Science.gov

Sample records for fourth family neutrinos

  1. Fourth standard model family neutrino at future linear colliders

    SciTech Connect

    Ciftci, A.K.; Ciftci, R.; Sultansoy, S.

    2005-09-01

    It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac ({nu}{sub 4}) and Majorana (N{sub 1}) neutrinos at future linear colliders with {radical}(s)=500 GeV, 1 TeV, and 3 TeV are considered. The cross section for the process e{sup +}e{sup -}{yields}{nu}{sub 4}{nu}{sub 4}(N{sub 1}N{sub 1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels ({nu}{sub 4}(N{sub 1}){yields}{mu}{sup {+-}}W{sup {+-}}) provide cleanest signature at e{sup +}e{sup -} colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at {radical}(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures.

  2. Fourth lepton family is natural in technicolor

    SciTech Connect

    Frandsen, Mads T.; Masina, Isabella; Sannino, Francesco

    2010-02-01

    Imagine discovering a new fourth family of leptons at the Large Hadron Collider (LHC) but no signs of an associated fourth family of quarks. What would that imply? An intriguing possibility is that the new fermions needed to compensate for the new leptons gauge anomalies simultaneously address the big hierarchy problem of the standard model. A natural way to accomplish such a scenario is to have the Higgs itself be a composite of these new fermions. This is the setup we are going to investigate in this paper using as a template minimal walking technicolor. We analyze a general heavy neutrino mass structure with and without mixing with the standard model families. We also analyze the LHC potential to observe the fourth lepton family in tandem with the new composite Higgs dynamics. We finally introduce a model uniting the fourth lepton family and the technifermion sector at higher energies.

  3. Phenomenology of FourthPhenomenology of Fourth Generation NeutrinosGeneration Neutrinos

    E-print Network

    California at Santa Cruz, University of

    Phenomenology of FourthPhenomenology of Fourth Generation NeutrinosGeneration Neutrinos LindaVGeV mdmd>268>268 GeVGeV LEP neutrinos 101, 102, 90LEP neutrinos 101, 102, 90 GeVGeV in e mu tau channel for Dirac neutrinosin e mu tau channel for Dirac neutrinos 90.7, 89.5, 80.590.7, 89.5, 80.5 GeVGeV forfor

  4. Bounding CKM Mixing with a Fourth Family

    SciTech Connect

    Chanowitz, Michael S.

    2009-04-22

    CKM mixing between third family quarks and a possible fourth family is constrained by global fits to the precision electroweak data. The dominant constraint is from nondecoupling oblique corrections rather than the vertex correction to Z {yields} {bar b}b used in previous analyses. The possibility of large mixing suggested by some recent analyses of FCNC processes is excluded, but 3-4 mixing of the same order as the Cabbibo mixing of the first two families is allowed.

  5. Searching for the fourth family quarks through anomalous decays

    NASA Astrophysics Data System (ADS)

    Sahin, M.; Sultansoy, S.; Turkoz, S.

    2010-09-01

    The flavor democracy hypothesis predicts the existence of the fourth standard model family. Because of the high masses of the fourth family quarks, their anomalous decays could be dominant if certain criteria are met. This will drastically change the search strategy at hadron colliders. We show that the fourth standard model family down quarks with masses up to 400-450 GeV can be observed (or excluded) via anomalous decays by Tevatron.

  6. "Silver" mode for heavy Higgs search in the presence of a fourth SM family

    E-print Network

    S. Sultansoy; G. Unel

    2007-07-25

    We investigate the possible enhancement to the discovery of the heavy Higgs boson through the possible fourth SM family heavy neutrino. Using the channel h-> v4 v4->mu W mu W-> mu j j mu j j, it is found that for certain ranges of Higgs boson and v4 masses LHC could discover both of them simultaneously with 1 fb^-1 integrated luminosity.

  7. Cosmic ray electron and positron excesses from a fourth generation heavy Majorana neutrino

    SciTech Connect

    Masina, Isabella; Sannino, Francesco E-mail: sannino@cp3-origins.net

    2011-08-01

    Unexpected features in the energy spectra of cosmic rays electrons and positrons have been recently observed by PAMELA and Fermi-LAT satellite experiments, opening to the exciting possibility of an indirect manifestation of new physics. A TeV-scale fourth lepton family is a natural extension of the Standard Model leptonic sector (also linked to the hierarchy problem in Minimal Walking Technicolor models). The heavy Majorana neutrino of this setup mixes with Standard Model charged leptons through a weak charged current interaction. Here, we first study analytically the energy spectrum of the electrons and positrons originated in the heavy Majorana neutrino decay modes, also including polarization effects. We then compare the prediction of this model with the experimental data, exploiting both the standard direct method and our recently proposed Sum Rules method. We find that the decay modes involving the tau and/or the muon charged leptons as primary decay products fit well the PAMELA and Fermi-LAT lepton excesses while there is tension with respect to the antiproton to proton fraction constrained by PAMELA.

  8. Lorentz violation in three-family neutrino oscillation

    E-print Network

    Shimin Yang; Bo-Qiang Ma

    2009-10-06

    We analyze the consequences of Lorentz violation (LV) to three-generation neutrino oscillation in the massless neutrino sector. We present a general formalism of three-family neutrino oscillation with neutrino flavor states being mixing states of energy eigenstates. It is also found that the mixing parts could strongly depend on neutrino energy by special choices of Lorentz violation parameters. By confronting with the existing experimental data on neutrino oscillation, the upper bounds on LV parameters are derived. Because the oscillation amplitude could vary with the neutrino energy, neutrino experiments with energy dependence may test and constrain the Lorentz violation scenario for neutrino oscillation.

  9. $?(27)$ family symmetry and neutrino mixing

    E-print Network

    Ivo de Medeiros Varzielas

    2015-08-03

    The observed neutrino mixing, having a near maximal atmospheric neutrino mixing angle and a large solar mixing angle, is close to tri-bi-maximal. This structure may be related to the existence of a discrete non-Abelian family symmetry. In this paper the family symmetry is the non-Abelian discrete group $\\Delta(27)$, a subgroup of $SU(3)$ with triplet and anti-triplet representations. Different frameworks are constructed in which the mixing follows from combining fermion mass terms with the vacuum structure enforced by the discrete symmetry. Mass terms for the fermions originate from familon triplets, anti-triplets or both. Vacuum alignment for the family symmetry breaking familons follows from simple invariants.

  10. Leptonic mixing, family symmetries, and neutrino phenomenology

    SciTech Connect

    Medeiros Varzielas, I. de; Gonzalez Felipe, R.; Serodio, H.

    2011-02-01

    Tribimaximal leptonic mixing is a mass-independent mixing scheme consistent with the present solar and atmospheric neutrino data. By conveniently decomposing the effective neutrino mass matrix associated to it, we derive generic predictions in terms of the parameters governing the neutrino masses. We extend this phenomenological analysis to other mass-independent mixing schemes which are related to the tribimaximal form by a unitary transformation. We classify models that produce tribimaximal leptonic mixing through the group structure of their family symmetries in order to point out that there is often a direct connection between the group structure and the phenomenological analysis. The type of seesaw mechanism responsible for neutrino masses plays a role here, as it restricts the choices of family representations and affects the viability of leptogenesis. We also present a recipe to generalize a given tribimaximal model to an associated model with a different mass-independent mixing scheme, which preserves the connection between the group structure and phenomenology as in the original model. This procedure is explicitly illustrated by constructing toy models with the transpose tribimaximal, bimaximal, golden ratio, and hexagonal leptonic mixing patterns.

  11. Sensitivity to oscillation with a sterile fourth generation neutrino from ultra-low threshold neutrino-nucleus coherent scattering

    E-print Network

    Dutta, Bhaskar; Mahapatra, Rupak; Mirabolfathi, Nader; Strigari, Louis E; Walker, Joel W

    2015-01-01

    We discuss prospects for probing short-range sterile neutrino oscillation using neutrino-nucleus coherent scattering with ultra-low energy ($\\sim 10$ eV - 100 eV) recoil threshold cryogenic Si and Ge detectors. The analysis is performed in the context of a specific and contemporary reactor-based experimental proposal, developed in cooperation with the Nuclear Science Center at Texas A&M University, and references available technology based upon economical and scalable detector arrays. The baseline of the experiment is substantially shorter than existing measurements, as near as 1 meter from the reactor core, and is moreover variable, extending continuously up to a range of about 20~meters. This proximity and variety combine to provide extraordinary sensitivity to a wide spectrum of oscillation scales, while facilitating the tidy cancellation of leading systematic uncertainties in the reactor source. For expected exposures, we demonstrate sensitivity to first/fourth neutrino oscillation with a mass gap $\\D...

  12. The discovery of the fourth family at the LHC: what if?

    E-print Network

    B. Holdom

    2006-08-25

    The first evidence of new strong interactions may be a sufficiently massive fourth family observed at the LHC. The fourth family masses, of the leptons in particular, are constrained by the electroweak precision data, and this leads to signatures at the LHC that may imply early discovery. We study the implications of this discovery from a bottom-up perspective, where effective 4-fermion operators model the dominant effects of the new dynamics. We identify simple approximate symmetries of these operators that may be required for realistic masses of the third and fourth families. The large top mass for instance is related to the structure of these operators.

  13. Family Influence: Key to Fruit and Vegetable Consumption among Fourth- and Fifth-Grade Students

    ERIC Educational Resources Information Center

    Gross, Susan M.; Pollock, Elizabeth Davenport; Braun, Bonnie

    2010-01-01

    Objective: To assess social and familial environmental influences on fruit and vegetable (FV) consumption of fourth- and fifth-graders living in a culturally diverse, urban setting. Design: In 2006, students from 9 fourth- and fifth-grade classrooms from a public school in the Washington-Baltimore Metropolitan Region were recruited as part of the…

  14. From the fourth color to spin-charge separation: Neutrinos and spinons

    NASA Astrophysics Data System (ADS)

    Xiong, Chi

    2015-08-01

    We introduce the spin-charge separation mechanism to the quark-lepton unification models which consider the lepton number as the fourth color. In certain finite-density systems, quarks and leptons are decomposed into spinons and chargons, which carry the spin and charge degrees of freedom respectively. Neutrinos can be related to the spinons with respect to the electric-charge and spin separation in the early universe or other circumstances. Some effective, probably universal couplings between the spinon sector and the chargon sector are derived and a phenomenological description for the chargon condensate is proposed. It is then demonstrated that the spinon current can induce vorticity in the chargon condensate, and spinon zero modes are trapped in the vortices, forming spinon-vortex bound states. In cosmology this configuration may lead to the emission of extremely high energy neutrinos when vortices split and reconnect.

  15. From the Fourth Color to Spin-Charge Separation -- Neutrinos and Spinons

    NASA Astrophysics Data System (ADS)

    Xiong, Chi

    We introduce the spin-charge separation mechanism to the quark-lepton unification models which consider the lepton number as the fourth color. In certain finite-density systems, quarks and leptons are decomposed into spinons and chargons, which carry the spin and charge degrees of freedom respectively. Neutrinos can be related to the spinons with respect to the electric-charge and spin separation in the early universe or other circumstances. Some effective, probably universal couplings between the spinon sector and the chargon sector are derived and a phenomenological description for the chargon condensate is proposed. It is then demonstrated that the spinon current can induce vorticity in the chargon condensate, and spinon zero modes are trapped in the vortices, forming spinon-vortex bound states. In cosmology this configuration may lead to the emission of extremely high energy neutrinos when vortices split and reconnect.

  16. Sensitivity to oscillation with a sterile fourth generation neutrino from ultra-low threshold neutrino-nucleus coherent scattering

    E-print Network

    Bhaskar Dutta; Yu Gao; Rupak Mahapatra; Nader Mirabolfathi; Louis E. Strigari; Joel W. Walker

    2015-11-09

    We discuss prospects for probing short-range sterile neutrino oscillation using neutrino-nucleus coherent scattering with ultra-low energy ($\\sim 10$ eV - 100 eV) recoil threshold cryogenic Si and Ge detectors. The analysis is performed in the context of a specific and contemporary reactor-based experimental proposal, developed in cooperation with the Nuclear Science Center at Texas A&M University, and references available technology based upon economical and scalable detector arrays. The baseline of the experiment is substantially shorter than existing measurements, as near as 1 meter from the reactor core, and is moreover variable, extending continuously up to a range of about 20~meters. This proximity and variety combine to provide extraordinary sensitivity to a wide spectrum of oscillation scales, while facilitating the tidy cancellation of leading systematic uncertainties in the reactor source. For expected exposures, we demonstrate sensitivity to first/fourth neutrino oscillation with a mass gap $\\Delta m^2 \\sim 1 \\, {\\rm eV}^2$ at an amplitude $\\sin^2 2\\theta \\sim 10^{-2}$, or $\\Delta m^2 \\sim 0.1 \\, {\\rm eV}^2$ at unit amplitude.

  17. Fourth SM family, breaking of mass democracy, and the CKM mixings

    SciTech Connect

    Atag, S.; Celikel, A.; Ciftci, A.K.; Sultansoy, S. |; Yilmaz, U.O.

    1996-11-01

    We consider the violation of the democratic mass matrix in the framework of the four-family standard model. Predictions of fourth-family fermion masses as well as quark and lepton CKM mixings are presented. Production and decay modes of new fermions are discussed. {copyright} {ital 1996 The American Physical Society.}

  18. Family Outing Activities and Achievement among Fourth Graders in Compensatory Education Funded Schools.

    ERIC Educational Resources Information Center

    Griswold, Philip A.

    This study sought to identify the relationship between operationally-defined family outing activities and measures of achievement among fourth grade students from educationally disadvantaged backgrounds. The results, collected for four successive years from 1715 students in urban Los Angeles, indicated that: (1) participation in family activities…

  19. Thinking beyond Measurement, Description and Judgment: Fourth Generation Evaluation in Family-Centered Pediatric Healthcare Organizations

    ERIC Educational Resources Information Center

    Moreau, Katherine Ann; Clarkin, Chantalle Louise

    2012-01-01

    Background: Although pediatric healthcare organizations have widely implemented the philosophy of family-centered care (FCC), evaluators and health professionals have not explored how to preserve the philosophy of FCC in evaluation processes. Purpose: To illustrate how fourth generation evaluation, in theory, could facilitate collaboration between…

  20. Developing Cross-Cultural Competence: A Guide for Working with Children and Their Families. Fourth Edition

    ERIC Educational Resources Information Center

    Lynch, Eleanor W., Ed.; Hanson, Marci J., Ed.

    2011-01-01

    As the U.S. population grows more and more diverse, how can professionals who work with young children and families deliver the best services while honoring different customs, beliefs, and values? The answers are in the fourth edition of this bestselling textbook, fully revised to reflect nearly a decade of population changes and best practices in…

  1. Quasi-degenerate neutrinos from an abelian family symmetry

    SciTech Connect

    Binetruy, P. |; Lavignac, S.; Petcov, S. |; Ramond, P.

    1996-12-31

    The authors show that models with an abelian family symmetry which accounts for the observed hierarchies of masses and mixings in the quark sector may also accommodate quasi-degeneracies in the neutrino mass spectrum. Such approximate degeneracies are, in this context, associated with large mixing angles. The parameters of this class of models are constrained. The authors discuss their phenomenological implications for present and foreseen neutrino experiments.

  2. Higgs Mass Constraints on a Fourth Family: Upper and Lower Limits on CKM Mixing

    SciTech Connect

    Chanowitz, Michael S.

    2010-06-25

    Theoretical and experimental limits on the Higgs boson mass restrict CKM mixing of a possible fourth family beyond the constraints previously obtained from precision electroweak data alone. Existing experimental and theoretical bounds on m{sub H} already significantly restrict the allowed parameter space. Zero CKM mixing is excluded and mixing of order {theta}{sub Cabbibo} is allowed. Upper and lower limits on 3-4 CKM mixing are exhibited as a function of m{sub H}. We use the default inputs of the Electroweak Working Group and also explore the sensitivity of both the three and four family fits to alternative inputs.

  3. Neutrinos

    E-print Network

    J. Bernabeu

    2000-12-22

    In these lectures the following topics are considered: historical remarks and general properties, Dirac and Majorana neutrino masses, effective lagrangian approach, the seesaw mechanism, the number of active left-hauded neutrino species, the light neutrino mass matrix, the direct measurement of neutrino masses, double beta decay, neutrino oscillations in vacuum and neutrino oscillations in matter.

  4. Higgs boson mass bounds in the presence of a heavy fourth quark family

    E-print Network

    John Bulava; Philipp Gerhold; Karl Jansen; Jim Kallarackal; Attila Nagy

    2013-01-16

    We present Higgs boson mass bounds in a lattice regularization allowing thus for non-perturbative investigations. In particular, we employ a lattice modified chiral invariant Higgs-Yukawa model using the overlap operator. We show results for the upper and lower Higgs boson mass bounds in the presence of a heavy mass-degenerate quark doublet with masses ranging up to 700 GeV. We perform infinite volume extrapolations in most cases, and examine several values of the lattice cutoff. Furthermore, we argue that the lower Higgs boson mass bound is stable with respect to the addition of higher dimensional operators to the scalar field potential. Our results have severe consequences for the phenomenology of a fourth generation of quarks if a light Higgs boson is discovered at the LHC.

  5. A new family of implicit fourth order compact schemes for unsteady convection-diffusion equation with variable convection coefficient

    E-print Network

    Shuvam Sen

    2012-01-16

    In this paper, a new family of implicit compact finite difference schemes for computation of unsteady convection-diffusion equation with variable convection coefficient is proposed. The schemes are fourth order accurate in space and second or lower order accurate in time depending on the choice of weighted time average parameter. The proposed schemes, where transport variable and its first derivatives are carried as the unknowns, combine virtues of compact discretization and Pad\\'{e} scheme for spatial derivative. These schemes which are based on five point stencil with constant coefficients, named as \\emph{(5,5) Constant Coefficient 4th Order Compact} [(5,5)CC-4OC], give rise to a diagonally dominant system of equations and shows higher accuracy and better phase and amplitude error characteristics than some of the standard methods. These schemes are capable of using a grid aspect ratio other than unity and are unconditionally stable. They efficiently capture both transient and steady solutions of linear and nonlinear convection-diffusion equations with Dirichlet as well as Neumann boundary condition. The proposed schemes can be easily implemented and are applied to problems governed by incompressible Navier-Stokes equations apart from linear convection-diffusion equation. Results obtained are in excellent agreement with analytical and available numerical results in all cases, establishing efficiency and accuracy of the proposed scheme.

  6. Natural fourth generation of leptons

    E-print Network

    Oleg Antipin; Matti Heikinheimo; Kimmo Tuominen

    2009-09-14

    We consider implications of a fourth generation of leptons, allowing for the most general mass patterns for the fourth generation neutrino. We determine the constraints due to the precision electroweak measurements and outline the signatures to search for at the LHC experiments. As a concrete framework to apply these results we consider the minimal walking technicolor (MWTC) model where the matter content, regarding the electroweak quantum numbers, corresponds to a fourth generation.

  7. Icosahedral (A5) Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing

    E-print Network

    Everett, Lisa L

    2008-01-01

    We investigate the possibility of using icosahedral symmetry as a family symmetry group in the lepton sector. The rotational icosahedral group, which is isomorphic to A5, the alternating group of five elements, provides a natural context in which to explore (among other possibilities) the intriguing hypothesis that the solar neutrino mixing angle is governed by the golden ratio. We present a basic toolbox for model-building using icosahedral symmetry, including explicit representation matrices and tensor product rules. As a simple application, we construct a minimal model at tree level in which the solar angle is related to the golden ratio, the atmospheric angle is maximal, and the reactor angle vanishes to leading order. The approach provides a rich setting in which to investigate the flavor puzzle of the Standard Model.

  8. The Lepton Sector of a Fourth Generation

    E-print Network

    Gustavo Burdman; Leandro Da Rold; Ricardo D. Matheus

    2010-05-10

    In extensions of the standard model with a heavy fourth generation one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

  9. Neutrinos

    NASA Astrophysics Data System (ADS)

    Winter, K.; Murdin, P.

    2000-11-01

    Neutrinos are electrically neutral ELEMENTARY PARTICLES which experience only the weak nuclear force and gravity. Their existence was introduced as a hypothesis by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in radioactive beta decay. Chadwick had discovered in 1914 that the energy spectrum of electrons emitted in beta decay was not monoenergetic but continuous...

  10. Fourth Generations with an Inert Doublet Higgs

    E-print Network

    Efunwande Osoba

    2012-06-28

    We explore an extension of the fourth generation model with multi-Higgs doublets and three fermion singlets. The Standard Model neutrinos acquire mass radiatively at one loop level while the fourth generation neutrinos acquire a heavy tree-level mass. The model also contains several Dark Matter candidate whose stability is guaranteed by a $Z_2$ discrete symmetry. The possibility of CP violation in the scalar sector is also briefly discussed.

  11. Fourth quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2013-12-01

    In this Letter we will analyze the creation of the multiverse. We will first calculate the wave function for the multiverse using third quantization. Then we will fourth-quantize this theory. We will show that there is no single vacuum state for this theory. Thus, we can end up with a multiverse, even after starting from a vacuum state. This will be used as a possible explanation for the creation of the multiverse. We also analyze the effect of interactions in this fourth-quantized theory.

  12. Differences in various biochemical and clinical parameters with respect to family history of Non Communicable Diseases in fourth year MBBS students of Karachi, Pakistan

    PubMed Central

    Basit, Khalid Abdul; Fawwad, Asher; Munir, Muhammad Asadullah; Siddiqui, Iftikhar Ahmed; Siddiqui, Sidra; Basit, Abdul

    2015-01-01

    Objective: To observe the differences of various biochemical and clinical parameters with respect to Family History (FH) of Non-communicable Diseases (NCDs) in fourth year Bachelor of Medicine, Bachelor of Surgery (MBBS) students. Methods: This observational study was conducted at Baqai Institute of Diabetology & Endocrinology from December 2013 to January 2014. Total 50 medical students from Dow University of Health Sciences (DUHS) participated in the study. Statistical Package for Social Sciences (SPSS) version 13 was used to analyze the data. For cross tabulation and mean comparison z-test and t test were applied. Results: Out of 50 subjects, there were 26 (52%) females. Mean age of the study population was 21.56 ± 0.90 years. Mean serum cholesterol levels with positive FH of NCDs was significantly higher than negative FH of NCDs (p=0.005). Mean value of low density lipoprotein (LDL) of positive family history of NCDs was found higher than those with negative FH (p=0.006) being statistically significant. The insulin levels in subjects with positive FH of NCDs were higher than subjects with negative FH of NCDs (p=0.685). However, serum leptin and plasma renin showed no significant difference with the negative FH of NCDs being higher compared to positive FH of NCDs (p=0.068) and (p=0.884) respectively. However, Waist circumference, Body mass index and central obesity in subjects with positive FH of NCDs shows increasing trend but no statistically significant difference (p > 0.05) was observed. Conclusion: In our study of various biochemical and clinical parameters with respect to FH of NCDs, Serum Cholesterol and LDL levels were observed higher and statistically significant. PMID:26430439

  13. Lepton sector of a fourth generation

    SciTech Connect

    Burdman, G.; Da Rold, L.; Matheus, R. D.

    2010-09-01

    In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

  14. Electromagnetic properties of massive neutrinos

    SciTech Connect

    Dobrynina, A. A. Mikheev, N. V.; Narynskaya, E. N.

    2013-10-15

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  15. Neutrinos from the Early Universe and physics beyond standard models

    NASA Astrophysics Data System (ADS)

    Kirilova, Daniela

    2015-01-01

    Neutrino oscillations present the only robust example of experimentally detected physics beyond the standard model. This review discusses the established and several hypothetical beyond standard models neutrino characteristics and their cosmological effects and constraints. Particularly, the contemporary cosmological constraints on the number of neutrino families, neutrino mass differences and mixing, lepton asymmetry in the neutrino sector, neutrino masses, light sterile neutrino are briefly reviewed.

  16. Family Child Care Calendar-Keeper[TM] 2001: A Record Keeping System Including Nutrition Information for Child Care Providers. Twenty-Fourth Edition.

    ERIC Educational Resources Information Center

    Beuch, Beth, Ed.; Beuch, Ethel, Ed.; Schloff, Pam, Ed.

    Noting that accurate recordkeeping for tax purposes is extremely important for family child care providers, this calendar provides a format for recording typical family child care expenses and other information. Included are the following: (1) monthly expense charts with categories matching Schedule C; (2) attendance and payment log; (3) payment…

  17. Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment

    E-print Network

    Christine Kraus; Andrej Singer; Kathrin Valerius; Christian Weinheimer

    2013-05-09

    The recent analysis of the normalization of reactor antineutrino data, the calibration data of solar neutrino experiments using gallium targets, and the results from the neutrino oscillation experiment MiniBooNE suggest the existence of a fourth light neutrino mass state with a mass of O(eV), which contributes to the electron neutrino with a sizable mixing angle. Since we know from measurements of the width of the Z0 resonance that there are only three active neutrinos, a fourth neutrino should be sterile (i.e., interact only via gravity). The corresponding fourth neutrino mass state should be visible as an additional kink in beta-decay spectra. In this work the phase II data of the Mainz Neutrino Mass Experiment have been analyzed searching for a possible contribution of a fourth light neutrino mass state. No signature of such a fourth mass state has been found and limits on the mass and the mixing of this fourth mass states are derived.

  18. Sterile neutrino at the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Kobach, Andrew

    2015-10-01

    We investigate the potential for the Deep Underground Neutrino Experiment (DUNE) to probe the existence and effects of a fourth neutrino mass eigenstate. We study the mixing of the fourth mass eigenstate with the three active neutrinos of the Standard Model, including the effects of new sources of C P -invariance violation, for a wide range of new mass-squared differences, from lower than 10-5 eV2 to higher than 1 eV2 . DUNE is sensitive to previously unexplored regions of the mixing angle-mass-squared difference parameter space. If there is a fourth neutrino, in some regions of the parameter space, DUNE is able to measure the new oscillation parameters (some very precisely) and clearly identify two independent sources of C P -invariance violation. Finally, we use the hypothesis that there are four neutrino mass eigenstates in order to ascertain how well DUNE can test the limits of the three-massive-neutrinos paradigm. In this way, we briefly explore whether light sterile neutrinos can serve as proxies for other, in principle unknown, phenomena that might manifest themselves in long-baseline neutrino oscillation experiments.

  19. A fourth polymorph in the family of BEDT-TTF salts with thiocyanatocuprate(I) anions: (BEDT-TTF){<_4}Cu{<_3}(NCS){<_5}.

    SciTech Connect

    Schlueter, J. A.; Geiser, U.; Wang, H. H.; Manson, J. L.

    2012-05-01

    A new crystallographic modification was found in the family of BEDT-TTF salts containing thiocyanatocuprate(I) anions. The cation radical salt crystallizes in the P{sup {bar 1}} space group with a = 8.2720(9) {angstrom}, b = 19.099(2) {angstrom}, c = 43.758(5) {angstrom}, {alpha} = 81.088(4){sup o}, {beta} = 87.253(4){sup o}, {gamma} = 83.790(4){sup o}, V = 6786.2(13) {angstrom}{sup 3} at 150 K. The BEDT-TTF radical cations pack in an {alpha}-type motif, but every four columns, there is a slip in the layer. Where this slip occurs, the stacks are coupled in a {beta}'' manner. The material exhibits semiconductive behavior with an activation energy of 0.13 eV above 250 K and 0.22 eV below. Packing motif of the (BEDT-TTF){sub 4}Cu{sub 3}(NCS){sub 5} structure.

  20. Saving fourth generation and baryon number by living long

    NASA Astrophysics Data System (ADS)

    Murayama, Hitoshi; Rentala, Vikram; Shu, Jing; Yanagida, Tsutomu T.

    2011-11-01

    Recent studies of precision electroweak observables have led to the conclusion that a fourth generation is highly constrained. However, we point out that a long-lived fourth generation can reopen a large portion of the parameter space. In addition, it preserves baryon and lepton asymmetries against sphaleron erasure even if B - L = 0 . It opens up the possibility of exact B - L symmetry and hence Dirac neutrinos. The fourth generation can be observed at the LHC with unique signatures of long-lived particles in the near future.

  1. Search for Fourth Generation Quarks

    SciTech Connect

    Li, S.-W.

    2010-02-10

    It is still a mystery why the Standard Model as we know it has only three families. At new high energy colliders it is worthwhile to search for a new additional family which obviously would have a heavy neutrino to avoid the LEP bounds. This paper discusses new studies made with the CMS detector for the search of new heavy b-like quarks in several different decay modes and for different possible mass regions. These studies are based on detailed detector simulation, including all Standard Model backgrounds. Particular emphasis is given to possible early discoveries, i.e. with 100 pb{sup -1} or less. Projected 95% CL exclusion limits as a function of luminosity are presented as well.

  2. Family 

    E-print Network

    Unknown

    2011-09-05

    (ADJFAT) and actual(ACTFAT)), intramuscular fat (MARB), and Warner-Bratzler shear force tenderness (WBSF). Family types with a greater proportion of Bos indicus in the sire in relation to the amount in the dam (F1 x A and B x F1) averaged longer GL... between males and females. Further examination within each sex showed a difference between male reciprocals that was two times that of females. iv Calves with a higher percentage of Bos indicus in the sire compared to the proportion in the dam showed...

  3. Proton stability from a fourth family

    E-print Network

    Christopher Smith

    2012-02-06

    The possibility to violate baryon or lepton number without introducing any new flavor structures, beyond those needed to account for the known fermion masses and mixings, is analyzed. With four generations, but only three colors, this minimality requirement is shown to lead to baryon number conservation, up to negligible dimension-18 operators. In a supersymmetric context, this same minimality principle allows only superpotential terms with an even number of flavored superfields, hence effectively enforces R-parity both within the MSSM and in a GUT context.

  4. 2040: Fourth Generation Technologies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    It is predicted that by the year 2040, there will be no distinction between a commercial airliner and a commercial launch vehicle. Fourth Generation Reusable Launch Vehicles (RLVs) will be so safe and reliable that no crew escape system will be necessary. Every year there will be in excess of 10,000 flights and the turn-around time between flights will be just hours. The onboard crew will be able to accomplish a launch without any assistance from the ground. Provided is an artist's concept of these fourth generation space vehicles.

  5. Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    McKeown, R. D.

    2010-08-01

    Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos [1]. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.

  6. Cosmic Neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2008-02-01

    I recall the place of neutrinos in the electroweak theory and summarize what we know about neutrino mass and flavor change. I next review the essential characteristics expected for relic neutrinos and survey what we can say about the neutrino contribution to the dark matter of the Universe. Then I discuss the standard-model interactions of ultrahigh-energy neutrinos, paying attention to the consequences of neutrino oscillations, and illustrate a few topics of interest to neutrino observatories. I conclude with short comments on the remote possibility of detecting relic neutrinos through annihilations of ultrahigh-energy neutrinos at the Z resonance.

  7. Neutrino Oscillations with Reactor Neutrinos

    E-print Network

    Anatael Cabrera

    2007-02-22

    Prospect measurements of neutrino oscillations with reactor neutrinos are reviewed in this document. The following items are described: neutrinos oscillations status, reactor neutrino experimental strategy, impact of uncertainties on the neutrino oscillation sensitivity and, finally, the experiments in the field. This is the synthesis of the talk delivered during the NOW2006 conference at Otranto (Italy) during September 2006.

  8. Neutrino counting with the SLD at the Stanford Linear Collider

    SciTech Connect

    Band, H.; Bugg, W.; Chadwick, G.; Coyne, D.; Gyure, M.; Hertzbach, S.; Messner, R.; Mincer, A.; Mockett, P.; Nauenberg, U.

    1989-06-01

    One of the fundamental measurements to be made at the e/sup +/e/sup /minus// colliders, SLC and LEP, is the determination of the number of neutrino families produced in Z/sup 0/ boson decays. In the event that a fourth generation of light Dirac neutrinos exists, the experimental consequences at the Z/sup 0/ resonances are easily seen; the total width will be increased by 171 MeV over its three generation value, to be compared to the /approx/30 MeV precision that should be achievable once the systematic limit has been reached. A reasonable figure of merit for the precision of a neutrino counting measurement of 0.2 standard model generations corresponds to a Z/sup 0/ width measurement error of 35 MeV; close to the limit of anticipated experimental capability. In fact, it is highly desirable to achieve an even higher precision if possible, in order to distinguish potentially small effects due to exotic phenomena from beyond the Standard Model. This paper will address the issue of how to obtain the best measurement of the number of neutrino generations as a function of the size of the available sample of Z/sup 0/ decays. The results presented here were obtained by our study group in an attempt to understand the limitations of a realistic neutrino counting measurement with the SLD at the Stanford Linear Collider. However, many of our findings are general enough to be applicable to any e/sup +/e/sup /minus// detector designed to take data at the Z/sup 0/ resonance. 19 refs., 5 figs., 6 tabs.

  9. Sterile neutrinos?

    E-print Network

    S. M. Bilenky; C. Giunti

    1999-05-05

    The notion of sterile neutrinos is discussed. The schemes of mixing of four massive neutrinos, which imply the existence of sterile neutrinos, are briefly considered. Several model independent methods that allow to reveal possible transitions of solar neutrinos into sterile states are presented.

  10. Solar Neutrinos

    E-print Network

    A. B. McDonald

    2002-09-21

    Present results and future measurements of solar neutrinos are discussed. The results to date indicate that solar electron neutrinos are changing to other active types and that transitions solely to sterile neutrinos are disfavored. The flux of $^{8}B$ solar neutrinos produced in the Sun, inferred assuming only active neutrino types, is found to be in very good agreement with solar model calculations. Future measurements will focus on greater accuracy for charged current and neutral current sensitive reactions to provide more accurate measurements of neutrino flavour change and further studies of day-night flux differences and spectral shape. Other experiments sensitive to lower energy solar neutrinos will be in operation soon.

  11. Sterile neutrino signatures in core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Warren, Mackenzie; Meixner, Matthew; Mathews, Grant; Hidaka, Jun; Kajino, Toshitaka

    2014-09-01

    We have explored the impact of a fourth right handed sterile neutrino on core-collapse supernovae. We utilize a relativistic hydrodynamic spherical supernova model. We show that it is possible that oscillations between a sterile neutrino and electron neutrino (or their antiparticles) will enhance the supernova explosion energy by efficiently transporting neutrino energy from the core to just behind the shock. We have considered a range of masses and mixing angles, including those consistent with sterile neutrino dark matter. We find that the supernova explosion energy can be significantly increased due to the rapid transport of electron antineutrinos as sterile neutrinos from the core to behind the shock where they convert back to active neutrinos. This mechanism enhances the neutrino heating in the region behind the shock and leads to increased luminosities of all three neutrino flavors in addition to an enhanced explosion kinetic energy. We also show that the inclusion of sterile neutrinos leads to a unique oscillatory behavior in the emergent neutrino luminosities from the cyclic depletion of the neutrino density due to oscillations to a sterile neutrino. We have explored the impact of a fourth right handed sterile neutrino on core-collapse supernovae. We utilize a relativistic hydrodynamic spherical supernova model. We show that it is possible that oscillations between a sterile neutrino and electron neutrino (or their antiparticles) will enhance the supernova explosion energy by efficiently transporting neutrino energy from the core to just behind the shock. We have considered a range of masses and mixing angles, including those consistent with sterile neutrino dark matter. We find that the supernova explosion energy can be significantly increased due to the rapid transport of electron antineutrinos as sterile neutrinos from the core to behind the shock where they convert back to active neutrinos. This mechanism enhances the neutrino heating in the region behind the shock and leads to increased luminosities of all three neutrino flavors in addition to an enhanced explosion kinetic energy. We also show that the inclusion of sterile neutrinos leads to a unique oscillatory behavior in the emergent neutrino luminosities from the cyclic depletion of the neutrino density due to oscillations to a sterile neutrino. Supported by the U.S. Department of Energy under Nuclear Theory Grant DE-FG02-95-ER40934.

  12. Fourth Generation Parity

    SciTech Connect

    Lee, Hye-Sung; Soni, Amarjit

    2013-01-01

    We present a very simple 4th-generation (4G) model with an Abelian gauge interaction under which only the 4G fermions have nonzero charge. The U(1) gauge symmetry can have a Z_2 residual discrete symmetry (4G-parity), which can stabilize the lightest 4G particle (L4P). When the 4G neutrino is the L4P, it would be a neutral and stable particle and the other 4G fermions would decay into the L4P leaving the trace of missing energy plus the standard model fermions. Because of the new symmetry, the 4G particle creation and decay modes are different from those of the sequential 4G model, and the 4G particles can be appreciably lighter than typical experimental bounds.

  13. A theoretical perspective on neutrino physics

    SciTech Connect

    Marciano, W.J. )

    1989-09-01

    A survey of sin{sup 2} {theta}{sub W}, {rho}, CKM matrix, and axial-isoscalar neutral current measurements via neutrino scattering is presented. Loop effects due to heavy top or a fourth generation are described. Neutrino oscillations are discussed in a three generation mixing framework and some motivation for {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillation searches is given. 15 refs., 1 tab.

  14. Tau Neutrino Appearance via Neutrino Oscillations in Atmospheric Neutrinos

    E-print Network

    Tokyo, University of

    Tau Neutrino Appearance via Neutrino Oscillations in Atmospheric Neutrinos A Dissertation Presented of the Dissertation Tau Neutrino Appearance via Neutrino Oscillations in Atmospheric Neutrinos by Tokufumi Kato Doctor of Philosophy in Physics Stony Brook University 2007 A search for the appearance of tau neutrinos from µ

  15. May heavy neutrinos solve underground and cosmic-ray puzzles?

    SciTech Connect

    Belotsky, K. M.; Fargion, D.; Khlopov, M. Yu.; Konoplich, R. V.

    2008-01-15

    Primordial heavy neutrinos of the fourth generation might explain different astrophysical puzzles. The simplest fourth-neutrino scenario is consistent with known fourth-neutrino physics, cosmic ray antimatter, cosmic gamma fluxes, and positive signals in underground detectors for a very narrow neutrino mass window (46-47 GeV). However, accounting for the constraint of underground experiment CDMS prohibits solution of cosmic-ray puzzles in this scenario. We have analyzed extended heavy-neutrino models related to the clumpiness of neutrino density, new interactions in heavy-neutrino annihilation, neutrino asymmetry, and neutrino decay. We found that, in these models, the cosmic-ray imprint may fit the positive underground signals in DAMA/Nal experiment in the entire mass range 46-70 GeV allowed from uncertainties of electroweak parameters, while satisfaction of the CDMS constraint reduces the mass range to around 50 GeV, where all data can come to consent in the framework of the considered hypothesis.

  16. Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2010-01-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(10{sup 21}) muons/year. This prepares the way for a Neutrino Factory (NF) in which high energy muons decay within the straight sections of a storage ring to produce a beam of neutrinos and anti-neutrinos. The NF concept was proposed in 1997 at a time when the discovery that the three known types of neutrino ({nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}) can change their flavor as they propagate through space (neutrino oscillations) was providing a first glimpse of physics beyond the Standard Model. This development prepares the way for a new type of neutrino source: a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  17. Neutrino Interactions

    E-print Network

    Kevin McFarland

    2008-04-24

    This manuscript summarizes a series of three lectures on interactions of neutrinos . The lectures begin with a pedagogical foundation and then explore topics of interest to current and future neutrino oscillation and cross-section experiments.

  18. Neutrino physics

    SciTech Connect

    Kayser, Boris; /Fermilab

    2005-06-01

    Thanks to compelling evidence that neutrinos can change flavor, we now know that they have nonzero masses, and that leptons mix. In these lectures, we explain the physics of neutrino flavor change, both in vacuum and in matter. Then, we describe what the flavor-change data have taught us about neutrinos. Finally, we consider some of the questions raised by the discovery of neutrino mass, explaining why these questions are so interesting, and how they might be answered experimentally.

  19. Neutrino Experiments

    E-print Network

    J. M. Conrad

    2007-08-17

    This article is a summary of four introductory lectures on ``Neutrino Experiments,'' given at the 2006 TASI summer school. The purposes were to sketch out the present questions in neutrino physics and to discuss the experimental challenges in addressing them. This article concentrates on specific, illustrative examples rather than providing a complete overview of the field of neutrino physics. These lectures were meant to lay the ground-work for the talks which followed on specific, selected topics in neutrino physics.

  20. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water ?erenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  1. Neutrino Telescopes

    SciTech Connect

    Hernandez-Rey, Juan Jose

    2006-11-28

    We review the present status of high energy neutrino astronomy. The advantages of neutrinos as extra-terrestrial messengers are recalled and their possible extra-terrestrial sources examined. We review as well the status of present and future neutrino telescopes and summarize the results obtained so far in this field.

  2. Search for Majorana neutrinos in B- ? ?+ ?- ?- decays.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Bauer, T; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, C; Cenci, R; Charles, M; Charpentier, P; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dorosz, P; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, C; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, P; Gianelle, A; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Y; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Hafkenscheid, T W; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Manzali, M; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morandin, M

    2014-04-01

    A search for heavy Majorana neutrinos produced in the B- ? ?+ ?- ?- decay mode is performed using 3??fb(-1) of integrated luminosity collected with the LHCb detector in pp collisions at center-of-mass energies of 7 and 8 TeV at the LHC. Neutrinos with masses in the range 250 to 5000 MeV and lifetimes from zero to 1000 ps are probed. In the absence of a signal, upper limits are set on the branching fraction B(B- ? ?+ ?- ?-) as functions of neutrino mass and lifetime. These limits are on the order of 10(-9) for short neutrino lifetimes of 1 ps or less. Limits are also set on the coupling between the muon and a possible fourth-generation neutrino. PMID:24745405

  3. GUT implications from neutrino mass

    SciTech Connect

    Carl H. Albright

    2001-06-26

    An overview is given of the experimental neutrino mixing results and types of neutrino models proposed, with special attention to the general features of various GUT models involving intra-family symmetries and horizontal flavor symmetries. Many of the features are then illustrated by a specific SO (10) SUSY GUT model formulated by S.M. Barr and the author which can explain all four types of solar neutrino mixing solutions by various choices of the right-handed Majorana mass matrix. The quantitative nature of the model's large mixing angle solution is used to compare the reaches of a neutrino super beam and a neutrino factory for determining the small U{sub e3} mixing matrix element.

  4. Fourth Light at Paranal!

    NASA Astrophysics Data System (ADS)

    2000-09-01

    VLT YEPUN Joins ANTU, KUEYEN and MELIPAL It was a historical moment last night (September 3 - 4, 2000) in the VLT Control Room at the Paranal Observatory , after nearly 15 years of hard work. Finally, four teams of astronomers and engineers were sitting at the terminals - and each team with access to an 8.2-m telescope! From now on, the powerful "Paranal Quartet" will be observing night after night, with a combined mirror surface of more than 210 m 2. And beginning next year, some of them will be linked to form part of the unique VLT Interferometer with unparalleled sensitivity and image sharpness. YEPUN "First Light" Early in the evening, the fourth 8.2-m Unit Telescope, YEPUN , was pointed to the sky for the first time and successfully achieved "First Light". Following a few technical exposures, a series of "first light" photos was made of several astronomical objects with the VLT Test Camera. This instrument was also used for the three previous "First Light" events for ANTU ( May 1998 ), KUEYEN ( March 1999 ) and MELIPAL ( January 2000 ). These images served to evaluate provisionally the performance of the new telescope, mainly in terms of mechanical and optical quality. The ESO staff were very pleased with the results and pronounced YEPUN fit for the subsequent commissioning phase. When the name YEPUN was first given to the fourth VLT Unit Telescope, it was supposed to mean "Sirius" in the Mapuche language. However, doubts have since arisen about this translation and a detailed investigation now indicates that the correct meaning is "Venus" (as the Evening Star). For a detailed explanation, please consult the essay On the Meaning of "YEPUN" , now available at the ESO website. The first images At 21:39 hrs local time (01:39 UT), YEPUN was turned to point in the direction of a dense Milky Way field, near the border between the constellations Sagitta (The Arrow) and Aquila (The Eagle). A guide star was acquired and the active optics system quickly optimized the mirror system. At 21:44 hrs (01:44 UT), the Test Camera at the Cassegrain focus within the M1 mirror cell was opened for 30 seconds, with the planetary nebula Hen 2-428 in the field. The resulting "First Light" image was immediately read out and appeared on the computer screen at 21:45:53 hrs (01:45:53 UT). "Not bad! - "Very nice!" were the first, "business-as-usual"-like comments in the room. The zenith distance during this observation was 44° and the image quality was measured as 0.9 arcsec, exactly the same as that registered by the Seeing Monitoring Telescope outside the telescope building. There was some wind. ESO PR Photo 22a/00 ESO PR Photo 22a/00 [Preview - JPEG: 374 x 400 pix - 128k] [Normal - JPEG: 978 x 1046 pix - 728k] Caption : ESO PR Photo 22a/00 shows a colour composite of some of the first astronomical exposures obtained by YEPUN . The object is the planetary nebula Hen 2-428 that is located at a distance of 6,000-8,000 light-years and seen in a dense sky field, only 2° from the main plane of the Milky Way. As other planetary nebulae, it is caused by a dying star (the bluish object at the centre) that shreds its outer layers. The image is based on exposures through three optical filtres: B(lue) (10 min exposure, seeing 0.9 arcsec; here rendered as blue), V(isual) (5 min; 0.9 arcsec; green) and R(ed) (3 min; 0.9 arcsec; red). The field measures 88 x 78 arcsec 2 (1 pixel = 0.09 arcsec). North is to the lower right and East is to the lower left. The 5-day old Moon was about 90° away in the sky that was accordingly bright. The zenith angle was 44°. The ESO staff then proceeded to take a series of three photos with longer exposures through three different optical filtres. They have been combined to produce the image shown in ESO PR Photo 22a/00 . More astronomical images were obtained in sequence, first of the dwarf galaxy NGC 6822 in the Local Group (see PR Photo 22f/00 below) and then of the spiral galaxy NGC 7793 . All 8.2-m telesco

  5. Families Around the World. The Japanese Family. Teacher's Resource Unit.

    ERIC Educational Resources Information Center

    Minnesota Univ., Minneapolis. Project Social Studies Curriculum Center.

    The resource unit prepared for grade one is the fourth in a series on the theme of Families Around the World. For this study of the Japanese family, background material is presented for the teacher describing the site of Suye Mura, family structure, basic physical needs, a typical day, socialization, communication, village life today, and the…

  6. Quasidegenerate neutrinos and tribimaximal mixing

    SciTech Connect

    Medeiros Varzielas, Ivo de; Ross, Graham G.; Serna, Mario

    2009-10-01

    We consider how, for quasidegenerate neutrinos with tribimaximal mixing at a high-energy scale, the mixing angles are affected by radiative running from high- to low-energy scales in a supersymmetric theory. The limits on the high-energy scale that follow from consistency with the observed mixing are determined. We construct a model in which a non-Abelian discrete family symmetry leads to both a quasidegenerate neutrino-mass spectrum and to near tribimaximal mixing.

  7. Solar neutrinos and neutrino physics

    E-print Network

    Michele Maltoni; Alexei Yu. Smirnov

    2015-08-11

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. Theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters theta12 and Delta_m21^2 have been measured; theta13 extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3nu paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  8. Testing the Reactor and Gallium Anomalies with Intense (Anti)Neutrino Emitters

    E-print Network

    Th. Lasserre

    2012-09-23

    Several observed anomalies in neutrino oscillation data could be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few 0.1 eV$^2$ or more. This hypothesis can be tested with MCi neutrino electron capture sources ($^{51}$Cr) or kCi antineutrino $\\beta$-source ($^{144}$Ce) deployed inside or next to a large low background neutrino detector. In particular, the compact size of this source coupled with the localization of the interaction vertex lead to an oscillating pattern in event spatial (and possibly energy) distributions that would unambiguously determine neutrino mass differences and mixing angles.

  9. An Anatomy of Neutrino Oscillations

    E-print Network

    Hwang, W-Y Pauchy

    2012-01-01

    To understand neutrino oscillations in the sense of quantum mechanics or quantum field theory, we describe how to use an off-diagonal (cross-generation) neutrino-Higgs(mass) interaction to simulate oscillations in a natural way. This results in an extra orthogonal SU_f (3) family gauge theory, which may help us to resolve a few outstanding puzzles - the question of why there are only three generations, the question of why the masses of neutrinos are so tiny, and the question of why the dark-matter world is so huge (25%) as compared to the visible ordinary-matter world (5%).

  10. Neutrino Lensing

    E-print Network

    Luo Xin-Lian

    2009-09-28

    Due to the intrinsic properties of neutrinos, the gravitational lens effect for neutrino should be more colorful and meaningful than the normal lens effect of photon. Other than the oscillation experiments operated at terrestrial laboratory, in principle, we can propose a completely new astrophysical method to determine not only the nature of gravity and spacetime of lens objects but also the mixing parameters of neutrinos by analyzing neutrino trajectories near the central objects. However, compared with the contemporaneous telescopes through the observation of the electromagnetic radiation, the angular, energy and time resolution of the neutrino telescopes are still comparatively poor, we just concentrate on the two classical tests of general relativity, i.e. the angular deflection and time delay of neutrino by a lens object as a preparative work in this paper. In addition, some simple properties of neutrino lensing are investigated.

  11. Generating $?_{13}$ from sterile neutrinos in $?- ?$ symmetric models

    E-print Network

    Diana C. Rivera-Agudelo; Abdel Pérez-Lorenzana

    2015-10-07

    The smallness of the $\\theta_{13}$ mixing angle as observed in neutrino oscillation experiments can be understood through an approximated $\\mu - \\tau$ exchange symmetry in the neutrino mass matrix. Using recent oscillation neutrino data, but assuming no \\textit{CP} violation, we study $\\mu-\\tau$ breaking parameter space to establish the conditions under which such a breaking could have a perturbative origin. According to the so-obtained conditions, we suggest that a sterile neutrino, matching LSND/MiniBooNE neutrino oscillation results, could provide the necessary ingredients to properly fix atmospheric and $\\theta_{13}$ mixing angles to observable values, without exceeding the sterile neutrino fraction bound in solar oscillations. In such a scenario, we analyze the general effect of a fourth neutrino on the prediction for the effective $m_{ee}$ majorana mass parameter.

  12. Generating ?13 from sterile neutrinos in ? -? symmetric models

    NASA Astrophysics Data System (ADS)

    Rivera-Agudelo, Diana C.; Pérez-Lorenzana, Abdel

    2015-10-01

    The smallness of the ?13 mixing angle as observed in neutrino oscillation experiments can be understood through an approximated ? -? exchange symmetry in the neutrino mass matrix. Using recent oscillation neutrino data, but assuming no C P violation, we study ? -? breaking parameter space to establish the conditions under which such a breaking could have a perturbative origin. According to the so-obtained conditions, we suggest that a sterile neutrino, matching LSND/MiniBooNE neutrino oscillation results, could provide the necessary ingredients to properly fix atmospheric and ?13 mixing angles to observable values, without exceeding the sterile neutrino fraction bound in solar oscillations. In such a scenario, we analyze the general effect of a fourth neutrino on the prediction for the effective me e majorana mass parameter.

  13. Neutrino factory

    DOE PAGESBeta

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; et al

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore »making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  14. Neutrino factory

    SciTech Connect

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  15. Fourth sound of holographic superfluids

    E-print Network

    Amos Yarom

    2009-05-08

    We compute fourth sound for superfluids dual to a charged scalar and a gauge field in an AdS_4 background. For holographic superfluids with condensates that have a large scaling dimension (greater than approximately two), we find that fourth sound approaches first sound at low temperatures. For condensates that a have a small scaling dimension it exhibits non-conformal behavior at low temperatures which may be tied to the non-conformal behavior of the order parameter of the superfluid. We show that by introducing an appropriate scalar potential, conformal invariance can be enforced at low temperatures.

  16. Fourth National Development Plan, 1981-1985.

    PubMed

    1987-01-01

    This document contains provisions of Nigeria's Fourth National Development Plan (1981-85). The Plan calls for establishment of a benchmark for population censuses through the activities of a newly established National Population Commission. The Plan seeks a decline in the fertility rate through the voluntary use of family planning services and an increase in formal education. During the Plan period, the question of liberalizing the abortion law will be under consideration; the delivery of health care will be improved to strengthen the downward trend in child, infant, and maternal mortality and morbidity rates; efforts to prevent illegal immigration will be intensified; and the government will attempt to encourage trained and skilled personnel to remain in the country. To combat overurbanization, the government will also pursue a policy of integrated urban and rural development. PMID:12346675

  17. Sealing the fate of a fourth generation of fermions

    E-print Network

    Abdelhak Djouadi; Alexander Lenz

    2012-07-04

    The search for the effects of heavy fermions in the extension of the Standard Model with a fourth generation is part of the experimental program of the Tevatron and LHC experiments. Besides being directly produced, these states affect drastically the production and decay properties of the Higgs boson. In this note, we first reemphasize the known fact that in the case of a light and long-lived fourth neutrino, the present collider searches do not permit to exclude a Higgs boson with a mass below the WW threshold. In a second step, we show that the recent results from the ATLAS and CMS collaborations which observe an excess in the $\\gamma \\gamma$ and $4\\ell^\\pm$ search channels corresponding to a Higgs boson with a mass $M_H \\approx 125$ GeV, cannot rule out the fourth generation possibility if the $H \\to \\gamma \\gamma$ decay rate is evaluated when naively implementing the leading ${\\cal O}(G_F m_{f'}^2)$ electroweak corrections. Including the exact next-to-leading order electroweak corrections leads to a strong suppression of the $H \\to \\gamma \\gamma$ rate and makes this channel unobservable with present data. Finally, we point out that the observation by the Tevatron collaborations of a $\\gsim 2\\sigma$ excess in the mass range $M_H = 115$-135 GeV in the channel $q\\bar q \\to WH \\to Wb\\bar b$ can definitely not be accommodated by the fourth generation fermion scenario. All in all, if the excesses observed at the LHC and the Tevatron are indeed due to a Higgs boson, they unambiguously exclude the perturbative fermionic fourth generation case. In passing, we also point out that the Tevatron excess definitely rules out the fermiophobic Higgs scenario as well as scenarios in which the Higgs couplings to gauge bosons and bottom quarks are significantly reduced.

  18. New constraints on neutrino masses from cosmology

    SciTech Connect

    Melchiorri, A.; Serra, P.; Dodelson, S.; Slosar, A.; /Ljubljana U.

    2006-01-01

    By combining data from cosmic microwave background (CMB) experiments (including the recent WMAP third year results), large scale structure (LSS) and Lyman-{alpha} forest observations, we derive upper limits on the sum of neutrino masses of {summation}m{sub v} < 0.17eV at 95% c.l.. We then constrain the hypothesis of a fourth, sterile, massive neutrino. For the 3 massless + 1 massive neutrino case we bound the mass of the sterile neutrino to m{sub s} < 0.26eV at 95% c.l.. These results exclude at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We then generalize the analysis to account for active neutrino masses which tightens the limit to m{sub s} < 0.23eV and the possibility that the sterile abundance is not thermal. In the latter case, the constraints in the (mass, density) plane are nontrivial. For a mass of > 1eV or < 0.05eV the cosmological energy density in sterile neutrinos is always constrained to be {omega}{sub v} < 0.003 at 95% c.l.. However, for a sterile neutrino mass of {omega}{sub v} 0.25eV, {omega}{sub v} can be as large as 0.01.

  19. Personal Tutor Agenda Fourth Week

    E-print Network

    Personal Tutor Agenda Fourth Week - Each Personal Tutor arranges a meeting with students who were assigned to him/her to receive their notes, concerns and get acquainted with their problems. Personal tutor to the Quality Committee. The meeting should take place before the end of the fifth week. - Each Personal Tutor

  20. Conformal Completion of the Standard Model with a Fourth Generation

    E-print Network

    Chiu Man Ho; Pham Q. Hung; Thomas W. Kephart

    2012-05-27

    We study dynamical electroweak symmetry breaking with a fourth generation within the $Z_n$ orbifolded $AdS_5\\otimes S^5$ framework. A realistic $Z_7$ example is discussed. The initial theory reduces dynamically, due to the induced condensates, to a four-family trinification near a TeV-scale conformal fixed point where the gauge hierarchy problem does not exist. We predict new gauge bosons and bifundamental fermions and scalars accessible by the LHC.

  1. Neutrino factories

    NASA Astrophysics Data System (ADS)

    Soler, F. J. P.

    2015-07-01

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of ?13. The accelerator facility will deliver 1021 muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of ?CP that a Neutrino Factory can achieve and the ?CP coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  2. Higgs phenomenology in warped extra dimensions with a fourth generation

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Korutlu, Beste; Toharia, Manuel

    2011-10-01

    We study a warped extra-dimension scenario where the standard model fields lie in the bulk, with the addition of a fourth family of fermions. We concentrate on the flavor structure of the Higgs couplings with fermions in the flavor anarchy ansatz. Even without a fourth family, these couplings will be generically misaligned with respect to the standard model fermion mass matrices. The presence of the fourth family typically enhances the misalignment effects and we show that one should expect them to be highly nonsymmetrical in the (34) intergenerational mixing. The radiative corrections from the new fermions and their flavor-violating couplings to the Higgs affect negligibly known experimental precision measurements such as the oblique parameters and Z?bb¯ or Z??+?-. On the other hand, ?F=1, 2 processes, mediated by tree-level Higgs exchange, as well as radiative corrections to b?s? and ??e? put some generic pressure on the allowed size of the flavor-violating couplings. But more importantly, these couplings will alter the Higgs decay patterns as well as those of the new fermions, and produce very interesting new signals associated to Higgs phenomenology in high energy colliders. These signals might become very important indirect signals for these type of models as they would be present even when the KK mass scale is high and no heavy KK particle is discovered.

  3. Neutrino and Extra World

    E-print Network

    Baranov, D S

    2012-01-01

    The neutrino speed measurement experiments are the continuations of the classic light speed measurement experiments have been done in range of the solar planet system (Ole Roemer, 1676), in star system (James Braidely, 1728) and, at last, on the Earth (Lois Fizeau, 1849),.... The finite light speed measurement has led to the revolution in the humanity consciousness and eventually led to a new understanding of the visible universe. In 1998-2005, we had a lot of excited discussions at CERN about the possibilities to perform the neutrino experiments to test the superluminal neutrino hypothesis and to find new phenomena beyond the SM. From one hand the idea of such experiments was associated with the hope to understand the role of the V-A- weak interactions, the quark-lepton family symmetry, the neutrino space-time properties and to observe some indications on a new vacuum structure existence outside of the Weak Scale, i.e. in the region 1/R ~ (0.1-20) TeV. From another hand the general trends of this idea has be...

  4. The Fourth Microlensing Planet Revisited

    E-print Network

    Yock, Philip

    2015-01-01

    The fourth microlensing planet, otherwise known as OGLE-2005-BLG-169Lb, was discovered by a collaboration of US, NZ, Polish and UK astronomers in 2005-2006. Recently the results were confirmed by the Hubble Space Telescope and by the Keck Observatory. OGLE-2005-BLG-169Lb is the first microlensing planet to receive such confirmation. Its discovery and confirmation are described here in an historical context.

  5. Fourth International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R. (Compiler)

    1997-01-01

    This Conference Publication contains 84 papers presented at the Fourth International Microgravity Combustion Workshop held in Cleveland, Ohio, from May 19 to 21, 1997. The purpose of the workshop was twofold: to exchange information about the progress and promise of combustion science in microgravity and to provide a forum to discuss which areas in microgravity combustion science need to be expanded profitably and which should be included in upcoming NASA Research Announcements (NRA).

  6. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  7. The Fourth Astronomy Conference (Open For Public)

    E-print Network

    Nahar, Sultana Nurun

    The Fourth Astronomy Conference (Open For Public) Tuesday 29 September 2015 4:30 PM 9:00 PM Map-09-29) > Astronomy Club (https://www.evensi.com/page/astronomy-club/10000551994) > The Fourth Astronomy Conference (Open For Public) (https://www.evensi.com/the-fourth-astronomy

  8. Is cosmology compatible with sterile neutrinos?

    SciTech Connect

    Dodelson, Scott; Melchiorri, Alessandro; Slosar, Anze; /Ljubljana U.

    2005-11-01

    By combining data from cosmic microwave background (CMB) experiments (including the recent BOOMERANG-2K2 results), large scale structure (LSS) and Lyman-{alpha} forest observations, we constrain the hypothesis of a fourth, sterile, massive neutrino. For the 3 massless + 1 massive neutrino case we bound the mass of the sterile neutrino to m{sub s} < 0.55eV at 95% c.l.. These results exclude at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We then generalize the analysis to account for active neutrino masses (which tightens the limit to m{sub s} < 0.51eV) and the possibility that the sterile abundance is not thermal. In the latter case, the constraints in the (mass, density) plane are non-trivial. For a mass of > 1eV or < 0.05eV the cosmological energy density in sterile neutrinos is always constrained to be {omega}{sub {nu}} < 0.005 at 95% c.l.. However, for a sterile neutrino mass of {approx} 0.25 eV, {omega}{sub {nu}} can be as large as 0.015.

  9. Investigating Nuclear and Astrophysical Systems Using Neutrinos

    NASA Astrophysics Data System (ADS)

    Patton, Kelly Marie

    Neutrinos are one of the most mysterious particles in the universe, and at the same time one of the most important. Recent experimental efforts place us at an exciting time in the field of neutrino physics. Instead of simply studying the properties of neutrinos themselves, we can now use neutrinos as probes of other complex systems. Here, we study two such systems: the nucleus and supernovae. We first study the possibilities of using coherent elastic neutrino-nucleus scattering (CENNS) to probe the neutron distribution in the nucleus. We use an expansion of the form factor into moments to show that neutrinos from stopped pions can measure the second and fourth moments of the neutron distribution. Particularly, the second moment or RMS radius can be measured to a few percent uncertainty in tonne-scale detectors made of argon, germanium, or xenon. In order to achieve this, the energy shape uncertainty of the detector must be understood at the percent level. We also investigate the effects on neutrino oscillations of turbulent matter densities, such as those found in a supernova. We have developed an analytic formula that correctly predicts the transition wavelength and amplitude for neutrinos traveling through turbulence with up to fifty Fourier modes. Using this formula, we have identified two important wavelength scales. The first important scale stimulates transitions known as parametric resonances, and corresponds to the mass-splitting scar of the neutrino system. The second important scale is a much longer wavelength, and causes a suppression of transitions. These long wavelengths correspond to modes with a ratio of amplitude to wave number of order, or greater than, the first root of the Bessel function J0. We have expanded this analytic approach to a 1D supernova model, and show that we can predict where transitions will occur as the neutrino propagates. We also investigate the effects of changing different parameters of the turbulence, such as the RMS amplitude and cutoff wavelengths.

  10. Theoretical Results on Neutrinos

    E-print Network

    Shun Zhou

    2015-11-23

    In this talk, I first summarize our current knowledge about the fundamental properties of neutrinos and emphasize the remaining unsolved problems in neutrino physics. Then, recent theoretical results on neutrino mass models are introduced. Different approaches to understanding tiny neutrino masses, lepton flavor mixing and CP violation are presented. Finally, I report briefly some new progress in the studies of astrophysical neutrinos, including keV sterile neutrinos, supernova neutrinos and ultrahigh-energy cosmic neutrinos.

  11. Fourth-order 2N-storage Runge-Kutta schemes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Kennedy, Christopher A.

    1994-01-01

    A family of five-stage fourth-order Runge-Kutta schemes is derived; these schemes required only two storage locations. A particular scheme is identified that has desirable efficiency characteristics for hyperbolic and parabolic initial (boundary) value problems. This scheme is competitive with the classical fourth-order method (high-storage) and is considerably more efficient and accurate than existing third-order low-storage schemes.

  12. Fourth order deformed general relativity

    NASA Astrophysics Data System (ADS)

    Cuttell, Peter D.; Sakellariadou, Mairi

    2014-11-01

    Whenever the condition of anomaly freedom is imposed within the framework of effective approaches to loop quantum cosmology, one seems to conclude that a deformation of general covariance is required. Here, starting from a general deformation we regain an effective gravitational Lagrangian including terms up to fourth order in extrinsic curvature. We subsequently constrain the form of the corrections for the homogeneous case, and then investigate the conditions for the occurrence of a big bounce and the realization of an inflationary era, in the presence of a perfect fluid or scalar field.

  13. Neutrino Velocity and Neutrino Oscillations

    E-print Network

    H. Minakata; A. Yu. Smirnov

    2012-07-30

    We study distances of propagation and the group velocities of the muon neutrinos in the presence of mixing and oscillations assuming that Lorentz invariance holds. Oscillations lead to distortion of the $\

  14. Radiatively induced neutrino masses and large Higgs-neutrino couplings in the Standard Model with Majorana fields

    NASA Astrophysics Data System (ADS)

    Pilaftsis, Apostolos

    1992-06-01

    The Higgs sector of the Standard Model (SM) with one right-handed neutrino per family is systematically analyzed. In a model with intergenerational independent mixings between families, we can account for very light neutrinos acquiring Majorana masses radiatively at the first electroweak loop level. We also find that in such a scenario the Higgs coupling to the light-heavy neutrinos and to the heavy-heavy ones may be remarkably enhanced with significant implications for the production of these heavy neutrinos at high energy colliders.

  15. Linearizing neutrino evolution equations including ??¯ pairing correlations

    NASA Astrophysics Data System (ADS)

    Väänänen, Daavid; Volpe, Cristina

    2013-09-01

    We linearize the neutrino mean-field evolution equations describing the neutrino propagation in a background of matter and of neutrinos, using techniques from many-body microscopic approaches. The procedure leads to an eigenvalue equation that allows us to identify instabilities in the evolution, associated with a change of the curvature of the neutrino energy-density surface. Our result includes all contributions from the neutrino Hamiltonian and is generalizable to linearize the equations of motion at an arbitrary point of the evolution. We then consider the extended equations that comprise the normal mean field as well as the abnormal mean field that is associated with neutrino-antineutrino pairing correlations. We first rederive the extended neutrino Hamiltonian and show that such a Hamiltonian can be diagonalized by introducing a generalized Bogoliubov-Valatin transformation with quasiparticle operators that mix neutrinos and antineutrinos. We give the eigenvalue equations that determine the energies of the quasiparticle eigenstates. Finally we derive the eigenvalue equation of the extended equations of motion, valid in the small amplitude approximation. Our results apply to an arbitrary number of neutrino families.

  16. Hilbert's twenty-fourth problem.

    SciTech Connect

    Thiele, R.; Wos, L.; Mathematics and Computer Science; Univ. Leipzig

    2002-01-01

    For almost a century, a treasure lay hidden in a library in Germany, hidden until a remarkable discovery was made. Indeed, for most of the twentieth century, all of science thought that Hilbert had posed twenty-three problems, and no others. In the mid-1990s, however, as a result of a thorough reading of Hilbert's files, a twenty-fourth problem was found (in a notebook, in file Cod ms D Hilbert 600:3), a problem that might have a profound effect on research. This newly discovered problem focuses on the finding of simpler proofs and criteria for measuring simplicity. A proof may be simpler than previously known in one or more ways that include length, size (measured in terms of the total symbol count), and term structure. A simpler proof not only is more appealing aesthetically (and has fascinated masters of logic including C. A. Meredith, A. Prior, and I. Thomas) but is relevant to practical applications such as circuit design and program synthesis. This article presents Hilbert's twenty-fourth problem, discusses its relation to certain studies in automated reasoning, and offers researchers with varying interests the challenge of addressing this newly discovered problem. In particular, we include open questions to be attacked, questions that (in different ways and with diverse proof refinements as the focus) may prove of substantial interest to mathematicians, to logicians, and (perhaps in a slightly different manner) to those researchers primarily concerned with automated reasoning.

  17. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  18. Solar Neutrinos and the Decaying Neutrino Hypothesis

    E-print Network

    Jeffrey M. Berryman; Andre de Gouvea; Daniel Hernandez

    2014-11-02

    We explore, mostly using data from solar neutrino experiments, the hypothesis that the neutrino mass eigenstates are unstable. We find that, by combining $^8$B solar neutrino data with those on $^7$Be and lower-energy solar neutrinos, one obtains a mostly model-independent bound on both the $\

  19. Telling three from four neutrinos with cosmology

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork N.

    2003-05-01

    New results, namely the independent determination of the deuterium abundance in several quasar absorption systems, and the complementary determination of the cosmological baryon density by observations of anisotropies in the cosmic microwave background (CMB), allow for a reevaluation of the constraints on the relativistic particle content of the Universe at primordial nucleosynthesis. Expressed in terms of the neutrino energy density, we find 1.7neutrino models including a sterile state (not participating in SU(2)L×U(1)Y interactions) unavoidably thermalize a fourth neutrino, and are highly disfavored in the standard minimal model of primordial nucleosynthesis, if the systematic uncertainty in the primordial helium abundance is small. We describe plausible extensions of the minimal model which evade this constraint.

  20. Solar Neutrinos

    E-print Network

    R. G. H. Robertson

    2006-02-05

    Experimental work with solar neutrinos has illuminated the properties of neutrinos and tested models of how the sun produces its energy. Three experiments continue to take data, and at least seven are in various stages of planning or construction. In this review, the current experimental status is summarized, and future directions explored with a focus on the effects of a non-zero theta-13 and the interesting possibility of directly testing the luminosity constraint. Such a confrontation at the few-percent level would provide a prediction of the solar irradiance tens of thousands of years in the future for comparison with the present-day irradiance. A model-independent analysis of existing low-energy data shows good agreement between the neutrino and electromagnetic luminosities at the +/- 20 % level.

  1. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  2. Neutrino physics-the link between the microcosmos and the macrocosmos, a study in two parts: (1) Theoretical-a look at the tau neutrino mass and other quantum electrodynamical effects in third family lepton interactions and (2) Experimental-underwater astronomy in Hawai'i, the short prototype string of the Deep Underwater Muon and Neutrino Detector project

    SciTech Connect

    Babson, J.F.

    1989-01-01

    The nineteen eighties has been a time in which Cosmology and Particle Physics have come together. This dissertation reflects that trend. It does so in two ways. First, in Chapters 1 through 3, there is a theoretical investigation into some aspects of generational universality. The consequences of a third lepton, namely the tauon, and an associated tau neutrino, are explored in terms of phenomenology (mass and V-A consistency) that may shed insight into questions of neutrino mass and increased symmetry at higher energies. Second, in Chapters 4 through 11, there is an experimental investigation in the form of constructing and operating the first stage of the DUMAND (Deep Underwater Muon and Neutrino Detection) project which was a ship suspended muon and neutrino telescope called the SPS (Short Prototype String). This detector is of the water Cherenkov type and is the first time such an instrument has been successfully built and tested for use in the ocean. Chapters 6 through 10 are devoted to the detailed documentation of the parts of the SPS and its technology integration that I designed, prototyped, and debugged. In particular, a complete description is given to the command and control communications system of the string, the digital control electronics and associated software for the Optical, Calibration, and Power modules as well as the fast digitizing electronics or String Bottom Controller (SBC). This includes the development of a microcontroller language UHPS (Underwater Hawai'i Programming System). Finally, Chapter 11 is an analysis of SPS data in terms of ascertaining a purely statistically based downward traveling muon rate at a depth of 4.0 Km yielding (2.06 {+-} 0.68) {times} 10{sup {minus}2} Hz.

  3. Supernova Neutrinos

    SciTech Connect

    Beacom, John

    2009-11-14

    Supernovae in our Galaxy probably occur about 3 times per century, though 90% of them are invisible optically because of obscuration by dust. However, present solar neutrino detectors are sensitive to core-collapse supernovae anywhere in our Galaxy, and would detect of order 10,000 events from a supernova at a distance of 10 kpc (roughly the distance to the Galactic center). I will describe how this data can be used to understand the supernova itself, as well as to test the properties of neutrinos.

  4. Supernova Neutrinos

    SciTech Connect

    Beacom, John

    2001-11-14

    Supernovae in our Galaxy probably occur about 3 times per century, though 90% of them are invisible optically because of obscuration by dust. However, present solar neutrino detectors are sensitive to core-collapse supernovae anywhere in our Galaxy, and would detect of order 10,000 events from a supernova at a distance of 10 kpc (roughly the distance to the Galactic center). I will describe how this data can be used to understand the supernova itself, as well as to test the properties of neutrinos.

  5. Neutrino and Extra World

    E-print Network

    D. S. Baranov; G. G. Volkov

    2012-11-20

    The neutrino speed measurement experiments are the continuations of the classic light speed measurement experiments have been done in range of the solar planet system (Ole Roemer, 1676), in star system (James Braidely, 1728) and, at last, on the Earth (Lois Fizeau, 1849),.... The finite light speed measurement has led to the revolution in the humanity consciousness and eventually led to a new understanding of the visible universe. In 1998-2005, we had a lot of excited discussions at CERN about the possibilities to perform the neutrino experiments to test the superluminal neutrino hypothesis and to find new phenomena beyond the SM. From one hand the idea of such experiments was associated with the hope to understand the role of the V-A- weak interactions, the quark-lepton family symmetry, the neutrino space-time properties and to observe some indications on a new vacuum structure existence outside of the Weak Scale, i.e. in the region 1/R ~ (0.1-20) TeV. From another hand the general trends of this idea has been related to the possible existence some extra space-time noncompact dimensions of the universe. In this context it would be first serious encounter with the dual conception between the physical phenomena of microcosmos and of universe. One of the main goals is to find some new space-time peculiarities and structures that might explain the formation of our visible D=(3+1)-universe with all its space-time and internal symmetries which could be only a part of a vast Universe filled with other kinds of matter. The main difficulties of such experiments related to the possible relativity principle paradoxes have been discussed.

  6. Secret of Neutrino Oscillations

    E-print Network

    Dmitry Zhuridov

    2012-03-08

    The new effect of partial and full destruction of the neutrino oscillation pattern due to the neutrino wave packets separation in the transverse plane to the direction of the neutrino propagation is investigated. It is shown that this effect is significant in the real oscillation data, in particular, for the solar neutrinos, and dramatically changes the extracted physical properties of neutrinos.

  7. Neutrinos and Symmetries

    E-print Network

    A. B. Balantekin

    2009-10-09

    Three facets of symmetries in neutrino physics are briefly reviewed: i) The SO(5) symmetry of the neutrino mass and and its connection to the see-saw mechanism; ii) Flavor SU(N) symmetries of dense, self-interacting neutrino gases in astrophysical settings; iii) The neutrino mixing angle theta13 and possible CP-violation in the neutrino sector.

  8. Generating $\\theta_{13}$ from sterile neutrinos in $\\mu - \\tau$ symmetric models

    E-print Network

    Rivera-Agudelo, Diana C

    2015-01-01

    Smallness of $\\theta_{13}$ mixing angle as observed in neutrino oscillation experiments can be understood through an approximated $\\mu - \\tau$ exchange symmetry in the neutrino mass matrix. Using recent oscillation neutrino data, but assuming no CP violation, we study $\\mu-\\tau$ breaking parameter space to establish the conditions under which such a breaking could have a perturbative origin. According to the so obtained conditions, we suggest that a sterile neutrino, matching LSND/MiniBooNE neutrino oscillation results, could provide the necessary ingredients to properly fix atmospheric and $\\theta_{13}$ mixing angles to observable values, without exceeding the sterile neutrino fraction bound in solar oscillations. In such a scenario, we analyze the general effect of a fourth neutrino on the prediction for the effective $m_{ee}$ majorana mass parameter.

  9. Solar Neutrinos Before and After Neutrino 2004

    E-print Network

    John N. Bahcall; M. C. Gonzalez-Garcia; Carlos Pena-Garay

    2004-09-02

    We compare, using a three neutrino analysis, the allowed neutrino oscillation parameters and solar neutrino fluxes determined by the experimental data available Before and After Neutrino 2004. New data available after Neutrino2004 include refined KamLAND and gallium measurements. We use six different approaches to analyzing the KamLAND data. We present detailed results using all the available neutrino and anti-neutrino data for Delta m^2_{12}, tan^2 theta_{12}, sin^2 theta_{13}, and sin^2 eta (sterile fraction). Using the same complete data sets, we also present Before and After determinations of all the solar neutrino fluxes, which are treated as free parameters, an upper limit to the luminosity fraction associated with CNO neutrinos, and the predicted rate for a 7Be solar neutrino experiment. The 1 sigma (3 sigma) allowed range of Delta m^2_{21} = (8.2 +- 0.3) (^+1.0_-0.8)times 10^{-5} eV^2 is decreased by a factor of 1.7 (5), but the allowed ranges of all other neutrino oscillation parameters and neutrino fluxes are not significantly changed. Maximal mixing is disfavored at 5.8 sigma and the bound on the mixing angle theta_{13} is slightly improved to sin^2 theta_{13}reactor anti-neutrino oscillation parameters with neutrino oscillation parameters. We also show that the recent data disfavor at 91 % CL a proposed non-standard interaction description of solar neutrino oscillations.

  10. Testing constrained sequential dominance models of neutrinos

    NASA Astrophysics Data System (ADS)

    Björkeroth, Fredrik; King, Stephen F.

    2015-12-01

    Constrained sequential dominance (CSD) is a natural framework for implementing the see-saw mechanism of neutrino masses which allows the mixing angles and phases to be accurately predicted in terms of relatively few input parameters. We analyze a class of CSD(n) models where, in the flavour basis, two right-handed neutrinos are dominantly responsible for the ‘atmospheric’ and ‘solar’ neutrino masses with Yukawa couplings to ({? }e,{? }? ,{? }? ) proportional to (0,1,1) and (1,n,n-2), respectively, where n is a positive integer. These coupling patterns may arise in indirect family symmetry models based on A 4. With two right-handed neutrinos, using a ? 2 test, we find a good agreement with data for CSD(3) and CSD(4) where the entire Pontecorvo–Maki–Nakagawa–Sakata mixing matrix is controlled by a single phase ?, which takes simple values, leading to accurate predictions for mixing angles and the magnitude of the oscillation phase | {? }{CP}| . We carefully study the perturbing effect of a third ‘decoupled’ right-handed neutrino, leading to a bound on the lightest physical neutrino mass {m}1{{? }}1 meV for the viable cases, corresponding to a normal neutrino mass hierarchy. We also discuss a direct link between the oscillation phase {? }{CP} and leptogenesis in CSD(n) due to the same see-saw phase ? appearing in both the neutrino mass matrix and leptogenesis.

  11. Tachyonic neutrinos?

    E-print Network

    J. Rembielinski

    1994-12-05

    It is shown that tachyons are associated with unitary representations of Poincare mappings induced from SO(2) little group instead of SO(2,1) one. This allows us to treat more seriously possibility that neutrinos are fermionic tachyons according to the present experimental data.

  12. Academic Skills Problems. Fourth Edition Workbook

    ERIC Educational Resources Information Center

    Shapiro, Edward S.

    2010-01-01

    An ideal companion to "Academic Skills Problems, Fourth Edition", this indispensable workbook provides practice exercises and reproducible forms for use in direct assessment and intervention. Updated to reflect the changes in the fourth edition of the text, the workbook includes teacher and student interview forms, a complete guide to using the…

  13. Fourth Grade Level Science Sample Curriculum.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    This document presents a sample of the Arkansas science curriculum and identifies the content standards for physical science systems, life science systems, and Earth science/space science systems for fourth grade students. Each content standard is explained and includes student learning expectations, fourth grade benchmarks, assessments, and…

  14. Neutrino refraction by the cosmic neutrino background

    E-print Network

    Diaz, J S

    2015-01-01

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  15. Neutrino refraction by the cosmic neutrino background

    E-print Network

    J. S. Diaz; F. R. Klinkhamer

    2015-12-07

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  16. Electromagnetic properties of neutrinos

    E-print Network

    Carlo Giunti; Alexander Studenikin

    2010-06-08

    A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.

  17. Neutrino - Link Between the Microcosmos and the Macrocosmos, a Study in Two Parts: (1) Theoretical - Look at the Tau Neutrino Mass and Other Quantum Electrodynamical Effects in Third Family Lepton Interactions and (2) Experimental - Astronomy in Hawai'i, the Short Prototype String of the Deep Underwater Muon and Neutrino Detector Project (hawaii)

    NASA Astrophysics Data System (ADS)

    Babson, John Freeman

    The nineteen eighties has been a time in which Cosmology and Particle Physics have come together. This dissertation reflects that trend. It does so in two ways. First, in Chapters 1 through 3, there is a theoretical investigation into some aspects of generational universality. The consequences of a third lepton, namely the tauon, and an associated tau neutrino, are explored in terms of phenomenology (mass and V-A consistency) that may shed insight into questions of neutrino mass and increased symmetry at higher energies. Second, in Chapters 4 through 11, there is an experimental investigation in the form of constructing and operating the first stage of the DUMAND (Deep Underwater Muon and Neutrino Detection) project which was a ship suspended muon and neutrino telescope called the SPS (Short Prototype String). This detector is of the water Cherenkov type and is the first time such an instrument has been successfully built and tested for use in the ocean. Chapters 6 through 10 are devoted to the detailed documentation of the parts of the SPS and its technology integration that I designed, prototyped, and debugged. In particular, a complete description is given to the command and control communications system of the string, the digital control electronics and associated software for the Optical, Calibration, and Power modules as well as the fast digitizing electronics or String Bottom Controller (SBC). This includes the development of a microcontroller language UHPS (Underwater Hawai'i Programming System). Finally, Chapter 11 is an analysis of SPS data in terms of ascertaining a purely statistically based downward traveling muon rate at a depth of 4.0 Km yielding (2.06 +/- 0.68) times 10^{-2 } Hz. Assuming a muon flux at 4.0 Km of 7 times 10^{-5 } m^{-2} s ^{-1} sr^ {-1} this corresponds to an effective area of Aeff = 3 +/- 1 times 10^2m^2. Additionally, the power index (n) of the cosine of the zenith angle of the downward traveling muons is found to be n = 5.3 which is consistent with previously reported results from deep mine experiments.

  18. Fourth order spatial derivative gravity

    SciTech Connect

    Bemfica, F. S.; Gomes, M.

    2011-10-15

    In this work, we study a modified theory of gravity that contains up to fourth order spatial derivatives as a model for the Horava-Lifshitz gravity. The propagator is evaluated and, as a result, one extra pole is obtained, corresponding to a spin-2 nonrelativistic massless particle, an extra term which jeopardizes renormalizability, besides the unexpected general relativity unmodified propagator. Then unitarity is proved at the tree level, where the general relativity pole has been shown to have no dynamics, remaining only the 2 degrees of freedom of the new pole. Next, the nonrelativistic effective potential is determined from a scattering process of two identical massive gravitationally interacting bosons. In this limit, Newton's potential is obtained, together with a Darwin-like term that comes from the extra nonpole term in the propagator. Regarding renormalizability, this extra term may be harmful by power counting, but it can be eliminated by adjusting the free parameters of the model. This adjustment is in accord with the detailed balance condition suggested in the literature and shows that the way in which extra spatial derivative terms are added is of fundamental importance.

  19. Fourth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Schlafke-Stelson, A.T.; Watson, E.E.

    1986-04-01

    The focus of the Fourth International Radiopharmaceutical Dosimetry Symposium was to explore the impact of current developments in nuclear medicine on absorbed dose calculations. This book contains the proceedings of the meeting including the edited discussion that followed the presentations. Topics that were addressed included the dosimetry associated with radiolabeled monoclonal antibodies and blood elements, ultrashort-lived radionuclides, and positron emitters. Some specific areas of discussion were variations in absorbed dose as a result of alterations in the kinetics, the influence of radioactive contaminants on dose, dose in children and in the fetus, available instrumentation and techniques for collecting the kinetic data needed for dose calculation, dosimetry requirements for the review and approval of new radiopharmaceuticals, and a comparison of the effect on the thyroid of internal versus external irradiation. New models for the urinary blader, skeleton including the active marrow, and the blood were presented. Several papers dealt with the validity of traditional ''average-organ'' dose estimates to express the dose from particulate radiation that has a short range in tissue. These problems are particularly important in the use of monoclonal antibodies and agents used to measure intracellular functions. These proceedings have been published to provide a resource volume for anyone interested in the calculation of absorbed radiation dose.

  20. Single-Parent Families. Sage Sourcebooks for the Human Services Series, Volume 24.

    ERIC Educational Resources Information Center

    Kissman, Kris; Allen, Jo Ann

    More than one fourth of all families today are one-parent families, and almost 90 percent of those families are headed by women. This book focuses on assessment and intervention with one-parent families, particularly mother-headed families, based on gender-sensitive principles combined with other family-centered strategies to help accentuate the…

  1. Neutrinos: Theory and Phenomenology

    SciTech Connect

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  2. Youth at Risk: A Prevention Resource for Counselors, Teachers, and Parents. Fourth Edition.

    ERIC Educational Resources Information Center

    Capuzzi, David, Ed.; Gross, Douglas R., Ed.

    The fourth revision of this text offers both tested prevention strategies for work with diverse at-risk populations and counseling techniques that address the complexities of destructive behavior from individual, family, school, and community perspectives. Drawing on the wisdom of 24 experts, this book provides concrete advice for creating and…

  3. The physics and (radio)chemistry of solar neutrino experiments.

    NASA Astrophysics Data System (ADS)

    Hahn, R. L.

    The situation in solar neutrino science has changed drastically in the past several years, with results now available from four neutrino experiments that use different methods to look at different regions of the solar-neutrino energy-spectrum. While the goal of all of these experiments is physics, they all rely heavily on chemistry and radiochemistry. Three of these experiments are radiochemical; the 37Cl detector and the two different forms of 71Ga detectors used in GALLEX and SAGE are based on the chemical isolation and counting of the radioactive products of neutrino interactions. The fourth, Kamiokande, detects neutrinos in real time; however, it also depends on radiochemistry in that radioactive contaminants must be controlled at very low levels. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models, the so-called "solar neutrino problem". This paper reviews the basic principles of operation of these neutrino detectors (as well as some new detectors currently under construction), reports their recent results, and discusses some of the theoretical interpretations that are now in vogue.

  4. The Intermediate Neutrino Program

    E-print Network

    C. Adams; J. R. Alonso; A. M. Ankowski; J. A. Asaadi; J. Ashenfelter; S. N. Axani; K. Babu; C. Backhouse; H. R. Band; P. S. Barbeau; N. Barros; A. Bernstein; M. Betancourt; M. Bishai; E. Blucher; J. Bouffard; N. Bowden; S. Brice; C. Bryan; L. Camilleri; J. Cao; J. Carlson; R. E. Carr; A. Chatterjee; M. Chen; S. Chen; M. Chiu; E. D. Church; J. I. Collar; G. Collin; J. M. Conrad; M. R. Convery; R. L. Cooper; D. Cowen; H. Davoudiasl; A. De Gouvea; D. J. Dean; G. Deichert; F. Descamps; T. DeYoung; M. V. Diwan; Z. Djurcic; M. J. Dolinski; J. Dolph; B. Donnelly; D. A. Dwyer; S. Dytman; Y. Efremenko; L. L. Everett; A. Fava; E. Figueroa-Feliciano; B. Fleming; A. Friedland; B. K. Fujikawa; T. K. Gaisser; M. Galeazzi; D. C. Galehouse; A. Galindo-Uribarri; G. T. Garvey; S. Gautam; K. E. Gilje; M. Gonzalez-Garcia; M. C. Goodman; H. Gordon; E. Gramellini; M. P. Green; A. Guglielmi; R. W. Hackenburg; A. Hackenburg; F. Halzen; K. Han; S. Hans; D. Harris; K. M. Heeger; M. Herman; R. Hill; A. Holin; P. Huber; D. E. Jaffe; R. A. Johnson; J. Joshi; G. Karagiorgi; L. J. Kaufman; B. Kayser; S. H. Kettell; B. J. Kirby; J. R. Klein; Yu. G. Kolomensky; R. M. Kriske; C. E. Lane; T. J. Langford; A. Lankford; K. Lau; J. G. Learned; J. Ling; J. M. Link; D. Lissauer; L. Littenberg; B. R. Littlejohn; S. Lockwitz; M. Lokajicek; W. C. Louis; K. Luk; J. Lykken; W. J. Marciano; J. Maricic; D. M. Markoff; D. A. Martinez Caicedo; C. Mauger; K. Mavrokoridis; E. McCluskey; D. McKeen; R. McKeown; G. Mills; I. Mocioiu; B. Monreal; M. R. Mooney; J. G. Morfin; P. Mumm; J. Napolitano; R. Neilson; J. K. Nelson; M. Nessi; D. Norcini; F. Nova; D. R. Nygren; G. D. Orebi Gann; O. Palamara; Z. Parsa; R. Patterson; P. Paul; A. Pocar; X. Qian; J. L. Raaf; R. Rameika; G. Ranucci; H. Ray; D. Reyna; G. C. Rich; P. Rodrigues; E. Romero Romero; R. Rosero; S. D. Rountree; B. Rybolt; M. C. Sanchez; G. Santucci; D. Schmitz; K. Scholberg; D. Seckel; M. Shaevitz; R. Shrock; M. B. Smy; M. Soderberg; A. Sonzogni; A. B. Sousa; J. Spitz; J. M. St. John; J. Stewart; J. B. Strait; G. Sullivan; R. Svoboda; A. M. Szelc; R. Tayloe; M. A. Thomson; M. Toups; A. Vacheret; M. Vagins; R. G. Van de Water; R. B. Vogelaar; M. Weber; W. Weng; M. Wetstein; C. White; B. R. White; L. Whitehead; D. W. Whittington; M. J. Wilking; R. J. Wilson; P. Wilson; D. Winklehner; D. R. Winn; E. Worcester; L. Yang; M. Yeh; Z. W. Yokley; J. Yoo; B. Yu; J. Yu; C. Zhang

    2015-04-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  5. The Intermediate Neutrino Program

    E-print Network

    Adams, C; Ankowski, A M; Asaadi, J A; Ashenfelter, J; Axani, S N; Babu, K; Backhouse, C; Band, H R; Barbeau, P S; Barros, N; Bernstein, A; Betancourt, M; Bishai, M; Blucher, E; Bouffard, J; Bowden, N; Brice, S; Bryan, C; Camilleri, L; Cao, J; Carlson, J; Carr, R E; Chatterjee, A; Chen, M; Chen, S; Chiu, M; Church, E D; Collar, J I; Collin, G; Conrad, J M; Convery, M R; Cooper, R L; Cowen, D; Davoudiasl, H; De Gouvea, A; Dean, D J; Deichert, G; Descamps, F; DeYoung, T; Diwan, M V; Djurcic, Z; Dolinski, M J; Dolph, J; Donnelly, B; Dwyer, D A; Dytman, S; Efremenko, Y; Everett, L L; Fava, A; Figueroa-Feliciano, E; Fleming, B; Friedland, A; Fujikawa, B K; Gaisser, T K; Galeazzi, M; Galehouse, D C; Galindo-Uribarri, A; Garvey, G T; Gautam, S; Gilje, K E; Gonzalez-Garcia, M; Goodman, M C; Gordon, H; Gramellini, E; Green, M P; Guglielmi, A; Hackenburg, R W; Hackenburg, A; Halzen, F; Han, K; Hans, S; Harris, D; Heeger, K M; Herman, M; Hill, R; Holin, A; Huber, P; Jaffe, D E; Johnson, R A; Joshi, J; Karagiorgi, G; Kaufman, L J; Kayser, B; Kettell, S H; Kirby, B J; Klein, J R; Kolomensky, Yu G; Kriske, R M; Lane, C E; Langford, T J; Lankford, A; Lau, K; Learned, J G; Ling, J; Link, J M; Lissauer, D; Littenberg, L; Littlejohn, B R; Lockwitz, S; Lokajicek, M; Louis, W C; Luk, K; Lykken, J; Marciano, W J; Maricic, J; Markoff, D M; Caicedo, D A Martinez; Mauger, C; Mavrokoridis, K; McCluskey, E; McKeen, D; McKeown, R; Mills, G; Mocioiu, I; Monreal, B; Mooney, M R; Morfin, J G; Mumm, P; Napolitano, J; Neilson, R; Nelson, J K; Nessi, M; Norcini, D; Nova, F; Nygren, D R; Gann, G D Orebi; Palamara, O; Parsa, Z; Patterson, R; Paul, P; Pocar, A; Qian, X; Raaf, J L; Rameika, R; Ranucci, G; Ray, H; Reyna, D; Rich, G C; Rodrigues, P; Romero, E Romero; Rosero, R; Rountree, S D; Rybolt, B; Sanchez, M C; Santucci, G; Schmitz, D; Scholberg, K; Seckel, D; Shaevitz, M; Shrock, R; Smy, M B; Soderberg, M; Sonzogni, A; Sousa, A B; Spitz, J; John, J M St; Stewart, J; Strait, J B; Sullivan, G; Svoboda, R; Szelc, A M; Tayloe, R; Thomson, M A; Toups, M; Vacheret, A; Vagins, M; Van de Water, R G; Vogelaar, R B; Weber, M; Weng, W; Wetstein, M; White, C; White, B R; Whitehead, L; Whittington, D W; Wilking, M J; Wilson, R J; Wilson, P; Winklehner, D; Winn, D R; Worcester, E; Yang, L; Yeh, M; Yokley, Z W; Yoo, J; Yu, B; Yu, J; Zhang, C

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  6. Atmospheric neutrino and Long Baseline neutrino experiments

    E-print Network

    Giorgio Giacomelli

    2007-12-13

    The results obtained by several experiments on atmospheric neutrino oscillations are summarized and discussed. Then the results obtained by different long baseline neutrino experiments are considered. Finally conclusions and perspectives are made.

  7. The history of neutrinos, 1930-1985. What have we learned about neutrinos? What have we learned using neutrinos?

    SciTech Connect

    Steinberger, J.

    2012-12-15

    An attempt to remember some of the main events which highlight the evolution of our knowledge of the neutrinos and their properties, the 'families' of particles, a few of the very interesting persons who contributed to this progress, as well as the contribution of neutrino beam experiments to the validation of the electro-weak and quantum-chromo-dynamic theories, and the structure of the nucleon. - Highlights: Black-Right-Pointing-Pointer Early history: continuity of {beta}-spectrum, Pauli letter, universal Fermi interaction. Black-Right-Pointing-Pointer Neutrino beams and the discovery of the muon neutrino. Black-Right-Pointing-Pointer Gargamelle, the discovery of the neutral current and the verification of the quark-gluon nature of the parton. Black-Right-Pointing-Pointer Deep inelastic scattering at higher energies: scaling, quantitative verification of QCD, structure functions.

  8. Sterile neutrino states

    E-print Network

    Alexander Kusenko

    2006-09-17

    Neutrino masses are likely to be a manifestation of the right-handed, or sterile neutrinos. The number of sterile neutrinos and the scales of their Majorana masses are unknown. We explore theoretical arguments in favor of the high and low scale seesaw mechanisms, review the existing experimental results, and discuss the astrophysical hints regarding sterile neutrinos.

  9. Neutrino Mass Phenomenology

    SciTech Connect

    Marrone, A.

    2005-10-12

    The present knowledge about neutrino mass and mixing, in the framework of three active neutrino mixing, is reviewed. All available data on solar, atmospheric, reactor, and accelerator oscillation neutrino experiments are analysed and combined with data on absolute neutrino masses, coming from beta decay and neutrinoless double beta decay experiments and astrophysical and cosmological researches.

  10. New Neutrinos Algal Biofuels

    E-print Network

    New Neutrinos Algal Biofuels Charged-Particle Vision Primordial Soup LOS ALAMOS SCIENCE in Illinois, a beam of neutrino particles streams through the MiniBooNE detector. This experiment tests the degree to which neutrinos shift from one "flavor" to another. Each neutrino normally travels as a mixture

  11. Tachyonic neutrinos Gillian Lustermans

    E-print Network

    van Suijlekom, Walter

    Tachyonic neutrinos Gillian Lustermans July 11, 2012 #12;Abstract In this paper, the possibility neutrino and an electron antineutrino. By substituting the two neutrinos by tachyonic neu- trinos for the subject of tachyons came from the results of the OPERA experiment, where tachyonic neutrinos were thought

  12. Muons and Neutrinos 2007

    E-print Network

    Thomas K. Gaisser

    2008-01-29

    This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

  13. Implications of ultrahigh energy neutrino flux constraints for Lorentz-invariance violating cosmogenic neutrinos

    NASA Astrophysics Data System (ADS)

    Gorham, P. W.; Connolly, A.; Allison, P.; Beatty, J. J.; Belov, K.; Besson, D. Z.; Binns, W. R.; Chen, P.; Clem, J. M.; Hoover, S.; Israel, M. H.; Nam, J.; Saltzberg, D.; Varner, G. S.; Vieregg, A. G.

    2012-11-01

    We consider the implications of Lorentz-invariance violation (LIV) on cosmogenic neutrino observations, with particular focus on the constraints imposed on several well-developed models for ultrahigh energy cosmogenic neutrino production by recent results from the ANITA long-duration balloon payload, and RICE at the South Pole. Under a scenario proposed originally by Coleman and Glashow, each lepton family may attain maximum velocities that can exceed c, leading to energy-loss through several interaction channels during propagation. We show that future observations of cosmogenic neutrinos will provide by far the most stringent limit on LIV in the neutrino sector. We derive the implied level of LIV required to suppress observation of predicted fluxes from several mainstream cosmogenic neutrino models, and specifically those recently constrained by the ANITA and RICE experiments. We simulate via detailed Monte Carlo code the propagation of cosmogenic neutrino fluxes in the presence of LIV-induced energy losses. We show that this process produces several detectable effects in the resulting attenuated neutrino spectra, even at LIV-induced neutrino superluminality of (u?-c)/c?10-26, about 13 orders of magnitude below current bounds.

  14. Neutrinos in Nuclear Physics

    E-print Network

    R. D. McKeown

    2014-12-03

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  15. Future Neutrino Experiments

    SciTech Connect

    Fleming, B. T.

    2009-12-17

    There are a number of future neutrino experiments addressing fundamental questions about the neutrino and about what the neutrino can tell us about the universe. A class of these experiments are long baseline neutrino oscillation v{sub e} appearance searches which can measure the final unknowns of the 3x3 neutrino mixing matrix and look for CP violation in the neutrino sector. The massive detectors needed for these experiments can also search for proton decay and measure extra-terrestrial neutrino sources. There are a number of efforts worldwide to launch these experiments. These efforts, with a focus on US plans, are described.

  16. Neutrinos in Nuclear Physics

    SciTech Connect

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  17. Neutrino Physics with JUNO

    E-print Network

    An, Fengpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Avanzini, Margherita Buizza; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Herve; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Goger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cecile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Mollenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M; McDonough, William F; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Bjorn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frederic; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2015-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1\\%. Neutrino burst from a typical cor...

  18. Lunar neutrino physics

    SciTech Connect

    Learned, J.G. Department of Astronomy, University of Hawaii, Manoa, 2505 Correa Road, Honolulu, HI )

    1990-03-15

    The possibilities of the use of the moon as a base for conducting neutrino physics are examined, exphasizing neutrino astronomy. The principle advantage of the moon for this research is freedom from the atmospheric layer of the earth: cosmic rays hitting the atmosphere generate a rather copious source of neutrinos, which are a terrestrially inescapable diffuse background to neutrino astronomy. The cosmic ray generated neutrinos on earth are also a limiting background for other sensitive particle physics experiments, typically those performed underground.

  19. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  20. STERILE NEUTRINOS IN E6 International Conference on Massive Neutrinos

    E-print Network

    Rosner, Jonathan L.

    1/17 STERILE NEUTRINOS IN E6 International Conference on Massive Neutrinos J. Rosner ­ Singapore ­ Feb. 11, 2015 What are sterile neutrinos and why do we need them? Weak isosinglet neutrinos, visible that the three active neutrinos aren't enough to fit all oscillation data; sterile neutrinos are invoked Data

  1. The Measurement of Neutrino Properties with Atmospheric Neutrinos

    NASA Astrophysics Data System (ADS)

    Kajita, Takaaki

    2014-10-01

    Atmospheric neutrinos are produced by cosmic-ray interactions in the atmosphere. Atmospheric neutrino experiments typically observe zenith-angle and energy dependences of [Formula: see text] and ?e events. Through these experiments, neutrino oscillation was discovered. Since then, various studies have been performed to further our understanding of neutrino properties. This article discusses experimental studies of neutrino oscillations with atmospheric neutrinos.

  2. Contribution of Family Environment to Pediatric Cochlear Implant Users' Speech and Language Outcomes: Some Preliminary Findings

    ERIC Educational Resources Information Center

    Holt, Rachael Frush; Beer, Jessica; Kronenberger, William G.; Pisoni, David B.; Lalonde, Kaylah

    2012-01-01

    Purpose: To evaluate the family environments of children with cochlear implants and to examine relationships between family environment and postimplant language development and executive function. Method: Forty-five families of children with cochlear implants completed a self-report family environment questionnaire (Family Environment Scale-Fourth

  3. Neutrino Shortcuts in Spacetime

    E-print Network

    A. Nicolaidis

    2012-07-03

    Theories with large extra dimensions may be tested using sterile neutrinos living in the bulk. A bulk neutrino can mix with a ?a- vor neutrino localized in the brane leading to unconventional patterns of neutrino oscillations. A resonance phenomenon, strong mixing be- tween the ?avor and the sterile neutrino, allows to determine the radius of the large extra dimension. If our brane is curved, then the sterile neutrino can take a shortcut through the bulk, leading to an appar- ent superluminal neutrino speed. The amount of ?superluminality? is directly connected to parameters determining the shape of the brane. On the experimental side, we suggest that a long baseline neutrino beam from CERN to NESTOR neutrino telescope will help to clarify these important issues.

  4. Neutrino mass, a status report

    SciTech Connect

    Robertson, R.G.H.

    1993-08-01

    Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

  5. Experimental Neutrino Physics: Final Report

    SciTech Connect

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  6. Neutrino properties and puzzles

    SciTech Connect

    Bowles, T.J.

    1990-01-01

    Sixty years after the existence of the neutrino was first postulated, we are still lacking in information on the fundamental properties of neutrinos. Measurements have consistently pushed the limits on the mass, magnetic moment, and possible mixing down. Solar neutrino experiments are now shedding more light on the solar neutrino problem'' and are starting to give a hint that perhaps these quantities are nonzero. The present status of our knowledge of neutrino properties, the newest experimental data on the solar neutrino problem,'' and future plans will be presented. 27 refs.

  7. Neutrino Physics at Fermilab

    ScienceCinema

    Saoulidou, Niki

    2010-01-08

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  8. Neutrino Physics at Fermilab

    SciTech Connect

    Saoulidou, Niki

    2008-04-09

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  9. Welcome to pandoraviruses at the ‘Fourth TRUC’ club

    PubMed Central

    Sharma, Vikas; Colson, Philippe; Chabrol, Olivier; Scheid, Patrick; Pontarotti, Pierre; Raoult, Didier

    2015-01-01

    Nucleocytoplasmic large DNA viruses, or representatives of the proposed order Megavirales, belong to families of giant viruses that infect a broad range of eukaryotic hosts. Megaviruses have been previously described to comprise a fourth monophylogenetic TRUC (things resisting uncompleted classification) together with cellular domains in the universal tree of life. Recently described pandoraviruses have large (1.9–2.5 MB) and highly divergent genomes. In the present study, we updated the classification of pandoraviruses and other reported giant viruses. Phylogenetic trees were constructed based on six informational genes. Hierarchical clustering was performed based on a set of informational genes from Megavirales members and cellular organisms. Homologous sequences were selected from cellular organisms using TimeTree software, comprising comprehensive, and representative sets of members from Bacteria, Archaea, and Eukarya. Phylogenetic analyses based on three conserved core genes clustered pandoraviruses with phycodnaviruses, exhibiting their close relatedness. Additionally, hierarchical clustering analyses based on informational genes grouped pandoraviruses with Megavirales members as a super group distinct from cellular organisms. Thus, the analyses based on core conserved genes revealed that pandoraviruses are new genuine members of the ‘Fourth TRUC’ club, encompassing distinct life forms compared with cellular organisms. PMID:26042093

  10. Summary of the Fourth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.; Morrison, Joseph H.; Mavriplis, Dimitri J.; Murayama, Mitcuhiro

    2010-01-01

    Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.

  11. Neutrino properties from high energy astrophysical neutrinos

    E-print Network

    Sandip Pakvasa

    2004-05-19

    It is shown how high energy neutrino beams from very distant sources can be utilised to learn about some properties of neutrinos such as lifetimes, mass hierarchy etc. Furthemore, even mixing elements such as U_e3 and the CPV phase in the neutrino mixing matrix can be measured in principle. Pseudo-Dirac mass differences as small as 10^-18 eV^2 can be probed as well.

  12. Neutrino Physics with JUNO

    E-print Network

    Fengpeng An; Guangpeng An; Qi An; Vito Antonelli; Eric Baussan; John Beacom; Leonid Bezrukov; Simon Blyth; Riccardo Brugnera; Margherita Buizza Avanzini; Jose Busto; Anatael Cabrera; Hao Cai; Xiao Cai; Antonio Cammi; Guofu Cao; Jun Cao; Yun Chang; Shaomin Chen; Shenjian Chen; Yixue Chen; Davide Chiesa; Massimiliano Clemenza; Barbara Clerbaux; Janet Conrad; Davide D'Angelo; Herve De Kerret; Zhi Deng; Ziyan Deng; Yayun Ding; Zelimir Djurcic; Damien Dornic; Marcos Dracos; Olivier Drapier; Stefano Dusini; Stephen Dye; Timo Enqvist; Donghua Fan; Jian Fang; Laurent Favart; Richard Ford; Marianne Goger-Neff; Haonan Gan; Alberto Garfagnini; Marco Giammarchi; Maxim Gonchar; Guanghua Gong; Hui Gong; Michel Gonin; Marco Grassi; Christian Grewing; Mengyun Guan; Vic Guarino; Gang Guo; Wanlei Guo; Xin-Heng Guo; Caren Hagner; Ran Han; Miao He; Yuekun Heng; Yee Hsiung; Jun Hu; Shouyang Hu; Tao Hu; Hanxiong Huang; Xingtao Huang; Lei Huo; Ara Ioannisian; Manfred Jeitler; Xiangdong Ji; Xiaoshan Jiang; Cecile Jollet; Li Kang; Michael Karagounis; Narine Kazarian; Zinovy Krumshteyn; Andre Kruth; Pasi Kuusiniemi; Tobias Lachenmaier; Rupert Leitner; Chao Li; Jiaxing Li; Weidong Li; Weiguo Li; Xiaomei Li; Xiaonan Li; Yi Li; Yufeng Li; Zhi-Bing Li; Hao Liang; Guey-Lin Lin; Tao Lin; Yen-Hsun Lin; Jiajie Ling; Ivano Lippi; Dawei Liu; Hongbang Liu; Hu Liu; Jianglai Liu; Jianli Liu; Jinchang Liu; Qian Liu; Shubin Liu; Shulin Liu; Paolo Lombardi; Yongbing Long; Haoqi Lu; Jiashu Lu; Jingbin Lu; Junguang Lu; Bayarto Lubsandorzhiev; Livia Ludhova; Shu Luo; Vladimir Lyashuk; Randolph Mollenberg; Xubo Ma; Fabio Mantovani; Yajun Mao; Stefano M. Mari; William F. McDonough; Guang Meng; Anselmo Meregaglia; Emanuela Meroni; Mauro Mezzetto; Lino Miramonti; Thomas Mueller; Dmitry Naumov; Lothar Oberauer; Juan Pedro Ochoa-Ricoux; Alexander Olshevskiy; Fausto Ortica; Alessandro Paoloni; Haiping Peng; Jen-Chieh Peng; Ezio Previtali; Ming Qi; Sen Qian; Xin Qian; Yongzhong Qian; Zhonghua Qin; Georg Raffelt; Gioacchino Ranucci; Barbara Ricci; Markus Robens; Aldo Romani; Xiangdong Ruan; Xichao Ruan; Giuseppe Salamanna; Mike Shaevitz; Valery Sinev; Chiara Sirignano; Monica Sisti; Oleg Smirnov; Michael Soiron; Achim Stahl; Luca Stanco; Jochen Steinmann; Xilei Sun; Yongjie Sun; Dmitriy Taichenachev; Jian Tang; Igor Tkachev; Wladyslaw Trzaska; Stefan van Waasen; Cristina Volpe; Vit Vorobel; Lucia Votano; Chung-Hsiang Wang; Guoli Wang; Hao Wang; Meng Wang; Ruiguang Wang; Siguang Wang; Wei Wang; Yi Wang; Yi Wang; Yifang Wang; Zhe Wang; Zheng Wang; Zhigang Wang; Zhimin Wang; Wei Wei; Liangjian Wen; Christopher Wiebusch; Bjorn Wonsak; Qun Wu; Claudia-Elisabeth Wulz; Michael Wurm; Yufei Xi; Dongmei Xia; Yuguang Xie; Zhi-zhong Xing; Jilei Xu; Baojun Yan; Changgen Yang; Chaowen Yang; Guang Yang; Lei Yang; Yifan Yang; Yu Yao; Ugur Yegin; Frederic Yermia; Zhengyun You; Boxiang Yu; Chunxu Yu; Zeyuan Yu; Sandra Zavatarelli; Liang Zhan; Chao Zhang; Hong-Hao Zhang; Jiawen Zhang; Jingbo Zhang; Qingmin Zhang; Yu-Mei Zhang; Zhenyu Zhang; Zhenghua Zhao; Yangheng Zheng; Weili Zhong; Guorong Zhou; Jing Zhou; Li Zhou; Rong Zhou; Shun Zhou; Wenxiong Zhou; Xiang Zhou; Yeling Zhou; Yufeng Zhou; Jiaheng Zou

    2015-10-18

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1\\%. Neutrino burst from a typical core-collapse supernova at 10 kpc would lead to ~5000 inverse-beta-decay events and ~2000 all-flavor neutrino-proton elastic scattering events in JUNO. Detection of DSNB would provide valuable information on the cosmic star-formation rate and the average core-collapsed neutrino energy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400 events per year, significantly improving the statistics of existing geoneutrino samples. The JUNO detector is sensitive to several exotic searches, e.g. proton decay via the $p\\to K^++\\bar\

  13. Various presentations of fourth branchial pouch anomalies.

    PubMed

    Jeyakumar, Anita; Hengerer, Arthur S

    2004-09-01

    Embryologic anomalies of the fourth branchial pouch are rarely seen. They usually present as recurring episodes of deep neck infections and/or abscesses or acute suppurative thyroiditis. Failure to recognize these unusual cases may result in misdiagnosis, inadequate treatment, and subsequent recurrence. We report 3 cases of patients with fourth branchial anomalies. Diagnosis starts with a preoperative evaluation consisting of a barium swallow or sonogram followed by direct hypopharyngoscopy at the time of surgery. Treatment of acutely infected sinuses is best done with appropriate antibiotics and, if necessary, with incision and drainage. Surgical excision should be planned after the inflammation has completely resolved. PMID:15529652

  14. Australian Family Research Conference Proceedings (Canberra, Australia, November 23-25, 1983). Volume IV: Policies and Families.

    ERIC Educational Resources Information Center

    Institute of Family Studies, Melbourne (Australia).

    Fourth in a series of volumes containing the proceedings of the 1983 Australian Family Research Conference, this publication deals with policies and families in Australia. Papers and authors included are: "Improving Social Security Programs: Some Options and Barriers" (Andrew Burbidge), "Single Parent Families and Social Policies: Australia and…

  15. Pithovirus sibericum, a new bona fide member of the "Fourth TRUC" club.

    PubMed

    Sharma, Vikas; Colson, Philippe; Chabrol, Olivier; Pontarotti, Pierre; Raoult, Didier

    2015-01-01

    Nucleocytoplasmic large DNA viruses, or representatives of the proposed order Megavirales, include giant viruses of Acanthamoeba that were discovered over the last 12 years and are bona fide microbes. Phylogenies based on a few genes conserved amongst these megaviruses and shared by microbes classified as Eukarya, Bacteria, and Archaea, allowed for delineation of a fourth monophylogenetic group or "TRUC" (Things Resisting Uncompleted Classification) composed of the Megavirales representatives. A new Megavirales member named Pithovirus sibericum was isolated from a >30,000-year-old dated Siberian permafrost sample. This virion is as large as recently described pandoraviruses but has a genome that is approximately three to four times shorter. Our objective was to update the classification of P. sibericum as a new member of the "Fourth TRUC" club. Phylogenetic trees were constructed based on four conserved ancient genes and a phyletic analysis was concurrently conducted based on the presence/absence patterns of a set of informational genes from members of Megavirales, Bacteria, Archaea, and Eukarya. Phylogenetic analyses based on the four conserved genes revealed that P. sibericum is part of the fourth TRUC composed of Megavirales members, and is closely related to the families Marseilleviridae and Ascoviridae/Iridoviridae. Additionally, hierarchical clustering delineated four branches, and showed that P. sibericum is part of this fourth TRUC. Overall, phylogenetic and phyletic analyses using informational genes clearly indicate that P. sibericum is a new bona fide member of the "Fourth TRUC" club composed of representatives of Megavirales, alongside Bacteria, Archaea, and Eukarya. PMID:26300849

  16. Pithovirus sibericum, a new bona fide member of the “Fourth TRUC” club

    PubMed Central

    Sharma, Vikas; Colson, Philippe; Chabrol, Olivier; Pontarotti, Pierre; Raoult, Didier

    2015-01-01

    Nucleocytoplasmic large DNA viruses, or representatives of the proposed order Megavirales, include giant viruses of Acanthamoeba that were discovered over the last 12 years and are bona fide microbes. Phylogenies based on a few genes conserved amongst these megaviruses and shared by microbes classified as Eukarya, Bacteria, and Archaea, allowed for delineation of a fourth monophylogenetic group or “TRUC” (Things Resisting Uncompleted Classification) composed of the Megavirales representatives. A new Megavirales member named Pithovirus sibericum was isolated from a >30,000-year-old dated Siberian permafrost sample. This virion is as large as recently described pandoraviruses but has a genome that is approximately three to four times shorter. Our objective was to update the classification of P. sibericum as a new member of the “Fourth TRUC” club. Phylogenetic trees were constructed based on four conserved ancient genes and a phyletic analysis was concurrently conducted based on the presence/absence patterns of a set of informational genes from members of Megavirales, Bacteria, Archaea, and Eukarya. Phylogenetic analyses based on the four conserved genes revealed that P. sibericum is part of the fourth TRUC composed of Megavirales members, and is closely related to the families Marseilleviridae and Ascoviridae/Iridoviridae. Additionally, hierarchical clustering delineated four branches, and showed that P. sibericum is part of this fourth TRUC. Overall, phylogenetic and phyletic analyses using informational genes clearly indicate that P. sibericum is a new bona fide member of the “Fourth TRUC” club composed of representatives of Megavirales, alongside Bacteria, Archaea, and Eukarya. PMID:26300849

  17. Oscillations of neutrino velocity

    E-print Network

    Branislav Sazdovi?; Milovan Vasili?

    2012-10-12

    In this paper, we consider the problem of quantum measurement of neutrino velocity. We show, that the well known neutrino flavor oscillations are always accompanied by the oscillations of neutrino velocity. In particular, the velocity of a freely moving neutrino is demonstrated to periodically exceed the speed of light. Unfortunately, the superluminal effect turns out to be too small to be experimentally detected. It is also shown that neutrino velocity significantly depends on the energy, size and shape of the neutrino wave packet. Owing to the big experimental error of the recent experiments, these dependences remained unnoticeable. Finally, we have shown that the recent claims that superluminal neutrinos should loose energy during their flight is not true. Instead, our formula suggests the approximate conservation of energy along neutrino trajectory. All these results have been obtained without violation of special theory of relativity.

  18. Solar neutrinos - Eclipse effect

    E-print Network

    Mohan Narayan; G. Rajasekaran; Rahul Sinha

    1997-03-12

    It is pointed out that the enhancement of the solar neutrino rate in a real time detector like Super-Kamioka, SNO or Borexino due to neutrino oscillations in the moon during a partial or total solar eclipse may be observable. The enhancement is calculated as a function of the neutrino parameters in the case of three flavor mixing. This enhancement if seen, can further help to determine the neutrino parameters.

  19. Neutrino masses and mixings

    SciTech Connect

    Wolfenstein, L.

    1991-12-31

    Theoretical prejudices, cosmology, and neutrino oscillation experiments all suggest neutrino mass are far below present direct experimental limits. Four interesting scenarios and their implications are discussed: (1) a 17 keV {nu}{sub {tau}}, (2) a 30 ev {nu}{sub {tau}} making up the dark matter, (3) a 10{sup {minus}3} ev {nu}{sub {mu}} to solve the solar neutrino problem, and (4) a three-neutrino MSW solution.

  20. Geo-neutrino Observation

    SciTech Connect

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.

    2009-12-17

    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  1. Neutrinos from WIMP annihilations

    E-print Network

    Mattias Blennow

    2007-10-08

    We make an improved analysis on the flow of neutrinos originating from WIMP annihilations inside the Sun and the Earth. We treat both neutrino interaction and oscillation effects in a consistent framework. Our numerical simulations are performed in an event based setting, which is useful for both theoretical studies and for creating neutrino telescope Monte Carlos. We find that the flow of muon-type neutrinos is enhanced or suppressed depending on the dominant WIMP annihilation channel.

  2. Neutrino Oscillation Physics

    SciTech Connect

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  3. Neutrinos in the early universe

    NASA Astrophysics Data System (ADS)

    Kirilova, D.; Frere, J.-M.

    2012-12-01

    The neutrinos from the Big Bang or the Cosmic Neutrino Background (CNB) carry precious information from the early epoch when our universe was only 1 s old. Although not yet directly detected, CNB may be revealed indirectly through cosmological observations due to neutrino important cosmological influence. We review the cosmological role of neutrinos and the cosmological constraints on neutrino characteristics. Namely, we discuss the impact of neutrinos in the early universe: the cosmic expansion, neutrino decoupling, the role of neutrinos in the primordial production of light elements, leptogenesis, etc. We briefly discuss the role of neutrino at later stages of the universe. Due to the considerable cosmological influence of neutrinos, cosmological bounds on neutrino properties from observational data exist. We review the cosmological constraints on the effective number of neutrino species, neutrino mass and mixing parameters, lepton number of the universe, presence of sterile neutrino, etc.

  4. Children, Play, and Development. Fourth Edition

    ERIC Educational Resources Information Center

    Hughes, Fergus P.

    2010-01-01

    Children, Play, and Development, Fourth Edition, discusses the relationship of play to the physical, social, intellectual, and emotional growth of the child. Author Fergus P. Hughes focuses on the historical, sociocultural, and ethological context of play; the role of development in play; and the wide range of theories that provide a framework for…

  5. "Researching" with Third- and Fourth-Graders.

    ERIC Educational Resources Information Center

    Liston, Barbara

    1970-01-01

    In order to instill in children the skills which will be basic to their school experience, words implying a process (such as "hemp,""parasite," and "vanilla") may be "researched" by third and fourth graders through the use of a dictionary, an encyclopedia, a supplementary book on the subject, and an interview with an adult. The child makes a…

  6. Sex Differences in Cognitive Abilities. Fourth Edition

    ERIC Educational Resources Information Center

    Halpern, Diane F.

    2011-01-01

    The fourth edition of "Sex Differences in Cognitive Abilities" critically examines the breadth of research on this complex and controversial topic, with the principal aim of helping the reader to understand where sex differences are found--and where they are not. Since the publication of the third edition, there have been many exciting and…

  7. Effective Literacy Instruction, K-8. Fourth Edition.

    ERIC Educational Resources Information Center

    Leu, Donald J., Jr.; Kinzer, Charles K.

    Systematically integrating technology with accepted practices for teaching reading in a balanced literacy education program, this book helps to develop insightful teachers empowered to make thoughtful decisions about reading instruction. Updated and extensively revised with new material throughout, this fourth edition features a balanced…

  8. Back to Calendar The Fourth Astronomy Conference

    E-print Network

    Nahar, Sultana Nurun

    Back to Calendar The Fourth Astronomy Conference Tuesday, September 29, 2015 4:30 PM - 9:00 PM Bassily Auditorium, AUC New Cairo Event Type Conference Contact Youssef Nabil astronomy@aucegypt.edu 01271112396 Event Url https://www.facebook.com/events/514205285426715/ The Astronomy Club invites you to join

  9. Singapore: The Fourth Way in Action?

    ERIC Educational Resources Information Center

    Hargreaves, Andy

    2012-01-01

    This article has two main objectives. It first outlines the first three waves of change termed by Hargreaves and Shirley (The Fourth Way: The inspiring future for educational change. Thousand Oaks, CA: Corwin Press, "2009") as the First, Second and Third Way that defined global educational policy and practice since the 1960s. It then introduces…

  10. Fourth-Generation Computer Languages: An Overview.

    ERIC Educational Resources Information Center

    Ricks, John

    1988-01-01

    Points out that mainframe computer users today can make their requirements known to the computer in simple English. Provides a listing of fourth generation computer language advantages over third generation languages. Summarizes a program to streamline faculty records on a mainframe computer. (MVL)

  11. Vocabulary Strategies for a Fourth Grade Classroom

    ERIC Educational Resources Information Center

    Howell, Gina

    2012-01-01

    For this project I worked with twelve of my fourth grade students from a local school in the southwestern part of Stokes County, North Carolina on increasing their vocabulary skills through the development and implementation of seven vocabulary strategies. During the Literature Review I came across the following seven strategies: Prediction;…

  12. in Student Retention? Fourth National Survey

    E-print Network

    Salvaggio, Carl

    What Works in Student Retention? Fourth National Survey Private Four-Year Colleges and Universities-member planning team. Inquiries may be directed to any member of the team. For more information on this survey.habley@act.org Michael Valiga, Director of Survey Research Services mike.valiga@act.org Randy McClanahan, Senior Research

  13. Neutrinos as cosmic messengers

    SciTech Connect

    Valle, J. W. F.

    2009-04-17

    I briefly review the current status of neutrino oscillation parameters and discuss the role of neutrinos as cosmological probes, that could possibly induce the baryon asymmetry as well as the dark matter in the Universe. I comment on the origin of neutrino masses in seesaw-type and low-scale models and mention some of their laboratory signals.

  14. Neutrino Astronomy Scott Wilbur

    E-print Network

    Golwala, Sunil

    V protons, which should be created with neutrinos, have been seen Can be used to observe possible dark Particle Physics Extremely long baseline for neutrino oscillation studies Dark Matter Searches Many dark Detector Picture from AMANDA II Web Site: http://www.amanda.uci.edu #12;Advantages of Neutrino Astronomy

  15. Neutrino Magnetic Moment

    E-print Network

    A. B. Balantekin

    2006-01-13

    Current experimental and observational limits on the neutrino magnetic moment are reviewed. Implications of the recent results from the solar and reactor neutrino experiments for the value of the neutrino magnetic moment are discussed. It is shown that spin-flavor precession in the Sun is suppressed.

  16. Solar Neutrinos Kamioka Observatory

    E-print Network

    Tokyo, University of

    Solar Neutrinos Y. Suzuki Kamioka Observatory Institute for Cosmic Ray Research University of Tokyo Higashi-Mozumi, Kamioka Gifu 506-1205, Japan 1 Introduction We now recognize that neutrinos have #12;nite masses. In 1998, the Super-Kamiokande experiment found evidence for the atmospheric neutrino oscillation

  17. B-L Neutrinos

    E-print Network

    Kevin Cahill

    2000-06-19

    Neutrino masses and mixings are analyzed in terms of left-handed fields and a 6x6 complex symmetric mass matrix whose singular values are the neutrino masses. An angle theta_nu characterizes the kind of the neutrinos, with theta_nu=0 for Dirac neutrinos and theta_nu=pi/2 for Majorana neutrinos. At theta_nu = 0 baryon-minus-lepton number is conserved. If theta_nu is approximately zero, the six neutrino masses coalesce into three nearly degenerate pairs. Thus the tiny mass differences exhibited in the solar and atmospheric neutrino experiments are naturally explained by the approximate conservation of B-L. Neutrinos are nearly Dirac fermions. This B-L model leads to these predictions: neutrinos oscillate mainly between flavor eigenfields and sterile eigenfields, and so the appearance of neutrinos and antineutrinos is suppressed; neutrinos may well be of cosmological importance; in principle the disappearance of the tau neutrino should be observable; and neutrinoless double-beta decay is suppressed by an extra factor of 10^(-5) and so will not be seen in the Heidelberg/Moscow, IGEX, GENIUS, or CUORE experiments.

  18. Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows

    SciTech Connect

    Tamborra, Irene; Raffelt, Georg G.; Hüdepohl, Lorenz; Janka, Hans-Thomas E-mail: raffelt@mpp.mpg.de E-mail: thj@mpa-garching.mpg.de

    2012-01-01

    Motivated by recent hints for sterile neutrinos from the reactor anomaly, we study active-sterile conversions in a three-flavor scenario (2 active + 1 sterile families) for three different representative times during the neutrino-cooling evolution of the proto-neutron star born in an electron-capture supernova. In our ''early model'' (0.5 s post bounce), the ?{sub e}-?{sub s} MSW effect driven by ?m{sup 2} = 2.35eV{sup 2} is dominated by ordinary matter and leads to a complete ?{sub e}-?{sub s} swap with little or no trace of collective flavor oscillations. In our ''intermediate'' (2.9 s p.b.) and ''late models'' (6.5 s p.b.), neutrinos themselves significantly modify the ?{sub e}-?{sub s} matter effect, and, in particular in the late model, ?? refraction strongly reduces the matter effect, largely suppressing the overall ?{sub e}-?{sub s} MSW conversion. This phenomenon has not been reported in previous studies of active-sterile supernova neutrino oscillations. We always include the feedback effect on the electron fraction Y{sub e} due to neutrino oscillations. In all examples, Y{sub e} is reduced and therefore the presence of sterile neutrinos can affect the conditions for heavy-element formation in the supernova ejecta, even if probably not enabling the r-process in the investigated outflows of an electron-capture supernova. The impact of neutrino-neutrino refraction is strong but complicated, leaving open the possibility that with a more complete treatment, or for other supernova models, active-sterile neutrino oscillations could generate conditions suitable for the r-process.

  19. Family Issues

    MedlinePLUS

    ... Living with Autism > Family Issues Family Issues A child’s autism diagnosis affects every member of the family in ... can help their family by informing their other children about autism and the complications it introduces, understanding the challenges ...

  20. Tachyonic neutrinos and the neutrino masses

    E-print Network

    Robert Ehrlich

    2012-12-05

    With a recent claim of superluminal neutrinos shown to be in error, 2012 may not be a propitious time to consider the evidence that one or more neutrinos may indeed be tachyons. Nevertheless, there are a growing number of observations that continue to suggest this possibility -- albeit with an $m_{\

  1. Neutrino observations from the Sudbury Neutrino Observatory

    SciTech Connect

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O'Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  2. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Boger, J.; Hahn, R. L.; Rowley, J. K.; Carter, A. L.; Hollebone, B.; Kessler, D.; Blevis, I.; Dalnoki-Veress, F.; DeKok, A.; Farine, J.; Grant, D. R.; Hargrove, C. K.; Laberge, G.; Levine, I.; McFarlane, K.; Mes, H.; Noble, A. T.; Novikov, V. M.; O'Neill, M.; Shatkay, M.; Shewchuk, C.; Sinclair, D.; Clifford, E. T. H.; Deal, R.; Earle, E. D.; Gaudette, E.; Milton, G.; Sur, B.; Bigu, J.; Cowan, J. H. M.; Cluff, D. L.; Hallman, E. D.; Haq, R. U.; Hewett, J.; Hykawy, J. G.; Jonkmans, G.; Michaud, R.; Roberge, A.; Roberts, J.; Saettler, E.; Schwendener, M. H.; Seifert, H.; Sweezey, D.; Tafirout, R.; Virtue, C. J.; Beck, D. N.; Chan, Y. D.; Chen, X.; Dragowsky, M. R.; Dycus, F. W.; Gonzalez, J.; Isaac, M. C. P.; Kajiyama, Y.; Koehler, G. W.; Lesko, K. T.; Moebus, M. C.; Norman, E. B.; Okada, C. E.; Poon, A. W. P.; Purgalis, P.; Schuelke, A.; Smith, A. R.; Stokstad, R. G.; Turner, S.; Zlimen, I.; Anaya, J. M.; Bowles, T. J.; Brice, S. J.; Esch, E.-I.; Fowler, M. M.; Goldschmidt, A.; Hime, A.; McGirt, A. F.; Miller, G. G.; Teasdale, W. A.; Wilhelmy, J. B.; Wouters, J. M.; Anglin, J. D.; Bercovitch, M.; Davidson, W. F.; Storey, R. S.; Biller, S.; Black, R. A.; Boardman, R. J.; Bowler, M. G.; Cameron, J.; Cleveland, B.; Ferraris, A. P.; Doucas, G.; Heron, H.; Howard, C.; Jelley, N. A.; Knox, A. B.; Lay, M.; Locke, W.; Lyon, J.; Majerus, S.; Moorhead, M.; Omori, M.; Tanner, N. W.; Taplin, R. K.; Thorman, M.; Wark, D. L.; West, N.; Barton, J. C.; Trent, P. T.; Kouzes, R.; Lowry, M. M.; Bell, A. L.; Bonvin, E.; Boulay, M.; Dayon, M.; Duncan, F.; Erhardt, L. S.; Evans, H. C.; Ewan, G. T.; Ford, R.; Hallin, A.; Hamer, A.; Hart, P. M.; Harvey, P. J.; Haslip, D.; Hearns, C. A. W.; Heaton, R.; Hepburn, J. D.; Jillings, C. J.; Korpach, E. P.; Lee, H. W.; Leslie, J. R.; Liu, M.-Q.; Mak, H. B.; McDonald, A. B.; MacArthur, J. D.; McLatchie, W.; Moffat, B. A.; Noel, S.; Radcliffe, T. J.; Robertson, B. C.; Skensved, P.; Stevenson, R. L.; Zhu, X.; Gil, S.; Heise, J.; Helmer, R. L.; Komar, R. J.; Nally, C. W.; Ng, H. S.; Waltham, C. E.; Allen, R. C.; Bühler, G.; Chen, H. H.; Aardsma, G.; Andersen, T.; Cameron, K.; Chon, M. C.; Hanson, R. H.; Jagam, P.; Karn, J.; Law, J.; Ollerhead, R. W.; Simpson, J. J.; Tagg, N.; Wang, J.-X.; Alexander, C.; Beier, E. W.; Cook, J. C.; Cowen, D. F.; Frank, E. D.; Frati, W.; Keener, P. T.; Klein, J. R.; Mayers, G.; McDonald, D. S.; Neubauer, M. S.; Newcomer, F. M.; Pearce, R. J.; de Water, R. G. V.; Berg, R. V.; Wittich, P.; Ahmad, Q. R.; Beck, J. M.; Browne, M. C.; Burritt, T. H.; Doe, P. J.; Duba, C. A.; Elliott, S. R.; Franklin, J. E.; Germani, J. V.; Green, P.; Hamian, A. A.; Heeger, K. M.; Howe, M.; Drees, R. M.; Myers, A.; Robertson, R. G. H.; Smith, M. W. E.; Steiger, T. D.; Wechel, T. V.; Wilkerson, J. F.

    2000-07-01

    The Sudbury Neutrino Observatory is a second-generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.

  3. Nucleosynthesis and Neutrinos

    SciTech Connect

    Kajino, Toshitaka

    2011-05-06

    Neutrinos play the critical roles in nucleosynthesis of light-to-heavy mass nuclei in core-collapse supernovae. We study the nucleosynthesis induced by neutrino interactions and find suitable average neutrino temperatures in order to explain the observed solar system abundances of several isotopes {sup 7}Li, {sup 11}B, {sup 138}La and {sup 180}Ta. These isotopes are predominantly synthesized by the supernova {nu}-process. We also study the neutrino oscillation effects on their abundances and propose a method to determine the unknown neutrino oscillation parameters, i.e. {theta}{sub 13} and mass hierarchy.

  4. Mass determination of neutrinos

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1988-01-01

    A time-energy correlation method has been developed to determine the signature of a nonzero neutrino mass in a small sample of neutrinos detected from a distant source. The method is applied to the Kamiokande II (Hirata et al., 1987) and IMB (Bionta et al., 1987) observations of neutrino bursts from SN 1987A. Using the Kamiokande II data, the neutrino rest mass is estimated at 2.8 + 2.0, - 1.4 eV and the initial neutrino pulse is found to be less than 0.3 sec full width, followed by an emission tail lasting at least 10 sec.

  5. Neutrinos from AGN

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The great penetrating power of neutrinos makes them ideal probe of astrophysical sites and conditions inaccessible to other forms of radiation. These are the centers of stars (collapsing or not) and the centers of Active Galactic Nuclei (AGN). It has been suggested that AGN presented a very promising source of high energy neutrinos, possibly detectable by underwater neutrino detectors. This paper reviews the evolution of ideas concerning the emission of neutrinos from AGN in view of the more recent developments in gamma-ray astronomy and their implications for the neutrino emission from these class of objects.

  6. Physics of Neutrino Oscillation

    E-print Network

    Mondal, Spandan

    2015-01-01

    The Standard Model of particle physics describes neutrinos as massless, chargeless elementary particles that come in three different flavours. However, recent experiments indicate that neutrinos not only have mass, but also have multiple mass eigenstates that are not identical to the flavour states, thereby indicating mixing. As an evidence of mixing, neutrinos have been observed to change from one flavour to another during their propagation, a phenomenon called neutrino oscillation. We have studied the reasons and derived the probabilities of neutrino flavour change, both in vacuum and in matter. We have also studied the parameters affecting this probability. We have discussed the special case of two-neutrino oscillations. Lastly, we have discussed some basic properties of neutrinos that are reflected in the previous derivations and highlighted a few relevant open problems. To begin with, we have also studied the relevant topics in introductory High Energy Physics and Quantum Mechanics to familiarize with th...

  7. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  8. Phenomenology of Light Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Giunti, Carlo

    We consider the extension of standard three-neutrino mixing with the addition of one or two light sterile neutrinos which can explain the anomalies found in short-baseline neutrino oscillation experiments. We review the results of the global analyses of short-baseline neutrino oscillation data in 3 + 1, 3 + 2 and 3 + 1 + 1 neutrino mixing schemes.

  9. A New Neutrino Oscillation

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2011-07-01

    Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) divided by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected background of 1.5 events. The probability that the 6 events are all background is only about 0.7%. Stated differently, this is a 2.7{sigma} indication that the parameter that controls the oscillation, the neutrino mixing angle {theta}{sub 13}, is nonzero, just shy of the 3{sigma} requirement to claim 'evidence for.' Nevertheless, this experiment provides the strongest indication to date that this oscillation actually occurs in nature.

  10. 7 CFR 51.2296 - Three-fourths half kernel.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2296 Three-fourths half kernel. Three-fourths half kernel means a...

  11. 22. THIRD FLOOR, 202 EAST FOURTH STREET LOOKING SOUTHEAST, PARTITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. THIRD FLOOR, 202 EAST FOURTH STREET LOOKING SOUTHEAST, PARTITION SCAR MARKED BY CONTRASTING WALLPAPER TREATMENTS - Phillips-Thompson Building, 200-206 East Fourth Street, Wilmington, New Castle County, DE

  12. 7. DETAIL OF SOUTHEAST SIDE OF FOURTH STREET VIADUCT SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF SOUTHEAST SIDE OF FOURTH STREET VIADUCT SHOWING ORNAMENTAL LIGHTING AND STAIRS AT MISSION STREET OVERCROSSING. LOOKING NORTHEAST. - Fourth Street Viaduct, Spanning Los Angeles River, Los Angeles, Los Angeles County, CA

  13. 7 CFR 51.2296 - Three-fourths half kernel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2296 Three-fourths half kernel. Three-fourths half kernel...

  14. Heavy Sterile Neutrinos in Tau Decays and the MiniBooNE Anomaly

    E-print Network

    Claudio Dib; Juan Carlos Helo; Martin Hirsch; Sergey Kovalenko; Ivan Schmidt

    2011-10-25

    Current results of the MiniBooNE experiment show excess events that indicate neutrino oscillations, but only if one goes beyond the standard 3 family scenario. Recently a different explanation of the events has been given, not in terms of oscillations but by the production and decay of a massive sterile neutrino with large transition magnetic moment. We study the effect of such a sterile neutrino in the rare decays $\\tau^- \\rightarrow \\mu^- \\mu^+ \\pi^- \

  15. Measurable neutrino mass scale in A{sub 4}xSU(5)

    SciTech Connect

    Antusch, S.; Spinrath, M.; King, Stephen F.

    2011-01-01

    We propose a supersymmetric A{sub 4}xSU(5) model of quasidegenerate neutrinos which predicts the effective neutrino mass m{sub ee} relevant for neutrinoless double beta decay to be proportional to the neutrino mass scale, thereby allowing its determination approximately independently of unknown Majorana phases. Such a natural quasidegeneracy is achieved by using A{sub 4} family symmetry (as an example of a non-Abelian family symmetry with real triplet representations) to enforce a contribution to the neutrino mass matrix proportional to the identity. Tribimaximal neutrino mixing as well as quark CP violation with {alpha}{approx_equal}90 deg. d a leptonic CP phase {delta}{sub MNS{approx_equal}}90 deg. arise from the breaking of the A{sub 4} family symmetry by the vacuum expectation values of four 'flavon' fields pointing in specific postulated directions in flavor space.

  16. Fourth-generation photovoltaic concentrator system development

    SciTech Connect

    O`Neill, M.J.; McDanal, A.J.

    1995-10-01

    In 1991, under a contract with Sandia for the Concentrator Initiative, the ENTECH team initiated the design and development of a fourth-generation concentrator module. In 1992, Sandia also contracted with ENTECH to develop a new control and drive system for the ENTECH array. This report documents the design and development work performed under both contracts. Manufacturing processes for the new module were developed at the same time under a complementary PVMaT contract with the National Renewable Energy Laboratory. Two 100-kW power plants were deployed in 1995 in Texas using the newly developed fourth-generation concentrator technology, one at the CSW Solar Park near Ft. Davis and one at TUE Energy Park in Dallas. Technology developed under the Sandia contracts has made a successful transition from the laboratory to the production line to the field.

  17. High Energy Neutrino Astronomy and Neutrino Telescopes

    NASA Astrophysics Data System (ADS)

    Kouchner, A.

    2015-04-01

    Neutrinos constitute a unique probe since they escape from their sources, travel undisturbed on cosmological distances and are produced in high-energy (HE) hadronic processes. In particular they would allow a direct detection and unambiguous identification of the acceleration sites of HE baryonic cosmic rays (CR), which remain unknown. Recent results from the ICECUBE collaboration present the first highly significant indication for the detection of high-energy extraterrestrial neutrinos, after several decades of instrumental efforts. We briefly report on this important results which open the route for the high-energy neutrino astronomy era. We then focus on the ANTARES detector, which despite its modest size with respect to ICECUBE is the largest deep-sea neutrino telescope in the world. The primary goal is to search for astrophysical neutrinos in the TeV-PeV range. This comprises generic searches for any diffuse cosmic neutrino flux as well as more specific searches for astrophysical sources such as active galactic nuclei or Galactic sources. The search program also includes multi-messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES observatory is sensitive to a wide-range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles. The most recent results are reported.

  18. Perspectives in Neutrino Physics: Monochromatic Neutrino Beams

    E-print Network

    J. Bernabeu; J. Burguet-Castell; C. Espinoza; M. Lindroos

    2005-12-22

    In the last few years spectacular results have been achieved with the demonstration of non vanishing neutrino masses and flavour mixing. The ultimate goal is the understanding of the origin of these properties from new physics. In this road, the last unknown mixing $[U_{e3}]$ must be determined. If it is proved to be non-zero, the possibility is open for Charge Conjugation-Parity (CP) violation in the lepton sector. This will require precision experiments with a very intense neutrino source. Here a novel method to create a monochromatic neutrino beam, an old dream for neutrino physics, is proposed based on the recent discovery of nuclei that decay fast through electron capture. Such nuclei will generate a monochromatic directional neutrino beam when decaying at high energy in a storage ring with long straight sections. We also show that the capacity of such a facility to discover new physics is impressive, so that fine tuning of the boosted neutrino energy allows precision measurements of the oscillation parameters even for a $[U_{e3}]$ mixing as small as 1 degree. We can thus open a window to the discovery of CP violation in neutrino oscillations.

  19. Fourth High Alpha Conference, volume 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The goal of the Fourth High Alpha Conference was to focus on the flight validation of high angle-of-attack technologies and provide an in-depth review of the latest high angle-of-attack activities. Areas that were covered include: high angle-of-attack aerodynamics, propulsion and inlet dynamics, thrust vectoring, control laws and handling qualities, tactical utility, and forebody controls.

  20. Documentation of the Fourth Order Band Model

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.; Hoitsma, D.

    1979-01-01

    A general circulation model is presented which uses quadratically conservative, fourth order horizontal space differences on an unstaggered grid and second order vertical space differences with a forward-backward or a smooth leap frog time scheme to solve the primitive equations of motion. The dynamic equations for motion, finite difference equations, a discussion of the structure and flow chart of the program code, a program listing, and three relevent papers are given.

  1. SEIZURE PREDICTION: THE FOURTH INTERNATIONAL WORKSHOP

    PubMed Central

    Zaveri, Hitten P.; Frei, Mark G.; Arthurs, Susan; Osorio, Ivan

    2010-01-01

    The recently convened Fourth International Workshop on Seizure Prediction (IWSP4) brought together a diverse international group of investigators, from academia and industry, including epileptologists, neurosurgeons, neuroscientists, computer scientists, engineers, physicists, and mathematicians who are conducting interdisciplinary research on the prediction and control of seizures. IWSP4 allowed the presentation and discussion of results, an exchange of ideas, an assessment of the status of seizure prediction, control and related fields and the fostering of collaborative projects. PMID:20674508

  2. Fourth NASA Langley Formal Methods Workshop

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael (Compiler); Hayhurst, Kelly J. (Compiler)

    1997-01-01

    This publication consists of papers presented at NASA Langley Research Center's fourth workshop on the application of formal methods to the design and verification of life-critical systems. Topic considered include: Proving properties of accident; modeling and validating SAFER in VDM-SL; requirement analysis of real-time control systems using PVS; a tabular language for system design; automated deductive verification of parallel systems. Also included is a fundamental hardware design in PVS.

  3. Fourth High Alpha Conference, volume 2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The goal of the Fourth High Alpha Conference, held at the NASA Dryden Flight Research Center on July 12-14, 1994, was to focus on the flight validation of high angle of attack technologies and provide an in-depth review of the latest high angle of attack activities. Areas that were covered include high angle of attack aerodynamics, propulsion and inlet dynamics, thrust vectoring, control laws and handling qualities, and tactical utility.

  4. Topological Constraints on Long-Distance Neutrino Mixtures

    E-print Network

    Gerald L. Fitzpatrick

    2000-07-13

    A new internal description of fundamental fermions (quarks and leptons), based on a matrix-generalization (F) of the scalar fermion-number f, predicts that only three families of quarks and leptons, and their associated neutrinos (nu_e, nu_mu and nu_tau), exist. Moreover, this description places important topological constraints on neutrino mixing. For example, with respect to F, the topology of the nu_e (nu_mu or nu_tau) is that of a cylinder (Mobius strip). Assuming that a change in topology dudring neutrino-neutrino transitions is suppressed (e.g., one cannot continuously deform a donut into a sphere), while neutrino-neutrino transitions without topology-change are (relatively) enhanced, one may have an explanation for recent short-distance experimental observations of (nearly) maximal nu_mu-nu_tau mixing at the Super Kamiokande. To test this idea, I was able to use simple topological arguments to deduce a matrix describing long-distance neutrino mixtures, which is identical to that proposed by Georgi and Glashow on different grounds. Experimental confirmation of this prediction would strongly support the new description of fundamental fermions, which requires, among other things, that the nu_e and (nu_mu or nu_tau) neutrinos start life as topoligically-distinct quantum objects.

  5. Fourth order difference methods for hyperbolic IBVP's

    NASA Technical Reports Server (NTRS)

    Gustafsson, Bertil; Olsson, Pelle

    1994-01-01

    Fourth order difference approximations of initial-boundary value problems for hyperbolic partial differential equations are considered. We use the method of lines approach with both explicit and compact implicit difference operators in space. The explicit operator satisfies an energy estimate leading to strict stability. For the implicit operator we develop boundary conditions and give a complete proof of strong stability using the Laplace transform technique. We also present numerical experiments for the linear advection equation and Burgers' equation with discontinuities in the solution or in its derivative. The first equation is used for modeling contact discontinuities in fluid dynamics, the second one for modeling shocks and rarefaction waves. The time discretization is done with a third order Runge-Kutta TVD method. For solutions with discontinuities in the solution itself we add a filter based on second order viscosity. In case of the non-linear Burger's equation we use a flux splitting technique that results in an energy estimate for certain different approximations, in which case also an entropy condition is fulfilled. In particular we shall demonstrate that the unsplit conservative form produces a non-physical shock instead of the physically correct rarefaction wave. In the numerical experiments we compare our fourth order methods with a standard second order one and with a third order TVD-method. The results show that the fourth order methods are the only ones that give good results for all the considered test problems.

  6. Effects of degenerate sterile neutrinos on the supernova neutrino flux

    E-print Network

    P. Keranen; J. Maalampi; M. Myyrylainen; J. Riittinen

    2004-08-11

    We consider the possibility that there exist sterile neutrinos which are closely degenerate in mass with the active neutrinos and mixed with them. We investigate the effects of this kind of active-sterile neutrino mixing on the composition of supernova neutrino flux at the Earth. If an adiabatic MSW-transition between active and sterile neutrinos takes place, it could dramatically diminish the electron neutrino flux.

  7. MINOS Sterile Neutrino Search

    SciTech Connect

    Koskinen, David Jason; /University Coll. London

    2009-09-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the {nu}{sub {mu}} {yields} V{sub {tau}} transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling {approx}2.5 x 10{sup 20} protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  8. SuperGZK neutrinos

    E-print Network

    V. Berezinsky

    2005-09-22

    The sources and fluxes of superGZK neutrinos, $E>10^{20}$ eV, are discussed. The fluxes of {\\em cosmogenic neutrinos}, i.e. those produced by ultra-high energy cosmic rays (UHECR) interacting with CMB photons, are calculated in the models, which give the good fit to the observed flux of UHECR. The best fit given in no-evolutionary model with maximum acceleration energy $E_{\\rm max}=1\\times 10^{21}$ eV results in very low flux of superGZK neutrinos an order of magnitude lower than the observed flux of UHECR. The predicted neutrino flux becomes larger and observable by next generation detectors at energies $10^{20} - 10^{21}$ eV in the evolutionary models with $E_{\\rm max}=1\\times 10^{23}$ eV. The largest cosmogenic neutrino flux is given in models with very flat generation spectrum, e.g. $\\propto E^{-2}$. The neutrino energies are naturally high in the models of {\\em superheavy dark matter and topological defects}. Their fluxes can also be higher than those of cosmogenic neutrinos. The largest fluxes are given by {\\em mirror neutrinos}, oscillating into ordinary neutrinos. Their fluxes obey some theoretical upper limit which is very weak, and in practice these fluxes are most efficiently limited now by observations of radio emission from neutrino-induced showers.

  9. Neutrinos and collider physics

    NASA Astrophysics Data System (ADS)

    Deppisch, Frank F.; Bhupal Dev, P. S.; Pilaftsis, Apostolos

    2015-07-01

    We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setup as well as with extended gauge and/or Higgs sectors, and on supersymmetric neutrino mass models with seesaw mechanism and with R-parity violation. In the simplest type-I seesaw scenario with sterile neutrinos, we summarize and update the current experimental constraints on the sterile neutrino mass and its mixing with the active neutrinos. We also discuss the future experimental prospects of testing the seesaw mechanism at colliders and in related low-energy searches for rare processes, such as lepton flavor violation and neutrinoless double beta decay. The implications of the discovery of lepton number violation at the Large Hadron Collider for leptogenesis are also studied.

  10. Solar neutrino detection

    E-print Network

    Lino Miramonti

    2009-01-22

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  11. Neutrino mass measurements.

    PubMed

    Wark, D L

    2003-11-15

    Before we can be sure we have a dark-matter problem we have to first be certain that no known particle can account for the missing matter. The last possibility has long been the neutrino, which, while massless in the Standard Model of particle physics, is the second most numerous particle in the Universe (after the photon) and thus (if massive) a potential source of substantial unaccounted for mass. Recent neutrino oscillation measurements have, in fact, confirmed that the Standard Model is incomplete and that neutrinos have mass. However, recent measurements have confirmed that the resulting mass is insufficient for neutrinos to make up the bulk of the dark matter. In fact, observations of the matter distribution in the Universe are now competing with laboratory measurements in their sensitivity to the absolute masses of neutrinos. The article discusses all these measurements and gives some guesses about where we may get in our measurements of neutrino masses in the future. PMID:14667316

  12. Spectroscopy of Solar Neutrinos

    E-print Network

    Michael Wurm; Franz von Feilitzsch; Marianne Goeger-Neff; Tobias Lachenmaier; Timo Lewke; Quirin Meindl; Randoplh Moellenberg; Lothar Oberauer; Walter Potzel; Marc Tippmann; Christoph Traunsteiner; Juergen Winter

    2010-04-06

    In the last years, liquid-scintillator detectors have opened a new window for the observation of low-energetic astrophysical neutrino sources. In 2007, the solar neutrino experiment Borexino began its data-taking in the Gran Sasso underground laboratory. High energy resolution and excellent radioactive background conditions in the detector allow the first-time spectroscopic measurement of solar neutrinos in the sub-MeV energy regime. The experimental results of the Beryllium-7 neutrino flux measurements as well as the prospects for the detection of solar Boron-8, pep and CNO neutrinos are presented in the context of the currently discussed ambiguities in solar metallicity. In addition, the potential of the future SNO+ and LENA experiments for high-precision solar neutrino spectroscopy will be outlined.

  13. Paradoxes of neutrino oscillations

    SciTech Connect

    Akhmedov, E. Kh.; Smirnov, A. Yu.

    2009-08-15

    Despite the theory of neutrino oscillations being rather old, some of its basic issues are still being debated in the literature. We discuss a number of such issues, including the relevance of the 'same energy' and 'same momentum' assumptions, the role of quantum-mechanical uncertainty relations in neutrino oscillations, the dependence of the coherence and localization conditions that ensure the observability of neutrino oscillations on neutrino energy and momentum uncertainties, the question of (in)dependence of the oscillation probabilities on the neutrino production and detection processes, and the applicability limits of the stationary-source approximation. We also develop a novel approach to calculation of the oscillation probability in the wave-packet approach, based on the summation/integration conventions different from the standard one, which allows a new insight into the 'same energy' vs. 'same momentum' problem. We also discuss a number of apparently paradoxical features of the theory of neutrino oscillations.

  14. Neutrino Oscillation Studies with Reactors

    E-print Network

    Petr Vogel; Liangjian Wen; Chao Zhang

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  15. Novel Ideas for Neutrino Beams

    SciTech Connect

    Peach, Ken

    2007-04-23

    Recent developments in neutrino physics, primarily the demonstration of neutrino oscillations in both atmospheric neutrinos and solar neutrinos, provide the first conclusive evidence for physics beyond the Standard Model of particle physics. The simplest phenomenology of neutrino oscillations, for three generations of neutrino, requires six parameters - two squared mass differences, 3 mixing angles and a complex phase that could, if not 0 or {pi}, contribute to the otherwise unexplained baryon asymmetry observed in the universe. Exploring the neutrino sector will require very intense beams of neutrinos, and will need novel solutions.

  16. Neutrino oscillation studies with reactors

    PubMed Central

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle ?13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  17. Neutrino Oscillation Studies with Reactors

    E-print Network

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  18. Neutrino oscillation studies with reactors

    SciTech Connect

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle ?13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  19. Neutrino oscillation studies with reactors

    DOE PAGESBeta

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle ?13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  20. Neutrino oscillation studies with reactors.

    PubMed

    Vogel, P; Wen, L J; Zhang, C

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle ?13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  1. Family History

    MedlinePLUS

    Your family history includes health information about you and your close relatives. Families have many factors in common, including their genes, ... as heart disease, stroke, and cancer. Having a family member with a disease raises your risk, but ...

  2. Family Folklore

    ERIC Educational Resources Information Center

    Kotkin, Amy J.; Baker, Holly C.

    1977-01-01

    Discusses the Family Folklore Program of the Smithsonian Institution's annual Festival of American Folklife, in which the whole family can be involved in tracing family history through story telling, photographs, etc. (MS)

  3. Neutrinos in Cosmology

    SciTech Connect

    Wong, Yvonne Y. Y.

    2008-01-24

    I give an overview of the effects of neutrinos on cosmology, focussing in particular on the role played by neutrinos in the evolution of cosmological perturbations. I discuss how recent observations of the cosmic microwave background and the large-scale structure of galaxies can probe neutrino masses with greater precision than current laboratory experiments. I describe several new techniques that will be used to probe cosmology in the future.

  4. Neutrino mass anarchy

    PubMed

    Hall; Murayama; Weiner

    2000-03-20

    What is the form of the neutrino mass matrix which governs the oscillations of the atmospheric and solar neutrinos? Features of the data have led to a dominant viewpoint where the mass matrix has an ordered, regulated pattern, perhaps dictated by a flavor symmetry. We challenge this viewpoint and demonstrate that the data are well accounted for by a neutrino mass matrix which appears to have random entries. PMID:11017272

  5. Neutrino Mass Anarchy

    NASA Astrophysics Data System (ADS)

    Hall, Lawrence; Murayama, Hitoshi; Weiner, Neal

    2000-03-01

    What is the form of the neutrino mass matrix which governs the oscillations of the atmospheric and solar neutrinos? Features of the data have led to a dominant viewpoint where the mass matrix has an ordered, regulated pattern, perhaps dictated by a flavor symmetry. We challenge this viewpoint and demonstrate that the data are well accounted for by a neutrino mass matrix which appears to have random entries.

  6. Neutrinos: Nature's Ghosts?

    ScienceCinema

    Lincoln, Don

    2014-08-12

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  7. Neutrinos: Nature's Ghosts?

    SciTech Connect

    Lincoln, Don

    2013-06-18

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  8. High intensity neutrino beams

    NASA Astrophysics Data System (ADS)

    Ichikawa, A. K.

    2015-07-01

    High-intensity proton accelerator complex enabled long baseline neutrino oscillation experiments with a precisely controlled neutrino beam. The beam power so far achieved is a few hundred kW with enourmorous efforts of accelerator physicists and engineers. However, to fully understand the lepton mixing structure, MW-class accelerators are desired. We describe the current intensity-frontier high-energy proton accelerators, their plans to go beyond and technical challenges in the neutrino beamline facilities.

  9. Neutrino Masses and SO10 Unification

    NASA Astrophysics Data System (ADS)

    Minkowski, P.

    We present the embedding of the SM gauge group in SO10, a simple, compact unifying gauge group, with each of the three basic spin 1/2 families forming a unitary, irreducible 16-dimensional representation of spin10, which is complex, i.e. chiral. Subtle differences to the mixed representations of SU5, contained in the SO10 scheme, are pointed out. These have consequences for neutrino flavors, which become paired in a light SU2L-active doublet mode and a heavy SM singlet mode, one ?, 𝒩-pair per family.

  10. Short review on solar neutrinos experiments and search for sterile neutrinos with solar neutrino detectors

    NASA Astrophysics Data System (ADS)

    Pallavicini, Marco

    2015-05-01

    The spectroscopy of solar neutrinos is now entering the precision era, after a golden age which has led to the discovery of neutrino oscillations and the MSW effect. In this paper we summarise the current experimental knowledge in the field and its future perspectives, showing that solar neutrino detectors are and will remain a crucial tool for a deeper understanding of stars, neutrinos, and fundamental physics. We also show that solar neutrinos may become pivotal for the search of sterile neutrinos.

  11. Compact neutrino source

    NASA Astrophysics Data System (ADS)

    LoSecco, John

    2015-08-01

    Some evidence for sterile neutrinos has been found in short baseline observations where the measured neutrino flux did not agree with expectations. Systematic uncertainties from the expected values have limited the sensitivity of this approach. Observation at multiple distances can remove the normalization uncertainty by isolating the distance dependence. This does not work for high-? m2 sterile neutrinos since they are fully mixed at most observation distances and only shift the normalization of the flux. A compact intense source of neutrinos based on a subcritical fission reactor would permit observation of oscillations on submeter distance scales and clearly distinguish between a systematic normalization and the L /E dependence expected from oscillations.

  12. Atmospheric Sterile Neutrinos

    E-print Network

    Takehiko Asaka; Atsushi Watanabe

    2012-07-17

    We study production of sterile neutrinos in the atmosphere and their detection at Super-Kamiokande. A sterile neutrino in the mass range $1\\,{\\rm MeV} \\lesssim M_N \\lesssim 105\\,{\\rm MeV}$ is produced by muon or pion decay, and decays to an electron-positron pair and an active neutrino. Such a decay of the sterile neutrino leaves two electron-like Cherenkov rings in the detector. We estimate the sterile neutrino flux from the well-established active neutrino fluxes and study the number of the decay events in the detector. The upper bounds for the active-sterile mixings are obtained by comparing the $2e$-like events from the sterile neutrino decays and the observed data by Super-Kamiokande. The upper bound for the muon type mixing $\\Theta_\\mu$ is found to be $|\\Theta_\\mu|^2 \\lesssim 5 \\times 10^{-5}$ for $20 \\,{\\rm MeV} \\lesssim M_N \\lesssim 80\\,{\\rm MeV}$, which is significantly loosened compared to the previous estimation. We demonstrate that the opening angle and the total energy of the rings may serve as diagnostic tools to discover the sterile neutrinos in further data accumulation and future upgraded facilities. The directional asymmetry of the events is a sensitive measure of the diminishment of the sterile neutrino flux due to the decays on the way to the detector.

  13. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  14. Neutrinos in supernovae

    SciTech Connect

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs.

  15. Bolometric detection of neutrinos

    NASA Technical Reports Server (NTRS)

    Cabrera, B.; Krauss, L. M.; Wilczek, F.

    1985-01-01

    Elastic neutrino scattering off electrons in crystalline silicon at 1-10 mK results in measurable temperature changes in macroscopic amounts of material, even for low-energy (less than 0.41-MeV) pp neutrinos from the sun. New detectors for bolometric measurement of low-energy neutrino interactions, including coherent nuclear elastic scattering, are proposed. A new and more sensitive search for oscillations of reactor antineutrinos is practical (about 100 kg of Si), and would lay the groundwork for a more ambitious measurement of the spectrum of pp, Be-7, and B-8 solar neutrinos, and of supernovae anywhere in the Galaxy (about 10 tons of Si).

  16. Evaluation of a fourth-generation focal plane camera for use in plasma-source mass spectrometry

    SciTech Connect

    Felton, Jeremy A.; Schilling, G. D.; Ray, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2010-10-18

    A fourth-generation focal plane camera containing 1696 Faraday-strip detectors was fitted to a Mattauch-Herzog mass spectrograph and characterized for its performance with inductively coupled plasma ionization. The camera provides limits of detection in the single to tens of ng L-1 range for most elements and has a linear dynamic range of at least nine orders of magnitude. Isotope-ratio precision better than 0.02% has also been achieved with this device, and this fourth-generation system features the broadest simultaneous mass range obtainable to date with this family of focal plane camera detectors.

  17. Fourth International Symposium on Magnetic Suspension Technology

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)

    1998-01-01

    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Fourth International Symposium on Magnetic Suspension Technology was held at The Nagaragawa Convention Center in Gifu, Japan, on October 30 - November 1, 1997. The symposium included 13 sessions in which a total of 35 papers were presented. The technical sessions covered the areas of maglev, controls, high critical temperature (T(sub c)) superconductivity, bearings, magnetic suspension and balance systems (MSBS), levitation, modeling, and applications. A list of attendees is included in the document.

  18. Youth Violence: Examining the Role of the Federal Government and Nongovernment Organizations in Establishing Solutions for Combatting Juvenile Crime. Hearing before the Subcommittee on Children and Families of the Committee on Labor and Human Resources. Senate, One Hundred Fourth Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Subcommittee on Children and Families.

    A hearing was held before the Senate Subcommittee on Children and Families of the Committee on Labor and Human Relations to discuss possible solutions to the problem of juvenile crime. An opening statement by parents whose young child was murdered by an adolescent set the scene for the panel discussion that followed. James Fox, a professor of…

  19. Extremely high energy cosmic neutrinos and relic neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2006-03-01

    I review the essentials of ultrahigh-energy neutrino interactions, show how neutral-current detection and flavor tagging can enhance the scientific potential of neutrino telescopes, and sketch new studies on neutrino encounters with dark matter relics and on gravitational lensing of neutrinos.

  20. Primary solitary lymphoma of the fourth ventricle

    PubMed Central

    Hsu, Huang-I; Lai, Ping-Hong; Tseng, Hui-Hwa; Hsu, Shu-Shong

    2015-01-01

    Introduction Primary central nervous lymphoma(PCNSL) is a rare form of non-Hodgkin lymphoma confined to the central nervous system. Most of the lesions are supratentorial and periventricular, often involving deep structures such as corpus callosum and basal ganglion. Isolated intraventricular lymphoma is rare and only a few case reports. We report, to the best of our knowledge, the seventh case of isolated PCNSL in the fourth ventricle in an immunocompetent patient. Presentation of case A 61-year-old male presenting with 3 months of headache and dizziness followed with unsteady gait for days. The MR imaging of brain revealed a homogeneously enhancing lesion occupying almost the whole 4th ventricle.The tumor was removed subtotally via suboccipital craniotomy. Histopathology revealed the lesion be a diffuse large B-cell lymphoma. Discussion PCNSL is an important consideration in the differential diagnosis of intracranial mass lesion. The unusual location in surgically accessible fourth ventricle in posterior fossa, the isolation of the tumor may present a compelling indication for surgical resection. Conclusion We suggest that primary lymphoma should be considered with homogenous lesions of the 4th ventricle. Also aggressive surgical resection in this surgically accessible location, instead of biopsy only, is rational. PMID:26209757

  1. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2007-01-01

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

  2. Cosmological Neutrino Mass Detection: The Best Probe of Neutrino Lifetime

    SciTech Connect

    Serpico, Pasquale D.

    2007-04-27

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence, on neutrino secret interactions with (quasi)massless particles as in Majoron models. On the other hand, neutrino decay may provide a way out to explain a discrepancy < or approx. 0.1 eV between cosmic neutrino bounds and lab data.

  3. Family Privilege

    ERIC Educational Resources Information Center

    Seita, John R.

    2014-01-01

    Family privilege is defined as "strengths and supports gained through primary caring relationships." A generation ago, the typical family included two parents and a bevy of kids living under one roof. Now, every variation of blended caregiving qualifies as family. But over the long arc of human history, a real family was a…

  4. [Family Involvement.

    ERIC Educational Resources Information Center

    Alliance: The Newsletter of the National Transition Alliance, 1996

    1996-01-01

    This theme issue provides four articles that address family involvement in the transition of youth with disabilities from school to work. The first article, "Family Involvement" by Marge Goldberg and Shauna McDonald, offers evidence of the importance of family involvement at this stage of the individual's life, reports on families' experiences,…

  5. Physics of neutrino flavor transformation through matter-neutrino resonances

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Duan, Huaiyu; Qian, Yong-Zhong

    2016-01-01

    In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  6. Neutrino Counter Nuclear Weapon

    E-print Network

    Tang, Alfred

    2008-01-01

    Radiations produced by neutrino-antineutrino annihilation at the Z0 pole can be used to heat up the primary stage of a thermonuclear warhead and can in principle detonate the device remotely. Neutrino-antineutrino annihilation can also be used as a tactical assault weapon to target hideouts that are unreachable by conventional means.

  7. Neutrino Counter Nuclear Weapon

    E-print Network

    Alfred Tang

    2013-06-25

    Radiations produced by neutrino-antineutrino annihilation at the Z0 pole can be used to heat up the primary stage of a thermonuclear warhead and can in principle detonate the device remotely. Neutrino-antineutrino annihilation can also be used as a tactical assault weapon to target hideouts that are unreachable by conventional means.

  8. Update on Atmospheric Neutrinos

    E-print Network

    M. C. Gonzalez-Garcia; H. Nunokawa; O. L. G. Peres; T. Stanev; J. W. F. Valle

    1998-01-20

    We discuss the impact of recent experimental results on the determination of atmospheric neutrino oscillation parameters. We use all published results on atmospheric neutrinos, including the preliminary large statistics data of Super-Kamiokande. We re-analyze the data in terms of both $\

  9. Topics in Neutrino Astrophysics

    E-print Network

    W. C. Haxton

    1999-01-29

    These lectures cover three topics in neutrino astrophysics. The solar neutrino problem is reviewed, with particular emphasis on the microphysics of the standard solar model, detector responses, the quantum mechanics of the MSW mechanism, and the possibility of spin-flavor oscillations. In the second lecture the electromagnetic properties of Dirac and Majorana neutrinos are discussed. Two classic problems in red giant evolution - the triple alpha reaction and the delay of the He flash by anomalous cooling - are used to illustrate how stellar cooling arguments constrain neutrino properties. Axion and Dirac neutrino mass effects on supernova cooling are also discussed. The third lecture describes the supernova explosion mechanism and the associated nucleosynthesis. The neutrino process and r-process are discussed, including the "neutrino fingerprint" on the latter that supports earlier suggestions that the r-process site is near the mass cut of a type II supernova. The effects of tau neutrino oscillations on the r-process are described briefly. The material is presented at a level suitable for graduate students at the beginning of their research careers.

  10. Hierarchically Acting Sterile Neutrinos

    E-print Network

    Chian-Shu Chen; Ryo Takahashi

    2011-12-09

    We propose that a hierarchical spectrum of sterile neutrinos (eV, keV, $10^{13-15}$ GeV) is considered to as the explanations for MiniBooNE and LSND oscillation anomalies, dark matter, and baryon asymmetry of the universe (BAU) respectively. The scenario can also realize the smallness of active neutrino masses by seesaw mechanism.

  11. Neutrinos for Peace

    NASA Astrophysics Data System (ADS)

    Cribier, M.

    2015-04-01

    The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

  12. The Sudbury Neutrino Observatory

    SciTech Connect

    Hime, A.

    1996-09-01

    A report is given on the status of the Sudbury Neutrino Observatory, presently under construction in the Creighton nickel mine near Sudbury, Ontario in Canada. Focus is upon the technical factors involving a measurement of the charged-current and neutral-current interactions of solar neutrinos on deuterium.

  13. Neutrino quantum kinetic equations

    NASA Astrophysics Data System (ADS)

    Volpe, Cristina

    2015-09-01

    Neutrinos propagate in astrophysical and cosmological environments modifying their flavor in intriguing ways. The study of neutrino propagation in media is based on the mean-field, extended mean-field and Boltzmann equations. We summarize salient features of these evolution equations and the methods employed so far to derive them. We emphasize applications to situations of observational interest.

  14. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  15. Reactor Monitoring with Neutrinos

    E-print Network

    M. Cribier

    2007-04-06

    The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

  16. Sterile neutrino signals from supernovae

    E-print Network

    P. Keränen; J. Maalampi; M. Myyryläinen; J. Riittinen

    2007-11-22

    We investigate the effects of a mixing of active and sterile neutrinos on the ratios of supernova electron neutrino flux ($F_e$) and antineutrino flux ($F_{\\bar e}$) to the total flux of the other neutrino and antineutrino flavours ($F_a$). We assume that the heaviest (in the normal hierarchy) Standard Model neutrino $\

  17. Family Recovery.

    PubMed

    Spaniol, LeRoy; Nelson, Ann

    2015-10-01

    This paper describes the recovery process of families of people with severe mental illnesses. The paper describes the phases of family recovery and useful interventions by phase with the family by professionals. The recovery process of people with serious mental illnesses has been well documented but that of the family has been neglected. Hopefully, this paper will generate further research into the impact of serious mental illnesses on family members. PMID:25947133

  18. Neutrinos, WMAP, and BBN

    E-print Network

    Lawrence M. Krauss; Cecilia Lunardini; Christel Smith

    2010-11-18

    New data from WMAP have appeared, related to both the fractional energy density in relativistic species at decoupling and also the primordial helium abundance, at the same time as other independent observational estimates suggest a higher value of the latter than previously estimated. All the data are consistent with the possibility that the effective number of relativistic species in the radiation gas at the time of Big Bang Nucleosynthesis may exceed the value of 3, as expected from a CP-symmetric population of the known neutrino species. Here we explore the possibility that new neutrino physics accounts for such an excess. We explore different realizations, including neutrino asymmetry and new neutrino species, as well as their combination, and describe how existing constraints on neutrino physics would need to be relaxed as a result of the new data, as well as possible experimental tests of these possibilities.

  19. Solar Neutrino Physics

    SciTech Connect

    Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A.; McGirt, F.; Miller, G.G.; Thornewell, P.M.; Wilhelmy, J.B.; Wouters, J.M.

    1999-07-15

    With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters.

  20. Neutrinos and dark matter

    NASA Astrophysics Data System (ADS)

    Ibarra, Alejandro

    2015-07-01

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  1. Black rings with fourth dipole cause less hair loss

    E-print Network

    Borun D. Chowdhury

    2012-11-05

    An example of entropy enigma with a controlled CFT dual was recently studied in arXiv:1108.0411. The enigmatic bulk configurations, considered within the STU model, can be mapped under spectral flow into black rings with three monopole and dipole charges. Even though the bulk and CFT configurations existed in the same region of parameter space, the Bekenstein-Hawking entropy of the bulk configurations was found to be lower than the microscopic entropy from the CFT. While it is possible that the difference in entropy is due to the bulk and boundary configurations being at different points in the moduli space, it is also possible that the bulk configurations embeddable within the STU model are not the most entropic. New families of BPS black ring solutions with four electric and four dipole magnetic charges have recently been explicitly constructed in arXiv:1201.2585. These black rings are not embeddable within the STU model. In this paper we investigate if these black rings can be entropically dominant over the STU model black rings. We find that the new black rings are always entropically subdominant to the STU-model black rings. However, for small fourth dipole charge these black rings continue to be dominant over the BMPV in a small region of parameters and are thus enigmatic.

  2. Neutrino-neutrino interactions in a supernova and their effect on neutrino flavor conversions

    SciTech Connect

    Dighe, Amol

    2011-11-23

    The neutrino-neutrino interactions inside a supernova core give rise to nonlinear collective effects that significantly influence the neutrino flavor conversions inside the star. I shall describe these interactions, the new oscillation phenomena they generate, and their effect on the neutrino fluxes arriving at the earth.

  3. New Physics and Neutrino Oscillation

    NASA Astrophysics Data System (ADS)

    Ochman, M.; Szafron, R.; Zralek, M.

    2011-08-01

    Description of neutrino oscillation in the case of Non-Standard neutrino Interaction (NSI) is briefly presented. The NSI causes the entanglement between internal degrees of freedom of neutrinos (mass, spin, flavour) and other accompanying particles in the production and detection processes. In such case neutrinos are mostly in the mixed states. Role of the density matrix in description of neutrino oscillation process is shortly explained.

  4. Phenomenology of Light Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Laveder, Marco; Giunti, Carlo

    2015-07-01

    After a short review of the current status of standard three-neutrino mixing, we consider its extension with the addition of one or two light sterile neutrinos which can explain the anomalies found in short-baseline neutrino oscillation experiments. We review the results of the global analyses of short-baseline neutrino oscillation data in 3+1, 3+2 and 3+1+1 neutrino mixing schemes.

  5. Coherent scattering of cosmic neutrinos

    NASA Technical Reports Server (NTRS)

    Opher, R.

    1974-01-01

    It is shown that cosmic neutrino scattering can be non-negligible when coherence effects previously neglected are taken into account. The coherent neutrino scattering cross section is derived and the neutrino index of refraction evaluated. As an example of coherent neutrino scattering, a detector using critical reflection is described which in principle can detect the low energy cosmic neutrino background allowed by the measured cosmological red shift.

  6. Introduction: The Fourth International Workshop on Epigenetic Robotics

    E-print Network

    Sandini, Giulio

    Introduction: The Fourth International Workshop on Epigenetic Robotics Luc Berthouze Neuroscience engineering embodied systems and, on the other hand, building artificial epigenetic systems. Epigenetic

  7. 95. ROOM 402 (LAW LIBRARY), EAST WING, FOURTH FLOOR, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. ROOM 402 (LAW LIBRARY), EAST WING, FOURTH FLOOR, LOOKING SOUTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  8. Topics in neutrino astrophysics

    NASA Astrophysics Data System (ADS)

    Chan, Man Ho

    2009-06-01

    In this thesis, we investigate observable consequences of active and sterile neutrinos, in galactic, cluster, and cosmological scales. We assume that sterile neutrinos with masses of order 10's eV, 10's keV, and MeV were formed by oscillation of active neutrinos in the early universe. If sterile neutrinos with mass ~ 30 eV exist, they affect the structure of galaxies and explain the flatness of their rotation curves. Also, the existence of decaying sterile neutrinos with mass 16 -- 18 keV and decay rate G = (5 ± 1) × 10^-17 s -1 can simultaneously be the cause of heating at the Milky Way center, the supermassive blackhole mass and velocity dispersion relation, the lack of cooling flow in clusters, and reionization in the universe. Lastly, we make of the observed 511 keV annihilation flux line at the Milky Way center to constrain properties of sterile neutrinos of MeV mass scale. We also derive a relation among several cluster observables assuming the existence of an active neutrino halo, which agrees with the observational data in 103 clusters.

  9. Physics of Neutrino Oscillation

    E-print Network

    Spandan Mondal

    2015-11-20

    The Standard Model of particle physics describes neutrinos as massless, chargeless elementary particles that come in three different flavours. However, recent experiments indicate that neutrinos not only have mass, but also have multiple mass eigenstates that are not identical to the flavour states, thereby indicating mixing. As an evidence of mixing, neutrinos have been observed to change from one flavour to another during their propagation, a phenomenon called neutrino oscillation. We have studied the reasons and derived the probabilities of neutrino flavour change, both in vacuum and in matter. We have also studied the parameters affecting this probability. We have discussed the special case of two-neutrino oscillations. Lastly, we have discussed some basic properties of neutrinos that are reflected in the previous derivations and highlighted a few relevant open problems. To begin with, we have also studied the relevant topics in introductory High Energy Physics and Quantum Mechanics to familiarize with the notations, units and methodologies that would be required for the subsequent topics.

  10. Fourth Meeting on CPT and Lorentz Symmetry

    NASA Astrophysics Data System (ADS)

    Kostelecký, V. Alan

    2008-03-01

    Improved tests of Lorentz and CPT symmetry using noble-gas masers / A. Glenday, D. F. Phillips, and R. L. Walsworth -- A modern Michelson-Morley experiment using actively rotated optical resonators / S. Herrmann et al. -- Rotating experiments to test Lorentz invariance in the photon sector / M. E. Tobar et al. -- Lorentz violation, electrodynamics, and the cosmic microwave background / M. Mewes -- High energy astrophysical tests of Lorentz invariance / B. Altschul -- Fundamental physics experiments in space (within ESA) / T. J. Sumner -- The experimental foundations of the Dirac equation / C. Lämmerzahl -- Perspectives on Lorentz and CPT violation / V. A. Kostelecký -- Search for Lorentz and CPT violation effects in muon spin precession / B. L. Roberts -- Lorentz violation in a diffeomorphism-invariant theory / R. Jackiw -- Studies of CPT symmetry with ASACUSA / R. S. Hayano -- Neutrino oscillations and Lorentz violation with MiniBooNE / R. Tayloe and T. Katori -- Testing Lorentz and CPT invariance with MINOS near detector neutrinos / B. J. Rebel and S. L. Mufson -- Einstein-?ther gravity: theory and observational constraints / T. Jacobson -- Tests of Lorentz-invariance violation in neutrino oscillations / K. Whisnant -- Search for CPT violation in neutral kaons at KLOE: status and perspectives / A. Di Domenico et al. -- Search for CPT violation in B[symbol]-B¯[symbol] oscillations with BABAR / D. P. Stoker -- Theoretical topics in spacetime-symmetry violations / R. Lehnert -- A second-generation co-magnetometer for testing fundamental symmetries / S. J. Smullin et al. -- Nambu-Goldstone and massive modes in gravitational theories with spontaneous Lorentz breaking / R. Bluhm -- The ALPHA antihydrogen experiment / N. Madsen et al. -- Atom interferometry tests the isotropy of post-Newtonian gravity / H. Müller et al. -- Probing Lorentz symmetry with gravitationally coupled matter / J. D. Tasson -- Torsion balance test of preferred-frame and weak coupling to polarized electrons / B. R. Heckel et al. -- Seeking a solution of the pioneer anomaly / M. M. Nieto and J. D. Anderson -- Testing Lorentz symmetry with gravity / Q. C. Bailey -- Preferred frame effects in relativistic binary pulsars / M. Kramer and N. Wex -- APOLLO: next generation lunar laser ranging / T. W. Murphy, Jr. et al. -- Constraints on Lorentz violation from gravity Probe B / J. M. Overduin -- Preliminary results from a test of CPT and Lorentz symmetry using a K-[symbol]He co-magnetometer / T. W. Kornack, G. Vasilakis, and M. V. Rornalis -- Constraining quantum gravity with GLAST / F. Kuehn, R. Hughes, and B. Winer -- Renormalization of Lorentz-violating theories / D. Anselmi -- Renormalization of gauge theories with Lorentz violation / D. Colladay and P. McDonald -- A POEM-based test of the WEP using a Sounding Rocket (SR-POEM) / R. D. Reasenberg and J. D. Phillips -- Testing alternative oscillation scenarios with atmospheric neutrinos using AMANDA-II data from 2000 to 2003 / J. Ahrens and J. L. Kelley -- Measurement of the ground-state hyperfine splitting of antihydrogen / B. Juhász and E. Widmann -- Spontaneous Lorentz violation and baryogenesis / J. Shu -- Lorentz invariance tested with fast optical ion clocks in a storage ring / G. Gwinner et al. -- Bose-Einstein condensates and Lorentz violation / D. Colladay and P. McDonald -- Embedding geometry and decomposition of gravity / T. E. Clark et al. -- The first lunar laser ranging constraints on gravity sector SME parameters / J. B. R. Battat, J. F. Chandler, and C. W. Stubbs -- A theory of gravity from Lorentz violation / R. Potting -- Search for Lorentz violation in a high-frequency gravitational experiment below 50 microns / W. A. Jensen, S. M. Lewis, and J. C. Long -- Lorentz violation and torsion / N. Russell -- Probing Lorentz invariance using coherent optical phenomena / J. P. Cotter, M. P. Hill, and B. T. H. Varcoe -- Constraint analysis of bumblebee models / N. Gagne and A. Vrublevslcis -- Ives-Stilwell for the new millennium / M. A. Nohensee, D. F. Phillips, and R. L. Walsworth -- Test for

  11. Family Therapy in Complex Temporomandibular Joint Dysfunction

    PubMed Central

    Boll, Pamela G.; Mercuri, Louis G.

    1988-01-01

    The purpose of this paper is to offer the oral and maxillofacial surgeon a collaborative approach to the treatment of complex temporomandibular joint (TMJ) dysfunction. Through a positive relationship with a family therapist, the oral and maxillofacial surgeon in this case reports family therapy intervention as an additive solution to resolving apparent recurrent surgical failures. After three surgical procedures, the oral and maxillofacial surgeon noted continued muscle hyperactivity brought on by family environmental stress and arranged for family therapy treatment before a fourth surgical procedure. This paper presents a complicated TMJ case history, documentation for including the family in treatment of pain problems, collaborative efforts necessary for acceptance of referral for psychological intervention, and a family therapy approach to treatment in complex TMJ dysfunction. PMID:3166348

  12. Solar mass-varying neutrino oscillations

    E-print Network

    Marfatia, Danny; Huber, P.; Barger, V.

    2005-11-18

    We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric neutrino and K2K data...

  13. Neutrino time travel

    E-print Network

    James Dent; Heinrich Päs; Sandip Pakvasa; Thomas J. Weiler

    2007-12-09

    We discuss causality properties of extra-dimensional theories allowing for effectively superluminal bulk shortcuts. Such shortcuts for sterile neutrinos have been discussed as a solution to the puzzling LSND and MiniBooNE neutrino oscillation results. We focus here on the sub-category of asymmetrically warped brane spacetimes and argue that scenarios with two extra dimensions may allow for timelike curves which can be closed via paths in the extra-dimensional bulk. In principle sterile neutrinos propagating in the extra dimension may be manipulated in a way to test the chronology protection conjecture experimentally.

  14. Low Energy Neutrino Measurements

    E-print Network

    D'Angelo, Davide

    2012-01-01

    Low Energy solar neutrino detection plays a fundamental role in understanding both solar astrophysics and particle physics. After introducing the open questions on both fields, we review here the major results of the last two years and expectations for the near future from Borexino, Super-Kamiokande, SNO and KamLAND experiments as well as from upcoming (SNO+) and planned (LENA) experiments. Scintillator neutrino detectors are also powerful antineutrino detectors such as those emitted by the Earth crust and mantle. First measurements of geo-neutrinos have occurred and can bring fundamental contribution in understanding the geophysics of the planet.

  15. Low Energy Neutrino Measurements

    E-print Network

    Davide D'Angelo

    2012-11-22

    Low Energy solar neutrino detection plays a fundamental role in understanding both solar astrophysics and particle physics. After introducing the open questions on both fields, we review here the major results of the last two years and expectations for the near future from Borexino, Super-Kamiokande, SNO and KamLAND experiments as well as from upcoming (SNO+) and planned (LENA) experiments. Scintillator neutrino detectors are also powerful antineutrino detectors such as those emitted by the Earth crust and mantle. First measurements of geo-neutrinos have occurred and can bring fundamental contribution in understanding the geophysics of the planet.

  16. Submarine neutrino communication

    E-print Network

    Patrick Huber

    2010-08-20

    We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly onto the hull of the submersible. The achievable data transfer rates compare favorable with existing technologies and do allow for a communication at the usual speed and depth of submarines.

  17. Submarine neutrino communication

    E-print Network

    Huber, Patrick

    2009-01-01

    We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly onto the hull of the submersible. The achievable data transfer rates compare favorable with existing technologies and do allow for a communication at the usual speed and depth of submarines.

  18. The AMANDA Neutrino Telescope

    E-print Network

    F. Halzen; for the AMANDA Collaboration

    1998-09-23

    With an effective telescope area of order $10^4$ m$^2$ for TeV neutrinos, a threshold near $\\sim$50 GeV and a pointing accuracy of 2.5 degrees per muon track, the AMANDA detector represents the first of a new generation of high energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We describe early results on the calibration of natural deep ice as a particle detector as well as on AMANDA's performance as a neutrino telescope.

  19. Neutrinos: Nature's Identity Thieves?

    SciTech Connect

    Dr. Don Lincoln

    2013-07-11

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  20. Neutrinos from neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    A calculation of the flux of ultra-high energy neutrinos from galactic neutron stars is presented. The calculation is used to determine the number of point sources detectable at the sensitivity threshold of a proposed deep underwater muon and neutrino detector array. The detector array would have a point source detection threshold of about 100 eV/sq cm-sec. Analysis of neutrino luminosities and the number of detectable sources suggests that the deep underwater detector may make a few discoveries. In particular, a suspected neutron star in the Cyg X-3 source seems a promising target for the deep underwater array.

  1. Neutrinos: Nature's Identity Thieves?

    ScienceCinema

    Dr. Don Lincoln

    2013-07-22

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  2. Neutrinos: Nature's Identity Thieves?

    ScienceCinema

    Lincoln, Don

    2014-08-07

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  3. Family Meals

    MedlinePLUS

    ... A With Robert Irvine Pregnant? What to Expect Family Meals KidsHealth > Parents > Nutrition & Fitness Center > Healthy Eating & ... even more important as kids get older. Making Family Meals Happen It can be a big challenge ...

  4. Familial gigantism.

    PubMed

    Herder, Wouter W de

    2012-01-01

    Familial GH-secreting tumors are seen in association with three separate hereditary clinical syndromes: multiple endocrine neoplasia type 1, Carney complex, and familial isolated pituitary adenomas. PMID:22584702

  5. Family History

    MedlinePLUS

    ... Brain Aneurysm Statistics and Facts Seeking Medical Attention Pediatric Aneurysms Brain Aneurysm Causes and Risk Factors Family History ... Brain Aneurysm Statistics and Facts Seeking Medical Attention Pediatric Aneurysms Brain Aneurysm Causes and Risk Factors Family History ...

  6. Probing nonstandard neutrino interactions with supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Esteban-Pretel, A.; Tomàs, R.; Valle, J. W. F.

    2007-09-01

    We analyze the possibility of probing nonstandard neutrino interactions (NSI, for short) through the detection of neutrinos produced in a future galactic supernova (SN). We consider the effect of NSI on the neutrino propagation through the SN envelope within a three-neutrino framework, paying special attention to the inclusion of NSI-induced resonant conversions, which may take place in the most deleptonized inner layers. We study the possibility of detecting NSI effects in a Megaton water Cherenkov detector, either through modulation effects in the ?¯e spectrum due to (i) the passage of shock waves through the SN envelope, (ii) the time dependence of the electron fraction, and (iii) the Earth matter effects; or, finally, through the possible detectability of the neutronization ?e burst. We find that the ?¯e spectrum can exhibit dramatic features due to the internal NSI-induced resonant conversion. This occurs for nonuniversal NSI strengths of a few %, and for very small flavor-changing NSI above a few×10-5.

  7. Probing nonstandard neutrino interactions with supernova neutrinos

    SciTech Connect

    Esteban-Pretel, A.; Tomas, R.; Valle, J. W. F.

    2007-09-01

    We analyze the possibility of probing nonstandard neutrino interactions (NSI, for short) through the detection of neutrinos produced in a future galactic supernova (SN). We consider the effect of NSI on the neutrino propagation through the SN envelope within a three-neutrino framework, paying special attention to the inclusion of NSI-induced resonant conversions, which may take place in the most deleptonized inner layers. We study the possibility of detecting NSI effects in a Megaton water Cherenkov detector, either through modulation effects in the {nu}{sub e} spectrum due to (i) the passage of shock waves through the SN envelope, (ii) the time dependence of the electron fraction, and (iii) the Earth matter effects; or, finally, through the possible detectability of the neutronization {nu}{sub e} burst. We find that the {nu}{sub e} spectrum can exhibit dramatic features due to the internal NSI-induced resonant conversion. This occurs for nonuniversal NSI strengths of a few %, and for very small flavor-changing NSI above a fewx10{sup -5}.

  8. Search for a Light Sterile Neutrino at Daya Bay

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Beriguete, W.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, G. F.; Cao, J.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chasman, C.; Chen, H.; Chen, Q. Y.; Chen, S. M.; Chen, X.; Chen, X.; Chen, Y. X.; Chen, Y.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, Y. Y.; Diwan, M. V.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fu, J. Y.; Ge, L. Q.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, X. H.; Hackenburg, R. W.; Han, G. H.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Hinrichs, P.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiang, H. J.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, W. C.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, A.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S. S.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Luk, K. B.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Monari Kebwaro, J.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Nemchenok, I.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Patton, S.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tam, Y. H.; Tang, X.; Themann, H.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. C.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Young, B. L.; Yu, G. Y.; Yu, J. Y.; Yu, Z. Y.; Zang, S. L.; Zeng, B.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, Q.; Zhang, S. H.; Zhang, Y. C.; Zhang, Y. M.; Zhang, Y. H.; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, Z. Y.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2014-10-01

    A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9 GWth nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the 10-3 eV2<|?m412|<0.3 eV2 range. The relative spectral distortion due to the disappearance of electron antineutrinos was found to be consistent with that of the three-flavor oscillation model. The derived limits on sin22?14 cover the 10-3 eV2?|?m412|?0.1 eV2 region, which was largely unexplored.

  9. Search for a Light Sterile Neutrino at Daya Bay

    E-print Network

    F. P. An; A. B. Balantekin; H. R. Band; W. Beriguete; M. Bishai; S. Blyth; I. Butorov; G. F. Cao; J. Cao; Y. L. Chan; J. F. Chang; L. C. Chang; Y. Chang; C. Chasman; H. Chen; Q. Y. Chen; S. M. Chen; X. Chen; X. Chen; Y. X. Chen; Y. Chen; Y. P. Cheng; J. J. Cherwinka; M. C. Chu; J. P. Cummings; J. de Arcos; Z. Y. Deng; Y. Y. Ding; M. V. Diwan; E. Draeger; X. F. Du; D. A. Dwyer; W. R. Edwards; S. R. Ely; J. Y. Fu; L. Q. Ge; R. Gill; M. Gonchar; G. H. Gong; H. Gong; M. Grassi; W. Q. Gu; M. Y. Guan; X. H. Guo; R. W. Hackenburg; G. H. Han; S. Hans; M. He; K. M. Heeger; Y. K. Heng; P. Hinrichs; Y. K. Hor; Y. B. Hsiung; B. Z. Hu; L. M. Hu; L. J. Hu; T. Hu; W. Hu; E. C. Huang; H. Huang; X. T. Huang; P. Huber; G. Hussain; Z. Isvan; D. E. Jaffe; P. Jaffke; K. L. Jen; S. Jetter; X. P. Ji; X. L. Ji; H. J. Jiang; J. B. Jiao; R. A. Johnson; L. Kang; S. H. Kettell; M. Kramer; K. K. Kwan; M. W. Kwok; T. Kwok; W. C. Lai; K. Lau; L. Lebanowski; J. Lee; R. T. Lei; R. Leitner; A. Leung; J. K. C. Leung; C. A. Lewis; D. J. Li; F. Li; G. S. Li; Q. J. Li; W. D. Li; X. N. Li; X. Q. Li; Y. F. Li; Z. B. Li; H. Liang; C. J. Lin; G. L. Lin; P. Y. Lin; S. K. Lin; Y. C. Lin; J. J. Ling; J. M. Link; L. Littenberg; B. R. Littlejohn; D. W. Liu; H. Liu; J. L. Liu; J. C. Liu; S. S. Liu; Y. B. Liu; C. Lu; H. Q. Lu; K. B. Luk; Q. M. Ma; X. Y. Ma; X. B. Ma; Y. Q. Ma; K. T. McDonald; M. C. McFarlane; R. D. McKeown; Y. Meng; I. Mitchell; J. Monari Kebwaro; Y. Nakajima; J. Napolitano; D. Naumov; E. Naumova; I. Nemchenok; H. Y. Ngai; Z. Ning; J. P. Ochoa-Ricoux; A. Olshevski; S. Patton; V. Pec; J. C. Peng; L. E. Piilonen; L. Pinsky; C. S. J. Pun; F. Z. Qi; M. Qi; X. Qian; N. Raper; B. Ren; J. Ren; R. Rosero; B. Roskovec; X. C. Ruan; B. B. Shao; H. Steiner; G. X. Sun; J. L. Sun; Y. H. Tam; X. Tang; H. Themann; K. V. Tsang; R. H. M. Tsang; C. E. Tull; Y. C. Tung; B. Viren; V. Vorobel; C. H. Wang; L. S. Wang; L. Y. Wang; M. Wang; N. Y. Wang; R. G. Wang; W. Wang; W. W. Wang; X. Wang; Y. F. Wang; Z. Wang; Z. Wang; Z. M. Wang; D. M. Webber; H. Y. Wei; Y. D. Wei; L. J. Wen; K. Whisnant; C. G. White; L. Whitehead; T. Wise; H. L. H. Wong; S. C. F. Wong; E. Worcester; Q. Wu; D. M. Xia; J. K. Xia; X. Xia; Z. Z. Xing; J. Y. Xu; J. L. Xu; J. Xu; Y. Xu; T. Xue; J. Yan; C. C. Yang; L. Yang; M. S. Yang; M. T. Yang; M. Ye; M. Yeh; Y. S. Yeh; B. L. Young; G. Y. Yu; J. Y. Yu; Z. Y. Yu; S. L. Zang; B. Zeng; L. Zhan; C. Zhang; F. H. Zhang; J. W. Zhang; Q. M. Zhang; Q. Zhang; S. H. Zhang; Y. C. Zhang; Y. M. Zhang; Y. H. Zhang; Y. X. Zhang; Z. J. Zhang; Z. Y. Zhang; Z. P. Zhang; J. Zhao; Q. W. Zhao; Y. Zhao; Y. B. Zhao; L. Zheng; W. L. Zhong; L. Zhou; Z. Y. Zhou; H. L. Zhuang; J. H. Zou

    2014-10-08

    A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9~GW$_{\\rm th}$ nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1579~m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the $10^{\\rm -3}~{\\rm eV}^{2} < |\\Delta m_{41}^{2}| < 0.3~{\\rm eV}^{2}$ range. The relative spectral distortion due to electron antineutrino disappearance was found to be consistent with that of the three-flavor oscillation model. The derived limits on $\\sin^22\\theta_{14}$ cover the $10^{-3}~{\\rm eV}^{2} \\lesssim |\\Delta m^{2}_{41}| \\lesssim 0.1~{\\rm eV}^{2}$ region, which was largely unexplored.

  10. Search for a light sterile neutrino at Daya Bay.

    PubMed

    An, F P; Balantekin, A B; Band, H R; Beriguete, W; Bishai, M; Blyth, S; Butorov, I; Cao, G F; Cao, J; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chasman, C; Chen, H; Chen, Q Y; Chen, S M; Chen, X; Chen, X; Chen, Y X; Chen, Y; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, Y Y; Diwan, M V; Draeger, E; Du, X F; Dwyer, D A; Edwards, W R; Ely, S R; Fu, J Y; Ge, L Q; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, X H; Hackenburg, R W; Han, G H; Hans, S; He, M; Heeger, K M; Heng, Y K; Hinrichs, P; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H; Huang, X T; Huber, P; Hussain, G; Isvan, Z; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiang, H J; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Lai, W C; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, A; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Lin, Y C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Liu, Y B; Lu, C; Lu, H Q; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; McDonald, K T; McFarlane, M C; McKeown, R D; Meng, Y; Mitchell, I; Monari Kebwaro, J; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Nemchenok, I; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tam, Y H; Tang, X; Themann, H; Tsang, K V; Tsang, R H M; Tull, C E; Tung, Y C; Viren, B; Vorobel, V; Wang, C H; Wang, L S; Wang, L Y; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Webber, D M; Wei, H Y; Wei, Y D; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C C; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Yeh, Y S; Young, B L; Yu, G Y; Yu, J Y; Yu, Z Y; Zang, S L; Zeng, B; Zhan, L; Zhang, C; Zhang, F H; Zhang, J W; Zhang, Q M; Zhang, Q; Zhang, S H; Zhang, Y C; Zhang, Y M; Zhang, Y H; Zhang, Y X; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, Z Y; Zhuang, H L; Zou, J H

    2014-10-01

    A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9 GW(th) nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the 10(-3) eV(2)<|?m(41)(2) |< 0.3 eV(2) range. The relative spectral distortion due to the disappearance of electron antineutrinos was found to be consistent with that of the three-flavor oscillation model. The derived limits on sin(2) 2?(14) cover the 10(-3) eV(2) ? |?m(41)(2)| ? 0.1 eV(2) region, which was largely unexplored. PMID:25325631

  11. Atmospheric neutrino oscillations and tau neutrinos in ice

    SciTech Connect

    Giordano, Gerardo; Mocioiu, Irina; Mena, Olga

    2010-06-01

    The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show here that cascade measurements in the Ice Cube Deep Core Array can provide strong evidence for tau neutrino appearance in atmospheric neutrino oscillations. Controlling systematic uncertainties will be the limiting factor in the analysis. A careful study of these tau neutrinos is crucial, since they constitute an irreducible background for astrophysical neutrino detection.

  12. Neutrino masses from fine tuning

    NASA Astrophysics Data System (ADS)

    Grossmann, B. N.; Murdock, Z.; Nandi, S.

    2010-10-01

    We present a new approach for generating tiny neutrino masses. The Dirac neutrino mass matrix gets contributions from two new Higgs doublets with their vevs at the electroweak (EW) scale. Neutrino masses are tiny not because of tiny Yukawa couplings, or very heavy ( ?10 GeV) right-handed neutrinos. They are tiny because of a cancellation in the Dirac neutrino mass matrix (fine tuning). After fine tuning to make the Dirac neutrino mass matrix at the 10 GeV scale, light neutrino masses are obtained in the correct scale via the see-saw mechanism with the right-handed neutrino at the EW scale. The proposal links neutrino physics to collider physics. The Higgs search strategy is completely altered. For a wide range of Higgs masses, the Standard Model Higgs decays dominantly to ?N mode giving rise to the final state ?bar?bbarb, or ?bar???. This can be tested at the LHC, and possibly at the Tevatron.

  13. Rural Families.

    ERIC Educational Resources Information Center

    Goetz, Kathy, Ed.

    1992-01-01

    This "special focus" journal issue consists of 13 individual articles on the theme of rural family programs relating to school, health services, church, and other institutions. It includes: (1) "Towards a Rural Family Policy" (Judith K. Chynoweth and Michael D. Campbell); (2) "Montana: Council for Families Collaborates for Prevention (Jean…

  14. Family Support.

    ERIC Educational Resources Information Center

    Wieck, Colleen, Ed.; McBride, Marijo, Ed.

    1990-01-01

    This "Feature Issue" of the quarterly journal "Impact" presents 19 brief articles on family support systems in the United States for persons with developmental disabilities and their families. Emphasis is on provisions of Public Law 99-457. Articles include: "Family Support in the United States: Setting a Course for the 1990s" (James Knoll);…

  15. Human Resources Administration: A School-Based Perspective. Fourth Edition

    ERIC Educational Resources Information Center

    Smith, Richard

    2009-01-01

    Enhanced and updated, this Fourth Edition of Richard E. Smith's highly successful text examines the growing role of the principal in planning, hiring, staff development, supervision, and other human resource functions. The Fourth Edition includes new sections on ethics, induction, and the role of the mentor teacher. This edition also introduces…

  16. Reading To Learn: Lessons from Exemplary Fourth-Grade Classrooms.

    ERIC Educational Resources Information Center

    Allington, Richard L.; Johnston, Peter H.

    Fourth graders around the country face new, high-stakes standardized tests, drawing increased attention to the need for effective literacy instruction in the upper elementary grades. This book goes beyond "political catch phrases" to examine what actually works in the fourth-grade classroom. The book offers a view of the techniques and strategies…

  17. Ohio Ag in the Classroom. Fourth Grade Curriculum Guide.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Agriculture, Columbus.

    Adapted from Idaho's fourth grade agricultural education curriculum guide, this manual was created because there were insufficient resources available to Ohio students about the systems that provide human beings with food and fiber. Economically Ohio's largest industry, agriculture, serves as a basis for providing fourth-grade teachers with…

  18. Toward a systematic analysis of the fourth-root trick

    E-print Network

    Joel Giedt

    2005-12-30

    In this note I briefly discuss ideas related to the so-called fourth-root trick. A decomposition of the ``rooted'' fermion effective action into Wilson fermions and a nonlocal, lattice spacing suppressed functional is presented, complete with link interactions. Some proposals are given for analytical, nonperturbative studies of the fourth-root trick.

  19. GENDER EQUALITY SCHEME: Fourth Annual Progress Report (2010-2011)

    E-print Network

    Wallace, Mark

    1 GENDER EQUALITY SCHEME: Fourth Annual Progress Report (2010-2011) For copies of this report and development of the GES 14 2011 membership 15 #12;2 1. Introduction This fourth annual report on the Gender's ongoing gender equality work, and provides data on key aspects of the staff and student population

  20. Using Inquiry to Learn about Soil: A Fourth Grade Experience

    ERIC Educational Resources Information Center

    Magee, Paula A.; Wingate, Elisha

    2014-01-01

    In this article, we describe a fourth-grade inquiry unit on soil. The unit was designed and taught by preservice elementary teachers as part of a university science methods course. Using a student-driven inquiry approach to designing curriculum, the unit engaged fourth graders in learning about the physical properties soil, erosion, worms, and…

  1. The Science of NOA Neutrinos are everywhere!

    E-print Network

    Quigg, Chris

    The Science of NOA Neutrinos are everywhere! Neutrinos are among the most abundant particles. Unimaginably large numbers of neutrinos from the first moments of the universe are still present today. Neutrinos help to shape our universe Nuclear reactions make the sun shine, producing neutrinos. Neutrinos

  2. WMAPping out neutrino masses

    SciTech Connect

    Pierce, Aaron; Murayama, Hitoshi

    2003-10-28

    Recent data from the Wilkinson Microwave Anisotropy Probe (WMAP) place important bounds on the neutrino sector. The precise determination of the baryon number in the universe puts a strong constraint on the number of relativistic species during Big-Bang Nucleosynthesis. WMAP data, when combined with the 2dF Galaxy Redshift Survey (2dFGRS), also directly constrain the absolute mass scale of neutrinos. These results impinge upon a neutrino oscillation interpretation of the result from the Liquid Scintillator Neutrino Detector (LSND).We also note that the Heidelberg-Moscow evidence for neutrinoless double beta decay is only consistent with the WMAP+2dFGRS data for the largest values of the nuclear matrix element.

  3. Detecting the Neutrino

    NASA Astrophysics Data System (ADS)

    Arns, Robert G.

    In 1930 Wolfgang Pauli suggested that a new particle might be required to make sense of the radioactive-disintegration mode known as beta decay. This conjecture initially seemed impossible to verify since the new particle, which became known as the neutrino, was uncharged, had zero or small mass, and interacted only insignificantly with other matter. In 1951 Frederick Reines and Clyde L. Cowan, Jr., of the Los Alamos Scientific Laboratory undertook the difficult task of detecting the free neutrino by observing its inverse beta-decay interaction with matter. They succeeded in 1956. The neutrino was accepted rapidly as a fundamental particle despite discrepancies in reported details of the experiments and despite the absence of independent verification of the result. This paper describes the experiments, examines the nature of the discrepancies, and discusses the circumstances of the acceptance of the neutrino's detection by the physics community.

  4. Sterile Neutrino Anarchy

    E-print Network

    Julian Heeck; Werner Rodejohann

    2013-02-07

    Lepton mixing, which requires physics beyond the Standard Model, is surprisingly compatible with a minimal, symmetryless and unbiased approach, called anarchy. This contrasts with highly involved flavor symmetry models. On the other hand, hints for light sterile neutrinos have emerged from a variety of independent experiments and observations. If confirmed, their existence would represent a groundbreaking discovery, calling for a theoretical interpretation. We discuss anarchy in the two-neutrino eV-scale seesaw framework. The distributions of mixing angles and masses according to anarchy are in agreement with global fits for the active and sterile neutrino parameters. Our minimal and economical scenario predicts the absence of neutrinoless double beta decay and one vanishing neutrino mass, and can therefore be tested in future experiments.

  5. Precision Neutrino Counting

    E-print Network

    Gary Steigman

    2001-08-08

    In the framework of the standard, hot big bang cosmological model the dynamics of the early evolution of the universe is controlled by the energy density of relativistic particles, among which neutrinos play an important role. In equilibrium, the energy density contributed by one flavor of relativistic neutrinos is 7/8 of that of the cosmic background radiation (CBR) photons. As the universe expands and cools, neutrinos decouple and their subsequent contribution to the energy density is modified by the relative heating of the CBR photons when electron-positron pairs annihilate. The small corrections to the post-annihilation energy density of the standard model neutrinos due to incomplete decoupling and finite-temperature QED effects are reviewed (correcting an error in the literature) and extended to account for possible additional relativistic degrees of freedom whose presence might modify the predictions of primordial nucleosynthesis and of the predicted CBR anisotropies.

  6. Ultrahigh energy neutrino interactions

    NASA Astrophysics Data System (ADS)

    Domokos, G.; Elliot, B.; Kovesi-Domokos, S.; Mrenna, S.

    1990-03-01

    Ultrahigh energy neutrinos are valuable probes of physics beyond the Standard Model. Neutrinos of the highest energies are emitted by point sources in the sky. We review briefly the predictions of the Standard Model concerning neutrino interactions. We further argue that a number of preon models designed to overcome some difficulties of the Standard Model leads to a blurring of the distinction between leptons and quarks. As a consequence, at sufficiently high energies neutrinos acquire ``anomalous'' interactions. While this phenomenon can probably explain the observed muon excess in extensive air showers (EAS), it can be also tested by studying the absorption of the primaries on the cosmic microwave background. We discuss some observations to be performed in the search of such ``new physics'' beyond the Standard Model.

  7. The ANTARES neutrino telescope

    E-print Network

    Juan de Dios Zornoza; Juan Zúñiga

    2012-10-10

    The ANTARES collaboration completed the installation of the first neutrino detector in the sea in 2008. It consists of a three dimensional array of 885 photomultipliers to gather the Cherenkov photons induced by relativistic muons produced in charged-current interactions of high energy neutrinos close to/in the detector. The scientific scope of neutrino telescopes is very broad: the origin of cosmic rays, the origin of the TeV photons observed in many astrophysical sources or the nature of dark matter. The data collected up to now have allowed us to produce a rich output of physics results, including the map of the neutrino sky of the Southern hemisphere, search for correlations with GRBs, flaring sources, gravitational waves, limits on the flux produced by dark matter self-annihilations, etc. In this paper a review of these results is presented.

  8. ICFA neutrino panel report

    NASA Astrophysics Data System (ADS)

    Long, K.

    2015-07-01

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments." In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel's findings from the three Regional Town Meetings. The Panel's initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  9. Neutrinos estériles en nucleosíntesis primordial

    NASA Astrophysics Data System (ADS)

    Sáez, M. M.; Mosquera, M. E.; Civitarese, O.

    2015-08-01

    We have studied the effect of the inclusion of massive sterile neutrinos upon primordial abundances of the elements produced during the stage of primordial nucleosynthesis (Big Bang Nucleosynthesis). We calculate the new active neutrino number densities by taking into account the interactions between active neutrinos (effective potential), the active neutrino oscillations, the active-sterile neutrino oscillations and a damping factor for active neutrinos. We computed the primordial abundances as functions of the active-sterile mixing parameters. Finally, we compared the abundances calculated theoretically with the observations to set constraints for the free parameters.

  10. Solar Neutrinos: Present and Future

    SciTech Connect

    Ianni, A.

    2005-10-12

    In this paper, present and future experimental techniques to search for solar neutrinos are discussed. A number of reasons to measure sub-MeV solar neutrinos in the future are presented. This opportunity offers a unique possibility to search for a new physics case, besides neutrino oscillations and mixing, which may play a sub-dominant role in the solar neutrino phenomenology, in particular below 1 MeV. On one side non-standard neutrino interactions can be probed through sub-MeV solar neutrinos; on the other, the astrophysics of the sun can be studied at the level of a few %'s.

  11. Experimental High Energy Neutrino Astrophysics

    SciTech Connect

    Distefano, Carla

    2005-10-12

    Neutrinos are considered promising probes for high energy astrophysics. More than four decades after deep water Cerenkov technique was proposed to detect high energy neutrinos. Two detectors of this type are successfully taking data: BAIKAL and AMANDA. They have demonstrated the feasibility of the high energy neutrino detection and have set first constraints on TeV neutrino production astrophysical models. The quest for the construction of km3 size detectors have already started: in the South Pole, the IceCube neutrino telescope is under construction; the ANTARES, NEMO and NESTOR Collaborations are working towards the installation of a neutrino telescope in the Mediterranean Sea.

  12. Neutrinos beyond the Standard Model

    SciTech Connect

    Valle, J.W.F.

    1989-08-01

    I review some basic aspects of neutrino physics beyond the Standard Model such as neutrino mixing and neutrino non-orthogonality, universality and CP violation in the lepton sector, total lepton number and lepton flavor violation, etc.. These may lead to neutrino decays and oscillations, exotic weak decay processes, neutrinoless double /beta/ decay, etc.. Particle physics models are discussed where some of these processes can be sizable even in the absence of measurable neutrino masses. These may also substantially affect the propagation properties of solar and astrophysical neutrinos. 39 refs., 4 figs.

  13. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  14. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on ?13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  15. Radiochemical solar neutrino experiments

    E-print Network

    V. N. Gavrin; B. T. Cleveland

    2007-03-06

    Radiochemical experiments have been crucial to solar neutrino research. Even today, they provide the only direct measurement of the rate of the proton-proton fusion reaction, p + p --> d + e^+ + nu_e, which generates most of the Sun's energy. We first give a little history of radiochemical solar neutrino experiments with emphasis on the gallium experiment SAGE -- the only currently operating detector of this type. The combined result of all data from the Ga experiments is a capture rate of 67.6 +/- 3.7 SNU. For comparison to theory, we use the calculated flux at the Sun from a standard solar model, take into account neutrino propagation from the Sun to the Earth and the results of neutrino source experiments with Ga, and obtain 67.3 ^{+3.9}_{-3.5} SNU. Using the data from all solar neutrino experiments we calculate an electron neutrino pp flux at the earth of (3.41 ^{+0.76}_{-0.77}) x 10^{10}/(cm^2-s), which agrees well with the prediction from a detailed solar model of (3.30 ^{+0.13} _{-0.14}) x 10^{10}/(cm^2-s). Four tests of the Ga experiments have been carried out with very intense reactor-produced neutrino sources and the ratio of observed to calculated rates is 0.88 +/- 0.05. One explanation for this unexpectedly low result is that the cross section for neutrino capture by the two lowest-lying excited states in 71Ge has been overestimated. We end with consideration of possible time variation in the Ga experiments and an enumeration of other possible radiochemical experiments that might have been.

  16. THE SOLAR NEUTRINO PROBLEM

    E-print Network

    W. Haxton

    1995-03-24

    The solar neutrino problem has persisted for almost three decades. Recent results from Kamiokande, SAGE, and GALLEX indicate a pattern of neutrino fluxes that is very difficult to reconcile with plausible variations in standard solar models. This situation is reviewed and suggested particle physics solutions are discussed. A summary is given of the important physics expected from SNO, SuperKamiokande, and other future experiments.

  17. Radiochemical solar neutrino experiments

    NASA Astrophysics Data System (ADS)

    Gavrin, V. N.; Cleveland, B. T.

    2011-12-01

    Radiochemical experiments have been crucial to solar neutrino research. Even today, they provide the only direct measurement of the rate of the proton-proton fusion reaction, p+p?d+e++?e, which generates most of the Sun's energy. We first give a little history of radiochemical solar neutrino experiments with emphasis on the gallium experiment SAGE - the only currently operating detector of this type. The combined result of all data from the Ga experiments is a capture rate of 67.6±3.7 SNU. For comparison to theory, we use the calculated flux at the Sun from a standard solar model, take into account neutrino propagation from the Sun to the Earth and the results of neutrino source experiments with Ga, and obtain 67.3-3.5+3.9 SNU. Using the data from all solar neutrino experiments we calculate an electron neutrino pp flux of ?pp?=(3.41-0.77+0.76)×1010/(cm-s), which agrees well with the prediction from a detailed solar model of ?pp?=(3.30-0.14+0.13)×1010/(cm-s). Four tests of the Ga experiments have been carried out with very intense reactor-produced neutrino sources and the ratio of observed to calculated rates is 0.88±0.05. One explanation for this unexpectedly low result is that the cross section for neutrino capture by the two lowest-lying excited states in 71Ge has been overestimated. We end with consideration of possible time variation in the Ga experiments and an enumeration of other possible radiochemical experiments that might have been.

  18. Cosmological and supernova neutrinos

    SciTech Connect

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on ?{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  19. School, family and adolescent smoking.

    PubMed

    Yañez, Aina; Leiva, Alfonso; Gorreto, Lucia; Estela, Andreu; Tejera, Elena; Torrent, Maties

    2013-01-01

    The socio-cultural environment is an important factor involved with the onset of smoking during adolescence. Initiation of cigarette smoking occurs almost exclusively during this stage. In this context we aimed to analyze the association of school and family factors with adolescent smoking by a cross-sectional study of 16 secondary schools randomly selected from the Balearic Islands involved 3673 students and 530 teachers. The prevalence of regular smoking (at least one cigarette per week) was 4.8% among first year students, 11.6% among second year students, 14.1% among third year students, 20.9% among fourth year students and 22% among teachers. Among first and second year students, there were independent associations between regular smoking and adolescents' perception of being allowed to smoke at home, belonging to a single parent family, poor relationship with parents, poor academic performance, lack of interest in studies and teachers' perception of smoking in the presence of pupils. Among third and fourth year students, there were independent associations between regular smoking and poor relationship with parents, adolescents' perception of being allowed to smoke at home, poor academic performance, lack of control over student misbehavior and the school attended. The school policies and practices affect student related health behavior regarding smoking, independent of individual and family factors. PMID:23880838

  20. Jamaican families.

    PubMed

    Miner, Dianne Cooney

    2003-01-01

    The study of the family in the Caribbean originated with European scholars who assumed the universality of the patriarchal nuclear family and the primacy of this structure to the healthy functioning of society. Matrifocal Caribbean families thus were seen as chaotic and disorganized and inadequate to perform the essential tasks of the social system. This article provides a more current discussion of the Jamaican family. It argues that its structure is the result of the agency and adaptation of its members and not the root cause of the increasing marginalization of peoples in the developing world. The article focuses on families living in poverty and how the family structure supports essential family functions, adaptations, and survival. PMID:12597672

  1. Presymmetry in the Standard Model with adulterated Dirac neutrinos

    NASA Astrophysics Data System (ADS)

    Matute, Ernesto A.

    2015-08-01

    Recently we proposed a model for light Dirac neutrinos in which two right-handed (RH) neutrinos per generation are added to the particles of the Standard Model (SM), implemented with the symmetry of fermionic contents. The ordinary one is decoupled via the high scale type-I seesaw mechanism, while the extra pairs off with its left-handed (LH) partner. The symmetry of lepton and quark contents was merely used as a guideline to the choice of parameters because it is not a proper symmetry. Here we argue that the underlying symmetry to take for this correspondence is presymmetry, the hidden electroweak symmetry of the SM extended with RH neutrinos defined by transformations which exchange lepton and quark bare states with the same electroweak charges and no Majorana mass terms in the underlying Lagrangian. It gives a topological character to fractional charges, relates the number of families to the number of quark colors, and now guarantees the great disparity between the couplings of the two RH neutrinos. Thus, Dirac neutrinos with extremely small masses appear as natural predictions of presymmetry, satisfying the ’t Hooft’s naturalness conditions in the extended seesaw where the extra RH neutrinos serve to adulterate the mass properties in the low scale effective theory, which retains without extensions the gauge and Higgs sectors of the SM. However, the high energy threshold for the seesaw implies new physics to stabilize the quantum corrections to the Higgs boson mass in agreement with the naturalness requirement.

  2. Presymmetry in the Standard Model with adulterated Dirac neutrinos

    E-print Network

    Ernesto A. Matute

    2015-10-21

    Recently we proposed a model for light Dirac neutrinos in which two right-handed (RH) neutrinos per generation are added to the particles of the Standard Model (SM), implemented with the symmetry of fermionic contents. The ordinary one is decoupled via the high scale type-I seesaw mechanism, while the extra pairs off with its left-handed (LH) partner. The symmetry of lepton and quark contents was merely used as a guideline to the choice of parameters because it is not a proper symmetry. Here we argue that the underlying symmetry to take for this correspondence is presymmetry, the hidden electroweak symmetry of the SM extended with RH neutrinos defined by transformations which exchange lepton and quark bare states with the same electroweak charges and no Majorana mass terms in the underlying Lagrangian. It gives a topological character to fractional charges, relates the number of families to the number of quark colors, and now guarantees the great disparity between the couplings of the two RH neutrinos. Thus, Dirac neutrinos with extremely small masses appear as natural predictions of presymmetry, satisfying the 't Hooft's naturalness conditions in the extended seesaw where the extra RH neutrinos serve to adulterate the mass properties in the low scale effective theory, which retains without extensions the gauge and Higgs sectors of the SM. However, the high energy threshold for the seesaw implies new physics to stabilize the quantum corrections to the Higgs boson mass in agreement with the naturalness requirement.

  3. Neural crest: The fourth germ layer

    PubMed Central

    Shyamala, K; Yanduri, Sarita; Girish, HC; Murgod, Sanjay

    2015-01-01

    The neural crest cells (NCCs), a transient group of cells that emerges from the dorsal aspect of the neural tube during early vertebrate development has been a fascinating group of cells because of its multipotency, long range migration through embryo and its capacity to generate a prodigious number of differentiated cell types. For these reasons, although derived from the ectoderm, the neural crest (NC) has been called the fourth germ layer. The non neural ectoderm, the neural plate and the underlying mesoderm are needed for the induction and formation of NC cells. Once formed, NC cells start migrating as a wave of cells, moving away from the neuroepithelium and quickly splitting into distinct streams. These migrating NCCs home in to different regions and give rise to plethora of tissues. Umpteen number of signaling molecules are essential for formation, epithelial mesenchymal transition, delamination, migration and localization of NCC. Authors believe that a clear understanding of steps and signals involved in NC formation, migration, etc., may help in understanding the pathogenesis behind cancer metastasis and many other diseases. Hence, we have taken this review to discuss the various aspects of the NC cells. PMID:26604500

  4. Probing Non-Standard Neutrino Interactions with Neutrino Factories

    E-print Network

    N. Cipriano Ribeiro; H. Minakata; H. Nunokawa; S. Uchinami; R. Zukanovich Funchal

    2007-12-14

    We discuss the sensitivity reach of a neutrino factory measurement to non-standard neutrino interactions (NSI), which may exist as a low-energy manifestation of physics beyond the Standard Model. We use the muon appearance mode \

  5. Probing Non-Standard Neutrino Interactions with Neutrino Factories

    E-print Network

    Ribeiro, N C; Nunokawa, H; Uchinami, S; Funchal, R Zukanovich

    2007-01-01

    We discuss the sensitivity reach of a neutrino factory measurement to non-standard neutrino interactions (NSI), which may exist as a low-energy manifestation of physics beyond the Standard Model. We use the muon appearance mode \

  6. Sterile Neutrino Fits to Short-Baseline Neutrino Oscillation Measurements

    E-print Network

    Conrad, Janet

    2013-01-01

    This paper reviews short-baseline oscillation experiments as interpreted within the context of one, two, and three sterile neutrino models associated with additional neutrino mass states in the ~1?eV range. Appearance and ...

  7. GENIUS project, neutrino oscillations and Cosmology: neutrinos reveal their nature?

    E-print Network

    M. Czakon; J. Studnik; M. Zralek; J. Gluza

    2000-05-17

    The neutrinoless double beta decay as well as any other laboratory experiment has not been able to answer the question of the neutrino's nature. Hints on the answer are available when neutrino oscillations and $(\\beta\\beta)_{0 \

  8. GENIUS project, neutrino oscillations and Cosmology neutrinos reveal their nature?

    E-print Network

    Czakon, M; Zralek, M; Gluza, J

    2000-01-01

    The neutrinoless double beta decay as well as any other laboratory experiment has not been able to answer the question of the neutrino's nature. Hints on the answer are available when neutrino oscillations and $(\\beta\\beta)_{0 \

  9. Trapped ionic simulation of neutrino electromagnetic properties in neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Wang, Z. S.; Cai, Xiaoya; Pan, Hui

    2015-11-01

    We present an approach to study neutrino electromagnetic properties by simulating neutrino oscillation in both dense background matter and external electromagnetic field in terms of trapped coupling ions. We find that the neutrino and anti-neutrino productions can be simulated by using large enough diagonal matter potentials and external magnetic field. We further show that the transition probabilities of flavor neutrino have rich features and time scales corresponding to the neutrino magnetic moments and electric millicharges. Especially, such features and scales can be achieved by tuning the laser parameters. At last, we show that the millicharge and magnetic moments can be detected in terms of flavor neutrino transition probabilities in the trapped ion system. Our approach provides a useful clue to measure the neutrino electromagnetic properties for experimental realization.

  10. Measurement of Atmospheric Neutrinos at the Sudbury Neutrino Observatory

    E-print Network

    Formaggio, Joseph A.

    The Sudbury Neutrino Observatory consists of a 1 kiloton heavy water Cherenkov detector able to detect and reconstruct high-energy muons created from cosmic ray showers and atmospheric neutrino interactions. By measuring ...

  11. Core-collapse supernova neutrinos and neutrino properties

    E-print Network

    J. Gava; C. Volpe

    2008-05-18

    Core-collapse supernovae are powerful neutrino sources. The observation of a future (extra-)galactic supernova explosion or of the relic supernova neutrinos might provide important information on the supernova dynamics, on the supernova formation rate and on neutrino properties. One might learn more about unknown neutrino properties either from indirect effects in the supernova (e.g. on the explosion or on in the r-process) or from modifications of the neutrino time or energy distributions in a detector on Earth. Here we will discuss in particular possible effects of CP violation in the lepton sector. We will also mention the interest of future neutrino-nucleus interaction measurements for the precise knowledge of supernova neutrino detector response to electron neutrinos.

  12. Mental health matters in elementary school: first-grade screening predicts fourth grade achievement test scores.

    PubMed

    Guzman, Maria Paz; Jellinek, Michael; George, Myriam; Hartley, Marcela; Squicciarini, Ana Maria; Canenguez, Katia M; Kuhlthau, Karen A; Yucel, Recai; White, Gwyne W; Guzman, Javier; Murphy, J Michael

    2011-08-01

    The objective of the study was to evaluate whether mental health problems identified through screens administered in first grade are related to poorer academic achievement test scores in the fourth grade. The government of Chile uses brief teacher- and parent-completed measures [Teacher Observation of Classroom Adaptation-Revised (TOCA-RR) and Pediatric Symptom Checklist (PSC-Cl)] to screen for mental health problems in about one-fifth of the country's elementary schools. In fourth grade, students take the national achievement tests (SIMCE) of language, mathematics and science. This study examined whether mental health problems identified through either or both screens predicted achievement test scores after controlling for student and family risk factors. A total of 17,252 students had complete first grade teacher forms and these were matched with fourth grade SIMCE data for 11,185 students, 7,903 of whom also had complete parent form data from the first grade. Students at risk on either the TOCA-RR or the PSC-Cl or both performed significantly worse on all SIMCE subtests. Even after controlling for covariates and adjusting for missing data, students with mental health problems on one screen in first grade had fourth grade achievement scores that were 14-18 points (~1/3 SD) lower than students screened as not at risk. Students at risk on both screens had scores that were on average 33 points lower than students at risk on either screen. Mental health problems in first grade were one of the strongest predictors of lower achievement test scores 3 years later, supporting the premise that for children mental health matters in the real world. PMID:21647553

  13. Confronting Recent Neutrino Oscillation Data with Sterile Neutrinos

    E-print Network

    G. Karagiorgi

    2011-10-17

    Recent neutrino oscillation results have evoked renewed interest in sterile neutrino oscillation models. This paper reviews the data from MiniBooNE and short-baseline reactor antineutrino experiments within the context of sterile neutrinos. The results are incorporated into combined fits to test the viability of sterile neutrino oscillation models, which are later expanded to address matter effects. Finally, future experiments that can resolve the questions that have been raised are discussed.

  14. No-neutrino double beta decay: more than one neutrino

    SciTech Connect

    Rosen, S.P.

    1983-01-01

    Interference effects between light and heavy Majorana neutrinos in the amplitude for no-neutrino double beta decay are discussed. The effects include an upper bound on the heavy neutrino mass, and an A dependence for the effective mass extracted from double beta decay. Thus the search for the no-neutrino decay mode should be pursued in several nuclei, and particularly in Ca/sup 48/, where the effective mass may be quite large.

  15. Neutrino masses, the ? -term, and PS L 2(7 )

    NASA Astrophysics Data System (ADS)

    Chen, Gaoli; Pérez, M. Jay; Ramond, Pierre

    2015-10-01

    Using an S O (10 )-inspired form for the Dirac neutrino mass, we map the neutrino data to the right-handed neutrino Majorana mass matrix, M , and investigate a special form with seesaw tribimaximal mixing; it predicts a normal hierarchy, and the values of the light neutrino masses. It may be generated by mapping he top quark hierarchy onto the vacuum values of familon fields transforming under the family group PS L 2(7 ) . Next, we investigate the hypothesis that these familons play a dual role, generating a hierarchy in the supersymmetric ? -mass matrix of Higgs bosons carrying family quantum numbers. A special PS L 2(7 ) invariant coupling produces a ? matrix with a hierarchy of thirteen orders of magnitude. Only one Higgs field (per hypercharge sector) is light enough (with a ? mass ˜10 - 100 GeV ) to be destabilized by supersymmetry soft breaking at the TeV scale, and upon spontaneous symmetry breaking, gives tree-level masses for the heaviest family.

  16. Neutrino Matter Effect Invariants and the Observables of Neutrino Oscillations

    E-print Network

    P. F. Harrison; W. G. Scott

    2002-04-29

    We generalise our previous observation on the invariance of the Jarlskog determinant to matter effects in neutrino oscillations. Within the context of standard neutrino oscillation theory with matter effects, we present the complete set of (five) matter invariant observables for neutrino propagation in matter. We give some examples of their application.

  17. Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters

    SciTech Connect

    Fernandez-Martinez, Enrique; Giordano, Gerardo; Mocioiu, Irina; Mena, Olga

    2010-11-01

    The main goal of the IceCube Deep Core array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.

  18. Detecting Neutrinos from AGNs and Topological Defects with Neutrino Telescopes

    E-print Network

    Raj Gandhi; Chris Quigg; M. H. Reno; Ina Sarcevic

    1996-09-29

    We evaluate neutrino-nucleon cross section for energies up to $10^{21} eV$ in light of new information on the small-$x$ behavior of parton distributions. We give predictions for large underground neutrino telescope event rates for ultrahigh-energy neutrinos from Active Galactic Nuclei and from the decay of topological defects formed in the early Universe.

  19. Neutrino Phenomenology -- the case of two right handed neutrinos

    E-print Network

    A. Ibarra; G. G. Ross

    2004-01-23

    We make a general analysis of neutrino phenomenology for the case neutrino masses are generated by the see-saw mechanism with just two right handed neutrinos. We find general constraints on leptogenesis and lepton flavour violating processes. We also analyse the predictions following from a nontrivial texture zero structure.

  20. Vetoing atmospheric neutrinos in a high energy neutrino telescope

    E-print Network

    Stefan Schönert; Thomas K. Gaisser; Elisa Resconi; Olaf Schulz

    2008-12-22

    We discuss the possibility to suppress downward atmospheric neutrinos in a high energy neutrino telescope. This can be achieved by vetoing the muon which is produced by the same parent meson decaying in the atmosphere. In principle, atmospheric neutrinos with energies $E_\

  1. Formation of Neutrino Stars from Cosmological Background Neutrinos

    E-print Network

    M. H. Chan; M. -C. Chu

    2006-09-20

    We study hydrodynamic evolution of cosmological background neutrinos. By using a spherically symmetric Newtonian hydrodynamic code, we calculate the time evolution of the density profiles of neutrino matter in cluster and galactic scales. We discuss the possible observational consequences of such evolution and the resulting density profiles of the degenerate neutrino `stars' in galaxies and clusters.

  2. Implications of Neutrino Oscillations on the Dark-Matter World

    NASA Astrophysics Data System (ADS)

    Hwang, W.-Y. Pauchy

    2014-01-01

    According to my own belief that "The God wouldn't create a world that is so boring that a particle knows only the very feeble weak interaction.", maybe we underestimate the roles of neutrinos. We note that right-handed neutrinos play no roles, or don't exist, in the minimal Standard Model. We discuss the language to write down an extended Standard Model - using renormalizable quantum field theory as the language; to start with a certain set of basic units under a certain gauge group; in fact, to use the three right-handed neutrinos to initiate the family gauge group SUf (3). Specifically we use the left-handed and right-handed spinors to form the basic units together with SUc (3) × SUL (2) × U (1) × SUf (3) as the gauge group. The dark-matter SUf (3) world couples with the lepton world, but not with the quark world. Amazingly enough, the space of the Standard-Model Higgs ? (1 , 2), the family Higgs triplet ?(3, 1), and the neutral part of the mixed family Higgs ?0 (3 , 2) undergoes the spontaneous symmetry breaking, i.e. the Standard-Model Higgs mechanism and the "project-out" family Higgs mechanism, to give rise to the weak bosons W± and Z0, one Standard-Model Higgs, the eight massive family gauge bosons, and the remaining four massive neutral family Higgs particles, and nothing more. Thus, the roles of neutrinos in this extended Standard Model are extremely interesting in connection with the dark-matter world.

  3. Lorentz violation and neutrino oscillations

    E-print Network

    Matthew Mewes

    2007-03-23

    Lorentz violation naturally leads to neutrino oscillations and provides an alternative mechanism that may explain current data. In this work, we discuss possible signals of Lorentz violation in neutrino-oscillation experiments.

  4. Hadronization processes in neutrino interactions

    NASA Astrophysics Data System (ADS)

    Katori, Teppei; Mandalia, Shivesh

    2015-10-01

    Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

  5. Neutrino oscillations in nuclear media

    E-print Network

    Iman Motie; She-Sheng Xue

    2011-04-14

    On basis of effective interactions of charged lepton and hadron currents, we obtain an effective interacting Hamiltonian of neutrinos in nuclear media up to the leading order. Using this effective Hamiltonian, we study neutrino mixing and oscillations in nuclear media and strong magnetic fields. We compute neutrino mixing angle and mass squared difference, and find the pattern of vacuum neutrino oscillations is modified in magnetized nuclear media. Comparing with the vacuum neutrino oscillation, we find that for high-energy neutrinos, neutrino oscillations are suppressed in the presence of nuclear media. In the general case of neutral nuclear media with the presence of electrons, we calculate the mixing angle and mass squared difference, and discuss the resonance and level-crossing in neutrino oscillations.

  6. Neutrino Experiments and Their Implications

    E-print Network

    A. B. Balantekin

    2004-03-11

    Recent developments in solar, reactor, and accelerator neutrino physics are reviewed. Implications for neutrino physics, solar physics, nuclear two-body physics, and r-process nucleosynthesis are briefly discussed.

  7. Combined search for the quarks of a sequential fourth generation

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.

    2012-12-01

    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5fb-1 recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about ±20GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.

  8. Neutrino production states and NSI

    E-print Network

    Robert Szafron; Marek Zralek

    2010-10-28

    The problems of neutrino production states, prepared to the oscillation process, in the case of non standard interactions, are briefly discussed. Quantum neutrino states are determined from the dynamics of a production process. We show, that even in models where only left-handed neutrinos are introduced, the standard adopted procedure is valid only approximately. Entanglement between neutrino masses or between masses, flavour and spins cause, that their quantum states are mixed.

  9. Neutrino production states and NSI

    E-print Network

    Szafron, Robert

    2010-01-01

    The problems of neutrino production states, prepared to the oscillation process, in the case of non standard interactions, are briefly discussed. Quantum neutrino states are determined from the dynamics of a production process. We show, that even in models where only left-handed neutrinos are introduced, the standard adopted procedure is valid only approximately. Entanglement between neutrino masses or between masses, flavour and spins cause, that their quantum states are mixed.

  10. Neutrino dispersion in magnetized plasma

    E-print Network

    N. V. Mikheev; E. N. Narynskaya

    2008-12-02

    The neutrino dispersion in the charge symmetric magnetized plasma is investigated. We have studied the plasma contribution into the additional energy of neutrino and obtained the simple expression for it. We consider in detail the neutrino self-energy under physical conditions of weak field, moderate field and strong field limits. It is shown that our result for neutrino dispersion in moderate magnetic field differ substantially from the previous one in the literature.

  11. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life

    PubMed Central

    Yutin, Natalya; Wolf, Yuri I.; Koonin, Eugene V.

    2015-01-01

    The numerous and diverse eukaryotic viruses with large double-stranded DNA genomes that at least partially reproduce in the cytoplasm of infected cells apparently evolved from a single virus ancestor. This major group of viruses is known as Nucleocytoplasmic Large DNA Viruses (NCLDV) or the proposed order Megavirales. Among the “Megavirales”, there are three groups of giant viruses with genomes exceeding 500 kb, namely Mimiviruses, Pithoviruses, and Pandoraviruses that hold the current record of viral genome size, about 2.5 Mb. Phylogenetic analysis of conserved, ancestral NLCDV genes clearly shows that these three groups of giant viruses have three distinct origins within the “Megavirales”. The Mimiviruses constitute a distinct family that is distantly related to Phycodnaviridae, Pandoraviruses originate from a common ancestor with Coccolithoviruses within the Phycodnaviridae family, and Pithoviruses are related to Iridoviridae and Marseilleviridae. Maximum likelihood reconstruction of gene gain and loss events during the evolution of the “Megavirales” indicates that each group of giant viruses evolved from viruses with substantially smaller and simpler gene repertoires. Initial phylogenetic analysis of universal genes, such as translation system components, encoded by some giant viruses, in particular Mimiviruses, has led to the hypothesis that giant viruses descend from a fourth, probably extinct domain of cellular life. The results of our comprehensive phylogenomic analysis of giant viruses refute the fourth domain hypothesis and instead indicate that the universal genes have been independently acquired by different giant viruses from their eukaryotic hosts. PMID:25042053

  12. Constraints on the masses of fourth generation quarks

    E-print Network

    S. Hosseini; M. Mohammadi Najafabadi; A. Moshaii; Y. Radkhorrami; N. Tazik

    2009-06-25

    We study the one-loop contribution of the down-type quark of the standard model-like fourth generation (b') on the top quark electric dipole moment. Using the known limits on the top quark electric dipole moments, we place limits on the b' mass. Then, from the estimated ratio for the masses of the fourth generation of quarks from other studies and the achieved bound from top quark electric dipole moments on mb', we obtain a limit for the up-type quark of fourth generation (t') mass.

  13. 76 FR 24813 - Safety Zone; Fourth Annual Offshore Challenge, Sunny Isles Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ...RIN 1625-AA00 Safety Zone; Fourth Annual Offshore Challenge, Sunny Isles Beach, FL AGENCY...Isles Beach, Florida for the Fourth Annual Offshore Challenge. The Fourth Annual Offshore Challenge will consist of a series of...

  14. 76 FR 9278 - Safety Zone; Fourth Annual Offshore Challenge, Sunny Isles Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ...RIN 1625-AA00 Safety Zone; Fourth Annual Offshore Challenge, Sunny Isles Beach, FL AGENCY...Isles Beach, Florida for the Fourth Annual Offshore Challenge. The Fourth Annual Offshore Challenge will consist of a series of...

  15. Supernova Neutrinos Detection On Earth

    E-print Network

    Xin-Heng Guo; Ming-Yang Huang; Bing-Lin Young

    2009-05-12

    In this paper, we first discuss the detection of supernova neutrino on Earth. Then we propose a possible method to acquire information about $\\theta_{13}$ smaller than $1.5^\\circ$ by detecting the ratio of the event numbers of different flavor supernova neutrinos. Such an sensitivity cannot yet be achieved by the Daya Bay reactor neutrino experiment.

  16. Solar Neutrino Matter Effects Redux

    E-print Network

    A. B. Balantekin; A. Malkus

    2011-12-19

    Following recent low-threshold analysis of the Sudbury Neutrino Observatory and asymmetry measurements of the BOREXINO Collaboration of the solar neutrino flux, we revisit the analysis of the matter effects in the Sun. We show that solar neutrino data constrains the mixing angle $\\theta_{13}$ poorly and that subdominant Standard Model effects can mimic the effects of the physics beyond the Standard Model.

  17. Neutrino Scattering Physics at Superbeams and Neutrino Factories

    E-print Network

    S. Kumano

    2003-10-14

    Neutrino scattering physics is discussed for investigating internal structure of the nucleon and nuclei at future neutrino facilities. We explain structure functions in neutrino scattering. In particular, there are new polarized functions g_3, g_4, and g_5, and they should provide us important information for determining internal nucleon spin structure. Next, nuclear structure functions are discussed. From F_3 structure function measurements, valence-quark shadowing should be clarified. Nuclear effects on the NuTeV sin^2\\theta_W anomaly are explained. We also comment on low-energy neutrino scattering, which is relevant to current long-baseline neutrino oscillation experiments.

  18. Magnetic moments of active and sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Balantekin, A. B.; Vassh, N.

    2014-04-01

    Since most of the neutrino parameters are well measured, we illustrate precisely the prediction of the Standard Model, minimally extended to allow massive neutrinos, for the electron neutrino magnetic moment. We elaborate on the effects of light sterile neutrinos on the effective electron neutrino magnetic moment measured at the reactors. We explicitly show that the kinematical effects of the neutrino masses are negligible even for light sterile neutrinos.

  19. Extraterrestrial Solar Neutrino Physics

    E-print Network

    W-Y. Pauchy Hwang; Jen-Chieh Peng

    2011-07-26

    We advocate the extraterrestrial solar neutrino physics (etSNP) as a means of investigating solar neutrino physics (SNP). As we already know, the dominant and subdominant (vacuum) oscillation lengths would be approximately one kilometer and one hundred kilometers. On the other hand, we know so far that the matter-enhanced oscillations take place only in the core of the Sun. Thus, the etSNP, i.e. solar neutrino physics that could be extracted outside the Earth, would assume a special unique role. The etSNP experiments include (1) a satellite (detector) around the Earth or around the Jupiter or others (to provide the shadow, for the matter-enhanced neutrino oscillations), (2) during the Sun-Venus-Earth eclipse or similar, and (3) the chemical compositions of the geology type (as in the Jupiter or in the Venus, to study the origins of these planets). To be specific, we note that the reactions induced by the ^8B solar neutrinos, in view of the sole high energy nature (E_\

  20. Probing Late Neutrino Mass Properties With SupernovaNeutrinos

    SciTech Connect

    Baker, Joseph; Goldberg, Haim; Perez, Gilad; Sarcevic, Ina

    2007-08-08

    Models of late-time neutrino mass generation contain new interactions of the cosmic background neutrinos with supernova relic neutrinos (SRNs). Exchange of an on-shell light scalar may lead to significant modification of the differential SRN flux observed at earth. We consider an Abelian U(1) model for generating neutrino masses at low scales, and show that there are cases for which the changes induced in the flux allow one to distinguish the Majorana or Dirac nature of neutrinos, as well as the type of neutrino mass hierarchy (normal or inverted or quasi-degenerate). In some region of parameter space the determination of the absolute values of the neutrino masses is also conceivable. Measurements of the presence of these effects may be possible at the next-generation water Cerenkov detectors enriched with Gadolinium, or a 100 kton liquid argon detector.

  1. Family Empowerment.

    ERIC Educational Resources Information Center

    Sinclair, Mary F., Ed.; And Others

    1992-01-01

    This feature issue of IMPACT focuses on the empowerment of families with a member who has a developmental disability. It presents strategies and models for a collaborative, respectful approach to service provision, and presents the experiences of families in seeking support and assistance. Feature articles include "Two Generations of Disability: A…

  2. Family Workshops

    ERIC Educational Resources Information Center

    Bennett, Dave; Rees-Jones, Tanny

    1978-01-01

    A Family Workshop is an informal, multidisciplined educational program for adults and children, organized by a team of teachers. This article discusses the Lavender Hill Family Workshop, one of many, which attempts to provide education in various subject areas for adults and for children while also integrating both objectives in order to educate…

  3. Family violence.

    PubMed

    Kaplan, S J

    2000-01-01

    Domestic and intimate partner abuse, child and adolescent physical and sexual abuse, and elder abuse constitute family violence. Such violence is responsible for a significant proportion of intentional injury and, accordingly, is a major public health problem. This chapter provides information on aspects of each type of family violence. PMID:10885265

  4. Family Life.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Focuses on various aspects of mammal family life ranging from ways different species are born to how different mammals are raised. Learning activities include making butter from cream, creating birth announcements for mammals, and playing a password game on family life. (ML)

  5. Family Potyviridae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The International Committee on the Taxonomy of Viruses potyvirus study group has revised the description of the family Potyviridae for inclusion in the ICTV 9th report. Characteristic features of each genus within the family is presented. Revised criteria for demarcation and nomenclature of viral sp...

  6. FAMILY POTYVIRIDAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The International Committee on the Taxonomy of Viruses potyvirus study group has revised the description of the family Geminiviridae for inclusion in the ICTV 8th report. Characteristic features of each genus within the family is presented. Revised criteria for demarcation and nomenclature of vira...

  7. FAMILY GEMINIVIRIDAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The International Committee on the Taxonomy of Viruses geminivirus study group has revised the description of the family Geminiviridae for inclusion in the ICTV 8th report. Characteristic features of each genus within the family is presented. Revised criteria for demarcation and nomenclature of vi...

  8. 7. FOURTH FLOOR, DETAIL OF HOTEL SOAP LINE TO WEST: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. FOURTH FLOOR, DETAIL OF HOTEL SOAP LINE TO WEST: FERGUSON & HAAS AUTOMATIC WRAPPING MACHINE INSTALLED BY 1929 - Colgate & Company Jersey City Plant, Building No. B-15, 90-96 Greene Street, Jersey City, Hudson County, NJ

  9. 5. FOURTH FLOOR, HOTEL SOAP LINES TO NORTHWEST: PRESS (LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. FOURTH FLOOR, HOTEL SOAP LINES TO NORTHWEST: PRESS (LEFT CENTER), MANUAL CUTTERS (CENTER, RIGHT CENTER) - Colgate & Company Jersey City Plant, Building No. B-15, 90-96 Greene Street, Jersey City, Hudson County, NJ

  10. Combined search for the quarks of a sequential fourth generation

    E-print Network

    Apyan, Aram

    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5??fb[superscript -1] recorded by the CMS experiment at the LHC ...

  11. 30. Fourth floor attic, sterilizing room with autoclaves, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Fourth floor attic, sterilizing room with autoclaves, view to north - Portsmouth Naval Hospital, Hospital Building, Rixey Place, bounded by Williamson Drive, Holcomb Road, & The Circle, Portsmouth, Portsmouth, VA

  12. Solar Energy Technologies Program Newsletter - Fourth Quarter 2009

    SciTech Connect

    DOE Solar Energy Technologies Program

    2009-12-31

    The Fourth Quarter 2009 edition of the Solar Energy Technologies Program newsletter summarizes the activities for the past three months, funding opportunities, highlights from the national labs, and upcoming events.

  13. View of fourth level platform from north. Note the outline ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of fourth level platform from north. Note the outline of the Shuttle cargo bay and wing formed by the edge of the platforms. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  14. Detail view of fourth level platform winch used to lift ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of fourth level platform winch used to lift platform segments away from the Shuttle assembly during testing. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  15. 21. Fourth floor, second level of milk room looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Fourth floor, second level of milk room looking southeast (original location of heaters) - Sheffield Farms Milk Plant, 1075 Webster Avenue (southwest corner of 166th Street), Bronx, Bronx County, NY

  16. 31. Fourth floor, looking south at former milkstorage tank room, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Fourth floor, looking south at former milk-storage tank room, spiral stair in right hand corner - Sheffield Farms Milk Plant, 1075 Webster Avenue (southwest corner of 166th Street), Bronx, Bronx County, NY

  17. INTERIOR FOURTH FLOOR, SOUTH HALF, LOOKING SOUTH. NOTE MUSHROOM COLUMNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR FOURTH FLOOR, SOUTH HALF, LOOKING SOUTH. NOTE MUSHROOM COLUMNS AND CEILING HAS WOODEN NAILERS. - Colt Fire Arms Company, North Armory, 36-150 Huyshope Avenue, 17-170 Van Dyke Avenue, 49 Vredendale Avenue, Hartford, Hartford County, CT

  18. 30. GENERAL TEST ROOM IN 1946 ADDITION, FOURTH FLOOR, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. GENERAL TEST ROOM IN 1946 ADDITION, FOURTH FLOOR, LOOKING WEST. ORIGINALLY HAD SUSPENDED ACOUSTICAL CEILINGS WITH FLOURESCENT LIGHTING AND ASPHALT MASTIC TILE FLOORS - Underwriters' Laboratories, 207-231 East Ohio Street, Chicago, Cook County, IL

  19. 3. FOURTH FLOOR OF LARD REFINERY (NOTICE ORIGINAL WOODEN BEAMS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. FOURTH FLOOR OF LARD REFINERY (NOTICE ORIGINAL WOODEN BEAMS AND UNDATED LARD PRESS AND VATS ON RIGHT SIDE) - Wilson's Oil House, Lard Refinery, & Edible Fats Factory, Lard Refinery, 2801 Southwest Fifteenth Street, Oklahoma City, Oklahoma County, OK

  20. 3. FOURTH FLOOR OF OIL HOUSE (NOTICE CAST IRON SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. FOURTH FLOOR OF OIL HOUSE (NOTICE CAST IRON SUPPORT POSTS AND OIL PRESS IN THE CENTER) - Wilson's Oil House, Lard Refinery, & Edible Fats Factory, Oil House, 2801 Southwest Fifteenth Street, Oklahoma City, Oklahoma County, OK

  1. 11. SANDSORTING BUILDING, FOURTH FLOOR; ELEVATOR No. 2 AT LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SAND-SORTING BUILDING, FOURTH FLOOR; ELEVATOR No. 2 AT LEFT CENTER, VIEW LOOKING NORTHEAST - Mill "C" Complex, Sand-Sorting Building, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  2. 15. BUILDING 1: FOURTH FLOOR (West Section), TOP LEVEL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. BUILDING 1: FOURTH FLOOR (West Section), TOP LEVEL OF TUBS, SOUTH AND WEST WALLS. OPEN METAL BREWER'S STAIR VISIBLE ALONG WEST WALL - Boston Beer Company, 225-249 West Second Street, South Boston, Suffolk County, MA

  3. Man and Energy, Module C. Fourth Grade. Pilot Form.

    ERIC Educational Resources Information Center

    Pasco County Schools, Dade City, FL.

    This booklet is one of a set of learning modules on energy for use by students and teachers in the fourth grade. This module investigates solar energy, ecology, and fossil fuels. Included are laboratory activities and values exercises. (BT)

  4. 97. DETAIL OF FOURTH CATWALK LEVEL SHOWING WEST SIDE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. DETAIL OF FOURTH CATWALK LEVEL SHOWING WEST SIDE, LOOKING NORTH, INNER DOME ON RIGHT WITH KNEE BRACE FROM INNER COLUMN TO CROSS BEAM - Maryland State House, State Circle, Annapolis, Anne Arundel County, MD

  5. 39. FOURTH FLOOR: DETAIL OF STEAM HEATING PIPES ON NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. FOURTH FLOOR: DETAIL OF STEAM HEATING PIPES ON NORTHEAST WALL OF DINING AND SOCIAL HALL ON NORTHWEST END OF BUILDING LOOKING NORTHEAST - Masonic Temple, 1111-1119 Eleventh Street, Altoona, Blair County, PA

  6. Entanglement in neutrino oscillations

    E-print Network

    Massimo Blasone; Fabio Dell'Anno; Silvio De Siena; Fabrizio Illuminati

    2009-04-17

    Flavor oscillations in elementary particle physics are related to multi-mode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks.

  7. Cosmology and neutrino physics

    SciTech Connect

    Steigman, G.

    1982-01-01

    Constraints on cosmology and on neutrino physics are provided by the abundances of the light elements produced during the early evolution of the universe. The predictions of primordial nucleosynthesis depend on the nucleon to photon ratio eta and on the number of types of two component neutrinos N/sub nu/. A comparison between the big bang predictions and the observed abundances of D, /sup 3/He, /sup 4/He and /sup 7/Li shows that eta is constrained to a narrow range around 4 x 10/sup -10/ and N/sub nu/ approx.< 4. An important consequence of the derived value of eta is that the universal density of nucleons is small, raising the possibility that our Universe may be dominated by massive relic neutrinos. The constraint on N/sub nu/ suggests that (almost) all lepton species are now known.

  8. Cosmological Constraints on Neutrinos

    NASA Astrophysics Data System (ADS)

    Millea, Marius

    2015-04-01

    The cosmic background of neutrinos (the CNB) created during the big bang has been definitively detected via its gravitational influence. Ongoing measurements are now giving increasingly precise answers to questions such as 1) what is the energy density contained in the CNB? 2) what are the masses of the particles making up the CNB? and 3) are these particles really neutrinos, e.g. do they free-stream like neutrinos? I will discuss answers to these questions from cosmological probes such as baryon acoustic oscillations or local Hubble constant measurements, and with particular focus on the Planck 2015 cosmic microwave background results. One possibility I will explore is if axions of axion-like particles can be masquerading as a component of the CNB. Recent improvements from Planck and from big bang nucleosynthesis measurements have been placing increasingly tight constraints on this scenario.

  9. Cosmology: Neutrinos also as one Kind of Dark Matter

    E-print Network

    Hwang, W-Y Pauchy

    2010-01-01

    In an effort to understand the large quantity of dark matter (25% versus 5% of the visible ordinary matter), we try to make "family symmetry" as another gauge symmetry and identify it as the main source of dark matter. This results in the SU_c(3) \\times SU(2) \\times U(1) \\times SU_f(3) extended Standard Model, but species in all the "visible ordinary matter", except the neutrinos, don't couple, except indirectly or only through higher order, to SU_f(3) (the dark matter sector). In this brief report, we try to illustrate this aspect with an eye to detect the dark matter, through the detection of the neutrinos, the hypothetical species that couple directly to the dark-matter world - neutrinos are also one kind of dark matter.

  10. Short Baseline Neutrino Oscillation Experiments

    NASA Astrophysics Data System (ADS)

    Katori, Teppei

    2015-04-01

    Series of short baseline neutrino oscillation experiments provided unexpected results, and now they are called short baseline anomalies, and all indicates an existence of sterile neutrinos with a mass scale around 1 eV. The signals of short baseline anomalies are reported from 4 different classes of experiments. However, at this moment, there is no convincing theoretical model to explain such sterile neutrinos, and a single experiment to confirm 1 eV sterile neutrinos may be challenging. In this short note, we describe classes of short baseline neutrino oscillation experiments and their goals.

  11. Neutrino quantum states in matter

    E-print Network

    Alexander Studenikin; Alexei Ternov

    2004-10-21

    We propose a modified Dirac equation for a massive neutrino moving in the presence of the background matter. The effects of the charged and neutral-current interactions with the matter as well as the matter motion and polarization are accounted for. In the particular case of the matter with a constant density the exact solutions of this equation are found, the neutrino energy spectrum in the matter is also determined. On this basis the effects of the neutrino trapping and reflection, the neutrino-antineutrino pair annihilation and creation in a medium are studied. The quantum theory of the spin light of neutrino in matter ($SL\

  12. A hypothesis on neutrino helicity

    E-print Network

    Sahin, I

    2016-01-01

    It is firmly established by experimental results that neutrinos are almost 100\\% longitudinally polarized and left-handed. It is also confirmed by neutrino oscillation experiments that neutrinos have tiny but non-zero masses. Since the helicity is not a Lorentz invariant quantity for massive particles, neutrinos can not be strictly left-handed. On the other hand, it is generally assumed that ultrarelativistic massive fermions can be described well enough by the Weyl equations. We discuss the validity of this assumption and propose a new hypothesis according to which neutrinos can be described by pure helicity states although they are not massless.

  13. Panel Discussion v: Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Obraztsov, Vladimir; Konaka, Akira; Ikeda, Motoyasu; Jediny, Filip; Shirokov, Evgeny; Kalekin, Oleg; Palomares-Ruiz, Sergio

    2015-06-01

    Questions to discuss: * Can sidereal time analysis of the long time neutrino observations give information about the galaxy distribution in the Local Universe? * How well do we need to know the PMNS matrix elements? * Is the existence of MSW effect proved experimentally? * Are there new species of neutrino (e.g. the sterile one)? * What are other most important problems in neutrino physics (CP-violation)? * Can sidereal time analysis of the long time neutrino observations give information about the galaxy distribution in the Local Universe? * Perspectives of existing and future neutrino experiments (LNBF, LAGUNA, ICARUS, SHIP ...)

  14. Are Neutrinos Their Own Antiparticles?

    E-print Network

    Boris Kayser

    2009-03-05

    We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

  15. Are neutrinos their own antiparticles?

    SciTech Connect

    Kayser, Boris; /Fermilab

    2009-03-01

    We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

  16. Neutrinos and Gauge Unification

    E-print Network

    J. A. Casas; J. R. Espinosa; A. Ibarra; I. Navarro

    2000-04-17

    The approximate unification of gauge couplings is the best indirect evidence for low-energy supersymmetry, although it is not perfect in its simplest realizations. Given the experimental evidence for small non-zero neutrino masses, it is plausible to extend the MSSM with three right-handed neutrino chiral multiplets, with large Majorana masses below the unification scale, so that a see-saw mechanism can be implemented. In this extended MSSM, the unification prediction for the strong gauge coupling constant at M_Z can be lowered by up to \\sim 5%, bringing it closer to the experimental value at 1\\sigma, therefore improving significantly the accuracy of gauge coupling unification.

  17. Simulating nonlinear neutrino flavor evolution

    E-print Network

    Duan, Huaiyu; Carlson, J

    2008-01-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different than in standard Mikheyev-Smirnov-Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable proper...

  18. New Results on Solar Neutrinos

    E-print Network

    Alain Bellerive

    2010-12-11

    This paper reviews the constraints on the solar neutrino mixing parameters with data collected by the Homestake, SAGE, GALLEX, Kamiokande, SuperKamiokande, Borexino and SNO experiments. An emphasis will be given to the global solar neutrino analyses in terms of matter-enhanced oscillation of two and three active flavors. The results to-date, including both solar model dependent and independent measurements, indicate that electron neutrinos are changing to other active types on route to the Earth from the Sun. The total flux of solar neutrinos is found to be in very good agreement with solar model calculations. Today, solar neutrino measurements focus on greater accuracy for mixing parameters and on better sensitivity to low neutrino energies. This article also summarizes near future prospects in the field of solar neutrino physics.

  19. Family Health and Family Planning.

    ERIC Educational Resources Information Center

    World Health Organization, Copenhagen (Denmark). Regional Office for Europe.

    This document is made up of a selection of some of the papers distributed to participants in courses on "Family Health and Family Planning" which have been organized each year since 1973 by the International Children's Center and the World Health Organization Regional Office for Europe. Six courses, held between 1973 and 1978, brought together a…

  20. Neutrino flux predictions for cross section measurements

    SciTech Connect

    Hartz, Mark

    2015-05-15

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

  1. Status of neutrino-quark NSI parameters

    NASA Astrophysics Data System (ADS)

    Escrihuela, Francisco J.

    2012-07-01

    Experimental observations, as neutrino oscillations, require neutrinos as massive particles. Most neutrino mass generation mechanisms imply the existence of non-standard neutrino interactions (NSI). In order to grant the relevance that it deserves, here we will see a review of neutrino NSI with quark parameters using the most recent solar, reactor, accelerator and atmospheric data.

  2. Neutrinos from a core collapse supernova

    E-print Network

    Amol Dighe

    2007-12-28

    The neutrino burst from a galactic supernova can help determine the neutrino mass hierarchy and $\\theta_{13}$, and provide crucial information about supernova astrophysics. Here we review our current understanding of the neutrino burst, flavor conversions of these neutrinos, and model independent signatures of various neutrino mixing scenarios.

  3. Fundamental Fermions (e.g. Neutrinos) as Topological Objects

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Gerald L.

    1999-05-01

    A new internal ``macroscopic'' description of fundamental fermions based on a matrix-generalization (F) of the scalar fermion-number f, predicts that only three families of quarks and leptons, and their associated neutrinos (?_e, ?_? and ?_?), exist [1]. Moreover, this description places important phtopological constraints on neutrino mixtures [2]. With respect to F, the topology of the ?e (?_? or ?_?) is that of a cylinder (Möbius strip). Assuming that topology-changing neutrino-neutrino transitions are suppressed (e.g., one cannot continuously deform a donut into a sphere), while topology-maintaining transitions are relatively enhanced, one may have an explanation for short-distance observations of (nearly) maximal ?_?-?_? mixing [3]. To test this idea, simple topological arguments were used to deduce a matrix describing long-distance neutrino mixtures, which is phidentical to that proposed by Georgi and Glashow on different grounds [4]. Experimental confirmation of this prediction would support the new description, which requires the ?e and (?_? or ?_?) to start ``life'' as topologically-distinct quantum objects.l [1] http://www.amazon.com/exec/obidos/ISBN=0965569500, [2] G. L. Fitzpatrick, aps1999feb12\\underbar001 at http://publish.aps.org/eprint/, [3] hep-ex/981001, [4] hep-ph/9808293, p. 5, Eq. 20.

  4. Models of neutrino mass, mixing and CP violation

    NASA Astrophysics Data System (ADS)

    King, Stephen F.

    2015-12-01

    In this topical review we argue that neutrino mass and mixing data motivates extending the Standard Model (SM) to include a non-Abelian discrete flavour symmetry in order to accurately predict the large leptonic mixing angles and {C}{P} violation. We begin with an overview of the SM puzzles, followed by a description of some classic lepton mixing patterns. Lepton mixing may be regarded as a deviation from tri-bimaximal mixing, with charged lepton corrections leading to solar mixing sum rules, or tri-maximal lepton mixing leading to atmospheric mixing rules. We survey neutrino mass models, using a roadmap based on the open questions in neutrino physics. We then focus on the seesaw mechanism with right-handed neutrinos, where sequential dominance (SD) can account for large lepton mixing angles and {C}{P} violation, with precise predictions emerging from constrained SD (CSD). We define the flavour problem and discuss progress towards a theory of favour using GUTs and discrete family symmetry. We classify models as direct, semidirect or indirect, according to the relation between the Klein symmetry of the mass matrices and the discrete family symmetry, in all cases focussing on spontaneous {C}{P} violation. Finally we give two examples of realistic and highly predictive indirect models with CSD, namely an A to Z of flavour with Pati–Salam and a fairly complete A 4 × SU(5) SUSY GUT of flavour, where both models have interesting implications for leptogenesis.

  5. Family Issues

    MedlinePLUS

    ... not mean that everyone gets along all the time. Conflicts are a part of family life. Many things can lead to conflict, such as illness, disability, addiction, job loss, school problems, and marital issues. Listening to ...

  6. Neutrino Factory Target Vessel

    E-print Network

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept V. Graves Target Studies EVO April 11, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 11 Apr 2012 Target Vessel;3 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 11 Apr 2012 Starting Point

  7. Neutrino Factory Target Vessel

    E-print Network

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept Update V. Graves T. Lessard Target Studies EVO June 26, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Update 26 June 2012 of Energy Target Vessel Update 26 June 2012 Review - Mercury Module Extraction #12;4 Managed by UT

  8. Neutrino Factory Target Vessel

    E-print Network

    McDonald, Kirk

    Neutrino Factory Target Vessel Concepts Updated 4/16/12 V. Graves Target Studies EVO April 11, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 16 Apr 2012 Target Vessel Requirements · Accurate jet placement · Jet/beam dump pool · Double containment of mercury

  9. Neutrino Factory Target Vessel

    E-print Network

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept Update V. Graves Target Studies EVO June 12, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Update 12 June 2012 Review ­ IPAC #12;3 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Update 12 June 2012 Inner

  10. Physical flavor neutrino states

    E-print Network

    Blasone, Massimo

    2011-01-01

    The problem of representation for flavor states of mixed neutrinos is discussed. By resorting to recent results, it is shown that a specific representation exists in which a number of conceptual problems are resolved. Phenomenological consequences of our analysis are explored.

  11. Experimental Neutrino Physics

    ScienceCinema

    Walter, Chris [Duke University, Durham, North Carolina, United States

    2010-01-08

    In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties.  I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions.  I will particularly emphasize the relationship between various experimental techniques.

  12. Neutrino Trapped Stellar Matter

    SciTech Connect

    Panda, P.K.; Menezes, D.P.; Providencia, C.

    2004-12-02

    The equation of state for hybrid stars with trapped neutrinos is studied. We use the quark meson coupling model for the hadron matter and two possibilities for the quark matter phase, namely, the unpaired quark phase and the color-flavor locked phase. A comparison with other relativistic equation of state is done.

  13. Neutrino and it's lepton

    E-print Network

    G. Quznetsov

    2008-11-10

    In this paper I cite p.p. 100-117 of book G. Quznetsov, Probabilistic Treatment of Gauge Theories, in series Contemporary Fundamental Physics,ed. V. Dvoeglazov, Nova Sci. Publ., NY (2007). There I research a bound between neutrino and it's lepton.

  14. Communicating with Terminally Ill Cancer Patients and Their Families.

    ERIC Educational Resources Information Center

    Hjorleifsdottir, Elisabet; Carter, Diana E.

    2000-01-01

    Interviews with 12 fourth-year student nurses in Scotland indicated that they found communicating with terminally ill and dying patients and their families difficult. Although lectures on death and dying were helpful, support and guidance for dealing with these issues in clinical practice were needed. (SK)

  15. Effects of Morphological Family Size for Young Readers

    ERIC Educational Resources Information Center

    Perdijk, Kors; Schreuder, Robert; Baayen, R. Harald; Verhoeven, Ludo

    2012-01-01

    Dutch children, from the second and fourth grade of primary school, were each given a visual lexical decision test on 210 Dutch monomorphemic words. After removing words not recognized by a majority of the younger group, (lexical) decisions were analysed by mixed-model regression methods to see whether morphological Family Size influenced decision…

  16. Flavour-dependent radiative correction to neutrino-neutrino refraction

    E-print Network

    Alessandro Mirizzi; Stefano Pozzorini; Georg G. Raffelt; Pasquale D. Serpico

    2009-10-08

    In the framework of the Standard Model we calculate the flavour non-universal correction for neutrino refraction in a neutrino background and verify a similar previous result for the case of ordinary-matter background. The dominant term arises at loop level and involves tau leptons circulating in the loop. These O(G_F m_tau^2) corrections to the tree-level potential provide the dominant refractive difference between nu_mu and nu_tau unless the medium contains mu or tau leptons. Our results affect the flavour evolution of dense neutrino gases and may be of interest for collective three-flavour oscillations of supernova neutrinos. We spell out explicitly how these non-universal neutrino-neutrino interactions enter the flavour oscillation equations.

  17. Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope

    E-print Network

    ANTARES collaboration; S. Adrian-Martinez; I. Al Samarai; A. Albert; M. Andre; M. Anghinolfi; G. Anton; S. Anvar; M. Ardid; T. Astraatmadja; J. -J. Aubert; B. Baret; S. Basa; V. Bertin; S. Biagi; C. Bigongiari; C. Bogazzi; M. Bou-Cabo; B. Bouhou; M. C. Bouwhuis; J. Brunner; J. Busto; A. Capone; C. Carloganu; J. Carr; S. Cecchini; Z. Charif; Ph. Charvis; T. Chiarusi; M. Circella; R. Coniglione; L. Core; H. Costantini; P. Coyle; A. Creusot; C. Curtil; G. De Bonis; M. P. Decowski; I. Dekeyser; A. Deschamps; C. Distefano; C. Donzaud; D. Dornic; Q. Dorosti; D. Drouhin; T. Eberl; U. Emanuele; A. Enzenhoefer; J. -P. Ernenwein; S. Escoffier; K. Fehn; P. Fermani; M. Ferri; S. Ferry; V. Flaminio; F. Folger; U. Fritsch; J. -L. Fuda; S. Galata; P. Gay; K. Geyer; G. Giacomelli; V. Giordano; A. Gleixner; J. P. Gomez-Gonzalez; K. Graf; G. Guillard; G. Hallewell; M. Hamal; H. van Haren; A. J. Heijboer; Y. Hello; J. J. Hernandez-Rey; B. Herold; J. Hoessl; C. C. Hsu; M. de Jong; M. Kadler; O. Kalekin; A. Kappes; U. Katz; O. Kavatsyuk; P. Kooijman; C. Kopper; A. Kouchner; I. Kreykenbohm; V. Kulikovskiy; R. Lahmann; G. Lambard; G. Larosa; D. Lattuada; D. Lefevre; G. Lim; D. Lo Presti; H. Loehner; S. Loucatos; F. Louis; S. Mangano; M. Marcelin; A. Margiotta; J. A. Martinez-Mora; A. Meli; T. Montaruli; M. Morganti; L. Moscoso; H. Motz; M. Neff; E. Nezri; D. Palioselitis; G. E. Pavalas; K. Payet; J. Petrovic; P. Piattelli; V. Popa; T. Pradier; E. Presani; C. Racca; C. Reed; G. Riccobene; C. Richardt; R. Richter; C. Riviere; A. Robert; K. Roensch; A. Rostovtsev; J. Ruiz-Rivas; M. Rujoiu; G. V. Russo; D. F. E. Samtleben; A. Sanchez-Losa; P. Sapienza; J. Schmid; J. Schnabel; F. Schoeck; J. -P. Schuller; F. Schuessler; T. Seitz; R. Shanidze; F. Simeone; A. Spies; M. Spurio; J. J. M. Steijger; Th. Stolarczyk; M. Taiuti; C. Tamburini; A. Trovato; B. Vallage; C. Vallee; V. Van Elewyck; M. Vecchi; P. Vernin; E. Visser; S. Wagner; G. Wijnker; J. Wilms; E. de Wolf; H. Yepes; D. Zaborov; J. D. Zornoza; J. Zuniga

    2012-07-02

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of $\\Delta m_{32}^2=(3.1\\pm 0.9)\\cdot 10^{-3}$ eV$^2$ is obtained, in good agreement with the world average value.

  18. Brief introduction of the neutrino event generators

    SciTech Connect

    Hayato, Yoshinari

    2015-05-15

    The neutrino interaction simulation programs (event generators) play an important role in the neutrino experiments. This article briefly explains what is the neutrino event generator and how it works.

  19. The Role of Family Background and School Resources on Elementary School Students' Mathematics Achievement

    ERIC Educational Resources Information Center

    Nonoyama-Tarumi, Yuko; Hughes, Kathleen; Willms, J. Douglas

    2015-01-01

    This article compares the effects of family background and school resources on fourth-grade students' math achievement, using data from the 2011 Trends in International Mathematics and Science Study (TIMSS). In order to ameliorate potential floor effects, it uses relative risk and population attributable risk to examine the effects of family

  20. Perceptions of School and Family Climates and Experiences of Relational Aggression

    ERIC Educational Resources Information Center

    Pernice-Duca, Francesca; Taiariol, Jennifer; Yoon, Jina

    2010-01-01

    The role of family and school-level variables on relational aggression and relational victimization was investigated among 158 fourth- and fifth-grade children. Family cohesion, maternal and paternal responsiveness, and school climate were hypothesized to be significant predictors of relational aggression and relational victimization. The results…

  1. Heavy sterile neutrinos and supernova explosions

    E-print Network

    George M. Fuller; Alexander Kusenko; Kalliopi Petraki

    2008-10-01

    We consider sterile neutrinos with rest masses ~0.2 GeV. Such sterile neutrinos could augment core collapse supernova shock energies by enhancing energy transport from the core to the vicinity of the shock front. The decay of these neutrinos could produce a flux of very energetic active neutrinos, detectable by future neutrino observations from a galactic supernova. The relevant range of sterile neutrino masses and mixing angles can be probed in future laboratory experiments.

  2. Probing non-standard neutrino interactions with supernova neutrinos

    E-print Network

    Esteban-Pretel, A; Valle, J W F

    2007-01-01

    We analyze the possibility of probing non-standard neutrino interactions (NSI, for short) through the detection of neutrinos produced in a future galactic supernova (SN).We consider the effect of NSI on the neutrino propagation through the SN envelope within a three-neutrino framework, paying special attention to the inclusion of NSI-induced resonant conversions, which may take place in the most deleptonised inner layers. We study the possibility of detecting NSI effects in a Megaton water Cherenkov detector, either through modulation effects in the $\\bar\

  3. Probing non-standard neutrino interactions with supernova neutrinos

    E-print Network

    A. Esteban-Pretel; R. Tomàs; J. W. F. Valle

    2007-04-02

    We analyze the possibility of probing non-standard neutrino interactions (NSI, for short) through the detection of neutrinos produced in a future galactic supernova (SN).We consider the effect of NSI on the neutrino propagation through the SN envelope within a three-neutrino framework, paying special attention to the inclusion of NSI-induced resonant conversions, which may take place in the most deleptonised inner layers. We study the possibility of detecting NSI effects in a Megaton water Cherenkov detector, either through modulation effects in the $\\bar\

  4. Searching for hep Neutrinos using the Sudbury Neutrino Observatory

    E-print Network

    Howard, Chris

    2009-01-01

    The Sudbury Neutrino Observatory has recently finished its third and final phase, and has accumulated over 1082 days of neutrino data, spanning the energy range from approximately 5-20 MeV. Almost all the observed neutrinos are due to the 8B reaction in the Sun. The so-called hep process (3He + p -> 4He + e + nu_e) also occurs in the Sun, but has not yet been observed. hep neutrino energy endpoint extends above the 8B spectrum. This paper describes the three phase analysis that will ultimately be the most sensitive to this reaction.

  5. Constraints on Neutrino-Neutrino Interactions from Primordial Nucleosynthesis

    E-print Network

    Eduard Massó; Ramon Toldrà

    1994-04-26

    We use the constraints arising from primordial nucleosynthesis to bound the strength $F$ of non-standard neutrino-neutrino interactions, when the right-handed neutrinos participate in the interaction. We find $F < 3 \\times 10^{-3}\\ G_F$, which is five orders of magnitude more stringent than the limit obtained using LEP data. We also show that secret interactions of neutrinos mediated by massless particles must have a coupling $f$ less than $2 \\times 10^{-5}$. This also ameliorates previous limits in the literature.

  6. Searching for hep Neutrinos using the Sudbury Neutrino Observatory

    E-print Network

    Chris Howard; for the SNO Collaboration

    2009-05-29

    The Sudbury Neutrino Observatory has recently finished its third and final phase, and has accumulated over 1082 days of neutrino data, spanning the energy range from approximately 5-20 MeV. Almost all the observed neutrinos are due to the 8B reaction in the Sun. The so-called hep process (3He + p -> 4He + e + nu_e) also occurs in the Sun, but has not yet been observed. hep neutrino energy endpoint extends above the 8B spectrum. This paper describes the three phase analysis that will ultimately be the most sensitive to this reaction.

  7. Gauge Trimming of Neutrino Masses

    SciTech Connect

    Chen, Mu-Chun; de Gouvea, Andre; Dobrescu, Bogdan A.; /Fermilab

    2006-12-01

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.

  8. Unparticle physics and neutrino phenomenology

    SciTech Connect

    Barranco, J.; Bolanos, A.; Miranda, O. G.; Moura, C. A.; Rashba, T. I.

    2009-04-01

    We have constrained unparticle interactions with neutrinos and electrons using available data on neutrino-electron elastic scattering and the four CERN LEP experiments data on mono photon production. We have found that, for neutrino-electron elastic scattering, the MUNU experiment gives better constraints than previous reported limits in the region d>1.5. The results are compared with the current astrophysical limits, pointing out the cases where these limits may or may not apply. We also discuss the sensitivity of future experiments to unparticle physics. In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei could provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks. We also discuss the case of future neutrino-electron experiments as well as the International Linear Collider.

  9. Probing Superluminal Neutrinos Via Refraction

    E-print Network

    Albert Stebbins

    2011-10-12

    One phenomenological explanation of superluminal propagation of neutrinos, which may have been observed by OPERA and MINOS, is that neutrinos travel faster inside of matter than in vacuum. If so neutrinos exhibit refraction inside matter and should exhibit other manifestations of refraction, such as deflection and reflection. Such refraction would be easily detectable through the momentum imparted to appropriately shaped refractive material inserted into the neutrino beam. For NuMI this could be as large as ~10g cm/s. If these effect were found, they would provide new ways of manipulating and detecting neutrinos. Reasons why this scenario seems implausible are given, however it is still worthwhile to conduct simple searches for differential refraction of neutrinos.

  10. Neutrinos And Big Bang Nucleosynthesis

    E-print Network

    Steigman, Gary

    2012-01-01

    According to the standard models of particle physics and cosmology, there should be a background of cosmic neutrinos in the present Universe, similar to the cosmic microwave photon background. The weakness of the weak interactions renders this neutrino background undetectable with current technology. The cosmic neutrino background can, however, be probed indirectly through its cosmological effects on big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) radiation. In this BBN review, focused on neutrinos and, more generally on dark radiation, the BBN constraints on the number of "equivalent neutrinos" (dark radiation), on the baryon asymmetry (baryon density), and on a possible lepton asymmetry (neutrino degeneracy) are reviewed and updated. The BBN constraints on dark radiation and on the baryon density following from considerations of the primordial abundances of deuterium and helium-4 are in excellent agreement with the complementary results from the CMB, providing a suggestive, but curr...

  11. Solar neutrino experiments: An update

    SciTech Connect

    Hahn, R.L.

    1993-12-31

    The situation in solar neutrino physics has changed drastically in the past few years, so that now there are four neutrino experiments in operation, using different methods to look at different regions of the solar neutrino energy spectrum. These experiments are the radiochemical {sup 37}Cl Homestake detector, the realtime Kamiokande detector, and the different forms of radiochemical {sup 71}Ga detectors used in the GALLEX and SAGE projects. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models (although in the case of the gallium detectors, the statistical errors are still relatively large). This paper reviews the basic principles of operation of these neutrino detectors, reports their latest results and discusses some theoretical interpretations. The progress of three realtime neutrino detectors that are currently under construction, SuperKamiok, SNO and Borexino, is also discussed.

  12. Astrophysical and cosmological constraints to neutrino properties

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

    1989-01-01

    The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.

  13. Muon colliders and neutrino factories

    SciTech Connect

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  14. Muon Colliders and Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  15. Advancements in Solar Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Miramonti, Lino; Antonelli, Vito

    2013-05-01

    We review the results of solar neutrino physics, with particular attention to the data obtained and the analyses performed in the last decades, which were determinant to solve the solar neutrino problem (SNP), proving that neutrinos are massive and oscillating particles and contributing to refine the solar models. We also discuss the perspectives of the presently running experiments in this sector and of the ones planned for the near future and the impact they can have on elementary particle physics and astrophysics.

  16. Quantum coherence of relic neutrinos.

    PubMed

    Fuller, George M; Kishimoto, Chad T

    2009-05-22

    We argue that in at least a portion of the history of the Universe the relic background neutrinos are spatially extended, coherent superpositions of mass states. We show that an appropriate quantum mechanical treatment affects the neutrino mass values derived from cosmological data. The coherence scale of these neutrino flavor wave packets can be an appreciable fraction of the causal horizon size, raising the possibility of spacetime curvature-induced decoherence. PMID:19519016

  17. Neutrino Masses and Flavor Mixing

    NASA Astrophysics Data System (ADS)

    Fritzsch, Harald

    We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle ?l is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: m1 ? 0.003 eV, m2 ? 0.012 eV, m3 ? 0.048 eV.

  18. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Mathews, G. J.; Nakamura, K.; Suzuki, T.

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on ?{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  19. Neutrino clouds and dark matter

    SciTech Connect

    Goldman, T.; McKellar, B.H.J.; Stephenson, G.J. Jr.

    1996-12-31

    We have examined the consequences of assuming the existence of a light scalar boson, weakly coupled to neutrinos, and not coupled to any other light fermions. For a range of parameters, we find that this hypothesis leads to the development of neutrino clusters which form in the early Universe and which provide gravitational fluctuations on scales small compared to a parsec (i.e., the scale of solar systems). Under some conditions, this can produce anomalous gravitational acceleration within solar systems and lead to a vanishing of neutrino mass-squared differences, giving rise to strong neutrino oscillation effects.

  20. Magnetic Dipole Moment of Neutrino

    E-print Network

    Samina S. Masood

    2015-06-03

    We recalculate the magnetic moment of neutrinos in a hot and dense medium. The magnetic dipole moment of neutrinos is modified at high temperature and chemical potential. We show that the magnetic dipole moment of electron neutrino does not get a significant contribution from thermal background to meet the cosmological bound. However, chemical potential contribution to the magnetic moment is non-ignorable even when chemical potential is an order of magnitude greater than the electron mass. It is demonstrated that this effect is more significant in the models with an extended Higgs sector through neutrino mixing.

  1. Proton and Neutrino Extragalactic Astronomy

    E-print Network

    Paolo Lipari

    2008-08-04

    The study of extragalactic sources of high energy radiation via the direct measurement of the proton and neutrino fluxes that they are likely to emit is one of the main goals for the future observations of the recently developed air showers detectors and neutrino telescopes. In this work we discuss the relation between the inclusive proton and neutrino signals from the ensemble of all sources in the universe, and the resolved signals from the closest and brightest objects. We also compare the sensitivities of proton and neutrino telescopes and comment on the relation between these two new astronomies.

  2. MINOS Search for Sterile Neutrinos

    E-print Network

    Alexandre Sousa; on behalf of the MINOS Collaboration

    2011-10-16

    Using a NuMI beam exposure of 7.1 /times 10^20 protons-on-target, the MINOS long-baseline experiment has performed a search for active to sterile neutrino mixing over a distance of 735 km. Details of the analysis are provided, along with results from comparisons with standard three neutrino oscillations and fits to a 3+1 model including oscillations into one sterile neutrino. An outlook on the future sterile neutrino related contributions from MINOS and the proposed MINOS+ project is also presented.

  3. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam E-mail: jdolence@astro.princeton.edu

    2013-07-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K{sub r} {approx} K{sub {theta}} + K{sub {phi}}). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  4. OPERA, SN1987a and energy dependence of superluminal neutrino velocity

    E-print Network

    N. D. Hari Dass

    2011-10-23

    This is a brief note discussing the energy dependence of superluminal neutrino velocities recently claimed by OPERA [1,2]. The analysis is based on the data provided there on this issue, as well as on consistency with neutrino data from SN1987a as recorded by the Kamioka detector [3]. It is seen that it is quite difficult to reconcile OPERA with SN1987a. The so called Coleman- Glashow dispersion relations do not do that well, if applied at all neutrino energies. The so called quantum gravity inspired dispersion relations perform far worse. Near OPERA energies both an energy-independent velocity, as well as a linear energy dependence with an offset that is comparable in value to the observed {\\delta}v by OPERA at 28.1 GeV works very well. Our analysis shows that precision arrival time data from SN1987a still allow for superluminal behaviour for supernova neutrinos. A smooth interpolation is given that reconciles OPERA and SN1987a quite well. It suggests a fourth power energy dependence for {\\delta}v of supernova neutrinos. This behaviour is insensitive to whether the velocities are energy-independent, or linearly dependent on energy, near OPERA scale of energies. Suggestions are made for experimental checks for these relations.

  5. Nociceptin/orphanin FQ receptor and pain: Feasibility of the fourth opioid family member.

    PubMed

    Di Cesare Mannelli, Lorenzo; Micheli, Laura; Ghelardini, Carla

    2015-11-01

    The pharmacological management of chronic pain is a major therapeutic problem. The need of repeated treatments reduces the usefulness of classical analgesic drugs, like ? opioid receptor (MOP) agonists, characterized by tolerance development, side effects and abuse. Moreover, the pathological persistence of pain modifies nociceptive signals and pain-devoted structure activity weakening MOP agonists and making difficult the research of new active molecules. Nociceptine/orphanin FQ (N/OFQ) and its receptor (NOP) offers a peculiar opioid system able to interact with MOP receptors and made more sensitive by chronic pain conditions. The pain reliever efficacy of NOP agonists against persistent pain, mainly neuropathic pain, has been highlighted after intrathecal infusions in rats and non human primates (NHPs). The differences emerged between the effects of NOP stimulation in rodents and NHPs allow to hypothesize the relevance of NOP modulators in higher organisms strongly encouraging the development of compounds active by a systemic route. Possible applicative perspectives are (i) selective NOP agonists as such, (ii) NOP modulation as adjuvant of MOP-based treatments, or (iii) mixed non-selective agonists vs NOP and classical opioid receptors. PMID:26277324

  6. Fourth International Conference on High Energy Density Physics

    SciTech Connect

    Beg, Farhat

    2015-01-06

    The Fourth International Conference on High Energy Density Physics (ICHED 2013) was held in Saint Malo, France, at the Palais du Grand Large on 25-28 June 2013 (http://web.luli.polytechnique.fr/ICHED2013/). This meeting was the fourth in a series which was first held in 2008. This conference covered all the important aspects of High Energy Density Physics including fundamental topics from strong-field physics to creating new states of matter (including radiation-dominated, high-pressure quantum and relativistic plasmas) and ultra-fast lattice dynamics on the timescale of atomic transitions.

  7. The Enigmatic Neutrino

    NASA Astrophysics Data System (ADS)

    Lincoln, Don; Miceli, Tia

    2015-09-01

    Through a century of work, physicists have refined a model to describe all fundamental particles, the forces they share, and their interactions on a microscopic scale. This masterpiece of science is called the Standard Model. While this theory is incredibly powerful, we know of at least one particle that exhibits behaviors that are outside of its scope and remain unexplained. These particles are called neutrinos and they are the enigmatic ghosts of the quantum world. Interacting only via the weak nuclear force, literally billions of them pass through you undetected every second. While we understand that particular spooky behavior, we do not understand in any fundamental way how it is that neutrinos can literally change their identity, much as if a house cat could turn into a lion and then a tiger before transitioning back into a house cat again.

  8. Gravity triggered neutrino condensates

    SciTech Connect

    Barenboim, Gabriela

    2010-11-01

    In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced gravitational attraction triggers the formation of a right-handed neutrino condensate, inducing dynamical symmetry breaking and generating a Majorana mass for the right-handed neutrino at a scale appropriate for the seesaw mechanism. The composite field formed by the condensate phase could drive an early epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by additional powers in G of higher order terms can be compensated, boosting them up to their lowest order counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns out to be in the expected range for a successful seesaw scenario.

  9. Helioseismology and Beryllium neutrino

    E-print Network

    B. Ricci; F. L. Villante; M. Lissia

    1999-04-06

    We derive a lower limit on the Beryllium neutrino flux on earth, $\\Phi(Be)_{min} = 1\\cdot 10^9 cm^{-2} s^{-1}$, in the absence of oscillations, by using helioseismic data, the B-neutrino flux measured by Superkamiokande and the hydrogen abundance at the solar center predicted by Standard Solar Model (SSM) calculations. We emphasize that this abundance is the only result of SSMs needed for getting $\\Phi(Be)_{min}$. We also derive lower bounds for the Gallium signal, $G_{min}=(91 \\pm 3) $ SNU, and for the Chlorine signal, $C_{min}=(3.24\\pm 0.14)$ SNU, which are about $3\\sigma$ above their corresponding experimental values, $G_{exp}= (72\\pm 6)$ SNU and $C_{exp}= (2.56\\pm 0.22) $ SNU.

  10. Superbeams versus Neutrino Factories

    E-print Network

    Huber, P; Winter, W; Huber, Patrick; Lindner, Manfred; Winter, Walter

    2002-01-01

    We compare the physics potential of planned superbeams with the one of neutrino factories. Therefore, the experimental setups as well as the most relevant uncertainties and errors are considered on the same footing as much as possible. We use an improved analysis including the full parameter correlations, as well as statistical, systematical, and degeneracy errors. Especially, degeneracies have so far not been taken into account in a numerical analysis. We furthermore include external input, such as improved knowledge of the solar oscillation parameters from the KamLAND experiment. This allows us to determine the limiting uncertainties in all cases. For a specific comparison, we choose two representatives of each class: For the superbeam, we take the first conceivable setup, namely the JHF to SuperKamiokande experiment, as well as, on a longer time scale, the JHF to HyperKamiokande experiment. For the neutrino factory, we choose an initially conceivable setup and an advanced machine. We determine the potentia...

  11. Neutrino Factory Target Vessel

    E-print Network

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept V. Graves Target Studies EVO May 1, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 1 May 2012 Review ­ Two Target Vessel Ideas · Solid-Battelle for the U.S. Department of Energy Target Vessel Concept 1 May 2012 #12;4 Managed by UT-Battelle for the U

  12. Birth of Neutrino Astrophysics

    SciTech Connect

    2010-05-07

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  13. Natural Neutrino Dark Energy

    SciTech Connect

    Gurwich, Ilya

    2010-06-23

    1 construct a general description for neutrino dark energy models, that do not require exotic particles or strange couplings. With the help of the above, this class of models is reduced to a single function with several constraints. It is shown that these models lead to some concrete predictions that can be verified (or disproved) within the next decade, using results from PLANK, EUCLID and JDEM.

  14. Neutrinos in the Electron

    E-print Network

    E. L. Koschmieder

    2006-09-26

    We will show that one half of the rest mass of the electron is equal to the sum of the rest masses of electron neutrinos and that the other half of the rest mass of the electron is given by the energy in the sum of electric oscillations. With this composition we can explain the rest mass, the electric charge, the spin and the magnetic moment of the electron.

  15. Birth of Neutrino Astrophysics

    ScienceCinema

    None

    2011-10-06

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  16. Neutrino Anisotropies after Planck

    E-print Network

    Gerbino, Martina; Said, Najla

    2013-01-01

    We present new constraints on the rest-frame sound speed, c_eff^2, and the viscosity parameter, c_vis^2, of the Cosmic Neutrino Background from the recent measurements of the Cosmic Microwave Background anisotropies provided by the Planck satellite. While broadly consistent with the ex- pectations of c_eff^2 = c_vis^2 = 1/3 in the standard scenario, the Planck dataset hints for a higher value of the viscosity parameter, with c_vis^2 = 0.60 +/- 0.18 at 68% c.l., and a lower value of the sound speed, with c_eff^2 = 0.304 +/- 0.013 at 68% c.l.. We find a correlation between the neutrino parameters and the lensing amplitude of the temperature power spectrum A_L. When the latter parameter is allowed to vary, we find a better consistency with the standard model with c_vis^2 = 0.51 +/- 0.22, c_eff^2 = 0.311 +/- 0.019 and A_L = 1.08 +/- 0.18 at 68% c.l.. This result indicates that the anomalous large value of A_L measured by Planck could be connected to non-standard neutrino properties. Including additional datasets ...

  17. Neutrino self-energy operator and neutrino magnetic moment

    SciTech Connect

    Dobrynina, A. A. Mikheev, N. V.; Narynskaya, E. N.

    2013-11-15

    A simple method for calculating the magnetic moment of a massive neutrino on the basis of its self-energy operator is presented. An expression for the magnetic moment of a massive neutrino in an external electromagnetic field is obtained in the R{sub {xi}} gauge for the case of an arbitrary ratio of the lepton and W-boson masses.

  18. Sensitivity of neutrino mass experiments to the cosmic neutrino background

    E-print Network

    Formaggio, Joseph A.

    The KATRIN neutrino experiment is a next-generation tritium beta decay experiment aimed at measuring the mass of the electron neutrino to better than 200 meV at 90% C.L. Because of its intense tritium source, KATRIN can ...

  19. Family Hypnotherapy.

    ERIC Educational Resources Information Center

    Araoz, Daniel L.; Negley-Parker, Esther

    1985-01-01

    A therapeutic model to help families activate experiential and right hemispheric functioning through hypnosis is presented in detail, together with a clinical illustration. Different situations in which this model is effective are mentioned and one such set of circumstances is described. (Author)

  20. Family Disruptions

    MedlinePLUS

    ... and Returns Do you or your spouse frequently travel on business? These can be disruptive times for your child and for the family as ... these out-of-town trips. Spend as much time as it takes to explain where you are ... before and during your travels. You need to acknowledge and accept her feelings: " ...

  1. Serving Families.

    ERIC Educational Resources Information Center

    Link, Geoffrey; Beggs, Marjorie; Seiderman, Ethel

    Parent Services Project (PSP), the first comprehensive program of resources and mental health activities for parents offered at child care centers in the San Francisco Bay Area (California), has expanded to centers in six states, serving over 19,000 families. This report describes the program's history, aims, and achievements, along with specific…

  2. My Family.

    ERIC Educational Resources Information Center

    Alaska State-Operated Schools, Anchorage.

    This elementary reader is designed for use in a bilingual Inupiat-English program in Buckland and Deering, Alaska. It is the story of a small boy named Paul and his family. The Inupiat text and its English equivalent are never in opposition. The Inupiat text is presented on a picture page, with the English on the back. The illustrations, by J.…

  3. FAMILY TYMOVIRIDAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article provides a brief review of the taxonomic structure, virion properties, genome organization and replication strategy, antigenic properties, and biological properties of viruses in the family Tymoviridae. Criteria for demarcation of genus and species are provided. A brief review of each...

  4. Small Families

    MedlinePLUS

    ... or as an individual, if you are a single parent). Taking a few hours off from each other ... last few generations, most American families were two-parent ones; living ... worked outside the home. In many ways, this formula worked well: There ...

  5. Family Caregivers.

    ERIC Educational Resources Information Center

    Frazier, Billie H.

    This document contains a brief bibliography of peer-reviewed literature, with abstracts, on family caregiving. It is one of 12 bibliographies on aging prepared by the National Agricultural Library for its "Pathfinders" series of publications. Topics covered by the other 11 bibliographies include aging parents, adult children, dementia and…

  6. Families & Television.

    ERIC Educational Resources Information Center

    Van Dyck, Nicholas B.

    1983-01-01

    Argues that television reflects the ideal of American family life in its programs, and that adverse behavior is correlated with amounts of time spent viewing rather than program content. Television can offer rich source material for the imagination, but parents need to actively guide children's viewing throughout their formative years. (MBR)

  7. Detailed Studies of neutrino oscillations with atmospheric neutrinos of wide energy range from 100

    E-print Network

    Tokyo, University of

    Detailed Studies of neutrino oscillations with atmospheric neutrinos of wide energy range from 100; #12; Abstract An experimental study on the neutrino oscillations with atmospheric neutrinos of wide;cit of the upward-going #23; #22; 's, and it implies neutrino oscillation. Several theories predict

  8. 6. FOURTH FLOOR, DETAIL OF HOTEL SOAP LINE TO NORTH: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FOURTH FLOOR, DETAIL OF HOTEL SOAP LINE TO NORTH: AMERICAN CAR & FOUNDRY COMPANY MANUAL SOAP CUTTER INSTALLED 1932 (FOREGROUND); CONVEYORS; AND R.A. JONES & COMPANY HORIZONTAL PRESS INSTALLED 1931 (BACKGROUND) - Colgate & Company Jersey City Plant, Building No. B-15, 90-96 Greene Street, Jersey City, Hudson County, NJ

  9. 46. VIEW ON THE ROOF, LOOKING AT THE TOP (FOURTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. VIEW ON THE ROOF, LOOKING AT THE TOP (FOURTH STORY) OF THE TOWER FROM THE NORTHEAST TO THE SOUTHWEST (NOTE: GROUPS OF THREE WINDOWS IN EACH SIDE OF TOWER, ORNAMENTED WITH BROWNSTONE ARCHES AND BROWNSTONE SILLS WITHOUT BRACKETS) - Kenworthy Hall, State Highway 14 (Greensboro Road), Marion, Perry County, AL

  10. The N400 and the Fourth Grade Shift

    ERIC Educational Resources Information Center

    Coch, Donna

    2015-01-01

    While behavioral and educational data characterize a fourth grade shift in reading development, neuroscience evidence is relatively lacking. We used the N400 component of the event-related potential waveform to investigate the development of single word processing across the upper elementary years, in comparison to adult readers. We presented…

  11. Second-to-Fourth Digit Length, Testosterone and Spatial Ability

    ERIC Educational Resources Information Center

    Kempel, P.; Gohlke, B.; Klempau, J.; Zinsberger, P.; Reuter, M.; Hennig, J.

    2005-01-01

    Based on stimulating findings suggesting that prenatal levels of steroids may influence cognitive functions, a study with N=40 healthy volunteers of both sexes was conducted. Prenatal levels of testosterone (T) were estimated by use of the second-to-fourth digit ratio (2D:4D) which is supposed to be controlled by the same genes involved in…

  12. 16. Parker Dam, only top fourth of dam visible, at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Parker Dam, only top fourth of dam visible, at 320' high, Parker Dam is one of the highest in the world. Much of this height is because dam penetrates well below river bottom to fasten to bedrock. - Parker Dam, Spanning Colorado River between AZ & CA, Parker, La Paz County, AZ

  13. Did that Dog Sniff Violate the Fourth Amendment?

    ERIC Educational Resources Information Center

    Hawke, Catherine; Middleton, Tiffany

    2012-01-01

    Is sniffing at the front door of a private home by a trained narcotics detection dog a Fourth Amendment search requiring probable cause? Is a "drug dog" somehow like a manmade technology, such as a thermal imaging device? These were a couple of the questions recently presented to the U.S. Supreme Court during arguments in "Florida v. Jardines."…

  14. Structured shock waves and the fourth-power law

    NASA Astrophysics Data System (ADS)

    Grady, Dennis E.

    2010-01-01

    A fourth-power law relating the stress jump through a steady structured shock wave and the maximum strain rate within the shock wave has received recognition as a unifying relation over a sensibly wide range of materials and shock compression amplitudes. Less widely recognized is the complementary applicability of the invariance of the product of the energy dissipated and the time over which this energy is dissipated through a structure shock wave—a property with the dimensions of action. While the latter invariance implies the fourth-power behavior for steady shock waves, this invariance also has an apparent application to unsteady structured waves under certain conditions. A brief history of the origin of the fourth-power law is provided. Some commentary is offered on the physical principles of solid viscosity in the shock wave and the underlying invariance of the energy-time product in the shock wave event. The results for steady structured waves in porous and composite solids, which do not in general exhibit fourth-power behavior, are examined. Observations of systematic behaviors with component cell size and impedance disparities suggest acoustic scattering may contribute to wave structuring in selected materials.

  15. Dental Hygiene Program Clinic Manual, Fall 1997. Fourth Edition.

    ERIC Educational Resources Information Center

    Errico, Mary; Cama, Christine; Pastoriza-Maldonado, Alida

    This is the fourth edition of the Clinic Manual for the Dental Hygiene Program at Eugenio Maria de Hostos Community College in the Bronx (New York). It contains general information, grading procedures, performance guides, and clinical forms related to the program. Section 1 provides an introduction to clinic philosophy, policies, goals and…

  16. 19. FOURTH FLOOR BLDG. 28, DETAIL BLOCKS, PULLEYS, AND ELECTRIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. FOURTH FLOOR BLDG. 28, DETAIL BLOCKS, PULLEYS, AND ELECTRIC MOTOR LOOKING EAST. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  17. 18. FOURTH FLOOR BLDG. 28, RAISED CONCRETE SLAB FLOOR WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. FOURTH FLOOR BLDG. 28, RAISED CONCRETE SLAB FLOOR WITH BLOCKS AND PULLEYS OVERHEAD LOOKING NORTHEAST. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  18. Educating Children with Multiple Disabilities: A Collaborative Approach. Fourth Edition

    ERIC Educational Resources Information Center

    Orelove, Fred P., Ed.; Sobsey, Dick, Ed.; Silberman, Rosanne K., Ed.

    2004-01-01

    Now in its fourth edition, this highly respected, bestselling textbook gives undergraduate and graduate students up-to-the-minute research and strategies for educating children with severe and multiple disabilities. This popular core text--for 15 years, a staple of teacher training programs in special education and related fields--thoroughly…

  19. VIEW OF THE EAST CHECKOUT CELL, FOURTH LEVEL OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE EAST CHECK-OUT CELL, FOURTH LEVEL OF THE EXTERNAL TANK CHECK-OUT CELLS, HB-2, FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  20. VIEW OF THE WEST CHECKOUT CELL, FOURTH LEVEL OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE WEST CHECK-OUT CELL, FOURTH LEVEL OF THE EXTERNAL TANK CHECK-OUT CELLS, HB-2, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  1. The Informed Argument: A Multidisciplinary Reader and Guide. Fourth Edition.

    ERIC Educational Resources Information Center

    Miller, Robert K.

    Reflecting the belief that learning is best fostered by encouraging students to read, reflect, and write about serious issues, this book is designed to help students argue on behalf of their beliefs so that other people will take them seriously. The 85 readings gathered in the book (60 of which are new to the fourth edition) give students adequate…

  2. The Value of the Fourth Year of Mathematics. Math Works

    ERIC Educational Resources Information Center

    Achieve, Inc., 2013

    2013-01-01

    Too many students and educators view the senior year and graduation from high school as an end point, rather than one vital step along the education pipeline. Students who engage in a fourth year of math tap into and build upon their advanced analytic skills and are more likely to have better success in postsecondary course work, as they have…

  3. Fourth International Workshop on Software Clones (IWSC) Katsuro Inoue

    E-print Network

    Cordy, James R.

    Fourth International Workshop on Software Clones (IWSC) Katsuro Inoue Osaka University, Japan inoue@cs.queensu.ca ABSTRACT Software clones are identical or similar pieces of code. They are often the result of copy­and­paste activities as ad-hoc code reuse by programmers. Software clones research is of high relevance

  4. PROCEEDINGS OF THE FOURTH ASIA-PACIFIC BIOINFORMATICS

    E-print Network

    Wong, Limsoon

    PROCEEDINGS OF THE FOURTH ASIA-PACIFIC BIOINFORMATICS CONFERENCE 13­16 February 2006 Taipei, Taiwan states are rapidly being generated for human and model organisms. Bioinformatics is thus rapidly growing-Pacific Bioinformatics Conference series is an annual forum for exploring research, development, and novel applications

  5. REORGANIZED SCIENCE CURRICULUM, 4A, FOURTH GRADE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE FIFTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE FOURTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THERE IS A DETAILED OUTLINE OF THE CONTENT FOR GRADE 4 FOR EACH OF THE FOLLOWING MAJOR AREAS AROUND WHICH…

  6. A fourth order Central WENO Scheme for Multi-dimensional

    E-print Network

    Puppo, Gabriella

    A fourth order Central WENO Scheme for Multi-dimensional Hyperbolic Systems of Conservation Laws, central di#11;erence schemes, high-order accuracy, non- oscillatory schemes, WENO reconstruction, CWENO Non-Oscillatory (ENO) schemes [7], [32] and more recently the Weighted ENO (WENO) schemes [26], [8

  7. MRI characteristics of fourth ventricle arachnoid diverticula in five dogs.

    PubMed

    Bazelle, Julien; Caine, Abby; Palus, Viktor; Summers, Brian A; Cherubini, Giunio B

    2015-01-01

    Intracranial arachnoid diverticula (cysts) are rare accumulations of cerebrospinal fluid (CSF) within the arachnoid membrane. The purpose of this retrospective study was to describe magnetic resonance imaging (MRI) characteristics of fourth ventricle arachnoid diverticula in a group of dogs. The hospital's medical records were searched for dogs with MRI studies of the brain and a diagnosis of fourth ventricle arachnoid diverticulum. Clinical characteristics were recorded from medical records and MRI studies were reinterpreted by a board-certified veterinary radiologist. Five pediatric dogs fulfilled inclusion criteria. Clinical signs included cervical hyperaesthesia, obtundation, tetraparesis, and/or central vestibular syndrome. In all five dogs, MRI findings were consistent with obstructive hydrocephalus, based on dilation of all ventricles and compression of the cerebellum and brainstem. All five dogs also had cervical syringohydromyelia, with T2-weighted hyperintensity of the gray matter of the cord adjacent to the syringohydromyelia. A signal void, interpreted as flow disturbance, was observed at the mesencephalic aqueduct in all dogs. Four dogs underwent surgical treatment with occipitalectomy and durotomy. A cystic lesion emerging from the fourth ventricle was detected in all four dogs during surgery and histopathology confirmed the diagnosis of arachnoid diverticula. Three dogs made excellent recovery but deteriorated shortly after surgery and were euthanized. Repeat MRI in two dogs revealed improved hydrocephalus but worsening of the syringohydromyelia. Findings from the current study supported theories that fourth ventricle arachnoid diverticula are secondary to partial obstruction of the central canal or lateral apertures and that arachnoid diverticula are developmental lesions in dogs. PMID:25385344

  8. 43. 'Firing Pier, Third and Fourth Floors and Roof Plan,' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. 'Firing Pier, Third and Fourth Floors and Roof Plan,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3869-46, Y&D Drawing 190843. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  9. The Copyright Book: A Practical Guide. Fourth Edition.

    ERIC Educational Resources Information Center

    Strong, William S.

    In response to important changes in copyright law as the United States accommodates itself to the Berne Convention and develops means to take account of new technologies, this guide puts these changes in a form and context that will make sense to persons who are concerned about their rights under the law. New material in the fourth edition of this…

  10. The Impact of Russian Enrichment in the Fourth Grade.

    ERIC Educational Resources Information Center

    Mardis, Sherri L.

    An evaluation of a foreign language experience program for fourth graders in an inner-city school is presented. First, an introductory section reviews literature on the rationale for and structure of foreign language programs in the elementary school. In the program, students learned about Russian foreign language and culture in a weekly 30-minute…

  11. Fourth Way in Action: Teacher Education in Singapore

    ERIC Educational Resources Information Center

    Tan, Oon Seng

    2012-01-01

    Policy makers are often looking for solutions to develop their educational systems in today's highly competitive knowledge-based economy. Hargreaves and Shirley's Fourth Way provides a useful approach in analysing policy trends, successes and pitfalls, based on an observation of practices and research evidences in the west, particularly, the USA…

  12. Fourth Way in Action? The Evolution of Singapore's Education System

    ERIC Educational Resources Information Center

    Gopinathan, Saravanan

    2012-01-01

    Hargreaves and Shirley's "The Fourth Way" offers a valuable framework for considering the challenges and dilemmas that confront education change practitioners. In this article, I consider how well their framework fits the evolution and more recent changes in Singapore education. History, context culture and aspirations are seen as providing for…

  13. Nature's Energy, Module B. Fourth Grade. Pilot Form.

    ERIC Educational Resources Information Center

    Pasco County Schools, Dade City, FL.

    This booklet is one of a set of learning modules on energy for use by students and teachers in the fourth grade. This module examines man's use of fossil fuels, electricity production, and other energy sources. Included are laboratory activities and values exercises. (BT)

  14. Regularizing QCD with staggered fermions and the fourth root trick

    E-print Network

    Claude Bernard; Maarten Golterman; Yigal Shamir

    2006-09-29

    We investigate the properties of staggered-fermion lattice QCD in which the fourth root of the fermion determinant is taken. We show that this theory is non-local at non-zero lattice spacing $a$, and that the non-locality is caused by the breaking of taste symmetry at $a\

  15. Rentz's Student Affairs Practice in Higher Education. Fourth Edition

    ERIC Educational Resources Information Center

    Zhang, Naijian

    2011-01-01

    The mission of this new fourth edition is to provide the reader with a solid foundation in the historical and philosophical perspectives of college student affairs development; assist the reader in understanding the major concepts and purpose of student affairs' practice, methods, and program models; enable the reader to conceptualize the theme,…

  16. Dynamic Characters: A Year in the Life of Fourth Hour

    ERIC Educational Resources Information Center

    Meiklejohn, Julie

    2006-01-01

    In this article, the author relates how she was able to facilitate a turn around with a seemingly hopeless regular English class. Her fourth class, which consisted of the thugs and slugs, was her first regular class as she had always been assigned the honors classes. Many of these students were repeating the class, having failed the previous year.…

  17. Fourth National Forum on Biomedical Imaging in Oncology

    Cancer.gov

    February 6-7, 2003Hyatt Regency BethesdaBethesda, Maryland 2003 Meeting Summary (PDF document) 2003 Program (PDF document) Note: PDF documents can be viewed by anyone with Adobe Acrobat Reader. Download the free Adobe Acrobat Reader Print This Page Fourth

  18. Gender Differences in Inference Generation by Fourth-Grade Students

    ERIC Educational Resources Information Center

    Clinton, Virginia; Seipel, Ben; Broek, Paul; McMaster, Kristen L.; Kendeou, Panayiota; Carlson, Sarah E.; Rapp, David N.

    2014-01-01

    The purpose of this study was to determine if there are gender differences among elementary school-aged students in regard to the inferences they generate during reading. Fourth-grade students (130 females; 126 males) completed think-aloud tasks while reading one practice and one experimental narrative text. Females generated a larger number and a…

  19. Fourth annual report to Congress, Federal Alternative Motor Fuels Programs

    SciTech Connect

    1995-07-01

    This annual report to Congress presents the current status of the alternative fuel vehicle programs being conducted across the country in accordance with the Alternative Motor Fuels Act of 1988. These programs, which represent the most comprehensive data collection effort ever undertaken on alternative fuels, are beginning their fifth year. This report summarizes tests and results from the fourth year.

  20. Transactions of the fourth symposium on space nuclear power systems

    SciTech Connect

    El-Genk, M.S.; Hoover, M.D.

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)