples of inconsistencies in calculations without inclusion of medium effects. Then we demonstrate calculations of different reaction rates in non-superfluid nuclear matter with taking into account medium effects. Many new reaction channels are open up in the medium and should be analyzed. Part IV: We discuss the neutrino production reactions in superfluid nuclear systems. The reaction rates of processes associated with the pair breaking and formation are calculated. Special attention is focused on the gauge invariance and the exact fulfillment of the Ward identities for the vector current. Finally we present comparison of calculations of neutron star cooling performed within nuclear medium cooling scenario with the available data.

  19. Evaluation of a fourth-generation focal plane camera for use in plasma-source mass spectrometry

    SciTech Connect

    Felton, Jeremy A.; Schilling, G. D.; Ray, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2010-10-18

    A fourth-generation focal plane camera containing 1696 Faraday-strip detectors was fitted to a Mattauch-Herzog mass spectrograph and characterized for its performance with inductively coupled plasma ionization. The camera provides limits of detection in the single to tens of ng L-1 range for most elements and has a linear dynamic range of at least nine orders of magnitude. Isotope-ratio precision better than 0.02% has also been achieved with this device, and this fourth-generation system features the broadest simultaneous mass range obtainable to date with this family of focal plane camera detectors.

  20. The GENIE Neutrino Monte Carlo Generator

    NASA Astrophysics Data System (ADS)

    Andreopoulos, C.

    2009-09-01

    The exploration of the neutrino mixing matrix forms one of the major directions in science. A number of scientific opportunities lie ahead: Over the next decade searches for {nu }mu rightarrow {nu }e oscillations will dramatically improve our sensitivity to {theta }13, potentially opening a window to exploring CP violation in the lepton sector. Precision measurements of {theta }23 from high statistics {nu }mu disappearance studies will shed more light on the neutrino mixing matrix and, possibly, elucidate its relation with the quark mixing matrix. Over a similar time-scale, exploiting matter effects, we will probe the neutrino mass hierarchy. Much of the research program will be carried out with accelerator-made neutrino beams in the few-GeV energy range, the challenging boundary between the non-perturbative and perturbative regimes where our lacking physics descriptions are now being exposed by increasingly precise neutrino data. Advancing our understanding of fundamental neutrino properties, will require building a more complete picture of neutrino interactions and reducing the corresponding systematics to the sim 1% level. This will pose a series of important theoretical and experimental challenges. Neutrino generators, the interface between theory and experiment, are in the core of this effort. The 45th Winter School in Theoretical Physics at Lądek-Zdrój was a unique event in the effort to improve neutrino interaction descriptions. Secluded in the Polish countryside, inquiring students, the authors of mainstream neutrino generators representing many experimental communities, and leading theorists had the opportunity to delve into modeling issues, question physics assumptions and probe the accuracy of neutrino simulations. This was a very instructive experience for everyone involved. The goal of this brief note is to refresh the students on some of the physics and technical points discussed during the GENIE lectures.

  1. Supernova neutrinos: production, oscillations and detection

    NASA Astrophysics Data System (ADS)

    Mirizzi, A.; Tamborra, I.; Janka, H.-Th.; Saviano, N.; Scholberg, K.; Bollig, R.; Hüdepohl, L.; Chakraborty, S.

    Neutrinos play a crucial role in the collapse and explosion of massive stars, governing the infall dynamics of the stellar core, triggering and fueling the explosion and driving the cooling and deleptonization of the newly formed neutron star. Due to their role neutrinos carry information from the heart of the explosion and, due to their weakly interacting nature, offer the only direct probe of the dynamics and thermodynamics at the center of a supernova. In this paper, we review the present status of modelling the neutrino physics and signal formation in collapsing and exploding stars. We assess the capability of current and planned large underground neutrino detectors to yield faithful information of the time and flavor-dependent neutrino signal from a future Galactic supernova. We show how the observable neutrino burst would provide a benchmark for fundamental supernova physics with unprecedented richness of detail. Exploiting the treasure of the measured neutrino events requires a careful discrimination of source-generated properties from signal features that originate on the way to the detector. As for the latter, we discuss self-induced flavor conversions associated with neutrino-neutrino interactions that occur in the deepest stellar regions; matter effects that modify the pattern of flavor conversions in the dynamical stellar envelope; neutrino-oscillation signatures that result from structural features associated with the shock-wave propagation as well as turbulent mass motions in post-shock layers. Finally, we highlight our current understanding of the formation of the diffuse supernova neutrino background and we analyse the perspectives for a detection of this relic signal that integrates the contributions from all past core-collapse supernovae in the Universe.

  2. Long Baseline Neutrino Beams and Large Detectors

    SciTech Connect

    Samios,N.P.

    2008-10-27

    It is amazing to acknowledge that in roughly 70 years from when the existence of the neutrino was postulated, we are now contemplating investigating the mysteries of this particle (or particles) requiring and utilizing detectors of 300 ktons , distances of 1,000-2,000 kilometers, beam intensities of megawatts and underground depth of 5,000 feet. This evolution has evolved slowly, from the experimental discovery of the neutrino in 1956, to the demonstration that there were two neutrinos in 1962 and three and only three by 1991. The great excitement occurred in the 2000's coming from the study of solar and atmospheric neutrinos in which neutrinos were observed to oscillate and therefore have mass. Although the absolute mass of any of the neutrinos has yet to be determined (the upper limit is less than I electron volt) the difference in this square of these masses has been measured, yielding a value of (2.3 {+-} .2) 10{sup -3} ev{sup 2} for atmospheric neutrinos and (7.6 {+-} .2) 10{sup -5} ev{sup 2} for solar neutrinos. In addition their mixing angles were found to be 45{sup o} for atmospheric neutrinos and 34{sup o} for solar neutrinos. This present state of knowledge on neutrinos is pictorially displayed in Fig. 1. Of course, mixing between flavors had already been observed in the quark sector as exemplified by the Cabbibo-Kobayashi-Meskawa Matrix. It was therefore natural to extend this formalism to the lepton sector involving unitary 3 x 3 matrices and one CP violating phase. This is shown in Fig. 2 for the two sectors, quark and leptons including the Jarlskog invariant (J).

  3. Science and fourth grade students: An analysis of California's fourth National Assessment of Educational Progress (NAEP)

    NASA Astrophysics Data System (ADS)

    Bowman, Cecelia Francisco

    The purpose of this study was to examine science assessment data as generated by the 2005 National Assessment of Educational Progress (NAEP), and through the analysis of four research variables: teaching practices, teacher background characteristics, school conditions, and student characteristics, determine their relationship to science achievement of fourth grade students (Cavanagh, 2006) in the state of California. All children are born ready and willing to learn but as they progress to and through the primary grades, many lose their natural curiosity and enthusiasm for learning (Carnegie Corporation of New York, 1994). By the fourth grade, the performance of most children in the United States (U.S. Department of Education, 2004b) is below what it should be for the nation and is below the achievement levels of children in competing countries (Carnegie Corporation of New York). We must trust children to learn if given the chance (Bush, 2008). The analysis of these research variables found that there are relationships between teaching practices, teacher background characteristics, school conditions, student characteristics and science achievement of fourth grade students in the state of California. Revelation of these relationships provide a deeper understanding of the science achievement gap between privileged and underprivileged school children. The utilization of these findings in the classroom will lead to increasing science achievement in all student groups and notably help to decrease the achievement gap between privileged and underprivileged students. Policy changes are suggested at the district, regional, and national levels to close the international achievement gap.

  4. Relic right-handed Dirac neutrinos and implications for detection of cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Zhang, Jue; Zhou, Shun

    2016-02-01

    It remains to be determined experimentally if massive neutrinos are Majorana or Dirac particles. In this connection, it has been recently suggested that the detection of cosmic neutrino background of left-handed neutrinos νL and right-handed antineutrinos ν‾R in future experiments of neutrino capture on beta-decaying nuclei (e.g., νe +3H →3He +e- for the PTOLEMY experiment) is likely to distinguish between Majorana and Dirac neutrinos, since the capture rate is twice larger in the former case. In this paper, we investigate the possible impact of right-handed neutrinos on the capture rate, assuming that massive neutrinos are Dirac particles and both right-handed neutrinos νR and left-handed antineutrinos ν‾L can be efficiently produced in the early Universe. It turns out that the capture rate can be enhanced at most by 28% due to the presence of relic νR and ν‾L with a total number density of 95 cm-3, which should be compared to the number density 336 cm-3 of cosmic neutrino background. The enhancement has actually been limited by the latest cosmological and astrophysical bounds on the effective number of neutrino generations Neff =3.14-0.43+0.44 at the 95% confidence level. For illustration, two possible scenarios have been proposed for thermal production of right-handed neutrinos in the early Universe.

  5. Observation of high energy atmospheric neutrinos with antarctic muon and neutrino detector array

    SciTech Connect

    Ahrens, J.; Andres, E.; Bai, X.; Barouch, G.; Barwick, S.W.; Bay, R.C.; Becka, T.; Becker, K.-H.; Bertrand, D.; Binon, F.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Bouhali, O.; Boyce, M.M.; Carius, S.; Chen, A.; Chirkin, D.; Conrad, J.; Cooley, J.; Costa, C.G.S.; Cowen, D.F.; Dalberg, E.; De Clercq, C.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Doksus, P.; Edsjo, J.; Ekstrom, P.; Feser, T.; Frere, J.-M.; Gaisser, T.K.; Gaug, M.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Heukenkamp, H.; Hill, G.C.; Hulth, P.O.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kim, J.; Koci, B.; Kopke, L.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.M.; Madsen, J.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Miller, T.C.; Minaeva, Y.; Miocinovic, P.; Mock, P.C.; Morse, R.; Neunhoffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, Ph.; Perez de los Heros, C.; Pohl, A.C.; Porrata, R.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Reed, C.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Romenesko, P.; Ross, D.; Sander, H.-G.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G.M.; Spiering, C.; Starinsky, N.; Steele, D.; Steffen, P.; Stokstad, R.G.; Streicher, O.; Sudhoff, P.; Sulanke, K.-H.; Taboada, I.; Thollander, L.; Thon, T.; Tilav, S.; Vander Donckt, M.; Walck, C.; Weinheimer, C.; Wiebusch, C.H.; Wiedeman, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2002-05-07

    The Antarctic Muon and Neutrino Detector Array (AMANDA) began collecting data with ten strings in 1997. Results from the first year of operation are presented. Neutrinos coming through the Earth from the Northern Hemisphere are identified by secondary muons moving upward through the array. Cosmic rays in the atmosphere generate a background of downward moving muons, which are about 10{sup 6} times more abundant than the upward moving muons. Over 130 days of exposure, we observed a total of about 300 neutrino events. In the same period, a background of 1.05 x 10{sup 9} cosmic ray muon events was recorded. The observed neutrino flux is consistent with atmospheric neutrino predictions. Monte Carlo simulations indicate that 90 percent of these events lie in the energy range 66 GeV to 3.4 TeV. The observation of atmospheric neutrinos consistent with expectations establishes AMANDA-B10 as a working neutrino telescope.

  6. APS Neutrino Study: Report of the neutrino astrophysics and cosmology working group

    SciTech Connect

    Barwick, Steve W.; Beacom, John F.; Cianciolo, Vince; Dodelson, Scott; Feng, Jonathan L.; Fuller, George M.; Kaplinghat, Manoj; McKay, Doug W.; Meszaros, Peter; Mezzacappa, Anthony; Murayama, Hitoshi; Olive, Keith A.; Stanev, Todor; Walker, Terry P.; /Ohio State U.

    2004-12-01

    In 2002, Ray Davis and Masatoshi Koshiba were awarded the Nobel Prize in Physics 'for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos'. However, while astronomy has undergone a revolution in understanding by synthesizing data taken at many wavelengths, the universe has only barely been glimpsed in neutrinos, just the Sun and the nearby SN 1987A. An entire universe awaits, and since neutrinos can probe astrophysical objects at densities, energies, and distances that are otherwise inaccessible, the results are expected to be particularly exciting. Similarly, the revolution in quantitative cosmology has heightened the need for very precise tests that depend on the effects of neutrinos, and prominent among them is the search for the effects of neutrino mass, since neutrinos are a small but known component of the dark matter. In this report, we highlight some of the key opportunities for progress in neutrino astrophysics and cosmology, and the implications for other areas of physics.

  7. Pithovirus sibericum, a new bona fide member of the “Fourth TRUC” club

    PubMed Central

    Sharma, Vikas; Colson, Philippe; Chabrol, Olivier; Pontarotti, Pierre; Raoult, Didier

    2015-01-01

    Nucleocytoplasmic large DNA viruses, or representatives of the proposed order Megavirales, include giant viruses of Acanthamoeba that were discovered over the last 12 years and are bona fide microbes. Phylogenies based on a few genes conserved amongst these megaviruses and shared by microbes classified as Eukarya, Bacteria, and Archaea, allowed for delineation of a fourth monophylogenetic group or “TRUC” (Things Resisting Uncompleted Classification) composed of the Megavirales representatives. A new Megavirales member named Pithovirus sibericum was isolated from a >30,000-year-old dated Siberian permafrost sample. This virion is as large as recently described pandoraviruses but has a genome that is approximately three to four times shorter. Our objective was to update the classification of P. sibericum as a new member of the “Fourth TRUC” club. Phylogenetic trees were constructed based on four conserved ancient genes and a phyletic analysis was concurrently conducted based on the presence/absence patterns of a set of informational genes from members of Megavirales, Bacteria, Archaea, and Eukarya. Phylogenetic analyses based on the four conserved genes revealed that P. sibericum is part of the fourth TRUC composed of Megavirales members, and is closely related to the families Marseilleviridae and Ascoviridae/Iridoviridae. Additionally, hierarchical clustering delineated four branches, and showed that P. sibericum is part of this fourth TRUC. Overall, phylogenetic and phyletic analyses using informational genes clearly indicate that P. sibericum is a new bona fide member of the “Fourth TRUC” club composed of representatives of Megavirales, alongside Bacteria, Archaea, and Eukarya. PMID:26300849

  8. Australian Family Research Conference Proceedings (Canberra, Australia, November 23-25, 1983). Volume IV: Policies and Families.

    ERIC Educational Resources Information Center

    Institute of Family Studies, Melbourne (Australia).

    Fourth in a series of volumes containing the proceedings of the 1983 Australian Family Research Conference, this publication deals with policies and families in Australia. Papers and authors included are: "Improving Social Security Programs: Some Options and Barriers" (Andrew Burbidge), "Single Parent Families and Social Policies: Australia and…

  9. New test of supernova electron neutrino emission using Sudbury Neutrino Observatory sensitivity to the diffuse supernova neutrino background

    NASA Astrophysics Data System (ADS)

    Beacom, John F.; Strigari, Louis E.

    2006-03-01

    Supernovae are rare nearby, but they are not rare in the Universe, and all past core-collapse supernovae contributed to the diffuse supernova neutrino background (DSNB), for which the near-term detection prospects are very good. The Super-Kamiokande limit on the DSNB electron antineutrino flux, ?(E?>19.3MeV)<1.2 cm-2 s-1, is just above the range of recent theoretical predictions based on the measured star formation rate history. We show that the Sudbury Neutrino Observatory should be able to test the corresponding DSNB electron-neutrino flux with a sensitivity as low as ?(22.5neutrino and antineutrino fluxes, it is often considered that the first (and forward-directed) SN 1987A event in the Kamiokande-II detector should be attributed to electron-neutrino scattering with an electron, which would require a substantially enhanced electron-neutrino flux. We show that, with the required enhancements in either the burst or thermal phase ?e fluxes, the DSNB electron-neutrino flux would generally be detectable in the Sudbury Neutrino Observatory. A direct experimental test could then resolve one of the enduring mysteries of SN 1987A: whether the first Kamiokande-II event reveals a serious misunderstanding of supernova physics or was simply an unlikely statistical fluctuation. Thus the electron-neutrino sensitivity of the Sudbury Neutrino Observatory is an important complement to the electron antineutrino sensitivity of Super-Kamiokande in the quest to understand the DSNB.

  10. Review of Neutrino Deep Inelastic Scattering Results

    SciTech Connect

    Tzanov, Martin

    2010-03-30

    This paper presents an overview of the neutrino charged-current deep inelastic scattering measurements published in the last five years. Results from NuTeV, CHORUS, MINOS and NOMAD are discussed. Total neutrino cross section and structure functions results are compared.

  11. Probing Neutrino Hierarchy and Chirality via Wakes.

    PubMed

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Inman, Derek

    2016-04-01

    The relic neutrinos are expected to acquire a bulk relative velocity with respect to the dark matter at low redshifts, and neutrino wakes are expected to develop downstream of the dark matter halos. We propose a method of measuring the neutrino mass based on this mechanism. This neutrino wake will cause a dipole distortion of the galaxy-galaxy lensing pattern. This effect could be detected by combining upcoming lensing surveys with a low redshift galaxy survey or a 21 cm intensity mapping survey, which can map the neutrino flow field. The data obtained with LSST and Euclid should enable us to make a positive detection if the three neutrino masses are quasidegenerate with each neutrino mass of ∼0.1  eV, and a future high precision 21 cm lensing survey would allow the normal hierarchy and inverted hierarchy cases to be distinguished, and even the right-handed Dirac neutrinos may be detectable. PMID:27104695

  12. CPand t violation in neutrino oscillations

    SciTech Connect

    Hisakazu Minakata; Hiroshi Nunokawa; Stephen Parke

    2003-09-18

    In this short lecture, we discuss some basic phenomenological aspects of CP and T violation in neutrino oscillation. Using CP/T trajectory diagrams in the bi-probability space, we try to sketch out some essential features of the interplay between the effect of CP/T violating phase and that of the matter in neutrino oscillation.

  13. The neutrino portal to new physics

    SciTech Connect

    Ma, Ernest

    2014-06-24

    Neutrinos may have interactions beyond those of the standard model. They may be responsible for neutrino mass and provide a link to other fundamental issues of particle physics such as dark matter. A brief incomplete survey of some of the theoretical ideas along this direction is offered.

  14. Radiative neutrino mass, dark matter, and leptogenesis

    SciTech Connect

    Gu Peihong; Sarkar, Utpal

    2008-05-15

    We propose an extension of the standard model, in which neutrinos are Dirac particles and their tiny masses originate from a one-loop radiative diagram. The new fields required by the neutrino mass generation also accommodate the explanation for the matter-antimatter asymmetry and dark matter in the Universe.

  15. Neutrino mixing and maximal CP violation.

    NASA Astrophysics Data System (ADS)

    Fritzsch, H.; Xing, Z.-Z.

    2000-06-01

    The authors propose a phenomenological model of lepton mixing and CP violation based on the flavor democracy of charge leptons and the mass degeneracy of neutrinos. A nearly bi-maximal flavor mixing pattern, which is favored by current data on atmospheric and solar neutrino oscillations, emerges naturally from this model after explicit symmetry breaking.

  16. Neutrino Redshifts -- A Search for Information.

    NASA Astrophysics Data System (ADS)

    Gallo, Charles

    2005-04-01

    Neutrinos will undergo Redshifts due to Doppler and/or Space Expansion effects similar to Electromagnetic Radiation (Photons). However, in some situations (ex., Quasars, etc), Photon Redshifts may be due to cumulative energy-loss mechanisms with the intervening medium. In this situation, the corresponding Neutrino Redshifts will be much smaller since the interaction cross-section for neutrino-medium interactions will be much smaller than any photon-medium cross-section. Thus, observation and comparison of photon redshifts vs corresponding neutrinos redshifts will be very informative. If the photon and neutrino redshifts are similar, then a Doppler and/or Space Expansion interpretation is justified. If the neutrino redshift is much smaller than any corresponding photon redshift, then an interpretation via a cumulative energy-loss mechanism is justified. This is a very definitive experimental test of redshift interpretations. The latest neutrino data will be examined, particularly relevant to quasars and supernova. Reference: ``Redshifts of Cosmological Neutrinos as Definitive Experimental Test of Doppler versus Non-Doppler Redshifts'' by C. F. Gallo in IEEE Trans. Plasma Science, vol. 31, No. 6, pgs. 1230-1231, Dec. 2003.

  17. Overview and Status of Experimental Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Stancu, Ion

    2002-10-01

    Seventy years after the existence of the neutrino has been postulated by Wolfgang Pauli, these elusive particles remain surrounded by mystery. One of the most fundamental questions about neutrinos is whether they have an identically vanishing mass, as assumed by the Standard Model, or not. Direct measurements have proven to be extremely difficult to perform, and have yielded so far only upper limits. However, if neutrino flavour oscillations do happen, this would automatically imply that at least one of the three neutrinos (the electron, muon or tau neutrino) must have a non-zero mass. The present experimental data indicate that both the solar and atmospheric neutrino deficits can be explained by the phenomenon of neutrino oscillations, while the positive signal reported by the accelerator-based LSND experiment remains to be verified by an independent measurement (MiniBooNE). This talk reviews the current status of the neutrino oscillations experiments, experiments which are quite likely to produce results with significant consequences for both the Standard Model and Cosmology.

  18. Neutrino physics at a muon collider

    SciTech Connect

    King, B.J.

    1998-02-01

    This paper gives an overview of the neutrino physics possibilities at a future muon storage ring, which can be either a muon collider ring or a ring dedicated to neutrino physics that uses muon collider technology to store large muon currents. After a general characterization of the neutrino beam and its interactions, some crude quantitative estimates are given for the physics performance of a muon ring neutrino experiment (MURINE) consisting of a high rate, high performance neutrino detector at a 250 GeV muon collider storage ring. The paper is organized as follows. The next section describes neutrino production from a muon storage rings and gives expressions for event rates in general purpose and long baseline detectors. This is followed by a section outlining a serious design constraint for muon storage rings: the need to limit the radiation levels produced by the neutrino beam. The following two sections describe a general purpose detector and the experimental reconstruction of interactions in the neutrino target then, finally, the physics capabilities of a MURINE are surveyed.

  19. Application of Reactor Antineutrinos: Neutrinos for Peace

    NASA Astrophysics Data System (ADS)

    Suekane, F.

    2013-02-01

    In nuclear reactors, 239Pu are produced along with burn-up of nuclear fuel. 239Pu is subject of safeguard controls since it is an explosive component of nuclear weapon. International Atomic Energy Agency (IAEA) is watching undeclared operation of reactors to prevent illegal production and removal of 239Pu. In operating reactors, a huge numbers of anti electron neutrinos (ν) are produced. Neutrino flux is approximately proportional to the operating power of reactor in short term and long term decrease of the neutrino flux per thermal power is proportional to the amount of 239Pu produced. Thus rector ν's carry direct and real time information useful for the safeguard purposes. Since ν can not be hidden, it could be an ideal medium to monitor the reactor operation. IAEA seeks for novel technologies which enhance their ability and reactor neutrino monitoring is listed as one of such candidates. Currently neutrino physicists are performing R&D of small reactor neutrino detectors to use specifically for the safeguard use in response to the IAEA interest. In this proceedings of the neutrino2012 conference, possibilities of such reactor neutrinos application and current world-wide R&D status are described.

  20. Galactic and extragalactic high energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Shapiro, M. M.; Silberberg, R.

    1980-01-01

    Estimates of fluxes from cosmic diffuse sources are made using the generic relationship between secondary gammas and neutrinos and using recent cosmic gamma-ray satellite observations. A quantitative estimate of the observability above the atmospheric background of 1-10 TeV neutrinos from the inner Galaxy for a DUMAND type detector is then given.