Science.gov

Sample records for fox transcription factor

  1. Redox regulation of FoxO transcription factors

    PubMed Central

    Klotz, Lars-Oliver; Sánchez-Ramos, Cristina; Prieto-Arroyo, Ignacio; Urbánek, Pavel; Steinbrenner, Holger; Monsalve, Maria

    2015-01-01

    Transcription factors of the forkhead box, class O (FoxO) family are important regulators of the cellular stress response and promote the cellular antioxidant defense. On one hand, FoxOs stimulate the transcription of genes coding for antioxidant proteins located in different subcellular compartments, such as in mitochondria (i.e. superoxide dismutase-2, peroxiredoxins 3 and 5) and peroxisomes (catalase), as well as for antioxidant proteins found extracellularly in plasma (e.g., selenoprotein P and ceruloplasmin). On the other hand, reactive oxygen species (ROS) as well as other stressful stimuli that elicit the formation of ROS, may modulate FoxO activity at multiple levels, including posttranslational modifications of FoxOs (such as phosphorylation and acetylation), interaction with coregulators, alterations in FoxO subcellular localization, protein synthesis and stability. Moreover, transcriptional and posttranscriptional control of the expression of genes coding for FoxOs is sensitive to ROS. Here, we review these aspects of FoxO biology focusing on redox regulation of FoxO signaling, and with emphasis on the interplay between ROS and FoxOs under various physiological and pathophysiological conditions. Of particular interest are the dual role played by FoxOs in cancer development and their key role in whole body nutrient homeostasis, modulating metabolic adaptations and/or disturbances in response to low vs. high nutrient intake. Examples discussed here include calorie restriction and starvation as well as adipogenesis, obesity and type 2 diabetes. PMID:26184557

  2. The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii

    PubMed Central

    2014-01-01

    Background The Fox gene family is a large family of transcription factors that arose early in organismal evolution dating back to at least the common ancestor of metazoans and fungi. They are key components of many gene regulatory networks essential for embryonic development. Although much is known about the role of Fox genes during vertebrate development, comprehensive comparative studies outside vertebrates are sparse. We have characterized the Fox transcription factor gene family from the genome of the enteropneust hemichordate Saccoglossus kowalevskii, including phylogenetic analysis, genomic organization, and expression analysis during early development. Hemichordates are a sister group to echinoderms, closely related to chordates and are a key group for tracing the evolution of gene regulatory mechanisms likely to have been important in the diversification of the deuterostome phyla. Results Of the 22 Fox gene families that were likely present in the last common ancestor of all deuterostomes, S. kowalevskii has a single ortholog of each group except FoxH, which we were unable to detect, and FoxQ2, which has three paralogs. A phylogenetic analysis of the FoxQ2 family identified an ancestral duplication in the FoxQ2 lineage at the base of the bilaterians. The expression analyses of all 23 Fox genes of S. kowalevskii provide insights into the evolution of components of the regulatory networks for the development of pharyngeal gill slits (foxC, foxL1, and foxI), mesoderm patterning (foxD, foxF, foxG), hindgut development (foxD, foxI), cilia formation (foxJ1), and patterning of the embryonic apical territory (foxQ2). Conclusions Comparisons of our results with data from echinoderms, chordates, and other bilaterians help to develop hypotheses about the developmental roles of Fox genes that likely characterized ancestral deuterostomes and bilaterians, and more recent clade-specific innovations. PMID:24987514

  3. Involvement of the transcription factor FoxM1 in contact inhibition

    SciTech Connect

    Faust, Dagmar; Al-Butmeh, Firas; Linz, Berenike; Dietrich, Cornelia

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer The transcription factor FoxM1 is downregulated upon contact inhibition. Black-Right-Pointing-Pointer The decrease in FoxM1 levels occurs very likely due to inhibition of ERK activity. Black-Right-Pointing-Pointer The decrease in FoxM1 is not sufficient, but required for contact inhibition. Black-Right-Pointing-Pointer We propose a new model of contact inhibition involving pRB/E2F and FoxM1. -- Abstract: Contact inhibition is a crucial mechanism regulating proliferation in vitro and in vivo. Although it is generally accepted that contact inhibition plays a pivotal role in maintaining tissue homeostasis, the molecular mechanisms of contact inhibition are still not fully understood. FoxM1 is known as a proliferation-associated transcription factor and is upregulated in many cancer types. Vice versa, anti-proliferative signals, such as TGF-{beta} and differentiation signals decrease FoxM1 expression. Here we investigated the role of FoxM1 in contact inhibition in fibroblasts. We show that protein expression of FoxM1 is severely and rapidly downregulated upon contact inhibition, probably by inhibition of ERK activity, which then leads to decreased expression of cyclin A and polo-like kinase 1. Vice versa, ectopic expression of FoxM1 prevents the decrease in cyclin A and polo-like kinase 1 and causes a two-fold increase in saturation density indicating loss of contact inhibition. Hence, we show that downregulation of FoxM1 is required for contact inhibition by regulating expression of cyclin A and polo-like kinase 1.

  4. Evolutionarily Ancient Association of the FoxJ1 Transcription Factor with the Motile Ciliogenic Program

    PubMed Central

    Ho, Hao Kee; Babu, Deepak; Eitel, Michael; Narasimhan, Vijayashankaranarayanan; Tiku, Varnesh; Westbrook, Jody; Schierwater, Bernd; Roy, Sudipto

    2012-01-01

    It is generally believed that the last eukaryotic common ancestor (LECA) was a unicellular organism with motile cilia. In the vertebrates, the winged-helix transcription factor FoxJ1 functions as the master regulator of motile cilia biogenesis. Despite the antiquity of cilia, their highly conserved structure, and their mechanism of motility, the evolution of the transcriptional program controlling ciliogenesis has remained incompletely understood. In particular, it is presently not known how the generation of motile cilia is programmed outside of the vertebrates, and whether and to what extent the FoxJ1-dependent regulation is conserved. We have performed a survey of numerous eukaryotic genomes and discovered that genes homologous to foxJ1 are restricted only to organisms belonging to the unikont lineage. Using a mis-expression assay, we then obtained evidence of a conserved ability of FoxJ1 proteins from a number of diverse phyletic groups to activate the expression of a host of motile ciliary genes in zebrafish embryos. Conversely, we found that inactivation of a foxJ1 gene in Schmidtea mediterranea, a platyhelminth (flatworm) that utilizes motile cilia for locomotion, led to a profound disruption in the differentiation of motile cilia. Together, all of these findings provide the first evolutionary perspective into the transcriptional control of motile ciliogenesis and allow us to propose a conserved FoxJ1-regulated mechanism for motile cilia biogenesis back to the origin of the metazoans. PMID:23144623

  5. FoxO Transcription Factors and Regenerative Pathways in Diabetes Mellitus

    PubMed Central

    Maiese, Kenneth

    2015-01-01

    Mammalian forkhead transcription factors of the O class (FoxO) are exciting targets under consideration for the development of new clinical entities to treat metabolic disorders and diabetes mellitus (DM). DM, a disorder that currently affects greater than 350 million individuals globally, can become a devastating disease that leads to cellular injury through oxidative stress pathways and affects multiple systems of the body. FoxO proteins can regulate insulin signaling, gluconeogenesis, insulin resistance, immune cell migration, and cell senescence. FoxO proteins also control cell fate through oxidative stress and pathways of autophagy and apoptosis that either lead to tissue regeneration or cell demise. Furthermore, FoxO signaling can be dependent upon signal transduction pathways that include silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), Wnt, and Wnt1 inducible signaling pathway protein 1 (WISP1). Cellular metabolic pathways driven by FoxO proteins are complex, can lead to variable clinical outcomes, and require in-depth analysis of the epigenetic and post-translation protein modifications that drive FoxO protein activation and degradation. PMID:26256004

  6. Loss of Interdependent Binding by the FoxO1 and FoxA1/A2 Forkhead Transcription Factors Culminates in Perturbation of Active Chromatin Marks and Binding of Transcriptional Regulators at Insulin-sensitive Genes.

    PubMed

    Yalley, Akua; Schill, Daniel; Hatta, Mitsutoki; Johnson, Nicole; Cirillo, Lisa Ann

    2016-04-15

    FoxO1 binds to insulin response elements located in the promoters of insulin-like growth factor-binding protein 1 (IGFBP1) and glucose-6-phosphatase (G6Pase), activating their expression. Insulin-mediated phosphorylation of FoxO1 promotes cytoplasmic translocation, inhibiting FoxO1-mediated transactivation. We have previously demonstrated that FoxO1 opens and remodels chromatin assembled from the IGFBP1 promoter via a highly conserved winged helix motif. This finding, which established FoxO1 as a "pioneer" factor, suggested a model whereby FoxO1 chromatin remodeling at regulatory targets facilitates binding and recruitment of additional regulatory factors. However, the impact of FoxO1 phosphorylation on its ability to bind chromatin and the effect of FoxO1 loss on recruitment of neighboring transcription factors at its regulatory targets in liver chromatin is unknown. In this study, we demonstrate that an amino acid substitution that mimics insulin-mediated phosphorylation of a serine in the winged helix DNA binding motif curtails FoxO1 nucleosome binding. We also demonstrate that shRNA-mediated loss of FoxO1 binding to the IGFBP1 and G6Pase promoters in HepG2 cells significantly reduces binding of RNA polymerase II and the pioneer factors FoxA1/A2. Knockdown of FoxA1 similarly reduced binding of RNA polymerase II and FoxO1. Reduction in acetylation of histone H3 Lys-27 accompanies loss of FoxO1 and FoxA1/A2 binding. Interdependent binding of FoxO1 and FoxA1/A2 possibly entails cooperative binding because FoxO1 and FoxA1/A2 facilitate one another's binding to IGFPB1 promoter DNA. These results illustrate how transcription factors can nucleate transcriptional events in chromatin in response to signaling events and suggest a model for regulation of hepatic glucose metabolism through interdependent FoxO/FoxA binding. PMID:26929406

  7. Fox Tales: Regulation of Gonadotropin Gene Expression by Forkhead Transcription Factors

    PubMed Central

    Thackray, Varykina G.

    2013-01-01

    Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are produced by pituitary gonadotrope cells and are required for steroidogenesis, the maturation of ovarian follicles, ovulation, and spermatogenesis. Synthesis of LH and FSH is tightly regulated by a complex network of signaling pathways activated by hormones including gonadotropin-releasing hormone, activin and sex steroids. Members of the forkhead box (FOX) transcription factor family have been shown to act as important regulators of development, homeostasis and reproduction. In this review, we focus on the role of four specific FOX factors (FOXD1, FOXL2, FOXO1 and FOXP3) in gonadotropin hormone production and discuss our current understanding of the molecular function of these factors derived from studies in mouse genetic and cell culture models. PMID:24099863

  8. Oxidative Stress Activates the Transcription Factors FoxO 1a and FoxO 3a in the Hippocampus of Rats Exposed to Low Doses of Ozone

    PubMed Central

    Gómez-Crisóstomo, Nancy P.; Rodríguez Martínez, Erika

    2014-01-01

    The exposure to low doses of ozone induces an oxidative stress state, which is involved in neurodegenerative diseases. Forkhead box O (FoxO) family of transcription factors are activated by oxidative signals and regulate cell proliferation and resistance to oxidative stress. Our aim was to study the effect of chronic exposure to ozone on the activation of FoxO 1a and FoxO 3a in the hippocampus of rats. Male Wistar rats were divided into six groups and exposed to 0.25 ppm of ozone for 0, 7, 15, 30, 60, and 90 days. After treatment, the groups were processed for western blotting and immunohistochemistry against FoxO 3a, Mn SOD, cyclin D2, FoxO 1a, and active caspase 3. We found that exposure to ozone increased the activation of FoxO 3a at 30 and 60 days and expression of Mn SOD at all treatment times. Additionally, increases in cyclin D2 from 7 to 90 days; FoxO 1a at 15, 30, and 60 days; and activate caspase 3 from 30 to 60 days of exposure were noted. The results indicate that ozone alters regulatory pathways related to both the antioxidant system and the cell cycle, inducing neuronal reentry into the cell cycle and apoptotic death. PMID:24967006

  9. Forkhead transcription factor FoxF1 interacts with Fanconi anemia protein complexes to promote DNA damage response

    PubMed Central

    Pradhan, Arun; Ustiyan, Vladimir; Zhang, Yufang; Kalin, Tanya V.; Kalinichenko, Vladimir V.

    2016-01-01

    Forkhead box F1 (Foxf1) transcription factor is an important regulator of embryonic development but its role in tumor cells remains incompletely understood. While 16 proteins were characterized in Fanconi anemia (FA) core complex, its interactions with cellular transcriptional machinery remain poorly characterized. Here, we identified FoxF1 protein as a novel interacting partner of the FA complex proteins. Using multiple human and mouse tumor cell lines and Foxf1+/− mice we demonstrated that FoxF1 physically binds to and increases stability of FA proteins. FoxF1 co-localizes with FANCD2 in DNA repair foci in cultured cells and tumor tissues obtained from cisplatin-treated mice. In response to DNA damage, FoxF1-deficient tumor cells showed significantly reduced FANCD2 monoubiquitination and FANCM phosphorylation, resulting in impaired formation of DNA repair foci. FoxF1 knockdown caused chromosomal instability, nuclear abnormalities, and increased tumor cell death in response to DNA-damaging agents. Overexpression of FoxF1 in DNA-damaged cells improved stability of FA proteins, decreased chromosomal and nuclear aberrations, restored formation of DNA repair foci and prevented cell death after DNA damage. These findings demonstrate that FoxF1 is a key component of FA complexes and a critical mediator of DNA damage response in tumor cells. PMID:26625197

  10. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor.

    PubMed

    Miyara, Makoto; Yoshioka, Yumiko; Kitoh, Akihiko; Shima, Tomoko; Wing, Kajsa; Niwa, Akira; Parizot, Christophe; Taflin, Cécile; Heike, Toshio; Valeyre, Dominique; Mathian, Alexis; Nakahata, Tatsutoshi; Yamaguchi, Tomoyuki; Nomura, Takashi; Ono, Masahiro; Amoura, Zahir; Gorochov, Guy; Sakaguchi, Shimon

    2009-06-19

    FoxP3 is a key transcription factor for the development and function of natural CD4(+) regulatory T cells (Treg cells). Here we show that human FoxP3(+)CD4(+) T cells were composed of three phenotypically and functionally distinct subpopulations: CD45RA(+)FoxP3(lo) resting Treg cells (rTreg cells) and CD45RA(-)FoxP3(hi) activated Treg cells (aTreg cells), both of which were suppressive in vitro, and cytokine-secreting CD45RA(-)FoxP3(lo) nonsuppressive T cells. The proportion of the three subpopulations differed between cord blood, aged individuals, and patients with immunological diseases. Terminally differentiated aTreg cells rapidly died whereas rTreg cells proliferated and converted into aTreg cells in vitro and in vivo. This was shown by the transfer of rTreg cells into NOD-scid-common gamma-chain-deficient mice and by TCR sequence-based T cell clonotype tracing in peripheral blood in a normal individual. Taken together, the dissection of FoxP3(+) cells into subsets enables one to analyze Treg cell differentiation dynamics and interactions in normal and disease states, and to control immune responses through manipulating particular FoxP3(+) subpopulations. PMID:19464196

  11. Forkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth

    PubMed Central

    Seo, Seungwoon; Singh, Hardeep P.; Lacal, Pedro M.; Sasman, Amy; Fatima, Anees; Liu, Ting; Schultz, Kathryn M.; Losordo, Douglas W.; Lehmann, Ordan J.; Kume, Tsutomu

    2012-01-01

    Normal vision requires the precise control of vascular growth to maintain corneal transparency. Here we provide evidence for a unique mechanism by which the Forkhead box transcription factor FoxC1 regulates corneal vascular development. Murine Foxc1 is essential for development of the ocular anterior segment, and in humans, mutations have been identified in Axenfeld–Rieger syndrome, a disorder characterized by anterior segment dysgenesis. We show that FOXC1 mutations also lead to corneal angiogenesis, and that mice homozygous for either a global (Foxc1−/−) or neural crest (NC)-specific (NC-Foxc1−/−) null mutation display excessive growth of corneal blood and lymphatic vessels. This is associated with disorganization of the extracellular matrix and increased expression of multiple matrix metalloproteinases. Heterozygous mutants (Foxc1+/− and NC-Foxc1+/−) exhibit milder phenotypes, such as disrupted limbal vasculature. Moreover, environmental exposure to corneal injury significantly increases growth of both blood and lymphatic vessels in both Foxc1+/− and NC-Foxc1+/− mice compared with controls. Notably, this amplification of the angiogenic response is abolished by inhibition of VEGF receptor 2. Collectively, these findings identify a role for FoxC1 in inhibiting corneal angiogenesis, thereby maintaining corneal transparency by regulating VEGF signaling. PMID:22171010

  12. Imbalanced signal transduction in regulatory T cells expressing the transcription factor FoxP3.

    PubMed

    Yan, Dapeng; Farache, Julia; Mingueneau, Michael; Mathis, Diane; Benoist, Christophe

    2015-12-01

    FoxP3(+) T regulatory (Treg) cells have a fundamental role in immunological tolerance, with transcriptional and functional phenotypes that demarcate them from conventional CD4(+) T cells (Tconv). Differences between these two lineages in the signaling downstream of T-cell receptor-triggered activation have been reported, and there are different requirements for some signaling factors. Seeking a comprehensive view, we found that Treg cells have a broadly dampened activation of several pathways and signaling nodes upon TCR-mediated activation, with low phosphorylation of CD3ζ, SLP76, Erk1/2, AKT, or S6 and lower calcium flux. In contrast, STAT phosphorylation triggered by interferons, IL2 or IL6, showed variations between Treg and Tconv in magnitude or choice of preferential STAT activation but no general Treg signaling defect. Much, but not all, of the Treg/Tconv difference in TCR-triggered responses could be attributed to lower responsiveness of antigen-experienced cells with CD44(hi) or CD62L(lo) phenotypes, which form a greater proportion of the Treg pool. Candidate regulators were tested, but the Treg/Tconv differential could not be explained by overexpression in Treg cells of the signaling modulator CD5, the coinhibitors PD-1 and CTLA4, or the regulatory phosphatase DUSP4. However, transcriptome profiling in Dusp4-deficient mice showed that DUSP4 enhances the expression of a segment of the canonical Treg transcriptional signature, which partially overlaps with the TCR-dependent Treg gene set. Thus, Treg cells, likely because of their intrinsically higher reactivity to self, tune down TCR signals but seem comparatively more attuned to cytokines or other intercellular signals. PMID:26627244

  13. The role of Forkhead-box Class O (FoxO) transcription factors in cancer: A target for the management of cancer

    SciTech Connect

    Reagan-Shaw, Shannon; Ahmad, Nihal

    2007-11-01

    Human Forkhead-Box Class O (FoxO) transcription factors are primarily regulated through the phosphoinositide-3-kinase (PI3k)-Akt pathway via phosphorylation and nuclear exclusion. Acetylation and ubiquitination represent another level of regulation for FoxO proteins and FoxO-regulated gene expression. FoxO factors can act as tumor suppressors; however, the loss of FoxO function leads to increased cellular survival and a predisposition to neoplasia, especially of epithelial cancers. Based on the critical role of FoxO signaling, this family of transcription factors appears to be a promising target for future drug discovery for epithelial cancers. This review describes mechanism of the regulation of FoxO proteins and their role in epithelial cancers. Based on the current knowledge and studies in the past decade, we suggest that the development of novel agents which specifically activate FoxO members could be useful in the prevention as well as treatment of cancer in general and epithelial cancers in particular.

  14. AmphiFoxE4, an amphioxus winged helix/forkhead gene encoding a protein closely related to vertebrate thyroid transcription factor-2: expression during pharyngeal development

    NASA Technical Reports Server (NTRS)

    Yu, Jr-Kai; Holland, Linda Z.; Jamrich, Milan; Blitz, Ira L.; Hollan, Nicholas D.

    2002-01-01

    The full-length sequence and developmental expression of amphioxus AmphiFoxE4 are described. Transcripts of the gene are first detected in the pharyngeal endoderm, where the club-shaped gland is forming and subsequently in the definitive gland itself. AmphiFoxE4 is closely related to vertebrate genes encoding the thyroid-specific transcription factor-2 (TTF2), which plays an early developmental role in the morphogenesis of the thyroid gland and a later role in hormone-mediated control of thyroid function. In amphioxus, AmphiFoxE4 expression is not thyroid specific because the club-shaped gland, the only structure expressing the gene, is not homologous to the vertebrate thyroid; instead, the thyroid homologue of amphioxus is a specialized region of the pharyngeal endoderm called the endostyle. We propose that (a) the pharynx of an amphioxus-like ancestor of the vertebrates included a club-shaped gland that expressed FoxE4 as well as an endostyle that did not, and (b) the club-shaped gland soon disappeared in the vertebrate line of descent but (c) not before there was a homeogenetic transfer of FoxE4 expression from the club-shaped gland to the nearby endostyle. Such a transfer could have provided part of the genetic program enabling the endostyle to separate from the pharyngeal endoderm and migrate away as the rudiment of the thyroid gland.

  15. Generation of Wheat Transcription Factor FOX Rice Lines and Systematic Screening for Salt and Osmotic Stress Tolerance

    PubMed Central

    Zhang, Qian; Liu, Yayun; Zhu, Butuo; Cao, Jian; Li, Zhanpeng; Han, Longzhi; Jia, Jizeng; Zhao, Guangyao; Sun, Xuehui

    2015-01-01

    Transcription factors (TFs) play important roles in plant growth, development, and responses to environmental stress. In this study, we collected 1,455 full-length (FL) cDNAs of TFs, representing 45 families, from wheat and its relatives Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum carthlicum, and Triticum aestivum. More than 15,000 T0 TF FOX (Full-length cDNA Over-eXpressing) rice lines were generated; of these, 10,496 lines set seeds. About 14.88% of the T0 plants showed obvious phenotypic changes. T1 lines (5,232 lines) were screened for salt and osmotic stress tolerance using 150 mM NaCl and 20% (v/v) PEG-4000, respectively. Among them, five lines (591, 746, 1647, 1812, and J4065) showed enhanced salt stress tolerance, five lines (591, 746, 898, 1078, and 1647) showed enhanced osmotic stress tolerance, and three lines (591, 746, and 1647) showed both salt and osmotic stress tolerance. Further analysis of the T-DNA flanking sequences showed that line 746 over-expressed TaEREB1, line 898 over-expressed TabZIPD, and lines 1812 and J4065 over-expressed TaOBF1a and TaOBF1b, respectively. The enhanced salt and osmotic stress tolerance of lines 898 and 1812 was confirmed by retransformation of the respective genes. Our results demonstrate that a heterologous FOX system may be used as an alternative genetic resource for the systematic functional analysis of the wheat genome. PMID:26176782

  16. Transcription factors as master regulator for cancer stemness: remove milk from fox?

    PubMed

    Nakano, Ichiro

    2014-08-01

    Some cancers display a cellular hierarchy of varying differentiation states, as if they phenocopy the normal organ development processes. Accumulating evidence suggests that the molecular signals that control carcinogenesis, at least partially, overlap with those involved in organogenesis. Cancer stem cells (CSCs) at the apex of cellular hierarchy are likely one, if not the only, critical therapeutic target in cancers. The proto-oncogene FOXM1 is a transcription factor (TF) defined as a master regulator for a broad array of genes required for CSCs and therefore FOXM1 is overexpressed in various cancers. In general, therapeutic development for TFs is a challenging task. Recently, on the other hand, novel insight has been brought by the discovery of a protein complex of FOXM1 with the mitotic kinase MELK in CSCs in brain cancers, as this protein complex appears to be cancer-specific. This editorial describes FOXM1 signaling in cancers and its potential therapeutic development. PMID:25017123

  17. Carnitine palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer

    PubMed Central

    Shao, Huanjie; Mohamed, Esraa M.; Xu, Guoyan G.; Waters, Michael; Jing, Kai; Ma, Yibao; Zhang, Yan; Spiegel, Sarah; Idowu, Michael O.; Fang, Xianjun

    2016-01-01

    Cancer cells rely on hyperactive de novo lipid synthesis for maintaining malignancy. Recent studies suggest involvement in cancer of fatty acid oxidation, a process functionally opposite to lipogenesis. A mechanistic link from lipid catabolism to oncogenic processes is yet to be established. Carnitine palmitoyltransferase 1 (CPT1) is a rate-limiting enzyme of fatty acid β-oxidation (FAO) that catalyzes the transfer of long-chain acyl group of the acyl-CoA ester to carnitine, thereby shuttling fatty acids into the mitochondrial matrix for β-oxidation. In the present study, we demonstrated that CPT1A was highly expressed in most ovarian cancer cell lines and primary ovarian serous carcinomas. Overexpression of CPT1A correlated with a poor overall survival of ovarian cancer patients. Inactivation of CPT1A decreased cellular ATP levels and induced cell cycle arrest at G0/G1, suggesting that ovarian cancer cells depend on or are addicted to CPT1A-mediated FAO for cell cycle progression. CPT1A deficiency also suppressed anchorage-independent growth and formation of xenografts from ovarian cancer cell lines. The cyclin-dependent kinase inhibitor p21WAF1 (p21) was identified as most consistently and robustly induced cell cycle regulator upon inactivation of CPT1A. Furthermore, p21 was transcriptionally upregulated by the FoxO transcription factors, which were in turn phosphorylated and activated by AMP-activated protein kinase and the mitogen-activated protein kinases JNK and p38. Our results established the oncogenic relevance of CPT1A and a mechanistic link from lipid catabolism to cell cycle regulation, suggesting that CPT1A could be a prognostic biomarker and rational target for therapeutic intervention of cancer. PMID:26716645

  18. Carnitine palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer.

    PubMed

    Shao, Huanjie; Mohamed, Esraa M; Xu, Guoyan G; Waters, Michael; Jing, Kai; Ma, Yibao; Zhang, Yan; Spiegel, Sarah; Idowu, Michael O; Fang, Xianjun

    2016-01-26

    Cancer cells rely on hyperactive de novo lipid synthesis for maintaining malignancy. Recent studies suggest involvement in cancer of fatty acid oxidation, a process functionally opposite to lipogenesis. A mechanistic link from lipid catabolism to oncogenic processes is yet to be established. Carnitine palmitoyltransferase 1 (CPT1) is a rate-limiting enzyme of fatty acid β-oxidation (FAO) that catalyzes the transfer of long-chain acyl group of the acyl-CoA ester to carnitine, thereby shuttling fatty acids into the mitochondrial matrix for β-oxidation. In the present study, we demonstrated that CPT1A was highly expressed in most ovarian cancer cell lines and primary ovarian serous carcinomas. Overexpression of CPT1A correlated with a poor overall survival of ovarian cancer patients. Inactivation of CPT1A decreased cellular ATP levels and induced cell cycle arrest at G0/G1, suggesting that ovarian cancer cells depend on or are addicted to CPT1A-mediated FAO for cell cycle progression. CPT1A deficiency also suppressed anchorage-independent growth and formation of xenografts from ovarian cancer cell lines. The cyclin-dependent kinase inhibitor p21WAF1 (p21) was identified as most consistently and robustly induced cell cycle regulator upon inactivation of CPT1A. Furthermore, p21 was transcriptionally upregulated by the FoxO transcription factors, which were in turn phosphorylated and activated by AMP-activated protein kinase and the mitogen-activated protein kinases JNK and p38. Our results established the oncogenic relevance of CPT1A and a mechanistic link from lipid catabolism to cell cycle regulation, suggesting that CPT1A could be a prognostic biomarker and rational target for therapeutic intervention of cancer. PMID:26716645

  19. The mTOR Pathway Controls Cell Proliferation by Regulating the FoxO3a Transcription Factor via SGK1 Kinase

    PubMed Central

    Mori, Shunsuke; Nada, Shigeyuki; Kimura, Hironobu; Tajima, Shoji; Takahashi, Yusuke; Kitamura, Ayaka; Oneyama, Chitose; Okada, Masato

    2014-01-01

    The mechanistic target of rapamycin (mTOR) functions as a component of two large complexes, mTORC1 and mTORC2, which play crucial roles in regulating cell growth and homeostasis. However, the molecular mechanisms by which mTOR controls cell proliferation remain elusive. Here we show that the FoxO3a transcription factor is coordinately regulated by mTORC1 and mTORC2, and plays a crucial role in controlling cell proliferation. To dissect mTOR signaling, mTORC1 was specifically inactivated by depleting p18, an essential anchor of mTORC1 on lysosomes. mTORC1 inactivation caused a marked retardation of cell proliferation, which was associated with upregulation of cyclin-dependent kinase inhibitors (CDKIs). Although Akt was activated by mTORC1 inactivation, FoxO3a was upregulated via an epigenetic mechanism and hypophosphorylated at Ser314, which resulted in its nuclear accumulation. Consistently, mTORC1 inactivation induced downregulation of serum- and glucocorticoid-inducible kinase 1 (SGK1), the kinase responsible for Ser314 phosphorylation. Expression of FoxO3a mutated at Ser314 suppressed cell proliferation by inducing CDKI expression. SGK1 overexpression suppressed CDKI expression in p18-deficient cells, whereas SGK1 knockdown induced CDKI expression in wild-type cells, resulting in the suppression of cell proliferation. These results suggest that mTORC1, in coordination with mTORC2, controls cell proliferation by regulating FoxO3a gene expression and SGK1-mediated phosphorylation of FoxO3a at Ser314. PMID:24558442

  20. Conserved Structural Domains in FoxD4L1, a Neural Forkhead Box Transcription Factor, Are Required to Repress or Activate Target Genes

    PubMed Central

    Klein, Steven L.; Neilson, Karen M.; Orban, John; Yaklichkin, Sergey; Hoffbauer, Jennifer; Mood, Kathy; Daar, Ira O.; Moody, Sally A.

    2013-01-01

    FoxD4L1 is a forkhead transcription factor that expands the neural ectoderm by down-regulating genes that promote the onset of neural differentiation and up-regulating genes that maintain proliferative neural precursors in an immature state. We previously demonstrated that binding of Grg4 to an Eh-1 motif enhances the ability of FoxD4L1 to down-regulate target neural genes but does not account for all of its repressive activity. Herein we analyzed the protein sequence for additional interaction motifs and secondary structure. Eight conserved motifs were identified in the C-terminal region of fish and frog proteins. Extending the analysis to mammals identified a high scoring motif downstream of the Eh-1 domain that contains a tryptophan residue implicated in protein-protein interactions. In addition, secondary structure prediction programs predicted an α-helical structure overlapping with amphibian-specific Motif 6 in Xenopus, and similarly located α-helical structures in other vertebrate FoxD proteins. We tested functionality of this site by inducing a glutamine-to-proline substitution expected to break the predicted α-helical structure; this significantly reduced FoxD4L1’s ability to repress zic3 and irx1. Because this mutation does not interfere with Grg4 binding, these results demonstrate that at least two regions, the Eh-1 motif and a more C-terminal predicted α-helical/Motif 6 site, additively contribute to repression. In the N-terminal region we previously identified a 14 amino acid motif that is required for the up-regulation of target genes. Secondary structure prediction programs predicted a short β-strand separating two acidic domains. Mutant constructs show that the β-strand itself is not required for transcriptional activation. Instead, activation depends upon a glycine residue that is predicted to provide sufficient flexibility to bring the two acidic domains into close proximity. These results identify conserved predicted motifs with secondary

  1. Sirtuin1 (Sirt1) promotes cortical bone formation by preventing β-catenin sequestration by FoxO transcription factors in osteoblast progenitors.

    PubMed

    Iyer, Srividhya; Han, Li; Bartell, Shoshana M; Kim, Ha-Neui; Gubrij, Igor; de Cabo, Rafael; O'Brien, Charles A; Manolagas, Stavros C; Almeida, Maria

    2014-08-29

    A decline of the levels and activity of Sirtuin1 (Sirt1), a NAD(+) class III histone deacetylase, with age contributes to the development of several diseases including type 2 diabetes, neurodegeneration, inflammation, and cancer. The anti-aging effects of Sirt1 evidently result from the deacetylation of many transcription factors and co-factors including members of the Forkhead box O (FoxO) family and β-catenin. Wnt/β-catenin is indispensable for osteoblast generation. FoxOs, on the other hand, sequester β-catenin and inhibit osteoprogenitor proliferation. Here, we have deleted Sirt1 in osteoprogenitors expressing Osterix1 (Osx1)-Cre and their descendants. Sirt1(ΔOsx1) mice had lower cortical thickness in femora and vertebrae because of reduced bone formation at the endocortical surface. In line with this, osteoprogenitor cell cultures from the Sirt1(ΔOsx1) mice exhibited lower alkaline phosphatase activity and mineralization, as well as decreased proliferation and increased apoptosis. These changes were associated with decreased Wnt/β-catenin signaling and expression of cyclin D1 and resulted from increased binding of FoxOs to β-catenin. These findings demonstrate that Sirt1-induced deacetylation of FoxOs unleashes Wnt signaling. A decline in Sirt1 activity in osteoblast progenitors with aging may, therefore, contribute to the age-related loss of bone mass. Together with evidence that Sirt1 activators increase bone mass in aged mice, our results also suggest that Sirt1 could be a therapeutic target for osteoporosis. PMID:25002589

  2. FoxO1 Deacetylation Regulates Thyroid Hormone-induced Transcription of Key Hepatic Gluconeogenic Genes*

    PubMed Central

    Singh, Brijesh Kumar; Sinha, Rohit Anthony; Zhou, Jin; Xie, Sherwin Ying; You, Seo-Hee; Gauthier, Karine; Yen, Paul Michael

    2013-01-01

    Hepatic gluconeogenesis is a concerted process that integrates transcriptional regulation with hormonal signals. A major regulator is thyroid hormone (TH), which acts through its nuclear receptor (TR) to induce the expression of the hepatic gluconeogenic genes, phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC). Forkhead transcription factor FoxO1 also is an important regulator of these genes; however, its functional interactions with TR are not known. Here, we report that TR-mediated transcriptional activation of PCK1 and G6PC in human hepatic cells and mouse liver was FoxO1-dependent and furthermore required FoxO1 deacetylation by the NAD+-dependent deacetylase, SirT1. siRNA knockdown of FoxO1 decreased, whereas overexpression of FoxO1 increased, TH-dependent transcriptional activation of PCK1 and G6PC in cultured hepatic cells. FoxO1 siRNA knockdown also decreased TH-mediated transcription in vivo. Additionally, TH was unable to induce FoxO1 deacetylation or hepatic PCK1 gene expression in TH receptor β-null (TRβ−/−) mice. Moreover, TH stimulated FoxO1 recruitment to the PCK1 and G6PC gene promoters in a SirT1-dependent manner. In summary, our results show that TH-dependent deacetylation of a second metabolically regulated transcription factor represents a novel mechanism for transcriptional integration of nuclear hormone action with cellular energy status. PMID:23995837

  3. Forkhead transcription factor FoxA1 regulates sweat secretion through Bestrophin 2 anion channel and Na-K-Cl cotransporter 1

    PubMed Central

    Cui, Chang-Yi; Childress, Victoria; Piao, Yulan; Michel, Marc; Johnson, Adiv A.; Kunisada, Makoto; Ko, Minoru S. H.; Kaestner, Klaus H.; Marmorstein, Alan D.; Schlessinger, David

    2012-01-01

    Body temperature is maintained in a narrow range in mammals, primarily controlled by sweating. In humans, the dynamic thermoregulatory organ, comprised of 2–4 million sweat glands distributed over the body, can secrete up to 4 L of sweat per day, thereby making it possible to withstand high temperatures and endure prolonged physical stress (e.g., long-distance running). The genetic basis for sweat gland function, however, is largely unknown. We find that the forkhead transcription factor, FoxA1, is required to generate mouse sweating capacity. Despite continued sweat gland morphogenesis, ablation of FoxA1 in mice results in absolute anihidrosis (lack of sweating). This inability to sweat is accompanied by down-regulation of the Na-K-Cl cotransporter 1 (Nkcc1) and the Ca2+-activated anion channel Bestrophin 2 (Best2), as well as glycoprotein accumulation in gland lumens and ducts. Furthermore, Best2-deficient mice display comparable anhidrosis and glycoprotein accumulation. These findings link earlier observations that both sodium/potassium/chloride exchange and Ca2+ are required for sweat production. FoxA1 is inferred to regulate two corresponding features of sweat secretion. One feature, via Best2, catalyzes a bicarbonate gradient that could help to drive calcium-associated ionic transport; the other, requiring Nkcc1, facilitates monovalent ion exchange into sweat. These mechanistic components can be pharmaceutical targets to defend against hyperthermia and alleviate defective thermoregulation in the elderly, and may provide a model relevant to more complex secretory processes. PMID:22223659

  4. Methylation by Set9 modulates FoxO3 stability and transcriptional activity.

    PubMed

    Calnan, Daniel R; Webb, Ashley E; White, Jamie L; Stowe, Timothy R; Goswami, Tapasree; Shi, Xiaobing; Espejo, Alexsandra; Bedford, Mark T; Gozani, Or; Gygi, Steven P; Brunet, Anne

    2012-07-01

    The FoxO family of transcription factors plays an important role in longevity and tumor suppression by regulating the expression of a wide range of target genes. FoxO3 has recently been found to be associated with extreme longevity in humans and to regulate the homeostasis of adult stem cell pools in mammals, which may contribute to longevity. The activity of FoxO3 is controlled by a variety of post-translational modifications that have been proposed to form a 'code' affecting FoxO3 subcellular localization, DNA binding ability, protein-protein interactions and protein stability. Lysine methylation is a crucial post-translational modification on histones that regulates chromatin accessibility and is a key part of the 'histone code'. However, whether lysine methylation plays a role in modulating FoxO3 activity has never been examined. Here we show that the methyltransferase Set9 directly methylates FoxO3 in vitro and in cells. Using a combination of tandem mass spectrometry and methyl-specific antibodies, we find that Set9 methylates FoxO3 at a single residue, lysine 271, a site previously known to be deacetylated by Sirt1. Methylation of FoxO3 by Set9 decreases FoxO3 protein stability, while moderately increasing FoxO3 transcriptional activity. The modulation of FoxO3 stability and activity by methylation may be critical for fine-tuning cellular responses to stress stimuli, which may in turn affect FoxO3's ability to promote tumor suppression and longevity. PMID:22820736

  5. Forkhead transcription factors regulate mosquito reproduction

    PubMed Central

    Hansen, Immo A.; Sieglaff, Douglas H.; Munro, James B.; Shiao, Shin-Hong; Cruz, Josefa; Lee, Iris W.; Heraty, John M.; Raikhel, Alexander S.

    2007-01-01

    Forkhead box (Fox) genes encode a family of transcription factors defined by a ‘winged helix’ DNA-binding domain. In this study we aimed to identify Fox factors that are expressed within the fat body of the yellow fever mosquito Aedes aegypti, and determine whether any of these are involved in the regulation of mosquito yolk protein gene expression. The Ae. aegypti genome contains eighteen loci that encode putative Fox factors. Our stringent cladistic analysis has profound implications for the use of Fox genes as phylogenetic markers. Twelve Ae. aegypti Fox genes are expressed within various tissues of adult females, six of which are expressed within the fat body. All six Fox genes expressed in the fat body displayed dynamic expression profiles following a blood meal. We knocked down the ’fat body Foxes’ through RNAi to determine whether these “knockdowns” hindered amino acid-induced vitellogenin gene expression. We also determined the effect of these knockdowns on the number of eggs deposited following a blood meal. Knockdown of FoxN1, FoxN2, FoxL, and FoxO, had a negative effect on amino acid- induced vitellogenin gene expression and resulted in significantly fewer eggs laid. Our analysis stresses the importance of Fox transcription factors in regulating mosquito reproduction. PMID:17681238

  6. FoxM1 regulates re-annealing of endothelial adherens junctions through transcriptional control of β-catenin expression

    PubMed Central

    Mirza, Muhammad K.; Sun, Ying; Zhao, Yidan D.; S.K. Potula, Hari-Hara; Frey, Randall S.; Vogel, Steven M.; Malik, Asrar B.

    2010-01-01

    Repair of the injured vascular intima requires a series of coordinated events that mediate both endothelial regeneration and reannealing of adherens junctions (AJs) to form a restrictive endothelial barrier. The forkhead transcription factor FoxM1 is essential for endothelial proliferation after vascular injury. However, little is known about mechanisms by which FoxM1 regulates endothelial barrier reannealing. Here, using a mouse model with endothelial cell (EC)-restricted disruption of FoxM1 (FoxM1 CKO) and primary cultures of ECs with small interfering RNA (siRNA)-mediated knockdown of FoxM1, we demonstrate a novel requisite role of FoxM1 in mediating endothelial AJ barrier repair through the transcriptional control of β-catenin. In the FoxM1 CKO lung vasculature, we observed persistent microvessel leakage characterized by impaired reannealing of endothelial AJs after endothelial injury. We also showed that FoxM1 directly regulated β-catenin transcription and that reexpression of β-catenin rescued the defective AJ barrier–reannealing phenotype of FoxM1-deficient ECs. Knockdown of β-catenin mimicked the phenotype of defective barrier recovery seen in FoxM1-deficient ECs. These data demonstrate that FoxM1 is required for reannealing of endothelial AJs in order to form a restrictive endothelial barrier through transcriptional control of β-catenin expression. Therefore, means of activating FoxM1-mediated endothelial repair represent a new therapeutic strategy for the treatment of inflammatory vascular diseases associated with persistent vascular barrier leakiness such as acute lung injury. PMID:20660612

  7. FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness.

    PubMed

    Wang, I-Ching; Chen, Yi-Ju; Hughes, Douglas E; Ackerson, Timothy; Major, Michael L; Kalinichenko, Vladimir V; Costa, Robert H; Raychaudhuri, Pradip; Tyner, Angela L; Lau, Lester F

    2008-07-25

    The Forkhead box M1 (FoxM1) protein is a proliferation-specific transcription factor that plays a key role in controlling both the G(1)/S and G(2)/M transitions through the cell cycle and is essential for the development of various cancers. We show here that FoxM1 directly activates the transcription of the c-Jun N-terminal kinase (JNK1) gene in U2OS osteosarcoma cells. Expression of JNK1, which regulates the expression of genes important for the G(1)/S transition, rescues the G(1)/S but not the G(2)/M cell cycle block in FoxM1-deficient cells. Knockdown of either FoxM1 or JNK1 inhibits tumor cell migration, invasion, and anchorage-independent growth. However, expression of JNK1 in FoxM1-depleted cells does not rescue these defects, indicating that JNK1 is a necessary but insufficient downstream mediator of FoxM1 in these processes. Consistent with this interpretation, FoxM1 regulates the expression of the matrix metalloproteinases MMP-2 and MMP-9, which play a role in tumor cell invasion, through JNK1-independent and -dependent mechanisms in U2OS cells, respectively. Taken together, these findings identify JNK1 as a critical transcriptional target of FoxM1 that contributes to FoxM1-regulated cell cycle progression, tumor cell migration, invasiveness, and anchorage-independent growth. PMID:18524773

  8. Inactivation of the FoxO3a transcription factor is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated senescence in human colon cancer and breast cancer cells.

    PubMed

    Park, Seong-Yeol; Bae, Young-Seuk

    2016-09-01

    We previously showed that protein kinase CK2 downregulation mediates senescence through the reactive oxygen species (ROS)-p53-p21(Cip1/WAF1) pathway in various human cells. In the present study, we investigated whether the FoxO3a transcription factor is associated with ROS production during CK2 downregulation-induced senescence in human colon cancer HCT116 and breast cancer MCF-7 cells. FoxO3a overexpression suppressed ROS production and p53 stabilization induced by a CK2α knockdown. CK2α downregulation induced nuclear export of FoxO3a through stimulation of AKT-mediated phosphorylation of FoxO3a and decreased transcription of its target genes (Cu/ZnSOD, MnSOD, and catalase). In contrast, CK2α overexpression inhibited AKT-mediated FoxO3a phosphorylation. This resulted in nuclear accumulation of FoxO3a, and elevated expression of its target genes. Therefore, these data indicate for the first time that CK2 downregulation stimulates ROS generation by inhibiting FoxO3a during premature senescence in human colon and breast cancer cells. PMID:27470586

  9. Regulation of autophagy and the ubiquitin–proteasome system by the FoxO transcriptional network during muscle atrophy

    PubMed Central

    Milan, Giulia; Romanello, Vanina; Pescatore, Francesca; Armani, Andrea; Paik, Ji-Hye; Frasson, Laura; Seydel, Anke; Zhao, Jinghui; Abraham, Reimar; Goldberg, Alfred L.; Blaauw, Bert; DePinho, Ronald A.; Sandri, Marco

    2015-01-01

    Stresses like low nutrients, systemic inflammation, cancer or infections provoke a catabolic state characterized by enhanced muscle proteolysis and amino acid release to sustain liver gluconeogenesis and tissue protein synthesis. These conditions activate the family of Forkhead Box (Fox) O transcription factors. Here we report that muscle-specific deletion of FoxO members protects from muscle loss as a result of the role of FoxOs in the induction of autophagy–lysosome and ubiquitin–proteasome systems. Notably, in the setting of low nutrient signalling, we demonstrate that FoxOs are required for Akt activity but not for mTOR signalling. FoxOs control several stress–response pathways such as the unfolded protein response, ROS detoxification, DNA repair and translation. Finally, we identify FoxO-dependent ubiquitin ligases including MUSA1 and a previously uncharacterised ligase termed SMART (Specific of Muscle Atrophy and Regulated by Transcription). Our findings underscore the central function of FoxOs in coordinating a variety of stress-response genes during catabolic conditions. PMID:25858807

  10. Expression of the T regulatory cell transcription factor FoxP3 in peri-implantation phase endometrium in infertile women with endometriosis

    PubMed Central

    2012-01-01

    Background Endometriosis (EM) is highly associated with infertility. The precise mechanism underlying EM-associated infertility remains controversial. This study aimed to investigate the pathogenesis of infertility in women with EM by comparing FoxP3+ T regulatory cells (Tregs) expression in the eutopic endometrium of infertile women with EM and endometrium from healthy fertile women. Methods As a marker of Tregs, FoxP3 expression was analyzed in eutopic endometrium during the peri-implantation phase in infertile women with mild EM (n = 7), advanced EM (n = 20), and normally fertile women without EM (n = 20). FoxP3 mRNA expression was analyzed by quantitative real-time RT-PCR. FoxP3 protein expression was assessed by immunohistochemistry. Results FoxP3 mRNA expression in all infertile patients with EM was significantly higher than the control group (P < 0.05) by non-parametric Mann–Whitney U-test. Further analysis based on the extent of EM revealed that FoxP3 mRNA expression in infertile patients with advanced EM was significantly higher than the mild EM group and the control group (P < 0.05). Immunohistochemistry analysis showed predominant positive staining for FoxP3 protein in the endometrial stroma. In addition, the number of FoxP3+ cells in the eutopic endometrium of infertile women with advanced EM was marginally higher than the mild EM group and the control group, although the differences were not statistically significant (P > 0.05) by two-tailed t-tests. Conclusions These findings suggest that FoxP3+ Tregs in the peri-implantation endometrium might participate in the pathogenesis of advanced EM. However, they are not directly involved in the pathogenesis of advanced EM associated with infertility. The differential expression of FoxP3 in infertile women with mild EM and advanced EM implicates that notable differences in the uterine immune status are likely involved in the pathogenesis of mild EM associated with infertility in the

  11. Novel expression and transcriptional regulation of FoxJ1 during oro-facial morphogenesis.

    PubMed

    Venugopalan, Shankar R; Amen, Melanie A; Wang, Jianbo; Wong, Leeyean; Cavender, Adriana C; D'Souza, Rena N; Akerlund, Mikael; Brody, Steve L; Hjalt, Tord A; Amendt, Brad A

    2008-12-01

    Axenfeld-Rieger syndrome (ARS) patients with PITX2 point mutations exhibit a wide range of clinical features including mild craniofacial dysmorphism and dental anomalies. Identifying new PITX2 targets and transcriptional mechanisms are important to understand the molecular basis of these anomalies. Chromatin immunoprecipitation assays demonstrate PITX2 binding to the FoxJ1 promoter and PITX2C transgenic mouse fibroblasts and PITX2-transfected cells have increased endogenous FoxJ1 expression. FoxJ1 is expressed at embryonic day 14.5 (E14.5) in early tooth germs, then down-regulated from E15.5-E17.5 and re-expressed in the inner enamel epithelium, oral epithelium, tongue epithelium, sub-mandibular salivary gland and hair follicles during E18.5 and neonate day 1. FoxJ1 and Pitx2 exhibit overlapping expression patterns in the dental and oral epithelium. PITX2 activates the FoxJ1 promoter and, Lef-1 and beta-catenin interact with PITX2 to synergistically regulate the FoxJ1 promoter. FoxJ1 physically interacts with the PITX2 homeodomain to synergistically regulate FoxJ1, providing a positive feedback mechanism for FoxJ1 expression. Furthermore, FoxJ1, PITX2, Lef-1 and beta-catenin act in concert to activate the FoxJ1 promoter. The PITX2 T68P ARS mutant protein physically interacts with FoxJ1; however, it cannot activate the FoxJ1 promoter. These data indicate a mechanism for the activity of the ARS mutant proteins in specific cell types and provides a basis for craniofacial/ tooth anomalies observed in these patients. These data reveal novel transcriptional mechanisms of FoxJ1 and demonstrate a new role of FoxJ1 in oro-facial morphogenesis. PMID:18723525

  12. Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes.

    PubMed

    Caravaca, Juan Manuel; Donahue, Greg; Becker, Justin S; He, Ximiao; Vinson, Charles; Zaret, Kenneth S

    2013-02-01

    While most transcription factors exit the chromatin during mitosis and the genome becomes silent, a subset of factors remains and "bookmarks" genes for rapid reactivation as cells progress through the cell cycle. However, it is unknown whether such bookmarking factors bind to chromatin similarly in mitosis and how different binding capacities among them relate to function. We compared a diverse set of transcription factors involved in liver differentiation and found markedly different extents of mitotic chromosome binding. Among them, the pioneer factor FoxA1 exhibits the greatest extent of mitotic chromosome binding. Genomically, ~15% of the FoxA1 interphase target sites are bound in mitosis, including at genes that are important for liver differentiation. Biophysical, genome mapping, and mutagenesis studies of FoxA1 reveals two different modes of binding to mitotic chromatin. Specific binding in mitosis occurs at sites that continue to be bound from interphase. Nonspecific binding in mitosis occurs across the chromosome due to the intrinsic chromatin affinity of FoxA1. Both specific and nonspecific binding contribute to timely reactivation of target genes post-mitosis. These studies reveal an unexpected diversity in the mechanisms by which transcription factors help retain cell identity during mitosis. PMID:23355396

  13. Upstream Stimulatory Factor 2, a Novel FoxA1-Interacting Protein, Is Involved in Prostate-Specific Gene Expression

    PubMed Central

    Sun, Qian; Yu, Xiuping; Degraff, David J.; Matusik, Robert J.

    2009-01-01

    The forkhead protein A1 (FoxA1) is critical for the androgenic regulation of prostate-specific promoters. Prostate tissue rescued from FoxA1 knockout mice exhibits abnormal prostate development, typified by the absence of expression of differentiation markers and inability to engage in secretion. Chromatin immunoprecipitation and coimmunoprecipitation studies revealed that FoxA1 is one of the earliest transcription factors that binds to prostate-specific promoters, and that a direct protein-protein interaction occurs between FoxA1 and androgen receptor. Interestingly, evidence of the interaction of FoxA1 with other transcription factors is lacking. The upstream stimulatory factor 2 (USF2), an E-box-binding transcription factor of the basic-helix-loop-helix-leucine-zipper family, binds to a consensus DNA sequence similar to FoxA1. Our in vitro and in vivo studies demonstrate the binding of USF2 to prostate-specific gene promoters including the probasin promoter, spermine-binding protein promoter, and prostate-specific antigen core enhancer. Furthermore, we show a direct physical interaction between FoxA1 and USF2 through the use of immunoprecipitation and glutathione-S-transferase pull-down assays. This interaction is mediated via the forkhead DNA-binding domain of FoxA1 and the DNA-binding domain of USF2. In summary, these data indicate that USF2 is one of the components of the FoxA1/androgen receptor transcriptional protein complex that contributes to the expression of androgen-regulated and prostate-specific genes. PMID:19846536

  14. FOXE3 contributes to Peters anomaly through transcriptional regulation of an autophagy-associated protein termed DNAJB1

    PubMed Central

    Khan, Shahid Y.; Vasanth, Shivakumar; Kabir, Firoz; Gottsch, John D.; Khan, Arif O.; Chaerkady, Raghothama; Lee, Mei-Chong W.; Leitch, Carmen C.; Ma, Zhiwei; Laux, Julie; Villasmil, Rafael; Khan, Shaheen N.; Riazuddin, Sheikh; Akram, Javed; Cole, Robert N.; Talbot, C. Conover; Pourmand, Nader; Zaghloul, Norann A.; Hejtmancik, J. Fielding; Riazuddin, S. Amer

    2016-01-01

    FOXE3 is a lens-specific transcription factor that has been associated with anterior segment ocular dysgenesis. To determine the transcriptional target(s) of FOXE3 that are indispensable for the anterior segment development, we examined the transcriptome and the proteome of cells expressing truncated FOXE3 responsible for Peters anomaly identified through linkage-coupled next-generation whole-exome sequencing. We found that DNAJB1, an autophagy-associated protein, was the only candidate exhibiting differential expression in both screens. We confirmed the candidacy of DNAJB1 through chromatin immunoprecipitation and luciferase assays while knockdown of DNAJB1 in human lens epithelial cells resulted in a mitotic arrest. Subsequently, we targeted dnajb1a in zebrafish through injection of a splice-blocking morpholino. The dnajb1a morphants exhibited underdeveloped cataractous lenses with persistent apoptotic nuclei. In conclusion, here we report DNAJB1 is a transcriptional target of FOXE3 in a novel pathway that is crucial for the development of the anterior segment of the eye. PMID:27218149

  15. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy

    PubMed Central

    Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.

    2012-01-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632

  16. Integrative analysis identifies targetable CREB1/FoxA1 transcriptional co-regulation as a predictor of prostate cancer recurrence.

    PubMed

    Sunkel, Benjamin; Wu, Dayong; Chen, Zhong; Wang, Chiou-Miin; Liu, Xiangtao; Ye, Zhenqing; Horning, Aaron M; Liu, Joseph; Mahalingam, Devalingam; Lopez-Nicora, Horacio; Lin, Chun-Lin; Goodfellow, Paul J; Clinton, Steven K; Jin, Victor X; Chen, Chun-Liang; Huang, Tim H-M; Wang, Qianben

    2016-05-19

    Identifying prostate cancer-driving transcription factors (TFs) in addition to the androgen receptor promises to improve our ability to effectively diagnose and treat this disease. We employed an integrative genomics analysis of master TFs CREB1 and FoxA1 in androgen-dependent prostate cancer (ADPC) and castration-resistant prostate cancer (CRPC) cell lines, primary prostate cancer tissues and circulating tumor cells (CTCs) to investigate their role in defining prostate cancer gene expression profiles. Combining genome-wide binding site and gene expression profiles we define CREB1 as a critical driver of pro-survival, cell cycle and metabolic transcription programs. We show that CREB1 and FoxA1 co-localize and mutually influence each other's binding to define disease-driving transcription profiles associated with advanced prostate cancer. Gene expression analysis in human prostate cancer samples found that CREB1/FoxA1 target gene panels predict prostate cancer recurrence. Finally, we showed that this signaling pathway is sensitive to compounds that inhibit the transcription co-regulatory factor MED1. These findings not only reveal a novel, global transcriptional co-regulatory function of CREB1 and FoxA1, but also suggest CREB1/FoxA1 signaling is a targetable driver of prostate cancer progression and serves as a biomarker of poor clinical outcomes. PMID:26743006

  17. Integrative analysis identifies targetable CREB1/FoxA1 transcriptional co-regulation as a predictor of prostate cancer recurrence

    PubMed Central

    Sunkel, Benjamin; Wu, Dayong; Chen, Zhong; Wang, Chiou-Miin; Liu, Xiangtao; Ye, Zhenqing; Horning, Aaron M.; Liu, Joseph; Mahalingam, Devalingam; Lopez-Nicora, Horacio; Lin, Chun-Lin; Goodfellow, Paul J.; Clinton, Steven K.; Jin, Victor X.; Chen, Chun-Liang; Huang, Tim H.-M.; Wang, Qianben

    2016-01-01

    Identifying prostate cancer-driving transcription factors (TFs) in addition to the androgen receptor promises to improve our ability to effectively diagnose and treat this disease. We employed an integrative genomics analysis of master TFs CREB1 and FoxA1 in androgen-dependent prostate cancer (ADPC) and castration-resistant prostate cancer (CRPC) cell lines, primary prostate cancer tissues and circulating tumor cells (CTCs) to investigate their role in defining prostate cancer gene expression profiles. Combining genome-wide binding site and gene expression profiles we define CREB1 as a critical driver of pro-survival, cell cycle and metabolic transcription programs. We show that CREB1 and FoxA1 co-localize and mutually influence each other's binding to define disease-driving transcription profiles associated with advanced prostate cancer. Gene expression analysis in human prostate cancer samples found that CREB1/FoxA1 target gene panels predict prostate cancer recurrence. Finally, we showed that this signaling pathway is sensitive to compounds that inhibit the transcription co-regulatory factor MED1. These findings not only reveal a novel, global transcriptional co-regulatory function of CREB1 and FoxA1, but also suggest CREB1/FoxA1 signaling is a targetable driver of prostate cancer progression and serves as a biomarker of poor clinical outcomes. PMID:26743006

  18. Natural Hendra Virus Infection in Flying-Foxes - Tissue Tropism and Risk Factors.

    PubMed

    Goldspink, Lauren K; Edson, Daniel W; Vidgen, Miranda E; Bingham, John; Field, Hume E; Smith, Craig S

    2015-01-01

    Hendra virus (HeV) is a lethal zoonotic agent that emerged in 1994 in Australia. Pteropid bats (flying-foxes) are the natural reservoir. To date, HeV has spilled over from flying-foxes to horses on 51 known occasions, and from infected horses to close-contact humans on seven occasions. We undertook screening of archived bat tissues for HeV by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Tissues were tested from 310 bats including 295 Pteropodiformes and 15 Vespertilioniformes. HeV was detected in 20 individual flying-foxes (6.4%) from various tissues including spleen, kidney, liver, lung, placenta and blood components. Detection was significantly higher in Pteropus Alecto and P. conspicillatus, identifying species as a risk factor for infection. Further, our findings indicate that HeV has a predilection for the spleen, suggesting this organ plays an important role in HeV infection. The lack of detections in the foetal tissues of HeV-positive females suggests that vertical transmission is not a regular mode of transmission in naturally infected flying-foxes, and that placental and foetal tissues are not a major source of infection for horses. A better understanding of HeV tissue tropism will strengthen management of the risk of spillover from flying-foxes to horses and ultimately humans. PMID:26060997

  19. Natural Hendra Virus Infection in Flying-Foxes - Tissue Tropism and Risk Factors

    PubMed Central

    Goldspink, Lauren K.; Edson, Daniel W.; Vidgen, Miranda E.; Bingham, John; Field, Hume E.; Smith, Craig S.

    2015-01-01

    Hendra virus (HeV) is a lethal zoonotic agent that emerged in 1994 in Australia. Pteropid bats (flying-foxes) are the natural reservoir. To date, HeV has spilled over from flying-foxes to horses on 51 known occasions, and from infected horses to close-contact humans on seven occasions. We undertook screening of archived bat tissues for HeV by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Tissues were tested from 310 bats including 295 Pteropodiformes and 15 Vespertilioniformes. HeV was detected in 20 individual flying-foxes (6.4%) from various tissues including spleen, kidney, liver, lung, placenta and blood components. Detection was significantly higher in Pteropus Alecto and P. conspicillatus, identifying species as a risk factor for infection. Further, our findings indicate that HeV has a predilection for the spleen, suggesting this organ plays an important role in HeV infection. The lack of detections in the foetal tissues of HeV-positive females suggests that vertical transmission is not a regular mode of transmission in naturally infected flying-foxes, and that placental and foetal tissues are not a major source of infection for horses. A better understanding of HeV tissue tropism will strengthen management of the risk of spillover from flying-foxes to horses and ultimately humans. PMID:26060997

  20. Transcriptional regulation of FoxO3 gene by glucocorticoids in murine myotubes.

    PubMed

    Kuo, Taiyi; Liu, Patty H; Chen, Tzu-Chieh; Lee, Rebecca A; New, Jenny; Zhang, Danyun; Lei, Cassandra; Chau, Andy; Tang, Yicheng; Cheung, Edna; Wang, Jen-Chywan

    2016-04-01

    Glucocorticoids and FoxO3 exert similar metabolic effects in skeletal muscle. FoxO3 gene expression was increased by dexamethasone (Dex), a synthetic glucocorticoid, both in vitro and in vivo. In C2C12 myotubes the increased expression is due to, at least in part, the elevated rate of FoxO3 gene transcription. In the mouse FoxO3 gene, we identified three glucocorticoid receptor (GR) binding regions (GBRs): one being upstream of the transcription start site, -17kbGBR; and two in introns, +45kbGBR and +71kbGBR. Together, these three GBRs contain four 15-bp glucocorticoid response elements (GREs). Micrococcal nuclease (MNase) assay revealed that Dex treatment increased the sensitivity to MNase in the GRE of +45kbGBR and +71kbGBR upon 30- and 60-min Dex treatment, respectively. Conversely, Dex treatment did not affect the chromatin structure near the -17kbGBR, in which the GRE is located in the linker region. Dex treatment also increased histone H3 and/or H4 acetylation in genomic regions near all three GBRs. Moreover, using chromatin conformation capture (3C) assay, we showed that Dex treatment increased the interaction between the -17kbGBR and two genomic regions: one located around +500 bp and the other around +73 kb. Finally, the transcriptional coregulator p300 was recruited to all three GBRs upon Dex treatment. The reduction of p300 expression decreased FoxO3 gene expression and Dex-stimulated interaction between distinct genomic regions of FoxO3 gene identified by 3C. Overall, our results demonstrate that glucocorticoids activated FoxO3 gene transcription through multiple GREs by chromatin structural change and DNA looping. PMID:26758684

  1. Characterization of flounder ( Paralichthys olivaceus) FoxD5 and its function in regulating myogenic regulatory factor

    NASA Astrophysics Data System (ADS)

    Tan, Xungang; Zhang, Yuqing; Sun, Wei; Zhang, Peijun; Xu, Yongli

    2012-03-01

    As one member of winged helix domain transcription factors, FoxD5 was reported to be a trunk organizer. Recent study showed that zebrafish foxd5 is expressed in the somites. To further understand the function of FoxD5 in fish muscle development, the FoxD5 gene was isolated from flounder. Its expression pattern was analyzed by in situ hybridization, while its function in regulating myogenic regulatory factor, MyoD, was analyzed by ectopic expression. It showed that flounder FoxD5 was firstly expressed in the tailbud, adaxial cells, and neural plate of the head. In flounder embryo, FoxD5 is expressed not only in forebrain but also in somite cells that will form muscle in the future. When flounder FoxD5 was over-expressed in zebrafish by microinjection, the expression of zebrafish MyoD in the somites was reduced, suggesting that FoxD5 is involved in myogenesis by regulating the expression of MyoD.

  2. Leptin receptor overlapping transcript (LepROT) gene participates in insulin pathway through FoxO.

    PubMed

    Wang, Chuan-Xu; Zhao, Ai-Hua

    2016-08-01

    Leptin receptor overlapping transcript (LepROT) is co-transcribed with the leptin receptor (LepR). However, the function and mechanism of LepROT in insulin pathway is unclear. In this study, we report the function of LepROT in maintaining consistent FoxO transcription. LepROT is constitutively expressed during larval development. 20-Hydroxyecdysone, methoprene, and insulin have no effect on the transcription of LepROT. However, the knockdown of LepROT by dsRNA injection in larvae causes delay of the development of Helicoverpa armigera. Knockdown of LepROT results in the upregulation of FoxO and downregulation of PI3K. The knockdown of LepROT also results in the subcellular translocation of FoxO from cytoplasm to nuclei. By contrast, overexpression of LepROT in the HaEpi cell line inhibits FoxO expression. Results suggest that LepROT participates in insulin signaling. PMID:27106118

  3. Plant transcription factors.

    PubMed

    Meshi, T; Iwabuchi, M

    1995-12-01

    Transcriptional regulation of gene expression relies on the recognition of promoter elements by transcription factors. In the past several years, a considerable number of (putative) transcription factors have been identified in plants. Some genes coding for these factors were isolated by south-western screening with oligonucleotides as a probe or by homology-based screening, and others were initially isolated by genetic means and subsequently identified as the genes for transcription factors. These transcription factors often form families of structurally related proteins with similar DNA-binding specificities and in addition, they are sometimes involved in related phenomena. Some groups of factors homo- and/or heterodimerize to increase the length and variability of the target sequences. Transcriptional activators, in general, comprise a modular activation domain. The activities of the transcription factors are controlled by post-translational modification, like phosphorylation and glycosylation, as well as at the levels of nuclear transport, oligomerization, etc. In this review, we will summarize the current knowledge of plant transcription factors to help understand the mechanistic aspects of the transcriptional regulation of genes. PMID:8589926

  4. WRKY transcription factors

    PubMed Central

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  5. Self-cleavage of the Pseudomonas aeruginosa Cell-surface Signaling Anti-sigma Factor FoxR Occurs through an N-O Acyl Rearrangement.

    PubMed

    Bastiaansen, Karlijn C; van Ulsen, Peter; Wijtmans, Maikel; Bitter, Wilbert; Llamas, María A

    2015-05-01

    The Fox system of Pseudomonas aeruginosa is a cell-surface signaling (CSS) pathway employed by the bacterium to sense and respond to the presence of the heterologous siderophore ferrioxamine in the environment. This regulatory pathway controls the transcription of the foxA ferrioxamine receptor gene through the extracytoplasmic function sigma factor σ(FoxI). In the absence of ferrioxamine, the activity of σ(FoxI) is inhibited by the transmembrane anti-sigma factor FoxR. Upon binding of ferrioxamine by the FoxA receptor, FoxR is processed by a complex proteolytic cascade leading to the release and activation of σ(FoxI). Interestingly, we have recently shown that FoxR undergoes self-cleavage between the periplasmic Gly-191 and Thr-192 residues independent of the perception of ferrioxamine. This autoproteolytic event, which is widespread among CSS anti-sigma factors, produces two distinct domains that interact and function together to transduce the presence of the signal. In this work, we provide evidence that the self-cleavage of FoxR is not an enzyme-dependent process but is induced by an N-O acyl rearrangement. Mutation analysis showed that the nucleophilic side chain of the Thr-192 residue at +1 of the cleavage site is required for an attack on the preceding Gly-191, after which the resulting ester bond is likely hydrolyzed. Because the cleavage site is well preserved and the hydrolysis of periplasmic CSS anti-sigma factors is widely observed, we hypothesize that cleavage via an N-O acyl rearrangement is a conserved feature of these proteins. PMID:25809487

  6. Self-cleavage of the Pseudomonas aeruginosa Cell-surface Signaling Anti-sigma Factor FoxR Occurs through an N-O Acyl Rearrangement*

    PubMed Central

    Bastiaansen, Karlijn C.; van Ulsen, Peter; Wijtmans, Maikel; Bitter, Wilbert; Llamas, María A.

    2015-01-01

    The Fox system of Pseudomonas aeruginosa is a cell-surface signaling (CSS) pathway employed by the bacterium to sense and respond to the presence of the heterologous siderophore ferrioxamine in the environment. This regulatory pathway controls the transcription of the foxA ferrioxamine receptor gene through the extracytoplasmic function sigma factor σFoxI. In the absence of ferrioxamine, the activity of σFoxI is inhibited by the transmembrane anti-sigma factor FoxR. Upon binding of ferrioxamine by the FoxA receptor, FoxR is processed by a complex proteolytic cascade leading to the release and activation of σFoxI. Interestingly, we have recently shown that FoxR undergoes self-cleavage between the periplasmic Gly-191 and Thr-192 residues independent of the perception of ferrioxamine. This autoproteolytic event, which is widespread among CSS anti-sigma factors, produces two distinct domains that interact and function together to transduce the presence of the signal. In this work, we provide evidence that the self-cleavage of FoxR is not an enzyme-dependent process but is induced by an N-O acyl rearrangement. Mutation analysis showed that the nucleophilic side chain of the Thr-192 residue at +1 of the cleavage site is required for an attack on the preceding Gly-191, after which the resulting ester bond is likely hydrolyzed. Because the cleavage site is well preserved and the hydrolysis of periplasmic CSS anti-sigma factors is widely observed, we hypothesize that cleavage via an N-O acyl rearrangement is a conserved feature of these proteins. PMID:25809487

  7. Insulin and insulin-like growth factor-1 can modulate the phosphoinositide-3-kinase/Akt/FoxO1 pathway in SZ95 sebocytes in vitro.

    PubMed

    Mirdamadi, Yasaman; Thielitz, Anja; Wiede, Antje; Goihl, Alexander; Papakonstantinou, Eleni; Hartig, Roland; Zouboulis, Christos C; Reinhold, Dirk; Simeoni, Luca; Bommhardt, Ursula; Quist, Sven; Gollnick, Harald

    2015-11-01

    A recent hypothesis suggests that a high glycaemic load diet-associated increase of insulin-like growth factor-1 (IGF-1) and insulin may promote acne by reducing nuclear localization of the forkhead box-O1 (FoxO1) transcription factor via activation of the phosphoinositide-3-kinase (PI3K)/Akt pathway. Using SZ95 sebocytes as a model, we investigated the effect of the most important insulinotropic western dietary factors, IGF-1 and insulin on acne. SZ95 sebocytes were stimulated with different concentrations of IGF-1 and insulin (0.001, 0.01, 0.1 and 1 μM) for 15 to 120 min ± PI3K inhibitor LY294002 (50 μM). Cytoplasmic and nuclear protein expression of p-Akt and p-FoxO1 as well as FoxO transcriptional activity was analysed. In addition, the proliferation and differentiation of sebocytes and their TLR2/4 expression were determined. We found that high concentrations of IGF-1 and insulin differentially stimulate the PI3K/Akt/FoxO1 pathway by an early up-regulation of cytoplasmic p-Akt and delayed up-regulation of p-FoxO1 resulting in FoxO1 shift to the cytoplasm and the reduction of FoxO transcriptional activity, physiological serum concentration had no effect. IGF-1 at concentrations of 0.1 and 1 μM significantly reduced proliferation but increased differentiation of sebocytes to a greater extent than insulin (0.1 and 1 μM), but up-regulated TLR2/4 expression to comparable extent. These data provide the first in vitro evidence that FoxO1 principally might be involved in the regulation of growth-factor-stimulatory effects on sebaceous lipogenesis and inflammation in the pathological condition of acne. However, the in vivo significance under physiological conditions remains to be elucidated. PMID:26257240

  8. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    SciTech Connect

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  9. The Transcription Factor Encyclopedia

    PubMed Central

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe. PMID:22458515

  10. The transcription factor encyclopedia.

    PubMed

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe. PMID:22458515

  11. Differential coexpression of FoxP1, FoxP2, and FoxP4 in the Zebra Finch (Taeniopygia guttata) song system.

    PubMed

    Mendoza, Ezequiel; Tokarev, Kirill; Düring, Daniel N; Retamosa, Eva Camarillo; Weiss, Michael; Arpenik, Nshdejan; Scharff, Constance

    2015-06-15

    Heterozygous disruptions of the Forkhead transcription factor FoxP2 impair acquisition of speech and language. Experimental downregulation in brain region Area X of the avian ortholog FoxP2 disrupts song learning in juvenile male zebra finches. In vitro, transcriptional activity of FoxP2 requires dimerization with itself or with paralogs FoxP1 and FoxP4. Whether this is the case in vivo is unknown. To provide the means for future functional studies we cloned FoxP4 from zebra finches and compared regional and cellular coexpression of FoxP1, FoxP2, and FoxP4 mRNA and protein in brains of juvenile and adult male zebra finches. In the telencephalic song nuclei HVC, RA, and Area X, the three investigated FoxPs were either expressed alone or occurred in specific combinations with each other, as shown by double in situ hybridization and triple immunohistochemistry. FoxP1 and FoxP4 but not FoxP2 were expressed in RA and in the HVCRA and HVCX projection neurons. In Area X and the surrounding striatum the density of neurons expressing all three FoxPs together or FoxP1 and FoxP4 together was significantly higher than the density of neurons expressing other combinations. Interestingly, the proportions of Area X neurons expressing particular combinations of FoxPs remained constant at all ages. In addition, FoxP-expressing neurons in adult Area X express dopamine receptors 1A, 1B, and 2. Together, these data provide the first evidence that Area X neurons can coexpress all avian FoxP subfamily members, thus allowing for a variety of regulatory possibilities via heterodimerization that could impact song behavior in zebra finches. PMID:25556631

  12. FoxO4 interacts with the sterol regulatory factor SREBP2 and the hypoxia inducible factor HIF2α at the CYP51 promoter

    PubMed Central

    Zhu, Jun; Jiang, Xiangning; Chehab, Farid F.

    2014-01-01

    The late steps of cholesterol biosynthesis are oxygen demanding, requiring eleven oxygen molecules per synthesized cholesterol molecule. A key enzymatic reaction, which occurs at the top of the Bloch and Kandutsch-Russell pathways, is the demethylation of lanosterol and dihydrolanosterol (DHL). This reaction is catalyzed by lanosterol 14α demethylase (CYP51) and requires three oxygen molecules. Thus, it is the first step in the distal pathway to be susceptible to oxygen deprivation. Having previously identified that the forkhead transcription factor 4 (FoxO4) represses CYP51 expression, we aimed to characterize its role at the CYP51 promoter. Hypoxia-treated 3T3L1 cells showed decreased cholesterol biosynthesis, accumulation of lanosterol/DHL, and stimulation of FoxO4 expression and its cytoplasmic translocation to the nucleus. Transfection assays with a CYP51 promoter reporter gene revealed that FoxO4 and sterol regulatory element binding protein (SREBP)2 exert a stimulatory effect, whereas FoxO4 and the hypoxia inducible factor (HIF)2α repress CYP51 promoter activity. Electromobility shift, chromatin immunoprecipitation, pull-down, and coimmunoprecipitation assays show that FoxO4 interacts with SREBP2 and HIF2α to modulate CYP51 promoter activity. We also show an inverse correlation between FoxO4 and CYP51 in adipose tissue of ob/ob mice and mouse fetal cortical neurons exposed to hypoxia. Overall, these studies demonstrate a role for FoxO4 in the regulation of CYP51 expression. PMID:24353279

  13. Histone H2AX Is Involved in FoxO3a-Mediated Transcriptional Responses to Ionizing Radiation to Maintain Genome Stability

    PubMed Central

    Tarrade, Stephane; Bhardwaj, Tanya; Flegal, Matthew; Bertrand, Lindsey; Velegzhaninov, Ilya; Moskalev, Alexey; Klokov, Dmitry

    2015-01-01

    Histone H2AX plays a crucial role in molecular and cellular responses to DNA damage and in the maintenance of genome stability. It is downstream of ataxia telangiectasia mutated (ATM) damage signaling pathway and there is an emerging role of the transcription factor FoxO3a, a regulator of a variety of other pathways, in activating this signaling. We asked whether H2AX may feedback to FoxO3a to affect respective FoxO3a-dependent pathways. We used a genetically matched pair of mouse embryonic fibroblast H2AX+/+ and H2AX−/− cell lines to carry out comprehensive time-course and dose-response experiments and to show that the expression of several FoxO3a-regulated genes was altered in H2AX−/− compared to H2AX+/+ cells at both basal and irradiated conditions. Hspa1b and Gadd45a were down-regulated four- to five-fold and Ddit3, Cdkn1a and Sod2 were up-regulated 2–3-fold in H2AX−/− cells. Using the luciferase reporter assay, we directly demonstrated that transcriptional activity of FoxoO3a was reduced in H2AX−/− cells. FoxO3a localization within the nuclear phospho-ATM (Ser1981) foci in irradiated cells was affected by the H2AX status, as well as its posttranslational modification (phospho-Thr32). These differences were associated with genomic instability and radiosensitivity in H2AX−/− cells. Finally, knockdown of H2AX in H2AX+/+ cells resulted in FoxO3a-dependent gene expression patterns and increased radiosensitivity that partially mimicked those found in H2AX−/− cells. Taken together, our data suggest a role for FoxO3a in the maintenance of genome integrity in response to DNA damage that is mediated by H2AX via yet unknown mechanisms. PMID:26694365

  14. Study of FoxA Pioneer Factor at Silent Genes Reveals Rfx-Repressed Enhancer at Cdx2 and a Potential Indicator of Esophageal Adenocarcinoma Development

    PubMed Central

    Watts, Jason A.; Zhang, Chaolin; Klein-Szanto, Andres J.; Kormish, Jay D.; Fu, Jian; Zhang, Michael Q.; Zaret, Kenneth S.

    2011-01-01

    Understanding how silent genes can be competent for activation provides insight into development as well as cellular reprogramming and pathogenesis. We performed genomic location analysis of the pioneer transcription factor FoxA in the adult mouse liver and found that about one-third of the FoxA bound sites are near silent genes, including genes without detectable RNA polymerase II. Virtually all of the FoxA-bound silent sites are within conserved sequences, suggesting possible function. Such sites are enriched in motifs for transcriptional repressors, including for Rfx1 and type II nuclear hormone receptors. We found one such target site at a cryptic “shadow” enhancer 7 kilobases (kb) downstream of the Cdx2 gene, where Rfx1 restricts transcriptional activation by FoxA. The Cdx2 shadow enhancer exhibits a subset of regulatory properties of the upstream Cdx2 promoter region. While Cdx2 is ectopically induced in the early metaplastic condition of Barrett's esophagus, its expression is not necessarily present in progressive Barrett's with dysplasia or adenocarcinoma. By contrast, we find that Rfx1 expression in the esophageal epithelium becomes gradually extinguished during progression to cancer, i.e, expression of Rfx1 decreased markedly in dysplasia and adenocarcinoma. We propose that this decreased expression of Rfx1 could be an indicator of progression from Barrett's esophagus to adenocarcinoma and that similar analyses of other transcription factors bound to silent genes can reveal unanticipated regulatory insights into oncogenic progression and cellular reprogramming. PMID:21935353

  15. Forkhead box protein O3 transcription factor negatively regulates autophagy in human cancer cells by inhibiting forkhead box protein O1 expression and cytosolic accumulation.

    PubMed

    Zhu, Wan Long; Tong, Honglian; Teh, Jing Tsong; Wang, Mei

    2014-01-01

    FoxO proteins are important regulators in cellular metabolism and are recognized to be nodes in multiple signaling pathways, most notably those involving PI3K/AKT and mTOR. FoxO proteins primarily function as transcription factors, but recent study suggests that cytosolic FoxO1 participates in the regulation of autophagy. In the current study, we find that cytosolic FoxO1 indeed stimulates cellular autophagy in multiple cancer cell lines, and that it regulates not only basal autophagy but also that induced by rapamycin and that in response to nutrient deprivation. These findings illustrate the importance of FoxO1 in cell metabolism regulation independent of its transcription factor function. In contrast to FoxO1, we find the closely related FoxO3a is a negative regulator of autophagy in multiple cancer cell lines, a previously unrecognized function for this protein, different from its function in benign fibroblast and muscle cells. The induction of autophagy by the knockdown of FoxO3a was found not to be mediated through the suppression of mTORC1 signaling; rather, the regulatory role of FoxO3a on autophagy was determined to be through its ability to transcriptionally suppress FoxO1. This complicated interplay of FoxO1 and FoxO3a suggests a complex checks- and balances-relationship between FoxO3a and FoxO1 in regulating autophagy and cell metabolism. PMID:25546383

  16. Mitotic bookmarking by transcription factors

    PubMed Central

    2013-01-01

    Mitosis is accompanied by dramatic changes in chromatin organization and nuclear architecture. Transcription halts globally and most sequence-specific transcription factors and co-factors are ejected from mitotic chromatin. How then does the cell maintain its transcriptional identity throughout the cell division cycle? It has become clear that not all traces of active transcription and gene repression are erased within mitotic chromatin. Many histone modifications are stable or only partially diminished throughout mitosis. In addition, some sequence-specific DNA binding factors have emerged that remain bound to select sites within mitotic chromatin, raising the possibility that they function to transmit regulatory information through the transcriptionally silent mitotic phase, a concept that has been termed “mitotic bookmarking.” Here we review recent approaches to studying potential bookmarking factors with regards to their mitotic partitioning, and summarize emerging ideas concerning the in vivo functions of mitotically bound nuclear factors. PMID:23547918

  17. Deregulated transcription factors in leukemia.

    PubMed

    Shima, Yutaka; Kitabayashi, Issay

    2011-08-01

    Specific chromosomal translocations and other mutations associated with acute myeloblastic leukemia (AML) often involve transcription factors and transcriptional coactivators. Such target genes include AML1, C/EBPα, RARα, MOZ, p300/CBP, and MLL, all of which are important in the regulation of hematopoiesis. The resultant fusion or mutant proteins deregulate the transcription of the affected genes and disrupt their essential role in hematopoiesis, causing differentiation block and abnormal proliferation and/or survival. This review focuses on such transcription factors and coactivators, and describes their roles in leukemogenesis and hematopoiesis. PMID:21823042

  18. The FoxO Family in Cardiac Function and Dysfunction

    PubMed Central

    Ronnebaum, Sarah M.; Patterson, Cam

    2010-01-01

    The Forkhead family of transcription factors mediates many aspects of physiology, including stress response, metabolism, commitment to apoptosis, and development. The Forkhead box subfamily O (FoxO) proteins have garnered particular interest due to their involvement in the modulation of cardiovascular biology. In this review, we discuss the mechanisms of FoxO regulation and outcomes of FoxO signaling under normal and pathological cardiovascular contexts. PMID:20148668

  19. Transcription factors involved in glucose-stimulated insulin secretion of pancreatic beta cells

    SciTech Connect

    Shao, Shiying; Fang, Zhong; Yu, Xuefeng; Zhang, Muxun

    2009-07-10

    GSIS, the most important function of pancreatic beta cell, is essential for maintaining the glucose homeostasis. Transcription factors are known to control different biological processes such as differentiation, proliferation and apoptosis. In pancreas, some transcription factors are involved in regulating the function of beta cells. In this review, the role of these transcription factors including Pdx-1, FoxO1, SREBP-1c, and MafA in GSIS is highlighted. The related molecular mechanisms are analyzed as well. Furthermore, the association between the role of transcription factors in GSIS and the development of T2DM is discussed.

  20. Systemic Amyloid A Amyloidosis in Island Foxes (Urocyon littoralis): Severity and Risk Factors.

    PubMed

    Gaffney, P M; Witte, C; Clifford, D L; Imai, D M; O'Brien, T D; Trejo, M; Liberta, F; Annamalai, K; Fändrich, M; Masliah, E; Munson, L; Sigurdson, C J

    2016-05-01

    Systemic amyloid A (AA) amyloidosis is highly prevalent (34%) in endangered island foxes (Urocyon littoralis) and poses a risk to species recovery. Although elevated serum AA (SAA) from prolonged or recurrent inflammation predisposes to AA amyloidosis, additional risk factors are poorly understood. Here we define the severity of glomerular and medullary renal amyloid and identify risk factors for AA amyloidosis in 321 island foxes necropsied from 1987 through 2010. In affected kidneys, amyloid more commonly accumulated in the medullary interstitium than in the glomeruli (98% [n= 78 of 80] vs 56% [n= 45], respectively;P< .0001), and medullary deposition was more commonly severe (19% [n= 20 of 105]) as compared with glomeruli (7% [n= 7];P= .01). Univariate odds ratios (ORs) of severe renal AA amyloidosis were greater for short- and long-term captive foxes as compared with free-ranging foxes (ORs = 3.2, 3.7, respectively; overall P= .05) and for females as compared with males (OR = 2.9;P= .05). Multivariable logistic regression revealed that independent risk factors for amyloid development were increasing age class (OR = 3.8;P< .0001), San Clemente Island subspecies versus San Nicolas Island subspecies (OR = 5.3;P= .0003), captivity (OR = 5.1;P= .0001), and nephritis (OR = 2.3;P= .01). The increased risk associated with the San Clemente subspecies or captivity suggests roles for genetic as well as exogenous risk factors in the development of AA amyloidosis. PMID:26419399

  1. A forkhead Transcription Factor Is Wound-Induced at the Planarian Midline and Required for Anterior Pole Regeneration

    PubMed Central

    Scimone, M. Lucila; Lapan, Sylvain W.; Reddien, Peter W.

    2014-01-01

    Planarian regeneration requires positional information to specify the identity of tissues to be replaced as well as pluripotent neoblasts capable of differentiating into new cell types. We found that wounding elicits rapid expression of a gene encoding a Forkhead-family transcription factor, FoxD. Wound-induced FoxD expression is specific to the ventral midline, is regulated by Hedgehog signaling, and is neoblast-independent. FoxD is subsequently expressed within a medial subpopulation of neoblasts at wounds involving head regeneration. Ultimately, FoxD is co-expressed with multiple anterior markers at the anterior pole. Inhibition of FoxD with RNA interference (RNAi) results in the failure to specify neoblasts expressing anterior markers (notum and prep) and in anterior pole formation defects. FoxD(RNAi) animals fail to regenerate a new midline and to properly pattern the anterior blastema, consistent with a role for the anterior pole in organizing pattern of the regenerating head. Our results suggest that wound signaling activates a forkhead transcription factor at the midline and, if the head is absent, FoxD promotes specification of neoblasts at the prior midline for anterior pole regeneration. PMID:24415944

  2. The Sclerotinia sclerotiorum FoxE2 Gene Is Required for Apothecial Development.

    PubMed

    Wang, Lu; Liu, Yanzhi; Liu, Jinliang; Zhang, Yanhua; Zhang, Xianghui; Pan, Hongyu

    2016-05-01

    Sclerotinia sclerotiorum is a widely dispersed plant pathogenic fungus causing many diseases such as white mold, Sclerotinia stem rot, stalk rot, and Sclerotinia head rot on many varieties of broadleaf crops worldwide. Previous studies have shown that the Forkhead-box transcription factors (FOX TFs) play key regulatory roles in the sexual reproduction of some fungi. Ss-FoxE2 is one of four FOX TF family member genes in S. sclerotiorum. Based on ortholog function in other fungi it is hypothesized to function in S. sclerotiorum sexual reproduction. In this study, the role of Ss-FoxE2 in S. sclerotiorum was identified with a gene knock-out strategy. Following transformation and screening, strains having undergone homologous recombination in which the hygromycin resistance gene replaced the gene Ss-FoxE2 from the genomic DNA were identified. No difference in hyphae growth, number, and weight of sclerotia and no obvious change in virulence was observed among the wild type Ss-FoxE2 knock-out mutant and genetically complemented mutant; however, following induction of sclerotia for sexual development, apothecia were not formed in Ss-FoxE2 knock-out mutant. The Ss-FoxE2 gene expressed significantly higher in the apothecial stages than in other developmental stages. These results indicate that Ss-FoxE2 appears to be necessary for the regulation of sexual reproduction, but may not affect the pathogenicity and vegetative development of S. sclerotiorum significantly. PMID:26756829

  3. GATA Transcription Factors and Cancer

    PubMed Central

    Zheng, Rena; Blobel, Gerd A.

    2010-01-01

    It has been almost a quarter century since it was first appreciated that a class of oncogenes contained in rapidly transforming avian retroviruses encoded DNA-binding transcription factors. As with other oncogenes, genetic recombination with the viral genome led to their overexpression or functional alteration. In the years that followed, alterations of numerous transcription factors were shown to be causatively involved in various cancers in human patients and model organisms. Depending on their normal cellular functions, these factors were subsequently categorized as proto-oncogenes or tumor suppressor genes. This review focuses on the role of GATA transcription factors in carcinogenesis. GATA factors are zinc finger DNA binding proteins that control the development of diverse tissues by activating or repressing transcription. GATA factors thus coordinate cellular maturation with proliferation arrest and cell survival. Therefore, a role of this family of genes in human cancers is not surprising. Prominent examples include structural mutations in GATA1 that are found in almost all megakaryoblastic leukemias in patients with Down syndrome; loss of GATA3 expression in aggressive, dedifferentiated breast cancers; and silencing of GATA4 and GATA5 expression in colorectal and lung cancers. Here, we discuss possible mechanisms of carcinogenesis vis-à-vis the normal functions of GATA factors as they pertain to human patients and mouse models of cancer. PMID:21779441

  4. Dnmt1/Transcription Factor Interactions

    PubMed Central

    Hervouet, Eric; Vallette, François M.; Cartron, Pierre-François

    2010-01-01

    DNA methylation inheritance is the process of copying, via the DNA methyltransferase 1 (Dnmt1), the pre-existing methylation patterns onto the new DNA strand during DNA replication. Experiments of chromatin immunoprecipitation, measurement of maintenance methyltransferase activity, proximity ligation in situ assays (P-LISA, Duolink/Olink), and transcription factor arrays demonstrate that Dnmt1 interacts with transcription factors to promote site-specific DNA methylation inheritance, while the Dnmt1-PCNA-UHRF1 complex promotes the DNA methylation inheritance without site preference. We also show that the Dnmt1-PCNA-UHRF1 and Dnmt1/transcription factor complexes methylate DNA by acting as a single player or in cooperation. Thus, our data establish that the copying of the pre-existing methylation pattern is governed by the orchestration of the untargeted and the targeted mechanisms of DNA methylation inheritance, which are themselves dictated by the partners of Dnmt1. PMID:21779454

  5. Ectopic Overexpression of The Transcription Factor OsGLK1 Induces Chloroplast Development in Non-Green Rice Cells

    PubMed Central

    Nakamura, Hidemitsu; Muramatsu, Masayuki; Hakata, Makoto; Ueno, Osamu; Nagamura, Yoshiaki; Hirochika, Hirohiko; Takano, Makoto; Ichikawa, Hiroaki

    2009-01-01

    For systematic and genome-wide analyses of rice gene functions, we took advantage of the full-length cDNA overexpresser (FOX) gene-hunting system and generated >12 000 independent FOX-rice lines from >25 000 rice calli treated with the rice-FOX Agrobacterium library. We found two FOX-rice lines generating green calli on a callus-inducing medium containing 2,4-D, on which wild-type rice calli became ivory yellow. In both lines, OsGLK1 cDNA encoding a GARP transcription factor was ectopically overexpressed. Using rice expression-microarray and northern blot analyses, we found that a large number of nucleus-encoded genes involved in chloroplast functions were highly expressed and transcripts of plastid-encoded genes, psaA, psbA and rbcL, increased in the OsGLK1-FOX calli. Transmission electron microscopy showed the existence of differentiated chloroplasts with grana stacks in OsGLK1-FOX calli cells. However, in darkness, OsGLK1-FOX calli did not show a green color or develop grana stacks. Furthermore, we found developed chloroplasts in vascular bundle and bundle sheath cells of coleoptiles and leaves from OsGLK1-FOX seedlings. The OsGLK1-FOX calli exhibited high photosynthetic activity and were able to grow on sucrose-depleted media, indicating that developed chloroplasts in OsGLK1-FOX rice calli are functional and active. We also observed that the endogenous OsGLK1 mRNA level increased synchronously with the greening of wild-type calli after transfer to plantlet regeneration medium. These results strongly suggest that OsGLK1 regulates chloroplast development under the control of light and phytohormones, and that it is a key regulator of chloroplast development. PMID:19808806

  6. FoxO1-Mediated Activation of Akt Plays a Critical Role in Vascular Homeostasis

    PubMed Central

    Yuan, Lei; Dupuis, Dylan; Beeler, David; Spokes, Katherine C.; Janes, Lauren; Sciuto, Tracey; Kang, Peter M.; Jaminet, Shou-Ching S.; Dvorak, Ann; Grant, Marianne A.; Regan, Erzsébet Ravasz; Aird, William C.

    2016-01-01

    Rationale Forkhead box-O transcription factors (FoxOs) transduce a wide range of extracellular signals, resulting in changes in cell survival, cell cycle progression, and a number of cell type-specific responses. FoxO1 is expressed in many cell types, including endothelial cells. Previous studies have shown that FoxO1 knockout in mice results in embryonic lethality at E11 due to impaired vascular development. In contrast, somatic deletion of FoxO1 is associated with hyperproliferation of endothelial cells. Thus, the precise role of FoxO1 in the endothelium remains enigmatic. Objective To determine the effect of endothelial-specific knockout and overexpression of FoxO1 on vascular homeostasis. Methods and Results We show that endothelial cell (EC)-specific disruption of FoxO1 in mice phenocopies the full knockout. While endothelial expression of FoxO1 rescued otherwise FoxO-null animals, overexpression of constitutively active FoxO1 resulted in increased EC size, occlusion of capillaries, elevated peripheral resistance, heart failure and death. Knockdown of FoxO1 in ECs resulted in marked inhibition of basal and VEGF-induced Akt-mTOR1 signaling. Conclusions Our findings suggest that in mice endothelial expression of FoxO1 is both necessary and sufficient for embryonic development. Moreover, FoxO1-mediated feedback activation of Akt maintains growth factor-responsive Akt/mTORC1 activity within a homeostatic range. PMID:24874427

  7. Transcription factor-based biosensor

    SciTech Connect

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  8. FoxO6 regulates memory consolidation and synaptic function

    PubMed Central

    Salih, Dervis A.M.; Rashid, Asim J.; Colas, Damien; de la Torre-Ubieta, Luis; Zhu, Ruo P.; Morgan, Alexander A.; Santo, Evan E.; Ucar, Duygu; Devarajan, Keerthana; Cole, Christina J.; Madison, Daniel V.; Shamloo, Mehrdad; Butte, Atul J.; Bonni, Azad; Josselyn, Sheena A.; Brunet, Anne

    2012-01-01

    The FoxO family of transcription factors is known to slow aging downstream from the insulin/IGF (insulin-like growth factor) signaling pathway. The most recently discovered FoxO isoform in mammals, FoxO6, is highly enriched in the adult hippocampus. However, the importance of FoxO factors in cognition is largely unknown. Here we generated mice lacking FoxO6 and found that these mice display normal learning but impaired memory consolidation in contextual fear conditioning and novel object recognition. Using stereotactic injection of viruses into the hippocampus of adult wild-type mice, we found that FoxO6 activity in the adult hippocampus is required for memory consolidation. Genome-wide approaches revealed that FoxO6 regulates a program of genes involved in synaptic function upon learning in the hippocampus. Consistently, FoxO6 deficiency results in decreased dendritic spine density in hippocampal neurons in vitro and in vivo. Thus, FoxO6 may promote memory consolidation by regulating a program coordinating neuronal connectivity in the hippocampus, which could have important implications for physiological and pathological age-dependent decline in memory. PMID:23222102

  9. Ear Mite Removal in the Santa Catalina Island Fox (Urocyon littoralis catalinae): Controlling Risk Factors for Cancer Development

    PubMed Central

    Moriarty, Megan E.; Vickers, T. Winston; Clifford, Deana L.; Garcelon, David K.; Gaffney, Patricia M.; Lee, Kenneth W.; King, Julie L.; Duncan, Calvin L.; Boyce, Walter M.

    2015-01-01

    Ear mites (Otodectes cynotis) and ear canal tumors are highly prevalent among federally endangered Island foxes (Urocyon littoralis catalinae) living on Santa Catalina Island off the coast of Southern California. Since studies began in the 1990s, nearly all foxes examined were found to be infected with ear mites, and ceruminous gland tumors (carcinomas and adenomas) were detected in approximately half of all foxes ≥ 4 years of age. We hypothesized that reduction of ear mite infection would reduce otitis externa and ceruminous gland hyperplasia, a risk factor for tumor development. In this study, we conducted a randomized field trial to assess the impact of acaricide treatment on ear mite prevalence and intensity of infection, otitis externa, ceruminous gland hyperplasia, and mite-specific IgG and IgE antibody levels. Treatment was highly effective at eliminating mites and reducing otitis externa and ceruminous gland hyperplasia, and mite-specific IgG antibody levels were significantly lower among uninfected foxes. Ceruminous gland hyperplasia increased in the chronically infected, untreated foxes during the six month study. Our results provide compelling evidence that acaricide treatment is an effective means of reducing ear mites, and that mite removal in turn reduces ear lesions and mite-specific IgG antibody levels in Santa Catalina Island foxes. This study has advanced our understanding of the underlying pathogenesis which results in ceruminous gland tumors, and has helped inform management decisions that impact species conservation. PMID:26641820

  10. Targeting Transcription Factors in Cancer

    PubMed Central

    Bhagwat, Anand S.; Vakoc, Christopher R.

    2015-01-01

    Transcription factors (TFs) are commonly deregulated in the pathogenesis of human cancer and are a major class of cancer cell dependencies. Consequently, targeting of TFs can be highly effective in treating particular malignancies, as highlighted by the clinical efficacy of agents that target nuclear hormone receptors. In this review we discuss recent advances in our understanding of TFs as drug targets in oncology, with an emphasis on the emerging chemical approaches to modulate TF function. The remarkable diversity and potency of TFs as drivers of cell transformation justifies a continued pursuit of TFs as therapeutic targets for drug discovery. PMID:26645049

  11. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios.

    PubMed

    Kim, Hye-Jung; Barnitz, R Anthony; Kreslavsky, Taras; Brown, Flavian D; Moffett, Howell; Lemieux, Madeleine E; Kaygusuz, Yasemin; Meissner, Torsten; Holderried, Tobias A W; Chan, Susan; Kastner, Philippe; Haining, W Nicholas; Cantor, Harvey

    2015-10-16

    The maintenance of immune homeostasis requires regulatory T cells (T(regs)). Given their intrinsic self-reactivity, T(regs) must stably maintain a suppressive phenotype to avoid autoimmunity. We report that impaired expression of the transcription factor (TF) Helios by FoxP3(+) CD4 and Qa-1-restricted CD8 T(regs) results in defective regulatory activity and autoimmunity in mice. Helios-deficient T(regs) develop an unstable phenotype during inflammatory responses characterized by reduced FoxP3 expression and increased effector cytokine expression secondary to diminished activation of the STAT5 pathway. CD8 T(regs) also require Helios-dependent STAT5 activation for survival and to prevent terminal T cell differentiation. The definition of Helios as a key transcription factor that stabilizes T(regs) in the face of inflammatory responses provides a genetic explanation for a core property of T(regs). PMID:26472910

  12. Genome-wide analysis of FoxO1 binding in hepatic chromatin: Potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis

    PubMed Central

    Shin, Dong-Ju; Joshi, Pujan; Hong, Seung-Hyun; Mosure, Kathleen; Shin, Dong-Guk; Osborne, Timothy F.

    2012-01-01

    The forkhead transcription factor FoxO1 is a critical regulator of hepatic glucose and lipid metabolism, and dysregulation of FoxO1 function has been implicated in diabetes and insulin resistance. We globally identified FoxO1 occupancy in mouse hepatic chromatin on a genome-wide level by chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq). To establish the specific functional significance of FoxO1 against other FoxO proteins, ChIP-seq was performed with chromatin from liver-specific FoxO1 knockout and wild-type mice. Here we identified 401 genome-wide FoxO1-binding locations. Motif search reveals a sequence element, 5′ GTAAACA 3′, consistent with a previously known FoxO1-binding site. Gene set enrichment analysis shows that the data from FoxO1 ChIP-seq are highly correlated with the global expression profiling of genes regulated by FoxO1, demonstrating the functional relevance of our FoxO1 ChIP-seq study. Interestingly, gene ontology analysis reveals the functional significance of FoxO1 in retinoid metabolic processes. We show here that FoxO1 directly binds to the genomic sites for the genes in retinoid metabolism. Notably, deletion of FoxO1 caused a significantly reduced induction of Pck1 and Pdk4 in response to retinoids. As Pck1 and Pdk4 are downstream targets of retinoid signaling, these results suggest that FoxO1 plays a potential role in linking retinoid metabolism to hepatic gluconeogenesis. PMID:23066095

  13. Thiazole Antibiotics Target FoxM1 and Induce Apoptosis in Human Cancer Cells

    PubMed Central

    Bhat, Uppoor G.; Halasi, Marianna; Gartel, Andrei L.

    2009-01-01

    Forkhead box M1 (FoxM1) oncogenic transcription factor represents an attractive therapeutic target in the fight against cancer, because it is overexpressed in a majority of human tumors. Recently, using a cell-based assay system we identified thiazole antibiotic Siomycin A as an inhibitor of FoxM1 transcriptional activity. Here, we report that structurally similar thiazole antibiotic, thiostrepton also inhibits the transcriptional activity of FoxM1. Furthermore, we found that these thiopeptides did not inhibit the transcriptional activity of other members of the Forkhead family or some non-related transcription factors. Further experiments revealed that thiazole antibiotics also inhibit FoxM1 expression, but not the expression of other members of the Forkhead box family. In addition, we found that the thiazole antibiotics efficiently inhibited the growth and induced potent apoptosis in human cancer cell lines of different origin. Thiopeptide-induced apoptosis correlated with the suppression of FoxM1 expression, while overexpression of FoxM1 partially protected cancer cells from the thiazole antibiotic-mediated cell death. These data suggest that Siomycin A and thiostrepton may specifically target FoxM1 to induce apoptosis in cancer cells and FoxM1 inhibitors/thiazole antibiotics could be potentially developed as novel anticancer drugs against human neoplasia. PMID:19440351

  14. Forkhead transcription factors: new considerations for alzheimer’s disease and dementia

    PubMed Central

    Maiese, Kenneth

    2016-01-01

    Life expectancy of individuals in both developed and undeveloped nations continues to rise at an unprecedented rate. Coupled to this increase in longevity for individuals is the rise in the incidence of chronic neurodegenerative disorders that includes Alzheimer’s disease (AD). Currently, almost ten percent of the population over the age of 65 suffers from AD, a disorder that is presently without definitive therapy to prevent the onset or progression of cognitive loss. Yet, it is estimated that AD will continue to significantly increase throughout the world to impact millions of individuals and foster the escalation of healthcare costs. One potential target for the development of novel strategies against AD and other cognitive disorders involves the mammalian forkhead transcription factors of the O class (FoxOs). FoxOs are present in “cognitive centers” of the brain to include the hippocampus, the amygdala, and the nucleus accumbens and may be required for memory formation and consolidation. FoxOs play a critical role in determining survival of multiple cell types in the nervous system, drive pathways of apoptosis and autophagy, and control stem cell proliferation and differentiation. FoxOs also interface with multiple cellular pathways that include growth factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1 (WISP1), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) that ultimately may control FoxOs and determine the fate and function of cells in the nervous system that control memory and cognition. Future work that can further elucidate the complex relationship FoxOs hold over cell fate and cognitive function could yield exciting prospects for the treatment of a number of neurodegenerative disorders including AD. PMID:27390624

  15. FoxA2, Nkx2.2, and PDX-1 Regulate Islet β-Cell-Specific mafA Expression through Conserved Sequences Located between Base Pairs −8118 and −7750 Upstream from the Transcription Start Site

    PubMed Central

    Raum, Jeffrey C.; Gerrish, Kevin; Artner, Isabella; Henderson, Eva; Guo, Min; Sussel, Lori; Schisler, Jonathan C.; Newgard, Christopher B.; Stein, Roland

    2006-01-01

    The MafA transcription factor is both critical to islet β-cell function and has a unique pancreatic cell-type-specific expression pattern. To localize the potential transcriptional regulatory region(s) involved in directing expression to the β cell, areas of identity within the 5′ flanking region of the mouse, human, and rat mafA genes were found between nucleotides −9389 and −9194, −8426 and −8293, −8118 and −7750, −6622 and −6441, −6217 and −6031, and −250 and +56 relative to the transcription start site. The identity between species was greater than 75%, with the highest found between bp −8118 and −7750 (∼94%, termed region 3). Region 3 was the only upstream mammalian conserved region found in chicken mafA (88% identity). In addition, region 3 uniquely displayed β-cell-specific activity in cell-line-based reporter assays. Important regulators of β-cell formation and function, PDX-1, FoxA2, and Nkx2.2, were shown to specifically bind to region 3 in vivo using the chromatin immunoprecipitation assay. Mutational and functional analyses demonstrated that FoxA2 (bp −7943 to −7910), Nkx2.2 (bp −7771 to −7746), and PDX-1 (bp −8087 to −8063) mediated region 3 activation. Consistent with a role in transcription, small interfering RNA-mediated knockdown of PDX-1 led to decreased mafA mRNA production in INS-1-derived β-cell lines (832/13 and 832/3), while MafA expression was undetected in the pancreatic epithelium of Nkx2.2 null animals. These results suggest that β-cell-type-specific mafA transcription is principally controlled by region 3-acting transcription factors that are essential in the formation of functional β cells. PMID:16847327

  16. Molecular characterization and functional analysis of BdFoxO gene in the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae).

    PubMed

    Wu, Yi-Bei; Yang, Wen-Jia; Xie, Yi-Fei; Xu, Kang-Kang; Tian, Yi; Yuan, Guo-Rui; Wang, Jin-Jun

    2016-03-10

    The forkhead box O transcription factor (FoxO) is an important downstream transcription factor in the well-conserved insulin signaling pathway, which regulates the body size and development of insects. In this study, the FoxO gene (BdFoxO) was identified from the oriental fruit fly, Bactrocera dorsalis (Hendel). The open reading frame of BdFoxO (2732 bp) encoded a 910 amino acid protein, and the sequence was well conserved with other insect species. The BdFoxO was highly expressed in larvae and pupae among different development stages, and the highest tissue-specific expression level was found in the fat bodies compared to the testis, ovary, head, thorax, midgut, and Malpighian tubules of adults. Interestingly, we found BdFoxO expression was also up-regulated by starvation, but down-regulated when re-fed. Moreover, the injection of BdFoxO double-stranded RNAs into third-instar larvae significantly reduced BdFoxO transcript levels, which in turn down-regulated the expression of other four genes in the insulin signaling pathway. The silencing of BdFoxO resulted in delayed pupation, and the insect body weight increased significantly compared with that of the control. These results suggested that BdFoxO plays an important role in body size and development in B. dorsalis. PMID:26701614

  17. Transcriptional factors, Mafs and their biological roles

    PubMed Central

    Tsuchiya, Mariko; Misaka, Ryoichi; Nitta, Kosaku; Tsuchiya, Ken

    2015-01-01

    The Maf family of transcription factors is characterized by a typical bZip structure; these transcription factors act as important regulators of the development and differentiation of many organs and tissues, including the kidney. The Maf family consists of two subgroups that are characterized according to their structure: large Maf transcription factors and small Maf transcription factors. The large Maf subgroup consists of four proteins, designated as MAFA, MAFB, c-MAF and neural retina-specific leucine zipper. In particular, MAFA is a distinct molecule that has been attracting the attention of researchers because it acts as a strong transactivator of insulin, suggesting that Maf transcription factors are likely to be involved in systemic energy homeostasis. In this review, we focused on the regulation of glucose/energy balance by Maf transcription factors in various organs. PMID:25685288

  18. TCF7L2 Modulates Glucose Homeostasis by Regulating CREB- and FoxO1-Dependent Transcriptional Pathway in the Liver

    PubMed Central

    Oh, Kyoung-Jin; Park, Jinyoung; Kim, Su Sung; Oh, Hyunhee; Choi, Cheol Soo; Koo, Seung-Hoi

    2012-01-01

    Peripheral insulin resistance contributes to the development of type 2 diabetes. TCF7L2 has been tightly associated with this disease, although the exact mechanism was largely elusive. Here we propose a novel role of TCF7L2 in hepatic glucose metabolism in mammals. Expression of medium and short isoforms of TCF7L2 was greatly diminished in livers of diet-induced and genetic mouse models of insulin resistance, prompting us to delineate the functional role of these isoforms in hepatic glucose metabolism. Knockdown of hepatic TCF7L2 promoted increased blood glucose levels and glucose intolerance with increased gluconeogenic gene expression in wild-type mice, in accordance with the PCR array data showing that only the gluconeogenic pathway is specifically up-regulated upon depletion of hepatic TCF7L2. Conversely, overexpression of a nuclear isoform of TCF7L2 in high-fat diet-fed mice ameliorated hyperglycemia with improved glucose tolerance, suggesting a role of this factor in hepatic glucose metabolism. Indeed, we observed a binding of TCF7L2 to promoters of gluconeogenic genes; and expression of TCF7L2 inhibited adjacent promoter occupancies of CREB, CRTC2, and FoxO1, critical transcriptional modules in hepatic gluconeogenesis, to disrupt target gene transcription. Finally, haploinsufficiency of TCF7L2 in mice displayed higher glucose levels and impaired glucose tolerance, which were rescued by hepatic expression of a nuclear isoform of TCF7L2 at the physiological level. Collectively, these data suggest a crucial role of TCF7L2 in hepatic glucose metabolism; reduced hepatic expression of nuclear isoforms of this factor might be a critical instigator of hyperglycemia in type 2 diabetes. PMID:23028378

  19. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1

    SciTech Connect

    Hatta, M.; Liu, F.; Cirillo, L.A.

    2009-02-20

    Transcriptional activity of FoxO factors is controlled through the actions of multiple growth factors signaling through protein kinase B, whereby phosphorylation of FoxO factors inhibits FoxO-mediated transactivation by promoting nuclear export. Phosphorylation of FoxO factors is enhanced by p300-mediated acetylation, which decreases their affinity for DNA. The negative effect of acetylation on FoxO DNA binding, together with nuclear FoxO mobility, is eliminated by over-expression of the de-acetylase Sirt1, suggesting that acetylation mobilizes FoxO factors in chromatin for inducible gene expression. Here, we show that acetylation significantly curtails the affinity of FoxO1 for its binding sites in nucleosomal DNA but has no effect on either stable nucleosome binding or remodeling by this factor. We suggest that, while acetylation provides a first, essential step toward mobilizing FoxO factors for inducible gene repression, additional mechanisms exist for overcoming their inherent capacity to stably bind and remodel nuclear chromatin.

  20. FoxO3 suppresses Myc-driven lymphomagenesis

    PubMed Central

    Vandenberg, C J; Motoyama, N; Cory, S

    2016-01-01

    This study demonstrates, for the first time, that loss of a single forkhead box class O (FoxO) transcription factor, can promote lymphomagenesis. Using two different mouse models, we show that FoxO3 has a significant tumour-suppressor function in the context of Myc-driven lymphomagenesis. Loss of FoxO3 significantly accelerated myeloid tumorigenesis in vavP-MYC10 transgenic mice and B lymphomagenesis in Eμ-myc transgenic mice. Tumour analysis indicated that the selective pressure for mutation of the p53 pathway during Eμ-myc lymphomagenesis was not altered. Frank tumours were preceded by elevated macrophage numbers in FoxO3−/− vavP-MYC10 mice but, surprisingly, pre-B-cell numbers were relatively normal in healthy young FoxO3−/−Eμ-myc mice. In vitro assays revealed enhanced survival capacity of Myc-driven cells lacking FoxO3, but no change in cell cycling was detected. The loss of FoxO3 may also be affecting other tumour-suppressive functions for which FoxO1/4 cannot fully compensate. PMID:26764572

  1. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections

    PubMed Central

    Kuang, Shao-Qing; Medina-Martinez, Olga; Guo, Dong-chuan; Gong, Limin; Regalado, Ellen S.; Reynolds, Corey L.; Boileau, Catherine; Jondeau, Guillaume; Prakash, Siddharth K.; Kwartler, Callie S.; Zhu, Lawrence Yang; Peters, Andrew M.; Duan, Xue-Yan; Bamshad, Michael J.; Shendure, Jay; Nickerson, Debbie A.; Santos-Cortez, Regie L.; Dong, Xiurong; Leal, Suzanne M.; Majesky, Mark W.; Swindell, Eric C.; Jamrich, Milan; Milewicz, Dianna M.

    2016-01-01

    The ascending thoracic aorta is designed to withstand biomechanical forces from pulsatile blood. Thoracic aortic aneurysms and acute aortic dissections (TAADs) occur as a result of genetically triggered defects in aortic structure and a dysfunctional response to these forces. Here, we describe mutations in the forkhead transcription factor FOXE3 that predispose mutation-bearing individuals to TAAD. We performed exome sequencing of a large family with multiple members with TAADs and identified a rare variant in FOXE3 with an altered amino acid in the DNA-binding domain (p.Asp153His) that segregated with disease in this family. Additional pathogenic FOXE3 variants were identified in unrelated TAAD families. In mice, Foxe3 deficiency reduced smooth muscle cell (SMC) density and impaired SMC differentiation in the ascending aorta. Foxe3 expression was induced in aortic SMCs after transverse aortic constriction, and Foxe3 deficiency increased SMC apoptosis and ascending aortic rupture with increased aortic pressure. These phenotypes were rescued by inhibiting p53 activity, either by administration of a p53 inhibitor (pifithrin-α), or by crossing Foxe3–/– mice with p53–/– mice. Our data demonstrate that FOXE3 mutations lead to a reduced number of aortic SMCs during development and increased SMC apoptosis in the ascending aorta in response to increased biomechanical forces, thus defining an additional molecular pathway that leads to familial thoracic aortic disease. PMID:26854927

  2. Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors.

    PubMed

    Vogg, Matthias C; Owlarn, Suthira; Pérez Rico, Yuvia A; Xie, Jianlei; Suzuki, Yoko; Gentile, Luca; Wu, Wei; Bartscherer, Kerstin

    2014-06-15

    Planarians can regenerate their head within days. This process depends on the direction of adult stem cells to wound sites and the orchestration of their progenitors to commit to appropriate lineages and to arrange into patterned tissues. We identified a zinc finger transcription factor, Smed-ZicA, as a downstream target of Smed-FoxD, a Forkhead transcription factor required for head regeneration. Smed-zicA and Smed-FoxD are co-expressed with the Wnt inhibitor notum and the Activin inhibitor follistatin in a cluster of cells at the anterior-most tip of the regenerating head - the anterior regeneration pole - and in surrounding stem cell progeny. Depletion of Smed-zicA and Smed-FoxD by RNAi abolishes notum and follistatin expression at the pole and inhibits head formation downstream of initial polarity decisions. We suggest a model in which ZicA and FoxD transcription factors synergize to control the formation of Notum- and Follistatin-producing anterior pole cells. Pole formation might constitute an early step in regeneration, resulting in a signaling center that orchestrates cellular events in the growing tissue. PMID:24704339

  3. Quantification of transcription factor-DNA binding affinity in a living cell

    PubMed Central

    Belikov, Sergey; Berg, Otto G.; Wrange, Örjan

    2016-01-01

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [3H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element. PMID:26657626

  4. Prunus transcription factors: breeding perspectives.

    PubMed

    Bianchi, Valmor J; Rubio, Manuel; Trainotti, Livio; Verde, Ignazio; Bonghi, Claudio; Martínez-Gómez, Pedro

    2015-01-01

    Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome. PMID:26124770

  5. Prunus transcription factors: breeding perspectives

    PubMed Central

    Bianchi, Valmor J.; Rubio, Manuel; Trainotti, Livio; Verde, Ignazio; Bonghi, Claudio; Martínez-Gómez, Pedro

    2015-01-01

    Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome. PMID:26124770

  6. Interplay of dFOXO and Two ETS-Family Transcription Factors Determines Lifespan in Drosophila melanogaster

    PubMed Central

    Alic, Nazif; Giannakou, Maria E.; Papatheodorou, Irene; Hoddinott, Matthew P.; Andrews, T. Daniel; Bolukbasi, Ekin; Partridge, Linda

    2014-01-01

    Forkhead box O (FoxO) transcription factors (TFs) are key drivers of complex transcriptional programmes that determine animal lifespan. FoxOs regulate a number of other TFs, but how these TFs in turn might mediate the anti-ageing programmes orchestrated by FoxOs in vivo is unclear. Here, we identify an E-twenty six (ETS)-family transcriptional repressor, Anterior open (Aop), as regulated by the single Drosophila melanogaster FoxO (dFOXO) in the adult gut. AOP, the functional orthologue of the human Etv6/Tel protein, binds numerous genomic sites also occupied by dFOXO and counteracts the activity of an ETS activator, Pointed (Pnt), to prevent the lifespan-shortening effects of co-activation of dFOXO and PNT. This detrimental synergistic effect of dFOXO and PNT appears to stem from a mis-regulation of lipid metabolism. At the same time, AOP activity in another fly organ, the fat body, has further beneficial roles, regulating genes in common with dfoxo, such as the secreted, non-sensory, odorant binding protein (Obp99b), and robustly extending lifespan. Our study reveals a complex interplay between evolutionarily conserved ETS factors and dFOXO, the functional significance of which may extend well beyond animal lifespan. PMID:25232726

  7. Cell Fate Determination by Transcription Factors.

    PubMed

    Gurdon, John B

    2016-01-01

    Transcription factors fulfill a key role in the formation and maintenance of different cell-types during development. It is known that transcription factors largely dissociate from chromosomes during mitosis. We found, previously, that mitosis is also a time when somatic nuclei can be far more easily reprogrammed after nuclear transfer than the nuclei of interphase cells. We refer to this as a mitotic advantage. Here, the rate of exchange of a transcription factor on its designated DNA-binding site is discussed. It is proposed that the Xenopus oocyte could serve as an experimental system in which the duration of binding site occupancy could be usefully analyzed. In particular, the Xenopus oocyte has several characteristics which make it possible to determine accurately the concentration and duration of transcription factor binding. It is proposed that the concentration and time are the key variables which govern the action of transcription factors when they activate genes needed for cell lineage determination. PMID:26970633

  8. Transcription factor FOXC2 demarcates the jugular lymphangiogenic region in avian embryos.

    PubMed

    Rutscher, K; Wilting, J

    2008-03-01

    In the human, mutations of the forkhead winged-helix transcription factor FOXC2 cause the lymphedema-distichiasis syndrome, which is characterized by a double row of eyelashes and pubertal onset lymphedema of the legs due to hyperplasia and malformation of lymphatic collectors. While a function of FOXC2 for the differentiation of lymphatic collectors is well documented, recent studies have indicated an early function for the sprouting of lymphatics from embryonic veins. We studied the expression of FoxC2 in early avian embryos and compared its expression pattern with that of the homeobox transcription factor Prox1, which is essential for lymphatic endothelial cell (LEC) development. We show that FoxC2 demarcates a segment of the somatopleura in the cervical region on embryonic day (ED) 3, before Prox1 is expressed. On ED 4, its expression domain coincides with that of Prox1 in the jugular region. This region is characterized by the confluence of Tie2-positive anterior and posterior cardinal veins. It has been shown that Prox1 expression in a subpopulation of venous endothelial cells induces transdifferentiation into LECs. Our data suggest that FoxC2, in addition to its late functions during lymph collector differentiation, has an early function during lymphendothelial commitment of venous ECs in the jugular region. PMID:18581954

  9. FoxO1 Protein Cooperates with ATF4 Protein in Osteoblasts to Control Glucose Homeostasis*

    PubMed Central

    Kode, Aruna; Mosialou, Ioanna; Silva, Barbara C.; Joshi, Sneha; Ferron, Mathieu; Rached, Marie Therese; Kousteni, Stavroula

    2012-01-01

    The Forkhead transcription factor FoxO1 inhibits through its expression in osteoblasts β-cell proliferation, insulin secretion, and sensitivity. At least part of the FoxO1 metabolic functions result from its ability to suppress the activity of osteocalcin, an osteoblast-derived hormone favoring glucose metabolism and energy expenditure. In searching for mechanisms mediating the metabolic actions of FoxO1, we focused on ATF4, because this transcription factor also affects glucose metabolism through its expression in osteoblasts. We show here that FoxO1 co-localizes with ATF4 in the osteoblast nucleus, and physically interacts with and promotes the transcriptional activity of ATF4. Genetic experiments demonstrate that FoxO1 and ATF4 cooperate to increase glucose levels and decrease glucose tolerance. These effects result from a synergistic effect of the two transcription factors to suppress the activity of osteocalcin through up-regulating expression of the phosphatase catalyzing osteocalcin inactivation. As a result, insulin production by β-cells and insulin signaling in the muscle, liver and white adipose tissue are compromised and fat weight increases by the FoxO1/ATF4 interaction. Taken together these observations demonstrate that FoxO1 and ATF4 cooperate in osteoblasts to regulate glucose homeostasis. PMID:22298775

  10. Regulation of endochondral ossification by transcription factors.

    PubMed

    Nishimura, Riko; Hata, Kenji; Ono, Koichiro; Amano, Katsuhiko; Takigawa, Yoko; Wakabayashi, Makoto; Takashima, Rikako; Yoneda, Toshiyuki

    2012-01-01

    Endochondral ossification is very unique and complex biological event which is associated with skeletal development and tissue partnering. Genetic studies and gene-targeting approaches identified several transcription factors that play important roles in endochondral ossification. These transcription factors sequentially and harmoniously regulate each step of endochondral ossification, and consequently maintain the spatio-temporal control of the program. Importantly, these transcription factors form large protein complex to control chromatin remodeling, histone modification, transcription and splicing steps during endochondral ossification. It is also important to understand how these transcription factors regulate expression of their target genes. Biochemical and molecular cloning techniques largely contributed to identification of the components of the transcriptional complex and the target genes. Most recently, importance of endoplasmic reticulum (ER) stress in endochondral ossification has been reported. A transcription factor, BBF2H7, functions as an ER stress sensor in chondrocytes through regulation of appropriate secretion of chondrogenic matrices. We would like to discuss how the transcription factors regulate endochondral ossification. PMID:22652803

  11. FoxP2 directly regulates the reelin receptor VLDLR developmentally and by singing.

    PubMed

    Adam, Iris; Mendoza, Ezequiel; Kobalz, Ursula; Wohlgemuth, Sandra; Scharff, Constance

    2016-07-01

    Mutations of the transcription factor FOXP2 cause a severe speech and language disorder. In songbirds, FoxP2 is expressed in the medium spiny neurons (MSNs) of the avian basal ganglia song nucleus, Area X, which is crucial for song learning and adult song performance. Experimental downregulation of FoxP2 in Area X affects spine formation, prevents neuronal plasticity induced by social context and impairs song learning. Direct target genes of FoxP2 relevant for song learning and song production are unknown. Here we show that a lentivirally mediated FoxP2 knockdown in Area X of zebra finches downregulates the expression of VLDLR, one of the two reelin receptors. Zebra finch FoxP2 binds to the promoter of VLDLR and activates it, establishing VLDLR as a direct FoxP2 target. Consistent with these findings, VLDLR expression is co-regulated with FoxP2 as a consequence of adult singing and during song learning. We also demonstrate that knockdown of FoxP2 affects glutamatergic transmission at the corticostriatal MSN synapse. These data raise the possibility that the regulatory relationship between FoxP2 and VLDLR guides structural plasticity towards the subset of FoxP2-positive MSNs in an activity dependent manner via the reelin pathway. PMID:27105823

  12. Transcription factor SGF1 is critical for the neurodevelopment in the silkworm, Bombyx mori.

    PubMed

    Liu, Zhao-Yang; Yu, Qi; Yang, Chun-Hong; Meng, Miao; Ren, Chun-Jiu; Mu, Zhi-Mei; Cui, Wei-Zheng; Liu, Qing-Xin

    2016-08-01

    FoxA transcription factors play vital roles in regulating the expression of organ-specific genes. BmSGF1, the sole FoxA family member in Bombyx mori, is required for development of the silk gland. However, the function of BmSGF1 in development of the nervous system in the silkworm remains unknown. Here, we show that the amino acids sequence of BmSGF1 is evolutionarily conserved in its middle region from Trichoplax adhaerens to human and diverged from the homologues in most other species in its N-terminal region. BmSGF1 expresses in the nervous system at the embryonic stage. Knockdown of Bmsgf1 by RNA interference (RNAi) results in abnormal development of axons. Therefore, our results demonstrate that BmSGF1 is an indispensable regulator for neurodevelopment. PMID:27106119

  13. Expression of Drosophila Forkhead Transcription Factors During Kidney Development

    PubMed Central

    Baek, Jeong-In; Choi, Soo Young; Chacon-Heszele, Maria F.; Zuo, Xiaofeng; Lipschutz, Joshua H.

    2014-01-01

    The Drosophila forkhead (Dfkh) family of transcription factors has over 40 family members. One Dfkh family member, BF2 (aka FoxD1), has been shown, by targeted disruption, to be essential for kidney development. In order to determine if other Dfkh family members were involved in kidney development and to search for new members of this family, reverse transcriptase polymerase chain reaction (RT-PCR) was performed using degenerate primers of the consensus sequence of the DNA binding domain of this family and developing rat kidney RNA. The RT-PCR product was used to probe RNA from a developing rat kidney (neonatal), from a 20-day old kidney, and from an adult kidney. The RT-PCR product hybridized only to a developing kidney RNA transcript of ~2.3 kb (the size of BF2). A lambda gt10 mouse neonatal kidney library was then screened, using the above-described RT-PCR product as a probe. Three lambda phage clones were isolated that strongly hybridized to the RT-PCR probe. Sequencing of the RT-PCR product and the lambda phage clones isolated from the developing kidney library revealed Dfkh BF2. In summary, only Dfkh family member BF2, which has already been shown to be essential for nephrogenesis, was identified in our screen and no other candidate Dfkh family members were identified. PMID:24491558

  14. Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species

    PubMed Central

    Chen, Qianqian; Heston, Jonathan B.; Burkett, Zachary D.; White, Stephanie A.

    2013-01-01

    SUMMARY Humans and songbirds are among the rare animal groups that exhibit socially learned vocalizations: speech and song, respectively. These vocal-learning capacities share a reliance on audition and cortico-basal ganglia circuitry, as well as neurogenetic mechanisms. Notably, the transcription factors Forkhead box proteins 1 and 2 (FoxP1, FoxP2) exhibit similar expression patterns in the cortex and basal ganglia of humans and the zebra finch species of songbird, among other brain regions. Mutations in either gene are associated with language disorders in humans. Experimental knock-down of FoxP2 in the basal ganglia song control region Area X during song development leads to imprecise copying of tutor songs. Moreover, FoxP2 levels decrease naturally within Area X when zebra finches sing. Here, we examined neural expression patterns of FoxP1 and FoxP2 mRNA in adult Bengalese finches, a songbird species whose songs exhibit greater sequence complexity and increased reliance on audition for maintaining their quality. We found that FoxP1 and FoxP2 expression in Bengalese finches is similar to that in zebra finches, including strong mRNA signals for both factors in multiple song control nuclei and enhancement of FoxP1 in these regions relative to surrounding brain tissue. As with zebra finches, when Bengalese finches sing, FoxP2 is behaviorally downregulated within basal ganglia Area X over a similar time course, and expression negatively correlates with the amount of singing. This study confirms that in multiple songbird species, FoxP1 expression highlights song control regions, and regulation of FoxP2 is associated with motor control of song. PMID:24006346

  15. Structural Basis for DNA Recognition by FoxO1 and Its Regulation by Posttranslational Modification

    SciTech Connect

    Brent,M.; Anand, R.; Marmorstein, R.

    2008-01-01

    FoxO transcription factors regulate the transcription of genes that control metabolism, cellular proliferation, stress tolerance, and possibly life span. A number of posttranslational modifications within the forkhead DNA-binding domain regulate FoxO-mediated transcription. We describe the crystal structures of FoxO1 bound to three different DNA elements and measure the change in FoxO1-DNA affinity with acetylation and phosphorylation. The structures reveal additional contacts and increased DNA distortion for the highest affinity DNA site. The flexible wing 2 region of the forkhead domain was not observed in the structures but is necessary for DNA binding, and we show that p300 acetylation in wing 2 reduces DNA affinity. We also show that MST1 phosphorylation of FoxO1 prevents high-affinity DNA binding. The observation that FoxO-DNA affinity varies between response elements and with posttranslational modifications suggests that modulation of FoxO-DNA affinity is an important component of FoxO regulation in health and misregulation in disease.

  16. Differential FoxP2 and FoxP1 expression in a vocal learning nucleus of the developing budgerigar.

    PubMed

    Whitney, Osceola; Voyles, Tawni; Hara, Erina; Chen, Qianqian; White, Stephanie A; Wright, Timothy F

    2015-07-01

    The forkhead domain FOXP2 and FOXP1 transcription factors are implicated in several cognitive disorders with language deficits, notably autism, and thus play a central role in learned vocal motor behavior in humans. Although a similar role for FoxP2 and FoxP1 is proposed for other vertebrate species, including songbirds, the neurodevelopmental expression of these genes are unknown in a species with lifelong vocal learning abilities. Like humans, budgerigars (Melopsittacus undulatus) learn new vocalizations throughout their entire lifetime. Like songbirds, budgerigars have distinct brain nuclei for vocal learning, which include the magnocellular nucleus of the medial striatum (MMSt), a basal ganglia region that is considered developmentally and functionally analogous to Area X in songbirds. Here, we used in situ hybridization and immunohistochemistry to investigate FoxP2 and FoxP1 expression in the MMSt of juvenile and adult budgerigars. We found FoxP2 mRNA and protein expression levels in the MMSt that were lower than the surrounding striatum throughout development and adulthood. In contrast, FoxP1 mRNA and protein had an elevated MMSt/striatum expression ratio as birds matured, regardless of their sex. These results show that life-long vocal plasticity in budgerigars is associated with persistent low-level FoxP2 expression in the budgerigar MMSt, and suggests the possibility that FoxP1 plays an organizational role in the neurodevelopment of vocal motor circuitry. Thus, developmental regulation of the FoxP2 and FoxP1 genes in the basal ganglia appears essential for vocal mimicry in a range of species that possess this relatively rare trait. PMID:25407828

  17. Differential FoxP2 and FoxP1 expression in a vocal learning nucleus of the developing budgerigar

    PubMed Central

    Whitney, Osceola; Voyles, Tawni; Hara, Erina; Chen, Qianqian; White, Stephanie A.; Wright, Timothy F.

    2014-01-01

    The forkhead domain FOXP2 and FOXP1 transcription factors are implicated in several cognitive disorders with language deficits, notably autism, and thus play a central role in learned vocal motor behavior in humans. Although a similar role for FoxP2 and FoxP1 is proposed for other vertebrate species, including songbirds, the neurodevelopmental expression of these genes are unknown in a species with lifelong vocal learning abilities. Like humans, budgerigars (Melopsittacus undulatus) learn new vocalizations throughout their entire lifetime. Like songbirds, budgerigars have distinct brain nuclei for vocal learning, which include the magnocellular nucleus of the medial striatum (MMSt), a basal ganglia region that is considered developmentally and functionally analogous to Area X in songbirds. Here we used in situ hybridization and immunohistochemistry to investigate FoxP2 and FoxP1 expression in the MMSt of juvenile and adult budgerigars. We found FoxP2 mRNA and protein expression levels in the MMSt that were lower than the surrounding striatum throughout development and adulthood. In contrast, FoxP1 mRNA and protein had an elevated MMSt/striatum expression ratio as birds matured, regardless of their sex. These results show that life-long vocal plasticity in budgerigars is associated with persistent low-level FoxP2 expression in the budgerigar MMSt, and suggests the possibility that FoxP1 plays an organizational role in the neurodevelopment of vocal motor circuitry. Thus, developmental regulation of the FoxP2 and FoxP1 genes in the basal ganglia appears essential for vocal mimicry in a range of species that possess this relatively rare trait. PMID:25407828

  18. Phylogenetic and Transcription Analysis of Chrysanthemum WRKY Transcription Factors

    PubMed Central

    Song, Aiping; Li, Peiling; Jiang, Jiafu; Chen, Sumei; Li, Huiyun; Zeng, Jun; Shao, Yafeng; Zhu, Lu; Zhang, Zhaohe; Chen, Fadi

    2014-01-01

    WRKY transcription factors are known to function in a number of plant processes. Here we have characterized 15 WRKY family genes of the important ornamental species chrysanthemum (Chrysanthemum morifolium). A total of 15 distinct sequences were isolated; initially internal fragments were amplified based on transcriptomic sequence, and then the full length cDNAs were obtained using RACE (rapid amplification of cDNA ends) PCR. The transcription of these 15 genes in response to a variety of phytohormone treatments and both biotic and abiotic stresses was characterized. Some of the genes behaved as would be predicted based on their homology with Arabidopsis thaliana WRKY genes, but others showed divergent behavior. PMID:25196345

  19. High throughput assays for analyzing transcription factors.

    PubMed

    Li, Xianqiang; Jiang, Xin; Yaoi, Takuro

    2006-06-01

    Transcription factors are a group of proteins that modulate the expression of genes involved in many biological processes, such as cell growth and differentiation. Alterations in transcription factor function are associated with many human diseases, and therefore these proteins are attractive potential drug targets. A key issue in the development of such therapeutics is the generation of effective tools that can be used for high throughput discovery of the critical transcription factors involved in human diseases, and the measurement of their activities in a variety of disease or compound-treated samples. Here, a number of innovative arrays and 96-well format assays for profiling and measuring the activities of transcription factors will be discussed. PMID:16834538

  20. dFoxO promotes Wingless signaling in Drosophila

    PubMed Central

    Zhang, Shiping; Guo, Xiaowei; Chen, Changyan; Chen, Yujun; Li, Jikai; Sun, Ying; Wu, Chenxi; Yang, Yang; Jiang, Cizhong; Li, Wenzhe; Xue, Lei

    2016-01-01

    The Wnt/β-catenin signaling is an evolutionarily conserved pathway that regulates a wide range of physiological functions, including embryogenesis, organ maintenance, cell proliferation and cell fate decision. Dysregulation of Wnt/β-catenin signaling has been implicated in various cancers, but its role in cell death has not yet been fully elucidated. Here we show that activation of Wg signaling induces cell death in Drosophila eyes and wings, which depends on dFoxO, a transcription factor known to be involved in cell death. In addition, dFoxO is required for ectopic and endogenous Wg signaling to regulate wing patterning. Moreover, dFoxO is necessary for activated Wg signaling-induced target genes expression. Furthermore, Arm is reciprocally required for dFoxO-induced cell death. Finally, dFoxO physically interacts with Arm both in vitro and in vivo. Thus, we have characterized a previously unknown role of dFoxO in promoting Wg signaling, and that a dFoxO-Arm complex is likely involved in their mutual functions, e.g. cell death. PMID:26936649

  1. Inhibition of ROS and upregulation of inflammatory cytokines by FoxO3a promotes survival against Salmonella typhimurium.

    PubMed

    Joseph, Julie; Ametepe, Emmanuelle S; Haribabu, Naveen; Agbayani, Gerard; Krishnan, Lakshmi; Blais, Alexandre; Sad, Subash

    2016-01-01

    Virulent intracellular pathogens, such as the Salmonella species, engage numerous virulence factors to subvert host defence mechanisms to induce a chronic infection that leads to typhoid or exacerbation of other chronic inflammatory conditions. Here we show the role of the forkhead transcription factor FoxO3a during infection of mice with Salmonella typhimurium (ST). Although FoxO3a signalling does not affect the development of CD8(+) T cell responses to ST, FoxO3a has an important protective role, particularly during the chronic stage of infection, by limiting the persistence of oxidative stress. Furthermore, FoxO3a signalling regulates ERK signalling in macrophages, which results in the maintenance of a proinflammatory state. FoxO3a signalling does not affect cell proliferation or cell death. Thus, these results reveal mechanisms by which FoxO3a promotes host survival during infection with chronic, virulent intracellular bacteria. PMID:27599659

  2. Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

    SciTech Connect

    Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo; Lersch,Robert A.; Gee, Sherry L.; Hou, Victor C.; Lo, Annie J.; Short, Sarah A.; Chasis, Joel A.; Winkelmann, John C.; Conboy, John G.

    2006-03-01

    Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.

  3. Transcriptional activation in yeast cells lacking transcription factor IIA.

    PubMed Central

    Chou, S; Chatterjee, S; Lee, M; Struhl, K

    1999-01-01

    The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to <1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA. PMID:10581267

  4. Optogenetic Inhibitor of the Transcription Factor CREB.

    PubMed

    Ali, Ahmed M; Reis, Jakeb M; Xia, Yan; Rashid, Asim J; Mercaldo, Valentina; Walters, Brandon J; Brechun, Katherine E; Borisenko, Vitali; Josselyn, Sheena A; Karanicolas, John; Woolley, G Andrew

    2015-11-19

    Current approaches for optogenetic control of transcription do not mimic the activity of endogenous transcription factors, which act at numerous sites in the genome in a complex interplay with other factors. Optogenetic control of dominant negative versions of endogenous transcription factors provides a mechanism for mimicking the natural regulation of gene expression. Here we describe opto-DN-CREB, a blue-light-controlled inhibitor of the transcription factor CREB created by fusing the dominant negative inhibitor A-CREB to photoactive yellow protein (PYP). A light-driven conformational change in PYP prevents coiled-coil formation between A-CREB and CREB, thereby activating CREB. Optogenetic control of CREB function was characterized in vitro, in HEK293T cells, and in neurons where blue light enabled control of expression of the CREB targets NR4A2 and c-Fos. Dominant negative inhibitors exist for numerous transcription factors; linking these to optogenetic domains offers a general approach for spatiotemporal control of native transcriptional events. PMID:26590638

  5. Behavioral Stress-induced Activation of FoxO3a in the Cerebral Cortex of Mice

    PubMed Central

    Zhou, Wenjun; Chen, Ligong; Yang, Sufen; Li, Fuzeng; Li, Xiaohua

    2011-01-01

    Background The transcription factor FoxO3a is highly expressed in brain, but little is known about the response of FoxO3a to behavioral stress and its impact in the associated behavioral changes. Methods We tested the response of brain FoxO3a in the learned helplessness (LH) paradigm and tested signaling pathways that mediate the response of FoxO3a. Results A single session of inescapable shocks (IES) in mice reduced FoxO3a phosphorylation at the Akt-regulating serine/threonine residues and induced prolonged nuclear accumulation of FoxO3a in the cerebral cortex, both indicate activation of FoxO3a in brain. The response of FoxO3a is accompanied by a transient inactivation of Akt and a prolonged activation of glycogen synthase kinase-3beta (GSK3β). Noticeably, FoxO3a formed a protein complex with GSK3β in the cerebral cortex, and the interaction between the two proteins was stronger in IES-treated mice. Inhibition of GSK3 was able to abolish IES-induced LH behavior, disrupt IES-induced GSK3β-FoxO3a interaction, and reduce nuclear FoxO3a accumulation. In vitro approaches further revealed that the interaction between GSK3β and FoxO3a was strongest when both were active, FoxO3a was phosphorylated by recombinant GSK3β, and GSK3 inhibitors effectively reduced FoxO3a transcriptional activity. Importantly, IES-induced LH behavior was markedly diminished in FoxO3a-deficient mice that have minimal FoxO3a expression and reduced levels of FoxO3a-inducible genes. Conclusions FoxO3a is activated in response to IES by interacting with GSK3β, and inhibition of GSK3β or reducing FoxO3a expression promotes resistance to stress-induced behavioral disturbance by disrupting this signaling mechanism. PMID:21978520

  6. Anthropogenic Factors Are the Major Cause of Hospital Admission of a Threatened Species, the Grey-Headed Flying Fox (Pteropus poliocephalus), in Victoria, Australia.

    PubMed

    Scheelings, Titus Franciscus; Frith, Sarah Elizabeth

    2015-01-01

    To determine the reasons for presentation and outcomes of hospitalised grey-headed flying foxes (Pteropus poliocephalus) in Victoria, Australia, a retrospective analysis was performed on 532 records from two wildlife hospitals. Cases were categorised based on presenting signs and outcomes determined. Anthropogenic factors (63.7%) were a major cause of flying fox admissions with entanglement in fruit netting the most significant risk for bats (36.8%). Overall the mortality rate for flying fox admissions was 59.3%. This study highlights the effects of urbanisation on wild animal populations and a need for continued public education in order to reduce morbidity and mortality of wildlife, especially threatened species. PMID:26207984

  7. Anthropogenic Factors Are the Major Cause of Hospital Admission of a Threatened Species, the Grey-Headed Flying Fox (Pteropus poliocephalus), in Victoria, Australia

    PubMed Central

    Scheelings, Titus Franciscus; Frith, Sarah Elizabeth

    2015-01-01

    To determine the reasons for presentation and outcomes of hospitalised grey-headed flying foxes (Pteropus poliocephalus) in Victoria, Australia, a retrospective analysis was performed on 532 records from two wildlife hospitals. Cases were categorised based on presenting signs and outcomes determined. Anthropogenic factors (63.7%) were a major cause of flying fox admissions with entanglement in fruit netting the most significant risk for bats (36.8%). Overall the mortality rate for flying fox admissions was 59.3%. This study highlights the effects of urbanisation on wild animal populations and a need for continued public education in order to reduce morbidity and mortality of wildlife, especially threatened species. PMID:26207984

  8. Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs

    PubMed Central

    Pihlajamaa, Päivi; Sahu, Biswajyoti; Lyly, Lauri; Aittomäki, Viljami; Hautaniemi, Sampsa; Jänne, Olli A

    2014-01-01

    Androgen receptor (AR) binds male sex steroids and mediates physiological androgen actions in target tissues. ChIP-seq analyses of AR-binding events in murine prostate, kidney and epididymis show that in vivo AR cistromes and their respective androgen-dependent transcription programs are highly tissue specific mediating distinct biological pathways. This high order of tissue specificity is achieved by the use of exclusive collaborating factors in the three androgen-responsive tissues. We find two novel collaborating factors for AR signaling in vivo—Hnf4α (hepatocyte nuclear factor 4α) in mouse kidney and AP-2α (activating enhancer binding protein 2α) in mouse epididymis—that define tissue-specific AR recruitment. In mouse prostate, FoxA1 serves for the same purpose. FoxA1, Hnf4α and AP-2α motifs are over-represented within unique AR-binding loci, and the cistromes of these factors show substantial overlap with AR-binding events distinct to each tissue type. These licensing or pioneering factors are constitutively bound to chromatin and guide AR to specific genomic loci upon hormone exposure. Collectively, liganded receptor and its DNA-response elements are required but not sufficient for establishment of tissue-specific transcription programs. PMID:24451200

  9. Functional Analysis of Transcription Factors in Arabidopsis

    PubMed Central

    Mitsuda, Nobutaka; Ohme-Takagi, Masaru

    2009-01-01

    Transcription factors (TFs) regulate the expression of genes at the transcriptional level. Modification of TF activity dynamically alters the transcriptome, which leads to metabolic and phenotypic changes. Thus, functional analysis of TFs using ‘omics-based’ methodologies is one of the most important areas of the post-genome era. In this mini-review, we present an overview of Arabidopsis TFs and introduce strategies for the functional analysis of plant TFs, which include both traditional and recently developed technologies. These strategies can be assigned to five categories: bioinformatic analysis; analysis of molecular function; expression analysis; phenotype analysis; and network analysis for the description of entire transcriptional regulatory networks. PMID:19478073

  10. Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria

    NASA Technical Reports Server (NTRS)

    Mazet, Francoise; Yu, Jr Kai; Liberles, David A.; Holland, Linda Z.; Shimeld, Sebastian M.

    2003-01-01

    The Forkhead or Fox gene family encodes putative transcription factors. There are at least four Fox genes in yeast, 16 in Drosophila melanogaster (Dm) and 42 in humans. Recently, vertebrate Fox genes have been classified into 17 groups named FoxA to FoxQ. Here, we extend this analysis to invertebrates, using available sequences from D. melanogaster, Anopheles gambiae (Ag), Caenorhabditis elegans (Ce), the sea squirt Ciona intestinalis (Ci) and amphioxus Branchiostoma floridae (Bf), from which we also cloned several Fox genes. Phylogenetic analyses lend support to the previous overall subclassification of vertebrate genes, but suggest that four subclasses (FoxJ, L, N and Q) could be further subdivided to reflect their relationships to invertebrate genes. We were unable to identify orthologs of Fox subclasses E, H, I, J, M and Q1 in D. melanogaster, A. gambiae or C. elegans, suggesting either considerable loss in ecdysozoans or the evolution of these subclasses in the deuterostome lineage. Our analyses suggest that the common ancestor of protostomes and deuterostomes had a minimum complement of 14 Fox genes.

  11. FoxA1 as a lineage-specific oncogene in luminal type breast cancer

    SciTech Connect

    Yamaguchi, Noritaka; Ito, Emi; Azuma, Sakura; Honma, Reiko; Yanagisawa, Yuka; Nishikawa, Akira; Kawamura, Mika; Imai, Jun-ichi

    2008-01-25

    The forkhead transcription factor FoxA1 is thought to be involved in mammary tumorigenesis. However, the precise role of FoxA1 in breast cancer development is controversial. We examined expression of FoxA1 in 35 human breast cancer cell lines and compared it with that of ErbB2, a marker of poor prognosis in breast cancer. We found that FoxA1 is expressed at high levels in all ErbB2-positive cell lines and a subset of ErbB2-negative cell lines. Down-regulation of FoxA1 by RNA interference significantly suppressed proliferation of ErbB2-negative and FoxA1-positive breast cancer cell lines. Down-regulation of FoxA1 also enhanced the toxic effect of Herceptin on ErbB2-positive cell lines through induction of apoptosis. Taken together with previous data that FoxA1 is a marker of luminal cells in mammary gland, our present results suggest that FoxA1 plays an important role as a lineage-specific oncogene in proliferation of cancer cells derived from mammary luminal cells.

  12. Transcription Factors in Xylem Development. Final report

    SciTech Connect

    Sederoff, Ronald; Whetten, Ross; O'Malley, David; Campbell, Malcolm

    1999-07-01

    Answers to the following questions are answered in this report. do the two pine Byb proteins previously identified as candidate transcription factors bind to DNA and activate transcription? In what cell types are tehse Myb proteins expressed? Are these proteins localized to the nucleus? Do other proteins in pine xylem interact with these Myb proteins? Does altered expression of these genes have an impact on xylogenesis, specifically the expression of monolignol biosynthetic genes?

  13. Cell fate control by pioneer transcription factors.

    PubMed

    Iwafuchi-Doi, Makiko; Zaret, Kenneth S

    2016-06-01

    Distinct combinations of transcription factors are necessary to elicit cell fate changes in embryonic development. Yet within each group of fate-changing transcription factors, a subset called 'pioneer factors' are dominant in their ability to engage silent, unmarked chromatin and initiate the recruitment of other factors, thereby imparting new function to regulatory DNA sequences. Recent studies have shown that pioneer factors are also crucial for cellular reprogramming and that they are implicated in the marked changes in gene regulatory networks that occur in various cancers. Here, we provide an overview of the contexts in which pioneer factors function, how they can target silent genes, and their limitations at regions of heterochromatin. Understanding how pioneer factors regulate gene expression greatly enhances our understanding of how specific developmental lineages are established as well as how cell fates can be manipulated. PMID:27246709

  14. Suppression of FoxO6 by lipopolysaccharide in aged rat liver

    PubMed Central

    Kim, Dae Hyun; Park, Min Hi; Chung, Ki Wung; Kim, Min Jo; Park, Daeui; Lee, Bonggi; Lee, Eun Kyeong; Choi, Yeon Ja; Kim, Nam Deuk; Yu, Byung Pal; Chung, Hae Young

    2015-01-01

    The beneficial role of FoxO during aging has been proposed for its promotion of resistance to oxidative stress and inhibition of pro-inflammatory mediators. On the other hand, NF-κB is a pro-inflammatory transcription factor which is a key mediator of inflammatory cytokine generation. However, the correlation between FoxO6 and NF-κB during aging has not fully been explored. The main purpose of the present study was to elucidate mechanisms underlying the protective role of FoxO6 in the maintenance of cellular homeostasis under potent pro-inflammatory conditions induced by LPS. Initial experimentation revealed that reduced FoxO6 activity during aging was caused by its phosphorylation, which suppressed its transcriptional activity in aged livers. Transfection with FoxO6-wt virus and FoxO6-siRNA in HepG2 cells revealed that FoxO6 phosphorylation by LPS leads to NF-κB activation via Akt and Pak1 pathways. Furthermore, Pak1 activity was increased in a phosphatidylinositol 3-kinase independent manner, and LPS-induced FoxO6 phosphorylation and FoxO6 inactivation were Pak1-dependent in nuclear fractions of cells. Further revealed Pak1 phosphorylation by LPS permitted interaction between FoxO6 and Akt. Current study suggests FoxO6 phosphorylation facilitates the nuclear translocation of NF-κB via Akt and Pak1 pathways induced by LPS in aged rats. PMID:26506521

  15. Importance of Natural and Anthropogenic Environmental Factors to Fish Communities of the Fox River in Illinois

    NASA Astrophysics Data System (ADS)

    Schnier, Spencer; Cai, Ximing; Cao, Yong

    2016-02-01

    The dominant environmental determinants of aquatic communities have been a persistent topic for many years. Interactions between natural and anthropogenic characteristics within the aquatic environment influence fish communities in complex ways that make the effect of a single characteristic difficult to ascertain. Researchers are faced with the question of how to deal with a large number of variables and complex interrelationships. This study utilized multiple approaches to identify key environmental variables to fish communities of the Fox River Basin in Illinois: Pearson and Spearman correlations, an algorithm based on information theory called mutual information, and a measure of variable importance built into the machine learning algorithm Random Forest. The results are based on a dataset developed for this study, which uses a fish index of biological integrity (IBI) and its ten component metrics as response variables and a range of environmental variables describing geomorphology, stream flow statistics, climate, and both reach-scale and watershed-scale land use as independent variables. Agricultural land use and the magnitude and duration of low flow events were ranked by the algorithms as key factors for the study area. Reach-scale characteristics were dominant for native sunfish, and stream flow metrics were rated highly for native suckers. Regression tree analyses of environmental variables on fish IBI identified breakpoints in percent agricultural land in the watershed (~64 %), duration of low flow pulses (~12 days), and 90-day minimum flow (~0.13 cms). The findings should be useful for building predictive models and design of more effective monitoring systems and restoration plans.

  16. Importance of Natural and Anthropogenic Environmental Factors to Fish Communities of the Fox River in Illinois.

    PubMed

    Schnier, Spencer; Cai, Ximing; Cao, Yong

    2016-02-01

    The dominant environmental determinants of aquatic communities have been a persistent topic for many years. Interactions between natural and anthropogenic characteristics within the aquatic environment influence fish communities in complex ways that make the effect of a single characteristic difficult to ascertain. Researchers are faced with the question of how to deal with a large number of variables and complex interrelationships. This study utilized multiple approaches to identify key environmental variables to fish communities of the Fox River Basin in Illinois: Pearson and Spearman correlations, an algorithm based on information theory called mutual information, and a measure of variable importance built into the machine learning algorithm Random Forest. The results are based on a dataset developed for this study, which uses a fish index of biological integrity (IBI) and its ten component metrics as response variables and a range of environmental variables describing geomorphology, stream flow statistics, climate, and both reach-scale and watershed-scale land use as independent variables. Agricultural land use and the magnitude and duration of low flow events were ranked by the algorithms as key factors for the study area. Reach-scale characteristics were dominant for native sunfish, and stream flow metrics were rated highly for native suckers. Regression tree analyses of environmental variables on fish IBI identified breakpoints in percent agricultural land in the watershed (~64%), duration of low flow pulses (~12 days), and 90-day minimum flow (~0.13 cms). The findings should be useful for building predictive models and design of more effective monitoring systems and restoration plans. PMID:26404430

  17. Conserved role of Drosophila melanogaster FoxP in motor coordination and courtship song.

    PubMed

    Lawton, Kristy J; Wassmer, Taryn L; Deitcher, David L

    2014-07-15

    FoxP2 is a highly conserved vertebrate transcription factor known for its importance in human speech and language production. Disruption of FoxP2 in several vertebrate models indicates a conserved functional role for this gene in both sound production and motor coordination. Although FoxP2 is known to be strongly expressed in brain regions important for motor coordination, little is known about FoxP2's role in the nervous system. The recent discovery of the well-conserved Drosophila melanogaster homolog, FoxP, provides an opportunity to study the role of this crucial gene in an invertebrate model. We hypothesized that, like FoxP2, Drosophila FoxP is important for behaviors requiring fine motor coordination. We used targeted RNA interference to reduce expression of FoxP and assayed the effects on a variety of adult behaviors. Male flies with reduced FoxP expression exhibit decreased levels of courtship behavior, altered pulse-song structure, and sex-specific motor impairments in walking and flight. Acute disruption of synaptic activity in FoxP expressing neurons using a temperature-sensitive shibire allele dramatically impaired motor coordination. Utilizing a GFP reporter to visualize FoxP in the fly brain reveals expression in relatively few neurons in distributed clusters within the larval and adult CNS, including distinct labeling of the adult protocerebral bridge - a section of the insect central complex known to be important for motor coordination and thought to be homologous to areas of the vertebrate basal ganglia. Our results establish the necessity of this gene in motor coordination in an invertebrate model and suggest a functional homology with vertebrate FoxP2. PMID:24747661

  18. Functional regulation of FoxO1 in neural stem cell differentiation.

    PubMed

    Kim, D-Y; Hwang, I; Muller, F L; Paik, J-H

    2015-12-01

    Forkhead transcription factor family O (FoxO) maintains adult stem cell reserves by supporting their long-term proliferative potential. MicroRNAs (miRs) regulate neuronal stem/progenitor cell (NSPC) proliferation and differentiation during neural development by controlling the expression of a specific set of target genes. In the neurogenic subventricular zone, FoxO1 is specifically expressed in NSPCs and is no longer detected during the transition to neuroblast stage, forming an inverse correlation with miR-9 expression. The 3'-untranslated region of FoxO1 contains a conserved target sequence of miR-9 and FoxO1 expression is coordinated in concert with miR-9 during neuronal differentiation. Our study demonstrates that FoxO1 contributes to NSPC fate decision through its cooperation with the Notch signaling pathway. PMID:26470727

  19. The Forkhead Transcription Factor FOXM1 Controls Cell Cycle-Dependent Gene Expression through an Atypical Chromatin Binding Mechanism

    PubMed Central

    Chen, Xi; Müller, Gerd A.; Quaas, Marianne; Fischer, Martin; Han, Namshik; Stutchbury, Benjamin; Engeland, Kurt

    2013-01-01

    There are nearly 50 forkhead (FOX) transcription factors encoded in the human genome and, due to sharing a common DNA binding domain, they are all thought to bind to similar DNA sequences. It is therefore unclear how these transcription factors are targeted to specific chromatin regions to elicit specific biological effects. Here, we used chromatin immunoprecipitation followed by sequencing (ChIP-seq) to investigate the genome-wide chromatin binding mechanisms used by the forkhead transcription factor FOXM1. In keeping with its previous association with cell cycle control, we demonstrate that FOXM1 binds and regulates a group of genes which are mainly involved in controlling late cell cycle events in the G2 and M phases. However, rather than being recruited through canonical RYAAAYA forkhead binding motifs, FOXM1 binding is directed via CHR (cell cycle genes homology region) elements. FOXM1 binds these elements through protein-protein interactions with the MMB transcriptional activator complex. Thus, we have uncovered a novel and unexpected mode of chromatin binding of a FOX transcription factor that allows it to specifically control cell cycle-dependent gene expression. PMID:23109430

  20. Polyphenol Compound as a Transcription Factor Inhibitor.

    PubMed

    Park, Seyeon

    2015-11-01

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor-DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein-protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)). PMID:26529010

  1. Hey bHLH transcription factors.

    PubMed

    Weber, David; Wiese, Cornelia; Gessler, Manfred

    2014-01-01

    Hey bHLH transcription factors are direct targets of canonical Notch signaling. The three mammalian Hey proteins are closely related to Hes proteins and they primarily repress target genes by either directly binding to core promoters or by inhibiting other transcriptional activators. Individual candidate gene approaches and systematic screens identified a number of Hey target genes, which often encode other transcription factors involved in various developmental processes. Here, we review data on interaction partners and target genes and conclude with a model for Hey target gene regulation. Furthermore, we discuss how expression of Hey proteins affects processes like cell fate decisions and differentiation, e.g., in cardiovascular, skeletal, and neural development or oncogenesis and how this relates to the observed developmental defects and phenotypes observed in various knockout mice. PMID:25248480

  2. Metabolic stress–induced activation of FoxO1 triggers diabetic cardiomyopathy in mice

    PubMed Central

    Battiprolu, Pavan K.; Hojayev, Berdymammet; Jiang, Nan; Wang, Zhao V.; Luo, Xiang; Iglewski, Myriam; Shelton, John M.; Gerard, Robert D.; Rothermel, Beverly A.; Gillette, Thomas G.; Lavandero, Sergio; Hill, Joseph A.

    2012-01-01

    The leading cause of death in diabetic patients is cardiovascular disease; diabetic cardiomyopathy is typified by alterations in cardiac morphology and function, independent of hypertension or coronary disease. However, the molecular mechanism that links diabetes to cardiomyopathy is incompletely understood. Insulin resistance is a hallmark feature of diabetes, and the FoxO family of transcription factors, which regulate cell size, viability, and metabolism, are established targets of insulin and growth factor signaling. Here, we set out to evaluate a possible role of FoxO proteins in diabetic cardiomyopathy. We found that FoxO proteins were persistently activated in cardiac tissue in mice with diabetes induced either genetically or by high-fat diet (HFD). FoxO activity was critically linked with development of cardiomyopathy: cardiomyocyte-specific deletion of FoxO1 rescued HFD-induced declines in cardiac function and preserved cardiomyocyte insulin responsiveness. FoxO1-depleted cells displayed a shift in their metabolic substrate usage, from free fatty acids to glucose, associated with decreased accumulation of lipids in the heart. Furthermore, we found that FoxO1-dependent downregulation of IRS1 resulted in blunted Akt signaling and insulin resistance. Together, these data suggest that activation of FoxO1 is an important mediator of diabetic cardiomyopathy and is a promising therapeutic target for the disease. PMID:22326951

  3. Polyphenol Compound as a Transcription Factor Inhibitor

    PubMed Central

    Park, Seyeon

    2015-01-01

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)). PMID:26529010

  4. [Development genes encoding transcription factors and dysmorphology].

    PubMed

    Lacombe, Didier

    2009-04-01

    Studies of children with developmental abnormalities of genetic origin are necessary for accurate diagnosis, prognostication, patient management, and genetic counseling. Such studies can also help to identify genes involved in normal and abnormal morphogenesis, which often act as patterning genes and are also potential oncogenes. Many encode transcription factors that regulate other genes during embryonic development. PMID:20120282

  5. FoxM1 promotes breast tumorigenesis by activating PDGF-A and forming a positive feedback loop with the PDGF/AKT signaling pathway.

    PubMed

    Yu, Guanzhen; Zhou, Aidong; Xue, Jianfei; Huang, Chen; Zhang, Xia; Kang, Shin-Hyuk; Chiu, Wen-Tai; Tan, Christina; Xie, Keping; Wang, Jiejun; Huang, Suyun

    2015-05-10

    The autocrine platelet-derived growth factor (PDGF)/PDGF receptor (PDGFR) signaling pathway promotes breast cancer tumorigenesis, but the mechanisms for its dysregulation in breast cancer are largely unknown. In the study, we identified PDGF-A as a novel transcriptional target of FoxM1. FoxM1 directly binds to two sites in the promoter of PDGF-A and activates its transcription. Mutation of these FoxM1-binding sites diminished PDGF-A promoter activity. Increased FoxM1 resulted in the upregulation of PDGF-A, which led to activation of the AKT pathway and increased breast cancer cell proliferation and tumorigenesis, whereas knockdown of FoxM1 does the opposite. Blocking AKT activation with a phosphoinositide 3-kinase/AKT inhibitor decreased FoxM1-induced cell proliferation. Moreover, PDGF/AKT pathway upregulates the expression of FoxM1 in breast cancer cells. Knockdown of PDGF-A or blockade of AKT activation inhibited the expression of FoxM1 in breast cancer cells. Furthermore, expression of FoxM1 significantly correlated with the expression of PDGF-A and the activated AKT signaling pathway in human breast cancer specimens. Our study demonstrates a novel positive regulatory feedback loop between FoxM1 and the PDGF/AKT signaling pathway; this loop contributes to breast cancer cell growth and tumorigenesis. PMID:25869208

  6. Accelerated FoxP2 evolution in echolocating bats.

    PubMed

    Li, Gang; Wang, Jinhong; Rossiter, Stephen J; Jones, Gareth; Zhang, Shuyi

    2007-01-01

    FOXP2 is a transcription factor implicated in the development and neural control of orofacial coordination, particularly with respect to vocalisation. Observations that orthologues show almost no variation across vertebrates yet differ by two amino acids between humans and chimpanzees have led to speculation that recent evolutionary changes might relate to the emergence of language. Echolocating bats face especially challenging sensorimotor demands, using vocal signals for orientation and often for prey capture. To determine whether mutations in the FoxP2 gene could be associated with echolocation, we sequenced FoxP2 from echolocating and non-echolocating bats as well as a range of other mammal species. We found that contrary to previous reports, FoxP2 is not highly conserved across all nonhuman mammals but is extremely diverse in echolocating bats. We detected divergent selection (a change in selective pressure) at FoxP2 between bats with contrasting sonar systems, suggesting the intriguing possibility of a role for FoxP2 in the evolution and development of echolocation. We speculate that observed accelerated evolution of FoxP2 in bats supports a previously proposed function in sensorimotor coordination. PMID:17878935

  7. Accelerated FoxP2 Evolution in Echolocating Bats

    PubMed Central

    Li, Gang; Wang, Jinhong; Rossiter, Stephen J.; Jones, Gareth; Zhang, Shuyi

    2007-01-01

    FOXP2 is a transcription factor implicated in the development and neural control of orofacial coordination, particularly with respect to vocalisation. Observations that orthologues show almost no variation across vertebrates yet differ by two amino acids between humans and chimpanzees have led to speculation that recent evolutionary changes might relate to the emergence of language. Echolocating bats face especially challenging sensorimotor demands, using vocal signals for orientation and often for prey capture. To determine whether mutations in the FoxP2 gene could be associated with echolocation, we sequenced FoxP2 from echolocating and non-echolocating bats as well as a range of other mammal species. We found that contrary to previous reports, FoxP2 is not highly conserved across all nonhuman mammals but is extremely diverse in echolocating bats. We detected divergent selection (a change in selective pressure) at FoxP2 between bats with contrasting sonar systems, suggesting the intriguing possibility of a role for FoxP2 in the evolution and development of echolocation. We speculate that observed accelerated evolution of FoxP2 in bats supports a previously proposed function in sensorimotor coordination. PMID:17878935

  8. Expression of transcription factors and crystallin proteins during rat lens regeneration

    PubMed Central

    Huang, Yusen

    2010-01-01

    Purpose To establish a model of lens regeneration in rats and to detect the expression of transcription factor and crystallin genes. Methods An extracapsular lens extraction (ECLE) was performed in Sprague-Dawley rats. Examinations with slit-lamp and histological analysis were performed at various time points after ECLE. Real-time PCR and/or immunofluorescence were performed to detect the expression of the lens transcription factors paired box 6 (Pax6), prospero homeobox 1 (Prox1), and forkhead box E3 (Foxe3) and α-, β-, and γ-crystallin (Cryaa, Cryab, Crybb1, Crybb2, Cryba2, and Crygd, respectively). Results Lens epithelial cells (LECs) were left behind under the anterior capsule immediately after ECLE. Lens fiber differentiation had occurred in the peripheral capsular bag in all rats 3 days after ECLE. One month after surgery, all capsular bags were filled with new semitransparent lenticular structures displaying an established equator with well differentiated bow regions. The mRNA-expression quantity of lens transcription factors and α-, β-, and γ- crystallin increased after ECLE. Pax6 was expressed in both LECs and the newly regenerated lens fiber cells, Prox1 was expressed both in LECs and differentiating lens fiber cells, and Foxe3 was confined to LECs. Conclusions Lens fiber differentiation during regeneration follows a process similar to embryological development, with proliferation of epithelial cells along the anterior and posterior capsule, elongation of the posterior epithelial cells, and differentiation of epithelial cells into lens fibers. The regenerated lens contains proteins and transcription factors similar to those found in normal lenses. Inductive interactions seen during lens development are not necessary for lens regeneration. PMID:20216939

  9. Human FoxP3(+)CD4(+) regulatory T cells: their knowns and unknowns.

    PubMed

    Miyara, Makoto; Sakaguchi, Shimon

    2011-03-01

    Human regulatory T cells (Tregs) expressing the transcription factor FoxP3 play indispensable roles for the maintenance of immunological self-tolerance and immune homeostasis. In this review, we discuss immunological characteristics of human FoxP3(+) Tregs and to what extent they are similar to or different from the murine counterparts. We also discuss important issues that remain to be addressed in the field to better understand the pathophysiology of autoimmune disease and to build solid basis for immunotherapies targeting FoxP3(+) Tregs. PMID:21301480

  10. A relational database of transcription factors.

    PubMed Central

    Ghosh, D

    1990-01-01

    Recent advances in the understanding of eukaryotic gene regulation have produced an extensive body of transcriptionally-related sequence information in the biological literature, and have created a need for computing structures that organize and manage this information. The 'relational model' represents an approach that is finding increasing application in the design of biological databases. This report describes the compilation of information regarding eukaryotic transcription factors, the organization of this information into five tables, the computational applications of the resultant relational database that are of theoretical as well as experimental interest, and possible avenues of further development. PMID:2186365

  11. Activating transcription factor 2 in mesenchymal tumors.

    PubMed

    Endo, Makoto; Su, Le; Nielsen, Torsten O

    2014-02-01

    Activating transcription factor 2 (ATF2) is a member of activator protein 1 superfamily, which can heterodimerize with other transcription factors regulating cell differentiation and survival. ATF2 assembles into a complex with the synovial sarcoma translocation, chromosome 18 (SS18)-synovial sarcoma, X breakpoint (SSX) fusion oncoprotein, and the transducin-like enhancer of split 1 (TLE1) corepressor, driving oncogenesis in synovial sarcoma. The fusion oncoproteins in many other translocation-associated sarcomas incorporate transcription factors from the ATF/cAMP response element binding or E26 families, which potentially form heterodimers with ATF2 to regulate transcription. ATF2 may therefore play an important role in the oncogenesis of many mesenchymal tumors, but as yet, little is known about its protein expression in patient specimens. Herein we perform immunohistochemical analyses using a validated specific antibody for ATF2 expression and intracellular localization on a cohort of 594 malignant and 207 benign mesenchymal tumors representing 47 diagnostic entities. Melanoma served as a positive control for nuclear and cytoplasmic staining. High nuclear ATF2 expression was mainly observed in translocation-associated and/or spindle cell sarcomas including synovial sarcoma, desmoplastic small round cell tumor, endometrial stromal sarcoma, gastrointestinal stromal tumor, malignant peripheral nerve sheath tumor, and solitary fibrous tumor. Cytoplasmic ATF2 expression was less frequently seen than nuclear expression in malignant mesenchymal tumors. Benign mesenchymal tumors mostly showed much lower nuclear and cytoplasmic ATF2 expression. PMID:24289970

  12. ABF transcription factors of Thellungiella salsuginea

    PubMed Central

    Vysotskii, Denis A.; de Vries-van Leeuwen, Ingrid J.; Souer, Erik; Babakov, Alexei V.; de Boer, Albertus H.

    2013-01-01

    ABF transcription factors are the key regulators of ABA signaling. Using RACE-PCR, we identified and sequenced the coding regions of four genes that encode ABF transcription factors in the extremophile plant Thellungiella salsuginea, a close relative of Arabidopsis thaliana that possesses high tolerance to abiotic stresses. An analysis of the deduced amino acid sequences revealed that the similarity between Thellungiella and Arabidopsis ABFs ranged from 71% to 88%. Similar to their Arabidopsis counterparts, Thellungiella ABFs share a bZIP domain and four conservative domains, including a highly conservative motif at the C-terminal tail, which was reported to be a canonical site for binding by 14-3-3 regulatory proteins. Gene expression analysis by real-time PCR revealed a rapid transcript induction of three of the ABF genes in response to salt stress. To check whether Thellungiella ABF transcription factors can interact with abundant 14-3-3 proteins, multiple constructs were designed, and yeast two-hybrid experiments were conducted. Six of the eight tested Ts14-3-3 proteins were able to bind the TsABFs in an isoform-specific manner. A serine-to-alanine substitution in the putative 14-3-3 binding motif resulted in the complete loss of interaction between the 14-3-3 proteins and the ABFs. The role of 14-3-3 interaction with ABFs in the salt and ABA signaling pathways is discussed in the context of Thellungiella survivability. PMID:23221757

  13. FOXO transcription factors throughout T cell biology

    PubMed Central

    Hedrick, Stephen M.; Michelini, Rodrigo Hess; Doedens, Andrew L.; Goldrath, Ananda W.; Stone, Erica L.

    2013-01-01

    The outcome of an infection with any given pathogen varies according to the dosage and route of infection, but, in addition, the physiological state of the host can determine the efficacy of clearance, the severity of infection and the extent of immunopathology. Here we propose that the forkhead box O (FOXO) transcription factor family — which is central to the integration of growth factor signalling, oxidative stress and inflammation — provides connections between physical well-being and the form and magnitude of an immune response. We present a case that FOXO transcription factors guide T cell differentiation and function in a context-driven manner, and might provide a link between metabolism and immunity. PMID:22918467

  14. Nur transcription factors in stress and addiction

    PubMed Central

    Campos-Melo, Danae; Galleguillos, Danny; Sánchez, Natalia; Gysling, Katia; Andrés, María E.

    2013-01-01

    The Nur transcription factors Nur77 (NGFI-B, NR4A1), Nurr1 (NR4A2), and Nor-1 (NR4A3) are a sub-family of orphan members of the nuclear receptor superfamily. These transcription factors are products of immediate early genes, whose expression is rapidly and transiently induced in the central nervous system by several types of stimuli. Nur factors are present throughout the hypothalamus-pituitary-adrenal (HPA) axis where are prominently induced in response to stress. Drugs of abuse and stress also induce the expression of Nur factors in nuclei of the motivation/reward circuit of the brain, indicating their participation in the process of drug addiction and in non-hypothalamic responses to stress. Repeated use of addictive drugs and chronic stress induce long-lasting dysregulation of the brain motivation/reward circuit due to reprogramming of gene expression and enduring alterations in neuronal function. Here, we review the data supporting that Nur transcription factors are key players in the molecular basis of the dysregulation of neuronal circuits involved in chronic stress and addiction. PMID:24348325

  15. FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation

    PubMed Central

    Roth, Martin; Bonev, Boyan; Lindsay, Jennefer; Lea, Robert; Panagiotaki, Niki; Houart, Corinne; Papalopulu, Nancy

    2010-01-01

    FoxG1 is a conserved transcriptional repressor that plays a key role in the specification, proliferation and differentiation of the telencephalon, and is expressed from the earliest stages of telencephalic development through to the adult. How the interaction with co-factors might influence the multiplicity and diversity of FoxG1 function is not known. Here, we show that interaction of FoxG1 with TLE2, a Xenopus tropicalis co-repressor of the Groucho/TLE family, is crucial for regulating the early activity of FoxG1. We show that TLE2 is co-expressed with FoxG1 in the ventral telencephalon from the early neural plate stage and functionally cooperates with FoxG1 in an ectopic neurogenesis assay. FoxG1 has two potential TLE binding sites: an N-terminal eh1 motif and a C-terminal YWPMSPF motif. Although direct binding seems to be mediated by the N-terminal motif, both motifs appear important for functional synergism. In the neurogenesis assay, mutation of either motif abolishes functional cooperation of TLE2 with FoxG1, whereas in the forebrain deletion of both motifs renders FoxG1 unable to induce the ventral telencephalic marker Nkx2.1. Knocking down either FoxG1 or TLE2 disrupts the development of the ventral telencephalon, supporting the idea that endogenous TLE2 and FoxG1 work together to specify the ventral telencephalon. PMID:20356955

  16. Birdsong decreases protein levels of FoxP2, a molecule required for human speech.

    PubMed

    Miller, Julie E; Spiteri, Elizabeth; Condro, Michael C; Dosumu-Johnson, Ryan T; Geschwind, Daniel H; White, Stephanie A

    2008-10-01

    Cognitive and motor deficits associated with language and speech are seen in humans harboring FOXP2 mutations. The neural bases for FOXP2 mutation-related deficits are thought to reside in structural abnormalities distributed across systems important for language and motor learning including the cerebral cortex, basal ganglia, and cerebellum. In these brain regions, our prior research showed that FoxP2 mRNA expression patterns are strikingly similar between developing humans and songbirds. Within the songbird brain, this pattern persists throughout life and includes the striatal subregion, Area X, that is dedicated to song development and maintenance. The persistent mRNA expression suggests a role for FoxP2 that extends beyond the formation of vocal learning circuits to their ongoing use. Because FoxP2 is a transcription factor, a role in shaping circuits likely depends on FoxP2 protein levels which might not always parallel mRNA levels. Indeed our current study shows that FoxP2 protein, like its mRNA, is acutely downregulated in mature Area X when adult males sing with some differences. Total corticosterone levels associated with the different behavioral contexts did not vary, indicating that differences in FoxP2 levels are not likely attributable to stress. Our data, together with recent reports on FoxP2's target genes, suggest that lowered FoxP2 levels may allow for expression of genes important for circuit modification and thus vocal variability. PMID:18701760

  17. FoxO and Stress Responses in the Cnidarian Hydra vulgaris

    PubMed Central

    Bridge, Diane; Theofiles, Alexander G.; Holler, Rebecca L.; Marcinkevicius, Emily; Steele, Robert E.; Martínez, Daniel E.

    2010-01-01

    Background In the face of changing environmental conditions, the mechanisms underlying stress responses in diverse organisms are of increasing interest. In vertebrates, Drosophila, and Caenorhabditis elegans, FoxO transcription factors mediate cellular responses to stress, including oxidative stress and dietary restriction. Although FoxO genes have been identified in early-arising animal lineages including sponges and cnidarians, little is known about their roles in these organisms. Methods/Principal Findings We have examined the regulation of FoxO activity in members of the well-studied cnidarian genus Hydra. We find that Hydra FoxO is expressed at high levels in cells of the interstitial lineage, a cell lineage that includes multipotent stem cells that give rise to neurons, stinging cells, secretory cells and gametes. Using transgenic Hydra that express a FoxO-GFP fusion protein in cells of the interstitial lineage, we have determined that heat shock causes localization of the fusion protein to the nucleus. Our results also provide evidence that, as in bilaterian animals, Hydra FoxO activity is regulated by both Akt and JNK kinases. Conclusions These findings imply that basic mechanisms of FoxO regulation arose before the evolution of bilaterians and raise the possibility that FoxO is involved in stress responses of other cnidarian species, including corals. PMID:20657733

  18. Birdsong Decreases Protein Levels of FoxP2, a Molecule Required for Human Speech

    PubMed Central

    Miller, Julie E.; Spiteri, Elizabeth; Condro, Michael C.; Dosumu-Johnson, Ryan T.; Geschwind, Daniel H.; White, Stephanie A.

    2008-01-01

    Cognitive and motor deficits associated with language and speech are seen in humans harboring FOXP2 mutations. The neural bases for FOXP2 mutation-related deficits are thought to reside in structural abnormalities distributed across systems important for language and motor learning including the cerebral cortex, basal ganglia, and cerebellum. In these brain regions, our prior research showed that FoxP2 mRNA expression patterns are strikingly similar between developing humans and songbirds. Within the songbird brain, this pattern persists throughout life and includes the striatal subregion, Area X, that is dedicated to song development and maintenance. The persistent mRNA expression suggests a role for FoxP2 that extends beyond the formation of vocal learning circuits to their ongoing use. Because FoxP2 is a transcription factor, a role in shaping circuits likely depends on FoxP2 protein levels which might not always parallel mRNA levels. Indeed our current study shows that FoxP2 protein, like its mRNA, is acutely downregulated in mature Area X when adult males sing with some differences. Total corticosterone levels associated with the different behavioral contexts did not vary, indicating that differences in FoxP2 levels are not likely attributable to stress. Our data, together with recent reports on FoxP2's target genes, suggest that lowered FoxP2 levels may allow for expression of genes important for circuit modification and thus vocal variability. PMID:18701760

  19. Effect of taxol on the expression of FoxM1 ovarian cancer-associated gene

    PubMed Central

    LIU, ZENG; XIAO, YU; NING, SIQING; LI, ZHAO YUAN; ZHU, YUANYUAN; HU, GANG

    2016-01-01

    The incidence of ovarian cancer in women has been on the increase in recent years. The aim of the present study was to examine the effects of taxol on the expression of ovarian cancer-associated gene forkhead box transcription factor M1 (FoxM1) and its therapeutic effects for ovarian cancer. The expression of FoxM1 gene was examined in patients with or without ovarian cancer. RNA and protein levels of FoxM1 gene of ovarian cancer patients were detected at different time periods (1, 3, 6, 8, 12 and 24 months) after treatment with taxol. The results showed that the mRNA level of FoxM1 gene in patients with ovarian cancer was significantly higher than that in normal women (P<0.05). With time and progression of the disease, the expression of FoxM1 gene significantly increased in the patients not being administered taxol, whereas the expression of FoxM1 in the patients administered taxol was significantly lower comparatively (P<0.05). In conclusion, an asssociation was identified between the FoxM1 gene and ovarian cancer. The FoxM1 gene therefore promotes the generation and deterioration of ovarian cancer, whereas taxol reduces it. These findings provide a certain theoretical basis for the later treatment of ovarian cancer disease.

  20. A compendium of Caenhorabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks

    PubMed Central

    Reece-Hoyes, John S; Deplancke, Bart; Shingles, Jane; Grove, Christian A; Hope, Ian A; Walhout, Albertha JM

    2005-01-01

    Background Transcription regulatory networks are composed of interactions between transcription factors and their target genes. Whereas unicellular networks have been studied extensively, metazoan transcription regulatory networks remain largely unexplored. Caenorhabditis elegans provides a powerful model to study such metazoan networks because its genome is completely sequenced and many functional genomic tools are available. While C. elegans gene predictions have undergone continuous refinement, this is not true for the annotation of functional transcription factors. The comprehensive identification of transcription factors is essential for the systematic mapping of transcription regulatory networks because it enables the creation of physical transcription factor resources that can be used in assays to map interactions between transcription factors and their target genes. Results By computational searches and extensive manual curation, we have identified a compendium of 934 transcription factor genes (referred to as wTF2.0). We find that manual curation drastically reduces the number of both false positive and false negative transcription factor predictions. We discuss how transcription factor splice variants and dimer formation may affect the total number of functional transcription factors. In contrast to mouse transcription factor genes, we find that C. elegans transcription factor genes do not undergo significantly more splicing than other genes. This difference may contribute to differences in organism complexity. We identify candidate redundant worm transcription factor genes and orthologous worm and human transcription factor pairs. Finally, we discuss how wTF2.0 can be used together with physical transcription factor clone resources to facilitate the systematic mapping of C. elegans transcription regulatory networks. Conclusion wTF2.0 provides a starting point to decipher the transcription regulatory networks that control metazoan development and function

  1. Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence

    PubMed Central

    Littler, D. R.; Alvarez-Fernández, M.; Stein, A.; Hibbert, R. G.; Heidebrecht, T.; Aloy, P.; Medema, R. H.; Perrakis, A.

    2010-01-01

    FoxM1 is a member of the Forkhead family of transcription factors and is implicated in inducing cell proliferation and some forms of tumorigenesis. It binds promoter regions with a preference for tandem repeats of a consensus ‘TAAACA’ recognition sequence. The affinity of the isolated FoxM1 DNA-binding domain for this site is in the micromolar range, lower than observed for other Forkhead proteins. To explain these FoxM1 features, we determined the crystal structure of its DNA-binding domain in complex with a tandem recognition sequence. FoxM1 adopts the winged-helix fold, typical of the Forkhead family. Neither ‘wing’ of the fold however, makes significant contacts with the DNA, while the second, C-terminal, wing adopts an unusual ordered conformation across the back of the molecule. The lack of standard DNA–‘wing’ interactions may be a reason for FoxM1’s relatively low affinity. The role of the ‘wings’ is possibly undertaken by other FoxM1 regions outside the DBD, that could interact with the target DNA directly or mediate interactions with other binding partners. Finally, we were unable to show a clear preference for tandem consensus site recognition in DNA-binding, transcription activation or bioinformatics analysis; FoxM1's moniker, ‘Trident’, is not supported by our data. PMID:20360045

  2. Hepatic FoxOs Regulate Lipid Metabolism via Modulation of Expression of the Nicotinamide Phosphoribosyltransferase Gene*

    PubMed Central

    Tao, Rongya; Wei, Dan; Gao, Hanlin; Liu, Yunlong; DePinho, Ronald A.; Dong, X. Charlie

    2011-01-01

    FoxO transcription factors have been implicated in lipid metabolism; however, the underlying mechanisms are not well understood. Here, in an effort to elucidate such mechanisms, we examined the phenotypic consequences of liver-specific deletion of three members of the FoxO family: FoxO1, FoxO3, and FoxO4. These liver-specific triply null mice, designated LTKO, exhibited elevated triglycerides in the liver on regular chow diet. More remarkably, LTKO mice developed severe hepatic steatosis following placement on a high fat diet. Further analyses revealed that hepatic NAD+ levels and Sirt1 activity were decreased in the liver of the LTKO mice relative to controls. At the mechanistic level, expression profile analyses showed that LTKO livers had significantly down-regulated expression of the nicotinamide phosphoribosyltransferase (Nampt) gene encoding the rate-limiting enzyme in the salvage pathway of NAD+ biosynthesis. Luciferase reporter assays and chromatin immunoprecipitation analyses demonstrated that Nampt is a transcriptional target gene of FoxOs. Significantly, overexpression of Nampt gene reduced, whereas knockdown increased, hepatic triglyceride levels in vitro and in vivo. Thus, FoxOs control the Nampt gene expression and the NAD+ signaling in the regulation of hepatic triglyceride homeostasis. PMID:21388966

  3. [Two vital transcriptional factors Oct-4 and Nanog to keep the pluripotency and self-renewal of stem cells and related regulation network].

    PubMed

    Zhou, Yi-Ye; Zeng, Fan-Yi

    2008-05-01

    Oct-4 and Nanog are two critical transcriptional factors to keep pluripotency and self-renewal of stem cells in vivo and in vitro, and they usually express only in pluripotent cells and not in differentiated cells. They bind to the regulatory regions of targeted gene and often interact with other transcriptional factors and extracellular signal path components, such as Sox-2, FoxD3, LIF and BMP in specific tissues or developmental stages. So that all of these constitute a transcriptional crosstalk, and finally determine the cells destiny: keeping pluripotency or turning to differentiation. PMID:18487140

  4. Dynamics of Transcription Factor Binding Site Evolution

    PubMed Central

    Tuğrul, Murat; Paixão, Tiago; Barton, Nicholas H.; Tkačik, Gašper

    2015-01-01

    Evolution of gene regulation is crucial for our understanding of the phenotypic differences between species, populations and individuals. Sequence-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that determines gene expression and hence heritable phenotypic variation. We use a biophysical model for directional selection on gene expression to estimate the rates of gain and loss of transcription factor binding sites (TFBS) in finite populations under both point and insertion/deletion mutations. Our results show that these rates are typically slow for a single TFBS in an isolated DNA region, unless the selection is extremely strong. These rates decrease drastically with increasing TFBS length or increasingly specific protein-DNA interactions, making the evolution of sites longer than ∼ 10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the stationary distribution of binding sequences very slowly, making the equilibrium assumption questionable. The availability of longer regulatory sequences in which multiple binding sites can evolve simultaneously, the presence of “pre-sites” or partially decayed old sites in the initial sequence, and biophysical cooperativity between transcription factors, can all facilitate gain of TFBS and reconcile theoretical calculations with timescales inferred from comparative genomics. PMID:26545200

  5. Transcription factors of Lotus: regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity.

    PubMed

    Shelton, Dale; Stranne, Maria; Mikkelsen, Lisbeth; Pakseresht, Nima; Welham, Tracey; Hiraka, Hideki; Tabata, Satoshi; Sato, Shusei; Paquette, Suzanne; Wang, Trevor L; Martin, Cathie; Bailey, Paul

    2012-06-01

    Isoflavonoids are a class of phenylpropanoids made by legumes, and consumption of dietary isoflavonoids confers benefits to human health. Our aim is to understand the regulation of isoflavonoid biosynthesis. Many studies have shown the importance of transcription factors in regulating the transcription of one or more genes encoding enzymes in phenylpropanoid metabolism. In this study, we coupled bioinformatics and coexpression analysis to identify candidate genes encoding transcription factors involved in regulating isoflavonoid biosynthesis in Lotus (Lotus japonicus). Genes encoding proteins belonging to 39 of the main transcription factor families were examined by microarray analysis of RNA from leaf tissue that had been elicited with glutathione. Phylogenetic analyses of each transcription factor family were used to identify subgroups of proteins that were specific to L. japonicus or closely related to known regulators of the phenylpropanoid pathway in other species. R2R3MYB subgroup 2 genes showed increased expression after treatment with glutathione. One member of this subgroup, LjMYB14, was constitutively overexpressed in L. japonicus and induced the expression of at least 12 genes that encoded enzymes in the general phenylpropanoid and isoflavonoid pathways. A distinct set of six R2R3MYB subgroup 2-like genes was identified. We suggest that these subgroup 2 sister group proteins and those belonging to the main subgroup 2 have roles in inducing isoflavonoid biosynthesis. The induction of isoflavonoid production in L. japonicus also involves the coordinated down-regulation of competing biosynthetic pathways by changing the expression of other transcription factors. PMID:22529285

  6. Pioneer Transcription Factors Target Partial DNA Motifs on Nucleosomes to Initiate Reprogramming

    PubMed Central

    Soufi, Abdenour; Garcia, Meilin Fernandez; Jaroszewicz, Artur; Osman, Nebiyu; Pellegrini, Matteo; Zaret, Kenneth S.

    2015-01-01

    SUMMARY Pioneer transcription factors (TFs) access silent chromatin and initiate cell fate changes, using diverse types of DNA binding domains (DBDs). FoxA, the paradigm pioneer TF, has a winged helix DBD that resembles linker histone and thereby binds its target sites on nucleosomes and in compacted chromatin. Herein we compare the nucleosome and chromatin targeting activities of Oct4 (POU DBD), Sox2 (HMG box DBD), Klf4 (zinc finger DBD), and c-Myc (bHLH DBD), which together reprogram somatic cells to pluripotency. Purified Oct4, Sox2, and Klf4 proteins can bind nucleosomes in vitro, and in vivo they preferentially target silent sites enriched for nucleosomes. Pioneer activity relates simply to the ability of a given DBD to target partial motifs displayed on the nucleosome surface. Such partial motif recognition can occur by coordinate binding between factors. Our findings provide insight into how pioneer factors can target naïve chromatin sites. PMID:25892221

  7. Striatal FoxP2 Is Actively Regulated during Songbird Sensorimotor Learning

    PubMed Central

    Teramitsu, Ikuko; Poopatanapong, Amy; Torrisi, Salvatore; White, Stephanie A.

    2010-01-01

    Background Mutations in the FOXP2 transcription factor lead to language disorders with developmental onset. Accompanying structural abnormalities in cortico-striatal circuitry indicate that at least a portion of the behavioral phenotype is due to organizational deficits. We previously found parallel FoxP2 expression patterns in human and songbird cortico/pallio-striatal circuits important for learned vocalizations, suggesting that FoxP2's function in birdsong may generalize to speech. Methodology/Principal Findings We used zebra finches to address the question of whether FoxP2 is additionally important in the post-organizational function of these circuits. In both humans and songbirds, vocal learning depends on auditory guidance to achieve and maintain optimal vocal output. We tested whether deafening prior to or during the sensorimotor phase of song learning disrupted FoxP2 expression in song circuitry. As expected, the songs of deafened juveniles were abnormal, however basal FoxP2 levels were unaffected. In contrast, when hearing or deaf juveniles sang for two hours in the morning, FoxP2 was acutely down-regulated in the striatal song nucleus, area X. The extent of down-regulation was similar between hearing and deaf birds. Interestingly, levels of FoxP2 and singing were correlated only in hearing birds. Conclusions/Significance Hearing appears to link FoxP2 levels to the amount of vocal practice. As juvenile birds spent more time practicing than did adults, their FoxP2 levels are likely to be low more often. Behaviorally-driven reductions in the mRNA encoding this transcription factor could ultimately affect downstream molecules that function in vocal exploration, especially during sensorimotor learning. PMID:20062527

  8. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  9. FoxP2 and olfaction: divergence of FoxP2 expression in olfactory tubercle between different feeding habit bats.

    PubMed

    Chen, Qi; Wang, Lina; Jones, G; Metzner, W; Xuan, F J; Yin, Jiangxia; Sun, Y

    2013-12-01

    FoxP2 is a member of the winged helix/forkhead class of transcription factors. Despite FoxP2 is found to have particular relevance to speech and language, the role of this gene is broader and not yet fully elucidated. In this study, we investigated the expression of FoxP2 in the brains of bats with different feeding habits (two frugivorous species and three insectivorous species). We found FoxP2 expression in the olfactory tubercle of frugivorous species is significantly higher than that in insectivorous species. Difference of FoxP2 expression was not observed within each of the frugivorous or insectivorous group. The diverse expression patterns in olfactory tubercle between two kinds of bats indicate FoxP2 has a close relation with olfactory tubercle associated functions, suggesting its important role in sensory integration within the olfactory tubercle and such a discrepancy of FoxP2 expression in olfactory tubercle may take responsibility for the different feeding behaviors of frugivorous and insectivorous bats. PMID:24275589

  10. TATA-binding protein and transcription factor IIB induce transcript slipping during early transcription by RNA polymerase II.

    PubMed

    Gilman, Benjamin; Drullinger, Linda F; Kugel, Jennifer F; Goodrich, James A

    2009-04-01

    To better understand the mechanism of steps in early transcription by RNA polymerase II (pol II), we investigated the molecular determinants of transcript slipping within complexes assembled on promoters containing a pre-melted transcription bubble from -9 to +3. Transcript slippage occurs when an RNA transcript contains a repetitive sequence that allows the transcript to slip back and pair with the template strand of the DNA at a new register before transcription continues. We established the contributions of individual transcription factors, DNA elements, and RNA length to slipping on a heteroduplex template using a highly purified human pol II transcription system. We found that transcripts slip at a very defined point in the transcription reaction, after pol II completes phosphodiester bond synthesis at register +5. This point is set by the position of the polymerase active site on the DNA template, as opposed to the length of the transcript, as well as by a repetitive CUCU sequence that must occur from +2 to +5. Interestingly, slipping at this juncture is induced by TATA-binding protein and transcription factor IIB and requires a TATA box but not a transcription factor IIB recognition sequence. We propose a model in which transcribing complexes, upon completing phosphodiester bond synthesis at register +5, enter one of two branches in which they either complete productive synthesis of the transcript or undergo multiple rounds of transcript slipping. PMID:19193635

  11. PAX transcription factors in neural crest development.

    PubMed

    Monsoro-Burq, Anne H

    2015-08-01

    The nine vertebrate PAX transcription factors (PAX1-PAX9) play essential roles during early development and organogenesis. Pax genes were identified in vertebrates using their homology with the Drosophila melanogaster paired gene DNA-binding domain. PAX1-9 functions are largely conserved throughout vertebrate evolution, in particular during central nervous system and neural crest development. The neural crest is a vertebrate invention, which gives rise to numerous derivatives during organogenesis, including neurons and glia of the peripheral nervous system, craniofacial skeleton and mesenchyme, the heart outflow tract, endocrine and pigment cells. Human and mouse spontaneous mutations as well as experimental analyses have evidenced the critical and diverse functions of PAX factors during neural crest development. Recent studies have highlighted the role of PAX3 and PAX7 in neural crest induction. Additionally, several PAX proteins - PAX1, 3, 7, 9 - regulate cell proliferation, migration and determination in multiple neural crest-derived lineages, such as cardiac, sensory, and enteric neural crest, pigment cells, glia, craniofacial skeleton and teeth, or in organs developing in close relationship with the neural crest such as the thymus and parathyroids. The diverse PAX molecular functions during neural crest formation rely on fine-tuned modulations of their transcriptional transactivation properties. These modulations are generated by multiple means, such as different roles for the various isoforms (formed by alternative splicing), or posttranslational modifications which alter protein-DNA binding, or carefully orchestrated protein-protein interactions with various co-factors which control PAX proteins activity. Understanding these regulations is the key to decipher the versatile roles of PAX transcription factors in neural crest development, differentiation and disease. PMID:26410165

  12. FoxO Proteins in the Nervous System

    PubMed Central

    Maiese, Kenneth

    2015-01-01

    Acute as well as chronic disorders of the nervous system lead to significant morbidity and mortality for millions of individuals globally. Given the ability to govern stem cell proliferation and differentiated cell survival, mammalian forkhead transcription factors of the forkhead box class O (FoxO) are increasingly being identified as potential targets for disorders of the nervous system, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and auditory neuronal disease. FoxO proteins are present throughout the body, but they are selectively expressed in the nervous system and have diverse biological functions. The forkhead O class transcription factors interface with an array of signal transduction pathways that include protein kinase B (Akt), serum- and glucocorticoid-inducible protein kinase (SgK), IκB kinase (IKK), silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), growth factors, and Wnt signaling that can determine the activity and integrity of FoxO proteins. Ultimately, there exists a complex interplay between FoxO proteins and their signal transduction pathways that can significantly impact programmed cell death pathways of apoptosis and autophagy as well as the development of clinical strategies for the treatment of neurodegenerative disorders. PMID:26171319

  13. FoxO proteins in the nervous system.

    PubMed

    Maiese, Kenneth

    2015-01-01

    Acute as well as chronic disorders of the nervous system lead to significant morbidity and mortality for millions of individuals globally. Given the ability to govern stem cell proliferation and differentiated cell survival, mammalian forkhead transcription factors of the forkhead box class O (FoxO) are increasingly being identified as potential targets for disorders of the nervous system, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and auditory neuronal disease. FoxO proteins are present throughout the body, but they are selectively expressed in the nervous system and have diverse biological functions. The forkhead O class transcription factors interface with an array of signal transduction pathways that include protein kinase B (Akt), serum- and glucocorticoid-inducible protein kinase (SgK), IκB kinase (IKK), silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), growth factors, and Wnt signaling that can determine the activity and integrity of FoxO proteins. Ultimately, there exists a complex interplay between FoxO proteins and their signal transduction pathways that can significantly impact programmed cell death pathways of apoptosis and autophagy as well as the development of clinical strategies for the treatment of neurodegenerative disorders. PMID:26171319

  14. Flying-Fox Species Density - A Spatial Risk Factor for Hendra Virus Infection in Horses in Eastern Australia

    PubMed Central

    Smith, Craig; Skelly, Chris; Kung, Nina; Roberts, Billie; Field, Hume

    2014-01-01

    Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran’s I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging ‘footprint’ of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors. PMID:24936789

  15. Flying-fox species density--a spatial risk factor for Hendra virus infection in horses in eastern Australia.

    PubMed

    Smith, Craig; Skelly, Chris; Kung, Nina; Roberts, Billie; Field, Hume

    2014-01-01

    Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran's I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging 'footprint' of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors. PMID:24936789

  16. Regulation of transcription factors via natural decoys in genomic DNA.

    PubMed

    Kemme, Catherine A; Nguyen, Dan; Chattopadhyay, Abhijnan; Iwahara, Junji

    2016-08-01

    Eukaryotic genomic DNA contains numerous high-affinity sites for transcription factors. Only a small fraction of these sites directly regulates target genes. Other high-affinity sites can serve as naturally present decoys that sequester transcription factors. Such natural decoys in genomic DNA may provide novel regulatory mechanisms for transcription factors. PMID:27384377

  17. FoxM1 influences embryo implantation and is regulated by 17 beta-estradiol and progesterone in mouse uteri and endometrium cells.

    PubMed

    Xie, Yunpeng; Cui, Dan; Kong, Ying

    2014-01-01

    To be a successful implantation, endometrial receptivity should be established. Forkhead box M1 (FoxM1) is described as a major oncogenic transcription factor in tumor initiation, promotion, and progression. FoxM1 regulates the expression of lots of targeted genes important to cell differentiation, proliferation and apoptosis; cell-cycle progression; and tumor angiogenesis, migration, invasion, and metastasis. According to these functions, we believe that FoxM1 should also play an essential role in embryo implantation. To test our hypothesis, we observed the expression and distribution of FoxM1 during the early pregnancy of mouse. Then, we used Immunohistochemistry to examine the expression of FoxM1 induced by E2 and/or P4 in the ovariectomized mouse uterus and human endometrium cells. This study further investigated whether FoxM1 was an important factor in the implantation. Our results showed that FoxM1 expressed in the mouse uterus during early pregnancy (Day 1 to 5). The expression of FoxM1 gradually increased along pregnancy process; FoxM1 expression could be increased by E2. On the contrary, FoxM1 expression could be decreased by P4 and E2 plus P4. We also detected the proliferation of human endometrium cells. We found that E2 might promote cells proliferation, while P4 and E2 plus P4 inhibited cells proliferation; Inhibiting FoxM1 could interfere the embryo implantation of mouse. Amplification or inhibiting of FoxM1 in JAR cells can increase or decrease the adhesion rate to Rl95-2 and HEC-1A cells separately. Our data indicate that FoxM1 might play an important role during the process of mouse embryo implantation. PMID:25400737

  18. FoxM1 influences embryo implantation and is regulated by 17 beta-estradiol and progesterone in mouse uteri and endometrium cells

    PubMed Central

    Xie, Yunpeng; Cui, Dan; Kong, Ying

    2014-01-01

    To be a successful implantation, endometrial receptivity should be established. Forkhead box M1 (FoxM1) is described as a major oncogenic transcription factor in tumor initiation, promotion, and progression. FoxM1 regulates the expression of lots of targeted genes important to cell differentiation, proliferation and apoptosis; cell-cycle progression; and tumor angiogenesis, migration, invasion, and metastasis. According to these functions, we believe that FoxM1 should also play an essential role in embryo implantation. To test our hypothesis, we observed the expression and distribution of FoxM1 during the early pregnancy of mouse. Then, we used Immunohistochemistry to examine the expression of FoxM1 induced by E2 and/or P4 in the ovariectomized mouse uterus and human endometrium cells. This study further investigated whether FoxM1 was an important factor in the implantation. Our results showed that FoxM1 expressed in the mouse uterus during early pregnancy (Day 1 to 5). The expression of FoxM1 gradually increased along pregnancy process; FoxM1 expression could be increased by E2. On the contrary, FoxM1 expression could be decreased by P4 and E2 plus P4. We also detected the proliferation of human endometrium cells. We found that E2 might promote cells proliferation, while P4 and E2 plus P4 inhibited cells proliferation; Inhibiting FoxM1 could interfere the embryo implantation of mouse. Amplification or inhibiting of FoxM1 in JAR cells can increase or decrease the adhesion rate to Rl95-2 and HEC-1A cells separately. Our data indicate that FoxM1 might play an important role during the process of mouse embryo implantation. PMID:25400737

  19. Effects of Caenorhabditis elegans sgk-1 mutations on lifespan, stress resistance, and DAF-16/FoxO regulation.

    PubMed

    Chen, Albert Tzong-Yang; Guo, Chunfang; Dumas, Kathleen J; Ashrafi, Kaveh; Hu, Patrick J

    2013-10-01

    The AGC family serine-threonine kinases Akt and Sgk are similar in primary amino acid sequence and in vitro substrate specificity, and both kinases are thought to directly phosphorylate and inhibit FoxO transcription factors. In the nematode Caenorhabditis elegans, it is well established that AKT-1 controls dauer arrest and lifespan by regulating the subcellular localization of the FoxO transcription factor DAF-16. SGK-1 is thought to act similarly to AKT-1 in lifespan control by phosphorylating and inhibiting the nuclear translocation of DAF-16/FoxO. Using sgk-1 null and gain-of-function mutants, we now provide multiple lines of evidence indicating that AKT-1 and SGK-1 influence C. elegans lifespan, stress resistance, and DAF-16/FoxO activity in fundamentally different ways. Whereas AKT-1 shortens lifespan, SGK-1 promotes longevity in a DAF-16-/FoxO-dependent manner. In contrast to AKT-1, which reduces resistance to multiple stresses, SGK-1 promotes resistance to oxidative stress and ultraviolet radiation but inhibits thermotolerance. Analysis of several DAF-16/FoxO target genes that are repressed by AKT-1 reveals that SGK-1 represses a subset of these genes while having little influence on the expression of others. Accordingly, unlike AKT-1, which promotes the cytoplasmic sequestration of DAF-16/FoxO, SGK-1 does not influence DAF-16/FoxO subcellular localization. Thus, in spite of their similar in vitro substrate specificities, Akt and Sgk influence longevity, stress resistance, and FoxO activity through distinct mechanisms in vivo. Our findings highlight the need for a re-evaluation of current paradigms of FoxO regulation by Sgk. PMID:23786484

  20. Transcription of Toll-Like Receptors 2, 3, 4 and 9, FoxP3 and Th17 Cytokines in a Susceptible Experimental Model of Canine Leishmania infantum Infection

    PubMed Central

    Hosein, Shazia; Rodríguez-Cortés, Alhelí; Blake, Damer P.; Allenspach, Karin; Alberola, Jordi; Solano-Gallego, Laia

    2015-01-01

    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in

  1. FoxOs in neural stem cell fate decision.

    PubMed

    Ro, Seung-Hyun; Liu, Debra; Yeo, Hyeonju; Paik, Ji-hye

    2013-06-01

    Neural stem cells (NSCs) persist over the lifespan of mammals to give rise to committed progenitors and their differentiated cells in order to maintain the brain homeostasis. To this end, NSCs must be able to self-renew and otherwise maintain their quiescence. Suppression of aberrant proliferation or undesired differentiation is crucial to preclude either malignant growth or precocious depletion of NSCs. The PI3K-Akt-FoxO signaling pathway plays a central role in the regulation of multiple stem cells including one in the mammalian brain. In particular, members of FoxO family transcription factors are highly expressed in these stem cells. As an important downstream effector of growth, differentiation, and stress stimuli, mammalian FoxO transcription factor family controls cellular proliferation, oxidative stress response, homeostasis, and eventual maintenance of long-term repopulating potential. The review will focus on the current understanding of FoxO function in NSCs as well as discuss their biological activities that contribute to determining neural stem cell fate. PMID:22902436

  2. Transcription factor binding energy vs. biological function

    NASA Astrophysics Data System (ADS)

    Djordjevic, M.; Grotewold, E.

    2007-03-01

    Transcription factors (TFs) are proteins that bind to DNA and regulate expression of genes. Identification of transcription factor binding sites within the regulatory segments of genomic DNA is an important step towards understanding of gene regulatory networks. Recent theoretical advances that we developed [1,2], allow us to infer TF-DNA interaction parameters from in-vitro selection experiments [3]. We use more than 6000 binding sequences [3], assembled under controlled conditions, to obtain protein-DNA interaction parameters for a mammalian TF with up to now unprecedented accuracy. Can one accurately identify biologically functional TF binding sites (i.e. the binding sites that regulate gene expression), even with the best possible protein-DNA interaction parameters? To address this issue we i) compare our prediction of protein binding with gene expression data, ii) use evolutionary comparison between related mammalian genomes. Our results strongly suggest that in a genome there exists a large number of randomly occurring high energy binding sites that are not biologically functional. [1] M Djordjevic, submitted to Biomol. Eng. [2] M. Djordjevic and A. M. Sengupta, Phys. Biol. 3: 13, 2006. [3] E. Roulet et al., Nature Biotech. 20: 831, 2002.

  3. Neural FoxP2 and FoxP1 expression in the budgerigar, an avian species with adult vocal learning

    PubMed Central

    Hara, Erina; Perez, Jemima M.; Whitney, Osceola; Chen, Qianqian; White, Stephanie A.; Wright, Timothy F.

    2015-01-01

    Vocal learning underlies acquisition of both language in humans and vocal signals in some avian taxa. These bird groups and humans exhibit convergent developmental phases and associated brain pathways for vocal communication. The transcription factor FoxP2 plays critical roles in vocal learning in humans and songbirds. Another member of the forkhead box gene family, FoxP1 also shows high expression in brain areas involved in vocal learning and production. Here, we investigate FoxP2 and FoxP1 mRNA and protein in adult male budgerigars (Melopsittacus undulatus), a parrot species that exhibits vocal learning as both juveniles and adults. To examine these molecules in adult vocal learners, we compared their expression patterns in the budgerigar striatal nucleus involved in vocal learning, magnocellular nucleus of the medial striatum (MMSt), across birds with different vocal states, such as vocalizing to a female (directed), vocalizing alone (undirected), and non-vocalizing. We found that both FoxP2 mRNA and protein expressions were consistently lower in MMSt than in the adjacent striatum regardless of the vocal states, whereas previous work has shown that songbirds exhibit downregulation in the homologous region, Area X, only after singing alone. In contrast, FoxP1 levels were high in MMSt compared to the adjacent striatum in all groups. Taken together these results strengthen the general hypothesis that FoxP2 and FoxP1 have specialized expression in vocal nuclei across a range of taxa, and suggest that the adult vocal plasticity seen in budgerigars may be a product of persistent down-regulation of FoxP2 in MMSt. PMID:25601574

  4. Neural FoxP2 and FoxP1 expression in the budgerigar, an avian species with adult vocal learning.

    PubMed

    Hara, Erina; Perez, Jemima M; Whitney, Osceola; Chen, Qianqian; White, Stephanie A; Wright, Timothy F

    2015-04-15

    Vocal learning underlies acquisition of both language in humans and vocal signals in some avian taxa. These bird groups and humans exhibit convergent developmental phases and associated brain pathways for vocal communication. The transcription factor FoxP2 plays critical roles in vocal learning in humans and songbirds. Another member of the forkhead box gene family, FoxP1 also shows high expression in brain areas involved in vocal learning and production. Here, we investigate FoxP2 and FoxP1 mRNA and protein in adult male budgerigars (Melopsittacus undulatus), a parrot species that exhibits vocal learning as both juveniles and adults. To examine these molecules in adult vocal learners, we compared their expression patterns in the budgerigar striatal nucleus involved in vocal learning, magnocellular nucleus of the medial striatum (MMSt), across birds with different vocal states, such as vocalizing to a female (directed), vocalizing alone (undirected), and non-vocalizing. We found that both FoxP2 mRNA and protein expressions were consistently lower in MMSt than in the adjacent striatum regardless of the vocal states, whereas previous work has shown that songbirds exhibit down-regulation in the homologous region, Area X, only after singing alone. In contrast, FoxP1 levels were high in MMSt compared to the adjacent striatum in all groups. Taken together these results strengthen the general hypothesis that FoxP2 and FoxP1 have specialized expression in vocal nuclei across a range of taxa, and suggest that the adult vocal plasticity seen in budgerigars may be a product of persistent down-regulation of FoxP2 in MMSt. PMID:25601574

  5. FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells.

    PubMed

    Yeo, Hyeonju; Lyssiotis, Costas A; Zhang, Yuqing; Ying, Haoqiang; Asara, John M; Cantley, Lewis C; Paik, Ji-Hye

    2013-10-01

    Forkhead Box O (FoxO) transcription factors act in adult stem cells to preserve their regenerative potential. Previously, we reported that FoxO maintains the long-term proliferative capacity of neural stem/progenitor cells (NPCs), and that this occurs, in part, through the maintenance of redox homeostasis. Herein, we demonstrate that among the FoxO3-regulated genes in NPCs are a host of enzymes in central carbon metabolism that act to combat reactive oxygen species (ROS) by directing the flow of glucose and glutamine carbon into defined metabolic pathways. Characterization of the metabolic circuit observed upon loss of FoxO3 revealed a drop in glutaminolysis and filling of the tricarboxylic acid (TCA) cycle. Additionally, we found that glucose uptake, glucose metabolism and oxidative pentose phosphate pathway activity were similarly repressed in the absence of FoxO3. Finally, we demonstrate that impaired glucose and glutamine metabolism compromises the proliferative potential of NPCs and that this is exacerbated following FoxO3 loss. Collectively, our findings show that a FoxO3-dependent metabolic programme supports redox balance and the neurogenic potential of NPCs. PMID:24013118

  6. Behavior-Linked FoxP2 Regulation Enables Zebra Finch Vocal Learning

    PubMed Central

    Heston, Jonathan B.

    2015-01-01

    Mutations in the FOXP2 transcription factor cause an inherited speech and language disorder, but how FoxP2 contributes to learning of these vocal communication signals remains unclear. FoxP2 is enriched in corticostriatal circuits of both human and songbird brains. Experimental knockdown of this enrichment in song control neurons of the zebra finch basal ganglia impairs tutor song imitation, indicating that adequate FoxP2 levels are necessary for normal vocal learning. In unmanipulated birds, vocal practice acutely downregulates FoxP2, leading to increased vocal variability and dynamic regulation of FoxP2 target genes. To determine whether this behavioral regulation is important for song learning, here, we used viral-driven overexpression of FoxP2 to counteract its downregulation. This manipulation disrupted the acute effects of song practice on vocal variability and caused inaccurate song imitation. Together, these findings indicate that dynamic behavior-linked regulation of FoxP2, rather than absolute levels, is critical for vocal learning. PMID:25698728

  7. Behavior-linked FoxP2 regulation enables zebra finch vocal learning.

    PubMed

    Heston, Jonathan B; White, Stephanie A

    2015-02-18

    Mutations in the FOXP2 transcription factor cause an inherited speech and language disorder, but how FoxP2 contributes to learning of these vocal communication signals remains unclear. FoxP2 is enriched in corticostriatal circuits of both human and songbird brains. Experimental knockdown of this enrichment in song control neurons of the zebra finch basal ganglia impairs tutor song imitation, indicating that adequate FoxP2 levels are necessary for normal vocal learning. In unmanipulated birds, vocal practice acutely downregulates FoxP2, leading to increased vocal variability and dynamic regulation of FoxP2 target genes. To determine whether this behavioral regulation is important for song learning, here, we used viral-driven overexpression of FoxP2 to counteract its downregulation. This manipulation disrupted the acute effects of song practice on vocal variability and caused inaccurate song imitation. Together, these findings indicate that dynamic behavior-linked regulation of FoxP2, rather than absolute levels, is critical for vocal learning. PMID:25698728

  8. FoxP Influences the Speed and Accuracy of a Perceptual Decision in Drosophila+

    PubMed Central

    DasGupta, Shamik; Ferreira, Clara Howcroft; Miesenböck, Gero

    2014-01-01

    Decisions take time if information gradually accumulates to a response threshold, but the neural mechanisms of integration and thresholding are unknown. We characterized a decision process in Drosophila that bears the behavioral signature of evidence accumulation. As stimulus contrast in trained odor discriminations decreased, reaction times increased and perceptual accuracy declined, in quantitative agreement with a drift-diffusion model. FoxP mutants took longer than wild-type flies to form decisions of similar or reduced accuracy, especially in difficult, low-contrast tasks. RNAi knock-down of FoxP in αβ core Kenyon cells, or the overexpression of a potassium conductance in these neurons, recapitulated the FoxP mutant phenotype. A mushroom body subdomain whose development or function require the transcription factor FoxP thus supports the progression of a decision towards commitment. PMID:24855268

  9. Late-Postnatal Cannabinoid Exposure Persistently Increases FoxP2 Expression within Zebra Finch Striatum

    PubMed Central

    Soderstrom, Ken; Luo, Bin

    2010-01-01

    Prior work has shown that cannabinoid exposure of zebra finches during sensorimotor stages of vocal development alters song patterns produced in adulthood. We are currently working to identify physiological substrates for this altered song learning. FoxP2 is a transcription factor associated with altered vocal development in both zebra finches and humans. This protein shows a distinct pattern of expression within Area X of striatum that coincides with peak expression of CB1 cannabinoid receptors during sensorimotor learning. Coincident expression in a brain region essential for song learning led us to test for a potential signaling interaction. We have found that cannabinoid agonists acutely increase expression of FoxP2 throughout striatum. When administered during sensorimotor song learning, cannabinoids increase basal levels of striatal FoxP2 expression in adulthood. Thus, song-altering cannabinoid treatments are associated with persistent increases in basal expression of FoxP2 in zebra finch striatum. PMID:20017118

  10. Targeting forkhead box transcription factors FOXM1 and FOXO in leukemia (Review).

    PubMed

    Zhu, Hong

    2014-10-01

    Deregulation of forkhead box (FOX) proteins has been found in many genetic diseases and malignancies including leukemia. Leukemia is a common neoplastic disease of the blood or bone marrow characterized by the presence of immature leukocytes and is one of the leading causes of death due to cancer. Forkhead transcription factors, FOXM1 and FOXO family members (FOXOs), are important mediators in leukemia development. Aberrant expression of FOXM1 and FOXOs results in leukemogenesis. Usually the expression of FOXM1 is upregulated, whereas the expression of FOXOs is downregulated due to phosphorylation, nuclear exclusion and degradation in leukemia. On the one hand, FOXOs are bona fide tumor suppressors, on the other hand, active FOXOs maintain leukemia stem cells and stimulate drug resistance genes, contributing to leukemogenesis. FOXM1 and FOXOs have been proven to be potential targets for the development of leukemia therapeutics. They are also valuable diagnostic and prognostic markers in leukemia for clinical applications. This review summarizes the present knowledge concerning the molecular mechanisms by which FOXM1 and FOXOs modulate leukemogenesis and leukemia development, the clinical relevance of these FOX proteins in leukemia and related areas that warrant further investigation. PMID:25175498

  11. Characterization of human mitochondrial ferritin promoter: identification of transcription factors and evidences of epigenetic control.

    PubMed

    Guaraldo, Michela; Santambrogio, Paolo; Rovelli, Elisabetta; Di Savino, Augusta; Saglio, Giuseppe; Cittaro, Davide; Roetto, Antonella; Levi, Sonia

    2016-01-01

    Mitochondrial ferritin (FtMt) is an iron storage protein belonging to the ferritin family but, unlike the cytosolic ferritin, it has an iron-unrelated restricted tissue expression. FtMt appears to be preferentially expressed in cell types characterized by high metabolic activity and oxygen consumption, suggesting a role in protecting mitochondria from iron-dependent oxidative damage. The human gene (FTMT) is intronless and its promoter region has not been described yet. To analyze the regulatory mechanisms controlling FTMT expression, we characterized the 5' flanking region upstream the transcriptional starting site of FTMT by in silico enquiry of sequences conservation, DNA deletion analysis, and ChIP assay. The data revealed a minimal promoter region and identified the presence of SP1, CREB and YY1 as positive regulators, and GATA2, FoxA1 and C/EBPβ as inhibitors of the transcriptional regulation. Furthermore, the FTMT transcription is increased by acetylating and de-methylating agent treatments in K562 and HeLa cells. These treatments up-regulate FtMt expression even in fibroblasts derived from a Friedreich ataxia patient, where it might exert a beneficial effect against mitochondrial oxidative damage. The expression of FTMT appears regulated by a complex mechanism involving epigenetic events and interplay between transcription factors. PMID:27625068

  12. FoxO3 controls autophagy in skeletal muscle in vivo.

    PubMed

    Mammucari, Cristina; Milan, Giulia; Romanello, Vanina; Masiero, Eva; Rudolf, Ruediger; Del Piccolo, Paola; Burden, Steven J; Di Lisi, Raffaella; Sandri, Claudia; Zhao, Jinghui; Goldberg, Alfred L; Schiaffino, Stefano; Sandri, Marco

    2007-12-01

    Autophagy allows cell survival during starvation through the bulk degradation of proteins and organelles by lysosomal enzymes. However, the mechanisms responsible for the induction and regulation of the autophagy program are poorly understood. Here we show that the FoxO3 transcription factor, which plays a critical role in muscle atrophy, is necessary and sufficient for the induction of autophagy in skeletal muscle in vivo. Akt/PKB activation blocks FoxO3 activation and autophagy, and this effect is not prevented by rapamycin. FoxO3 controls the transcription of autophagy-related genes, including LC3 and Bnip3, and Bnip3 appears to mediate the effect of FoxO3 on autophagy. This effect is not prevented by proteasome inhibitors. Thus, FoxO3 controls the two major systems of protein breakdown in skeletal muscle, the ubiquitin-proteasomal and autophagic/lysosomal pathways, independently. These findings point to FoxO3 and Bnip3 as potential therapeutic targets in muscle wasting disorders and other degenerative and neoplastic diseases in which autophagy is involved. PMID:18054315

  13. FoxC2 Enhances BMP7-Mediated Anabolism in Nucleus Pulposus Cells of the Intervertebral Disc

    PubMed Central

    Wang, Zheng; Fu, Changfeng; Chen, Yong; Xu, Feng; Wang, Zhenyu; Qu, Zhigang; Liu, Yi

    2016-01-01

    Bone-morphogenetic protein-7 (BMP-7) is a growth factor that plays a major role in mediating anabolism and anti-catabolism of the intervertebral disc matrix and cell homeostasis. In osteoblasts, Forkhead box protein C2 (FoxC2) is a downstream target of BMPs and promotes cell proliferation and differentiation. However, the role FoxC2 may play in degenerative human intervertebral disc tissue and the relationship between FoxC2 and BMP-7 in nucleus pulposus (NP) cells remain to be elucidated. This study aims to investigate the presence and signaling mechanisms of FoxC2 in degenerative human intervertebral disc tissue and NP cells. Western blot and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses were used to measure FoxC2 expression in the NP tissue and cells. Transfections were carried out to measure the effect of FoxC2 on BMP-7-mediated extracellular matrix upregulation. Adenoviral knock-down of Smad1 was performed to investigate the mechanism of BMP-7-induced FoxC2 expression. In degenerative NP tissue, FoxC2 was markedly upregulated and positively correlated with increased disc degeneration. Induction of NP cell proliferation was confirmed by using cell counting kit-8 assay, immunocytochemistry and real-time qRT-PCR for Ki67. FoxC2 led to decreased noggin expression and increased Smad1/5/8 phosphorylation. During combined treatment with BMP-7, FoxC2 greatly potentiated anabolism through synergistic mechanisms on ECM formation. Combination therapy using BMP-7 and FoxC2 may be beneficial to the treatment of intervertebral disc degeneration. PMID:26824865

  14. Emerging factors associated with the decline of a gray fox population and multi-scale land cover associations of mesopredators in the Chicago metropolitan area.

    SciTech Connect

    Willingham, Alison N.; /Ohio State U.

    2008-01-01

    mortality due to coyote predation was documented and disease was a major mortality source for foxes. The declining relative abundance of gray fox in Illinois is likely a result of a combination of factors. Assessment of habitat associations indicated that urban mesopredators, particularly coyotes and foxes, perceived the landscape as relatively homogeneous and that urban mesopredators interacted with the environment at scales larger than that accommodated by remnant habitat patches. Coyote and fox presence was found to be associated with a high degree of urban development at large and intermediate spatial scales. However, at a small spatial scale fox presence was associated with high density urban land cover whereas coyote presence was associated with urban development with increased forest cover. Urban habitats can offer a diversity of prey items and anthropogenic resources and natural land cover could offer coyotes daytime resting opportunities in urban areas where they may not be as tolerated as smaller foxes. Raccoons and opossums were found to utilize moderately developed landscapes with interspersed natural and semi-natural land covers at a large spatial scale, which may facilitate dispersal movements. At intermediate and small spatial scales, both species were found to utilize areas that were moderately developed and included forested land cover. These results indicated that raccoons and opossums used natural areas in proximity to anthropogenic resources. At a large spatial scale, skunk presence was associated with highly developed landscapes with interspersed natural and semi-natural land covers. This may indicate that skunks perceived the urban matrix as more homogeneous than raccoons or opossums. At an intermediate spatial scale skunks were associated with moderate levels of development and increased forest cover, which indicated that they might utilize natural land cover in proximity to human-dominated land cover. At the smallest spatial scale skunk presence was

  15. The Forkhead Transcription Factor FOXK2 Promotes AP-1-Mediated Transcriptional Regulation

    PubMed Central

    Ji, Zongling; Donaldson, Ian J.; Liu, Jingru; Hayes, Andrew; Zeef, Leo A. H.

    2012-01-01

    The transcriptional control circuitry in eukaryotic cells is complex and is orchestrated by combinatorially acting transcription factors. Forkhead transcription factors often function in concert with heterotypic transcription factors to specify distinct transcriptional programs. Here, we demonstrate that FOXK2 participates in combinatorial transcriptional control with the AP-1 transcription factor. FOXK2 binding regions are widespread throughout the genome and are often coassociated with AP-1 binding motifs. FOXK2 acts to promote AP-1-dependent gene expression changes in response to activation of the AP-1 pathway. In this context, FOXK2 is required for the efficient recruitment of AP-1 to chromatin. Thus, we have uncovered an important new molecular mechanism that controls AP-1-dependent gene expression. PMID:22083952

  16. Transcription factor binding predicts histone modifications in human cell lines

    PubMed Central

    Benveniste, Dan; Sonntag, Hans-Joachim; Sanguinetti, Guido; Sproul, Duncan

    2014-01-01

    Gene expression in higher organisms is thought to be regulated by a complex network of transcription factor binding and chromatin modifications, yet the relative importance of these two factors remains a matter of debate. Here, we show that a computational approach allows surprisingly accurate prediction of histone modifications solely from knowledge of transcription factor binding both at promoters and at potential distal regulatory elements. This accuracy significantly and substantially exceeds what could be achieved by using DNA sequence as an input feature. Remarkably, we show that transcription factor binding enables strikingly accurate predictions across different cell lines. Analysis of the relative importance of specific transcription factors as predictors of specific histone marks recapitulated known interactions between transcription factors and histone modifiers. Our results demonstrate that reported associations between histone marks and gene expression may be indirect effects caused by interactions between transcription factors and histone-modifying complexes. PMID:25187560

  17. OPN induces FoxM1 expression and localization through ERK 1/2, AKT, and p38 signaling pathway in HEC-1A cells.

    PubMed

    Xie, Yunpeng; Li, Yinghua; Kong, Ying

    2014-01-01

    Mammalian embryo implantation is an extremely complex process and requires endometrial receptivity. In order to establish this receptivity, sequential proliferation and differentiation during the menstrual cycle is necessary. Forkhead box M1 (FoxM1) is described as a major oncogenic transcription factor in tumor initiation, promotion and progression. According to these functions, we believe that FoxM1 should also play an essential role in embryo implantation. Osteopontin (OPN), an adhesion molecule, has been studied extensively in reproduction. In this study, we observed the expression and distribution of FoxM1 during the proliferative-phase and secretory-phase human endometrium and the pre-implantation mouse uterus firstly. Then we observed the relationship between OPN and FoxM1. Our results showed that FoxM1 was mainly distributed in glandular epithelium. OPN increased the expression of FoxM1 in the human uterine epithelial cell line HEC-1A cells in a time- and concentration-dependent manner. OPN regulates FoxM1 to influence HEC-1A cell proliferation through extracellular regulated protein kinases (ERK 1/2), protein kinase B (PKB, AKT), and the p38 mitogen activated protein kinases (p38MAPK, p38) signaling pathway. Inhibition of ERK 1/2, AKT and p38 suppressed OPN-induced FoxM1 expression and location. Our data indicate that FoxM1 might be regulated by OPN to influence endometrial proliferation to establish endometrial receptivity. PMID:25522167

  18. OPN Induces FoxM1 Expression and Localization through ERK 1/2, AKT, and p38 Signaling Pathway in HEC-1A Cells

    PubMed Central

    Xie, Yunpeng; Li, Yinghua; Kong, Ying

    2014-01-01

    Mammalian embryo implantation is an extremely complex process and requires endometrial receptivity. In order to establish this receptivity, sequential proliferation and differentiation during the menstrual cycle is necessary. Forkhead box M1 (FoxM1) is described as a major oncogenic transcription factor in tumor initiation, promotion and progression. According to these functions, we believe that FoxM1 should also play an essential role in embryo implantation. Osteopontin (OPN), an adhesion molecule, has been studied extensively in reproduction. In this study, we observed the expression and distribution of FoxM1 during the proliferative-phase and secretory-phase human endometrium and the pre-implantation mouse uterus firstly. Then we observed the relationship between OPN and FoxM1. Our results showed that FoxM1 was mainly distributed in glandular epithelium. OPN increased the expression of FoxM1 in the human uterine epithelial cell line HEC-1A cells in a time- and concentration-dependent manner. OPN regulates FoxM1 to influence HEC-1A cell proliferation through extracellular regulated protein kinases (ERK 1/2), protein kinase B (PKB, AKT), and the p38 mitogen activated protein kinases (p38MAPK, p38) signaling pathway. Inhibition of ERK 1/2, AKT and p38 suppressed OPN-induced FoxM1 expression and location. Our data indicate that FoxM1 might be regulated by OPN to influence endometrial proliferation to establish endometrial receptivity. PMID:25522167

  19. BRCA1-associated Protein 1 (BAP1) Deubiquitinase Antagonizes the Ubiquitin-mediated Activation of FoxK2 Target Genes*

    PubMed Central

    Okino, Yuki; Machida, Yuka; Frankland-Searby, Sarah; Machida, Yuichi J.

    2015-01-01

    BRCA1-associated protein 1 (BAP1), which is frequently mutated in cancer, functions as a deubiquitinase (DUB) for histone H2A. Although BAP1 interacts with a transcriptional regulator, HCF-1, and transcription factors FoxK1 and FoxK2, how BAP1 controls gene expression remains unclear. This study investigates the importance of BAP1 DUB activity and the interactions with FoxK2 and HCF-1 in the regulation of FoxK2 target genes. We show that FoxK2 recruits BAP1 to the target genes through the forkhead-associated domain, which interacts with Thr(P)-493 on BAP1. BAP1, in turn, recruits HCF-1, thereby forming a ternary complex in which BAP1 bridges FoxK2 and HCF-1. BAP1 represses FoxK2 target genes, and this effect requires BAP1 DUB activity but not interaction with HCF-1. Importantly, BAP1 depletion causes up-regulation of FoxK2 target genes only in the presence of the Ring1B-Bmi1 complex, an E3 ubiquitin ligase for histone H2A, indicating an antagonizing role of BAP1 against Ring1B-Bmi1. Our findings suggest that BAP1 deficiency causes increased expression of target genes in a Ring1B-Bmi1-dependent manner. PMID:25451922

  20. Activated FoxM1 Attenuates Streptozotocin-Mediated β-Cell Death

    PubMed Central

    Golson, Maria L.; Maulis, Matthew F.; Dunn, Jennifer C.; Poffenberger, Greg; Schug, Jonathan; Kaestner, Klaus H.

    2014-01-01

    The forkhead box transcription factor FoxM1, a positive regulator of the cell cycle, is required for β-cell mass expansion postnatally, during pregnancy, and after partial pancreatectomy. Up-regulation of full-length FoxM1, however, is unable to stimulate increases in β-cell mass in unstressed mice or after partial pancreatectomy, probably due to the lack of posttranslational activation. We hypothesized that expression of an activated form of FoxM1 could aid in recovery after β-cell injury. We therefore derived transgenic mice that inducibly express an activated version of FoxM1 in β-cells (RIP-rtTA;TetO-hemagglutinin (HA)-Foxm1ΔNRD mice). This N-terminally truncated form of FoxM1 bypasses 2 posttranslational controls: exposure of the forkhead DNA binding domain and targeted proteasomal degradation. Transgenic mice were subjected to streptozotocin (STZ)-induced β-cell ablation to test whether activated FoxM1 can promote β-cell regeneration. Mice expressing HA-FoxM1ΔNRD displayed decreased ad libitum–fed blood glucose and increased β-cell mass. β-Cell proliferation was actually decreased in RIP-rtTA:TetO-HA-Foxm1NRD mice compared with that in RIP-rtTA mice 7 days after STZ treatment. Unexpectedly, β-cell death was decreased 2 days after STZ treatment. RNA sequencing analysis indicated that activated FoxM1 alters the expression of extracellular matrix and immune cell gene profiles, which may protect against STZ-mediated death. These studies highlight a previously underappreciated role for FoxM1 in promoting β-cell survival. PMID:25073103

  1. In vivo delivery of transcription factors with multifunctional oligonucleotides

    NASA Astrophysics Data System (ADS)

    Lee, Kunwoo; Rafi, Mohammad; Wang, Xiaojian; Aran, Kiana; Feng, Xuli; Lo Sterzo, Carlo; Tang, Richard; Lingampalli, Nithya; Kim, Hyun Jin; Murthy, Niren

    2015-07-01

    Therapeutics based on transcription factors have the potential to revolutionize medicine but have had limited clinical success as a consequence of delivery problems. The delivery of transcription factors is challenging because it requires the development of a delivery vehicle that can complex transcription factors, target cells and stimulate endosomal disruption, with minimal toxicity. Here, we present a multifunctional oligonucleotide, termed DARTs (DNA assembled recombinant transcription factors), which can deliver transcription factors with high efficiency in vivo. DARTs are composed of an oligonucleotide that contains a transcription-factor-binding sequence and hydrophobic membrane-disruptive chains that are masked by acid-cleavable galactose residues. DARTs have a unique molecular architecture, which allows them to bind transcription factors, trigger endocytosis in hepatocytes, and stimulate endosomal disruption. The DARTs have enhanced uptake in hepatocytes as a result of their galactose residues and can disrupt endosomes efficiently with minimal toxicity, because unmasking of their hydrophobic domains selectively occurs in the acidic environment of the endosome. We show that DARTs can deliver the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) to the liver, catalyse the transcription of Nrf2 downstream genes, and rescue mice from acetaminophen-induced liver injury.

  2. Hematopoietic transcription factor mutations and inherited platelet dysfunction

    PubMed Central

    Songdej, Natthapol

    2015-01-01

    The molecular and genetic mechanisms in most patients with inherited platelet dysfunction are unknown. There is increasing evidence that mutations in hematopoietic transcription factors are major players in the pathogenesis of defective megakaryopoiesis and platelet dysfunction in patients with inherited platelet disorders. These hematopoietic transcription factors include RUNX1, FLI1, GATA-1, and GFI1B. Mutations involving these transcription factors affect diverse aspects of platelet production and function at the genetic and molecular levels, culminating in clinical manifestations of thrombocytopenia and platelet dysfunction. This review focuses on these hematopoietic transcription factors in the pathobiology of inherited platelet dysfunction. PMID:26097739

  3. The EGF receptor ligand amphiregulin controls cell division via FoxM1.

    PubMed

    Stoll, S W; Stuart, P E; Swindell, W R; Tsoi, L C; Li, B; Gandarillas, A; Lambert, S; Johnston, A; Nair, R P; Elder, J T

    2016-04-21

    Epidermal growth factor receptor (EGFR) is central to epithelial cell physiology, and deregulated EGFR signaling has an important role in a variety of human carcinomas. Here we show that silencing of the EGF-related factor amphiregulin (AREG) markedly inhibits the expansion of human keratinocytes through mitotic failure and accumulation of cells with ⩾4n DNA content. RNA-sequencing-based transcriptome analysis revealed that tetracycline-mediated AREG silencing significantly altered the expression of 2331 genes, 623 of which were not normalized by treatment with EGF. Interestingly, genes irreversibly upregulated by suppression of AREG overlapped with genes involved in keratinocyte differentiation. Moreover, a significant proportion of the irreversibly downregulated genes featured upstream binding sites recognized by forkhead box protein M1 (FoxM1), a key transcription factor in the control of mitosis that is widely dysregulated in cancer. The downregulation of FoxM1 and its target genes preceded mitotic arrest. Constitutive expression of FoxM1 in AREG knockdown cells normalized cell proliferation, reduced the number of cells with ⩾4n DNA content and rescued expression of FoxM1 target genes. These results demonstrate that AREG controls G2/M progression and cytokinesis in keratinocytes via activation of a FoxM1-dependent transcriptional program, suggesting new avenues for treatment of epithelial cancer. PMID:26234682

  4. Targeting FoxM1 inhibits proliferation, invasion and migration of nasopharyngeal carcinoma through the epithelial‑to-mesenchymal transition pathway.

    PubMed

    Yu, Chao; Chen, Lili; Yie, Lin; Wei, Lei; Wen, Taoyu; Liu, Yanan; Chen, Hongyan

    2015-05-01

    High expression levels of the forkhead box M1 (FoxM1) transcription factor are associated with metastasis and poor prognosis of malignancies. However, little is known concerning its function in nasopharyngeal carcinoma (NPC). The present study aimed to investigate the impact of FoxM1 inhibition on the migration and invasion of NPC cells and the potential mechanisms. The effects of FoxM1 inhibitor treatment and FoxM1 silencing on the proliferation, migration and invasion of NPC CNE-1 and CNE-2 cells were examined by CCK-8, Transwell migration/invasion and colony formation assays. The effects of stable FoxM1 silencing on the growth and lung metastasis of implanted NPC were evaluated. The relative levels of FoxM1, zinc finger E-box binding homeobox 2 (ZEB2), Snail2 and E-cadherin in the different groups of NPC cells and tumors were determined by quantitative real-time PCR, western blotting and immunohistochemical assays. Treatment with thiostrepton, FoxM1 inhibitor, significantly reduced the survival of NPC cells. Treatment with thiostrepton and/or knockdown of FoxM1 inhibited the anchorage-independent proliferation, migration and invasion of NPC cells. Inhibition of FoxM1 also increased the relative levels of E-cadherin, but reduced ZEB2 and Snail2 expression in NPC cells. Stable FoxM1 silencing inhibited the growth and lung metastasis of implanted NPC in vivo, which was associated with increased levels of E-cadherin, but decreased ZEB2 and Snail2 expression in the NPC tumors. In conclusion, our data clearly indicate that knockdown of FoxM1 inhibited the growth and metastasis of human NPC by modulating epithelial-to-mesenchymal transition (EMT), and FoxM1 may be a potential target for the intervention of NPC. PMID:25738652

  5. Mechanisms of transcription factor evolution in Metazoa.

    PubMed

    Schmitz, Jonathan F; Zimmer, Fabian; Bornberg-Bauer, Erich

    2016-07-27

    Transcriptions factors (TFs) are pivotal for the regulation of virtually all cellular processes, including growth and development. Expansions of TF families are causally linked to increases in organismal complexity. Here we study the evolutionary dynamics, genetic causes and functional implications of the five largest metazoan TF families. We find that family expansions dominate across the whole metazoan tree; however, some branches experience exceptional family-specific accelerated expansions. Additionally, we find that such expansions are often predated by modular domain rearrangements, which spur the expansion of a new sub-family by separating it from the rest of the TF family in terms of protein-protein interactions. This separation allows for radical shifts in the functional spectrum of a duplicated TF. We also find functional differentiation inside TF sub-families as changes in expression specificity. Furthermore, accelerated family expansions are facilitated by repeats of sequence motifs such as C2H2 zinc fingers. We quantify whole genome duplications and single gene duplications as sources of TF family expansions, implying that some, but not all, TF duplicates are preferentially retained. We conclude that trans-regulatory changes (domain rearrangements) are instrumental for fundamental functional innovations, that cis-regulatory changes (affecting expression) accomplish wide-spread fine tuning and both jointly contribute to the functional diversification of TFs. PMID:27288445

  6. Dopamine receptor regulating factor, DRRF: a zinc finger transcription factor.

    PubMed

    Hwang, C K; D'Souza, U M; Eisch, A J; Yajima, S; Lammers, C H; Yang, Y; Lee, S H; Kim, Y M; Nestler, E J; Mouradian, M M

    2001-06-19

    Dopamine receptor genes are under complex transcription control, determining their unique regional distribution in the brain. We describe here a zinc finger type transcription factor, designated dopamine receptor regulating factor (DRRF), which binds to GC and GT boxes in the D1A and D2 dopamine receptor promoters and effectively displaces Sp1 and Sp3 from these sequences. Consequently, DRRF can modulate the activity of these dopamine receptor promoters. Highest DRRF mRNA levels are found in brain with a specific regional distribution including olfactory bulb and tubercle, nucleus accumbens, striatum, hippocampus, amygdala, and frontal cortex. Many of these brain regions also express abundant levels of various dopamine receptors. In vivo, DRRF itself can be regulated by manipulations of dopaminergic transmission. Mice treated with drugs that increase extracellular striatal dopamine levels (cocaine), block dopamine receptors (haloperidol), or destroy dopamine terminals (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) show significant alterations in DRRF mRNA. The latter observations provide a basis for dopamine receptor regulation after these manipulations. We conclude that DRRF is important for modulating dopaminergic transmission in the brain. PMID:11390978

  7. Molecular architecture of transcription factor hotspots in early adipogenesis.

    PubMed

    Siersbæk, Rasmus; Baek, Songjoon; Rabiee, Atefeh; Nielsen, Ronni; Traynor, Sofie; Clark, Nicholas; Sandelin, Albin; Jensen, Ole N; Sung, Myong-Hee; Hager, Gordon L; Mandrup, Susanne

    2014-06-12

    Transcription factors have recently been shown to colocalize in hotspot regions of the genome, which are further clustered into super-enhancers. However, the detailed molecular organization of transcription factors at hotspot regions is poorly defined. Here, we have used digital genomic footprinting to precisely define factor localization at a genome-wide level during the early phase of 3T3-L1 adipocyte differentiation, which allows us to obtain detailed molecular insight into how transcription factors target hotspots. We demonstrate the formation of ATF-C/EBP heterodimers at a composite motif on chromatin, and we suggest that this may be a general mechanism for integrating external signals on chromatin. Furthermore, we find evidence of extensive recruitment of transcription factors to hotspots through alternative mechanisms not involving their known motifs and demonstrate that these alternative binding events are functionally important for hotspot formation and activity. Taken together, these findings provide a framework for understanding transcription factor cooperativity in hotspots. PMID:24857666

  8. Effects of Cigarette Smoke on the Activation of Oxidative Stress-Related Transcription Factors in Female A/J Mouse Lung

    PubMed Central

    Tharappel, Job C.; Cholewa, Jill; Espandiari, Parvaneh; Spear, Brett T.; Gairola, C. Gary; Glauert, Howard P.

    2010-01-01

    Cigarette smoke contains a high concentration of free radicals and induces oxidative stress in the lung and other tissues. Several transcription factors are known to be activated by oxidative stress, including nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and hypoxia-inducible factor (HIF). Studies were therefore undertaken to examine if cigarette smoke could activate these transcription factors, as well as other transcription factors that may be important in lung carcinogenesis. Female A/J mice were exposed to cigarette smoke for 2, 5, 10, 15, 20, 42, or 56 days (6 hr/day, 5 days/wk). Cigarette smoke did not increase NF-κB activation at any of these times, but NF-κB DNA binding activity was lower after 15 days and 56 days of smoke exposure. The DNA binding activity of AP-1 was lower after 10 days and 56 days but was not changed after 42 days of smoke exposure. The DNA binding activity of HIF was quantitatively increased after 42 days of smoke exposure but decreased after 56 days. Whether the activation of other transcription factors in the lung could be altered after exposure to cigarette smoke was subsequently examined. The DNA binding activities of FoxF2, myc-CF1, RORE, and p53 were examined after 10 days of smoke exposure. The DNA binding activities of FoxF2 and p53 were quantitatively increased, but those of myc-CF1 and RORE were unaffected. These studies show that cigarette smoke exposure leads to quantitative increases in DNA binding activities of FoxF2 and p53, while the activations of NF-κB, AP-1, and HIF are largely unaffected or reduced. PMID:20711931

  9. Involvement of the Up-regulated FoxO1 Expression in Follicular Granulosa Cell Apoptosis Induced by Oxidative Stress*

    PubMed Central

    Shen, Ming; Lin, Fei; Zhang, Jiaqing; Tang, Yiting; Chen, Wei-Kang; Liu, Honglin

    2012-01-01

    Follicular atresia is common in female mammalian ovaries, where most follicles undergo degeneration at any stage of growth and development. Oxidative stress gives rise to triggering granulosa cell apoptosis, which has been suggested as a major cause of follicular atresia. However, the underlying mechanism by which the oxidative stress induces follicular atresia remains unclear. FoxO transcription factors are known as critical mediators in the regulation of oxidative stress and apoptosis. In this study, the involvement of FoxO1 in oxidative stress-induced apoptosis of mouse follicular granulosa cells (MGCs) was investigated in vivo and in vitro. It was observed that increased apoptotic signals correlated with elevated expression of FoxO1 in MGCs when mice were treated with the oxidant. Correspondingly, the expressions of FoxO1 target genes, such as proapoptotic genes and antioxidative genes, were also up-regulated. In primary cultured MGCs, treatment with H2O2 led to FoxO1 nuclear translocation. Further studies with overexpression and knockdown of FoxO1 demonstrated the critical role of FoxO1 in the induction of MGC apoptosis by oxidative stress. Finally, inactivation of FoxO1 by insulin treatment confirmed that FoxO1 induced by oxidative stress played a pivotal role in up-regulating the expression of downstream apoptosis-related genes in MGCs. Our results suggest that up-regulation of FoxO1 by oxidative stress leads to apoptosis of granulosa cells, which eventually results in follicular atresia in mice. PMID:22669940

  10. Pioneer transcription factors, chromatin dynamics, and cell fate control.

    PubMed

    Zaret, Kenneth S; Mango, Susan E

    2016-04-01

    Among the diverse transcription factors that are necessary to elicit changes in cell fate, both in embryonic development and in cellular reprogramming, a subset of factors are capable of binding to their target sequences on nucleosomal DNA and initiating regulatory events in silent chromatin. Such 'pioneer transcription factors' initiate cooperative interactions with other regulatory proteins to elicit changes in local chromatin structure. As a consequence of pioneer factor binding, the local chromatin can either become open and competent for activation, closed and repressed, or transcriptionally active. Understanding how pioneer factors initiate chromatin dynamics and how such can be blocked at heterochromatic sites provides insights into controlling cell fate transitions at will. PMID:26826681

  11. In silico Analysis of Transcription Factor Repertoire and Prediction of Stress Responsive Transcription Factors in Soybean

    PubMed Central

    Mochida, Keiichi; Yoshida, Takuhiro; Sakurai, Tetsuya; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2009-01-01

    Sequence-specific DNA-binding transcription factors (TFs) are often termed as ‘master regulators’ which bind to DNA and either activate or repress gene transcription. We have computationally analysed the soybean genome sequence data and constructed a proper set of TFs based on the Hidden Markov Model profiles of DNA-binding domain families. Within the soybean genome, we identified 4342 loci encoding 5035 TF models which grouped into 61 families. We constructed a database named SoybeanTFDB (http://soybeantfdb.psc.riken.jp) containing the full compilation of soybean TFs and significant information such as: functional motifs, full-length cDNAs, domain alignments, promoter regions, genomic organization and putative regulatory functions based on annotations of gene ontology (GO) inferred by comparative analysis with Arabidopsis. With particular interest in abiotic stress signalling, we analysed the promoter regions for all of the TF encoding genes as a means to identify abiotic stress responsive cis-elements as well as all types of cis-motifs provided by the PLACE database. SoybeanTFDB enables scientists to easily access cis-element and GO annotations to aid in the prediction of TF function and selection of TFs with functions of interest. This study provides a basic framework and an important user-friendly public information resource which enables analyses of transcriptional regulation in soybean. PMID:19884168

  12. A novel FoxM1-Caveolin signaling pathway promotes pancreatic cancer invasion and metastasis

    PubMed Central

    Huang, Chen; Qiu, Zhengjun; Wang, Liwei; Peng, Zhihai; Jia, Zhiliang; Logsdon, Craig; Le, Xiangdong; Wei, Daoyan; Huang, Suyun; Xie, Keping

    2011-01-01

    Caveolin-1 (Cav-1), a principal structural component of caveolar membrane domains, contributes to cancer development but its precise functional roles and regulation remain unclear. In this study, we determined the oncogenic function of Cav-1 in preclinical models of pancreatic cancer and in human tissue specimens. Cav-1 expression levels correlated with metastatic potential and epithelial-to-mesenchymal transition (EMT) in both mouse and human pancreatic cancer cells. Elevated levels in cells promoted EMT, migration, invasion and metastasis in animal models, whereas RNAi-mediated knockdown inhibited these processes. We determined that levels of Cav-1 and the Forkhead transcription factor FoxM1 correlated directly in pancreatic cancer cells and tumor tissues. Enforced expression of FoxM1 increased Cav-1 levels, whereas RNAi-mediated knockdown of FoxM1 had the opposite effect. FoxM1 directly bound to the promoter region of Cav-1 gene and positively transactivated its activity. Collectively, our findings defined Cav-1 as an important downstream oncogenic target of FoxM1, suggesting that dysregulated signaling of this novel FoxM1-Cav-1 pathway promotes pancreatic cancer development and progression. PMID:22194465

  13. FoxO3a and disease progression

    PubMed Central

    Nho, Richard Seonghun; Hergert, Polla

    2014-01-01

    The Forkhead box O (FoxO) family has recently been highlighted as an important transcriptional regulator of crucial proteins associated with the many diverse functions of cells. So far, FoxO1, FoxO3a, FoxO4 and FoxO6 proteins have been identified in humans. Although each FoxO family member has its own role, unlike the other FoxO families, FoxO3a has been extensively studied because of its rather unique and pivotal regulation of cell proliferation, apoptosis, metabolism, stress management and longevity. FoxO3a alteration is closely linked to the progression of several types of cancers, fibrosis and other types of diseases. In this review, we will examine the function of FoxO3a in disease progression and also explore FoxO3a’s regulatory mechanisms. We will also discuss FoxO3a as a potential target for the treatment of several types of disease. PMID:25225602

  14. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    SciTech Connect

    Ma, Gui-Fen; Chen, Shi-Yao; Sun, Zhi-Rong; Miao, Qing; Liu, Yi-Mei; Zeng, Xiao-Qing; Luo, Tian-Cheng; Ma, Li-Li; Lian, Jing-Jing; Song, Dong-Li

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer The article revealed FoxP3 gene function in gastric cancer firstly. Black-Right-Pointing-Pointer Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. Black-Right-Pointing-Pointer Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. Black-Right-Pointing-Pointer Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Black-Right-Pointing-Pointer FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis

  15. Remarkably reduced expression of FoxO3a in metaplastic colorectum, primary colorectal cancer and liver metastasis.

    PubMed

    He, Le-ya; Wei, Xin; Du, Lei; Liu, Lu; Xu, Feng; Min, Jiang; Li, Chuan; Tao, De-ding; Chen, Quan; Hu, Jun-bo; Gong, Jian-ping

    2013-04-01

    The forkhead family members of transcription factors (FoxOs) are expected to be potential cancer-related drug targets and thus are being extremely studied recently. In the present study, FoxO3a, one major member of this family, was identified to be down-regulated in colorectal cancer through micro-array analysis, which was confirmed by RT-PCR and Western blot in 28 patients. Moreover, immunohistochemistry (IHC) showed that the expression levels of FoxO3a were remarkably reduced in 99 cases of primary colorectal cancer, liver metastasis, and even in metaplastic colorectal tissue. IHC also revealed an exclusion of FoxO3a from the nucleus of most cells of tumor-associated tissues. Silencing FoxO3a by siRNA led to elevation of G2-M phase cells. We conclude that the downregulation of FoxO3a may greatly contribute to tumor development, and thus FoxO3a may represent a novel therapeutic target in colorectal cancer. PMID:23592131

  16. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    NASA Astrophysics Data System (ADS)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  17. The physical size of transcription factors is key to transcriptional regulation in chromatin domains.

    PubMed

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-18

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (∼50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a 'buoy' to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination. PMID:25563431

  18. Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions.

    PubMed

    Chen, Chieh-Chun; Xiao, Shu; Xie, Dan; Cao, Xiaoyi; Song, Chun-Xiao; Wang, Ting; He, Chuan; Zhong, Sheng

    2013-01-01

    Despite explosive growth in genomic datasets, the methods for studying epigenomic mechanisms of gene regulation remain primitive. Here we present a model-based approach to systematically analyze the epigenomic functions in modulating transcription factor-DNA binding. Based on the first principles of statistical mechanics, this model considers the interactions between epigenomic modifications and a cis-regulatory module, which contains multiple binding sites arranged in any configurations. We compiled a comprehensive epigenomic dataset in mouse embryonic stem (mES) cells, including DNA methylation (MeDIP-seq and MRE-seq), DNA hydroxymethylation (5-hmC-seq), and histone modifications (ChIP-seq). We discovered correlations of transcription factors (TFs) for specific combinations of epigenomic modifications, which we term epigenomic motifs. Epigenomic motifs explained why some TFs appeared to have different DNA binding motifs derived from in vivo (ChIP-seq) and in vitro experiments. Theoretical analyses suggested that the epigenome can modulate transcriptional noise and boost the cooperativity of weak TF binding sites. ChIP-seq data suggested that epigenomic boost of binding affinities in weak TF binding sites can function in mES cells. We showed in theory that the epigenome should suppress the TF binding differences on SNP-containing binding sites in two people. Using personal data, we identified strong associations between H3K4me2/H3K9ac and the degree of personal differences in NFκB binding in SNP-containing binding sites, which may explain why some SNPs introduce much smaller personal variations on TF binding than other SNPs. In summary, this model presents a powerful approach to analyze the functions of epigenomic modifications. This model was implemented into an open source program APEG (Affinity Prediction by Epigenome and Genome, http://systemsbio.ucsd.edu/apeg). PMID:24339764

  19. Yeast GAL11 protein is a distinctive type transcription factor that enhances basal transcription in vitro.

    PubMed Central

    Sakurai, H; Hiraoka, Y; Fukasawa, T

    1993-01-01

    The yeast auxiliary transcription factor GAL11, a candidate for the coactivator, was partially purified from yeast cells, and its function was characterized in a cell-free transcription system. The partially purified GAL11 protein stimulated basal transcription from the CYC1 core promoter by a factor of 4-5 at the step of preinitiation complex formation. GAL11 protein also enhanced transcription activated by general regulatory factor 1, GAL4-AH, or GAL4-VP16 to the same extent as the basal transcription. Therefore, the apparent potentiation of the activators by GAL11 was attributable to the stimulation of basal transcription. The wild-type GAL11 protein (but not a mutant-type protein) produced in bacteria stimulated transcription as effectively as GAL11 from yeast. These results suggest that GAL11 functions as a positive cofactor of basal and activator-induced transcription in a cell-free transcription system. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8378310

  20. Mammalian transcription factor A is a core component of the mitochondrial transcription machinery.

    PubMed

    Shi, Yonghong; Dierckx, Anke; Wanrooij, Paulina H; Wanrooij, Sjoerd; Larsson, Nils-Göran; Wilhelmsson, L Marcus; Falkenberg, Maria; Gustafsson, Claes M

    2012-10-01

    Transcription factor A (TFAM) functions as a DNA packaging factor in mammalian mitochondria. TFAM also binds sequence-specifically to sites immediately upstream of mitochondrial promoters, but there are conflicting data regarding its role as a core component of the mitochondrial transcription machinery. We here demonstrate that TFAM is required for transcription in mitochondrial extracts as well as in a reconstituted in vitro transcription system. The absolute requirement of TFAM can be relaxed by conditions that allow DNA breathing, i.e., low salt concentrations or negatively supercoiled DNA templates. The situation is thus very similar to that described in nuclear RNA polymerase II-dependent transcription, in which the free energy of supercoiling can circumvent the need for a subset of basal transcription factors at specific promoters. In agreement with these observations, we demonstrate that TFAM has the capacity to induce negative supercoils in DNA, and, using the recently developed nucleobase analog FRET-pair tC(O)-tC(nitro), we find that TFAM distorts significantly the DNA structure. Our findings differ from recent observations reporting that TFAM is not a core component of the mitochondrial transcription machinery. Instead, our findings support a model in which TFAM is absolutely required to recruit the transcription machinery during initiation of transcription. PMID:23012404

  1. Oncogenic Transcription Factors: Cornerstones of Inflammation-Linked Pancreatic Carcinogenesis

    PubMed Central

    Baumgart, Sandra; Ellenrieder, Volker; Fernandez-Zapico, Martin E.

    2012-01-01

    Transcription factors are proteins that regulate gene expression by modulating the synthesis of messenger RNA. Since this process is frequently one dominant control point in the production of many proteins, transcription factors represent the key regulators of numerous cellular functions, including proliferation, differentiation, and apoptosis. Pancreatic cancer progression is characterized by the activation of inflammatory signaling pathways converging on a limited set of transcription factors that fine-tune gene expression patterns contributing to the growth and maintenance of these tumors. Thus, strategies targeting these transcriptional networks activated in pancreatic cancer cells could block the effects of upstream inflammatory responses participating in pancreatic tumorigenesis. In this article we review this field of research and summarize current strategies to target oncogenic transcription factors and their activating signaling networks in the treatment of pancreatic cancer. PMID:21997559

  2. Chromatin features, RNA polymerase II and the comparative expression of lens genes encoding crystallins, transcription factors, and autophagy mediators

    PubMed Central

    Sun, Jian; Rockowitz, Shira; Chauss, Daniel; Wang, Ping; Kantorow, Marc; Zheng, Deyou

    2015-01-01

    Purpose Gene expression correlates with local chromatin structure. Our studies have mapped histone post-translational modifications, RNA polymerase II (pol II), and transcription factor Pax6 in lens chromatin. These data represent the first genome-wide insights into the relationship between lens chromatin structure and lens transcriptomes and serve as an excellent source for additional data analysis and refinement. The principal lens proteins, the crystallins, are encoded by predominantly expressed mRNAs; however, the regulatory mechanisms underlying their high expression in the lens remain poorly understood. Methods The formaldehyde-assisted identification of regulatory regions (FAIRE-Seq) was employed to analyze newborn lens chromatin. ChIP-seq and RNA-seq data published earlier (GSE66961) have been used to assist in FAIRE-seq data interpretation. RNA transcriptomes from murine lens epithelium, lens fibers, erythrocytes, forebrain, liver, neurons, and pancreas were compared to establish the gene expression levels of the most abundant mRNAs versus median gene expression across other differentiated cells. Results Normalized RNA expression data from multiple tissues show that crystallins rank among the most highly expressed genes in mammalian cells. These findings correlate with the extremely high abundance of pol II all across the crystallin loci, including crystallin genes clustered on chromosomes 1 and 5, as well as within regions of “open” chromatin, as identified by FAIRE-seq. The expression levels of mRNAs encoding DNA-binding transcription factors (e.g., Foxe3, Hsf4, Maf, Pax6, Prox1, Sox1, and Tfap2a) revealed that their transcripts form “clusters” of abundant mRNAs in either lens fibers or lens epithelium. The expression of three autophagy regulatory mRNAs, encoding Tfeb, FoxO1, and Hif1α, was found within a group of lens preferentially expressed transcription factors compared to the E12.5 forebrain. Conclusions This study reveals novel features of

  3. The Positive Transcription Elongation Factor b Is an Essential Cofactor for the Activation of Transcription by Myocyte Enhancer Factor 2

    PubMed Central

    Nojima, Masanori; Huang, Yehong; Tyagi, Mudit; Kao, Hung-Ying; Fujinaga, Koh

    2014-01-01

    The positive transcription elongation factor b (P-TEFb), composed of cyclin-dependent kinase 9 and cyclin T1, stimulates the elongation of transcription by hyperphosphorylating the C-terminal region of RNA polymerase II. Aberrant activation of P-TEFb results in manifestations of cardiac hypertrophy in mice, suggesting that P-TEFb is an essential factor for cardiac myocyte function and development. Here, we present evidence that P-TEFb selectively activates transcription mediated by the myocyte enhancer factor 2 (MEF2) family of transcription factors, key regulatory factors for myocyte development. Knockdown of endogenous cyclin T1 in murine C2C12 cells abolishes MEF2-dependent reporter gene expression as well as transcription of endogenous MEF2 target genes, whereas overexpression of P-TEFb enhances MEF2-dependent transcription. P-TEFb interacts with MEF2 both in vitro and in vivo. Activation of MEF2-dependent transcription induced by serum starvation is mediated by a rapid dissociation of P-TEFb from its inhibitory subunit, HEXIM1, and a subsequent recruitment of P-TEFb to MEF2 binding sites in the promoter region of MEF2 target genes. These results indicate that recruitment of P-TEFb is a critical step for stimulation of MEF2-dependent transcription, therefore providing a fundamentally important regulatory mechanism underlying the transcriptional program in muscle cells. PMID:18662700

  4. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice

    PubMed Central

    Rached, Marie-Therese; Kode, Aruna; Silva, Barbara C.; Jung, Dae Young; Gray, Susan; Ong, Helena; Paik, Ji-Hye; DePinho, Ronald A.; Kim, Jason K.; Karsenty, Gerard; Kousteni, Stavroula

    2009-01-01

    Osteoblasts have recently been found to play a role in regulating glucose metabolism through secretion of osteocalcin. It is unknown, however, how this osteoblast function is regulated transcriptionally. As FoxO1 is a forkhead family transcription factor known to regulate several key aspects of glucose homeostasis, we investigated whether its expression in osteoblasts may contribute to its metabolic functions. Here we show that mice lacking Foxo1 only in osteoblasts had increased pancreatic β cell proliferation, insulin secretion, and insulin sensitivity. The ability of osteoblast-specific FoxO1 deficiency to affect metabolic homeostasis was due to increased osteocalcin expression and decreased expression of Esp, a gene that encodes a protein responsible for decreasing the bioactivity of osteocalcin. These results indicate that FoxO1 expression in osteoblasts contributes to FoxO1 control of glucose homeostasis and identify FoxO1 as a key modulator of the ability of the skeleton to function as an endocrine organ regulating glucose metabolism. PMID:20038793

  5. Beyond microarrays: Finding key transcription factors controlling signal transduction pathways

    PubMed Central

    Kel, Alexdander; Voss, Nico; Jauregui, Ruy; Kel-Margoulis, Olga; Wingender, Edgar

    2006-01-01

    Background Massive gene expression changes in different cellular states measured by microarrays, in fact, reflect just an "echo" of real molecular processes in the cells. Transcription factors constitute a class of the regulatory molecules that typically require posttranscriptional modifications or ligand binding in order to exert their function. Therefore, such important functional changes of transcription factors are not directly visible in the microarray experiments. Results We developed a novel approach to find key transcription factors that may explain concerted expression changes of specific components of the signal transduction network. The approach aims at revealing evidence of positive feedback loops in the signal transduction circuits through activation of pathway-specific transcription factors. We demonstrate that promoters of genes encoding components of many known signal transduction pathways are enriched by binding sites of those transcription factors that are endpoints of the considered pathways. Application of the approach to the microarray gene expression data on TNF-alpha stimulated primary human endothelial cells helped to reveal novel key transcription factors potentially involved in the regulation of the signal transduction pathways of the cells. Conclusion We developed a novel computational approach for revealing key transcription factors by knowledge-based analysis of gene expression data with the help of databases on gene regulatory networks (TRANSFAC® and TRANSPATH®). The corresponding software and databases are available at . PMID:17118134

  6. Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1–dependent manner

    PubMed Central

    Pajvani, Utpal B.; Shawber, Carrie J.; Samuel, Varman T.; Birkenfeld, Andreas L.; Shulman, Gerald I.; Kitajewski, Jan; Accili, Domenico

    2012-01-01

    Summary Transcription factor FoxO1 promotes hepatic glucose production. Genetic inhibition of FoxO1 function prevents diabetes in experimental animal models, providing impetus to identify pharmacological approaches to modulate its function. Altered Notch signaling is seen in tumorigenesis, and Notch antagonists are in clinical testing for cancer application. Here, we report that FoxO1 and Notch coordinately regulate hepatic glucose metabolism. Combined haploinsufficiency of FoxO1 and Notch1 markedly improves insulin sensitivity in diet-induced insulin resistance, as does liver-specific knockout of the Notch transcriptional effector, Rbp-Jk. Conversely, Notch1 gain-of-function promotes insulin resistance in a FoxO1-dependent manner and induces Glucose-6-phosphatase expression. Pharmacological blockade of Notch signaling with γ-secretase inhibitors improves insulin sensitivity following in vivo administration in lean and in obese, insulin-resistant mice. The data identify a heretofore unknown metabolic function of Notch, and suggest that Notch inhibition is beneficial to diabetes treatment, in part by helping to offset excessive FoxO1–driven hepatic glucose production. PMID:21804540

  7. Systematic Analysis of Immune Infiltrates in High-Grade Serous Ovarian Cancer Reveals CD20, FoxP3 and TIA-1 as Positive Prognostic Factors

    PubMed Central

    Milne, Katy; Köbel, Martin; Kalloger, Steven E.; Barnes, Rebecca O.; Gao, Dongxia; Gilks, C. Blake; Watson, Peter H.; Nelson, Brad H.

    2009-01-01

    Background Tumor-infiltrating T cells are associated with survival in epithelial ovarian cancer (EOC), but their functional status is poorly understood, especially relative to the different risk categories and histological subtypes of EOC. Methodology/Principal Findings Tissue microarrays containing high-grade serous, endometrioid, mucinous and clear cell tumors were analyzed immunohistochemically for the presence of lymphocytes, dendritic cells, neutrophils, macrophages, MHC class I and II, and various markers of activation and inflammation. In high-grade serous tumors from optimally debulked patients, positive associations were seen between intraepithelial cells expressing CD3, CD4, CD8, CD45RO, CD25, TIA-1, Granzyme B, FoxP3, CD20, and CD68, as well as expression of MHC class I and II by tumor cells. Disease-specific survival was positively associated with the markers CD8, CD3, FoxP3, TIA-1, CD20, MHC class I and class II. In other histological subtypes, immune infiltrates were less prevalent, and the only markers associated with survival were MHC class II (positive association in endometrioid cases) and myeloperoxidase (negative association in clear cell cases). Conclusions/Significance Host immune responses to EOC vary widely according to histological subtype and the extent of residual disease. TIA-1, FoxP3 and CD20 emerge as new positive prognostic factors in high-grade serous EOC from optimally debulked patients. PMID:19641607

  8. Regulation of the protein stability of EMT transcription factors

    PubMed Central

    Díaz, VM; Viñas-Castells, R; García de Herreros, A

    2014-01-01

    The epithelial to mesenchymal transition (EMT) consists of a rapid change of cell phenotype, characterized by the loss of epithelial characteristics and the acquisition of a more invasive phenotype. Transcription factors regulating EMT (Snail, Twist and Zeb) are extremely labile proteins, rapidly degraded by the proteasome system. In this review we analyze the current mechanisms controlling degradation of EMT transcription factors, focusing on the role of new E3 ubiquitin-ligases involved in EMT. We also summarize the regulation of the stability of these EMT transcription factors, specially observed in different stress conditions, such as hypoxia, chemotherapeutic drugs, oxidative stress or γ-irradiation. PMID:25482633

  9. Regulation of hematopoietic development by ZBTB transcription factors.

    PubMed

    Maeda, Takahiro

    2016-09-01

    Hematopoietic development is governed by the coordinated expression of lineage- and differentiation stage-specific genes. Transcription factors play major roles in this process and their perturbation may underlie hematologic and immunologic disorders. Nearly 1900 transcription factors are encoded in the human genome: of these, 49 BTB (for broad-complex, tram-track and bric à brac)-zinc finger transcription factors referred to as ZBTB or POK proteins have been identified. ZBTB proteins, including BCL6, PLZF, ThPOK and LRF, exhibit a broad spectrum of functions in normal and malignant hematopoiesis. This review summarizes developmental and molecular functions of ZBTB proteins relevant to hematology. PMID:27250345

  10. Experimental determination of the evolvability of a transcription factor.

    PubMed

    Maerkl, Sebastian J; Quake, Stephen R

    2009-11-01

    Sequence-specific binding of a transcription factor to DNA is the central event in any transcriptional regulatory network. However, relatively little is known about the evolutionary plasticity of transcription factors. For example, the exact functional consequence of an amino acid substitution on the DNA-binding specificity of most transcription factors is currently not predictable. Furthermore, although the major structural families of transcription factors have been identified, the detailed DNA-binding repertoires within most families have not been characterized. We studied the sequence recognition code and evolvability of the basic helix-loop-helix transcription factor family by creating all possible 95 single-point mutations of five DNA-contacting residues of Max, a human helix-loop-helix transcription factor and measured the detailed DNA-binding repertoire of each mutant. Our results show that the sequence-specific repertoire of Max accessible through single-point mutations is extremely limited, and we are able to predict 92% of the naturally occurring diversity at these positions. All naturally occurring basic regions were also found to be accessible through functional intermediates. Finally, we observed a set of amino acids that are functional in vitro but are not found to be used naturally, indicating that functionality alone is not sufficient for selection. PMID:19841254

  11. Longevity Genes Revealed by Integrative Analysis of Isoform-Specific daf-16/FoxO Mutants of Caenorhabditis elegans

    PubMed Central

    Chen, Albert Tzong-Yang; Guo, Chunfang; Itani, Omar A.; Budaitis, Breane G.; Williams, Travis W.; Hopkins, Christopher E.; McEachin, Richard C.; Pande, Manjusha; Grant, Ana R.; Yoshina, Sawako; Mitani, Shohei; Hu, Patrick J.

    2015-01-01

    FoxO transcription factors promote longevity across taxa. How they do so is poorly understood. In the nematode Caenorhabditis elegans, the A- and F-isoforms of the FoxO transcription factor DAF-16 extend life span in the context of reduced DAF-2 insulin-like growth factor receptor (IGFR) signaling. To elucidate the mechanistic basis for DAF-16/FoxO-dependent life span extension, we performed an integrative analysis of isoform-specific daf-16/FoxO mutants. In contrast to previous studies suggesting that DAF-16F plays a more prominent role in life span control than DAF-16A, isoform-specific daf-16/FoxO mutant phenotypes and whole transcriptome profiling revealed a predominant role for DAF-16A over DAF-16F in life span control, stress resistance, and target gene regulation. Integration of these datasets enabled the prioritization of a subset of 92 DAF-16/FoxO target genes for functional interrogation. Among 29 genes tested, two DAF-16A-specific target genes significantly influenced longevity. A loss-of-function mutation in the conserved gene gst-20, which is induced by DAF-16A, reduced life span extension in the context of daf-2/IGFR RNAi without influencing longevity in animals subjected to control RNAi. Therefore, gst-20 promotes DAF-16/FoxO-dependent longevity. Conversely, a loss-of-function mutation in srr-4, a gene encoding a seven-transmembrane-domain receptor family member that is repressed by DAF-16A, extended life span in control animals, indicating that DAF-16/FoxO may extend life span at least in part by reducing srr-4 expression. Our discovery of new longevity genes underscores the efficacy of our integrative strategy while providing a general framework for identifying specific downstream gene regulatory events that contribute substantially to transcription factor functions. As FoxO transcription factors have conserved functions in promoting longevity and may be dysregulated in aging-related diseases, these findings promise to illuminate fundamental

  12. Longevity Genes Revealed by Integrative Analysis of Isoform-Specific daf-16/FoxO Mutants of Caenorhabditis elegans.

    PubMed

    Chen, Albert Tzong-Yang; Guo, Chunfang; Itani, Omar A; Budaitis, Breane G; Williams, Travis W; Hopkins, Christopher E; McEachin, Richard C; Pande, Manjusha; Grant, Ana R; Yoshina, Sawako; Mitani, Shohei; Hu, Patrick J

    2015-10-01

    FoxO transcription factors promote longevity across taxa. How they do so is poorly understood. In the nematode Caenorhabditis elegans, the A- and F-isoforms of the FoxO transcription factor DAF-16 extend life span in the context of reduced DAF-2 insulin-like growth factor receptor (IGFR) signaling. To elucidate the mechanistic basis for DAF-16/FoxO-dependent life span extension, we performed an integrative analysis of isoform-specific daf-16/FoxO mutants. In contrast to previous studies suggesting that DAF-16F plays a more prominent role in life span control than DAF-16A, isoform-specific daf-16/FoxO mutant phenotypes and whole transcriptome profiling revealed a predominant role for DAF-16A over DAF-16F in life span control, stress resistance, and target gene regulation. Integration of these datasets enabled the prioritization of a subset of 92 DAF-16/FoxO target genes for functional interrogation. Among 29 genes tested, two DAF-16A-specific target genes significantly influenced longevity. A loss-of-function mutation in the conserved gene gst-20, which is induced by DAF-16A, reduced life span extension in the context of daf-2/IGFR RNAi without influencing longevity in animals subjected to control RNAi. Therefore, gst-20 promotes DAF-16/FoxO-dependent longevity. Conversely, a loss-of-function mutation in srr-4, a gene encoding a seven-transmembrane-domain receptor family member that is repressed by DAF-16A, extended life span in control animals, indicating that DAF-16/FoxO may extend life span at least in part by reducing srr-4 expression. Our discovery of new longevity genes underscores the efficacy of our integrative strategy while providing a general framework for identifying specific downstream gene regulatory events that contribute substantially to transcription factor functions. As FoxO transcription factors have conserved functions in promoting longevity and may be dysregulated in aging-related diseases, these findings promise to illuminate fundamental

  13. Distinct roles of transcription factors TFIIIB and TFIIIC in RNA polymerase III transcription reinitiation.

    PubMed

    Ferrari, Roberto; Rivetti, Claudio; Acker, Joël; Dieci, Giorgio

    2004-09-14

    Eukaryotic RNA polymerase (Pol) III is recruited to target promoters by a stable preinitiation complex containing transcription factors TFIIIC and TFIIIB. After the first transcription cycle, reinitiation proceeds through facilitated recycling, a process by which the terminating Pol III rapidly reloads onto the same transcription unit. Here, we show that Pol III is repeatedly recaptured in vitro by the first transcribed gene, even in the presence of a juxtaposed competitor promoter complex, thus suggesting that facilitated recycling is not merely due to a stochastic reassociation process favored by the small size of class III genes. The transcription factor requirements for facilitated reinitiation were investigated by taking advantage of Pol III templates that support both TFIIIC-dependent and TFIIIC-independent transcription. A TFIIIC-less transcription system, in which TFIIIB was reconstituted from recombinant TATA box-binding protein and Brf1 proteins and a crude fraction containing the Bdp1 component, was sufficient to direct efficient Pol III recycling on short ( approximately 100 bp) class III genes. Unexpectedly, however, on longer (>300 bp) transcription units, reinitiation in the presence of TFIIIB alone was compromised, and TFIIIC was further required to reestablish a high reinitiation rate. Transcription reinitiation was also severely impaired when recombinant Bdp1 protein replaced the corresponding crude fraction in reconstituted TFIIIB. The data reveal an unexpected complexity in the Pol III reinitiation mechanism and suggest the existence of a handing-back network between Pol III, TFIIIC, and TFIIIB on actively transcribed class III genes. PMID:15347814

  14. Ab Initio Prediction of Transcription Factor Targets Using Structural Knowledge

    PubMed Central

    Kaplan, Tommy; Friedman, Nir; Margalit, Hanah

    2005-01-01

    Current approaches for identification and detection of transcription factor binding sites rely on an extensive set of known target genes. Here we describe a novel structure-based approach applicable to transcription factors with no prior binding data. Our approach combines sequence data and structural information to infer context-specific amino acid–nucleotide recognition preferences. These are used to predict binding sites for novel transcription factors from the same structural family. We demonstrate our approach on the Cys2His2 Zinc Finger protein family, and show that the learned DNA-recognition preferences are compatible with experimental results. We use these preferences to perform a genome-wide scan for direct targets of Drosophila melanogaster Cys2His2 transcription factors. By analyzing the predicted targets along with gene annotation and expression data we infer the function and activity of these proteins. PMID:16103898

  15. Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors

    PubMed Central

    2014-01-01

    Background In vertebrates, rod photoreceptor-specific gene expression is regulated by the large Maf and Pax-like transcription factors, Nrl/LNrl and Crx/Otx5. The ubiquitous occurrence of their target DNA binding sites throughout rod-specific gene promoters suggests that multiple transcription factor interactions within the promoter are functionally important. Cooperative action by these transcription factors activates rod-specific genes such as rhodopsin. However, a quantitative mechanistic explanation of transcriptional rate determinants is lacking. Results We investigated the contributions of various paired-like transcription factors and their cognate cis-elements to rhodopsin gene activation using cultured cells to quantify activity. The Xenopus rhodopsin promoter (XOP) has a bipartite structure, with ~200 bp proximal to the start site (RPP) coordinating cooperative activation by Nrl/LNrl-Crx/Otx5 and the adjacent 5300 bp upstream sequence increasing the overall expression level. The synergistic activation by Nrl/LNrl-Crx/Otx5 also occurred when XOP was stably integrated into the genome. We determined that Crx/Otx5 synergistically activated transcription independently and additively through the two Pax-like cis-elements, BAT1 and Ret4, but not through Ret1. Other Pax-like family members, Rax1 and Rax2, do not synergistically activate XOP transcription with Nrl/LNrl and/or Crx/Otx5; rather they act as co-activators via the Ret1 cis-element. Conclusions We have provided a quantitative model of cooperative transcriptional activation of the rhodopsin promoter through interaction of Crx/Otx5 with Nrl/LNrl at two paired-like cis-elements proximal to the NRE and TATA binding site. Further, we have shown that Rax genes act in cooperation with Crx/Otx5 with Nrl/LNrl as co-activators of rhodopsin transcription. PMID:24499263

  16. Targeting transcription factor STAT3 for cancer prevention and therapy.

    PubMed

    Chai, Edna Zhi Pei; Shanmugam, Muthu K; Arfuso, Frank; Dharmarajan, Arunasalam; Wang, Chao; Kumar, Alan Prem; Samy, Ramar Perumal; Lim, Lina H K; Wang, Lingzhi; Goh, Boon Cher; Ahn, Kwang Seok; Hui, Kam Man; Sethi, Gautam

    2016-06-01

    Signal Transducers and Activators of Transcription (STATs) comprise an important class of transcription factors that have been implicated in a wide variety of essential cellular functions related to proliferation, survival, and angiogenesis. Among various STAT members, STAT3 is frequently overexpressed in tumor cells as well as tissue samples, and regulates the expression of numerous oncogenic genes controlling the growth and metastasis of tumor cells. The current review briefly discusses the importance of STAT3 as a potential target for cancer therapy and also provides novel insights into various classes of existing pharmacological inhibitors of this transcription factor that can be potentially developed as anti-cancer drugs. PMID:26478441

  17. Small-molecule regulators that mimic transcription factors

    PubMed Central

    Rodríguez-Martínez, José A.; Peterson-Kaufman, Kimberly J.; Ansari, Aseem Z.

    2014-01-01

    Transcription factors (TFs) are responsible for decoding and expressing the information stored in the genome, which dictates cellular function. Creating artificial transcription factors (ATFs) that mimic endogenous TFs is a major goal at the interface of biology, chemistry, and molecular medicine. Such molecular tools will be essential for deciphering and manipulating transcriptional networks that lead to particular cellular states. In this minireview, the framework for the design of functional ATFs is presented and current challenges in the successful implementation of ATFs are discussed. PMID:20804876

  18. Determination of Acetylation of the Gli Transcription Factors.

    PubMed

    Coni, Sonia; Di Magno, Laura; Canettieri, Gianluca

    2015-01-01

    The Gli transcription factors (Gli1, Gli2, and Gli3) are the final effectors of the Hedgehog (Hh) signaling and play a key role in development and cancer. The activity of the Gli proteins is finely regulated by covalent modifications, such as phosphorylation, ubiquitination, and acetylation. Both Gli1 and Gli2 are acetylated at a conserved lysine, and this modification causes the inhibition of their transcriptional activity. Thus, the acetylation status of these proteins represents a useful marker to monitor Hh activation in pathophysiological conditions. Herein we describe the techniques utilized to detect in vitro and intracellular acetylation of the Gli transcription factors. PMID:26179046

  19. Potential Role of Activating Transcription Factor 5 during Osteogenesis.

    PubMed

    Vicari, Luisa; Calabrese, Giovanna; Forte, Stefano; Giuffrida, Raffaella; Colarossi, Cristina; Parrinello, Nunziatina Laura; Memeo, Lorenzo

    2016-01-01

    Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB) family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2), encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology. PMID:26770207

  20. FoxM1 Promotes Stemness and Radio-Resistance of Glioblastoma by Regulating the Master Stem Cell Regulator Sox2

    PubMed Central

    Kim, Dong Geon; Cho, Hee Jin; Kim, Yeonghwan; Rheey, Jinguen; Shin, Kayoung; Seo, Yun Jee; Choi, Yeon-Sook; Lee, Jung-Il; Lee, Jeongwu; Joo, Kyeung Min; Nam, Do-Hyun

    2015-01-01

    Glioblastoma (GBM) is the most aggressive and most lethal brain tumor. As current standard therapy consisting of surgery and chemo-irradiation provides limited benefit for GBM patients, novel therapeutic options are urgently required. Forkhead box M1 (FoxM1) transcription factor is an oncogenic regulator that promotes the proliferation, survival, and treatment resistance of various human cancers. The roles of FoxM1 in GBM remain incompletely understood, due in part to pleotropic nature of the FoxM1 pathway. Here, we show the roles of FoxM1 in GBM stem cell maintenance and radioresistance. ShRNA-mediated FoxM1 inhibition significantly impeded clonogenic growth and survival of patient-derived primary GBM cells with marked downregulation of Sox2, a master regulator of stem cell phenotype. Ectopic expression of Sox2 partially rescued FoxM1 inhibition-mediated effects. Conversely, FoxM1 overexpression upregulated Sox2 expression and promoted clonogenic growth of GBM cells. These data, with a direct binding of FoxM1 in the Sox2 promoter region in GBM cells, suggest that FoxM1 regulates stemness of primary GBM cells via Sox2. We also found significant increases in FoxM1 and Sox2 expression in GBM cells after irradiation both in vitro and in vivo orthotopic tumor models. Notably, genetic or a small-molecule FoxM1 inhibitor-mediated FoxM1 targeting significantly sensitized GBM cells to irradiation, accompanying with Sox2 downregulation. Finally, FoxM1 inhibition combined with irradiation in a patient GBM-derived orthotopic model significantly impeded tumor growth and prolonged the survival of tumor bearing mice. Taken together, these results indicate that the FoxM1-Sox2 signaling axis promotes clonogenic growth and radiation resistance of GBM, and suggest that FoxM1 targeting combined with irradiation is a potentially effective therapeutic approach for GBM. PMID:26444992

  1. TNF-α Inhibits FoxO1 by Upregulating miR-705 to Aggravate Oxidative Damage in Bone Marrow-Derived Mesenchymal Stem Cells during Osteoporosis.

    PubMed

    Liao, Li; Su, Xiaoxia; Yang, Xiaohong; Hu, Chenghu; Li, Bei; Lv, Yajie; Shuai, Yi; Jing, Huan; Deng, Zhihong; Jin, Yan

    2016-04-01

    Decline of antioxidant defense after estrogen deficiency leads to oxidative damage in bone marrow-derived mesenchymal stem cells (BMMSCs), resulting a defect of bone formation in osteoporosis. Forkhead box O1 (FoxO1) protein is crucial for defending physiological oxidative damage in bone. But whether FoxO1 is involved in the oxidative damage during osteoporosis is largely unknown. In this study, we found that FoxO1 protein accumulation was decreased in BMMSCs of ovariectomized mice. The decrease of FoxO1 resulted in the suppression of manganese superoxide dismutase (Sod2) and catalase (Cat) expression and accumulation of reactive oxygen species (ROS), inhibiting the osteogenic differentiation of BMMSCs. The decline of FoxO1 protein was caused by tumor necrosis factor-alpha (TNF-α) accumulated after estrogen deficiency. Mechanistically, TNF-α activated NF-κB pathway to promote microRNA-705 expression, which function as a repressor of FoxO1 through post-transcriptional regulation. Inhibition of NF-κB pathway or knockdown of miR-705 largely prevented the decline of FoxO1-mediated antioxidant defense caused by TNF-α and ameliorated the oxidative damage in osteoporotic BMMSCs. Moreover, the accumulated ROS further activated NF-κB pathway with TNF-α, which formed a feed-forward loop to persistently inhibiting FoxO1 protein accumulation in BMMSCs. In conclusion, our study revealed that the decline of FoxO1 is an important etiology factor of osteoporosis and unclosed a novel mechanism of FoxO1 regulation by TNF-α. These findings suggested a close correlation between inflammation and oxidative stress in stem cell dysfunction during degenerative bone diseases. PMID:26700816

  2. Regulons of global transcription factors in Corynebacterium glutamicum.

    PubMed

    Toyoda, Koichi; Inui, Masayuki

    2016-01-01

    Corynebacterium glutamicum, a high GC content gram-positive soil bacterium in Actinobacteria, has been used for the industrial production of amino acids and engineered to produce various compounds, including polymer building blocks and biofuels. Since its genome sequence was first published, its versatile metabolic pathways and their genetic components and regulatory mechanisms have been extensively studied. Previous studies on transcriptional factors, including two-component systems and σ factors, in the bacterium have revealed transcriptional regulatory links among the metabolic pathways and those among the stress response systems, forming a complex transcriptional regulatory network. The regulatory links are based on knowledge of the transcription factors, such as their target genes (regulons), DNA sequence motifs for recognition, and effector molecules controlling their activities, all of which are fundamental for understanding their physiological functions. Recent advances in chromatin immunoprecipitation (ChIP)-based genome-wide analyses provide an opportunity to comprehensively identify the transcription factor regulon, composed of its direct target genes, and its precise consensus binding motif. A common feature among the regulon constituents may provide clues to identify an effector molecule targeting the factor. In this mini-review, we summarize the current knowledge of the regulons of the C. glutamicum transcription factors that have been analyzed via ChIP-based technologies. The regulons consisting of direct target genes revealed new physiological roles of the transcription factors and new regulatory interactions, contributing to refinement and expansion of the transcriptional regulatory network and the development of guidelines and genetic tools for metabolic engineering of C. glutamicum. PMID:26496920

  3. Ab initio prediction of transcription factor binding sites.

    PubMed

    Liu, L Angela; Bader, Joel S

    2007-01-01

    Transcription factors are DNA-binding proteins that control gene transcription by binding specific short DNA sequences. Experiments that identify transcription factor binding sites are often laborious and expensive, and the binding sites of many transcription factors remain unknown. We present a computational scheme to predict the binding sites directly from transcription factor sequence using all-atom molecular simulations. This method is a computational counterpart to recent high-throughput experimental technologies that identify transcription factor binding sites (ChIP-chip and protein-dsDNA binding microarrays). The only requirement of our method is an accurate 3D structural model of a transcription factor-DNA complex. We apply free energy calculations by thermodynamic integration to compute the change in binding energy of the complex due to a single base pair mutation. By calculating the binding free energy differences for all possible single mutations, we construct a position weight matrix for the predicted binding sites that can be directly compared with experimental data. As water-bridged hydrogen bonds between the transcription factor and DNA often contribute to the binding specificity, we include explicit solvent in our simulations. We present successful predictions for the yeast MAT-alpha2 homeodomain and GCN4 bZIP proteins. Water-bridged hydrogen bonds are found to be more prevalent than direct protein-DNA hydrogen bonds at the binding interfaces, indicating why empirical potentials with implicit water may be less successful in predicting binding. Our methodology can be applied to a variety of DNA-binding proteins. PMID:17990512

  4. Multiple Transcription Factor Families Regulate Axon Growth and Regeneration

    PubMed Central

    Moore, Darcie L.; Goldberg, Jeffrey L.

    2011-01-01

    Understanding axon regenerative failure remains a major goal in neuroscience, and reversing this failure remains a major goal for clinical neurology. While an inhibitory CNS environment clearly plays a role, focus on molecular pathways within neurons has begun to yield fruitful insights. Initial steps forward investigated the receptors and signaling pathways immediately downstream of environmental cues, but recent work has also shed light on transcriptional control mechanisms that regulate intrinsic axon growth ability, presumably through whole cassettes of gene target regulation. Here we will discuss transcription factors that regulate neurite growth in vitro and in vivo, including p53, SnoN, E47, CREB, STAT3, NFAT, c-Jun, ATF3, Sox11, NFκB, and Kruppel-like factors (KLFs). Revealing the similarities and differences among the functions of these transcription factors may further our understanding of the mechanisms of transcriptional regulation in axon growth and regeneration. PMID:21674813

  5. Role of transcription factors in peripheral nerve regeneration.

    PubMed

    Patodia, Smriti; Raivich, Gennadij

    2012-01-01

    Following axotomy, the activation of multiple intracellular signaling cascades causes the expression of a cocktail of regeneration-associated transcription factors which interact with each other to determine the fate of the injured neurons. The nerve injury response is channeled through manifold and parallel pathways, integrating diverse inputs, and controlling a complex transcriptional output. Transcription factors form a vital link in the chain of regeneration, converting injury-induced stress signals into downstream protein expression via gene regulation. They can regulate the intrinsic ability of axons to grow, by controlling expression of whole cassettes of gene targets. In this review, we have investigated the functional roles of a number of different transcription factors - c-Jun, activating transcription factor 3, cAMP response element binding protein, signal transducer, and activator of transcription-3, CCAAT/enhancer binding proteins β and δ, Oct-6, Sox11, p53, nuclear factor kappa-light-chain-enhancer of activated B cell, and ELK3 - in peripheral nerve regeneration. Studies involving use of conditional mutants, microarrays, promoter region mapping, and different injury paradigms, have enabled us to understand their distinct as well as overlapping roles in achieving anatomical and functional regeneration after peripheral nerve injury. PMID:22363260

  6. Pelle Modulates dFoxO-Mediated Cell Death in Drosophila.

    PubMed

    Wu, Chenxi; Chen, Yujun; Wang, Feng; Chen, Changyan; Zhang, Shiping; Li, Chaojie; Li, Wenzhe; Wu, Shian; Xue, Lei

    2015-10-01

    Interleukin-1 receptor-associated kinases (IRAKs) are crucial mediators of the IL-1R/TLR signaling pathways that regulate the immune and inflammation response in mammals. Recent studies also suggest a critical role of IRAKs in tumor development, though the underlying mechanism remains elusive. Pelle is the sole Drosophila IRAK homolog implicated in the conserved Toll pathway that regulates Dorsal/Ventral patterning, innate immune response, muscle development and axon guidance. Here we report a novel function of pll in modulating apoptotic cell death, which is independent of the Toll pathway. We found that loss of pll results in reduced size in wing tissue, which is caused by a reduction in cell number but not cell size. Depletion of pll up-regulates the transcription of pro-apoptotic genes, and triggers caspase activation and cell death. The transcription factor dFoxO is required for loss-of-pll induced cell death. Furthermore, loss of pll activates dFoxO, promotes its translocation from cytoplasm to nucleus, and up-regulates the transcription of its target gene Thor/4E-BP. Finally, Pll physically interacts with dFoxO and phosphorylates dFoxO directly. This study not only identifies a previously unknown physiological function of pll in cell death, but also shed light on the mechanism of IRAKs in cell survival/death during tumorigenesis. PMID:26474173

  7. Pelle Modulates dFoxO-Mediated Cell Death in Drosophila

    PubMed Central

    Chen, Changyan; Zhang, Shiping; Li, Chaojie; Li, Wenzhe; Wu, Shian; Xue, Lei

    2015-01-01

    Interleukin-1 receptor-associated kinases (IRAKs) are crucial mediators of the IL-1R/TLR signaling pathways that regulate the immune and inflammation response in mammals. Recent studies also suggest a critical role of IRAKs in tumor development, though the underlying mechanism remains elusive. Pelle is the sole Drosophila IRAK homolog implicated in the conserved Toll pathway that regulates Dorsal/Ventral patterning, innate immune response, muscle development and axon guidance. Here we report a novel function of pll in modulating apoptotic cell death, which is independent of the Toll pathway. We found that loss of pll results in reduced size in wing tissue, which is caused by a reduction in cell number but not cell size. Depletion of pll up-regulates the transcription of pro-apoptotic genes, and triggers caspase activation and cell death. The transcription factor dFoxO is required for loss-of-pll induced cell death. Furthermore, loss of pll activates dFoxO, promotes its translocation from cytoplasm to nucleus, and up-regulates the transcription of its target gene Thor/4E-BP. Finally, Pll physically interacts with dFoxO and phosphorylates dFoxO directly. This study not only identifies a previously unknown physiological function of pll in cell death, but also shed light on the mechanism of IRAKs in cell survival/death during tumorigenesis. PMID:26474173

  8. Epigenetic program and transcription factor circuitry of dendritic cell development.

    PubMed

    Lin, Qiong; Chauvistré, Heike; Costa, Ivan G; Gusmao, Eduardo G; Mitzka, Saskia; Hänzelmann, Sonja; Baying, Bianka; Klisch, Theresa; Moriggl, Richard; Hennuy, Benoit; Smeets, Hubert; Hoffmann, Kurt; Benes, Vladimir; Seré, Kristin; Zenke, Martin

    2015-11-16

    Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development. PMID:26476451

  9. Epigenetic program and transcription factor circuitry of dendritic cell development

    PubMed Central

    Lin, Qiong; Chauvistré, Heike; Costa, Ivan G.; Gusmao, Eduardo G.; Mitzka, Saskia; Hänzelmann, Sonja; Baying, Bianka; Klisch, Theresa; Moriggl, Richard; Hennuy, Benoit; Smeets, Hubert; Hoffmann, Kurt; Benes, Vladimir; Seré, Kristin; Zenke, Martin

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development. PMID:26476451

  10. The ratio of FoxA1 to FoxA2 in lung adenocarcinoma is regulated by LncRNA HOTAIR and chromatin remodeling factor LSH

    PubMed Central

    Wang, Ranran; Shi, Ying; Chen, Ling; Jiang, Yiqun; Mao, Chao; Yan, Bin; Liu, Shuang; Shan, Bin; Tao, Yongguang; Wang, Xiang

    2015-01-01

    The lncRNA HOTAIR is a critical regulator of cancer progression. Chromatin remodeling factor LSH is critical for normal development of plants and mammals. However, the underlying mechanisms causing this in cancer are not entirely clear. The functional diversification of the FOXA1 and FOXA2 contributes to the target genes during evolution and carcinogenesis. Little is known about the ratio of FOXA1 to FOXA2 in cancer. We here found that both HOTAIR and LSH overexpression was significantly correlated with poor survival in patients with lung adenocarcinoma cancer (ADC). Also, the ratio of FOXA1 and FOXA2 is linked with poor survival in patients with lung ADC. HOTAIR regulates the ratio of FOXA1 to FOXA2 and migration and invasion. HOTAIR and the ratio of FOXA1 to FOXA2 are negatively correlated. HOTAIR knockdown inhibits migration and invasion. HOTAIR is associated with LSH, and this association linked with the binding of LSH in the promoter of FOXA1, not FOXA2. Targeted inhibition of HOTAIR suppresses the migratory and invasive properties. These data suggest that HOTAIR is an important mediator of the ratio of FOXA1 and FOXA2 and LSH involves in, and suggest that HOTAIR inhibition may represent a promising therapeutic option for suppressing lung ADC progression. PMID:26658322

  11. Circuitry and dynamics of human transcription factor regulatory networks

    PubMed Central

    Neph, Shane; Stergachis, Andrew B.; Reynolds, Alex; Sandstrom, Richard; Borenstein, Elhanan; Stamatoyannopoulos, John A.

    2012-01-01

    SUMMARY The combinatorial cross-regulation of hundreds of sequence-specific transcription factors defines a regulatory network that underlies cellular identity and function. Here we use genome-wide maps of in vivo DNaseI footprints to assemble an extensive core human regulatory network comprising connections among 475 sequence-specific transcription factors, and to analyze the dynamics of these connections across 41 diverse cell and tissue types. We find that human transcription factor networks are highly cell-selective and are driven by cohorts of factors that include regulators with previously unrecognized roles in control of cellular identity. Moreover, we identify many widely expressed factors that impact transcriptional regulatory networks in a cell-selective manner. Strikingly, in spite of their inherent diversity, all cell type regulatory networks independently converge on a common architecture that closely resembles the topology of living neuronal networks. Together, our results provide the first description of the circuitry, dynamics, and organizing principles of the human transcription factor regulatory network. PMID:22959076

  12. A heteromeric transcription factor required for mammalian RNA polymerase II.

    PubMed Central

    Kitajima, S; Tanaka, Y; Kawaguchi, T; Nagaoka, T; Weissman, S M; Yasukochi, Y

    1990-01-01

    A general transcription factor, FC, essential for specific initiation of in vitro transcription by mammalian RNA polymerase II was identified and a procedure developed to purify it to near homogeneity from HeLa cell nuclei. Purified FC is composed of two polypeptides of apparent molecular masses 80 kDa and 30 kDa, on SDS-PAGE, and has a native size of 280 kDa estimated by gel filtration column. Both polypeptides were shown to be essential for reconstituting in vitro transcription activity. Biochemical analysis showed that the 80 kDa and 30 kDa components were present in a 1:1 molar ratio. FC was also demonstrated to interact directly or indirectly with purified RNA polymerase II. Similarities between FC and transcription factors reported by others from human, rat or Drosophila cells are discussed. Images PMID:2395645

  13. Selective Activation of Transcription by a Novel CCAAT Binding Factor

    NASA Astrophysics Data System (ADS)

    Maity, Sankar N.; Golumbek, Paul T.; Karsenty, Gerard; de Crombrugghe, Benoit

    1988-07-01

    A novel CCAAT binding factor (CBF) composed of two different subunits has been extensively purified from rat liver. Both subunits are needed for specific binding to DNA. Addition of this purified protein to nuclear extracts of NIH 3T3 fibroblasts stimulates transcription from several promoters including the α 2(I) collagen, the α 1(I) collagen, the Rous sarcoma virus long terminal repeat (RSV-LTR), and the adenovirus major late promoter. Point mutations in the CCAAT motif that show either no binding or a decreased binding of CBF likewise abolish or reduce activation of transcription by CBF. Activation of transcription requires, therefore, the specific binding of CBF to its recognition sites.

  14. Casticin induces ovarian cancer cell apoptosis by repressing FoxM1 through the activation of FOXO3a

    PubMed Central

    JIANG, LING; CAO, XIAO-CHENG; CAO, JIAN-GUO; LIU, FEI; QUAN, MEI-FANG; SHENG, XI-FENG; REN, KAI-QUN

    2013-01-01

    Casticin, a polymethoxyflavone, is reported to have anticancer activities. The aim of the present study was to examine the molecular mechanisms by which casticin induces apoptosis in ovarian cancer cells. The human ovarian cancer cell lines SKOV3 and A2780 were cultured in vitro. Various molecular techniques, including histone/DNA enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR), western blot analysis and gene transfection, were used to assess the expression of FOXO3a and forkhead box protein M1 (FoxM1) in casticin-treated ovarian cancer cell lines. Casticin-induced apoptotic cell death was accompanied by the activation of transcription factor FOXO3a, with a concomitant decrease in the expression levels of FoxM1 and its downstream target factors, namely survivin and polo-like kinase 1 (PLK1), and an increase in p27KIP1. A small inhibitory RNA (siRNA) knockout of FoxM1 potentiated casticin-induced apoptosis in ovarian cancer cells. Silencing FOXO3a expression using siRNA increased FoxM1 expression levels and clearly attenuated the induction of apoptosis by casticin treatment. These results show that casticin-induced apoptosis in ovarian cancer may be caused by the activation of FOXO3a, leading to FoxM1 inhibition. PMID:23761826

  15. Three-Dimensional Domain Swapping Changes the Folding Mechanism of the Forkhead Domain of FoxP1.

    PubMed

    Medina, Exequiel; Córdova, Cristóbal; Villalobos, Pablo; Reyes, Javiera; Komives, Elizabeth A; Ramírez-Sarmiento, César A; Babul, Jorge

    2016-06-01

    The forkhead family of transcription factors (Fox) controls gene transcription during key processes such as regulation of metabolism, embryogenesis, and immunity. Structurally, Fox proteins feature a conserved DNA-binding domain known as forkhead. Interestingly, solved forkhead structures of members from the P subfamily (FoxP) show that they can oligomerize by three-dimensional domain swapping, whereby structural elements are exchanged between adjacent subunits, leading to an intertwined dimer. Recent evidence has largely stressed the biological relevance of domain swapping in FoxP, as several disease-causing mutations have been related to impairment of this process. Here, we explore the equilibrium folding and binding mechanism of the forkhead domain of wild-type FoxP1, and of two mutants that hinder DNA-binding (R53H) and domain swapping (A39P), using size-exclusion chromatography, circular dichroism, and hydrogen-deuterium exchange mass spectrometry. Our results show that domain swapping of FoxP1 occurs at micromolar protein concentrations within hours of incubation and is energetically favored, in contrast to classical domain-swapping proteins. Also, DNA-binding mutations do not significantly affect domain swapping. Remarkably, equilibrium unfolding of dimeric FoxP1 follows a three-state N2 ↔ 2I ↔ 2U folding mechanism in which dimer dissociation into a monomeric intermediate precedes protein unfolding, in contrast to the typical two-state model described for most domain-swapping proteins, whereas the A39P mutant follows a two-state N ↔ U folding mechanism consistent with the second transition observed for dimeric FoxP1. Also, the free-energy change of the N ↔ U in A39P FoxP1 is ∼2 kcal⋅mol(-1) larger than the I ↔ U transition of both wild-type and R53H FoxP1. Finally, hydrogen-deuterium exchange mass spectrometry reveals that the intermediate strongly resembles the native state. Our results suggest that domain swapping in FoxP1 is at least

  16. Mechanistic duality of transcription factor function in phytochrome signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytochrome (phy) family of sensory photoreceptors (phyA–E in Arabidopsis) elicit changes in gene expression after light-induced migration to the nucleus, where they interact with basic helix–loop–helix transcription factors, such as phytochrome-interacting factor 3 (PIF3). The mechanism by whic...

  17. Intratumoral FoxP3 expression is associated with angiogenesis and prognosis in malignant canine mammary tumors.

    PubMed

    Carvalho, Maria Isabel; Pires, Isabel; Prada, Justina; Gregório, Hugo; Lobo, Luis; Queiroga, Felisbina L

    2016-10-01

    The activity of regulatory T cells (Tregs) is closely associated with the expression of FoxP3 transcription factor. FoxP3 regulatory T cells (FoxP3Treg) have immunosuppressive properties and can work for prevention of harmful autoimmune responses, however can also interfere with beneficial anti-tumor immunity. In human breast cancer these cells play a crucial role in tumor progression. In canine mammary tumors (CMT) this topic is not well-documented. This study included 80 malignant CMT and studied, by immunohistochemistry, the intratumoral FoxP3 expression together with microvessel density (MVD), vascular endothelial growth factor (VEGF) and several clinicopathological characteristics. Abundant FoxP3Treg cells were associated with tumor necrosis (p=0.001), high mitotic grade (p<0.001), more marked nuclear polymorphism (p=0.001), poor differentiation of tumors (p<0.001), high histological grade of malignancy (HGM) (p<0.001), presence of neoplastic intravascular emboli (p<0.001) and presence of lymph node metastasis (p<0.001). Intratumoral FoxP3 was correlated with MVD (r=0.827; p<0.001) and associated with VEGF (p=0.001). Additionally tumors with abundant FoxP3Treg cells were associated with shorter overall survival (OS) time in univariate and multivariate analysis (p<0.001 Kaplan-Meier curves and 7.97 hazard ratio, p<0.001 Cox proportional hazard model). Results suggest that Treg cells play a role in CMT progression and may contribute to increased angiogenesis and aggression in these tumors. The association of intratumoral FoxP3 expression with shorter OS in multivariate analysis suggests the usefulness of Treg cells as an independent prognostic marker. PMID:27496736

  18. Missed, Not Missing: Phylogenomic Evidence for the Existence of Avian FoxP3.

    PubMed

    Denyer, Michael P; Pinheiro, Dammy Y; Garden, Oliver A; Shepherd, Adrian J

    2016-01-01

    The Forkhead box transcription factor FoxP3 is pivotal to the development and function of regulatory T cells (Tregs), which make a major contribution to peripheral tolerance. FoxP3 is believed to perform a regulatory role in all the vertebrate species in which it has been detected. The prevailing view is that FoxP3 is absent in birds and that avian Tregs rely on alternative developmental and suppressive pathways. Prompted by the automated annotation of foxp3 in the ground tit (Parus humilis) genome, we have questioned this assumption. Our analysis of all available avian genomes has revealed that the foxp3 locus is missing, incomplete or of poor quality in the relevant genomic assemblies for nearly all avian species. Nevertheless, in two species, the peregrine falcon (Falco peregrinus) and the saker falcon (F. cherrug), there is compelling evidence for the existence of exons showing synteny with foxp3 in the ground tit. A broader phylogenomic analysis has shown that FoxP3 sequences from these three species are similar to crocodilian sequences, the closest living relatives of birds. In both birds and crocodilians, we have also identified a highly proline-enriched region at the N terminus of FoxP3, a region previously identified only in mammals. PMID:26938477

  19. Missed, Not Missing: Phylogenomic Evidence for the Existence of Avian FoxP3

    PubMed Central

    Denyer, Michael P.; Pinheiro, Dammy Y.; Garden, Oliver A.; Shepherd, Adrian J.

    2016-01-01

    The Forkhead box transcription factor FoxP3 is pivotal to the development and function of regulatory T cells (Tregs), which make a major contribution to peripheral tolerance. FoxP3 is believed to perform a regulatory role in all the vertebrate species in which it has been detected. The prevailing view is that FoxP3 is absent in birds and that avian Tregs rely on alternative developmental and suppressive pathways. Prompted by the automated annotation of foxp3 in the ground tit (Parus humilis) genome, we have questioned this assumption. Our analysis of all available avian genomes has revealed that the foxp3 locus is missing, incomplete or of poor quality in the relevant genomic assemblies for nearly all avian species. Nevertheless, in two species, the peregrine falcon (Falco peregrinus) and the saker falcon (F. cherrug), there is compelling evidence for the existence of exons showing synteny with foxp3 in the ground tit. A broader phylogenomic analysis has shown that FoxP3 sequences from these three species are similar to crocodilian sequences, the closest living relatives of birds. In both birds and crocodilians, we have also identified a highly proline-enriched region at the N terminus of FoxP3, a region previously identified only in mammals. PMID:26938477

  20. FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation.

    PubMed

    Precious, S V; Kelly, C M; Reddington, A E; Vinh, N N; Stickland, R C; Pekarik, V; Scherf, C; Jeyasingham, R; Glasbey, J; Holeiter, M; Jones, L; Taylor, M V; Rosser, A E

    2016-08-01

    Identifying the steps involved in striatal development is important both for understanding the striatum in health and disease, and for generating protocols to differentiate striatal neurons for regenerative medicine. The most prominent neuronal subtype in the adult striatum is the medium spiny projection neuron (MSN), which constitutes more than 85% of all striatal neurons and classically expresses DARPP-32. Through a microarray study of genes expressed in the whole ganglionic eminence (WGE: the developing striatum) in the mouse, we identified the gene encoding the transcription factor Forkhead box protein P1 (FoxP1) as the most highly up-regulated gene, thus providing unbiased evidence for the association of FoxP1 with MSN development. We also describe the expression of FoxP1 in the human fetal brain over equivalent gestational stages. FoxP1 expression persisted through into adulthood in the mouse brain, where it co-localised with all striatal DARPP-32 positive projection neurons and a small population of DARPP-32 negative cells. There was no co-localisation of FoxP1 with any interneuron markers. FoxP1 was detectable in primary fetal striatal cells following dissection, culture, and transplantation into the adult lesioned striatum, demonstrating its utility as an MSN marker for transplantation studies. Furthermore, DARPP-32 expression was absent from FoxP1 knock-out mouse WGE differentiated in vitro, suggesting that FoxP1 is important for the development of DARPP-32-positive MSNs. In summary, we show that FoxP1 labels MSN precursors prior to the expression of DARPP-32 during normal development, and in addition suggest that FoxP1 labels a sub-population of MSNs that are not co-labelled by DARPP-32. We demonstrate the utility of FoxP1 to label MSNs in vitro and following neural transplantation, and show that FoxP1 is required for DARPP-32 positive MSN differentiation in vitro. PMID:27154297

  1. FoxO1 regulates apoptosis induced by asbestos in the MT-2 human T-cell line.

    PubMed

    Matsuzaki, Hidenori; Lee, Suni; Maeda, Megumi; Kumagai-Takei, Naoko; Nishimura, Yasumitsu; Otsuki, Takemi

    2016-09-01

    Asbestos is known to cause malignant mesothelioma and lung cancer. Recent studies implicate tumor immunity in the development of various tumors, including malignant mesothelioma. In order to establish an in vitro T-cell model to clarify the effects of long-term exposure of asbestos on tumor immunity, in this study, human T-cell line MT-2 cells were cultured with asbestos for longer than 8 months and the resultant cells (MT-2Rst) were assessed for the expression of forkhead transcription factor FoxO1. Gene expression analysis revealed that the amount of FoxO1 mRNA decreased after long-term exposure of the MT-2 cells to asbestos. In accordance with this reduction in FoxO1, pro-apoptotic Foxo1 target genes Puma, Fas ligand and Bim were also seen to be down-regulated in MT-2Rst cells. Furthermore, shRNA-mediated knock-down of FoxO1 reduced the number of apoptotic parental MT-2 cells after treatment with asbestos. On the other hand, over-expression of FoxO1 did not affect asbestos-induced apoptosis in MT-2Rst cells. These results suggested that FoxO1 played an important role in regulating asbestos-induced apoptosis and confirmed the presence of multiple pathways regulating resistance to asbestos in MT-2Rst cells. PMID:27042963

  2. Activation of MAPK and FoxO by Manganese (Mn) in Rat Neonatal Primary Astrocyte Cultures

    PubMed Central

    Exil, Vernat; Ping, Li; Yu, Yingchun; Chakraborty, Sudipta; Caito, Samuel W.; Wells, K. Sam; Karki, Pratap; Lee, Eunsook; Aschner, Michael

    2014-01-01

    Environmental exposure to manganese (Mn) leads to a neurodegenerative disease that has shared clinical characteristics with Parkinson's disease (PD). Mn-induced neurotoxicity is time- and dose-dependent, due in part to oxidative stress. We ascertained the molecular targets involved in Mn-induced neurodegeneration using astrocyte culture as: (1) Astrocytes are vital for information processing within the brain, (2) their redox potential is essential in mitigating reactive oxygen species (ROS) levels, and (3) they are targeted early in the course of Mn toxicity. We first tested protein levels of Mn superoxide dismutase -2 (SOD-2) and glutathione peroxidase (GPx-1) as surrogates of astrocytic oxidative stress response. We assessed levels of the forkhead winged-helix transcription factor O (FoxO) in response to Mn exposure. FoxO is highly regulated by the insulin-signaling pathway. FoxO mediates cellular responses to toxic stress and modulates adaptive responses. We hypothesized that FoxO is fundamental in mediating oxidative stress response upon Mn treatment, and may be a biomarker of Mn-induced neurodegeneration. Our results indicate that 100 or 500 µM of MnCl2 led to increased levels of FoxO (dephosphorylated and phosphorylated) compared with control cells (P<0.01). p-FoxO disappeared from the cytosol upon Mn exposure. Pre-treatment of cultured cells with (R)-(−)-2-oxothiazolidine-4-carboxylic acid (OTC), a cysteine analog rescued the cytosolic FoxO. At these concentrations, MAPK phosphorylation, in particular p38 and ERK, and PPAR gamma coactivator-1 (PGC-1) levels were increased, while AKT phosphorylation remained unchanged. FoxO phosphorylation level was markedly reduced with the use of SB203580 (a p38 MAPK inhibitor) and PD98059 (an ERK inhibitor). We conclude that FoxO phosphorylation after Mn exposure occurs in parallel with, and independent of the insulin-signaling pathway. FoxO levels and its translocation into the nucleus are part of early events

  3. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis.

    PubMed

    Hai, T; Hartman, M G

    2001-07-25

    The mammalian ATF/CREB family of transcription factors represents a large group of basic region-leucine zipper (bZip) proteins which was originally defined in the late 1980s by their ability to bind to the consensus ATF/CRE site 'TGACGTCA'. Over the past decade, cDNA clones encoding identical or homologous proteins have been isolated by different laboratories and given different names. These proteins can be grouped into subgroups according to their amino acid similarity. In this review, we will briefly describe the classification of these proteins with a historical perspective of their nomenclature. We will then review three members of the ATF/CREB family of proteins: ATF3, ATF4 and ATF6. We will address four issues for each protein: (a) homologous proteins and alternative names, (b) dimer formation with other bZip proteins, (c) transcriptional activity, and (d) potential physiological functions. Although the name Activating Transcription Factor (ATF) implies that they are transcriptional activators, some of these proteins are transcriptional repressors. ATF3 homodimer is a transcriptional repressor and ATF4 has been reported to be either an activator or a repressor. We will review the reports on the transcriptional activities of ATF4, and propose potential explanations for the discrepancy. Although the physiological functions of these proteins are not well understood, some clues can be gained from studies with different approaches. When the data are available, we will address the following questions. (a) How is the expression (at the mRNA level or protein level) regulated? (b) How are the transcriptional activities regulated? (c) What are the interacting proteins (other than bZip partners)? (d) What are the consequences of ectopically expressing the gene (gain-of-function) or deleting the gene (loss-of-function)? Although answers to these questions are far from being complete, together they provide clues to the functions of these ATF proteins. Despite the

  4. Activation of archaeal transcription mediated by recruitment of transcription factor B.

    PubMed

    Ochs, Simon M; Thumann, Sybille; Richau, Renate; Weirauch, Matt T; Lowe, Todd M; Thomm, Michael; Hausner, Winfried

    2012-05-25

    Archaeal promoters consist of a TATA box and a purine-rich adjacent upstream sequence (transcription factor B (TFB)-responsive element (BRE)), which are bound by the transcription factors TATA box-binding protein (TBP) and TFB. Currently, only a few activators of archaeal transcription have been experimentally characterized. The best studied activator, Ptr2, mediates activation by recruitment of TBP. Here, we present a detailed biochemical analysis of an archaeal transcriptional activator, PF1088, which was identified in Pyrococcus furiosus by a bioinformatic approach. Operon predictions suggested that an upstream gene, pf1089, is polycistronically transcribed with pf1088. We demonstrate that PF1088 stimulates in vitro transcription by up to 7-fold when the pf1089 promoter is used as a template. By DNase I and hydroxyl radical footprinting experiments, we show that the binding site of PF1088 is located directly upstream of the BRE of pf1089. Mutational analysis indicated that activation requires the presence of the binding site for PF1088. Furthermore, we show that activation of transcription by PF1088 is dependent upon the presence of an imperfect BRE and is abolished when the pf1089 BRE is replaced with a BRE from a strong archaeal promoter. Gel shift experiments showed that TFB recruitment to the pf1089 operon is stimulated by PF1088, and TFB seems to stabilize PF1088 operator binding even in the absence of TBP. Taken together, these results represent the first biochemical evidence for a transcriptional activator working as a TFB recruitment factor in Archaea, for which the designation TFB-RF1 is suggested. PMID:22496454

  5. Theory on the dynamic memory in the transcription-factor-mediated transcription activation

    NASA Astrophysics Data System (ADS)

    Murugan, R.

    2011-04-01

    We develop a theory to explain the origin of the static and dynamical memory effects in transcription-factor-mediated transcription activation. Our results suggest that the following inequality conditions should be satisfied to observe such memory effects: (a) τL≫max(τR,τE), (b) τLT≫τT, and (c) τI⩾(τEL+τTR) where τL is the average time required for the looping-mediated spatial interactions of enhancer—transcription-factor complex with the corresponding promoter—RNA-polymerase or eukaryotic RNA polymerase type II (PolII in eukaryotes) complex that is located L base pairs away from the cis-acting element, (τR,τE) are respectively the search times required for the site-specific binding of the RNA polymerase and the transcription factor with the respective promoter and the cis-regulatory module, τLT is the time associated with the relaxation of the looped-out segment of DNA that connects the cis-acting site and promoter, τT is the time required to generate a complete transcript, τI is the transcription initiation time, τEL is the elongation time, and τTR is the termination time. We have theoretically derived the expressions for the various searching, looping, and loop-relaxation time components. Using the experimentally determined values of various time components we further show that the dynamical memory effects cannot be experimentally observed whenever the segment of DNA that connects the cis-regulatory element with the promoter is not loaded with bulky histone bodies. Our analysis suggests that the presence of histone-mediated compaction of the connecting segment of DNA can result in higher values of looping and loop-relaxation times, which is the origin of the static memory in the transcription activation that is mediated by the memory gene loops in eukaryotes.

  6. Specification of the Cardiac Conduction System by Transcription Factors

    PubMed Central

    Hatcher, Cathy J.; Basson, Craig T.

    2009-01-01

    Diseases of the cardiovascular system that cause sudden cardiac deaths are often caused by lethal arrhythmias that originate from defects in the cardiac conduction system. Development of the cardiac conduction system is a complex biological process that can be wrought with problems. Although several genes involved in mature conduction system function have been identified, their association with development of specific subcomponents of the cardiac conduction system remains challenging. Several transcription factors, including homeodomain proteins and T-box proteins, are essential for cardiac conduction system morphogenesis and activation or repression of key regulatory genes. In addition, several transcription factors modify expression of genes encoding the ion channel proteins that contribute to the electrophysiological properties of the conduction system and govern contraction of the surrounding myocardium. Loss of transcriptional regulation during cardiac development has detrimental effects on cardiogenesis that may lead to arrhythmias. Human genetic mutations in some of these transcription factors have been identified and are known to cause congenital heart diseases that include cardiac conduction system malformations. In this review, we summarize the contributions of several key transcription factors to specification, patterning, maturation and function of the cardiac conduction system. Further analysis of the molecular programs involved in this process should lead to improved diagnosis and therapy of conduction system disease. PMID:19797194

  7. Transcription factors in late megakaryopoiesis and related platelet disorders

    PubMed Central

    Tijssen, M R; Ghevaert, C

    2013-01-01

    Cell type-specific transcription factors regulate the repertoire of genes expressed in a cell and thereby determine its phenotype. The differentiation of megakaryocytes, the platelet progenitors, from hematopoietic stem cells is a well-known process that can be mimicked in culture. However, the efficient formation of platelets in culture remains a challenge. Platelet formation is a complicated process including megakaryocyte maturation, platelet assembly and platelet shedding. We hypothesize that a better understanding of the transcriptional regulation of this process will allow us to influence it such that sufficient numbers of platelets can be produced for clinical applications. After an introduction to gene regulation and platelet formation, this review summarizes the current knowledge of the regulation of platelet formation by the transcription factors EVI1, GATA1, FLI1, NFE2, RUNX1, SRF and its co-factor MKL1, and TAL1. Also covered is how some platelet disorders including myeloproliferative neoplasms, result from disturbances of the transcriptional regulation. These disorders give us invaluable insights into the crucial role these transcription factors play in platelet formation. Finally, there is discussion of how a better understanding of these processes will be needed to allow for efficient production of platelets in vitro. PMID:23311859

  8. SoxD Transcription Factors: Multifaceted Players of Neural Development

    PubMed Central

    Ji, Eun Hye; Kim, Jaesang

    2016-01-01

    SoxD transcription factor subfamily includes three members, Sox5, Sox6, and Sox13. Like other Sox genes, they contain the High-Mobility-Group (HMG) box as the DNA binding domain but in addition feature the subgroup-specific leucine zipper motif. SoxD genes are expressed in diverse cell types in multiple organs during embryogenesis and in adulthood. Among the cells expressing them are those present in the developing nervous system including neural stem (or progenitor) cells as well as differentiating neurons and oligodendrocytes. SoxD transcription factors do not contain distinct activator or repressor domain, and they are believed to function in modulation of other transcription factors in promoter-specific manners. This brief review article will attempt to summarize the latest studies on the function of SoxD genes in embryogenesis with a particular emphasis on the regulation of neural development. PMID:27426080

  9. Transcription factors in the development of inner ear hair cells.

    PubMed

    Li, Shuna; Qian, Wei; Jiang, Guochang; Ma, Yongming

    2016-01-01

    Inner ear hair cells are the sensory receptors that detect and convert sound vibrations and head movements into neural signals. However, in humans, these cells are unable to regenerate if they are damaged or lost. Over thepast decade,there has been an exponential increase in interest and progress in understanding of the development of the inner ear and of hair cells, aiming to gain insights into hair cell repair or even regeneration. In hair cell development, various transcription factors have been found to be involved in the processes of hair cell proliferation, differentiation and survival. Among these transcription factors, Math1, Gata3, Sox2 and Atoh1 have been highlighted for their crucial role in the fate of hair cells. In this article, we will summarize the current understanding of the role of transcription factors in hair cell development, focusing on the role and possible mechanisms of Math1, Gata3, Sox2 and Atoh1. PMID:27100495

  10. Identifying genetic modulators of the connectivity between transcription factors and their transcriptional targets

    PubMed Central

    Fazlollahi, Mina; Muroff, Ivor; Lee, Eunjee; Causton, Helen C.; Bussemaker, Harmen J.

    2016-01-01

    Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae. We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors. PMID:26966232

  11. Transcriptional regulation of drought response: a tortuous network of transcriptional factors

    PubMed Central

    Singh, Dhriti; Laxmi, Ashverya

    2015-01-01

    Drought is one of the leading factors responsible for the reduction in crop yield worldwide. Due to climate change, in future, more areas are going to be affected by drought and for prolonged periods. Therefore, understanding the mechanisms underlying the drought response is one of the major scientific concerns for improving crop yield. Plants deploy diverse strategies and mechanisms to respond and tolerate drought stress. Expression of numerous genes is modulated in different plants under drought stress that help them to optimize their growth and development. Plant hormone abscisic acid (ABA) plays a major role in plant response and tolerance by regulating the expression of many genes under drought stress. Transcription factors being the major regulator of gene expression play a crucial role in stress response. ABA regulates the expression of most of the target genes through ABA-responsive element (ABRE) binding protein/ABRE binding factor (AREB/ABF) transcription factors. Genes regulated by AREB/ABFs constitute a regulon termed as AREB/ABF regulon. In addition to this, drought responsive genes are also regulated by ABA-independent mechanisms. In ABA-independent regulation, dehydration-responsive element binding protein (DREB), NAM, ATAF, and CUC regulons play an important role by regulating many drought-responsive genes. Apart from these major regulons, MYB/MYC, WRKY, and nuclear factor-Y (NF-Y) transcription factors are also involved in drought response and tolerance. Our understanding about transcriptional regulation of drought is still evolving. Recent reports have suggested the existence of crosstalk between different transcription factors operating under drought stress. In this article, we have reviewed various regulons working under drought stress and their crosstalk with each other. PMID:26579147

  12. Mitochondrial transcription termination factor 1 directs polar replication fork pausing

    PubMed Central

    Shi, Yonghong; Posse, Viktor; Zhu, Xuefeng; Hyvärinen, Anne K.; Jacobs, Howard T.; Falkenberg, Maria; Gustafsson, Claes M.

    2016-01-01

    During replication of nuclear ribosomal DNA (rDNA), clashes with the transcription apparatus can cause replication fork collapse and genomic instability. To avoid this problem, a replication fork barrier protein is situated downstream of rDNA, there preventing replication in the direction opposite rDNA transcription. A potential candidate for a similar function in mitochondria is the mitochondrial transcription termination factor 1 (MTERF1, also denoted mTERF), which binds to a sequence just downstream of the ribosomal transcription unit. Previous studies have shown that MTERF1 prevents antisense transcription over the ribosomal RNA genes, a process which we here show to be independent of the transcription elongation factor TEFM. Importantly, we now demonstrate that MTERF1 arrests mitochondrial DNA (mtDNA) replication with distinct polarity. The effect is explained by the ability of MTERF1 to act as a directional contrahelicase, blocking mtDNA unwinding by the mitochondrial helicase TWINKLE. This conclusion is also supported by in vivo evidence that MTERF1 stimulates TWINKLE pausing. We conclude that MTERF1 can direct polar replication fork arrest in mammalian mitochondria. PMID:27112570

  13. Transcription factor trapping by RNA in gene regulatory elements

    PubMed Central

    Sigova, Alla A.; Abraham, Brian J.; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M.; Eric Guo, Yang; Jangi, Mohini; Giallourakis, Cosmas C.; Sharp, Phillip A.; Young, Richard A.

    2016-01-01

    Transcription factors (TFs) bind specific sequences in promoter-proximal and distal DNA elements in order to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA-binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF YY1 binds to both gene regulatory elements and also to their associated RNA species genome-wide. Reduced transcription of regulatory elements diminishes YY1 occupancy whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive feedback loop that contributes to the stability of gene expression programs. PMID:26516199

  14. Transcription factor trapping by RNA in gene regulatory elements.

    PubMed

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. PMID:26516199

  15. Genetic Interactions Between Transcription Factors Cause Natural Variation in Yeast

    PubMed Central

    Gerke, Justin; Lorenz, Kim; Cohen, Barak

    2016-01-01

    Our understanding of the genetic basis of phenotypic diversity is limited by the paucity of examples in which multiple, interacting loci have been identified. We show that natural variation in the efficiency of sporulation, the program in yeast that initiates the sexual phase of the life cycle, between oak tree and vineyard strains is due to allelic variation between four nucleotide changes in three transcription factors: IME1, RME1, and RSF1. Furthermore, we identified that selection has shaped quantitative variation in yeast sporulation between strains. These results illustrate how genetic interactions between transcription factors are a major source of phenotypic diversity within species. PMID:19164747

  16. Transcription factors controlling development and function of innate lymphoid cells.

    PubMed

    Tanriver, Yakup; Diefenbach, Andreas

    2014-03-01

    Innate lymphoid cells (ILCs) are a heterogeneous group of lymphocytes, which play an important role in tissue homeostasis at epithelial surfaces. They are scarce in spleen and lymph nodes, but substantial numbers can be found in the intestinal mucosa even at steady state. There, they represent the first line of defence against invading pathogens and contribute to lymphorganogenesis, tissue repair and, when inappropriately activated, immune pathology. Lineage-specific development, function and maintenance of these cells depend on a restricted set of transcription factors that partially emerged as a result of diversification and selection during vertebrate evolution. The differential expression of transcription factors regulates unique developmental programs, which endow the different ILC subsets with specific effector functions. Despite this division of labour, ILCs are considered to share a common origin, as they all are progeny of the common lymphoid progenitor, rely on the common γ-chain (γc) used by various cytokine receptors and show a developmental requirement for the transcriptional regulator Id2 (inhibitor of DNA binding 2). Here, we review the transcriptional programs required for the development and function of ILCs and give an overview of the evolution of transcription factors and cytokines expressed by ILCs. PMID:24585669

  17. The Percentage of FoxP3+Helios+ Treg Cells Correlates Positively With Disease Activity in Systemic Lupus Erythematosus

    PubMed Central

    Golding, Amit; Hasni, Sarfaraz; Illei, Gabor; Shevach, Ethan M.

    2013-01-01

    Objective To assess the use of Helios in combination with FoxP3 as a superior method for identifying non–cytokine-producing human Treg cells in patients with systemic lupus erythematosus (SLE) and to determine if FoxP3+Helios+ Treg cells are maintained at normal levels in patients with clinically active disease. Methods Peripheral blood mononuclear cells (PBMCs) were purified from the blood of healthy volunteer donors and from 52 consecutive patients with SLE of varying clinical activity (Systemic Lupus Erythematosus Disease Activity Index scores of 0, 2–4, and ≥5). PBMCs (either fresh or after 4 hours of stimulation for cytokine production) were then analyzed by flow cytometry for the expression of cell surface markers (CD4, CD25, CD127, and CD45RA) and transcription factors (FoxP3 and Helios), as well as for the production of cytokines (interleukin-2 and interferon- γ). Results FoxP3+Helios+ Treg cells were found to be non–cytokine producing in both SLE patients and healthy controls. Patients with clinically active SLE had higher percentages of FoxP3+Helios+ Treg cells than did patients with inactive SLE or healthy controls. When corrected for the total CD4 cell count, the absolute numbers of FoxP3+Helios+ Treg cells in patients with moderately-to-highly active SLE were normal. Conclusion Previous reports of a deficiency in Treg cell number or function in SLE are limited by their use of CD25, either alone or in combination with other markers, to identify human Treg cells. Helios in combination with FoxP3 is a superior method for detecting all non–cytokine-producing Treg cells, irrespective of CD25 or CD45RA expression. Using this method, we showed that FoxP3+Helios+ Treg cell numbers are not reduced in patients with clinically active SLE. PMID:23925905

  18. Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle.

    PubMed

    Mammucari, Cristina; Schiaffino, Stefano; Sandri, Marco

    2008-05-01

    The balance between synthesis and degradation of intracellular components determines the overall muscle fiber size. Muscle atrophy occurs when the degradation rate is higher than the synthesis rate, for example during disuse, fasting or systemic diseases such as diabetes, cancer and renal failure. The two main catabolic systems that are activated during atrophy are the ubiquitin-proteasome and the autophagy-lysosome pathways. FoxO3 transcription factor causes marked atrophy in adult skeletal muscle and induces the muscle-specific ubiquitin ligase Atrogin-1/MAFbx.(1) In addition, we recently reported that FoxO3 is necessary and sufficient for the induction of autophagy in skeletal muscle.(2) Transcription of autophagy related genes, such as LC3B and Bnip3, is activated during fasting and is mediated by FoxO3. In particular, Bnip3 induces autophagosome formation and is responsible for the induction of autophagy by FoxO3. Surprisingly, rapamycin is not able to induce autophagy in skeletal muscle in vivo, indicating that the Akt-FoxO axis, rather than the Akt-mTOR pathway, is involved in this process. Here we discuss the major implications of our recent work. PMID:18367868

  19. Subcellular Partitioning of Transcription Factors in Bacillus subtilis

    PubMed Central

    Doherty, Geoff P.; Meredith, Donna H.; Lewis, Peter J.

    2006-01-01

    RNA polymerase (RNAP) requires the interaction of various transcription elongation factors to efficiently transcribe RNA. During transcription of rRNA operons, RNAP forms highly processive antitermination complexes by interacting with NusA, NusB, NusG, NusE, and possibly several unidentified factors to increase elongation rates to around twice those observed for mRNA. In previous work we used cytological assays with Bacillus subtilis to identify the major sites of rRNA synthesis within the cell, which are called transcription foci. Using this cytological assay, in conjunction with both quantitative native polyacrylamide gel electrophoresis and Western blotting, we investigated the total protein levels and the ratios of NusB and NusG to RNAP in both antitermination and mRNA transcription complexes. We determined that the ratio of RNAP to NusG was 1:1 in both antitermination and mRNA transcription complexes, suggesting that NusG plays important regulatory roles in both complexes. A ratio of NusB to RNAP of 1:1 was calculated for antitermination complexes with just a 0.3:1 ratio in mRNA complexes, suggesting that NusB is restricted to antitermination complexes. We also investigated the cellular abundance and subcellular localization of transcription restart factor GreA. We found no evidence which suggests that GreA is involved in antitermination complex formation and that it has a cellular abundance which is around twice that of RNAP. Surprisingly, we found that the vast majority of GreA is associated with RNAP, suggesting that there is more than one binding site for GreA on RNAP. These results indicate that transcription elongation complexes are highly dynamic and are differentially segregated within the nucleoid according to their functions. PMID:16707701

  20. FoxO proteins' nuclear retention and BH3-only protein Bim induction evoke mitochondrial dysfunction-mediated apoptosis in berberine-treated HepG2 cells.

    PubMed

    Shukla, Shatrunajay; Rizvi, Fatima; Raisuddin, Sheikh; Kakkar, Poonam

    2014-11-01

    Mammalian forkhead-box family members belonging to the 'O' category (FoxO) manipulate a plethora of genes modulating a wide array of cellular functions including cell cycle regulation, apoptosis, DNA damage repair, and energy metabolism. FoxO overexpression and nuclear accumulation have been reported to show correlation with hindered tumor growth in vitro and size in vivo, while FoxO's downregulation via phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway has been linked with tumor promotion. In this study, we have explored for the first time intervention of berberine, a plant-derived isoquinoline alkaloid, with FoxO family proteins in hepatoma cells. We observed that berberine significantly upregulated the mRNA expression of both FoxO1 and FoxO3a. Their phosphorylation-mediated cytoplasmic sequestration followed by degradation was prevented by berberine-induced downmodulation of the PI3K/Akt/mTOR pathway which promoted FoxO nuclear retention. PTEN, a tumor suppressor gene and negative regulator of the PI3K/Akt axis, was upregulated while phosphorylation of its Ser380 residue (possible mechanism of PTEN degradation) was significantly decreased in treated HepG2 cells. Exposure to berberine induced a significant increase in transcriptional activity of FoxO, as shown by GFP reporter assay. FoxO transcription factors effectively heightened BH3-only protein Bim expression, which in turn, being a direct activator of proapoptotic protein Bax, altered Bax/Bcl-2 ratio, culminating into mitochondrial dysfunction, caspases activation, and DNA fragmentation. The pivotal role of Bim in berberine-mediated cytotoxicity was further corroborated by knockdown experiments where Bim-silencing partially restored HepG2 cell viability during berberine exposure. In addition, a correlation between oxidative overload and FoxO's nuclear accumulation via JNK activation was evident as berberine treatment led to a pronounced increase in JNK phosphorylation together with enhanced

  1. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    NASA Astrophysics Data System (ADS)

    Meng, Jia; Zhang, Jianqiu(Michelle); Qi, Yuan(Alan); Chen, Yidong; Huang, Yufei

    2010-12-01

    The problem of uncovering transcriptional regulation by transcription factors (TFs) based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM) is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ([InlineEquation not available: see fulltext.]) status and Estrogen Receptor negative ([InlineEquation not available: see fulltext.]) status, respectively.

  2. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum.

    PubMed

    Araujo, Daniel J; Anderson, Ashley G; Berto, Stefano; Runnels, Wesley; Harper, Matthew; Ammanuel, Simon; Rieger, Michael A; Huang, Hung-Chung; Rajkovich, Kacey; Loerwald, Kristofer W; Dekker, Joseph D; Tucker, Haley O; Dougherty, Joseph D; Gibson, Jay R; Konopka, Genevieve

    2015-10-15

    Mutations in the transcription factor Forkhead box p1 (FOXP1) are causative for neurodevelopmental disorders such as autism. However, the function of FOXP1 within the brain remains largely uncharacterized. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and patient-relevant heterozygous Foxp1 mouse brains. We demonstrate a role for FoxP1 in the transcriptional regulation of autism-related pathways as well as genes involved in neuronal activity. We show that Foxp1 regulates the excitability of striatal medium spiny neurons and that reduction of Foxp1 correlates with defects in ultrasonic vocalizations. Finally, we demonstrate that FoxP1 has an evolutionarily conserved role in regulating pathways involved in striatal neuron identity through gene expression studies in human neural progenitors with altered FOXP1 levels. These data support an integral role for FoxP1 in regulating signaling pathways vulnerable in autism and the specific regulation of striatal pathways important for vocal communication. PMID:26494785

  3. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum

    PubMed Central

    Araujo, Daniel J.; Anderson, Ashley G.; Berto, Stefano; Runnels, Wesley; Harper, Matthew; Ammanuel, Simon; Rieger, Michael A.; Huang, Hung-Chung; Rajkovich, Kacey; Loerwald, Kristofer W.; Dekker, Joseph D.; Tucker, Haley O.; Dougherty, Joseph D.; Gibson, Jay R.; Konopka, Genevieve

    2015-01-01

    Mutations in the transcription factor Forkhead box p1 (FOXP1) are causative for neurodevelopmental disorders such as autism. However, the function of FOXP1 within the brain remains largely uncharacterized. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and patient-relevant heterozygous Foxp1 mouse brains. We demonstrate a role for FoxP1 in the transcriptional regulation of autism-related pathways as well as genes involved in neuronal activity. We show that Foxp1 regulates the excitability of striatal medium spiny neurons and that reduction of Foxp1 correlates with defects in ultrasonic vocalizations. Finally, we demonstrate that FoxP1 has an evolutionarily conserved role in regulating pathways involved in striatal neuron identity through gene expression studies in human neural progenitors with altered FOXP1 levels. These data support an integral role for FoxP1 in regulating signaling pathways vulnerable in autism and the specific regulation of striatal pathways important for vocal communication. PMID:26494785

  4. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    PubMed

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases. PMID:26699507

  5. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor

    PubMed Central

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light–oxygen–voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na+-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na+ currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases. PMID:26699507

  6. A Recommendation for Naming Transcription Factor Proteins in the Grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription factors are central for the exquisite temporal and spatial expression patterns of many genes. These proteins are characterized by their ability to be tethered to particular regulatory sequences in the genes that they control. While many other proteins participate in the regulation of g...

  7. The WRKY transcription factor family and senescence in switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. Methods: All potential WRKY genes present in the version 1.0 of the...

  8. Transcription factors: molecular targets for prostate cancer intervention by phytochemicals.

    PubMed

    Kaur, Manjinder; Agarwal, Rajesh

    2007-06-01

    With increasing incidence of cancer at most of the sites, and growing economic burden and associated psychological and emotional trauma, it is becoming clearer that more efforts are needed for cancer cure. Since most of the chemotherapeutic drugs are non-selective because they are also toxic to the normal cells, new and improved strategies are needed that selectively target the killing of cancer cells. Since aberrant activation of numerous signaling pathways is a key element of cancer cell survival and growth, blocking all of them is not that practical, which leads to the step where most of them commonly converge; the transcription factors. Recent research efforts, therefore, are also directed on targeting the activity and activation of transcription factors, which ultimately control the expression of genes that are involved in almost all aspects of cell biology. One class of agents that is becoming increasingly successful, not only in targeting signaling cascades, but also transcription factors is phytochemicals present in diet and those consumed as supplement. The added advantage with these agents is that they are mostly non-toxic when compared to chemotherapeutic agents. This review focuses on the efficacy of various phytochemicals in targeting transcription factors such as AR, Sp1, STATs, E2F, Egr1, c-Myc, HIF-1 alpha, NF-kappaB, AP-1, ETS2, GLI and p53 in the context of prostate cancer intervention. PMID:17979630

  9. Regulation by transcription factors in bacteria: beyond description.

    PubMed

    Balleza, Enrique; López-Bojorquez, Lucia N; Martínez-Antonio, Agustino; Resendis-Antonio, Osbaldo; Lozada-Chávez, Irma; Balderas-Martínez, Yalbi I; Encarnación, Sergio; Collado-Vides, Julio

    2009-01-01

    Transcription is an essential step in gene expression and its understanding has been one of the major interests in molecular and cellular biology. By precisely tuning gene expression, transcriptional regulation determines the molecular machinery for developmental plasticity, homeostasis and adaptation. In this review, we transmit the main ideas or concepts behind regulation by transcription factors and give just enough examples to sustain these main ideas, thus avoiding a classical ennumeration of facts. We review recent concepts and developments: cis elements and trans regulatory factors, chromosome organization and structure, transcriptional regulatory networks (TRNs) and transcriptomics. We also summarize new important discoveries that will probably affect the direction of research in gene regulation: epigenetics and stochasticity in transcriptional regulation, synthetic circuits and plasticity and evolution of TRNs. Many of the new discoveries in gene regulation are not extensively tested with wetlab approaches. Consequently, we review this broad area in Inference of TRNs and Dynamical Models of TRNs. Finally, we have stepped backwards to trace the origins of these modern concepts, synthesizing their history in a timeline schema. PMID:19076632

  10. The Transcription Factor ATF5 Mediates a Mammalian Mitochondrial UPR.

    PubMed

    Fiorese, Christopher J; Schulz, Anna M; Lin, Yi-Fan; Rosin, Nadine; Pellegrino, Mark W; Haynes, Cole M

    2016-08-01

    Mitochondrial dysfunction is pervasive in human pathologies such as neurodegeneration, diabetes, cancer, and pathogen infections as well as during normal aging. Cells sense and respond to mitochondrial dysfunction by activating a protective transcriptional program known as the mitochondrial unfolded protein response (UPR(mt)), which includes genes that promote mitochondrial protein homeostasis and the recovery of defective organelles [1, 2]. Work in Caenorhabditis elegans has shown that the UPR(mt) is regulated by the transcription factor ATFS-1, which is regulated by organelle partitioning. Normally, ATFS-1 accumulates within mitochondria, but during respiratory chain dysfunction, high levels of reactive oxygen species (ROS), or mitochondrial protein folding stress, a percentage of ATFS-1 accumulates in the cytosol and traffics to the nucleus where it activates the UPR(mt) [2]. While similar transcriptional responses have been described in mammals [3, 4], how the UPR(mt) is regulated remains unclear. Here, we describe a mammalian transcription factor, ATF5, which is regulated similarly to ATFS-1 and induces a similar transcriptional response. ATF5 expression can rescue UPR(mt) signaling in atfs-1-deficient worms requiring the same UPR(mt) promoter element identified in C. elegans. Furthermore, mammalian cells require ATF5 to maintain mitochondrial activity during mitochondrial stress and promote organelle recovery. Combined, these data suggest that regulation of the UPR(mt) is conserved from worms to mammals. PMID:27426517

  11. Regulation by transcription factors in bacteria: beyond description

    PubMed Central

    Balleza, Enrique; López-Bojorquez, Lucia N; Martínez-Antonio, Agustino; Resendis-Antonio, Osbaldo; Lozada-Chávez, Irma; Balderas-Martínez, Yalbi I; Encarnación, Sergio; Collado-Vides, Julio

    2009-01-01

    Transcription is an essential step in gene expression and its understanding has been one of the major interests in molecular and cellular biology. By precisely tuning gene expression, transcriptional regulation determines the molecular machinery for developmental plasticity, homeostasis and adaptation. In this review, we transmit the main ideas or concepts behind regulation by transcription factors and give just enough examples to sustain these main ideas, thus avoiding a classical ennumeration of facts. We review recent concepts and developments: cis elements and trans regulatory factors, chromosome organization and structure, transcriptional regulatory networks (TRNs) and transcriptomics. We also summarize new important discoveries that will probably affect the direction of research in gene regulation: epigenetics and stochasticity in transcriptional regulation, synthetic circuits and plasticity and evolution of TRNs. Many of the new discoveries in gene regulation are not extensively tested with wetlab approaches. Consequently, we review this broad area in Inference of TRNs and Dynamical Models of TRNs. Finally, we have stepped backwards to trace the origins of these modern concepts, synthesizing their history in a timeline schema. PMID:19076632

  12. An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.

    PubMed

    Jin, Jinpu; He, Kun; Tang, Xing; Li, Zhe; Lv, Le; Zhao, Yi; Luo, Jingchu; Gao, Ge

    2015-07-01

    Transcription factors (TFs) play key roles in both development and stress responses. By integrating into and rewiring original systems, novel TFs contribute significantly to the evolution of transcriptional regulatory networks. Here, we report a high-confidence transcriptional regulatory map covering 388 TFs from 47 families in Arabidopsis. Systematic analysis of this map revealed the architectural heterogeneity of developmental and stress response subnetworks and identified three types of novel network motifs that are absent from unicellular organisms and essential for multicellular development. Moreover, TFs of novel families that emerged during plant landing present higher binding specificities and are preferentially wired into developmental processes and these novel network motifs. Further unveiled connection between the binding specificity and wiring preference of TFs explains the wiring preferences of novel-family TFs. These results reveal distinct functional and evolutionary features of novel TFs, suggesting a plausible mechanism for their contribution to the evolution of multicellular organisms. PMID:25750178

  13. A decade of transcription factor-mediated reprogramming to pluripotency.

    PubMed

    Takahashi, Kazutoshi; Yamanaka, Shinya

    2016-03-01

    The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors - octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) - initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery. PMID:26883003

  14. Associations between Forkhead Box O1 (FoxO1) Expression and Indicators of Hepatic Glucose Production in Transition Dairy Cows Supplemented with Dietary Nicotinic Acid.

    PubMed

    Kinoshita, Asako; Locher, Lena; Tienken, Reka; Meyer, Ulrich; Dänicke, Sven; Rehage, Jürgen; Huber, Korinna

    2016-01-01

    Forkhead box protein O1 (FoxO1) is a transcription factor which promotes hepatic glucose production (HGP) by up-regulating the transcription of gluconeogenic enzymes in monogastric species. The activity of FoxO1 is inhibited by insulin-induced phosphorylation. The aims of the present study were to find associations between FoxO1 expression and variables associated with HGP as affected by feeding regimen in dairy cows during the transition period. Twenty one healthy German Holstein cows were allocated to four groups (LC-CON, HC-CON, LC-NA with 5 cows/group and HC-NA with 6 cows/group, respectively). Cows received 0 (LC-CON and HC-CON) or 24 (LC-NA and HC-NA) g/d nicotinic acid with high (HC) or low (LC) concentrate proportion from -42 days (-41.8 + 4.8; mean + standard deviation) relative to expected calving date (d-42) to d24. Liver biopsy was taken at d-42, 1, 21, and 100. The total protein expression of FoxO1 (tFoxO1) and the extent of phosphorylation of FoxO1 at serine 256 (pFoxO1) were analysed semiquantitatively by Western Blotting. The expression of hepatic mRNA of FoxO1 and seven genes associated with HGP was measured by real-time RT-PCR. Mixed model and Pearson's correlation were used for statistical evaluation with the level of significance at P<0.05. No dietary effect was observed either on feed intake, energy balance, or on the concentration of blood metabolites. Neither time nor diet affected the expression of FoxO1 total protein and mRNA. A NA × concentrate interaction was found in pFoxO1. However, no corresponding dietary effect was found in the mRNA expression of investigated genes. Different patterns of correlations between FoxO1-related variables and investigated indicators for HGP were found at d21 and 100. The results indicated that the regulation of HGP did not take place on the levels of mRNA and protein expression and the phosphorylation of FoxO1 in dairy cows in early lactation. PMID:26800252

  15. Associations between Forkhead Box O1 (FoxO1) Expression and Indicators of Hepatic Glucose Production in Transition Dairy Cows Supplemented with Dietary Nicotinic Acid

    PubMed Central

    Kinoshita, Asako; Locher, Lena; Tienken, Reka; Meyer, Ulrich; Dänicke, Sven; Rehage, Jürgen; Huber, Korinna

    2016-01-01

    Forkhead box protein O1 (FoxO1) is a transcription factor which promotes hepatic glucose production (HGP) by up-regulating the transcription of gluconeogenic enzymes in monogastric species. The activity of FoxO1 is inhibited by insulin-induced phosphorylation. The aims of the present study were to find associations between FoxO1 expression and variables associated with HGP as affected by feeding regimen in dairy cows during the transition period. Twenty one healthy German Holstein cows were allocated to four groups (LC-CON, HC-CON, LC-NA with 5 cows/group and HC-NA with 6 cows/group, respectively). Cows received 0 (LC-CON and HC-CON) or 24 (LC-NA and HC-NA) g/d nicotinic acid with high (HC) or low (LC) concentrate proportion from -42 days (-41.8 + 4.8; mean + standard deviation) relative to expected calving date (d-42) to d24. Liver biopsy was taken at d-42, 1, 21, and 100. The total protein expression of FoxO1 (tFoxO1) and the extent of phosphorylation of FoxO1 at serine 256 (pFoxO1) were analysed semiquantitatively by Western Blotting. The expression of hepatic mRNA of FoxO1 and seven genes associated with HGP was measured by real-time RT-PCR. Mixed model and Pearson’s correlation were used for statistical evaluation with the level of significance at P<0.05. No dietary effect was observed either on feed intake, energy balance, or on the concentration of blood metabolites. Neither time nor diet affected the expression of FoxO1 total protein and mRNA. A NA × concentrate interaction was found in pFoxO1. However, no corresponding dietary effect was found in the mRNA expression of investigated genes. Different patterns of correlations between FoxO1-related variables and investigated indicators for HGP were found at d21 and 100. The results indicated that the regulation of HGP did not take place on the levels of mRNA and protein expression and the phosphorylation of FoxO1 in dairy cows in early lactation. PMID:26800252

  16. The CREB Transcription Factor Controls Transcriptional Activity of the Human RIC8B Gene.

    PubMed

    Maureira, Alejandro; Sánchez, Rodolfo; Valenzuela, Nicole; Torrejón, Marcela; Hinrichs, María V; Olate, Juan; Gutiérrez, José L

    2016-08-01

    Proper regulation of gene expression is essential for normal development, cellular growth, and differentiation. Differential expression profiles of mRNA coding for vertebrate Ric-8B during embryo and adult stages have been observed. In addition, Ric-8B is expressed in few cerebral nuclei subareas. These facts point to a dynamic control of RIC8B gene expression. In order to understand the transcriptional regulation of this gene, we searched for cis-elements in the sequence of the human RIC8B promoter region, identifying binding sites for the basic/leucine zipper (bZip) CREB transcription factor family (CRE sites) and C/EBP transcription factor family (C/EBP sites). CRE sites were found clustered near the transcription start site, while the C/EBP sites were found clustered at around 300 bp upstream the CRE sites. Here, we demonstrate the ability of CREB1 and C/EBPβ to bind their respective elements identified in the RIC8B promoter. Comparative protein-DNA interaction analyses revealed only the proximal elements as high affinity sites for CREB1 and only the distal elements as high affinity sites for C/EBPβ. Chromatin immunoprecipitation analyses, carried out using a human neuroblastoma cell line, confirmed the preferential association of CREB to the proximal region of the RIC8B promoter. By performing luciferase reporter assays, we found the CRE sites as the most relevant elements for its transcriptional activity. Taken together, these data show the existence of functional CREB and C/EBP binding sites in the human RIC8B gene promoter, a particular distribution of these sites and demonstrate a relevant role of CREB in stimulating transcriptional activity of this gene. J. Cell. Biochem. 117: 1797-1805, 2016. © 2016 Wiley Periodicals, Inc. PMID:26729411

  17. Controlling for Gene Expression Changes in Transcription Factor Protein Networks*

    PubMed Central

    Banks, Charles A. S.; Lee, Zachary T.; Boanca, Gina; Lakshminarasimhan, Mahadevan; Groppe, Brad D.; Wen, Zhihui; Hattem, Gaye L.; Seidel, Chris W.; Florens, Laurence; Washburn, Michael P.

    2014-01-01

    The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein–protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBβ, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions. PMID:24722732

  18. Effect of dietary protein restriction on liver transcription factors.

    PubMed Central

    Marten, N W; Sladek, F M; Straus, D S

    1996-01-01

    The transcription of several genes that are preferentially expressed in the liver, including the serum albumin, transthyretin and carbamyl phosphate synthetase-I genes, is specifically decreased in animals consuming inadequate amounts of dietary protein. The high level of transcription of these genes in the liver is directed in part by a number of liver-enriched transcription factors, including hepatocyte nuclear factors (HNF)-1, -3, and -4, and proteins of the CCAAT/enhancer-binding protein (C/EBP) family. In the present study, we investigated the possibility that the co-ordinate decrease in transcription of the nutritionally sensitive genes in protein-deprived rats results from altered activity of one or more of the liver-enriched transcription factors. For HNF-4, Western blots indicated no change in the level of nuclear HNF-4 protein in liver of protein-deprived animals, whereas we observed a 40% reduction in the DNA binding activity of HNF-4 as measured by electrophoretic mobility shift assay (EMSA). Furthermore, the binding affinity of HNF-4 for DNA was unaltered by dietary protein deprivation, while the number of HNF-4 molecules able to bind to DNA (Bmax) was reduced, as determined by Scatchard analysis. This indicates that in the protein-restricted rats a portion of the pool of HNF-4 protein is inactivated or otherwise prevented from binding to DNA. The overall DNA binding activity of C/EBP alpha and beta was increased in protein-restricted animals. This change occurred in the absence of a change in the amount of the full-length forms of these two proteins, quantified by Western blotting. Interestingly, dietary protein restriction specifically increased the level of a truncated form of C/EBP beta (liver-enriched transcriptional inhibitory protein, LIP), which is a protein dominant negative inhibitor of C/EBP function. Analysis of HNF-3 DNA-binding activity by EMSA revealed that HNF-3 alpha and beta DNA binding was increased and that HNF-3 gamma DNA

  19. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    PubMed Central

    Marinho, H. Susana; Real, Carla; Cyrne, Luísa; Soares, Helena; Antunes, Fernando

    2014-01-01

    The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly

  20. Deletion of FoxO1 Leads to Shortening of QRS by Increasing Na+ Channel Activity through Enhanced Expression of both Cardiac NaV1.5 and β3 Subunit

    PubMed Central

    Cai, Benzhi; Wang, Ning; Mao, Weike; You, Tao; Lu, Yan; Li, Xiang; Ye, Bo; Li, Faqian; Xu, Haodong

    2014-01-01

    Our in vitro studies revealed that a transcription factor, Forkhead box protein O1 (FoxO1), negatively regulates the expression of NaV1.5, a main α subunit of the cardiac Na+ channel, by altering the promoter activity of SCN5a in HL-1 cardiomyocytes. The in vivo role of FoxO1 in the regulation of cardiac NaV1.5 expression remains unknown. The present study aimed to define the role of FoxO1 in the regulation of NaV1.5 expression and cardiac Na+ channel activity in mouse ventricular cardiomyocytes and assess the cardiac electrophysiological phenotype of mice with cardiac FoxO1 deletion. Tamoxifen-induced and cardiac-specific FoxO1 deletion was confirmed by polymerase chain reaction (PCR). Cardiac FoxO1 deletion failed to result in either cardiac functional changes or hypertrophy as assessed by echocardiography and individual ventricular cell capacitances, respectively. Western blotting showed that FoxO1 was significantly decreased while NaV1.5 protein level was significantly increased in mouse hearts with FoxO1 deletion. Reverse transcription-PCR (RT-PCR) revealed that FoxO1 deletion led to an increase in NaV1.5 and Na+ channel subunit β3 mRNA, but not β1, 2, 4, or connexin 43. Whole patch-clamp recordings demonstrated that cardiac Na+ currents were significantly augmented by FoxO1 deletion without affecting the steady-state activation and inactivation, leading to accelerated depolarization of action potentials in mouse ventricular cardiomyocytes. Electrocardiogram recordings showed that the QRS complex was significantly shortened and P wave amplitude was significantly increased in conscious and unrestrained mice with cardiac FoxO1 deletion. NaV1.5 expression was decreased in the peri-infarct (border-zone) of mice with myocardial infarction and FoxO1 accumulated in the cardiomyocyte nuclei of chronic ischemic human hearts. Our findings indicate that FoxO1 plays an important role in the regulation of NaV1.5 and β3 subunit expression as well as Na+ channel activity

  1. Transcription factors mediate long-range enhancer–promoter interactions

    PubMed Central

    Nolis, Ilias K.; McKay, Daniel J.; Mantouvalou, Eva; Lomvardas, Stavros; Merika, Menie; Thanos, Dimitris

    2009-01-01

    We examined how remote enhancers establish physical communication with target promoters to activate gene transcription in response to environmental signals. Although the natural IFN-β enhancer is located immediately upstream of the core promoter, it also can function as a classical enhancer element conferring virus infection-dependent activation of heterologous promoters, even when it is placed several kilobases away from these promoters. We demonstrated that the remote IFN-β enhancer “loops out” the intervening DNA to reach the target promoter. These chromatin loops depend on sequence-specific transcription factors bound to the enhancer and the promoter and thus can explain the specificity observed in enhancer–promoter interactions, especially in complex genetic loci. Transcription factor binding sites scattered between an enhancer and a promoter can work as decoys trapping the enhancer in nonproductive loops, thus resembling insulator elements. Finally, replacement of the transcription factor binding sites involved in DNA looping with those of a heterologous prokaryotic protein, the λ repressor, which is capable of loop formation, rescues enhancer function from a distance by re-establishing enhancer–promoter loop formation. PMID:19923429

  2. Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells

    PubMed Central

    Boeva, Valentina

    2016-01-01

    Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites, and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation. PMID:26941778

  3. Repression of chimeric transcripts emanating from endogenous retrotransposons by a sequence-specific transcription factor

    PubMed Central

    2014-01-01

    Background Retroviral elements are pervasively transcribed and dynamically regulated during development. While multiple histone- and DNA-modifying enzymes have broadly been associated with their global silencing, little is known about how the many diverse retroviral families are each selectively recognized. Results Here we show that the zinc finger protein Krüppel-like Factor 3 (KLF3) specifically silences transcription from the ORR1A0 long terminal repeat in murine fetal and adult erythroid cells. In the absence of KLF3, we detect widespread transcription from ORR1A0 elements driven by the master erythroid regulator KLF1. In several instances these aberrant transcripts are spliced to downstream genic exons. One such chimeric transcript produces a novel, dominant negative isoform of PU.1 that can induce erythroid differentiation. Conclusions We propose that KLF3 ensures the integrity of the murine erythroid transcriptome through the selective repression of a particular retroelement and is likely one of multiple sequence-specific factors that cooperate to achieve global silencing. PMID:24946810

  4. Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells.

    PubMed

    Boeva, Valentina

    2016-01-01

    Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites, and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation. PMID:26941778

  5. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors

    PubMed Central

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-01-01

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, ‘Transcription Profile of Escherichia coli’ (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  6. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors.

    PubMed

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-03-18

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, 'Transcription Profile of Escherichia coli' (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  7. The Transcription Factor Titration Effect Dictates Level of Gene Expression

    PubMed Central

    Brewster, Robert C.; Weinert, Franz M.; Garcia, Hernan G.; Song, Dan; Rydenfelt, Mattias; Phillips, Rob

    2014-01-01

    Models of transcription are often built around a picture of RNA polymerase and transcription factors (TFs) acting on a single copy of a promoter. However, most TFs are shared between multiple genes with varying binding affinities. Beyond that, genes often exist at high copy number; in multiple, identical copies on the chromosome or on plasmids or viral vectors with copy numbers in the hundreds. Using a thermodynamic model, we characterize the interplay between TF copy number and the demand for that TF. We demonstrate the parameter-free predictive power of this model as a function of the copy number of the TF and the number and affinities of the available specific binding sites; such predictive control is important for the understanding of transcription and the desire to quantitatively design the output of genetic circuits. Finally we use these experiments to dynamically measure plasmid copy number through the cell cycle. PMID:24612990

  8. Screening Driving Transcription Factors in the Processing of Gastric Cancer

    PubMed Central

    Xu, Guangzhong; Li, Kai; Zhang, Nengwei; Zhu, Bin; Feng, Guosheng

    2016-01-01

    Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer. Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed. Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls), a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer. Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis. PMID:27403158

  9. Screening Driving Transcription Factors in the Processing of Gastric Cancer.

    PubMed

    Xu, Guangzhong; Li, Kai; Zhang, Nengwei; Zhu, Bin; Feng, Guosheng

    2016-01-01

    Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer. Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed. Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls), a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer. Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis. PMID:27403158

  10. Transcription factor C/EBPβ promotes the transcription of the porcine GPR120 gene.

    PubMed

    Chen, Kun; Zhou, Ji-Dan; Zhang, Feng; Zhang, Fang; Zhang, Rui-Rui; Zhan, Meng-Si; Tang, Xiao-Yin; Deng, Bing; Lei, Ming-Gang; Xiong, Yuan-Zhu

    2016-02-01

    G protein-coupled receptor 120 (GPR120), an adipogenic receptor critical for the differentiation and maturation of adipocytes, plays an important role in controlling obesity in both humans and rodents and, thus, is an attractive target of obesity treatment studies. However, the mechanisms that regulate the expression of porcine GPR120 remain unclear. In this study, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) techniques were used to analyze and identify the binding of C/EBPβ (transcription factor CCAAT/enhancer binding protein beta) to the GPR120 promoter. C/EBPβ overexpression and RNA interference studies showed that C/EBPβ regulated GPR120 promoter activity and endogenous GPR120 expression. The binding site of C/EBPβ in the GPR120 promoter region from -101 to -87 was identified by promoter deletion analysis and site-directed mutagenesis. Overexpression of C/EBPβ increased endogenous GPR120 expression in pig kidney cells (PK). Furthermore, when endogenous C/EBPβ was knocked down, GPR120 mRNA and protein levels were decreased. The stimulatory effect of C/EBPβ on GPR120 transcription and its ability to bind the transcription factor-binding site were confirmed by luciferase, ChIP, and EMSA. Moreover, the mRNA and protein expression levels of C/EBPβ were induced by high fat diet feeding. Taken together, it can be concluded that C/EBPβ plays a vital role in regulating GPR120 transcription and suggests HFD-feeding induces GPR120 transcription by influencing C/EBPβ expression. PMID:26576644

  11. Transcription Factor MafB Coordinates Epidermal Keratinocyte Differentiation.

    PubMed

    Miyai, Masashi; Hamada, Michito; Moriguchi, Takashi; Hiruma, Junichiro; Kamitani-Kawamoto, Akiyo; Watanabe, Hajime; Hara-Chikuma, Mariko; Takahashi, Kenzo; Takahashi, Satoru; Kataoka, Kohsuke

    2016-09-01

    Mammalian epidermis is a stratified epithelium composed of distinct layers of keratinocytes. The outermost cornified layer is a primary barrier that consists of a cornified envelope, an insoluble structure assembled by cross-linked scaffold proteins, and a surrounding mixture of lipids. Skin keratinocytes undergo a multistep differentiation process, but the mechanism underlying this process is not fully understood. We demonstrate that the transcription factor MafB is expressed in differentiating keratinocytes in mice and is transcriptionally upregulated upon human keratinocyte differentiation in vitro. In MafB-deficient mice, epidermal differentiation was partially impaired and the cornified layer was thinner than in wild-type mice. On the basis of transcriptional profiling, we detected reduced expression levels of a subset of cornified envelope genes, for example, filaggrin and repetin, in the MafB(-/-) epidermis. By contrast, the expression levels of lipid metabolism-related genes, such as Alox12e and Smpd3, increased. The upregulated genes in the MafB(-/-) epidermis were enriched for putative target genes of the transcription factors Gata3, Grhl3, and Klf4. Immunohistochemical analysis of skin biopsy samples revealed that the expression levels of filaggrin and MafB were significantly reduced in patients with human atopic dermatitis and psoriasis vulgaris. Our results indicate that MafB is a component of the gene expression program that regulates epidermal keratinocyte differentiation. PMID:27208706

  12. Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation.

    PubMed

    Minezaki, Yoshiaki; Homma, Keiichi; Kinjo, Akira R; Nishikawa, Ken

    2006-06-16

    Human transcriptional regulation factors, such as activators, repressors, and enhancer-binding factors are quite different from their prokaryotic counterparts in two respects: the average sequence in human is more than twice as long as that in prokaryotes, while the fraction of sequence aligned to domains of known structure is 31% in human transcription factors (TFs), less than half of that in bacterial TFs (72%). Intrinsically disordered (ID) regions were identified by a disorder-prediction program, and were found to be in good agreement with available experimental data. Analysis of 401 human TFs with experimental evidence from the Swiss-Prot database showed that as high as 49% of the entire sequence of human TFs is occupied by ID regions. More than half of the human TFs consist of a small DNA binding domain (DBD) and long ID regions frequently sandwiching unassigned regions. The remaining TFs have structural domains in addition to DBDs and ID regions. Experimental studies, particularly those with NMR, revealed that the transactivation domains in unbound TFs are usually unstructured, but become structured upon binding to their partners. The sequences of human and mouse TF orthologues are 90.5% identical despite a high incidence of ID regions, probably reflecting important functional roles played by ID regions. In general ID regions occupy a high fraction in TFs of eukaryotes, but not in prokaryotes. Implications of this dichotomy are discussed in connection with their functional roles in transcriptional regulation and evolution. PMID:16697407

  13. FoxO1 Plays an Important Role in Regulating β-Cell Compensation for Insulin Resistance in Male Mice.

    PubMed

    Zhang, Ting; Kim, Dae Hyun; Xiao, Xiangwei; Lee, Sojin; Gong, Zhenwei; Muzumdar, Radhika; Calabuig-Navarro, Virtu; Yamauchi, Jun; Harashima, Hideyoshi; Wang, Rennian; Bottino, Rita; Alvarez-Perez, Juan Carlos; Garcia-Ocaña, Adolfo; Gittes, George; Dong, H Henry

    2016-03-01

    β-Cell compensation is an essential mechanism by which β-cells increase insulin secretion for overcoming insulin resistance to maintain euglycemia in obesity. Failure of β-cells to compensate for insulin resistance contributes to insulin insufficiency and overt diabetes. To understand the mechanism of β-cell compensation, we characterized the role of forkhead box O1 (FoxO1) in β-cell compensation in mice under physiological and pathological conditions. FoxO1 is a key transcription factor that serves as a nutrient sensor for integrating insulin signaling to cell metabolism, growth, and proliferation. We showed that FoxO1 improved β-cell compensation via 3 distinct mechanisms by increasing β-cell mass, enhancing β-cell glucose sensing, and augmenting β-cell antioxidative function. These effects accounted for increased glucose-stimulated insulin secretion and enhanced glucose tolerance in β-cell-specific FoxO1-transgenic mice. When fed a high-fat diet, β-cell-specific FoxO1-transgenic mice were protected from developing fat-induced glucose disorder. This effect was attributable to increased β-cell mass and function. Furthermore, we showed that FoxO1 activity was up-regulated in islets, correlating with the induction of physiological β-cell compensation in high-fat-induced obese C57BL/6J mice. These data characterize FoxO1 as a pivotal factor for orchestrating physiological adaptation of β-cell mass and function to overnutrition and obesity. PMID:26727107

  14. FOXP1 forkhead transcription factor is associated with the pathogenesis of endometrial cancer.

    PubMed

    Mizunuma, Makito; Yokoyama, Yoshihito; Futagami, Masayuki; Horie, Kayo; Watanabe, Jun; Mizunuma, Hideki

    2016-05-01

    Endometrial cancers are mostly estrogen-dependent. FOXP1 is a P subfamily of forkhead box (FOX), and known as an estrogen-responsive transcription factor. The aims of this study were to examine histological location of FOXP1 in normal and malignant endometrium, and to investigate a possible association between FOXP1 and other factors considered to be involved in pathogenesis of endometrial cancer. The levels of FOXP1, estrogen receptor (ER)α, and ERβ expression were examined immunohistochemically in normal and malignant endometrium obtained from 75 women (8 normal, 8 atypical endometrial hyperplasia, and 59 endometrial cancers from grade 1 to 3). The effects of estrogen on ERα, FOXP1, KRAS, and PTEN expression were analyzed in telomerase-immortalized human endometrial stromal cells (T HESCs) by Western blotting. Western blotting was also used to examine the effect of FOXP1 plasmid DNA or siRNA transfection on KRAS and PTEN expression in Ishikawa cells (well differentiated endometrioid adenocarcinoma), HEC-50B cells (poorly differentiated endometrioid adenocarcinoma), and T HESCs, respectively. FOXP1 was expressed in normal and malignant endometrium, but the rate of expression was different depending upon menstrual cycle and pathological grade of malignancy. FOXP1 expression in nucleus and cytoplasm of grade 3 endometrioid cancers was significantly lower than that of grade 1 and 2 ones. Estradiol increased levels of FOXP1 and KRAS expression in a dose- and time-dependent manner in T HESCs cells, and FOXP1 transfection or knockdown led to increase or decrease of KRAS expression but not PTEN. KRAS expression level was significantly related to FOXP1 and ERα levels in cancer tissues. Estradiol did not affect KRAS expression in T HESCs cells transfected with FOXP1 siRNA. These results suggest that FOXP1 is involved in estrogen dependent endometrial cancers through KRAS pathway. PMID:27441287

  15. The Potential Role of Th9 Cell Related Cytokine and Transcription Factors in Patients with Hepatic Alveolar Echinococcosis

    PubMed Central

    Tuxun, Tuerhongjiang; Apaer, Shadike; Ma, Hai-Zhang; Zhang, Heng; Aierken, Amina; Lin, Ren-Yong; Wen, Hao

    2015-01-01

    Human alveolar echinococcosis (AE) is a lethal parasitic infectious disease which may lead to liver failure if left untreated. It is caused by the larval stage of the fox tapeworm Echinococcus multilocularis and usually develops a substantial infiltrative occupation in solid organs. During the infection, T helper subsets are known to play crucial role in crosstalk between the parasite and human host. Th9 cells, a new member of CD4+ T cell family which is characterized by its specific cytokine IL-9 and transcription factors PU.1 and IRF-4, have been known recently to have a critical role in allergic diseases, and cancers as well as the parasitic infection. To assess the potential role of Th9 cells during the infection, the mRNA levels of IL-9, PU.1, and IRF-4 both in peripheral blood mononuclear cells and in liver tissues were, respectively, detected by using real-time PCR. The plasma concentration levels of IL-9 were detected by using enzyme linked immunosorbent assay (ELISA). Th9 related cytokine IL-9 and transcription factors PU.1 and IRF-4 mRNA levels elevated both in PBMCs, and in hepatic lesion and paralesion tissues in AE patients. This may facilitate the infiltrative growth of the parasite and its persistence in human host. PMID:26509179

  16. The Potential Role of Th9 Cell Related Cytokine and Transcription Factors in Patients with Hepatic Alveolar Echinococcosis.

    PubMed

    Tuxun, Tuerhongjiang; Apaer, Shadike; Ma, Hai-Zhang; Zhang, Heng; Aierken, Amina; Lin, Ren-Yong; Wen, Hao

    2015-01-01

    Human alveolar echinococcosis (AE) is a lethal parasitic infectious disease which may lead to liver failure if left untreated. It is caused by the larval stage of the fox tapeworm Echinococcus multilocularis and usually develops a substantial infiltrative occupation in solid organs. During the infection, T helper subsets are known to play crucial role in crosstalk between the parasite and human host. Th9 cells, a new member of CD4(+) T cell family which is characterized by its specific cytokine IL-9 and transcription factors PU.1 and IRF-4, have been known recently to have a critical role in allergic diseases, and cancers as well as the parasitic infection. To assess the potential role of Th9 cells during the infection, the mRNA levels of IL-9, PU.1, and IRF-4 both in peripheral blood mononuclear cells and in liver tissues were, respectively, detected by using real-time PCR. The plasma concentration levels of IL-9 were detected by using enzyme linked immunosorbent assay (ELISA). Th9 related cytokine IL-9 and transcription factors PU.1 and IRF-4 mRNA levels elevated both in PBMCs, and in hepatic lesion and paralesion tissues in AE patients. This may facilitate the infiltrative growth of the parasite and its persistence in human host. PMID:26509179

  17. Essential role of Gata transcription factors in sympathetic neuron development.

    PubMed

    Tsarovina, Konstantina; Pattyn, Alexandre; Stubbusch, Jutta; Müller, Frank; van der Wees, Jacqueline; Schneider, Carolin; Brunet, Jean-Francois; Rohrer, Hermann

    2004-10-01

    Sympathetic neurons are specified during their development from neural crest precursors by a network of crossregulatory transcription factors, which includes Mash1, Phox2b, Hand2 and Phox2a. Here, we have studied the function of Gata2 and Gata3 zinc-finger transcription factors in autonomic neuron development. In the chick, Gata2 but not Gata3 is expressed in developing sympathetic precursor cells. Gata2 expression starts after Mash1, Phox2b, Hand2 and Phox2a expression, but before the onset of the noradrenergic marker genes Th and Dbh, and is maintained throughout development. Gata2 expression is affected in the chick embryo by Bmp gain- and loss-of-function experiments, and by overexpression of Phox2b, Phox2a, Hand2 and Mash1. Together with the lack of Gata2/3 expression in Phox2b knockout mice, these results characterize Gata2 as member of the Bmp-induced cluster of transcription factors. Loss-of-function experiments resulted in a strong reduction in the size of the sympathetic chain and in decreased Th expression. Ectopic expression of Gata2 in chick neural crest precursors elicited the generation of neurons with a non-autonomic, Th-negative phenotype. This implies a function for Gata factors in autonomic neuron differentiation, which, however, depends on co-regulators present in the sympathetic lineage. The present data establish Gata2 and Gata3 in the chick and mouse, respectively, as essential members of the transcription factor network controlling sympathetic neuron development. PMID:15329349

  18. Thyroid transcription factor-1 exhibits osmosensitive transcription in brain-derived cell lines.

    PubMed

    Kim, Jae Geun; Bae, Kyung Duk; Yun, Chang Ho; Im, Hye Li; Park, Jeong Woo; Nam-Goong, Il Seong; Kim, Young Il; Lee, Byung Ju

    2008-06-01

    Thyroid transcription factor-1 (TTF-1) belongs to the Nkx family of homeodomain-containing proteins and regulates expression of several important genes in the brain. Our previous studies showed that TTF-1 plays an important role in water homeostasis in the subfornical organ of rats and is involved in cerebrospinal fluid formation by regulation of aquaporin-1 transcription in the choroid plexus. In this study, we examined changes in TTF-1 transcription in response to hypertonicity using promoter assays. TTF-1 was synthesized in several osmosensitive regions of the rat brain. TTF-1 promoter activity was diminished by treatment with hypertonic solutions in a time- and dose-dependent manner in brain-derived cell lines. Additionally, TTF-1 was involved in the regulation of angiotensinogen (Aogen) transcription under a hyperosmotic condition through specific binding domains in the Aogen promoter. These results suggest a possible role of TTF-1 in brain fluid homeostasis in response to changes in the osmotic environment. PMID:18395010

  19. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model.

    PubMed

    Zhang, Baihao; Chikuma, Shunsuke; Hori, Shohei; Fagarasan, Sidonia; Honjo, Tasuku

    2016-07-26

    PD-1 (programmed-death 1), an immune-inhibitory receptor required for immune self-tolerance whose deficiency causes autoimmunity with variable severity and tissue specificity depending on other genetic factors, is expressed on activated T cells, including the transcription factor FoxP3(+) Treg cells known to play critical roles in maintaining immune tolerance. However, whether PD-1 expression by the Treg cells is required for their immune regulatory function, especially in autoimmune settings, is still unclear. We found that mice with partial FoxP3 insufficiency developed early-onset lympho-proliferation and lethal autoimmune pancreatitis only when PD-1 is absent. The autoimmune phenotype was rescued by the transfer of FoxP3-sufficient T cells, regardless of whether they were derived from WT or PD-1-deficient mice, indicating that Treg cells dominantly protect against development of spontaneous autoimmunity without intrinsic expression of PD-1. The absence of PD-1 combined with partial FoxP3 insufficiency, however, led to generation of ex-FoxP3 T cells with proinflammatory properties and expansion of effector/memory T cells that contributed to the autoimmune destruction of target tissues. Altogether, the results suggest that PD-1 and FoxP3 work collaboratively in maintaining immune tolerance mostly through nonoverlapping pathways. Thus, PD-1 is modulating the activation threshold and maintaining the balance between regulatory and effector T cells, whereas FoxP3 is sufficient for dominant regulation through maintaining the integrity of the Treg function. We suggest that genetic or environmental factors that even moderately affect the expression of both PD-1 and FoxP3 can cause life-threatening autoimmune diseases by disrupting the T-cell homeostasis. PMID:27410049

  20. Pathologically Relevant Prelamin A Interactions with Transcription Factors.

    PubMed

    Infante, Arantza; Rodríguez, Clara I

    2016-01-01

    LMNA-linked laminopathies are a group of rare human diseases caused by mutations in LMNA or by disrupted posttranslational processing of its largest encoded isoform, prelamin A. The accumulation of mutated or immature forms of farnesylated prelamin A, named progerin or prelamin A, respectively, dominantly disrupts nuclear lamina structure with toxic effects in cells. One hypothesis is that aberrant lamin filament networks disrupt or "trap" proteins such as transcription factors, thereby interfering with their normal activity. Since laminopathies mainly affect tissues of mesenchymal origin, we tested this hypothesis by generating an experimental model of laminopathy by inducing prelamin A accumulation in human mesenchymal stem cells (hMSCs). We provide detailed protocols for inducing and detecting prelamin A accumulation in hMSCs, and describe the bioinformatic analysis and in vitro assays of transcription factors potentially affected by prelamin A accumulation. PMID:26778572

  1. Neuroprotective Transcription Factors in Animal Models of Parkinson Disease

    PubMed Central

    Blaudin de Thé, François-Xavier; Rekaik, Hocine; Prochiantz, Alain; Fuchs, Julia; Joshi, Rajiv L.

    2016-01-01

    A number of transcription factors, including En1/2, Foxa1/2, Lmx1a/b, Nurr1, Otx2, and Pitx3, with key roles in midbrain dopaminergic (mDA) neuron development, also regulate adult mDA neuron survival and physiology. Mouse models with targeted disruption of some of these genes display several features reminiscent of Parkinson disease (PD), in particular the selective and progressive loss of mDA neurons in the substantia nigra pars compacta (SNpc). The characterization of these animal models has provided valuable insights into various mechanisms of PD pathogenesis. Therefore, the dissection of the mechanisms and survival signalling pathways engaged by these transcription factors to protect mDA neuron from degeneration can suggest novel therapeutic strategies. The work on En1/2-mediated neuroprotection also highlights the potential of protein transduction technology for neuroprotective approaches in PD. PMID:26881122

  2. TFCat: the curated catalog of mouse and human transcription factors

    PubMed Central

    Fulton, Debra L; Sundararajan, Saravanan; Badis, Gwenael; Hughes, Timothy R; Wasserman, Wyeth W; Roach, Jared C; Sladek, Rob

    2009-01-01

    Unravelling regulatory programs governed by transcription factors (TFs) is fundamental to understanding biological systems. TFCat is a catalog of mouse and human TFs based on a reliable core collection of annotations obtained by expert review of the scientific literature. The collection, including proven and homology-based candidate TFs, is annotated within a function-based taxonomy and DNA-binding proteins are organized within a classification system. All data and user-feedback mechanisms are available at the TFCat portal . PMID:19284633

  3. Transcription factors for modification of lignin content in plants

    SciTech Connect

    Wang, Huanzhong; Chen, Fang; Dixon, Richard A.

    2015-06-02

    The invention provides methods for modifying lignin, cellulose, xylan, and hemicellulose content in plants, and for achieving ectopic lignification and, for instance, secondary cell wall synthesis in pith cells, by altered regulation of a WRKY transcription factor. Nucleic acid constructs for altered WRKY-TF expression are described. Transgenic plants are provided that comprise modified pith cell walls, and lignin, cellulose, and hemicellulose content. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops.

  4. Synthetic mammalian trigger-controlled bipartite transcription factors

    PubMed Central

    Folcher, Marc; Xie, Mingqi; Spinnler, Andrea; Fussenegger, Martin

    2013-01-01

    Synthetic biology has significantly advanced the design of synthetic control devices, gene circuits and networks that can reprogram mammalian cells in a trigger-inducible manner. Prokaryotic helix-turn-helix motifs have become the standard resource to design synthetic mammalian transcription factors that tune chimeric promoters in a small molecule-responsive manner. We have identified a family of Actinomycetes transcriptional repressor proteins showing a tandem TetR-family signature and have used a synthetic biology-inspired approach to reveal the potential control dynamics of these bi-partite regulators. Daisy-chain assembly of well-characterized prokaryotic repressor proteins such as TetR, ScbR, TtgR or VanR and fusion to either the Herpes simplex transactivation domain VP16 or the Krueppel-associated box domain (KRAB) of the human kox-1 gene resulted in synthetic bi- and even tri-partite mammalian transcription factors that could reversibly program their individual chimeric or hybrid promoters for trigger-adjustable transgene expression using tetracycline (TET), γ-butyrolactones, phloretin and vanillic acid. Detailed characterization of the bi-partite ScbR-TetR-VP16 (ST-TA) transcription factor revealed independent control of TET- and γ-butyrolactone-responsive promoters at high and double-pole double-throw (DPDT) relay switch qualities at low intracellular concentrations. Similar to electromagnetically operated mechanical DPDT relay switches that control two electric circuits by a fully isolated low-power signal, TET programs ST-TA to progressively switch from TetR-specific promoter-driven expression of transgene one to ScbR-specific promoter-driven transcription of transgene two while ST-TA flips back to exclusive transgene 1 expression in the absence of the trigger antibiotic. We suggest that natural repressors and activators with tandem TetR-family signatures may also provide independent as well as DPDT-mediated control of two sets of transgenes in

  5. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms.

    PubMed

    Baldoni, Elena; Genga, Annamaria; Cominelli, Eleonora

    2015-01-01

    Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed. PMID:26184177

  6. POBO, transcription factor binding site verification with bootstrapping

    PubMed Central

    Kankainen, Matti; Holm, Liisa

    2004-01-01

    Transcription factors can either activate or repress target genes by binding onto short nucleotide sequence motifs in the promoter regions of these genes. Here, we present POBO, a promoter bootstrapping program, for gene expression data. POBO can be used to detect, compare and verify predetermined transcription factor binding site motifs in the promoters of one or two clusters of co-regulated genes. The program calculates the frequencies of the motif in the input promoter sets. A bootstrap analysis detects significantly over- or underrepresented motifs. The output of the program presents bootstrapped results in picture and text formats. The program was tested with published data from transgenic WRKY70 microarray experiments. Intriguingly, motifs recognized by the WRKY transcription factors of plant defense pathways are similarly enriched in both up- and downregulated clusters. POBO analysis suggests slightly modified hypothetical motifs that discriminate between up- and downregulated clusters. In conclusion, POBO allows easy, fast and accurate verification of putative regulatory motifs. The statistical tests implemented in POBO can be useful in eliminating false positives from the results of pattern discovery programs and increasing the reliability of true positives. POBO is freely available from http://ekhidna.biocenter.helsinki.fi:9801/pobo. PMID:15215385

  7. The role of octamer binding transcription factors in glioblastoma multiforme.

    PubMed

    Rooj, A K; Bronisz, A; Godlewski, J

    2016-06-01

    A group of transcription factors (TF) that are master developmental regulators of the establishment and maintenance of pluripotency during embryogenesis play additional roles to control tissue homeostasis and regeneration in adults. Among these TFs, members of the octamer-binding transcription factor (OCT) gene family are well documented as major regulators controlling the self-renewal and pluripotency of stem cells isolated from different adult organs including the brain. In the last few years a large number of studies show the aberrant expression and dysfunction of OCT in different types of cancers including glioblastoma multiforme (GBM). GBM is the most common malignant primary brain tumor, and contains a subpopulation of undifferentiated stem cells (GSCs), with self-renewal and tumorigenic potential that contribute to tumor initiation, invasion, recurrence, and therapeutic resistance. In this review, we have summarized the current knowledge about OCT family in GBM and their crucial role in the initiation, maintenance and drug resistance properties of GSCs. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin. PMID:26968235

  8. Specification of jaw identity by the Hand2 transcription factor.

    PubMed

    Funato, Noriko; Kokubo, Hiroki; Nakamura, Masataka; Yanagisawa, Hiromi; Saga, Yumiko

    2016-01-01

    Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel's cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate. PMID:27329940

  9. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms

    PubMed Central

    Baldoni, Elena; Genga, Annamaria; Cominelli, Eleonora

    2015-01-01

    Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed. PMID:26184177

  10. Specification of jaw identity by the Hand2 transcription factor

    PubMed Central

    Funato, Noriko; Kokubo, Hiroki; Nakamura, Masataka; Yanagisawa, Hiromi; Saga, Yumiko

    2016-01-01

    Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel’s cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate. PMID:27329940

  11. Foxo transcription factors control regulatory T cell development and function

    PubMed Central

    Kerdiles, Yann M.; Stone, Erica L.; Beisner, Daniel L.; McGargill, Maureen A.; Ch'en, Irene L.; Stockmann, Christian; Katayama, Carol D.; Hedrick, Stephen M.

    2010-01-01

    SUMMARY Foxo transcription factors integrate extrinsic signals to regulate cell division, differentiation and survival, and specific functions of lymphoid and myeloid cells. Here we showed the absence of Foxo1 severely curtailed the development of Foxp3+ regulatory T (Treg) cells, and those that developed were nonfunctional in vivo. The loss of function included diminished CTLA-4 receptor expression as the Ctla4 gene was a direct target of Foxo1. T cell specific loss of Foxo1 resulted in exocrine pancreatitis, hind limb paralysis, multi-organ lymphocyte infiltration, anti-nuclear antibodies and expanded germinal centers. Foxo-mediated control over Treg cell specification was further revealed by the inability of TGF-β cytokine to suppress T-bet transcription factor in the absence of Foxo1, resulting in IFN-γ-secretion. In addition the absence of Foxo3 exacerbated the effects of the loss of Foxo1. Thus, Foxo transcription factors guide the contingencies of T cell differentiation and specific functions of effector cell populations. PMID:21167754

  12. Involvement of GATA transcription factors in the regulation of endogenous bovine interferon-tau gene transcription.

    PubMed

    Bai, Hanako; Sakurai, Toshihiro; Kim, Min-Su; Muroi, Yoshikage; Ideta, Atsushi; Aoyagi, Yoshito; Nakajima, Hiromi; Takahashi, Masashi; Nagaoka, Kentaro; Imakawa, Kazuhiko

    2009-12-01

    Expression of interferon-tau (IFNT), necessary for pregnancy establishment in ruminant ungulates, is regulated in a temporal and spatial manner. However, molecular mechanisms by which IFNT gene transcription is regulated in this manner have not been firmly established. In this study, DNA microarray/RT-PCR analysis between bovine trophoblast CT-1 and Mardin-Darby bovine kidney (MDBK) cells was initially performed, finding that transcription factors GATA2, GATA3, and GATA6 mRNAs were specific to CT-1 cells. These mRNAs were also found in Days 17, 20, and 22 (Day 0 = day of estrus) bovine conceptuses. In examining other bovine cell lines, ovary cumulus granulosa (oCG) and ear fibroblast (EF) cells, GATA2 and GATA3, but not GATA6, were found specific to the bovine trophoblast cells. In transient transfection analyses using the upstream region (-631 to +59 bp) of bovine IFNT gene (bIFNT, IFN-tau-c1), over-expression of GATA2/GATA3 did not affect the transcription of bIFNT-reporter construct in human choriocarcinoma JEG3 cells. Transfection of GATA2, GATA3, ETS2, and/or CDX2, however, was effective in the up-regulation of the bIFNT construct transfected into bovine oCG and EF cells. One Point mutation studies revealed that among six potential GATA binding sites located on the upstream region of the bIFNT gene, the one next to ETS2 site exhibited reduced luciferase activity. In CT-1 cells, endogenous bIFNT gene transcription was up-regulated by over-expression of GATA2 or GATA3, but down-regulated by siRNA specific to GATA2 mRNA. These data suggest that GATA2/3 is involved in trophoblast-specific regulation of bIFNT gene transcription. PMID:19598245

  13. Transcription cofactor PC4 plays essential roles in collaboration with the small subunit of general transcription factor TFIIE.

    PubMed

    Akimoto, Yusuke; Yamamoto, Seiji; Iida, Satoshi; Hirose, Yutaka; Tanaka, Aki; Hanaoka, Fumio; Ohkuma, Yoshiaki

    2014-12-01

    In eukaryotes, positive cofactor 4 (PC4) stimulates activator-dependent transcription by facilitating transcription initiation and the transition from initiation to elongation. It also forms homodimers and binds to single-stranded DNA and various transcriptional activators, including the general transcription factor TFIIH. In this study, we further investigated PC4 from Homo sapiens and the nematode Caenorhabditis elegans (hPC4 and cePC4, respectively). hPC4 strongly stimulated transcription on a linearized template, whereas it alleviated transcription on a supercoiled template. Transcriptional stimulation by PC4 was also alleviated by increasing the amount of TFIID. GST pull-down studies with general transcription factors indicated that both hPC4 and cePC4 bind strongly to TFIIB, TFIIEβ, TFIIFα, TFIIFβ and TFIIH XPB subunits and weakly to TBP and TFIIH p62. However, only hPC4 bound to CDK7. The effect of each PC4 on transcription was studied in combination with TFIIEβ. hPC4 stimulated both basal and activated transcription, whereas cePC4 primarily stimulated activated transcription, especially in the presence of TFIIEβ from C. elegans. Finally, hPC4 bound to the C-terminal region of hTFIIEβ adjacent to the basic region. These results indicate that PC4 plays essential roles in the transition step from transcription initiation to elongation by binding to melted DNA in collaboration with TFIIEβ. PMID:25308091

  14. Snail Family Transcription Factors Are Implicated in Thyroid Carcinogenesis

    PubMed Central

    Hardy, Robert G.; Vicente-Dueñas, Carolina; González-Herrero, Ines; Anderson, Catriona; Flores, Teresa; Hughes, Sharon; Tselepis, Chris; Ross, James A.; Sánchez-García, Isidro

    2007-01-01

    E-Cadherin (CDH1) expression is reduced in thyroid carcinomas by primarily unknown mechanisms. In several tissues, SNAIL (SNAI1) and SLUG (SNAI2) induce epithelial-mesenchymal transition by altering target gene transcription, including CDH1 repression, but these transcription factors have not been studied in thyroid carcinoma. Recently, our group has provided direct evidence that ectopic SNAI1 expression induces epithelial and mesenchymal mouse tumors. SNAI1, SNAI2, and CDH1 expression were analyzed in thyroid-derived cell lines and samples of human follicular and papillary thyroid carcinoma by reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry. The effect of SNAI1 expression on CDH1 transcription was analyzed by reverse transcriptase-polymerase chain reaction and Western blotting in ori-3 cells. Thyroid carcinoma development was analyzed in CombitTA-Snail mice, in which SNAI1 levels are up-regulated. SNAI1 and SNAI2 were not expressed in cells derived from normal thyroid tissue, or in normal human thyroid samples, but were highly expressed in cell lines derived from thyroid carcinomas, in human thyroid carcinoma samples, and their metastases. SNAI1 expression in ori-3 cells repressed CDH1 transcription. Combi-TA mice developed papillary thyroid carcinomas, the incidence of which was increased by concomitant radiotherapy. In conclusion, SNAI1 and SNAI2 are ectopically expressed in thyroid carcinomas, and aberrant expression in mice is associated with papillary carcinoma development. PMID:17724139

  15. Transcription Factors Exhibit Differential Conservation in Bacteria with Reduced Genomes.

    PubMed

    Galán-Vásquez, Edgardo; Sánchez-Osorio, Ismael; Martínez-Antonio, Agustino

    2016-01-01

    The description of transcriptional regulatory networks has been pivotal in the understanding of operating principles under which organisms respond and adapt to varying conditions. While the study of the topology and dynamics of these networks has been the subject of considerable work, the investigation of the evolution of their topology, as a result of the adaptation of organisms to different environmental conditions, has received little attention. In this work, we study the evolution of transcriptional regulatory networks in bacteria from a genome reduction perspective, which manifests itself as the loss of genes at different degrees. We used the transcriptional regulatory network of Escherichia coli as a reference to compare 113 smaller, phylogenetically-related γ-proteobacteria, including 19 genomes of symbionts. We found that the type of regulatory action exerted by transcription factors, as genomes get progressively smaller, correlates well with their degree of conservation, with dual regulators being more conserved than repressors and activators in conditions of extreme reduction. In addition, we found that the preponderant conservation of dual regulators might be due to their role as both global regulators and nucleoid-associated proteins. We summarize our results in a conceptual model of how each TF type is gradually lost as genomes become smaller and give a rationale for the order in which this phenomenon occurs. PMID:26766575

  16. Combinatorial influence of environmental parameters on transcription factor activity

    PubMed Central

    Knijnenburg, T.A.; Wessels, L.F.A.; Reinders, M.J.T.

    2008-01-01

    Motivation: Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. Results: We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. Availability: The Matlab code is available from the authors upon request. Contact: t.a.knijnenburg@tudelft.nl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18586711

  17. Phosphorylation Regulates Functions of ZEB1 Transcription Factor.

    PubMed

    Llorens, M Candelaria; Lorenzatti, Guadalupe; Cavallo, Natalia L; Vaglienti, Maria V; Perrone, Ana P; Carenbauer, Anne L; Darling, Douglas S; Cabanillas, Ana M

    2016-10-01

    ZEB1 transcription factor is important in both development and disease, including many TGFβ-induced responses, and the epithelial-to-mesenchymal transition (EMT) by which many tumors undergo metastasis. ZEB1 is differentially phosphorylated in different cell types; however the role of phosphorylation in ZEB1 activity is unknown. Luciferase reporter studies and electrophoresis mobility shift assays (EMSA) show that a decrease in phosphorylation of ZEB1 increases both DNA-binding and transcriptional repression of ZEB1 target genes. Functional analysis of ZEB1 phosphorylation site mutants near the second zinc finger domain (termed ZD2) show that increased phosphorylation (due to either PMA plus ionomycin, or IGF-1) can inhibit transcriptional repression by either a ZEB1-ZD2 domain clone, or full-length ZEB1. This approach identifies phosphosites that have a substantial effect regulating the transcriptional and DNA-binding activity of ZEB1. Immunoprecipitation with anti-ZEB1 antibodies followed by western analysis with a phospho-Threonine-Proline-specific antibody indicates that the ERK consensus site at Thr-867 is phosphorylated in ZEB1. In addition to disrupting in vitro DNA-binding measured by EMSA, IGF-1-induced MEK/ERK phosphorylation is sufficient to disrupt nuclear localization of GFP-ZEB1 fusion clones. These data suggest that phosphorylation of ZEB1 integrates TGFβ signaling with other signaling pathways such as IGF-1. J. Cell. Physiol. 231: 2205-2217, 2016. © 2016 Wiley Periodicals, Inc. PMID:26868487

  18. Microphthalmia transcription factor regulates pancreatic β-cell function.

    PubMed

    Mazur, Magdalena A; Winkler, Marcus; Ganic, Elvira; Colberg, Jesper K; Johansson, Jenny K; Bennet, Hedvig; Fex, Malin; Nuber, Ulrike A; Artner, Isabella

    2013-08-01

    Precise regulation of β-cell function is crucial for maintaining blood glucose homeostasis. Pax6 is an essential regulator of β-cell-specific factors like insulin and Glut2. Studies in the developing eye suggest that Pax6 interacts with Mitf to regulate pigment cell differentiation. Here, we show that Mitf, like Pax6, is expressed in all pancreatic endocrine cells during mouse postnatal development and in the adult islet. A Mitf loss-of-function mutation results in improved glucose tolerance and enhanced insulin secretion but no increase in β-cell mass in adult mice. Mutant β-cells secrete more insulin in response to glucose than wild-type cells, suggesting that Mitf is involved in regulating β-cell function. In fact, the transcription of genes critical for maintaining glucose homeostasis (insulin and Glut2) and β-cell formation and function (Pax4 and Pax6) is significantly upregulated in Mitf mutant islets. The increased Pax6 expression may cause the improved β-cell function observed in Mitf mutant animals, as it activates insulin and Glut2 transcription. Chromatin immunoprecipitation analysis shows that Mitf binds to Pax4 and Pax6 regulatory regions, suggesting that Mitf represses their transcription in wild-type β-cells. We demonstrate that Mitf directly regulates Pax6 transcription and controls β-cell function. PMID:23610061

  19. Microphthalmia Transcription Factor Regulates Pancreatic β-Cell Function

    PubMed Central

    Mazur, Magdalena A.; Winkler, Marcus; Ganić, Elvira; Colberg, Jesper K.; Johansson, Jenny K.; Bennet, Hedvig; Fex, Malin; Nuber, Ulrike A.; Artner, Isabella

    2013-01-01

    Precise regulation of β-cell function is crucial for maintaining blood glucose homeostasis. Pax6 is an essential regulator of β-cell–specific factors like insulin and Glut2. Studies in the developing eye suggest that Pax6 interacts with Mitf to regulate pigment cell differentiation. Here, we show that Mitf, like Pax6, is expressed in all pancreatic endocrine cells during mouse postnatal development and in the adult islet. A Mitf loss-of-function mutation results in improved glucose tolerance and enhanced insulin secretion but no increase in β-cell mass in adult mice. Mutant β-cells secrete more insulin in response to glucose than wild-type cells, suggesting that Mitf is involved in regulating β-cell function. In fact, the transcription of genes critical for maintaining glucose homeostasis (insulin and Glut2) and β-cell formation and function (Pax4 and Pax6) is significantly upregulated in Mitf mutant islets. The increased Pax6 expression may cause the improved β-cell function observed in Mitf mutant animals, as it activates insulin and Glut2 transcription. Chromatin immunoprecipitation analysis shows that Mitf binds to Pax4 and Pax6 regulatory regions, suggesting that Mitf represses their transcription in wild-type β-cells. We demonstrate that Mitf directly regulates Pax6 transcription and controls β-cell function. PMID:23610061

  20. Transcription Factors Exhibit Differential Conservation in Bacteria with Reduced Genomes

    PubMed Central

    Galán-Vásquez, Edgardo; Sánchez-Osorio, Ismael; Martínez-Antonio, Agustino

    2016-01-01

    The description of transcriptional regulatory networks has been pivotal in the understanding of operating principles under which organisms respond and adapt to varying conditions. While the study of the topology and dynamics of these networks has been the subject of considerable work, the investigation of the evolution of their topology, as a result of the adaptation of organisms to different environmental conditions, has received little attention. In this work, we study the evolution of transcriptional regulatory networks in bacteria from a genome reduction perspective, which manifests itself as the loss of genes at different degrees. We used the transcriptional regulatory network of Escherichia coli as a reference to compare 113 smaller, phylogenetically-related γ-proteobacteria, including 19 genomes of symbionts. We found that the type of regulatory action exerted by transcription factors, as genomes get progressively smaller, correlates well with their degree of conservation, with dual regulators being more conserved than repressors and activators in conditions of extreme reduction. In addition, we found that the preponderant conservation of dual regulators might be due to their role as both global regulators and nucleoid-associated proteins. We summarize our results in a conceptual model of how each TF type is gradually lost as genomes become smaller and give a rationale for the order in which this phenomenon occurs. PMID:26766575

  1. Structural models of mammalian mitochondrial transcription factor B2.

    PubMed

    Moustafa, Ibrahim M; Uchida, Akira; Wang, Yao; Yennawar, Neela; Cameron, Craig E

    2015-08-01

    Mammalian mitochondrial DNA (mtDNA) encodes 13 core proteins of oxidative phosphorylation, 12S and 16S ribosomal RNAs, and 22 transfer RNAs. Mutations and deletions of mtDNA and/or nuclear genes encoding mitochondrial proteins have been implicated in a wide range of diseases. Thus, cell survival and health of the organism require some steady-state level of the mitochondrial genome and its expression. In mammalian systems, the mitochondrial transcription factor B2 (mtTFB2 or TFB2M) is indispensable for transcription initiation. TFB2M along with two other proteins, mitochondrial RNA polymerase (mtRNAP or POLRMT) and mitochondrial transcription factor A (mtTFA or TFAM), are key components of the core mitochondrial transcription apparatus. Structural information for POLRMT and TFAM from humans is available; however, there is no available structure for TFB2M. In the present study, three-dimensional structure of TFB2M from humans was modeled using a combination of homology modeling and small-angle X-ray scattering (SAXS). The TFB2M structural model adds substantively to our understanding of TFB2M function. An explanation for the low or absent RNA methyltransferase activity is provided. A putative nucleic acid-binding site is revealed. The amino and carboxy termini, while likely lacking defined secondary structure, appear to adopt compact, globular conformations, thus "capping" the ends of the protein. Finally, sites of interaction of TFB2M with other factors, protein and/or nucleic acid, are suggested by the identification of species-specific clusters on the surface of the protein. PMID:26066983

  2. Inhibition of host cell RNA polymerase III-mediated transcription by poliovirus: Inactivation of specific transcription factors

    SciTech Connect

    Fradkin, L.G.; Yoshinaga, S.K.; Berk, A.J.; Dasgupta, A.

    1987-11-01

    The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription of RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoted, however, was not altered by infection of cells with the virus. The authors conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirtus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.

  3. FoxA4 Favours Notochord Formation by Inhibiting Contiguous Mesodermal Fates and Restricts Anterior Neural Development in Xenopus Embryos

    PubMed Central

    Murgan, Sabrina; Castro Colabianchi, Aitana Manuela; Monti, Renato José; Boyadjián López, Laura Elena; Aguirre, Cecilia E.; Stivala, Ernesto González; López, Silvia L.

    2014-01-01

    In vertebrates, the embryonic dorsal midline is a crucial signalling centre that patterns the surrounding tissues during development. Members of the FoxA subfamily of transcription factors are expressed in the structures that compose this centre. Foxa2 is essential for dorsal midline development in mammals, since knock-out mouse embryos lack a definitive node, notochord and floor plate. The related gene foxA4 is only present in amphibians. Expression begins in the blastula –chordin and –noggin expressing centre (BCNE) and is later restricted to the dorsal midline derivatives of the Spemann's organiser. It was suggested that the early functions of mammalian foxa2 are carried out by foxA4 in frogs, but functional experiments were needed to test this hypothesis. Here, we show that some important dorsal midline functions of mammalian foxa2 are exerted by foxA4 in Xenopus. We provide new evidence that the latter prevents the respecification of dorsal midline precursors towards contiguous fates, inhibiting prechordal and paraxial mesoderm development in favour of the notochord. In addition, we show that foxA4 is required for the correct regionalisation and maintenance of the central nervous system. FoxA4 participates in constraining the prospective rostral forebrain territory during neural specification and is necessary for the correct segregation of the most anterior ectodermal derivatives, such as the cement gland and the pituitary anlagen. Moreover, the early expression of foxA4 in the BCNE (which contains precursors of the whole forebrain and most of the midbrain and hindbrain) is directly required to restrict anterior neural development. PMID:25343614

  4. The transcription factor LSF: a novel oncogene for hepatocellular carcinoma

    PubMed Central

    Santhekadur, Prasanna K; Rajasekaran, Devaraja; Siddiq, Ayesha; Gredler, Rachel; Chen, Dong; Schaus, Scott E; Hansen, Ulla; Fisher, Paul B; Sarkar, Devanand

    2012-01-01

    The transcription factor LSF (Late SV40 Factor), also known as TFCP2, belongs to the LSF/CP2 family related to Grainyhead family of proteins and is involved in many biological events, including regulation of cellular and viral promoters, cell cycle, DNA synthesis, cell survival and Alzheimer’s disease. Our recent studies establish an oncogenic role of LSF in Hepatocellular carcinoma (HCC). LSF overexpression is detected in human HCC cell lines and in more than 90% cases of human HCC patients, compared to normal hepatocytes and liver, and its expression level showed significant correlation with the stages and grades of the disease. Forced overexpression of LSF in less aggressive HCC cells resulted in highly aggressive, angiogenic and multi-organ metastatic tumors in nude mice. Conversely, inhibition of LSF significantly abrogated growth and metastasis of highly aggressive HCC cells in nude mice. Microarray studies revealed that as a transcription factor LSF modulated specific genes regulating invasion, angiogenesis, chemoresistance and senescence. LSF transcriptionally regulates thymidylate synthase (TS) gene, thus contributing to cell cycle regulation and chemoresistance. Our studies identify a network of proteins, including osteopontin (OPN), Matrix metalloproteinase-9 (MMP-9), c-Met and complement factor H (CFH), that are directly regulated by LSF and play important role in LSF-induced hepatocarcinogenesis. A high throughput screening identified small molecule inhibitors of LSF DNA binding and the prototype of these molecules, Factor Quinolinone inhibitor 1 (FQI1), profoundly inhibited cell viability and induced apoptosis in human HCC cells without exerting harmful effects to normal immortal human hepatocytes and primary mouse hepatocytes. In nude mice xenograft studies, FQI1 markedly inhibited growth of human HCC xenografts as well as angiogenesis without exerting any toxicity. These studies establish a key role of LSF in hepatocarcinogenesis and usher in a

  5. CD161 defines the subset of FoxP3+ T cells capable of producing proinflammatory cytokines

    PubMed Central

    Bending, David; Ursu, Simona; Wu, Qiong; Nistala, Kiran; Wedderburn, Lucy R.

    2013-01-01

    Regulatory FoxP3+CD4+ T cells (Treg) are vital for maintaining the balance between tolerance, adequate immune response, and autoimmunity. Despite this immunoregulatory role, it has been shown that Treg may also produce proinflammatory cytokines. Here we present a distinct population of Treg, defined by CD161 expression, as the major source of FoxP3+ Treg-derived proinflammatory cytokines. CD161+ Treg can be followed throughout development, from thymus and cord blood to healthy child and adult samples. CD161+ Treg display anergy, are suppressive in cocultures with conventional T cells (Tconv), and possess a predominantly demethylated Treg-specific demethylated region of the FOXP3 locus. In addition to the production of interleukin (IL) 17A, interferon γ, and IL-2, CD161+FoxP3+ cells share markers with Tconv, including expression of the transcription factors retinoic acid-related orphan receptor Cv2 (RORCv2) and T-cell-specific T-box transcription factor (Tbet). Expression of CD161 and enrichment for cytokine production are stable characteristics of CD161+ Treg upon both short- and longer-term culture in vitro. Additionally, CD161+ Treg are highly enriched within the inflammatory environment of childhood arthritis, suggesting a role in disease. Our data therefore demonstrate that CD161+FoxP3+ T cells are a novel Treg subset, found in health and disease, which display high proinflammatory potential but also exhibit hallmark Treg characteristics. PMID:23355538

  6. PKA turnover by the REGγ-proteasome modulates FoxO1 cellular activity and VEGF-induced angiogenesis

    PubMed Central

    Liu, Shuang; Lai, Li; Zuo, Qiuhong; Dai, Fujun; Wu, Lin; Wang, Yan; Zhou, Qingxia; Liu, Jian; Liu, Jiang; Li, Lei; Lin, Qingxiang; Creighton, Chad J.; Costello, Myra Grace; Huang, Shixia; Jia, Caifeng; Liao, Lujian; Luo, Honglin; Fu, Junjiang; Liu, Mingyao; Yi, Zhengfang; Xiao, Jianru; Li, Xiaotao

    2014-01-01

    The REGγ-proteasome serves as a short-cut for the destruction of certain intact mammalian proteins in the absence of ubiquitin-and ATP. The biological roles of the proteasome activator REGγ are not completely understood. Here we demonstrate that REGγ controls degradation of protein kinase A catalytic subunit-α (PKAca) both in primary human umbilical vein endothelial cells (HUVECs) and mouse embryonic fibroblast cells (MEFs). Accumulation of PKAca in REGγ-deficient HUVECs or MEFs results in phosphorylation and nuclear exclusion of the transcription factor FoxO1, indicating that REGγ is involved in preserving FoxO1 transcriptional activity. Consequently, VEGF-induced expression of the FoxO1 responsive genes, VCAM-1 and E-Selectin, was tightly controlled by REGγ in a PKA dependent manner. Functionally, REGγ is crucial for the migration of HUVECs. REGγ−/− mice display compromised VEGF-instigated neovascularization in cornea and aortic ring models. Implanted matrigel plugs containing VEGF in REGγ−/− mice induced fewer capillaries than in REGγ+/+ littermates. Taken together, our study identifies REGγ as a novel angiogenic factor that plays an important role in VEGF-induced expression of VCAM-1 and E-Selectin by antagonizing PKA signaling. Identification of the REGγ–PKA–FoxO1 pathway in endothelial cells (ECs) provides another potential target for therapeutic intervention in vascular diseases. PMID:24560667

  7. Expression of PUMA in Follicular Granulosa Cells Regulated by FoxO1 Activation During Oxidative Stress.

    PubMed

    Liu, Ze-Qun; Shen, Ming; Wu, Wang-Jun; Li, Bo-Jiang; Weng, Qian-Nan; Li, Mei; Liu, Hong-Lin

    2015-06-01

    Many studies have demonstrated that oxidative stress-induced apoptosis is a main cause of follicular atresia. Reactive oxygen species (ROS)-induced granulosa cell (GC) apoptosis is regulated by a variety of signaling pathways involving numerous genes and transcription factors. In this study, we found expression of the p53-upregulated modulator of apoptosis (PUMA), a BH3-only Bcl-2 subfamily protein, in ovarian GCs during oxidative stress. By overexpression and knockdown of Forkhead box O1 (FoxO1), we found that FoxO1 regulates PUMA at the protein level. Moreover, as c-Jun N-terminal kinase (JNK) has been shown to activate FoxO1 by promoting its nuclear import, we used a JNK inhibitor to reduce FoxO1 activation and detected decreased PUMA messenger RNA expression and protein levels during oxidative stress. In addition, in vivo oxidative stress-induced upregulation of PUMA was found following injection of 3 nitropropionic acid in mice. In conclusion, oxidative stress increases PUMA expression regulated by FoxO1 in follicular GCs. PMID:25425107

  8. Transcription factor LSF (TFCP2) inhibits melanoma growth

    PubMed Central

    Goto, Yuji; Yajima, Ichiro; Kumasaka, Mayuko; Ohgami, Nobutaka; Tanaka, Asami; Tsuzuki, Toyonori; Inoue, Yuji; Fukushima, Satoshi; Ihn, Hironobu; Kyoya, Mikiko; Ohashi, Hiroyuki; Kawakami, Tamihiro; Bennett, Dorothy C.; Kato, Masashi

    2016-01-01

    Late SV40 factor 3 (LSF), a transcription factor, contributes to human hepatocellular carcinoma (HCC). However, decreased expression level of LSF in skin melanoma compared to that in benign melanocytic tumors and nevi in mice and humans was found in this study. Anchorage-dependent and -independent growth of melanoma cells was suppressed by LSF overexpression through an increased percentage of G1 phase cells and an increased p21CIP1 expression level in vitro and in vivo. Anchorage-dependent growth in LSF-overexpressed melanoma cells was promoted by depletion of LSF in the LSF-overexpressed cells. Integrated results of our EMSA and chromatin immunoprecipitation assays showed binding of LSF within a 150-bp upstream region of the transcription start site of p21CIP1 in melanoma cells. Taken together, our results suggest potential roles of LSF as a growth regulator through control of the transcription of p21CIP1 in melanocytes and melanoma cells as well as a biomarker for nevus. PMID:26506241

  9. DNA methylation presents distinct binding sites for human transcription factors.

    PubMed

    Hu, Shaohui; Wan, Jun; Su, Yijing; Song, Qifeng; Zeng, Yaxue; Nguyen, Ha Nam; Shin, Jaehoon; Cox, Eric; Rho, Hee Sool; Woodard, Crystal; Xia, Shuli; Liu, Shuang; Lyu, Huibin; Ming, Guo-Li; Wade, Herschel; Song, Hongjun; Qian, Jiang; Zhu, Heng

    2013-01-01

    DNA methylation, especially CpG methylation at promoter regions, has been generally considered as a potent epigenetic modification that prohibits transcription factor (TF) recruitment, resulting in transcription suppression. Here, we used a protein microarray-based approach to systematically survey the entire human TF family and found numerous purified TFs with methylated CpG (mCpG)-dependent DNA-binding activities. Interestingly, some TFs exhibit specific binding activity to methylated and unmethylated DNA motifs of distinct sequences. To elucidate the underlying mechanism, we focused on Kruppel-like factor 4 (KLF4), and decoupled its mCpG- and CpG-binding activities via site-directed mutagenesis. Furthermore, KLF4 binds specific methylated or unmethylated motifs in human embryonic stem cells in vivo. Our study suggests that mCpG-dependent TF binding activity is a widespread phenomenon and provides a new framework to understand the role and mechanism of TFs in epigenetic regulation of gene transcription. DOI:http://dx.doi.org/10.7554/eLife.00726.001. PMID:24015356

  10. DNA methylation presents distinct binding sites for human transcription factors

    PubMed Central

    Hu, Shaohui; Wan, Jun; Su, Yijing; Song, Qifeng; Zeng, Yaxue; Nguyen, Ha Nam; Shin, Jaehoon; Cox, Eric; Rho, Hee Sool; Woodard, Crystal; Xia, Shuli; Liu, Shuang; Lyu, Huibin; Ming, Guo-Li; Wade, Herschel; Song, Hongjun; Qian, Jiang; Zhu, Heng

    2013-01-01

    DNA methylation, especially CpG methylation at promoter regions, has been generally considered as a potent epigenetic modification that prohibits transcription factor (TF) recruitment, resulting in transcription suppression. Here, we used a protein microarray-based approach to systematically survey the entire human TF family and found numerous purified TFs with methylated CpG (mCpG)-dependent DNA-binding activities. Interestingly, some TFs exhibit specific binding activity to methylated and unmethylated DNA motifs of distinct sequences. To elucidate the underlying mechanism, we focused on Kruppel-like factor 4 (KLF4), and decoupled its mCpG- and CpG-binding activities via site-directed mutagenesis. Furthermore, KLF4 binds specific methylated or unmethylated motifs in human embryonic stem cells in vivo. Our study suggests that mCpG-dependent TF binding activity is a widespread phenomenon and provides a new framework to understand the role and mechanism of TFs in epigenetic regulation of gene transcription. DOI: http://dx.doi.org/10.7554/eLife.00726.001 PMID:24015356

  11. Transcription factor LSF (TFCP2) inhibits melanoma growth.

    PubMed

    Goto, Yuji; Yajima, Ichiro; Kumasaka, Mayuko; Ohgami, Nobutaka; Tanaka, Asami; Tsuzuki, Toyonori; Inoue, Yuji; Fukushima, Satoshi; Ihn, Hironobu; Kyoya, Mikiko; Ohashi, Hiroyuki; Kawakami, Tamihiro; Bennett, Dorothy C; Kato, Masashi

    2016-01-19

    Late SV40 factor 3 (LSF), a transcription factor, contributes to human hepatocellular carcinoma (HCC). However, decreased expression level of LSF in skin melanoma compared to that in benign melanocytic tumors and nevi in mice and humans was found in this study. Anchorage-dependent and -independent growth of melanoma cells was suppressed by LSF overexpression through an increased percentage of G1 phase cells and an increased p21CIP1 expression level in vitro and in vivo. Anchorage-dependent growth in LSF-overexpressed melanoma cells was promoted by depletion of LSF in the LSF-overexpressed cells. Integrated results of our EMSA and chromatin immunoprecipitation assays showed binding of LSF within a 150-bp upstream region of the transcription start site of p21CIP1 in melanoma cells. Taken together, our results suggest potential roles of LSF as a growth regulator through control of the transcription of p21CIP1 in melanocytes and melanoma cells as well as a biomarker for nevus. PMID:26506241

  12. Evolutionary optimization of transcription factor binding motif detection.

    PubMed

    Zhang, Zhao; Wang, Ze; Mai, Guoqin; Luo, Youxi; Zhao, Miaomiao; Zhou, Fengfeng

    2015-01-01

    All the cell types are under strict control of how their genes are transcribed into expressed transcripts by the temporally dynamic orchestration of the transcription factor binding activities. Given a set of known binding sites (BSs) of a given transcription factor (TF), computational TFBS screening technique represents a cost efficient and large scale strategy to complement the experimental ones. There are two major classes of computational TFBS prediction algorithms based on the tertiary and primary structures, respectively. A tertiary structure based algorithm tries to calculate the binding affinity between a query DNA fragment and the tertiary structure of the given TF. Due to the limited number of available TF tertiary structures, primary structure based TFBS prediction algorithm is a necessary complementary technique for large scale TFBS screening. This study proposes a novel evolutionary algorithm to randomly mutate the weights of different positions in the binding motif of a TF, so that the overall TFBS prediction accuracy is optimized. The comparison with the most widely used algorithm, Position Weight Matrix (PWM), suggests that our algorithm performs better or the same level in all the performance measurements, including sensitivity, specificity, accuracy and Matthews correlation coefficient. Our data also suggests that it is necessary to remove the widely used assumption of independence between motif positions. The supplementary material may be found at: http://www.healthinformaticslab.org/supp/ . PMID:25387969

  13. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors

    PubMed Central

    Gayvert, Kaitlyn; Dardenne, Etienne; Cheung, Cynthia; Boland, Mary Regina; Lorberbaum, Tal; Wanjala, Jackline; Chen, Yu; Rubin, Mark; Tatonetti, Nicholas P.; Rickman, David; Elemento, Olivier

    2016-01-01

    Summary Mutations in transcription factors (TFs) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a Computational drug-Repositioning Approach For Targeting Transcription factor activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions and a global drug-protein network analysis further supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently over-expressed oncogenic TF predicted that dexamethasone would inhibit ERG activity. Indeed, dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of Electronic Medical Record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy to identify drugs that specifically modulate TF activity. PMID:27264179

  14. Sequence dependence of transcription factor-mediated DNA looping

    PubMed Central

    Johnson, Stephanie; Lindén, Martin; Phillips, Rob

    2012-01-01

    DNA is subject to large deformations in a wide range of biological processes. Two key examples illustrate how such deformations influence the readout of the genetic information: the sequestering of eukaryotic genes by nucleosomes and DNA looping in transcriptional regulation in both prokaryotes and eukaryotes. These kinds of regulatory problems are now becoming amenable to systematic quantitative dissection with a powerful dialogue between theory and experiment. Here, we use a single-molecule experiment in conjunction with a statistical mechanical model to test quantitative predictions for the behavior of DNA looping at short length scales and to determine how DNA sequence affects looping at these lengths. We calculate and measure how such looping depends upon four key biological parameters: the strength of the transcription factor binding sites, the concentration of the transcription factor, and the length and sequence of the DNA loop. Our studies lead to the surprising insight that sequences that are thought to be especially favorable for nucleosome formation because of high flexibility lead to no systematically detectable effect of sequence on looping, and begin to provide a picture of the distinctions between the short length scale mechanics of nucleosome formation and looping. PMID:22718983

  15. The BEL1-like family of transcription factors in potato

    PubMed Central

    Hannapel, David J.

    2014-01-01

    BEL1-type proteins are ubiquitous plant transcription factors in the three-amino-acid-loop-extension superfamily. They interact with KNOTTED1-like proteins, and function as heterodimers in both floral and vegetative development. Using the yeast two-hybrid system with POTATO HOMEOBOX1 (POTH1) as the bait, seven BEL1-type proteins were originally identified. One of these genes, designated StBEL5, has transcripts that move long distances in the plant and enhance tuberization and root growth. Using the potato genome database, 13 active BEL1-like genes were identified that contain the conserved homeobox domain and the BELL domain, both of which are essential for the function of BEL1-type proteins. Phylogenetic analysis of the StBEL family demonstrated a degree of orthology with the 13 BEL1-like genes of Arabidopsis. A profile of the gene structure of the family revealed conservation of the length and splicing patterns of internal exons that encode key functional domains. Yeast two-hybrid experiments with KNOTTED1-like proteins and the new StBELs confirmed the interactive network between these two families. Analyses of RNA abundance patterns clearly showed that three StBEL genes, BEL5, -11, and -29, make up approximately two-thirds of the total transcript values for the entire family. Among the 10 organs evaluated here, these three genes exhibited the 12 greatest transcript abundance values. Using a phloem-transport induction system and gel-shift assays, transcriptional cross-regulation within the StBEL family was confirmed. Making use of the potato genome and current experimental data, a comprehensive profile of the StBEL family is presented in this study. PMID:24474812

  16. Thermal Properties of FOX-7

    SciTech Connect

    Burnham, A K; Weese, R K; Wang, R; Kwok, Q M; Jones, D G

    2005-03-30

    Much effort has been devoted to an ongoing search for more powerful, safer and environmentally friendly explosives. Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. Preliminary results on the physical and chemical characterization of FOX-7 have shown that it possesses good thermal and chemical stability. It is expected that FOX-7 will be a new important explosive ingredient in high performance, insensitive munition (IM) explosives. One of the major focuses in research on this novel energetic material is a study of its thermal properties. Oestmark et al have reported that DSC curves exhibit two minor endothermic peaks as well as two major exothermic peaks. Two endothermic peaks at {approx}116 and {approx}158 C suggest the presence of two solid-solid phase transitions. A third phase change below 100 C has also been reported based on a X-ray powder diffraction (XPD) study. The shapes, areas and observed temperatures of the two decomposition peaks at {approx}235 C and {approx}280 C vary with different batches and sources of the sample, and occasionally these two peaks are merged into one. The factors leading to this variation and a more complete investigation are in progress. Our laboratories have been interested in the thermal properties of energetic materials characterized by means of various thermal analysis techniques. This paper will present our results for the thermal behavior of FOX-7 including the phase changes, decomposition, kinetic analysis and the decomposition products using DSC, TG, ARC (Accelerating Rate Calorimetry), HFC (Heat Flow Calorimetry) and simultaneous TGDTA-FTIR (Fourier Transform Infrared Spectroscopy) Spectroscopy-MS (Mass) measurements.

  17. Effects of overexpressing FoxO1 on apoptosis in glomeruli of diabetic mice and in podocytes cultured in high glucose medium.

    PubMed

    Li, Wen; Wang, Qingzhu; Du, Mengmeng; Ma, Xiaojun; Wu, Lina; Guo, Feng; Zhao, Shuiying; Huang, Fengjuan; Wang, Huanhuan; Qin, Guijun

    2016-09-16

    Podocyte apoptosis induced by high levels of glucose is a key event in the development and prognosis of diabetic nephropathy (DN). Forkhead transcription factor O1 (FoxO1) has been defined as a critical mediator of oxidative stress in animal models of diabetes and is involved in mitophagy. To test the role of FoxO1 in regulating podocyte apoptosis both in vivo and in vitro, we generated FoxO1 overexpression models. High-glucose (HG) induced podocyte apoptosis with decreased mitophagy. These changes were accompanied by mitochondrial dysfunction and more severe podocyte loss in mouse kidney. FoxO1 overexpression prevented the apoptosis induced by HG. Reduction of cell apoptosis and renal damage depended upon the expression of PTEN-induced putative kinase 1 (PINK1). These findings suggest that specific overexpression of renal FoxO1 decreases podocyte apoptosis, which may be explained in part by its regulation of PINK1, and that targeting FoxO1 may represent a novel therapeutic approach for DN. PMID:27475499

  18. Molecular Screening Tools to Study Arabidopsis Transcription Factors

    PubMed Central

    Wehner, Nora; Weiste, Christoph; Dröge-Laser, Wolfgang

    2011-01-01

    In the model plant Arabidopsis thaliana, more than 2000 genes are estimated to encode transcription factors (TFs), which clearly emphasizes the importance of transcriptional control. Although genomic approaches have generated large TF open reading frame (ORF) collections, only a limited number of these genes is functionally characterized, yet. This review evaluates strategies and methods to identify TF functions. In particular, we focus on two recently developed TF screening platforms, which make use of publically available GATEWAY®-compatible ORF collections. (1) The Arabidopsis thaliana TF ORF over-Expression (AtTORF-Ex) library provides pooled collections of transgenic lines over-expressing HA-tagged TF genes, which are suited for screening approaches to define TF functions in stress defense and development. (2) A high-throughput microtiter plate based protoplast trans activation (PTA) system has been established to screen for TFs which are regulating a given promoter:Luciferase construct in planta. PMID:22645547

  19. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors.

    PubMed

    Gayvert, Kaitlyn M; Dardenne, Etienne; Cheung, Cynthia; Boland, Mary Regina; Lorberbaum, Tal; Wanjala, Jackline; Chen, Yu; Rubin, Mark A; Tatonetti, Nicholas P; Rickman, David S; Elemento, Olivier

    2016-06-14

    Mutations in transcription factor (TF) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a computational drug-repositioning approach for targeting TF activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions, and a global drug-protein network analysis supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently overexpressed oncogenic TF, predicted that dexamethasone would inhibit ERG activity. Dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of electronic medical record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy for identifying drugs that specifically modulate TF activity. PMID:27264179

  20. Recent advances in transcription factor assays in vitro.

    PubMed

    Zhang, Yan; Ma, Fei; Tang, Bo; Zhang, Chun-yang

    2016-04-01

    Transcription factors (TFs) play central roles in the regulation of gene expression through binding to specific DNA sequences, and may influence multiple transcription-associated cellular processes including cell development, differentiation, and growth. Alterations in TF levels may lead to a variety of human diseases. Consequently, rapid and sensitive detection of TFs is crucial to both biological research and clinical diagnostics. However, conventional methods for TF assays are usually laborious and time-consuming with poor sensitivity, and sometimes involve the radioactive materials. To overcome these limitations, some new approaches have been developed with a low detection limit, high specificity, high throughput, and low cost. In this paper, we review the recent advances in TF assays and highlight the emerging trends as well. PMID:26923224

  1. Statistical mechanical model of coupled transcription from multiple promoters due to transcription factor titration

    NASA Astrophysics Data System (ADS)

    Rydenfelt, Mattias; Cox, Robert Sidney, III; Garcia, Hernan; Phillips, Rob

    2014-01-01

    Transcription factors (TFs) with regulatory action at multiple promoter targets is the rule rather than the exception, with examples ranging from the cAMP receptor protein (CRP) in E. coli that regulates hundreds of different genes simultaneously to situations involving multiple copies of the same gene, such as plasmids, retrotransposons, or highly replicated viral DNA. When the number of TFs heavily exceeds the number of binding sites, TF binding to each promoter can be regarded as independent. However, when the number of TF molecules is comparable to the number of binding sites, TF titration will result in correlation (“promoter entanglement”) between transcription of different genes. We develop a statistical mechanical model which takes the TF titration effect into account and use it to predict both the level of gene expression for a general set of promoters and the resulting correlation in transcription rates of different genes. Our results show that the TF titration effect could be important for understanding gene expression in many regulatory settings.

  2. Gene duplication of type-B ARR transcription factors systematically extends transcriptional regulatory structures in Arabidopsis

    PubMed Central

    Choi, Seung Hee; Hyeon, Do Young; Lee, ll Hwan; Park, Su Jin; Han, Seungmin; Lee, In Chul; Hwang, Daehee; Nam, Hong Gil

    2014-01-01

    Many of duplicated genes are enriched in signaling pathways. Recently, gene duplication of kinases has been shown to provide genetic buffering and functional diversification in cellular signaling. Transcription factors (TFs) are also often duplicated. However, how duplication of TFs affects their regulatory structures and functions of target genes has not been explored at the systems level. Here, we examined regulatory and functional roles of duplication of three major ARR TFs (ARR1, 10, and 12) in Arabidopsis cytokinin signaling using wild-type and single, double, and triple deletion mutants of the TFs. Comparative analysis of gene expression profiles obtained from Arabidopsis roots in wild-type and these mutants showed that duplication of ARR TFs systematically extended their transcriptional regulatory structures, leading to enhanced robustness and diversification in functions of target genes, as well as in regulation of cellular networks of target genes. Therefore, our results suggest that duplication of TFs contributes to robustness and diversification in functions of target genes by extending transcriptional regulatory structures. PMID:25425016

  3. Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus.

    PubMed

    Xie, Xiu-lan; Shen, Shu-ling; Yin, Xue-ren; Xu, Qian; Sun, Chong-de; Grierson, Donald; Ferguson, Ian; Chen, Kun-song

    2014-07-01

    The AP2/ERF gene family encodes plant-specific transcription factors. In model plants, AP2/ERF genes have been shown to be expressed in response to developmental and environmental stimuli, and many function downstream of the ethylene, biotic, and abiotic stress signaling pathways. In citrus, ethylene is effective in regulation citrus fruit quality, such as degreening and aroma. However, information about the citrus AP2/ERF family is limited, and would enhance our understanding of fruit responses to environmental stress, fruit development and quality. CitAP2/ERF genes were isolated using the citrus genome database, and their expression patterns analyzed by real-time PCR using various orange organs and samples from a fruit developmental series. 126 sequences with homologies to AP2/ERF proteins were identified from the citrus genome, and, on the basis of their structure and sequence, assigned to the ERF family (102), AP2 family (18), RAV family (4) and Soloist (2). MEME motif analysis predicted the defining AP2/ERF domain and EAR repressor domains. Analysis of transcript accumulation in Citrus sinensis cv. 'Newhall' indicated that CitAP2/ERF genes show organ-specific and temporal expression, and provided a framework for understanding the transcriptional regulatory roles of AP2/ERF gene family members in citrus. Hierarchical cluster analysis and t tests identified regulators that potentially function during orange fruit growth and development. PMID:24566692

  4. Transcriptional Activation of the Cyclin A Gene by the Architectural Transcription Factor HMGA2

    PubMed Central

    Tessari, Michela A.; Gostissa, Monica; Altamura, Sandro; Sgarra, Riccardo; Rustighi, Alessandra; Salvagno, Clio; Caretti, Giuseppina; Imbriano, Carol; Mantovani, Roberto; Del Sal, Giannino; Giancotti, Vincenzo; Manfioletti, Guidalberto

    2003-01-01

    The HMGA2 protein belongs to the HMGA family of architectural transcription factors, which play an important role in chromatin organization. HMGA proteins are overexpressed in several experimental and human tumors and have been implicated in the process of neoplastic transformation. Hmga2 knockout results in the pygmy phenotype in mice and in a decreased growth rate of embryonic fibroblasts, thus indicating a role for HMGA2 in cell proliferation. Here we show that HMGA2 associates with the E1A-regulated transcriptional repressor p120E4F, interfering with p120E4F binding to the cyclin A promoter. Ectopic expression of HMGA2 results in the activation of the cyclin A promoter and induction of the endogenous cyclin A gene. In addition, chromatin immunoprecipitation experiments show that HMGA2 associates with the cyclin A promoter only when the gene is transcriptionally activated. These data identify the cyclin A gene as a cellular target for HMGA2 and, for the first time, suggest a mechanism for HMGA2-dependent cell cycle regulation. PMID:14645522

  5. Engineering phenolics metabolism in the grasses using transcription factors

    SciTech Connect

    Grotewold, Erich

    2013-07-26

    The economical competitiveness of agriculture-derived biofuels can be significantly enhanced by increasing biomass/acre yields and by furnishing the desired carbon balance for facilitating liquid fuel production (e.g., ethanol) or for high-energy solid waste availability to be used as biopower (e.g., for electricity production). Biomass production and carbon balance are tightly linked to the biosynthesis of phenolic compounds, which are found in crops and in agricultural residues either as lignins, as part of the cell wall, or as soluble phenolics which play a variety of functions in the biology of plants. The grasses, in particular maize, provide the single major source of agricultural biomass, offering significant opportunities for increasing renewable fuel production. Our laboratory has pioneered the use of transcription factors for manipulating plant metabolic pathways, an approach that will be applied here towards altering the composition of phenolic compounds in maize. Previously, we identified a small group of ten maize R2R3-MYB transcription factors with all the characteristics of regulators of different aspects of phenolic biosynthesis. Here, we propose to investigate the participation of these R2R3-MYB factors in the regulation of soluble and insoluble maize phenolics, using a combination of over-expression and down-regulation of these transcription factors in transgenic maize cultured cells and in maize plants. Maize cells and plants altered in the activity of these regulatory proteins will be analyzed for phenolic composition by targeted metabolic profiling. Specifically, we will I) Investigate the effect of gain- and loss-of-function of a select group of R2R3-MYB transcription factors on the phenolic composition of maize plants and II) Identify the biosynthetic genes regulated by each of the selected R2R3-MYB factors. While a likely outcome of these studies are transgenic maize plants with altered phenolic composition, this research will significantly

  6. FoxO is a critical regulator of stem cell maintenance in immortal Hydra.

    PubMed

    Boehm, Anna-Marei; Khalturin, Konstantin; Anton-Erxleben, Friederike; Hemmrich, Georg; Klostermeier, Ulrich C; Lopez-Quintero, Javier A; Oberg, Hans-Heinrich; Puchert, Malte; Rosenstiel, Philip; Wittlieb, Jörg; Bosch, Thomas C G

    2012-11-27

    Hydra's unlimited life span has long attracted attention from natural scientists. The reason for that phenomenon is the indefinite self-renewal capacity of its stem cells. The underlying molecular mechanisms have yet to be explored. Here, by comparing the transcriptomes of Hydra's stem cells followed by functional analysis using transgenic polyps, we identified the transcription factor forkhead box O (FoxO) as one of the critical drivers of this continuous self-renewal. foxO overexpression increased interstitial stem cell and progenitor cell proliferation and activated stem cell genes in terminally differentiated somatic cells. foxO down-regulation led to an increase in the number of terminally differentiated cells, resulting in a drastically reduced population growth rate. In addition, it caused down-regulation of stem cell genes and antimicrobial peptide (AMP) expression. These findings contribute to a molecular understanding of Hydra's immortality, indicate an evolutionarily conserved role of FoxO in controlling longevity from Hydra to humans, and have implications for understanding cellular aging. PMID:23150562

  7. FoxO is a critical regulator of stem cell maintenance in immortal Hydra

    PubMed Central

    Boehm, Anna-Marei; Khalturin, Konstantin; Anton-Erxleben, Friederike; Hemmrich, Georg; Klostermeier, Ulrich C.; Lopez-Quintero, Javier A.; Oberg, Hans-Heinrich; Puchert, Malte; Rosenstiel, Philip; Wittlieb, Jörg; Bosch, Thomas C. G.

    2012-01-01

    Hydra’s unlimited life span has long attracted attention from natural scientists. The reason for that phenomenon is the indefinite self-renewal capacity of its stem cells. The underlying molecular mechanisms have yet to be explored. Here, by comparing the transcriptomes of Hydra’s stem cells followed by functional analysis using transgenic polyps, we identified the transcription factor forkhead box O (FoxO) as one of the critical drivers of this continuous self-renewal. foxO overexpression increased interstitial stem cell and progenitor cell proliferation and activated stem cell genes in terminally differentiated somatic cells. foxO down-regulation led to an increase in the number of terminally differentiated cells, resulting in a drastically reduced population growth rate. In addition, it caused down-regulation of stem cell genes and antimicrobial peptide (AMP) expression. These findings contribute to a molecular understanding of Hydra’s immortality, indicate an evolutionarily conserved role of FoxO in controlling longevity from Hydra to humans, and have implications for understanding cellular aging. PMID:23150562

  8. Antiviral response dictated by choreographed cascade of transcription factors

    PubMed Central

    Zaslavsky, Elena; Hershberg, Uri; Seto, Jeremy; Pham, Alissa M.; Marquez, Susanna; Duke, Jamie L.; Wetmur, James G.; tenOever, Benjamin R.; Sealfon, Stuart C.; Kleinstein, Steven H.

    2010-01-01

    The dendritic cell (DC) is a master regulator of immune responses. Pathogenic viruses subvert normal immune function in DCs through the expression of immune antagonists. Understanding how these antagonists interact with the host immune system requires knowledge of the underlying genetic regulatory network that operates during an uninhibited antiviral response. In order to isolate and identify this network, we studied DCs infected with Newcastle Disease Virus (NDV), which is able to stimulate innate immunity and DC maturation through activation of RIG-I signaling, but lacks the ability to evade the human interferon response. To analyze this experimental model, we developed a new approach integrating genome-wide expression kinetics and time-dependent promoter analysis. We found that the genetic program underlying the antiviral cell-state transition during the first 18-hours post-infection could be explained by a single convergent regulatory network. Gene expression changes were driven by a step-wise multi-factor cascading control mechanism, where the specific transcription factors controlling expression changed over time. Within this network, most individual genes are regulated by multiple factors, indicating robustness against virus-encoded immune evasion genes. In addition to effectively recapitulating current biological knowledge, we predicted, and validated experimentally, antiviral roles for several novel transcription factors. More generally, our results show how a genetic program can be temporally controlled through a single regulatory network to achieve the large-scale genetic reprogramming characteristic of cell state transitions. PMID:20164420

  9. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer

    SciTech Connect

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong; Kim, Jung-Woong Choi, Kyung-Hee

    2015-08-07

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. - Highlights: • Identification of new target genes of FOXA2. • Identifications of novel interaction proteins of FOXA2. • Construction of FOXA2-centered transcriptional regulatory network in non-small cell lung cancer.

  10. An arterial-specific enhancer of the human endothelin converting enzyme 1 (ECE1) gene is synergistically activated by Sox17, FoxC2, and Etv2.

    PubMed

    Robinson, Ashley S; Materna, Stefan C; Barnes, Ralston M; De Val, Sarah; Xu, Shan-Mei; Black, Brian L

    2014-11-15

    Endothelin-converting enzyme-1 (Ece-1), a crucial component of the Endothelin signaling pathway, is required for embryonic development and is an important regulator of vascular tone, yet the transcriptional regulation of the ECE1 gene has remained largely unknown. Here, we define the activity and regulation of an enhancer from the human ECE1 locus in vivo. The enhancer identified here becomes active in endothelial progenitor cells shortly after their initial specification and is dependent on a conserved FOX:ETS motif, a composite binding site for Forkhead transcription factors and the Ets transcription factor Etv2, for activity in vivo. The ECE1 FOX:ETS motif is bound and cooperatively activated by FoxC2 and Etv2, but unlike other described FOX:ETS-dependent enhancers, ECE1 enhancer activity becomes restricted to arterial endothelium and endocardium by embryonic day 9.5 in transgenic mouse embryos. The ECE1 endothelial enhancer also contains an evolutionarily-conserved, consensus SOX binding site, which is required for activity in transgenic mouse embryos. Importantly, the ECE1 SOX site is bound and activated by Sox17, a transcription factor involved in endothelial cell differentiation and an important regulator of arterial identity. Moreover, the ECE1 enhancer is cooperatively activated by the combinatorial action of FoxC2, Etv2, and Sox17. Although Sox17 is required for arterial identity, few direct transcriptional targets have been identified in endothelial cells. Thus, this work has important implications for our understanding of endothelial specification and arterial subspecification. PMID:25179465

  11. Acetyl Coenzyme A Stimulates RNA Polymerase II Transcription and Promoter Binding by Transcription Factor IID in the Absence of Histones

    PubMed Central

    Galasinski, Shelly K.; Lively, Tricia N.; Grebe de Barron, Alexandra; Goodrich, James A.

    2000-01-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression. PMID:10688640

  12. E2F1 and p53 Transcription Factors as Accessory Factors for Nucleotide Excision Repair

    PubMed Central

    Vélez-Cruz, Renier; Johnson, David G.

    2012-01-01

    Many of the biochemical details of nucleotide excision repair (NER) have been established using purified proteins and DNA substrates. In cells however, DNA is tightly packaged around histones and other chromatin-associated proteins, which can be an obstacle to efficient repair. Several cooperating mechanisms enhance the efficiency of NER by altering chromatin structure. Interestingly, many of the players involved in modifying chromatin at sites of DNA damage were originally identified as regulators of transcription. These include ATP-dependent chromatin remodelers, histone modifying enzymes and several transcription factors. The p53 and E2F1 transcription factors are well known for their abilities to regulate gene expression in response to DNA damage. This review will highlight the underappreciated, transcription-independent functions of p53 and E2F1 in modifying chromatin structure in response to DNA damage to promote global NER. PMID:23202967

  13. Identifying combinatorial regulation of transcription factors and binding motifs

    PubMed Central

    Kato, Mamoru; Hata, Naoya; Banerjee, Nilanjana; Futcher, Bruce; Zhang, Michael Q

    2004-01-01

    Background Combinatorial interaction of transcription factors (TFs) is important for gene regulation. Although various genomic datasets are relevant to this issue, each dataset provides relatively weak evidence on its own. Developing methods that can integrate different sequence, expression and localization data have become important. Results Here we use a novel method that integrates chromatin immunoprecipitation (ChIP) data with microarray expression data and with combinatorial TF-motif analysis. We systematically identify combinations of transcription factors and of motifs. The various combinations of TFs involved multiple binding mechanisms. We reconstruct a new combinatorial regulatory map of the yeast cell cycle in which cell-cycle regulation can be drawn as a chain of extended TF modules. We find that the pairwise combination of a TF for an early cell-cycle phase and a TF for a later phase is often used to control gene expression at intermediate times. Thus the number of distinct times of gene expression is greater than the number of transcription factors. We also see that some TF modules control branch points (cell-cycle entry and exit), and in the presence of appropriate signals they can allow progress along alternative pathways. Conclusions Combining different data sources can increase statistical power as demonstrated by detecting TF interactions and composite TF-binding motifs. The original picture of a chain of simple cell-cycle regulators can be extended to a chain of composite regulatory modules: different modules may share a common TF component in the same pathway or a TF component cross-talking to other pathways. PMID:15287978

  14. The Bach Family of Transcription Factors: A Comprehensive Review.

    PubMed

    Zhou, Yin; Wu, Haijing; Zhao, Ming; Chang, Christopher; Lu, Qianjin

    2016-06-01

    The transcription factors Bach1 and Bach2, which belong to a basic region-leucine zipper (bZip) family, repress target gene expression by forming heterodimers with small Maf proteins. With the ability to bind to heme, Bach1 and Bach2 are important in maintaining heme homeostasis in response to oxidative stress, which is characterized by high levels of reactive oxygen species (ROS) in cells and thereby induces cellular damage and senescence. The inactivation of Bach1 exerts an antioxidant effect. Thus, Bach1 may be a potential therapeutic target of oxidative stress-related diseases. Bach2 participates in oxidative stress-mediated apoptosis and is involved in macrophage-mediated innate immunity as well as the adaptive immune response. Bach1 and Bach2 promote the differentiation of common lymphoid progenitors to B cells by repressing myeloid-related genes. Bach2 is able to regulate class-switch recombination and plasma cell differentiation by altering the concentration of mitochondrial ROS during B cell differentiation. Furthermore, Bach2 maintains T cell homeostasis, influences the function of macrophages, and plays a role in autoimmunity. Bach2-controlling genes with super enhancers in T cells play a key role in immune regulation. However, in spite of new research, the role of Bach1 and Bach2 in immune cells and immune response is not completely clear, nor are their respective roles of in oxidative stress and the immune response, in particular with regard to the clinical phenotypes of autoimmune diseases. The anti-immunosenescence action of Bach and the role of epigenetic modifications of these transcription factors may be important in the mechanism of Bach transcription factors in mediating oxidative stress and cellular immunity. PMID:27052415

  15. Positional distribution of transcription factor binding sites in Arabidopsis thaliana

    PubMed Central

    Yu, Chun-Ping; Lin, Jinn-Jy; Li, Wen-Hsiung

    2016-01-01

    Binding of a transcription factor (TF) to its DNA binding sites (TFBSs) is a critical step to initiate the transcription of its target genes. It is therefore interesting to know where the TFBSs of a gene are likely to locate in the promoter region. Here we studied the positional distribution of TFBSs in Arabidopsis thaliana, for which many known TFBSs are now available. We developed a method to identify the locations of TFBSs in the promoter sequences of genes in A. thaliana. We found that the distribution is nearly bell-shaped with a peak at 50 base pairs (bp) upstream of the transcription start site (TSS) and 86% of the TFBSs are in the region from −1,000 bp to +200 bp with respect to the TSS. Our distribution was supported by chromatin immunoprecipitation sequencing and microarray data and DNase I hypersensitive site sequencing data. When TF families were considered separately, differences in positional preference were observed between TF families. Our study of the positional distribution of TFBSs seems to be the first in a plant. PMID:27117388

  16. Domain structure of a human general transcription initiation factor, TFIIF.

    PubMed Central

    Yonaha, M; Aso, T; Kobayashi, Y; Vasavada, H; Yasukochi, Y; Weissman, S M; Kitajima, S

    1993-01-01

    The structural and functional domains of a general transcription initiation factor, TFIIF (RAP30/74, FC), have been investigated using various deletion mutants of each subunit, both in vivo and in vitro. An in vivo assay showed that the N-terminal sequence containing residues of 1-110 of RAP30 that is located close to a sigma homology region interacts with a minimum sequence of residues 62-171 of RAP74 to form a heteromeric interaction. Reconstitution of in vitro transcription activity by deletion mutants of RAP74 clearly indicated that both N-terminal residues 73-205 and C-terminal residues 356-517 are essential for full activity, the former interacting with RAP30, thus complexing with RNA polymerase II. From these data, the functional significance of domain structure of TFIIF is discussed in terms of its sigma homology sequences and complex formation with RNA polymerase II in the initiation and elongation of transcription. Images PMID:8441635

  17. Regulating the regulators: modulators of transcription factor activity.

    PubMed

    Everett, Logan; Hansen, Matthew; Hannenhalli, Sridhar

    2010-01-01

    Gene transcription is largely regulated by DNA-binding transcription factors (TFs). However, the TF activity itself is modulated via, among other things, post-translational modifications (PTMs) by specific modification enzymes in response to cellular stimuli. TF-PTMs thus serve as "molecular switchboards" that map upstream signaling events to the downstream transcriptional events. An important long-term goal is to obtain a genome-wide map of "regulatory triplets" consisting of a TF, target gene, and a modulator gene that specifically modulates the regulation of the target gene by the TF. A variety of genome-wide data sets can be exploited by computational methods to obtain a rough map of regulatory triplets, which can guide directed experiments. However, a prerequisite to developing such computational tools is a systematic catalog of known instances of regulatory triplets. We first describe PTM-Switchboard, a recent database that stores triplets of genes such that the ability of one gene (the TF) to regulate a target gene is dependent on one or more PTMs catalyzed by a third gene, the modifying enzyme. We also review current computational approaches to infer regulatory triplets from genome-wide data sets and conclude with a discussion of potential future research. PTM-Switchboard is accessible at http://cagr.pcbi.upenn.edu/PTMswitchboard / PMID:20827600

  18. Glutamine Metabolism Regulates the Pluripotency Transcription Factor OCT4

    PubMed Central

    Marsboom, Glenn; Zhang, Guo-Fang; Pohl-Avila, Nicole; Zhang, Yanmin; Yuan, Yang; Kang, Hojin; Hao, Bo; Brunengraber, Henri; Malik, Asrar B.; Rehman, Jalees

    2016-01-01

    SUMMARY The molecular mechanisms underlying the regulation of pluripotency by cellular metabolism in human embryonic stem cells (hESCs) are not fully understood. We found that high levels of glutamine metabolism are essential to prevent degradation of OCT4, a key transcription factor regulating hESC pluripotency. Glutamine withdrawal depletes the endogenous anti-oxidant glutathione, which results in the oxidation of OCT4 cysteine residues required for its DNA binding and enhanced OCT4 degradation. The emergence of the OCT4lo cell population following glutamine withdrawal did not result in greater propensity for cell death. Instead, glutamine withdrawal during vascular differentiation of hESCs generated cells with greater angiogenic capacity, thus indicating that modulating glutamine metabolism enhances the differentiation and functional maturation of cells. These findings demonstrate that the pluripotency transcription factor OCT4 can serve as a metabolic-redox sensor in hESCs and that metabolic cues can act in concert with growth factor signaling to orchestrate stem cell differentiation. PMID:27346346

  19. Glutamine Metabolism Regulates the Pluripotency Transcription Factor OCT4.

    PubMed

    Marsboom, Glenn; Zhang, Guo-Fang; Pohl-Avila, Nicole; Zhang, Yanmin; Yuan, Yang; Kang, Hojin; Hao, Bo; Brunengraber, Henri; Malik, Asrar B; Rehman, Jalees

    2016-07-12

    The molecular mechanisms underlying the regulation of pluripotency by cellular metabolism in human embryonic stem cells (hESCs) are not fully understood. We found that high levels of glutamine metabolism are essential to prevent degradation of OCT4, a key transcription factor regulating hESC pluripotency. Glutamine withdrawal depletes the endogenous antioxidant glutathione (GSH), which results in the oxidation of OCT4 cysteine residues required for its DNA binding and enhanced OCT4 degradation. The emergence of the OCT4(lo) cell population following glutamine withdrawal did not result in greater propensity for cell death. Instead, glutamine withdrawal during vascular differentiation of hESCs generated cells with greater angiogenic capacity, thus indicating that modulating glutamine metabolism enhances the differentiation and functional maturation of cells. These findings demonstrate that the pluripotency transcription factor OCT4 can serve as a metabolic-redox sensor in hESCs and that metabolic cues can act in concert with growth factor signaling to orchestrate stem cell differentiation. PMID:27346346

  20. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    SciTech Connect

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  1. Regulation of Specialized Metabolism by WRKY Transcription Factors

    PubMed Central

    Schluttenhofer, Craig; Yuan, Ling

    2015-01-01

    WRKY transcription factors (TFs) are well known for regulating plant abiotic and biotic stress tolerance. However, much less is known about how WRKY TFs affect plant-specialized metabolism. Analysis of WRKY TFs regulating the production of specialized metabolites emphasizes the values of the family outside of traditionally accepted roles in stress tolerance. WRKYs with conserved roles across plant species seem to be essential in regulating specialized metabolism. Overall, the WRKY family plays an essential role in regulating the biosynthesis of important pharmaceutical, aromatherapy, biofuel, and industrial components, warranting considerable attention in the forthcoming years. PMID:25501946

  2. Variable structure motifs for transcription factor binding sites

    PubMed Central

    2010-01-01

    Background Classically, models of DNA-transcription factor binding sites (TFBSs) have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs). Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets. Results We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance. Conclusions We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does provide more interpretable

  3. Transcription factor TFII-I conducts a cytoplasmic orchestra.

    PubMed

    Roy, Ananda L

    2006-11-21

    In response to extracellular ligands, surface receptor tyrosine kinases and G-protein-coupled receptors activate isoforms of phospholipase C (PLC) and initiate calcium signaling. PLC can activate expression of surface transient receptor potential channels (TRPC) such as TRPC3, which modulate calcium entry through the plasma membrane. A recent paper shows that competitive binding of cytoplasmic TFII-I, a transcription factor, to PLC-gamma results in inhibition of TRPC3-mediated agonist-induced Ca(2+) entry. These results establish a novel cytoplasmic function for TFII-I. PMID:17168565

  4. Regulation of specialized metabolism by WRKY transcription factors.

    PubMed

    Schluttenhofer, Craig; Yuan, Ling

    2015-02-01

    WRKY transcription factors (TFs) are well known for regulating plant abiotic and biotic stress tolerance. However, much less is known about how WRKY TFs affect plant-specialized metabolism. Analysis of WRKY TFs regulating the production of specialized metabolites emphasizes the values of the family outside of traditionally accepted roles in stress tolerance. WRKYs with conserved roles across plant species seem to be essential in regulating specialized metabolism. Overall, the WRKY family plays an essential role in regulating the biosynthesis of important pharmaceutical, aromatherapy, biofuel, and industrial components, warranting considerable attention in the forthcoming years. PMID:25501946

  5. E2F transcription factor 1 regulates cellular and organismal senescence by inhibiting Forkhead box O transcription factors.

    PubMed

    Xie, Qi; Peng, Shengyi; Tao, Li; Ruan, Haihe; Yang, Yanglu; Li, Tie-Mei; Adams, Ursula; Meng, Songshu; Bi, Xiaolin; Dong, Meng-Qiu; Yuan, Zengqiang

    2014-12-01

    E2F1 and FOXO3 are two transcription factors that have been shown to participate in cellular senescence. Previous report reveals that E2F1 enhanced cellular senescence in human fibroblast cells, while FOXO transcription factors play against senescence by regulation reactive oxygen species scavenging proteins. However, their functional interplay has been unclear. Here we use E2F1 knock-out murine Embryonic fibroblasts (MEFs), knockdown RNAi constructs, and ectopic expression of E2F1 to show that it functions by negatively regulating FOXO3. E2F1 attenuates FOXO3-mediated expression of MnSOD and Catalase without affecting FOXO3 protein stability, subcellular localization, or phosphorylation by Akt. We mapped the interaction between E2F1 and FOXO3 to a region including the DNA binding domain of E2F1 and the C-terminal transcription-activation domain of FOXO3. We propose that E2F1 inhibits FOXO3-dependent transcription by directly binding FOXO3 in the nucleus and preventing activation of its target genes. Moreover, knockdown of the Caenorhabditis elegans E2F1 ortholog efl-1 significantly extends lifespan in a manner that requires the activity of the C. elegans FOXO gene daf-16. We conclude that there is an evolutionarily conserved signaling connection between E2F1 and FOXO3, which regulates cellular senescence and aging by regulating the activity of FOXO3. We speculate that drugs and/or therapies that inhibit this physical interaction might be good candidates for reducing cellular senescence and increasing longevity. PMID:25344604

  6. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    SciTech Connect

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of specific tfb

  7. Structural characterization of human general transcription factor TFIIF in solution

    PubMed Central

    Akashi, Satoko; Nagakura, Shinjiro; Yamamoto, Seiji; Okuda, Masahiko; Ohkuma, Yoshiaki; Nishimura, Yoshifumi

    2008-01-01

    Human general transcription factor IIF (TFIIF), a component of the transcription pre-initiation complex (PIC) associated with RNA polymerase II (Pol II), was characterized by size-exclusion chromatography (SEC), electrospray ionization mass spectrometry (ESI-MS), and chemical cross-linking. Recombinant TFIIF, composed of an equimolar ratio of α and β subunits, was bacterially expressed, purified to homogeneity, and found to have a transcription activity similar to a natural one in the human in vitro transcription system. SEC of purified TFIIF, as previously reported, suggested that this protein has a size >200 kDa. In contrast, ESI-MS of the purified sample gave a molecular size of 87 kDa, indicating that TFIIF is an αβ heterodimer, which was confirmed by matrix-assisted laser desorption/ionization (MALDI) MS of the cross-linked TFIIF components. Recent electron microscopy (EM) and photo-cross-linking studies showed that the yeast TFIIF homolog containing Tfg1 and Tfg2, corresponding to the human α and β subunits, exists as a heterodimer in the PIC, so the human TFIIF is also likely to exist as a heterodimer even in the PIC. In the yeast PIC, EM and photo-cross-linking studies showed different results for the mutual location of TFIIE and TFIIF along DNA. We have examined the direct interaction between human TFIIF and TFIIE by ESI-MS, SEC, and chemical cross-linking; however, no direct interaction was observed, at least in solution. This is consistent with the previous photo-cross-linking observation that TFIIF and TFIIE flank DNA separately on both sides of the Pol II central cleft in the yeast PIC. PMID:18218714

  8. Bayesian non-negative factor analysis for reconstructing transcription factor mediated regulatory networks

    PubMed Central

    2011-01-01

    Background Transcriptional regulation by transcription factor (TF) controls the time and abundance of mRNA transcription. Due to the limitation of current proteomics technologies, large scale measurements of protein level activities of TFs is usually infeasible, making computational reconstruction of transcriptional regulatory network a difficult task. Results We proposed here a novel Bayesian non-negative factor model for TF mediated regulatory networks. Particularly, the non-negative TF activities and sample clustering effect are modeled as the factors from a Dirichlet process mixture of rectified Gaussian distributions, and the sparse regulatory coefficients are modeled as the loadings from a sparse distribution that constrains its sparsity using knowledge from database; meantime, a Gibbs sampling solution was developed to infer the underlying network structure and the unknown TF activities simultaneously. The developed approach has been applied to simulated system and breast cancer gene expression data. Result shows that, the proposed method was able to systematically uncover TF mediated transcriptional regulatory network structure, the regulatory coefficients, the TF protein level activities and the sample clustering effect. The regulation target prediction result is highly coordinated with the prior knowledge, and sample clustering result shows superior performance over previous molecular based clustering method. Conclusions The results demonstrated the validity and effectiveness of the proposed approach in reconstructing transcriptional networks mediated by TFs through simulated systems and real data. PMID:22166063

  9. Control of regional decidualization in implantation: Role of FoxM1 downstream of Hoxa10 and cyclin D3

    PubMed Central

    Gao, Fei; Bian, Fenghua; Ma, Xinghong; Kalinichenko, Vladimir V.; Das, Sanjoy K.

    2015-01-01

    Appropriate regulation of regional uterine stromal cell decidualization in implantation, at the mesometrial triangle and secondary decidual zone (SDZ) locations, is critical for successful pregnancy, although the regulatory mechanisms remain poorly understood. In this regard, the available animal models that would specifically allow mechanistic analysis of site-specific decidualization are strikingly limited. Our study found that heightened expression of FoxM1, a Forkhead box transcription factor, is regulated during decidualization, and its conditional deletion in mice reveals failure of implantation with regional decidualization defects such as a much smaller mesometrial decidua with enlarged SDZ. Analysis of cell cycle progression during decidualization both in vivo and in vitro demonstrates that the loss of FoxM1 elicits diploid cell deficiency with enhanced arrests prior to mitosis and concomitant upregulation of polyploidy. We further showed that Hoxa10 and cyclin D3, two decidual markers, control transcriptional regulation and intra-nuclear protein translocation of FoxM1 in polyploid cells, respectively. Overall, we suggest that proper regional decidualization and polyploidy development requires FoxM1 signaling downstream of Hoxa10 and cyclin D3. PMID:26350477

  10. Transcription Factors in the Cellular Response to Charged Particle Exposure

    PubMed Central

    Hellweg, Christine E.; Spitta, Luis F.; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor’s p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles’ LET, with a maximal activation in the LET range of 90–300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  11. Transcription Factors in the Cellular Response to Charged Particle Exposure.

    PubMed

    Hellweg, Christine E; Spitta, Luis F; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor's p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles' LET, with a maximal activation in the LET range of 90-300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  12. RNA binding specificity of Ebola virus transcription factor VP30.

    PubMed

    Schlereth, Julia; Grünweller, Arnold; Biedenkopf, Nadine; Becker, Stephan; Hartmann, Roland K

    2016-09-01

    The transcription factor VP30 of the non-segmented RNA negative strand Ebola virus balances viral transcription and replication. Here, we comprehensively studied RNA binding by VP30. Using a novel VP30:RNA electrophoretic mobility shift assay, we tested truncated variants of 2 potential natural RNA substrates of VP30 - the genomic Ebola viral 3'-leader region and its complementary antigenomic counterpart (each ∼155 nt in length) - and a series of other non-viral RNAs. Based on oligonucleotide interference, the major VP30 binding region on the genomic 3'-leader substrate was assigned to the internal expanded single-stranded region (∼ nt 125-80). Best binding to VP30 was obtained with ssRNAs of optimally ∼ 40 nt and mixed base composition; underrepresentation of purines or pyrimidines was tolerated, but homopolymeric sequences impaired binding. A stem-loop structure, particularly at the 3'-end or positioned internally, supports stable binding to VP30. In contrast, dsRNA or RNAs exposing large internal loops flanked by entirely helical arms on both sides are not bound. Introduction of a 5´-Cap(0) structure impaired VP30 binding. Also, ssDNAs bind substantially weaker than isosequential ssRNAs and heparin competes with RNA for binding to VP30, indicating that ribose 2'-hydroxyls and electrostatic contacts of the phosphate groups contribute to the formation of VP30:RNA complexes. Our results indicate a rather relaxed RNA binding specificity of filoviral VP30, which largely differs from that of the functionally related transcription factor of the Paramyxoviridae which binds to ssRNAs as short as 13 nt with a preference for oligo(A) sequences. PMID:27315567

  13. Transcription factors that interact with p53 and Mdm2.

    PubMed

    Inoue, Kazushi; Fry, Elizabeth A; Frazier, Donna P

    2016-04-01

    The tumor suppressor p53 is activated upon cellular stresses such as DNA damage, oncogene activation, hypoxia, which transactivates sets of genes that induce DNA repair, cell cycle arrest, apoptosis, or autophagy, playing crucial roles in the prevention of tumor formation. The central regulator of the p53 pathway is Mdm2 which inhibits transcriptional activity, nuclear localization and protein stability. More than 30 cellular p53-binding proteins have been isolated and characterized including Mdm2, Mdm4, p300, BRCA1/2, ATM, ABL and 53BP-1/2. Most of them are nuclear proteins; however, not much is known about p53-binding transcription factors. In this review, we focus on transcription factors that directly interact with p53/Mdm2 through direct binding including Dmp1, E2F1, YB-1 and YY1. Dmp1 and YB-1 bind only to p53 while E2F1 and YY1 bind to both p53 and Mdm2. Dmp1 has been shown to bind to p53 and block all the known functions for Mdm2 on p53 inhibition, providing a secondary mechanism for tumor suppression in Arf-null cells. Although E2F1-p53 binding provides a checkpoint mechanism to silence hyperactive E2F1, YB-1 or YY1 interaction with p53 subverts the activity of p53, contributing to cell cycle progression and tumorigenesis. Thus, the modes and consequences for each protein-protein interaction vary from the viewpoint of tumor development and suppression. PMID:26132471

  14. Combinatorial function of ETS transcription factors in the developing vasculature

    PubMed Central

    Pham, Van N.; Lawson, Nathan D.; Mugford, Joshua W.; Dye, Louis; Castranova, Daniel; Lo, Brigid; Weinstein, Brant M.

    2007-01-01

    Members of the ETS family of transcription factors are among the first genes expressed in the developing vasculature, but loss-of-function experiments for individual ETS factors in mice have not uncovered important early functional roles for these genes. However, multiple ETS factors are expressed in spatially and temporally overlapping patterns in the developing vasculature, suggesting possible functional overlap. We have taken a comprehensive approach to exploring the function of these factors during vascular development by employing the genetic and experimental tools available in the zebrafish to analyze four ETS family members expressed together in the zebrafish vasculature; fli1, fli1b, ets1, and etsrp. We isolated and characterized an ENU-induced mutant with defects in trunk angiogenesis and positionally cloned the defective gene from this mutant, etsrp. Using the etsrp morpholinos targeting each of the four genes, we show that the four ETS factors function combinatorially during vascular and hematopoietic development. Reduction of etsrp or any of the other genes alone results in either partial or no defects in endothelial differentiation, while combined reduction in the function of all four genes causes dramatic loss of endothelial cells. Our results demonstrate that combinatorial ETS factor function is essential for early endothelial specification and differentiation. PMID:17125762

  15. Varying levels of complexity in transcription factor binding motifs

    PubMed Central

    Keilwagen, Jens; Grau, Jan

    2015-01-01

    Binding of transcription factors to DNA is one of the keystones of gene regulation. The existence of statistical dependencies between binding site positions is widely accepted, while their relevance for computational predictions has been debated. Building probabilistic models of binding sites that may capture dependencies is still challenging, since the most successful motif discovery approaches require numerical optimization techniques, which are not suited for selecting dependency structures. To overcome this issue, we propose sparse local inhomogeneous mixture (Slim) models that combine putative dependency structures in a weighted manner allowing for numerical optimization of dependency structure and model parameters simultaneously. We find that Slim models yield a substantially better prediction performance than previous models on genomic context protein binding microarray data sets and on ChIP-seq data sets. To elucidate the reasons for the improved performance, we develop dependency logos, which allow for visual inspection of dependency structures within binding sites. We find that the dependency structures discovered by Slim models are highly diverse and highly transcription factor-specific, which emphasizes the need for flexible dependency models. The observed dependency structures range from broad heterogeneities to sparse dependencies between neighboring and non-neighboring binding site positions. PMID:26116565

  16. Protein interactions of the transcription factor Hoxa1

    PubMed Central

    2012-01-01

    Background Hox proteins are transcription factors involved in crucial processes during animal development. Their mode of action remains scantily documented. While other families of transcription factors, like Smad or Stat, are known cell signaling transducers, such a function has never been squarely addressed for Hox proteins. Results To investigate the mode of action of mammalian Hoxa1, we characterized its interactome by a systematic yeast two-hybrid screening against ~12,200 ORF-derived polypeptides. Fifty nine interactors were identified of which 45 could be confirmed by affinity co-purification in animal cell lines. Many Hoxa1 interactors are proteins involved in cell-signaling transduction, cell adhesion and vesicular trafficking. Forty-one interactions were detectable in live cells by Bimolecular Fluorescence Complementation which revealed distinctive intracellular patterns for these interactions consistent with the selective recruitment of Hoxa1 by subgroups of partner proteins at vesicular, cytoplasmic or nuclear compartments. Conclusions The characterization of the Hoxa1 interactome presented here suggests unexplored roles for Hox proteins in cell-to-cell communication and cell physiology. PMID:23088713

  17. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  18. Modeling the relationship of epigenetic modifications to transcription factor binding

    PubMed Central

    Liu, Liang; Jin, Guangxu; Zhou, Xiaobo

    2015-01-01

    Transcription factors (TFs) and epigenetic modifications play crucial roles in the regulation of gene expression, and correlations between the two types of factors have been discovered. However, methods for quantitatively studying the correlations remain limited. Here, we present a computational approach to systematically investigating how epigenetic changes in chromatin architectures or DNA sequences relate to TF binding. We implemented statistical analyses to illustrate that epigenetic modifications are predictive of TF binding affinities, without the need of sequence information. Intriguingly, by considering genome locations relative to transcription start sites (TSSs) or enhancer midpoints, our analyses show that different locations display various relationship patterns. For instance, H3K4me3, H3k9ac and H3k27ac contribute more in the regions near TSSs, whereas H3K4me1 and H3k79me2 dominate in the regions far from TSSs. DNA methylation plays relatively important roles when close to TSSs than in other regions. In addition, the results show that epigenetic modification models for the predictions of TF binding affinities are cell line-specific. Taken together, our study elucidates highly coordinated, but location- and cell type-specific relationships between epigenetic modifications and binding affinities of TFs. PMID:25820421

  19. Early evolution of the T-box transcription factor family.

    PubMed

    Sebé-Pedrós, Arnau; Ariza-Cosano, Ana; Weirauch, Matthew T; Leininger, Sven; Yang, Ally; Torruella, Guifré; Adamski, Marcin; Adamska, Maja; Hughes, Timothy R; Gómez-Skarmeta, José Luis; Ruiz-Trillo, Iñaki

    2013-10-01

    Developmental transcription factors are key players in animal multicellularity, being members of the T-box family that are among the most important. Until recently, T-box transcription factors were thought to be exclusively present in metazoans. Here, we report the presence of T-box genes in several nonmetazoan lineages, including ichthyosporeans, filastereans, and fungi. Our data confirm that Brachyury is the most ancient member of the T-box family and establish that the T-box family diversified at the onset of Metazoa. Moreover, we demonstrate functional conservation of a homolog of Brachyury of the protist Capsaspora owczarzaki in Xenopus laevis. By comparing the molecular phenotype of C. owczarzaki Brachyury with that of homologs of early branching metazoans, we define a clear difference between unicellular holozoan and metazoan Brachyury homologs, suggesting that the specificity of Brachyury emerged at the origin of Metazoa. Experimental determination of the binding preferences of the C. owczarzaki Brachyury results in a similar motif to that of metazoan Brachyury and other T-box classes. This finding suggests that functional specificity between different T-box classes is likely achieved by interaction with alternative cofactors, as opposed to differences in binding specificity. PMID:24043797

  20. Expression of the transcription factor PITX2 in ameloblastic carcinoma.

    PubMed

    García-Muñoz, Alejandro; Rodríguez, Mario A; Licéaga-Escalera, Carlos; Licéaga-Reyes, Rodrigo; Carreón-Burciaga, Ramón Gil; González-González, Rogelio; Bologna-Molina, Ronell

    2015-06-01

    Ameloblastic carcinoma is a rare odontogenic tumour that combines the histological features of ameloblastoma with cytological atypia. Until 2005, the incidence of ameloblastic carcinoma was unknown, and since then, fewer than 60 cases have been reported. These tumours may originate from pre-existing tumours or cysts, or they arise de novo from the activation or transformation of embryological cells. PITX2 is a transcription factor that is a product and regulator of the WNT cell signalling pathway, which has been involved in development of several tumours. To analyse whether PITX2 could be involved in the biological behaviour of ameloblastic carcinoma, we analysed the expression of this transcription factor in a sample of this tumour and nine benign ameloblastomas to compare. The results of Western blotting and RT-PCR analyses were positive, and considering the hundreds of genes that PITX2 regulates, we believe that its expression could be intimately linked to the behaviour of ameloblastic carcinoma and possibly other odontogenic lesions. PMID:25791324

  1. Induction of apoptosis by the transcription factor c-Jun.

    PubMed Central

    Bossy-Wetzel, E; Bakiri, L; Yaniv, M

    1997-01-01

    c-Jun, a signal-transducing transcription factor of the AP-1 family, normally implicated in cell cycle progression, differentiation and cell transformation, recently has also been linked to apoptosis. To explore further the functional roles of c-Jun, a conditional allele was generated by fusion of c-Jun with the hormone-binding domain of the human estrogen receptor (ER). Here we demonstrate that increased c-Jun activity is sufficient to trigger apoptotic cell death in NIH 3T3 fibroblasts. c-Jun-induced apoptosis is evident at high serum levels, but is enhanced further in factor-deprived fibroblasts. Furthermore, apoptosis by c-Jun is not accompanied by an increase in DNA synthesis. Constitutive overexpression of the apoptosis inhibitor protein Bcl-2 delays the c-Jun-mediated cell death. The regions of c-Jun necessary for apoptosis induction include the amino-terminal transactivation and the carboxy-terminal leucine zipper domain, suggesting that c-Jun may activate cell death by acting as a transcriptional regulator. We further show that alpha-fodrin, a substrate of the interleukin 1beta-converting enzyme (ICE) and CED-3 family of cysteine proteases, becomes proteolytically cleaved in cells undergoing cell death by increased c-Jun activity. Moreover, cell-permeable irreversible peptide inhibitors of the ICE/CED-3 family of cysteine proteases prevented the cell death. PMID:9130714

  2. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

    PubMed

    Naranjo, José R; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C; Arrabal, María D; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-02-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  3. Transcription factor induction of human oligodendrocyte progenitor fate and differentiation.

    PubMed

    Wang, Jing; Pol, Suyog U; Haberman, Alexa K; Wang, Chunming; O'Bara, Melanie A; Sim, Fraser J

    2014-07-15

    Human oligodendrocyte progenitor cell (OPC) specification and differentiation occurs slowly and limits the potential for cell-based treatment of demyelinating disease. In this study, using FACS-based isolation and microarray analysis, we identified a set of transcription factors expressed by human primary CD140a(+)O4(+) OPCs relative to CD133(+)CD140a(-) neural stem/progenitor cells (NPCs). Among these, lentiviral overexpression of transcription factors ASCL1, SOX10, and NKX2.2 in NPCs was sufficient to induce Sox10 enhancer activity, OPC mRNA, and protein expression consistent with OPC fate; however, unlike ASCL1 and NKX2.2, only the transcriptome of SOX10-infected NPCs was induced to a human OPC gene expression signature. Furthermore, only SOX10 promoted oligodendrocyte commitment, and did so at quantitatively equivalent levels to native OPCs. In xenografts of shiverer/rag2 animals, SOX10 increased the rate of mature oligodendrocyte differentiation and axon ensheathment. Thus, SOX10 appears to be the principle and rate-limiting regulator of myelinogenic fate from human NPCs. PMID:24982138

  4. Affinity Purification Strategies for Proteomic Analysis of Transcription Factor Complexes

    PubMed Central

    2013-01-01

    Affinity purification (AP) coupled to mass spectrometry (MS) has been successful in elucidating protein molecular networks of mammalian cells. These approaches have dramatically increased the knowledge of the interconnectivity present among proteins and highlighted biological functions within different protein complexes. Despite significant technical improvements reached in the past years, it is still challenging to identify the interaction networks and the subsequent associated functions of nuclear proteins such as transcription factors (TFs). A straightforward and robust methodology is therefore required to obtain unbiased and reproducible interaction data. Here we present a new approach for TF AP-MS, exemplified with the CCAAT/enhancer binding protein alpha (C/EBPalpha). Utilizing the advantages of a double tag and three different MS strategies, we conducted a total of six independent AP-MS strategies to analyze the protein–protein interactions of C/EBPalpha. The resultant data were combined to produce a cohesive C/EBPalpha interactome. Our study describes a new methodology that robustly identifies specific molecular complexes associated with transcription factors. Moreover, it emphasizes the existence of TFs as protein complexes essential for cellular biological functions and not as single, static entities. PMID:23937658

  5. Transcription factor induction of human oligodendrocyte progenitor fate and differentiation

    PubMed Central

    Wang, Jing; Pol, Suyog U.; Haberman, Alexa K.; Wang, Chunming; O’Bara, Melanie A.; Sim, Fraser J.

    2014-01-01

    Human oligodendrocyte progenitor cell (OPC) specification and differentiation occurs slowly and limits the potential for cell-based treatment of demyelinating disease. In this study, using FACS-based isolation and microarray analysis, we identified a set of transcription factors expressed by human primary CD140a+O4+ OPCs relative to CD133+CD140a− neural stem/progenitor cells (NPCs). Among these, lentiviral overexpression of transcription factors ASCL1, SOX10, and NKX2.2 in NPCs was sufficient to induce Sox10 enhancer activity, OPC mRNA, and protein expression consistent with OPC fate; however, unlike ASCL1 and NKX2.2, only the transcriptome of SOX10-infected NPCs was induced to a human OPC gene expression signature. Furthermore, only SOX10 promoted oligodendrocyte commitment, and did so at quantitatively equivalent levels to native OPCs. In xenografts of shiverer/rag2 animals, SOX10 increased the rate of mature oligodendrocyte differentiation and axon ensheathment. Thus, SOX10 appears to be the principle and rate-limiting regulator of myelinogenic fate from human NPCs. PMID:24982138

  6. The c-Rel Transcription Factor in Development and Disease

    PubMed Central

    Gerondakis, Steve

    2011-01-01

    c-Rel is a member of the nuclear factor κB (NF-κB) transcription factor family. Unlike other NF-κB proteins that are expressed in a variety of cell types, high levels of c-Rel expression are found primarily in B and T cells, with many c-Rel target genes involved in lymphoid cell growth and survival. In addition to c-Rel playing a major role in mammalian B and T cell function, the human c-rel gene (REL) is a susceptibility locus for certain autoimmune diseases such as arthritis, psoriasis, and celiac disease. The REL locus is also frequently altered (amplified, mutated, rearranged), and expression of REL is increased in a variety of B and T cell malignancies and, to a lesser extent, in other cancer types. Thus, agents that modulate REL activity may have therapeutic benefits for certain human cancers and chronic inflammatory diseases. PMID:22207895

  7. The transcription factor Net regulates the angiogenic switch.

    PubMed

    Zheng, Hong; Wasylyk, Christine; Ayadi, Abdelkader; Abecassis, Joseph; Schalken, Jack A; Rogatsch, Hermann; Wernert, Nicolas; Maira, Sauveur-Michel; Multon, Marie-Christine; Wasylyk, Bohdan

    2003-09-15

    Angiogenesis is fundamental to physiological and pathological processes. Despite intensive efforts, little is known about the intracellular circuits that regulate angiogenesis. The transcription factor Net is activated by phosphorylation induced by Ras, an indirect regulator of angiogenesis. Net is expressed at sites of vasculogenesis and angiogenesis during early mouse development, suggesting that it could have a role in blood vessel formation. We show here that down-regulation of Net inhibits angiogenesis and vascular endothelial growth factor (VEGF) expression in vivo, ex vivo, and in vitro. Ras-activated phosphorylated Net (P-Net) stimulates the mouse VEGF promoter through the -80 to -53 region that principally binds Sp1. P-Net and VEGF are coexpressed in angiogenic processes in wild-type mouse tissues and in human tumors. We conclude that Net is a regulator of angiogenesis that can switch to an activator following induction by pro-angiogenic molecules. PMID:12975317

  8. FOXO transcription factors in cancer development and therapy.

    PubMed

    Coomans de Brachène, Alexandra; Demoulin, Jean-Baptiste

    2016-03-01

    The forkhead box O (FOXO) transcription factors are considered as tumor suppressors that limit cell proliferation and induce apoptosis. FOXO gene alterations have been described in a limited number of human cancers, such as rhabdomyosarcoma, leukemia and lymphoma. In addition, FOXO proteins are inactivated by major oncogenic signals such as the phosphatidylinositol-3 kinase pathway and MAP kinases. Their expression is also repressed by micro-RNAs in multiple cancer types. FOXOs are mediators of the tumor response to various therapies. However, paradoxical roles of FOXOs in cancer progression were recently described. FOXOs contribute to the maintenance of leukemia-initiating cells in acute and chronic myeloid leukemia. These factors may also promote invasion and metastasis of subsets of colon and breast cancers. Resistance to treatment was also ascribed to FOXO activation in multiple cases, including targeted therapies. In this review, we discuss the complex role of FOXOs in cancer development and response to therapy. PMID:26686861

  9. Anti-Transcription Factor RNA Aptamers as Potential Therapeutics

    PubMed Central

    Mondragón, Estefanía

    2016-01-01

    Transcription factors (TFs) are DNA-binding proteins that play critical roles in regulating gene expression. These proteins control all major cellular processes, including growth, development, and homeostasis. Because of their pivotal role, cells depend on proper TF function. It is, therefore, not surprising that TF deregulation is linked to disease. The therapeutic drug targeting of TFs has been proposed as a frontier in medicine. RNA aptamers make interesting candidates for TF modulation because of their unique characteristics. The products of in vitro selection, aptamers are short nucleic acids (DNA or RNA) that bind their targets with high affinity and specificity. Aptamers can be expressed on demand from transgenes and are intrinsically amenable to recognition by nucleic acid-binding proteins such as TFs. In this study, we review several natural prokaryotic and eukaryotic examples of RNAs that modulate the activity of TFs. These examples include 5S RNA, 6S RNA, 7SK, hepatitis delta virus-RNA (HDV-RNA), neuron restrictive silencer element (NRSE)-RNA, growth arrest-specific 5 (Gas5), steroid receptor RNA activator (SRA), trophoblast STAT utron (TSU), the 3′ untranslated region of caudal mRNA, and heat shock RNA-1 (HSR1). We then review examples of unnatural RNA aptamers selected to inhibit TFs nuclear factor-kappaB (NF-κB), TATA-binding protein (TBP), heat shock factor 1 (HSF1), and runt-related transcription factor 1 (RUNX1). The field of RNA aptamers for DNA-binding proteins continues to show promise. PMID:26509637

  10. Zinc regulates a key transcriptional pathway for epileptogenesis via metal-regulatory transcription factor 1.

    PubMed

    van Loo, Karen M J; Schaub, Christina; Pitsch, Julika; Kulbida, Rebecca; Opitz, Thoralf; Ekstein, Dana; Dalal, Adam; Urbach, Horst; Beck, Heinz; Yaari, Yoel; Schoch, Susanne; Becker, Albert J

    2015-01-01

    Temporal lobe epilepsy (TLE) is the most common focal seizure disorder in adults. In many patients, transient brain insults, including status epilepticus (SE), are followed by a latent period of epileptogenesis, preceding the emergence of clinical seizures. In experimental animals, transcriptional upregulation of CaV3.2 T-type Ca(2+)-channels, resulting in an increased propensity for burst discharges of hippocampal neurons, is an important trigger for epileptogenesis. Here we provide evidence that the metal-regulatory transcription factor 1 (MTF1) mediates the increase of CaV3.2 mRNA and intrinsic excitability consequent to a rise in intracellular Zn(2+) that is associated with SE. Adeno-associated viral (rAAV) transfer of MTF1 into murine hippocampi leads to increased CaV3.2 mRNA. Conversely, rAAV-mediated expression of a dominant-negative MTF1 abolishes SE-induced CaV3.2 mRNA upregulation and attenuates epileptogenesis. Finally, data from resected human hippocampi surgically treated for pharmacoresistant TLE support the Zn(2+)-MTF1-CaV3.2 cascade, thus providing new vistas for preventing and treating TLE. PMID:26498180

  11. Zinc regulates a key transcriptional pathway for epileptogenesis via metal-regulatory transcription factor 1

    PubMed Central

    van Loo, Karen M. J.; Schaub, Christina; Pitsch, Julika; Kulbida, Rebecca; Opitz, Thoralf; Ekstein, Dana; Dalal, Adam; Urbach, Horst; Beck, Heinz; Yaari, Yoel; Schoch, Susanne; Becker, Albert J.

    2015-01-01

    Temporal lobe epilepsy (TLE) is the most common focal seizure disorder in adults. In many patients, transient brain insults, including status epilepticus (SE), are followed by a latent period of epileptogenesis, preceding the emergence of clinical seizures. In experimental animals, transcriptional upregulation of CaV3.2 T-type Ca2+-channels, resulting in an increased propensity for burst discharges of hippocampal neurons, is an important trigger for epileptogenesis. Here we provide evidence that the metal-regulatory transcription factor 1 (MTF1) mediates the increase of CaV3.2 mRNA and intrinsic excitability consequent to a rise in intracellular Zn2+ that is associated with SE. Adeno-associated viral (rAAV) transfer of MTF1 into murine hippocampi leads to increased CaV3.2 mRNA. Conversely, rAAV-mediated expression of a dominant-negative MTF1 abolishes SE-induced CaV3.2 mRNA upregulation and attenuates epileptogenesis. Finally, data from resected human hippocampi surgically treated for pharmacoresistant TLE support the Zn2+-MTF1-CaV3.2 cascade, thus providing new vistas for preventing and treating TLE. PMID:26498180

  12. Topics in Transcriptional Control of Lipid Metabolism: from Transcription Factors to Gene-Promoter Polymorphisms

    PubMed Central

    Bergen, Werner G.; Burnett, Derris D.

    2013-01-01

    The central dogma of biology (DNA>>RNA>>Protein) has remained as an extremely useful scaffold to guide the study of molecular regulation of cellular metabolism. Molecular regulation of cellular metabolism has been pursued from an individual enzyme to a global assessment of protein function at the genomic (DNA), transcriptomic (RNA) and translation (Protein) levels. Details of a key role by inhibitory small RNAs and post-translational processing of cellular proteins on a whole cell/global basis are now just emerging. Below we emphasize the role of transcription factors (TF) in regulation of adipogenesis and lipogenesis. Additionally we have also focused on emerging additional TF that may also have hitherto unrecognized roles in adipogenesis and lipogenesis as compared to our present understanding. It is generally recognized that SNPs in structural genes can affect the final structure/function of a given protein. The implications of SNPs located in the non-transcribed promoter region on transcription have not been examined as extensively at this time. Here we have also summarized some emerging results on promoter SNPs for lipid metabolism and related cellular processes. PMID:25031651

  13. Applied force provides insight into transcriptional pausing and its modulation by transcription factor NusA

    PubMed Central

    Zhou, Jing; Ha, Kook Sun; Porta, Arthur La; Landick, Robert; Block, Steven M.

    2011-01-01

    Summary Transcriptional pausing by RNA polymerase (RNAP) plays an essential role in gene regulation. Pausing is modified by various elongation factors, including prokaryotic NusA, but the mechanisms underlying pausing and NusA function remain unclear. Alternative models for pausing invoke blockade events that precede translocation (on-pathway), enzyme backtracking (off-pathway), or isomerization to a non-backtracked, elemental pause state (off-pathway). We employed an optical-trapping assay to probe the motions of individual RNAP molecules transcribing a DNA template carrying tandem repeats encoding the his pause, subjecting these enzymes to controlled forces. NusA significantly decreased the pause-free elongation rate of RNAP while increasing the probability of entry into short- and long-lifetime pauses, in a manner equivalent to exerting a ~19 pN force opposing transcription. The effects of force and NusA on pause probabilities and lifetimes support a reaction scheme where non-backtracked, elemental pauses branch off the elongation pathway from the pre-translocated state of RNAP. PMID:22099310

  14. A spring aerial census of red foxes in North Dakota

    USGS Publications Warehouse

    Sargeant, A.B.; Pfeifer, W.K.; Allen, S.H.

    1975-01-01

    Systematic aerial searches were flown on transects to locate adult red foxes (Vulpes vulpes), pups, and rearing dens on 559.4 km2 (six townships) in eastern North Dakota during mid-May and mid-June each year from 1969 through 1973 and during mid-April 1969 and early May 1970. The combined sightings of foxes and fox dens from the mid-May and mid-June searches were used to identify individual fox families. The number of fox families was used as the measurement of density. Dens, highly visible during the mid-May searches, were the most reliable family indicator; 84 percent of 270 families identified during the study were represented by dens. Adult foxes second in importance, were most observable during the mid-May searches when 20 to 35 percent of those estimated to be available were sighted. Adult sightings during other search periods ranged from 4 to 17 percent of those available. Pup sightings were the most variable family indicator, but they led to the discovery of some dens. Sources of error for which adjustment factors were determined are: den moves exceeding criterion established for the spacing of dens in a single family, overestimation of the number of fox families living near township boundaries, and the percentage of fox families overlooked during the aerial searches. These adjustment factors appeared to be largely compensatory.

  15. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.

    PubMed Central

    Forsythe, J A; Jiang, B H; Iyer, N V; Agani, F; Leung, S W; Koos, R D; Semenza, G L

    1996-01-01

    Expression of vascular endothelial growth factor (VEGF) is induced in cells exposed to hypoxia or ischemia. Neovascularization stimulated by VEGF occurs in several important clinical contexts, including myocardial ischemia, retinal disease, and tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix protein that activates transcription of the human erythropoietin gene in hypoxic cells. Here we demonstrate the involvement of HIF-1 in the activation of VEGF transcription. VEGF 5'-flanking sequences mediated transcriptional activation of reporter gene expression in hypoxic Hep3B cells. A 47-bp sequence located 985 to 939 bp 5' to the VEGF transcription initiation site mediated hypoxia-inducible reporter gene expression directed by a simian virus 40 promoter element that was otherwise minimally responsive to hypoxia. When reporters containing VEGF sequences, in the context of the native VEGF or heterologous simian virus 40 promoter, were cotransfected with expression vectors encoding HIF-1alpha and HIF-1beta (ARNT [aryl hydrocarbon receptor nuclear translocator]), reporter gene transcription was much greater in both hypoxic and nonhypoxic cells than in cells transfected with the reporter alone. A HIF-1 binding site was demonstrated in the 47-bp hypoxia response element, and a 3-bp substitution eliminated the ability of the element to bind HIF-1 and to activate transcription in response to hypoxia and/or recombinant HIF-1. Cotransfection of cells with an expression vector encoding a dominant negative form of HIF-1alpha inhibited the activation of reporter transcription in hypoxic cells in a dose-dependent manner. VEGF mRNA was not induced by hypoxia in mutant cells that do not express the HIF-1beta (ARNT) subunit. These findings implicate HIF-1 in the activation of VEGF transcription in hypoxic cells. PMID:8756616

  16. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism1[OPEN

    PubMed Central

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1. PMID:26149570

  17. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism.

    PubMed

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-09-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1. PMID:26149570

  18. USP7 Attenuates Hepatic Gluconeogenesis Through Modulation of FoxO1 Gene Promoter Occupancy

    PubMed Central

    Hall, Jessica A.; Tabata, Mitsuhisa; Rodgers, Joseph T.

    2014-01-01

    Hepatic forkhead protein FoxO1 is a key component of systemic glucose homeostasis via its ability to regulate the transcription of rate-limiting enzymes in gluconeogenesis. Important in the regulation of FoxO1 transcriptional activity are the modifying/demodifying enzymes that lead to posttranslational modification. Here, we demonstrate the functional interaction and regulation of FoxO1 by herpesvirus-associated ubiquitin-specific protease 7 (USP7; also known as herpesvirus-associated ubiquitin-specific protease, HAUSP), a deubiquitinating enzyme. We show that USP7-mediated mono-deubiquitination of FoxO1 results in suppression of FoxO1 transcriptional activity through decreased FoxO1 occupancy on the promoters of gluconeogenic genes. Knockdown of USP7 in primary hepatocytes leads to increased expression of FoxO1-target gluconeogenic genes and elevated glucose production. Consistent with this, USP7 gain-of-function suppresses the fasting/cAMP-induced activation of gluconeogenic genes in hepatocyte cells and in mouse liver, resulting in decreased hepatic glucose production. Notably, we show that the effects of USP7 on hepatic glucose metabolism depend on FoxO1. Together, these results place FoxO1 under the intimate regulation of deubiquitination and glucose metabolic control with important implication in diseases such as diabetes. PMID:24694308

  19. Targeting transcription factors by small compounds-Current strategies and future implications.

    PubMed

    Hagenbuchner, Judith; Ausserlechner, Michael J

    2016-05-01

    Transcription factors are central regulators of gene expression and critically steer development, differentiation and death. Except for ligand-activated nuclear receptors, direct modulation of transcription factor function by small molecules is still widely regarded as "impossible". This "un-druggability" of non-ligand transcription factors is due to the fact that the interacting surface between transcription factor and DNA is huge and subject to significant changes during DNA-binding. Besides some "success studies" with compounds that directly interfere with DNA binding, drug targeting approaches mostly address protein-protein interfaces with essential co-factors, transcription factor dimerization partners, chaperone proteins or proteins that regulate subcellular shuttling. An alternative strategy represent DNA-intercalating, alkylating or DNA-groove-binding compounds that either block transcription factor-binding or change the 3D-conformation of the consensus DNA-strand. Recently, much interest has been focused on chromatin reader proteins that steer the recruitment and activity of transcription factors to a gene transcription start site. Several small compounds demonstrate that these epigenetic reader proteins are exciting new drug targets for inhibiting lineage-specific transcription in cancer therapy. In this research update we will discuss recent advances in targeting transcription factors with small compounds, the challenges that are related to the complex function and regulation of these proteins and also the possible future directions and applications of transcription factor drug targeting. PMID:26686579

  20. The ubiquitous transcription factor CTCF promotes lineage-specific epigenomic remodeling and establishment of transcriptional networks driving cell differentiation

    PubMed Central

    Dubois-Chevalier, Julie; Staels, Bart; Lefebvre, Philippe; Eeckhoute, Jérôme

    2015-01-01

    Cell differentiation relies on tissue-specific transcription factors (TFs) that cooperate to establish unique transcriptomes and phenotypes. However, the role of ubiquitous TFs in these processes remains poorly defined. Recently, we have shown that the CCCTC-binding factor (CTCF) is required for adipocyte differentiation through epigenomic remodelling of adipose tissue-specific enhancers and transcriptional activation of Peroxisome proliferator-activated receptor gamma (PPARG), the main driver of the adipogenic program (PPARG), and its target genes. Here, we discuss how these findings, together with the recent literature, illuminate a functional role for ubiquitous TFs in lineage-determining transcriptional networks. PMID:25565413

  1. The transcription factor NF-E2-related Factor 2 (Nrf2): a protooncogene?

    PubMed Central

    Shelton, Phillip; Jaiswal, Anil K.

    2013-01-01

    The transcription factor Nrf2 is responsible for regulating a battery of antioxidant and cellular protective genes, primarily in response to oxidative stress. A member of the cap 'n' collar family of transcription factors, Nrf2 activation is tightly controlled by a series of signaling events. These events can be separated into the basal state, a preinduction response, gene induction, and finally a postinduction response, culminating in the restoration of redox homeostasis. However, despite the immensely intricate level of control the cellular environment imposes on Nrf2 activity, there are many opportunities for perturbations to arise in the signaling events that favor carcinogenesis and, therefore, implicate Nrf2 as both a tumor suppressor and a protooncogene. Herein, we highlight the ways in which Nrf2 is regulated, and discuss some of the Nrf2-inducible antioxidant (NQO1, NQO2, HO-1, GCLC), antiapoptotic (Bcl-2), metabolic (G6PD, TKT, PPARγ), and drug efflux transporter (ABCG2, MRP3, MRP4) genes. In addition, we focus on how Nrf2 functions as a tumor suppressor under normal conditions and how its ability to detoxify the cellular environment makes it an attractive target for other oncogenes either via stabilization or degradation of the transcription factor. Finally, we discuss some of the ways in which Nrf2 is being considered as a therapeutic target for cancer treatment.—Shelton, P., Jaiswal, A. K. The transcription factor NF-E2-related factor 2 (Nrf2): a protooncogene? PMID:23109674

  2. Recruitment of FoxP2-expressing neurons to area X varies during song development.

    PubMed

    Rochefort, Christelle; He, Xiaolu; Scotto-Lomassese, Sophie; Scharff, Constance

    2007-05-01

    In adult songbirds, neural progenitors proliferate along the lateral ventricles. After migration, many of the subsequently formed neuroblasts integrate into the song nuclei HVC and Area X that participate in auditory-guided vocal motor learning and singing. Recruitment of postembryonically generated neurons into HVC, rodent hippocampus, and olfactory bulb has been linked to learning and memory. The cellular identity and the role of postembryonically generated neurons in Area X are unknown. Here we describe that the majority of new neurons in postembryonic Area X of male zebra finches expressed DARPP32 but not choline acetyltransferase or parvalbumin. This suggests that they are spiny neurons. Retrogradely labeled neurons projecting to thalamic nucleus DLM were not renewed. The spiny neurons in Area X were recently shown to express FoxP2, a transcription factor critical for normal speech and language development in humans. Since increased FoxP2 mRNA expression was previously observed during periods of vocal plasticity we investigated whether this increase might be associated with neuronal recruitment. Consistent with their spiny phenotype, new neurons in Area X did express FoxP2 and recruitment increased transiently during the juvenile song learning period. Moreover we found that FoxP2 was expressed in the ventricular zone of adult songbirds but was absent from the germinal zones in adult mouse brains, the hippocampus, and the subventricular zone. Together these results raise the possibility that neuronal recruitment and FoxP2 expression in Area X are associated with vocal learning. PMID:17443826

  3. Reliable prediction of transcription factor binding sites by phylogenetic verification.

    PubMed

    Li, Xiaoman; Zhong, Sheng; Wong, Wing H

    2005-11-22

    We present a statistical methodology that largely improves the accuracy in computational predictions of transcription factor (TF) binding sites in eukaryote genomes. This method models the cross-species conservation of binding sites without relying on accurate sequence alignment. It can be coupled with any motif-finding algorithm that searches for overrepresented sequence motifs in individual species and can increase the accuracy of the coupled motif-finding algorithm. Because this method is capable of accurately detecting TF binding sites, it also enhances our ability to predict the cis-regulatory modules. We applied this method on the published chromatin immunoprecipitation (ChIP)-chip data in Saccharomyces cerevisiae and found that its sensitivity and specificity are 9% and 14% higher than those of two recent methods. We also recovered almost all of the previously verified TF binding sites and made predictions on the cis-regulatory elements that govern the tight regulation of ribosomal protein genes in 13 eukaryote species (2 plants, 4 yeasts, 2 worms, 2 insects, and 3 mammals). These results give insights to the transcriptional regulation in eukaryotic organisms. PMID:16286651

  4. Determination of specificity influencing residues for key transcription factor families

    PubMed Central

    Patel, Ronak Y.; Garde, Christian; D.Stormo, Gary

    2015-01-01

    Transcription factors (TFs) are major modulators of transcription and subsequent cellular processes. The binding of TFs to specific regulatory elements is governed by their specificity. Considering the gap between known TFs sequence and specificity, specificity prediction frameworks are highly desired. Key inputs to such frameworks are protein residues that modulate the specificity of TF under consideration. Simple measures like mutual information (MI) to delineate specificity influencing residues (SIRs) from alignment fail due to structural constraints imposed by the three-dimensional structure of protein. Structural restraints on the evolution of the amino-acid sequence lead to identification of false SIRs. In this manuscript we extended three methods (Direct Information, PSICOV and adjusted mutual information) that have been used to disentangle spurious indirect protein residue-residue contacts from direct contacts, to identify SIRs from joint alignments of amino-acids and specificity. We predicted SIRs forhomeodomain (HD), helix-loop-helix, LacI and GntR families of TFs using these methods and compared to MI. Using various measures, we show that the performance of these three methods is comparable but better than MI. Implication of these methods in specificity prediction framework is discussed. The methods are implemented as an R package and available along with the alignments at stormo.wustl.edu/SpecPred. PMID:26753103

  5. The effects of cytosine methylation on general transcription factors

    PubMed Central

    Jin, Jianshi; Lian, Tengfei; Gu, Chan; Yu, Kai; Gao, Yi Qin; Su, Xiao-Dong

    2016-01-01

    DNA methylation on CpG sites is the most common epigenetic modification. Recently, methylation in a non-CpG context was found to occur widely on genomic DNA. Moreover, methylation of non-CpG sites is a highly controlled process, and its level may vary during cellular development. To study non-CpG methylation effects on DNA/protein interactions, we have chosen three human transcription factors (TFs): glucocorticoid receptor (GR), brain and muscle ARNT-like 1 (BMAL1) - circadian locomotor output cycles kaput (CLOCK) and estrogen receptor (ER) with methylated or unmethylated DNA binding sequences, using single-molecule and isothermal titration calorimetry assays. The results demonstrated that these TFs interact with methylated DNA with different effects compared with their cognate DNA sequences. The effects of non-CpG methylation on transcriptional regulation were validated by cell-based luciferase assay at protein level. The mechanisms of non-CpG methylation influencing DNA-protein interactions were investigated by crystallographic analyses and molecular dynamics simulation. With BisChIP-seq assays in HEK-293T cells, we found that GR can recognize highly methylated sites within chromatin in cells. Therefore, we conclude that non-CpG methylation of DNA can provide a mechanism for regulating gene expression through directly affecting the binding of TFs. PMID:27385050

  6. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans

    PubMed Central

    Jung, Kwang-Woo; Yang, Dong-Hoon; Maeng, Shinae; Lee, Kyung-Tae; So, Yee-Seul; Hong, Joohyeon; Choi, Jaeyoung; Byun, Hyo-Jeong; Kim, Hyelim; Bang, Soohyun; Song, Min-Hee; Lee, Jang-Won; Kim, Min Su; Kim, Seo-Young; Ji, Je-Hyun; Park, Goun; Kwon, Hyojeong; Cha, Suyeon; Meyers, Gena Lee; Wang, Li Li; Jang, Jooyoung; Janbon, Guilhem; Adedoyin, Gloria; Kim, Taeyup; Averette, Anna K.; Heitman, Joseph; Cheong, Eunji; Lee, Yong-Hwan; Lee, Yin-Won; Bahn, Yong-Sun

    2015-01-01

    Cryptococcus neoformans causes life-threatening meningoencephalitis in humans, but its overall biological and pathogenic regulatory circuits remain elusive, particularly due to the presence of an evolutionarily divergent set of transcription factors (TFs). Here, we report the construction of a high-quality library of 322 signature-tagged gene-deletion strains for 155 putative TF genes previously predicted using the DNA-binding domain TF database, and examine their in vitro and in vivo phenotypic traits under 32 distinct growth conditions. At least one phenotypic trait is exhibited by 145 out of 155 TF mutants (93%) and ∼85% of them (132/155) are functionally characterized for the first time in this study. The genotypic and phenotypic data for each TF are available in the C. neoformans TF phenome database (http://tf.cryptococcus.org). In conclusion, our phenome-based functional analysis of the C. neoformans TF mutant library provides key insights into transcriptional networks of basidiomycetous fungi and human fungal pathogens. PMID:25849373

  7. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants

    PubMed Central

    Phukan, Ujjal J.; Jeena, Gajendra S.; Shukla, Rakesh K.

    2016-01-01

    Plants in their natural habitat have to face multiple stresses simultaneously. Evolutionary adaptation of developmental, physiological, and biochemical parameters give advantage over a single window of stress but not multiple. On the other hand transcription factors like WRKY can regulate diverse responses through a complicated network of genes. So molecular orchestration of WRKYs in plant may provide the most anticipated outcome of simultaneous multiple responses. Activation or repression through W-box and W-box like sequences is regulated at transcriptional, translational, and domain level. Because of the tight regulation involved in specific recognition and binding of WRKYs to downstream promoters, they have become promising candidate for crop improvement. Epigenetic, retrograde and proteasome mediated regulation enable WRKYs to attain the dynamic cellular homeostatic reprograming. Overexpression of several WRKYs face the paradox of having several beneficial affects but with some unwanted traits. These overexpression-associated undesirable phenotypes need to be identified and removed for proper growth, development and yeild. Taken together, we have highlighted the diverse regulation and multiple stress response of WRKYs in plants along with the future prospects in this field of research. PMID:27375634

  8. A WRKY Transcription Factor Regulates Fe Translocation under Fe Deficiency.

    PubMed

    Yan, Jing Ying; Li, Chun Xiao; Sun, Li; Ren, Jiang Yuan; Li, Gui Xin; Ding, Zhong Jie; Zheng, Shao Jian

    2016-07-01

    Iron (Fe) deficiency affects plant growth and development, leading to reduction of crop yields and quality. Although the regulation of Fe uptake under Fe deficiency has been well studied in the past decade, the regulatory mechanism of Fe translocation inside the plants remains unknown. Here, we show that a WRKY transcription factor WRKY46 is involved in response to Fe deficiency. Lack of WRKY46 (wrky46-1 and wrky46-2 loss-of-function mutants) significantly affects Fe translocation from root to shoot and thus causes obvious chlorosis on the new leaves under Fe deficiency. Gene expression analysis reveals that expression of a nodulin-like gene (VACUOLAR IRON TRANSPORTER1-LIKE1 [VITL1]) is dramatically increased in wrky46-1 mutant. VITL1 expression is inhibited by Fe deficiency, while the expression of WRKY46 is induced in the root stele. Moreover, down-regulation of VITL1 expression can restore the chlorosis phenotype on wrky46-1 under Fe deficiency. Further yeast one-hybrid and chromatin immunoprecipitation experiments indicate that WRKY46 is capable of binding to the specific W-boxes present in the VITL1 promoter. In summary, our results demonstrate that WRKY46 plays an important role in the control of root-to-shoot Fe translocation under Fe deficiency condition via direct regulation of VITL1 transcript levels. PMID:27208259

  9. The effects of cytosine methylation on general transcription factors.

    PubMed

    Jin, Jianshi; Lian, Tengfei; Gu, Chan; Yu, Kai; Gao, Yi Qin; Su, Xiao-Dong

    2016-01-01

    DNA methylation on CpG sites is the most common epigenetic modification. Recently, methylation in a non-CpG context was found to occur widely on genomic DNA. Moreover, methylation of non-CpG sites is a highly controlled process, and its level may vary during cellular development. To study non-CpG methylation effects on DNA/protein interactions, we have chosen three human transcription factors (TFs): glucocorticoid receptor (GR), brain and muscle ARNT-like 1 (BMAL1) - circadian locomotor output cycles kaput (CLOCK) and estrogen receptor (ER) with methylated or unmethylated DNA binding sequences, using single-molecule and isothermal titration calorimetry assays. The results demonstrated that these TFs interact with methylated DNA with different effects compared with their cognate DNA sequences. The effects of non-CpG methylation on transcriptional regulation were validated by cell-based luciferase assay at protein level. The mechanisms of non-CpG methylation influencing DNA-protein interactions were investigated by crystallographic analyses and molecular dynamics simulation. With BisChIP-seq assays in HEK-293T cells, we found that GR can recognize highly methylated sites within chromatin in cells. Therefore, we conclude that non-CpG methylation of DNA can provide a mechanism for regulating gene expression through directly affecting the binding of TFs. PMID:27385050

  10. Variable Glutamine-Rich Repeats Modulate Transcription Factor Activity

    PubMed Central

    Gemayel, Rita; Chavali, Sreenivas; Pougach, Ksenia; Legendre, Matthieu; Zhu, Bo; Boeynaems, Steven; van der Zande, Elisa; Gevaert, Kris; Rousseau, Frederic; Schymkowitz, Joost; Babu, M. Madan; Verstrepen, Kevin J.

    2015-01-01

    Summary Excessive expansions of glutamine (Q)-rich repeats in various human proteins are known to result in severe neurodegenerative disorders such as Huntington’s disease and several ataxias. However, the physiological role of these repeats and the consequences of more moderate repeat variation remain unknown. Here, we demonstrate that Q-rich domains are highly enriched in eukaryotic transcription factors where they act as functional modulators. Incremental changes in the number of repeats in the yeast transcriptional regulator Ssn6 (Cyc8) result in systematic, repeat-length-dependent variation in expression of target genes that result in direct phenotypic changes. The function of Ssn6 increases with its repeat number until a certain threshold where further expansion leads to aggregation. Quantitative proteomic analysis reveals that the Ssn6 repeats affect its solubility and interactions with Tup1 and other regulators. Thus, Q-rich repeats are dynamic functional domains that modulate a regulator’s innate function, with the inherent risk of pathogenic repeat expansions. PMID:26257283

  11. Xenopus transcription factor IIIA-dependent DNA renaturation.

    PubMed

    Fiser-Littell, R M; Hanas, J S

    1988-11-15

    Kinetic and titration analyses are used to elucidate the mechanism by which Xenopus transcription factor IIIA (TFIIIA), a protein required for 5 S RNA synthesis by RNA polymerase III, promotes DNA renaturation. TFIIIA promotes 50% renaturation of complementary strands (303 bases) in 45 s. Analyses of the renaturation kinetics indicate the rate-limiting step in this TFIIIA-dependent reaction is first order. TFIIIA-dependent DNA renaturation is a stoichiometric rather than a catalytic process. The renaturation rates for specific and nonspecific DNA are very similar, indicating lack of sequence specificity in this TFIIIA-dependent process. In the nanomolar concentration range of protein and DNA, renaturation occurs at a ratio of about one TFIIIA molecule/single strand (303 bases). Elevated reaction temperatures strongly stimulate TFIIIA-dependent DNA renaturation; at 45 degrees C, renaturation of the 303-base pair fragment nears completion in about 5 s. The ability of TFIIIA to rapidly promote DNA renaturation is unique when compared with Escherichia coli recA protein, single-stranded DNA binding protein, or bacteriophage T4 gene 32 protein. This mechanism by which TFIIIA promotes DNA renaturation is compatible with features of 5 S RNA gene transcription. PMID:2460459

  12. RFX transcription factors are essential for hearing in mice

    PubMed Central

    Elkon, Ran; Milon, Beatrice; Morrison, Laura; Shah, Manan; Vijayakumar, Sarath; Racherla, Manoj; Leitch, Carmen C.; Silipino, Lorna; Hadi, Shadan; Weiss-Gayet, Michèle; Barras, Emmanuèle; Schmid, Christoph D.; Ait-Lounis, Aouatef; Barnes, Ashley; Song, Yang; Eisenman, David J.; Eliyahu, Efrat; Frolenkov, Gregory I.; Strome, Scott E.; Durand, Bénédicte; Zaghloul, Norann A.; Jones, Sherri M.; Reith, Walter; Hertzano, Ronna

    2015-01-01

    Sensorineural hearing loss is a common and currently irreversible disorder, because mammalian hair cells (HCs) do not regenerate and current stem cell and gene delivery protocols result only in immature HC-like cells. Importantly, although the transcriptional regulators of embryonic HC development have been described, little is known about the postnatal regulators of maturating HCs. Here we apply a cell type-specific functional genomic analysis to the transcriptomes of auditory and vestibular sensory epithelia from early postnatal mice. We identify RFX transcription factors as essential and evolutionarily conserved regulators of the HC-specific transcriptomes, and detect Rfx1,2,3,5 and 7 in the developing HCs. To understand the role of RFX in hearing, we generate Rfx1/3 conditional knockout mice. We show that these mice are deaf secondary to rapid loss of initially well-formed outer HCs. These data identify an essential role for RFX in hearing and survival of the terminally differentiating outer HCs. PMID:26469318

  13. The roles of mitochondrial transcription termination factors (MTERFs) in plants.

    PubMed

    Quesada, Víctor

    2016-07-01

    Stress such as salinity, cold, heat or drought affect plant growth and development, and frequently result in diminished productivity. Unlike animals, plants are sedentary organisms that must withstand and cope with environmental stresses. During evolution, plants have developed strategies to successfully adapt to or tolerate such stresses, which might have led to the expansion and functional diversification of gene families. Some new genes may have acquired functions that could differ from those of their animal homologues, e.g. in response to abiotic stress. The mitochondrial transcription termination factor (MTERF) family could be a good example of this. Originally identified and characterized in metazoans, MTERFs regulate transcription, translation and DNA replication in vertebrate mitochondria. Plant genomes harbor a considerably larger number of MTERFs than animals. Nonetheless, only eight plant MTERFs have been characterized, which encode chloroplast or mitochondrial proteins. Mutations in MTERFs alter the expression of organelle genes and impair chloroplast or mitochondria development. This information is transmitted to the nucleus, probably through retrograde signaling, because mterf plants often exhibit changes in nuclear gene expression. This study summarizes the recent findings, mainly from the analysis of mterf mutants, which support an emerging role for plant MTERFs in response to abiotic stress. PMID:26781919

  14. The effects of cytosine methylation on general transcription factors

    NASA Astrophysics Data System (ADS)

    Jin, Jianshi; Lian, Tengfei; Gu, Chan; Yu, Kai; Gao, Yi Qin; Su, Xiao-Dong

    2016-07-01

    DNA methylation on CpG sites is the most common epigenetic modification. Recently, methylation in a non-CpG context was found to occur widely on genomic DNA. Moreover, methylation of non-CpG sites is a highly controlled process, and its level may vary during cellular development. To study non-CpG methylation effects on DNA/protein interactions, we have chosen three human transcription factors (TFs): glucocorticoid receptor (GR), brain and muscle ARNT-like 1 (BMAL1) - circadian locomotor output cycles kaput (CLOCK) and estrogen receptor (ER) with methylated or unmethylated DNA binding sequences, using single-molecule and isothermal titration calorimetry assays. The results demonstrated that these TFs interact with methylated DNA with different effects compared with their cognate DNA sequences. The effects of non-CpG methylation on transcriptional regulation were validated by cell-based luciferase assay at protein level. The mechanisms of non-CpG methylation influencing DNA-protein interactions were investigated by crystallographic analyses and molecular dynamics simulation. With BisChIP-seq assays in HEK-293T cells, we found that GR can recognize highly methylated sites within chromatin in cells. Therefore, we conclude that non-CpG methylation of DNA can provide a mechanism for regulating gene expression through directly affecting the binding of TFs.

  15. Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes.

    PubMed Central

    Kassavetis, G A; Riggs, D L; Negri, R; Nguyen, L H; Geiduschek, E P

    1989-01-01

    Transcription complexes that assemble on tRNA genes in a crude Saccharomyces cerevisiae cell extract extend over the entire transcription unit and approximately 40 base pairs of contiguous 5'-flanking DNA. We show here that the interaction with 5'-flanking DNA is due to a protein that copurifies with transcription factor TFIIIB through several steps of purification and shares characteristic properties that are normally ascribed to TFIIIB: dependence on prior binding of TFIIIC and great stability once the TFIIIC-TFIIIB-DNA complex is formed. SUP4 gene (tRNATyr) DNA that was cut within the 5'-flanking sequence (either 31 or 28 base pairs upstream of the transcriptional start site) was no longer able to stably incorporate TFIIIB into a transcription complex. The TFIIIB-dependent 5'-flanking DNA protein interaction was predominantly not sequence specific. The extension of the transcription complex into this DNA segment does suggest two possible explanations for highly diverse effects of flanking-sequence substitutions on tRNA gene transcription: either (i) proteins that are capable of binding to these upstream DNA segments are also potentially capable of stimulating or interfering with the incorporation of TFIIIB into transcription complexes or (ii) 5'-flanking sequence influences the rate of assembly of TFIIIB into stable transcription complexes. Images PMID:2668737

  16. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites

    PubMed Central

    Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong

    2015-01-01

    Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5–20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation. PMID:26425553

  17. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    PubMed

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. PMID:26876016

  18. Engineering an allosteric transcription factor to respond to new ligands

    PubMed Central

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-01-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol or sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits. PMID:26689263

  19. Engineering an allosteric transcription factor to respond to new ligands.

    PubMed

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-02-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits. PMID:26689263

  20. Exploration of nucleosome positioning patterns in transcription factor function

    PubMed Central

    Maehara, Kazumitsu; Ohkawa, Yasuyuki

    2016-01-01

    The binding of transcription factors (TFs) triggers activation of specific chromatin regions through the recruitment and activation of RNA polymerase. Unique nucleosome positioning (NP) occurs during gene expression and has been suggested to be involved in various other chromatin functions. However, the diversity of NP that can occur for each function has not been clarified. Here we used MNase-Seq data to evaluate NP around 258 cis-regulatory elements in the mouse genome. Principal component analysis of the 258 elements revealed that NP consisted of five major patterns. Furthermore, the five NP patterns had predictive power for the level of gene expression. We also demonstrated that selective NP patterns appeared around TF binding sites. These results suggest that the NP patterns are correlated to specific functions on chromatin. PMID:26790608

  1. Roles of Iroquois Transcription Factors in Kidney Development

    PubMed Central

    Marra, Amanda N.; Wingert, Rebecca A.

    2014-01-01

    Congenital anomalies of the kidney and urinary tract (CAKUT) affect 1/500 live births. CAKUT lead to end stage renal failure in children, and are associated with high morbidity rates. Understanding the mechanisms of kidney development, and that of other associated urogenital tissues, is crucial to the prevention and treatment of CAKUT. The kidney arises from self-renewing mesenchymal renal stem cells that produce nephrons, which are the principal functional units of the organ. To date, the genetic and cellular mechanisms that control nephrogenesis have remained poorly understood. In recent years, developmental studies using amphibians and zebrafish have revealed that their simple embryonic kidney, known as the pronephros, is a useful paradigm for comparative studies of nephron ontogeny. Here, we discuss the new found roles for Iroquois transcription factors in pronephric nephron patterning, and explore the relevance of these findings for kidney development in humans. PMID:24855634

  2. Evaluation of methods for modeling transcription-factor sequence specificity

    PubMed Central

    Weirauch, Matthew T.; Cote, Atina; Norel, Raquel; Annala, Matti; Zhao, Yue; Riley, Todd R.; Saez-Rodriguez, Julio; Cokelaer, Thomas; Vedenko, Anastasia; Talukder, Shaheynoor; Bussemaker, Harmen J.; Morris, Quaid D.; Bulyk, Martha L.; Stolovitzky, Gustavo

    2013-01-01

    Genomic analyses often involve scanning for potential transcription-factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein’s binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For 9 TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro–derived motifs performed similarly to motifs derived from in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices learned by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10%). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences. PMID:23354101

  3. Werner syndrome protein positively regulates XRCC4-like factor transcription

    PubMed Central

    LIU, DONGYUN; DENG, XIAOLI; YUAN, CHONGZHEN; CHEN, LIN; CONG, YUSHENG; XU, XINGZHI

    2014-01-01

    XRCC4-like factor (XLF) is involved in non-homologous end joining-mediated repair of DNA double-strand breaks (DSBs). Mutations in the WRN gene results in the development of Werner syndrome (WS), a rare autosomal recessive disorder characterized by premature ageing and genome instability. In the present study, it was identified that XLF protein levels were lower in WRN-deficient fibroblasts, compared with normal fibroblasts. Depletion of WRN in HeLa cells led to a decrease of XLF mRNA and its promoter activity. Chromatin immunoprecipitation assays demonstrated that WRN was associated with the XLF promoter. Depletion of XLF in normal human fibroblasts increased the percentage of β-galactosidase (β-gal) staining-positive cells, indicating acceleration in cellular senescence. Taken together, the results suggest that XLF is a transcriptional target of WRN and may be involved in the regulation of cellular senescence. PMID:24626809

  4. ASR1 transcription factor and its role in metabolism.

    PubMed

    Dominguez, Pia Guadalupe; Carrari, Fernando

    2015-01-01

    Asr1 (ABA, stress, ripening) is a plant gene widely distributed in many species which was discovered by differential induction levels in tomato plants subjected to drought stress conditions. ASR1 also regulates the expression of a hexose transporter in grape and is involved in sugar and amino acid accumulation in some species like maize and potato. The control that ASR1 exerts on hexose transport is interesting from a biotechnological perspective because both sugar partitioning and content in specific organs affect the yield and the quality of many agronomically important crops. ASR1 affect plant metabolism by its dual activity as a transcription factor and as a chaperone-like protein. In this paper, we review possible mechanisms by which ASR1 affects metabolism, the differences observed among tissues and species, and the possible physiological implications of its role in metabolism. PMID:25794140

  5. ASR1 transcription factor and its role in metabolism

    PubMed Central

    Dominguez, Pia Guadalupe; Carrari, Fernando

    2015-01-01

    Asr1 (ABA, stress, ripening) is a plant gene widely distributed in many species which was discovered by differential induction levels in tomato plants subjected to drought stress conditions. ASR1 also regulates the expression of a hexose transporter in grape and is involved in sugar and amino acid accumulation in some species like maize and potato. The control that ASR1 exerts on hexose transport is interesting from a biotechnological perspective because both sugar partitioning and content in specific organs affect the yield and the quality of many agronomically important crops. ASR1 affect plant metabolism by its dual activity as a transcription factor and as a chaperone-like protein. In this paper, we review possible mechanisms by which ASR1 affects metabolism, the differences observed among tissues and species, and the possible physiological implications of its role in metabolism. PMID:25794140

  6. Tunable signal processing through modular control of transcription factor translocation

    PubMed Central

    Hao, Nan; Budnik, Bogdan A.; Gunawardena, Jeremy; O’Shea, Erin K.

    2013-01-01

    Signaling pathways can induce different dynamics of transcription factor (TF) activation. We explored how TFs process signaling inputs to generate diverse dynamic responses. The budding yeast general stress responsive TF Msn2 acted as a tunable signal processor that could track, filter, or integrate signals in an input dependent manner. This tunable signal processing appears to originate from dual regulation of both nuclear import and export by phosphorylation, as mutants with one form of regulation sustained only one signal processing function. Versatile signal processing by Msn2 is crucial for generating distinct dynamic responses to different natural stresses. Our findings reveal how complex signal processing functions are integrated into a single molecule and provide a guide for the design of TFs with “programmable” signal processing functions. PMID:23349292

  7. The Regulatory Role of Activating Transcription Factor 2 in Inflammation

    PubMed Central

    Yu, Tao; Li, Yong Jun; Bian, Ai Hong; Zuo, Hui Bin; Zhu, Ti Wen; Ji, Sheng Xiang; Kong, Fanming; Yin, De Qing; Wang, Chuan Bao; Wang, Zi Fu; Wang, Hong Qun; Yang, Yanyan; Yoo, Byong Chul

    2014-01-01

    Activating transcription factor 2 (ATF2) is a member of the leucine zipper family of DNA-binding proteins and is widely distributed in tissues including the liver, lung, spleen, and kidney. Like c-Jun and c-Fos, ATF2 responds to stress-related stimuli and may thereby influence cell proliferation, inflammation, apoptosis, oncogenesis, neurological development and function, and skeletal remodeling. Recent studies clarify the regulatory role of ATF2 in inflammation and describe potential inhibitors of this protein. In this paper, we summarize the properties and functions of ATF2 and explore potential applications of ATF2 inhibitors as tools for research and for the development of immunosuppressive and anti-inflammatory drugs. PMID:25049453

  8. Dispersal patterns of red foxes relative to population density

    USGS Publications Warehouse

    Allen, S.H.; Sargeant, A.B.

    1993-01-01

    Factors affecting red fox (Vulpes vulpes) dispersal patterns are poorly understood but warranted investigation because of the role of dispersal in rebuilding depleted populations and transmission of diseases. We examined dispersal patterns of red foxes in North Dakota based on recoveries of 363 of 854 foxes tagged as pups and relative to fox density. Foxes were recovered up to 8.6 years after tagging; 79% were trapped or shot. Straight-line distances between tagging and recovery locations ranged from 0 to 302 km. Mean recovery distances increased with age and were greater for males than females, but longest individual recovery distances were by females. Dispersal distances were not related to population density for males (P = 0.36) or females (P = 0.96). The proportion of males recovered that dispersed was inversely related to population density (r = -0.94; n = 5; P = 0.02), but not the proportion of females (r = -0.49; n = 5; P = 0.40). Dispersal directions were not uniform for either males (P = 0.003) or females (P = 0.006); littermates tended to disperse in similar directions (P = 0.09). A 4-lane interstate highway altered dispersal directions (P = 0.001). Dispersal is a strong innate behavior of red foxes (especially males) that results in many individuals of both sexes traveling far from natal areas. Because dispersal distance was unaffected by fox density, populations can be rebuilt and diseases transmitted long distances regardless of fox abundance.

  9. Chemotherapy resistance and metastasis-promoting effects of thyroid hormone in hepatocarcinoma cells are mediated by suppression of FoxO1 and Bim pathway.

    PubMed

    Chi, Hsiang-Cheng; Chen, Shen-Liang; Cheng, Yi-Hung; Lin, Tzu-Kang; Tsai, Chung-Ying; Tsai, Ming-Ming; Lin, Yang-Hsiang; Huang, Ya-Hui; Lin, Kwang-Huei

    2016-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, and systemic chemotherapy is the major treatment strategy for late-stage HCC patients. Poor prognosis following chemotherapy is the general outcome owing to recurrent resistance. Recent studies have suggested that in addition to cytotoxic effects on tumor cells, chemotherapy can induce an alternative cascade that supports tumor growth and metastasis. In the present investigation, we showed that thyroid hormone (TH), a potent hormone-mediating cellular differentiation and metabolism, acts as an antiapoptosis factor upon challenge of thyroid hormone receptor (TR)-expressing HCC cells with cancer therapy drugs, including cisplatin, doxorubicin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TH/TR signaling promoted chemotherapy resistance through negatively regulating the pro-apoptotic protein, Bim, resulting in doxorubicin-induced metastasis of chemotherapy-resistant HCC cells. Ectopic expression of Bim in hepatoma cells challenged with chemotherapeutic drugs abolished TH/TR-triggered apoptosis resistance and metastasis. Furthermore, Bim expression was directly transactivated by Forkhead box protein O1 (FoxO1), which was negatively regulated by TH/TR. TH/TR suppressed FoxO1 activity through both transcriptional downregulation and nuclear exclusion of FoxO1 triggered by Akt-mediated phosphorylation. Ectopic expression of the constitutively active FoxO1 mutant, FoxO1-AAA, but not FoxO1-wt, diminished the suppressive effect of TH/TR on Bim. Our findings collectively suggest that expression of Bim is mediated by FoxO1 and indirectly downregulated by TH/TR, leading to chemotherapy resistance and doxorubicin-promoted metastasis of hepatoma cells. PMID:27490929

  10. The transcription factor GATA-6 regulates pathological cardiac hypertrophy

    PubMed Central

    van Berlo, Jop H.; Elrod, John W.; van den Hoogenhof, Maarten M.G.; York, Allen J.; Aronow, Bruce J.; Duncan, Stephen A.; Molkentin, Jeffery D.

    2010-01-01

    Rationale The transcriptional code that programs maladaptive cardiac hypertrophy involves the zinc finger-containing DNA binding factor GATA-4. The highly related transcription factor GATA-6 is also expressed in the adult heart, although its role in controlling the hypertrophic program is unknown. Objective To determine the role of GATA-6 in cardiac hypertrophy and homeostasis. Methods and Results Here we performed a cardiomyocyte-specific conditional gene targeting approach for Gata6, as well as a transgenic approach to overexpress GATA-6 in the mouse heart. Deletion of Gata6-loxP with Nkx2.5-cre produced late embryonic lethality with heart defects, while deletion with β-myosin heavy chain-cre (βMHC-cre) produced viable adults with greater than 95% loss of GATA-6 protein in the heart. These later mice were subjected to pressure overload induced hypertrophy for 2 and 6 weeks, which showed a significant reduction in cardiac hypertrophy similar to that observed Gata4 heart-specific deleted mice. Gata6-deleted mice subjected to pressure overload also developed heart failure while control mice maintained proper cardiac function. Gata6-deleted mice also developed less cardiac hypertrophy following 2 weeks of angiotensin II/phenylephrine infusion. Controlled GATA-6 overexpression in the heart induced hypertrophy with aging and predisposed to greater hypertrophy with pressure overload stimulation. Combinatorial deletion of Gata4 and Gata6 from the adult heart resulted in dilated cardiomyopathy and lethality by 16 weeks of age. Mechanistically, deletion of Gata6 from the heart resulted in fundamental changes in the levels of key regulatory genes and myocyte differentiation-specific genes. Conclusions These results indicate that GATA-6 is both necessary and sufficient for regulating the cardiac hypertrophic response and differentiated gene expression, both alone and in coordination with GATA-4. PMID:20705924

  11. Identifying differential transcription factor binding in ChIP-seq

    PubMed Central

    Wu, Dai-Ying; Bittencourt, Danielle; Stallcup, Michael R.; Siegmund, Kimberly D.

    2015-01-01

    ChIP seq is a widely used assay to measure genome-wide protein binding. The decrease in costs associated with sequencing has led to a rise in the number of studies that investigate protein binding across treatment conditions or cell lines. In addition to the identification of binding sites, new studies evaluate the variation in protein binding between conditions. A number of approaches to study differential transcription factor binding have recently been developed. Several of these methods build upon established methods from RNA-seq to quantify differences in read counts. We compare how these new approaches perform on different data sets from the ENCODE project to illustrate the impact of data processing pipelines under different study designs. The performance of normalization methods for differential ChIP-seq depends strongly on the variation in total amount of protein bound between conditions, with total read count outperforming effective library size, or variants thereof, when a large variation in binding was studied. Use of input subtraction to correct for non-specific binding showed a relatively modest impact on the number of differential peaks found and the fold change accuracy to biological validation, however a larger impact might be expected for samples with more extreme copy number variations between them. Still, it did identify a small subset of novel differential regions while excluding some differential peaks in regions with high background signal. These results highlight proper scaling for between-sample data normalization as critical for differential transcription factor binding analysis and suggest bioinformaticians need to know about the variation in level of total protein binding between conditions to select the best analysis method. At the same time, validation using fold-change estimates from qRT-PCR suggests there is still room for further method improvement. PMID:25972895

  12. Inhibition of enterovirus 71 entry by transcription factor XBP1

    SciTech Connect

    Jheng, Jia-Rong; Lin, Chiou-Yan; Horng, Jim-Tong; Lau, Kean Seng

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer IRE1 was activated but no XBP1 splicing was detected during enterovirus 71 infection. Black-Right-Pointing-Pointer XBP1 was subject to translational shutoff by enterovirus 71-induced eIF4G cleavage. Black-Right-Pointing-Pointer The uptake of UV-irradiated virus was decreased in XBP1-overexpressing cells. -- Abstract: Inositol-requiring enzyme 1 (IRE1) plays an important role in the endoplasmic reticulum (ER), or unfolded protein, stress response by activating its downstream transcription factor X-box-binding protein 1 (XBP1). We demonstrated previously that enterovirus 71 (EV71) upregulated XBP1 mRNA levels but did not activate spliced XBP1 (XBP1s) mRNA or its downstream target genes, EDEM and chaperones. In this study, we investigated further this regulatory mechanism and found that IRE1 was phosphorylated and activated after EV71 infection, whereas its downstream XBP1s protein level decreased. We also found that XBP1s was not cleaved directly by 2A{sup pro}, but that cleavage of eukaryotic translation initiation factor 4G by the EV71 2A{sup pro} protein may contribute to the decrease in XBP1s expression. Knockdown of XBP1 increased viral protein expression, and the synthesis of EV71 viral protein and the production of EV71 viral particles were inhibited in XBP1-overexpressing RD cells. When incubated with replication-deficient and UV-irradiated EV71, XBP1-overexpressing RD cells exhibited reduced viral RNA levels, suggesting that the inhibition of XBP1s by viral infection may underlie viral entry, which is required for viral replication. Our findings are the first indication of the ability of XBP1 to inhibit viral entry, possibly via its transcriptional activity in regulating molecules in the endocytic machinery.

  13. Transcriptional regulation of gilthead seabream bone morphogenetic protein (BMP) 2 gene by bone- and cartilage-related transcription factors.

    PubMed

    Marques, Cátia L; Cancela, M Leonor; Laizé, Vincent

    2016-01-15

    Bone morphogenetic protein (BMP) 2 belongs to the transforming growth factor β (TGFβ) superfamily of cytokines and growth factors. While it plays important roles in embryo morphogenesis and organogenesis, BMP2 is also critical to bone and cartilage formation. Protein structure and function have been remarkably conserved throughout evolution and BMP2 transcription has been proposed to be tightly regulated, although few data is available. In this work we report the cloning and functional analysis of gilthead seabream BMP2 promoter. As in other vertebrates, seabream BMP2 gene has a 5′ non-coding exon, a feature already present in DPP gene, the fruit fly ortholog of vertebrate BMP2 gene, and maintained throughout evolution. In silico analysis of seabream BMP2 promoter revealed several binding sites for bone and cartilage related transcription factors (TFs) and their functionality was evaluated using promoter-luciferase constructions and TF-expressing vectors. Runt-related transcription factor 3 (RUNX3) was shown to negatively regulate BMP2 transcription and combination with the core binding factor β (CBFβ) further reduced transcriptional activity of the promoter. Although to a lesser extent, myocyte enhancer factor 2C (MEF2C) had also a negative effect on the regulation of BMP2 gene transcription, when associated with SRY (sex determining region Y)-box 9 (SOX9b). Finally, v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1) was able to slightly enhance BMP2 transcription. Data reported here provides new insights toward the better understanding of the transcriptional regulation of BMP2 gene in a bone and cartilage context. PMID:26456102

  14. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa).

    PubMed

    Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert

    2016-05-01

    A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189

  15. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa)

    PubMed Central

    Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert

    2016-01-01

    A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189

  16. Zinc finger protein ZBTB20 is an independent prognostic marker and promotes tumor growth of human hepatocellular carcinoma by repressing FoxO1

    PubMed Central

    Kan, Heping; Huang, Yuqi; Li, Xianghong; Liu, Dingli; Chen, Jianjia; Shu, Miaojiang

    2016-01-01

    Zinc finger and BTB domain-containing 20 (ZBTB20) is a new BTB/POZ-domain gene and a member of the POK family of transcriptional repressors. Notably, the role of ZBTB20 and its underlying mechanisms involved in hepatocarcinogenesis are poorly investigated. In this study, the expression of ZBTB20 was significantly overexpressed in hepatocellular carcinoma (HCC) tissues. The positive expression of ZBTB20 was associated with large tumor size, high Edmondson-Steiner grading and advanced tumor-node-metastasis (TNM) tumor stage. Additionally, HCC patients with positive expression of ZBTB20 had a poorer 5-year survival. Multivariate analyses revealed that ZBTB20 overexpression was an independent prognostic factor for HCC. Gain- and loss-of-function experiments demonstrated that ZBTB20 promoted HCC cell viability, proliferation, tumorigenicity, and cell cycle progression. Mechanistically, Cyclin D1 and Cyclin E were increased, while p21 and p27 were decreased by ZBTB20 in HCC cells. FoxO1 was inversely correlated with ZBTB20 protein expression in the same cohort of HCC specimens. We further revealed that FoxO1 was transcriptionally repressed by ZBTB20 in HCC. Moreover, restoration of FoxO1 expression partially abrogated ZBTB20-induced HCC cell proliferation and growth entry in vitro and in vivo. Collectively, these results indicate that ZBTB20 may serve as a prognostic marker and promotes tumor growth of HCC via transcriptionally repressing FoxO1. PMID:26893361

  17. Regulation of Memory Formation by the Transcription Factor XBP1.

    PubMed

    Martínez, Gabriela; Vidal, René L; Mardones, Pablo; Serrano, Felipe G; Ardiles, Alvaro O; Wirth, Craig; Valdés, Pamela; Thielen, Peter; Schneider, Bernard L; Kerr, Bredford; Valdés, Jose L; Palacios, Adrian G; Inestrosa, Nibaldo C; Glimcher, Laurie H; Hetz, Claudio

    2016-02-16

    Contextual memory formation relies on the induction of new genes in the hippocampus. A polymorphism in the promoter of the transcription factor XBP1 was identified as a risk factor for Alzheimer's disease and bipolar disorders. XBP1 is a major regulator of the unfolded protein response (UPR), mediating adaptation to endoplasmic reticulum (ER) stress. Using a phenotypic screen, we uncovered an unexpected function of XBP1 in cognition and behavior. Mice lacking XBP1 in the nervous system showed specific impairment of contextual memory formation and long-term potentiation (LTP), whereas neuronal XBP1s overexpression improved performance in memory tasks. Gene expression analysis revealed that XBP1 regulates a group of memory-related genes, highlighting brain-derived neurotrophic factor (BDNF), a key component in memory consolidation. Overexpression of BDNF in the hippocampus reversed the XBP1-deficient phenotype. Our study revealed an unanticipated function of XBP1 in cognitive processes that is apparently unrelated to its role in ER stress. PMID:26854229

  18. Octamer-binding transcription factors: genomics and functions.

    PubMed

    Zhao, Feng-Qi

    2013-01-01

    The Octamer-binding proteins (Oct) are a group of highly conserved transcription factors that specifically bind to the octamer motif (ATGCAAAT) and closely related sequences in promoters and enhancers of a wide variety of genes. Oct factors belong to the larger family of POU domain factors that are characterized by the presence of an amino-terminal specific subdomain (POUS) and a carboxyl-terminal homeo-subdomain (POUH). Eleven Oct proteins have been named (Oct1-11), and currently, eight genes encoding Oct proteins (Oct1, Oct2, Oct3/4, Oct6, Oct7, Oct8, Oct9, and Oct11) have been cloned. Oct1 and Oct2 are widely expressed in adult tissues, while other Oct proteins are much more restricted in their expression patterns. Oct proteins are implicated in crucial and versatile biological events, such as embryogenesis, neurogenesis, immunity, and body glucose and amino acid metabolism. The aberrant expression and null function of Oct proteins have also been linked to various diseases, including deafness, diabetes and cancer. In this review, I will report both the genomic structure and major functions of individual Oct proteins in physiological and pathological processes. PMID:23747866

  19. Close Up - Mem Fox.

    ERIC Educational Resources Information Center

    Moss, Barbara

    2003-01-01

    Presents an interview with Mem Fox, a teacher educator and children's book author well known throughout the world. Discusses writing books for children, and the mistakes she made early in her career as a writer. Notes that Mem is a tireless advocate for meaningful literacy instruction, and her "Radical Reflections: Passionate Opinions on Teaching,…

  20. HIPK2: a multitalented partner for transcription factors in DNA damage response and development.

    PubMed

    Rinaldo, Cinzia; Prodosmo, Andrea; Siepi, Francesca; Soddu, Silvia

    2007-08-01

    Protein phosphorylation is a widely diffuse and versatile post-translational modification that controls many cellular processes, from signal transduction to gene transcription. The homeodomain-interacting protein kinases (HIPKs) belong to a new family of serine-threonine kinases first identified as corepressors for homeodomain transcription factors. Different screenings for the identification of new partners of transcription factors have indicated that HIPK2, the best characterized member of the HIPK family, is a multitalented coregulator of an increasing number of transcription factors and cofactors. The aim of this review is to describe the different mechanisms through which HIPK2 regulates gene transcription. PMID:17713576

  1. O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors

    SciTech Connect

    Lim, Kihong; Chang, Hyo-Ihl

    2009-03-13

    The novel protein modification, O-linked N-acetylglucosamine (O-GlcNAc), plays an important role in various aspects of cell regulation. Although most of nuclear transcription regulatory factors are modified by O-GlcNAc, O-GlcNAc effects on transcription remain largely undefined yet. In this study, we show that O-GlcNAc inhibits a physical interaction between Sp1 and Elf-1 transcription factors, and negatively regulates transcription of placenta and embryonic expression oncofetal protein gene (Pem). These findings suggest that O-GlcNAc inhibits Sp1-mediated gene transcription possibly by interrupting Sp1 interaction with its cooperative factor.

  2. Negative elongation factor NELF controls transcription of immediate early genes in a stimulus-specific manner

    SciTech Connect

    Fujita, Toshitsugu; Piuz, Isabelle; Schlegel, Werner

    2009-01-15

    The transcription rate of immediate early genes (IEGs) is controlled directly by transcription elongation factors at the transcription elongation step. Negative elongation factor (NELF) and 5,6-dichloro-1-{beta}-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) stall RNA polymerase II (pol II) soon after transcription initiation. Upon induction of IEG transcription, DSIF is converted into an accelerator for pol II elongation. To address whether and how NELF as well as DSIF controls overall IEG transcription, its expression was reduced using stable RNA interference in GH4C1 cells. NELF knock-down reduced thyrotropin-releasing hormone (TRH)-induced transcription of the IEGs c-fos, MKP-1, and junB. In contrast, epidermal growth factor (EGF)-induced transcription of these IEGs was unaltered or even slightly increased by NELF knock-down. Thus, stable knock-down of NELF affects IEG transcription stimulation-specifically. Conversely, DSIF knock-down reduced both TRH- and EGF-induced transcription of the three IEGs. Interestingly, TRH-induced activation of the MAP kinase pathway, a pathway essential for transcription of the three IEGs, was down-regulated by NELF knock-down. Thus, stable knock-down of NELF, by modulating intracellular signaling pathways, caused stimulation-specific loss of IEG transcription. These observations indicate that NELF controls overall IEG transcription via multiple mechanisms both directly and indirectly.

  3. En1 directs superior olivary complex neuron positioning, survival, and expression of FoxP1.

    PubMed

    Altieri, Stefanie C; Jalabi, Walid; Zhao, Tianna; Romito-DiGiacomo, Rita R; Maricich, Stephen M

    2015-12-01

    Little is known about the genetic pathways and transcription factors that control development and maturation of central auditory neurons. En1, a gene expressed by a subset of developing and mature superior olivary complex (SOC) cells, encodes a homeodomain transcription factor important for neuronal development in the midbrain, cerebellum, hindbrain and spinal cord. Using genetic fate-mapping techniques, we show that all En1-lineal cells in the SOC are neurons and that these neurons are glycinergic, cholinergic and GABAergic in neurotransmitter phenotype. En1 deletion does not interfere with specification or neural fate of these cells, but does cause aberrant positioning and subsequent death of all En1-lineal SOC neurons by early postnatal ages. En1-null cells also fail to express the transcription factor FoxP1, suggesting that FoxP1 lies downstream of En1. Our data define important roles for En1 in the development and maturation of a diverse group of brainstem auditory neurons. PMID:26542008

  4. Identifying cooperative transcription factors in yeast using multiple data sources

    PubMed Central

    2014-01-01

    Background Transcriptional regulation of gene expression is usually accomplished by multiple interactive transcription factors (TFs). Therefore, it is crucial to understand the precise cooperative interactions among TFs. Various kinds of experimental data including ChIP-chip, TF binding site (TFBS), gene expression, TF knockout and protein-protein interaction data have been used to identify cooperative TF pairs in existing methods. The nucleosome occupancy data is not yet used for this research topic despite that several researches have revealed the association between nucleosomes and TFBSs. Results In this study, we developed a novel method to infer the cooperativity between two TFs by integrating the TF-gene documented regulation, TFBS and nucleosome occupancy data. TF-gene documented regulation and TFBS data were used to determine the target genes of a TF, and the genome-wide nucleosome occupancy data was used to assess the nucleosome occupancy on TFBSs. Our method identifies cooperative TF pairs based on two biologically plausible assumptions. If two TFs cooperate, then (i) they should have a significantly higher number of common target genes than random expectation and (ii) their binding sites (in the promoters of their common target genes) should tend to be co-depleted of nucleosomes in order to make these binding sites simultaneously accessible to TF binding. Each TF pair is given a cooperativity score by our method. The higher the score is, the more likely a TF pair has cooperativity. Finally, a list of 27 cooperative TF pairs has been predicted by our method. Among these 27 TF pairs, 19 pairs are also predicted by existing methods. The other 8 pairs are novel cooperative TF pairs predicted by our method. The biological relevance of these 8 novel cooperative TF pairs is justified by the existence of protein-protein interactions and co-annotation in the same MIPS functional categories. Moreover, we adopted three performance indices to compare our predictions

  5. Transcription factors, chromatin proteins and the diversification of Hemiptera.

    PubMed

    Vidal, Newton M; Grazziotin, Ana Laura; Iyer, Lakshminarayan M; Aravind, L; Venancio, Thiago M

    2016-02-01

    Availability of complete genomes provides a means to explore the evolution of enormous developmental, morphological, and behavioral diversity among insects. Hemipterans in particular show great diversity of both morphology and life history within a single order. To better understand the role of transcription regulators in the diversification of hemipterans, using sequence profile searches and hidden Markov models we computationally analyzed transcription factors (TFs) and chromatin proteins (CPs) in the recently available Rhodnius prolixus genome along with 13 other insect and 4 non-insect arthropod genomes. We generated a comprehensive collection of TFs and CPs across arthropods including 303 distinct types of domains in TFs and 139 in CPs. This, along with the availability of two hemipteran genomes, R. prolixus and Acyrthosiphon pisum, helped us identify possible determinants for their dramatic morphological and behavioral divergence. We identified five domain families (i.e. Pipsqueak, SAZ/MADF, THAP, FLYWCH and BED finger) as having undergone differential patterns of lineage-specific expansion in hemipterans or within hemipterans relative to other insects. These expansions appear to be at least in part driven by transposons, with the DNA-binding domains of transposases having provided the raw material for emergence of new TFs. Our analysis suggests that while R. prolixus probably retains a state closer to the ancestral hemipteran, A. pisum represents a highly derived state, with the emergence of asexual reproduction potentially favoring genome duplication and transposon expansion. Both hemipterans are predicted to possess active DNA methylation systems. However, in the course of their divergence, aphids seem to have expanded the ancestral hemipteran DNA methylation along with a distinctive linkage to the histone methylation system, as suggested by expansion of SET domain methylases, including those fused to methylated CpG recognition domains. Thus

  6. Deep Vertebrate Roots for Mammalian Zinc Finger Transcription Factor Subfamilies

    PubMed Central

    Liu, Hui; Chang, Li-Hsin; Sun, Younguk; Lu, Xiaochen; Stubbs, Lisa

    2014-01-01

    While many vertebrate transcription factor (TF) families are conserved, the C2H2 zinc finger (ZNF) family stands out as a notable exception. In particular, novel ZNF gene types have arisen, duplicated, and diverged independently throughout evolution to yield many lineage-specific TF genes. This evolutionary dynamic not only raises many intriguing questions but also severely complicates identification of those ZNF genes that remain functionally conserved. To address this problem, we searched for vertebrate “DNA binding orthologs” by mining ZNF loci from eight sequenced genomes and then aligning the patterns of DNA-binding amino acids, or “fingerprints,” extracted from the encoded ZNF motifs. Using this approach, we found hundreds of lineage-specific genes in each species and also hundreds of orthologous groups. Most groups of orthologs displayed some degree of fingerprint divergence between species, but 174 groups showed fingerprint patterns that have been very rigidly conserved. Focusing on the dynamic KRAB-ZNF subfamily—including nearly 400 human genes thought to possess potent KRAB-mediated epigenetic silencing activities—we found only three genes conserved between mammals and nonmammalian groups. These three genes, members of an ancient familial cluster, encode an unusual KRAB domain that functions as a transcriptional activator. Evolutionary analysis confirms the ancient provenance of this activating KRAB and reveals the independent expansion of KRAB-ZNFs in every vertebrate lineage. Most human ZNF genes, from the most deeply conserved to the primate-specific genes, are highly expressed in immune and reproductive tissues, indicating that they have been enlisted to regulate evolutionarily divergent biological traits. PMID:24534434

  7. Negative feedback confers mutational robustness in yeast transcription factor regulation

    PubMed Central

    Denby, Charles M.; Im, Joo Hyun; Yu, Richard C.; Pesce, C. Gustavo; Brem, Rachel B.

    2012-01-01

    Organismal fitness depends on the ability of gene networks to function robustly in the face of environmental and genetic perturbations. Understanding the mechanisms of this stability is one of the key aims of modern systems biology. Dissecting the basis of robustness to mutation has proven a particular challenge, with most experimental models relying on artificial DNA sequence variants engineered in the laboratory. In this work, we hypothesized that negative regulatory feedback could stabilize gene expression against the disruptions that arise from natural genetic variation. We screened yeast transcription factors for feedback and used the results to establish ROX1 (Repressor of hypOXia) as a model system for the study of feedback in circuit behaviors and its impact across genetically heterogeneous populations. Mutagenesis experiments revealed the mechanism of Rox1 as a direct transcriptional repressor at its own gene, enabling a regulatory program of rapid induction during environmental change that reached a plateau of moderate steady-state expression. Additionally, in a given environmental condition, Rox1 levels varied widely across genetically distinct strains; the ROX1 feedback loop regulated this variation, in that the range of expression levels across genetic backgrounds showed greater spread in ROX1 feedback mutants than among strains with the ROX1 feedback loop intact. Our findings indicate that the ROX1 feedback circuit is tuned to respond to perturbations arising from natural genetic variation in addition to its role in induction behavior. We suggest that regulatory feedback may be an important element of the network architectures that confer mutational robustness across biology. PMID:22355134

  8. Nucleosome-driven transcription factor binding and gene regulation.

    PubMed

    Ballaré, Cecilia; Castellano, Giancarlo; Gaveglia, Laura; Althammer, Sonja; González-Vallinas, Juan; Eyras, Eduardo; Le Dily, Francois; Zaurin, Roser; Soronellas, Daniel; Vicent, Guillermo P; Beato, Miguel

    2013-01-10

    Elucidating the global function of a transcription factor implies the identification of its target genes and genomic binding sites. The role of chromatin in this context is unclear, but the dominant view is that factors bind preferentially to nucleosome-depleted regions identified as DNaseI-hypersensitive sites (DHS). Here we show by ChIP, MNase, and DNaseI assays followed by deep sequencing that the progesterone receptor (PR) requires nucleosomes for optimal binding and function. In breast cancer cells treated with progestins, we identified 25,000 PR binding sites (PRbs). The majority of these sites encompassed several copies of the hexanucleotide TGTYCY, which is highly abundant in the genome. We found that functional PRbs accumulate around progesterone-induced genes, mainly in enhancers. Most of these sites overlap with DHS but exhibit high nucleosome occupancy. Progestin stimulation results in remodeling of these nucleosomes with displacement of histones H1 and H2A/H2B dimers. Our results strongly suggest that nucleosomes are crucial for PR binding and hormonal gene regulation. PMID:23177737

  9. Wood reinforcement of poplar by rice NAC transcription factor.

    PubMed

    Sakamoto, Shingo; Takata, Naoki; Oshima, Yoshimi; Yoshida, Kouki; Taniguchi, Toru; Mitsuda, Nobutaka

    2016-01-01

    Lignocellulose, composed of cellulose, hemicellulose, and lignin, in the secondary cell wall constitutes wood and is the most abundant form of biomass on Earth. Enhancement of wood accumulation may be an effective strategy to increase biomass as well as wood strength, but currently only limited research has been undertaken. Here, we demonstrated that OsSWN1, the orthologue of the rice NAC Secondary-wall Thickening factor (NST) transcription factor, effectively enhanced secondary cell wall formation in the Arabidopsis inflorescence stem and poplar (Populus tremula×Populus tremuloides) stem when expressed by the Arabidopsis NST3 promoter. Interestingly, in transgenic Arabidopsis and poplar, ectopic secondary cell wall deposition in the pith area was observed in addition to densification of the secondary cell wall in fiber cells. The cell wall content or density of the stem increased on average by up to 38% and 39% in Arabidopsis and poplar, respectively, without causing growth inhibition. As a result, physical strength of the stem increased by up to 57% in poplar. Collectively, these data suggest that the reinforcement of wood by NST3pro:OsSWN1 is a promising strategy to enhance wood-biomass production in dicotyledonous plant species. PMID:26812961

  10. Transcription factor motif quality assessment requires systematic comparative analysis

    PubMed Central

    Kibet, Caleb Kipkurui; Machanick, Philip

    2016-01-01

    Transcription factor (TF) binding site prediction remains a challenge in gene regulatory research due to degeneracy and potential variability in binding sites in the genome. Dozens of algorithms designed to learn binding models (motifs) have generated many motifs available in research papers with a subset making it to databases like JASPAR, UniPROBE and Transfac. The presence of many versions of motifs from the various databases for a single TF and the lack of a standardized assessment technique makes it difficult for biologists to make an appropriate choice of binding model and for algorithm developers to benchmark, test and improve on their models. In this study, we review and evaluate the approaches in use, highlight differences and demonstrate the difficulty of defining a standardized motif assessment approach. We review scoring functions, motif length, test data and the type of performance metrics used in prior studies as some of the factors that influence the outcome of a motif assessment. We show that the scoring functions and statistics used in motif assessment influence ranking of motifs in a TF-specific manner. We also show that TF binding specificity can vary by source of genomic binding data. We also demonstrate that information content of a motif is not in isolation a measure of motif quality but is influenced by TF binding behaviour. We conclude that there is a need for an easy-to-use tool that presents all available evidence for a comparative analysis. PMID:27092243

  11. Transcription factor PIF4 controls the thermosensory activation of flowering.

    PubMed

    Kumar, S Vinod; Lucyshyn, Doris; Jaeger, Katja E; Alós, Enriqueta; Alvey, Elizabeth; Harberd, Nicholas P; Wigge, Philip A

    2012-04-12

    Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change. PMID:22437497

  12. Wood reinforcement of poplar by rice NAC transcription factor

    PubMed Central

    Sakamoto, Shingo; Takata, Naoki; Oshima, Yoshimi; Yoshida, Kouki; Taniguchi, Toru; Mitsuda, Nobutaka

    2016-01-01

    Lignocellulose, composed of cellulose, hemicellulose, and lignin, in the secondary cell wall constitutes wood and is the most abundant form of biomass on Earth. Enhancement of wood accumulation may be an effective strategy to increase biomass as well as wood strength, but currently only limited research has been undertaken. Here, we demonstrated that OsSWN1, the orthologue of the rice NAC Secondary-wall Thickening factor (NST) transcription factor, effectively enhanced secondary cell wall formation in the Arabidopsis inflorescence stem and poplar (Populus tremula×Populus tremuloides) stem when expressed by the Arabidopsis NST3 promoter. Interestingly, in transgenic Arabidopsis and poplar, ectopic secondary cell wall deposition in the pith area was observed in addition to densification of the secondary cell wall in fiber cells. The cell wall content or density of the stem increased on average by up to 38% and 39% in Arabidopsis and poplar, respectively, without causing growth inhibition. As a result, physical strength of the stem increased by up to 57% in poplar. Collectively, these data suggest that the reinforcement of wood by NST3pro:OsSWN1 is a promising strategy to enhance wood-biomass production in dicotyledonous plant species. PMID:26812961