Science.gov

Sample records for fq receptor agonism

  1. C7β-methyl analogues of the orvinols: the discovery of kappa opioid antagonists with nociceptin/orphanin FQ peptide (NOP) receptor partial agonism and low, or zero, efficacy at mu opioid receptors.

    PubMed

    Cueva, Juan Pablo; Roche, Christopher; Ostovar, Mehrnoosh; Kumar, Vinod; Clark, Mary J; Hillhouse, Todd M; Lewis, John W; Traynor, John R; Husbands, Stephen M

    2015-05-28

    Buprenorphine is a successful analgesic and treatment for opioid abuse, with both activities relying on its partial agonist activity at mu opioid receptors. However, there is substantial interest in its activities at the kappa opioid and nociceptin/orphanin FQ peptide receptors. This has led to an interest in developing compounds with a buprenorphine-like pharmacological profile but with lower efficacy at mu opioid receptors. The present article describes aryl ring analogues of buprenorphine in which the standard C20-methyl group has been moved to the C7β position, resulting in ligands with the desired profile. In particular, moving the methyl group has resulted in far more robust kappa opioid antagonist activity than seen in the standard orvinol series. Of the compounds synthesized, a number, including 15a, have a profile of interest for the development of drug abuse relapse prevention therapies or antidepressants and others (e.g., 8c), as analgesics with a reduced side-effect profile. PMID:25898137

  2. C7β-Methyl Analogues of the Orvinols: The Discovery of Kappa Opioid Antagonists with Nociceptin/Orphanin FQ Peptide (NOP) Receptor Partial Agonism and Low, or Zero, Efficacy at Mu Opioid Receptors

    PubMed Central

    2015-01-01

    Buprenorphine is a successful analgesic and treatment for opioid abuse, with both activities relying on its partial agonist activity at mu opioid receptors. However, there is substantial interest in its activities at the kappa opioid and nociceptin/orphanin FQ peptide receptors. This has led to an interest in developing compounds with a buprenorphine-like pharmacological profile but with lower efficacy at mu opioid receptors. The present article describes aryl ring analogues of buprenorphine in which the standard C20-methyl group has been moved to the C7β position, resulting in ligands with the desired profile. In particular, moving the methyl group has resulted in far more robust kappa opioid antagonist activity than seen in the standard orvinol series. Of the compounds synthesized, a number, including 15a, have a profile of interest for the development of drug abuse relapse prevention therapies or antidepressants and others (e.g., 8c), as analgesics with a reduced side-effect profile. PMID:25898137

  3. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  4. Pharmacological Profile of Nociceptin/Orphanin FQ Receptors Interacting with G-Proteins and β-Arrestins 2

    PubMed Central

    Malfacini, D.; Ambrosio, C.; Gro’, M. C.; Sbraccia, M.; Trapella, C.; Guerrini, R.; Bonora, M.; Pinton, P.; Costa, T.; Calo’, G.

    2015-01-01

    Nociceptin/orphanin FQ (N/OFQ) controls several biological functions by selectively activating an opioid like receptor named N/OFQ peptide receptor (NOP). Biased agonism is emerging as an important and therapeutically relevant pharmacological concept in the field of G protein coupled receptors including opioids. To evaluate the relevance of this phenomenon in the NOP receptor, we used a bioluminescence resonance energy transfer technology to measure the interactions of the NOP receptor with either G proteins or β-arrestin 2 in the absence and in presence of increasing concentration of ligands. A large panel of receptor ligands was investigated by comparing their ability to promote or block NOP/G protein and NOP/arrestin interactions. In this study we report a systematic analysis of the functional selectivity of NOP receptor ligands. NOP/G protein interactions (investigated in cell membranes) allowed a precise estimation of both ligand potency and efficacy yielding data highly consistent with the known pharmacological profile of this receptor. The same panel of ligands displayed marked differences in the ability to promote NOP/β-arrestin 2 interactions (evaluated in whole cells). In particular, full agonists displayed a general lower potency and for some ligands an inverted rank order of potency was noted. Most partial agonists behaved as pure competitive antagonists of receptor/arrestin interaction. Antagonists displayed similar values of potency for NOP/Gβ1 or NOP/β-arrestin 2 interaction. Using N/OFQ as reference ligand we computed the bias factors of NOP ligands and a number of agonists with greater efficacy at G protein coupling were identified. PMID:26248189

  5. Receptor antagonism/agonism can be uncoupled from pharmacoperone activity.

    PubMed

    Janovick, Jo Ann; Spicer, Timothy P; Smith, Emery; Bannister, Thomas D; Kenakin, Terry; Scampavia, Louis; Conn, P Michael

    2016-10-15

    Pharmacoperones rescue misrouted mutants of the vasopressin receptor type 2 (V2R) and enable them to traffic to the correct biological locus where they function. Previously, a library of nearly 645,000 structures was interrogated with a high throughput screen; pharmacoperones were identified for V2R mutants with a view toward correcting the underlying mutational defects in nephrogenic diabetes insipidus. In the present study, an orthologous assay was used to evaluate hits from the earlier study. We found no consistent relation between antagonism or agonism and pharmacoperone activity. Active pharmacoperones were identified which had minimal antagonistic activity. This increases the therapeutic reach of these drugs, since virtually all pharmacoperone drugs reported to date were selected from peptidomimetic antagonists. Such mixed-activity drugs have a complex pharmacology limiting their therapeutic utility and requiring their removal prior to stimulation of the receptor with agonist. PMID:27389877

  6. Third generation antipsychotic drugs: partial agonism or receptor functional selectivity?

    PubMed Central

    Mailman, Richard B.; Murthy, Vishakantha

    2010-01-01

    Functional selectivity is the term that describes drugs that cause markedly different signaling through a single receptor (e.g., full agonist at one pathway and antagonist at a second). It has been widely recognized recently that this phenomenon impacts the understanding of mechanism of action of some drugs, and has relevance to drug discovery. One of the clinical areas where this mechanism has particular importance is in the treatment of schizophrenia. Antipsychotic drugs have been grouped according to both pattern of clinical action and mechanism of action. The original antipsychotic drugs such as chlorpromazine and haloperidol have been called typical or first generation. They cause both antipsychotic actions and many side effects (extrapyramidal and endocrine) that are ascribed to their high affinity dopamine D2 receptor antagonism. Drugs such as clozapine, olanzapine, risperidone and others were then developed that avoided the neurological side effects (atypical or second generation antipsychotics). These compounds are divided mechanistically into those that are high affinity D2 and 5-HT2A antagonists, and those that also bind with modest affinity to D2, 5-HT2A, and many other neuroreceptors. There is one approved third generation drug, aripiprazole, whose actions have been ascribed alternately to either D2 partial agonism or D2 functional selectivity. Although partial agonism has been the more widely accepted mechanism, the available data are inconsistent with this mechanism. Conversely, the D2 functional selectivity hypothesis can accommodate all current data for aripiprazole, and also impacts on discovery compounds that are not pure D2 antagonists. PMID:19909227

  7. Detecting constitutive activity and protean agonism at cannabinoid-2 receptor.

    PubMed

    Beltramo, Massimiliano; Brusa, Rossella; Mancini, Isabella; Scandroglio, Paola

    2010-01-01

    Since the cannabinoid system is involved in regulating several physiological functions such as locomotor activity, cognition, nociception, food intake, and inflammatory reaction, it has been the subject of intense study. Research on the pharmacology of this system has enormously progressed in the last 20years. One intriguing aspect that emerged from this research is that cannabinoid receptors (CBs) express a high level of constitutive activity. Investigation on this particular aspect of receptor pharmacology has largely focused on CB1, the CB subtype highly expressed in several brain regions. More recently, research on constitutive activity on the other CB subtype, CB2, was stimulated by the increasing interest on its potential as target for the treatment of various pathologies (e.g., pain and inflammation). There are several possible implications of constitutive activity on the therapeutic action of both agonists and antagonists, and consequently, it is important to have valuable methods to study this aspect of CB2 pharmacology. In the present chapter, we describe three methods to study constitutive activity at CB2: two classical methods relying on the detection of changes in cAMP level and GTPγS binding and a new one based on cell impedance measurement. In addition, we also included a section on detection of protean agonism, which is an interesting pharmacological phenomenon strictly linked to constitutive activity. PMID:21036225

  8. 5-HT6 receptor agonism facilitates emotional learning

    PubMed Central

    Pereira, Marcela; Martynhak, Bruno J.; Andreatini, Roberto; Svenningsson, Per

    2015-01-01

    Serotonin (5-HT) and its receptors play crucial roles in various aspects of mood and cognitive functions. However, the role of specific 5-HT receptors in these processes remains to be better understood. Here, we examined the effects of the selective and potent 5-HT6 agonist (WAY208466) on mood, anxiety and emotional learning in mice. Male C57Bl/6J mice were therefore tested in the forced swim test (FST), elevated plus-maze (EPM), and passive avoidance tests (PA), respectively. In a dose-response experiment, mice were treated intraperitoneally with WAY208466 at 3, 9, or 27 mg/kg and examined in an open field arena open field test (OFT) followed by the FST. 9 mg/kg of WAY208466 reduced immobility in the FST, without impairing the locomotion. Thus, the dose of 9 mg/kg was subsequently used for tests of anxiety and emotional learning. There was no significant effect of WAY208466 in the EPM. In the PA, mice were trained 30 min before the treatment with saline or WAY208466. Two separate sets of animals were used for short term memory (tested 1 h post-training) or long term memory (tested 24 h post-training). WAY208466 improved both short and long term memories, evaluated by the latency to enter the dark compartment, in the PA. The WAY208466-treated animals also showed more grooming and rearing in the light compartment. To better understand the molecular mechanisms and brain regions involved in the facilitation of emotional learning by WAY208466, we studied its effects on signal transduction and immediate early gene expression. WAY208466 increased the levels of phospho-Ser845-GluA1 and phospho-Ser217/221-MEK in the caudate-putamen. Levels of phospho-Thr202/204-Erk1/2 and the ratio mature BDNF/proBDNF were increased in the hippocampus. Moreover, WAY208466 increased c-fos in the hippocampus and Arc expression in both hippocampus and prefrontal cortex (PFC). The results indicate antidepressant efficacy and facilitation of emotional learning by 5-HT6 receptor agonism via

  9. Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor.

    PubMed

    Thompson, Georgina L; Lane, J Robert; Coudrat, Thomas; Sexton, Patrick M; Christopoulos, Arthur; Canals, Meritxell

    2016-08-01

    Biased agonism describes the ability of distinct G protein-coupled receptor (GPCR) ligands to stabilise distinct receptor conformations leading to the activation of different cell signalling pathways that can deliver different physiologic outcomes. This phenomenon is having a major impact on modern drug discovery as it offers the potential to design ligands that selectively activate or inhibit the signalling pathways linked to therapeutic effects with minimal activation or blockade of signalling pathways that are linked to the development of adverse on-target effects. However, the explosion in studies of biased agonism at multiple GPCR families in recombinant cell lines has revealed a high degree of variability on descriptions of biased ligands at the same GPCR and raised the question of whether biased agonism is a fixed attribute of a ligand in all cell types. The current study addresses this question at the mu-opioid receptor (MOP). Here, we have systematically assessed the impact of differential cellular protein complement (and cellular background), signalling kinetics and receptor species on our previous descriptions of biased agonism at MOP by several opioid peptides and synthetic opioids. Our results show that all these factors need to be carefully determined and reported when considering biased agonism. Nevertheless, our studies also show that, despite changes in overall signalling profiles, ligands that previously showed distinct bias profiles at MOP retained their uniqueness across different cell backgrounds. PMID:27286929

  10. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems.

    PubMed

    Toll, Lawrence; Bruchas, Michael R; Calo', Girolamo; Cox, Brian M; Zaveri, Nurulain T

    2016-04-01

    The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor. PMID:26956246

  11. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism

    PubMed Central

    Graves, Steven M.; Clark, Mary J.; Traynor, John R.; Hu, Xiu-Ti; Napier, T. Celeste

    2014-01-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq–mediated signaling pathways. PMID:25229719

  12. Biased agonism at chemokine receptors: obstacles or opportunities for drug discovery?

    PubMed

    Anderson, Caroline A; Solari, Roberto; Pease, James E

    2016-06-01

    Chemokine receptors are typically promiscuous, binding more than one ligand, with the ligands themselves often expressed in different spatial localizations by multiple cell types. This is normally a tightly regulated process; however, in a variety of inflammatory disorders, dysregulation results in the excessive or inappropriate expression of chemokines that drives disease progression. Biased agonism, the phenomenon whereby different ligands of the same receptor are able to preferentially activate one signaling pathway over another, adds another level of complexity to an already complex system. In this minireview, we discuss the concept of biased agonism within the chemokine family and report that targeting single signaling axes downstream of chemokine receptors is not only achievable, but may well present novel opportunities to target chemokine receptors, allowing the fine tuning of receptor responses in the context of allergic inflammation and beyond. PMID:26701135

  13. Nociceptin/orphanin FQ receptor expression in clinical pain disorders and functional effects in cultured neurons.

    PubMed

    Anand, Praveen; Yiangou, Yiangos; Anand, Uma; Mukerji, Gaurav; Sinisi, Marco; Fox, Michael; McQuillan, Anthony; Quick, Tom; Korchev, Yuri E; Hein, Peter

    2016-09-01

    The nociceptin/orphanin FQ peptide receptor (NOP), activated by its endogenous peptide ligand nociceptin/orphanin FQ (N/OFQ), exerts several effects including modulation of pain signalling. We have examined, for the first time, the tissue distribution of the NOP receptor in clinical visceral and somatic pain disorders by immunohistochemistry and assessed functional effects of NOP and μ-opioid receptor activation in cultured human and rat dorsal root ganglion (DRG) neurons. Quantification of NOP-positive nerve fibres within the bladder suburothelium revealed a remarkable several-fold increase in detrusor overactivity (P < 0.0001) and painful bladder syndrome patient specimens (P = 0.0014) compared with controls. In postmortem control human DRG, 75% to 80% of small/medium neurons (≤50 μm diameter) in the lumbar (somatic) and sacral (visceral) DRG were positive for NOP, and fewer large neurons; avulsion-injured cervical human DRG neurons showed similar numbers. NOP immunoreactivity was significantly decreased in injured peripheral nerves (P = 0.0004), and also in painful neuromas (P = 0.025). Calcium-imaging studies in cultured rat DRG neurons demonstrated dose-dependent inhibition of capsaicin responses in the presence of N/OFQ, with an IC50 of 8.6 pM. In cultured human DRG neurons, 32% inhibition of capsaicin responses was observed in the presence of 1 pM N/OFQ (P < 0.001). The maximum inhibition of capsaicin responses was greater with N/OFQ than μ-opioid receptor agonist DAMGO. Our findings highlight the potential of NOP agonists, particularly in urinary bladder overactivity and pain syndromes. The regulation of NOP expression in visceral and somatic sensory neurons by target-derived neurotrophic factors deserves further study, and the efficacy of NOP selective agonists in clinical trials. PMID:27127846

  14. Modulation of silent and constitutively active nociceptin/orphanin FQ receptors by potent receptor antagonists and Na+ ions in rat sympathetic neurons.

    PubMed

    Mahmoud, Saifeldin; Margas, Wojciech; Trapella, Claudio; Caló, Girolamo; Ruiz-Velasco, Victor

    2010-05-01

    The pharmacology of G protein-coupled receptors can be influenced by factors such as constitutive receptor activation and Na(+) ions. In this study, we examined the coupling of natively and heterologously expressed nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptors with voltage-dependent Ca(2+) channels after exposure to four high-affinity NOP receptor blockers [[Nphe(1)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-101), 1-[1-(cyclooctylmethyl)-1,2,3,6-tetrahydro-5-(hydroxymethyl)-4-pyridinyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (Trap-101), 1-benzyl-N-{3-[spiroisobenzofuran-1(3H),4'-piperidin-1-yl]propyl}pyrrolidine-2-carboxamide (compound 24), and N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl)benzamide hydrochloride (JTC-801)] in sympathetic neurons. The enhanced tonic inhibition of Ca(2+) currents in the absence of agonists, indicative of constitutively active NOP receptors in transfected neurons, was abolished after pretreatment with pertussis toxin. In control neurons, the four antagonists did not exert any effects when applied alone but significantly blocked the N/OFQ-mediated Ca(2+) current inhibition. Exposure of transfected neurons to UFP-101 resulted in partial agonist effects. In contrast, Trap-101, compound 24, and JTC-801 exerted inverse agonism, as measured by the loss of tonic Ca(2+) current inhibition. In experiments designed to measure the N/OFQ concentration-response relationship under varying Na(+) concentrations, a leftward shift of IC(50) values was observed after Na(+) exposure. Although similar N/OFQ efficacies were measured with all solutions, a significant decrease of Hill coefficient values was obtained with increasing Na(+) concentrations. Examination of the allosteric effects of Na(+) on heterologously overexpressed NOP receptors showed that the tonic Ca(2+) current inhibition was abolished in the presence of the monovalent cation. These results demonstrate that constitutively active NOP receptors exhibit differential blocker

  15. Buprenorphine Reduces Alcohol Drinking Through Activation of the Nociceptin/Orphanin FQ-NOP Receptor System

    PubMed Central

    Ciccocioppo, Roberto; Economidou, Daina; Rimondini, Roberto; Sommer, Wolfgang; Massi, Maurizio; Heilig, Markus

    2011-01-01

    Background Activation of the NOP receptor by its endogenous ligand nociceptin/orphanin FQ reduces ethanol intake in genetically selected alcohol preferring Marchigian Sardinian alcohol preferring (msP) rats. Here we evaluated whether buprenorphine, a partial agonist at μ-opioid and NOP receptors, would reduce ethanol consumption in msP rats via activation of NOP receptors. Methods Marchigian Sardinian alcohol preferring rats trained to drink 10% alcohol 2 hours/day were injected with buprenorphine (.03, .3, 3.0, or 6.0 mg/kg intraperitoneally [IP]) 90 min before access to ethanol. Results Similar to prototypical μ-agonists, the two lowest doses of buprenorphine significantly increased ethanol consumption (p < .01); in contrast, the two highest doses reduced it (p < .05). Pretreatment with naltrexone (.25 mg/kg IP) prevented the increase of ethanol intake induced by .03 mg/kg of buprenorphine (p < .001) but did not affect the inhibition of ethanol drinking induced by 3.0 mg/kg of buprenorphine. Conversely, pretreatment with the selective NOP receptor antagonist UFP-101 (10.0 or 20.0 μg/rat) abolished the suppression of ethanol drinking by 3.0 mg/kg of buprenorphine. Conclusions Buprenorphine has dualistic effects on ethanol drinking; low doses increase alcohol intake via stimulation of classic opioid receptors, whereas higher doses reduce it via activation of NOP receptors. We suggest that NOP agonistic properties of buprenorphine might be useful in the treatment of alcoholism. PMID:16533497

  16. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    PubMed Central

    Chee, Hyun Keun

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands. PMID:24465242

  17. Molecular vibration-activity relationship in the agonism of adenosine receptors.

    PubMed

    Chee, Hyun Keun; Oh, S June

    2013-12-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands. PMID:24465242

  18. Behavioral effects of a synthetic agonist selective for nociceptin/orphanin FQ peptide receptors in monkeys.

    PubMed

    Ko, Mei-Chuan; Woods, James H; Fantegrossi, William E; Galuska, Chad M; Wichmann, Jürgen; Prinssen, Eric P

    2009-08-01

    Behavioral effects of a nonpeptidic NOP (nociceptin/orphanin FQ Peptide) receptor agonist, Ro 64-6198, have not been studied in primate species. The aim of the study was to verify the receptor mechanism underlying the behavioral effects of Ro 64-6198 and to systematically compare behavioral effects of Ro 64-6198 with those of a mu-opioid receptor agonist, alfentanil, in monkeys. Both Ro 64-6198 (0.001-0.06 mg/kg, s.c.) and alfentanil (0.001-0.06 mg/kg, s.c.) produced antinociception against an acute noxious stimulus (50 degrees C water) and capsaicin-induced allodynia. An NOP receptor antagonist, J-113397 (0.01-0.1 mg/kg, s.c.), dose-dependently produced rightward shifts of the dose-response curve of Ro 64-6198-induced antinociception. The apparent pA(2) value of J-113397 was 8.0. Antagonist studies using J-113397 and naltrexone revealed that Ro 64-6198 produced NOP receptor-mediated antinociception independent of mu-opioid receptors. In addition, alfentanil dose-dependently produced respiratory depression and itch/scratching responses, but antinociceptive doses of Ro 64-6198 did not produce such effects. More important, Ro 64-6198 did not produce reinforcing effects comparable with those of alfentanil, cocaine, or methohexital under self-administration procedures in monkeys. These results provide the first functional evidence that the activation of NOP receptors produces antinociception without reinforcing effects in primates. Non-peptidic NOP receptor agonists may have therapeutic value as novel analgesics without abuse liability in humans. PMID:19279568

  19. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic

    SciTech Connect

    Thompson, Aaron A.; Liu, Wei; Chun, Eugene; Katritch, Vsevolod; Wu, Huixian; Vardy, Eyal; Huang, Xi-Ping; Trapella, Claudio; Guerrini, Remo; Calo, Girolamo; Roth, Bryan L.; Cherezov, Vadim; Stevens, Raymond C.

    2012-07-11

    Members of the opioid receptor family of G-protein-coupled receptors (GPCRs) are found throughout the peripheral and central nervous system, where they have key roles in nociception and analgesia. Unlike the 'classical' opioid receptors, {delta}, {kappa} and {mu} ({delta}-OR, {kappa}-OR and {mu}-OR), which were delineated by pharmacological criteria in the 1970s and 1980s, the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP, also known as ORL-1) was discovered relatively recently by molecular cloning and characterization of an orphan GPCR. Although it shares high sequence similarity with classical opioid GPCR subtypes ({approx}60%), NOP has a markedly distinct pharmacology, featuring activation by the endogenous peptide N/OFQ, and unique selectivity for exogenous ligands. Here we report the crystal structure of human NOP, solved in complex with the peptide mimetic antagonist compound-24 (C-24) (ref. 4), revealing atomic details of ligand-receptor recognition and selectivity. Compound-24 mimics the first four amino-terminal residues of the NOP-selective peptide antagonist UFP-101, a close derivative of N/OFQ, and provides important clues to the binding of these peptides. The X-ray structure also shows substantial conformational differences in the pocket regions between NOP and the classical opioid receptors {kappa} (ref. 5) and {mu} (ref. 6), and these are probably due to a small number of residues that vary between these receptors. The NOP-compound-24 structure explains the divergent selectivity profile of NOP and provides a new structural template for the design of NOP ligands.

  20. Brain regional distribution of GABA(A) receptors exhibiting atypical GABA agonism: roles of receptor subunits.

    PubMed

    Halonen, Lauri M; Sinkkonen, Saku T; Chandra, Dev; Homanics, Gregg E; Korpi, Esa R

    2009-11-01

    The major inhibitory neurotransmitter in the brain, gamma-aminobutyric acid (GABA), has only partial efficacy at certain subtypes of GABA(A) receptors. To characterize these minor receptor populations in rat and mouse brains, we used autoradiographic imaging of t-butylbicyclophosphoro[(35)S]thionate ([(35)S]TBPS) binding to GABA(A) receptors in brain sections and compared the displacing capacities of 10mM GABA and 1mM 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a competitive GABA-site agonist. Brains from GABA(A) receptor alpha1, alpha4, delta, and alpha4+delta subunit knockout (KO) mouse lines were used to understand the contribution of these particular receptor subunits to "GABA-insensitive" (GIS) [(35)S]TBPS binding. THIP displaced more [(35)S]TBPS binding than GABA in several brain regions, indicating that THIP also inhibited GIS-binding. In these regions, GABA prevented the effect of THIP on GIS-binding. GIS-binding was increased in the cerebellar granule cell layer of delta KO and alpha4+delta KO mice, being only slightly diminished in that of alpha1 KO mice. In the thalamus and some other forebrain regions of wild-type mice, a significant amount of GIS-binding was detected. This GIS-binding was higher in alpha4 KO mice. However, it was fully abolished in alpha1 KO mice, indicating that the alpha1 subunit was obligatory for the GIS-binding in the forebrain. Our results suggest that native GABA(A) receptors in brain sections showing reduced displacing capacity of [(35)S]TBPS binding by GABA (partial agonism) minimally require the assembly of alpha1 and beta subunits in the forebrain and of alpha6 and beta subunits in the cerebellar granule cell layer. These receptors may function as extrasynaptic GABA(A) receptors. PMID:19397945

  1. Brain regional distribution of GABAA receptors exhibiting atypical GABA agonism: roles of receptor subunits

    PubMed Central

    Halonen, Lauri M.; Sinkkonen, Saku T.; Chandra, Dev; Homanics, Gregg E.; Korpi, Esa R.

    2009-01-01

    The major inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), has only partial efficacy at certain subtypes of GABAA receptors. To characterize these minor receptor populations in rat and mouse brains, we used autoradiographic imaging of t-butylbicyclophosphoro[35S]thionate ([35S]TBPS) binding to GABAA receptors in brain sections and compared the displacing capacities of 10 mM GABA and 1 mM 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a competitive GABA-site agonist. Brains from GABAA receptor α1, α4, δ, and α4 + δ subunit knockout (KO) mouse lines were used to understand the contribution of these particular receptor subunits to “GABA-insensitive” (GIS) [35S]TBPS binding. THIP displaced more [35S]TBPS binding than GABA in several brain regions, indicating that THIP also inhibited GIS-binding. In these regions, GABA prevented the effect of THIP on GIS-binding. GIS-binding was increased in the cerebellar granule cell layer of δ KO and α4 + δ KO mice, being only slightly diminished in that of α1 KO mice. In the thalamus and some other forebrain regions of wild-type mice, a significant amount of GIS-binding was detected. This GIS-binding was higher in α4 KO mice. However, it was fully abolished in α1 KO mice, indicating that the α1 subunit was obligatory for the GIS-binding in the forebrain. Our results suggest that native GABAA receptors in brain sections showing reduced displacing capacity of [35S]TBPS binding by GABA (partial agonism) minimally require the assembly of α1 and β subunits in the forebrain and of α6 and β subunits in the cerebellar granule cell layer. These receptors may function as extrasynaptic GABAA receptors. PMID:19397945

  2. Pharmacogenomic study of the role of the nociceptin/orphanin FQ receptor and opioid receptors in diabetic hyperalgesia.

    PubMed

    Rutten, Kris; Tzschentke, Thomas M; Koch, Thomas; Schiene, Klaus; Christoph, Thomas

    2014-10-15

    Targeting functionally independent receptors may provide synergistic analgesic effects in neuropathic pain. To examine the interdependency between different opioid receptors (µ-opioid peptide [MOP], δ-opioid peptide [DOP] and κ-opioid peptide [KOP]) and the nociceptin/orphanin FQ peptide (NOP) receptor in streptozotocin (STZ)-induced diabetic polyneuropathy, nocifensive activity was measured using a hot plate test in wild-type and NOP, MOP, DOP and KOP receptor knockout mice in response to the selective receptor agonists Ro65-6570, morphine, SNC-80 and U50488H, or vehicle. Nocifensive activity was similar in non-diabetic wild-type and knockout mice at baseline, before agonist or vehicle administration. STZ-induced diabetes significantly increased heat sensitivity in all mouse strains, but MOP, DOP and KOP receptor knockouts showed a smaller degree of hyperalgesia than wild-type mice and NOP receptor knockouts. For each agonist, a significant antihyperalgesic effect was observed in wild-type diabetic mice (all P<0.05 versus vehicle); the effect was markedly attenuated in diabetic mice lacking the cognate receptor compared with wild-type diabetic mice. Morphine was the only agonist that demonstrated near-full antihyperalgesic efficacy across all non-cognate receptor knockouts. Partial or near-complete reductions in efficacy were observed with Ro65-6570 in DOP and KOP receptor knockouts, with SNC-80 in NOP, MOP and KOP receptor knockouts, and with U50488H in NOP and DOP receptor knockouts. There was no evidence of NOP and MOP receptor interdependency in response to selective agonists for these receptors. These findings suggest that concurrent activation of NOP and MOP receptors, which showed functional independence, may yield an effective and favorable therapeutic analgesic profile. PMID:25169429

  3. The nociceptin/orphanin FQ receptor antagonist UFP-101 reduces microvascular inflammation to lipopolysaccharide in vivo.

    PubMed

    Brookes, Zoë L S; Stedman, Emily N; Brown, Nicola J; Hebbes, Christopher P; Guerrini, Remo; Calo, Girolamo; Reilly, Charles S; Lambert, David G

    2013-01-01

    Microvascular inflammation occurs during sepsis and the endogenous opioid-like peptide nociceptin/orphanin FQ (N/OFQ) is known to regulate inflammation. This study aimed to determine the inflammatory role of N/OFQ and its receptor NOP (ORL1) within the microcirculation, along with anti-inflammatory effects of the NOP antagonist UFP-101 (University of Ferrara Peptide-101) in an animal model of sepsis (endotoxemia). Male Wistar rats (220 to 300 g) were administered lipopolysaccharide (LPS) for 24 h (-24 h, 1 mg kg(-1); -2 h, 1 mg kg(-1) i.v., tail vein). They were then either anesthetised for observation of the mesenteric microcirculation using fluorescent in vivo microscopy, or isolated arterioles (~200 µm) were studied in vitro with pressure myography. 200 nM kg(-1) fluorescently labelled N/OFQ (FITC-N/OFQ, i.a., mesenteric artery) bound to specific sites on the microvascular endothelium in vivo, indicating sparse distribution of NOP receptors. In vitro, arterioles (~200 µm) dilated to intraluminal N/OFQ (10(-5)M) (32.6 + 8.4%) and this response was exaggerated with LPS (62.0 +7.9%, p=0.031). In vivo, LPS induced macromolecular leak of FITC-BSA (0.02 g kg(-1) i.v.) (LPS: 95.3 (86.7 to 97.9)%, p=0.043) from post-capillary venules (<40 µm) and increased leukocyte rolling as endotoxemia progressed (p=0.027), both being reduced by 150 nmol kg(-1) UFP-101 (i.v., jugular vein). Firstly, the rat mesenteric microcirculation expresses NOP receptors and secondly, NOP function (ability to induce dilation) is enhanced with LPS. UFP-101 also reduced microvascular inflammation to endotoxemia in vivo. Hence inhibition of the microvascular N/OFQ-NOP pathway may have therapeutic potential during sepsis and warrants further investigation. PMID:24086402

  4. Structure of the murine constitutive androstane receptor complexed to androstenol: a molecular basis for inverse agonism

    SciTech Connect

    Shan, L.; Vincent, J.; Brunzelle, J.S.; Dussault, I.; Lin, M.; Ianculescu, I.; Sherman, M.A.; Forman, B.M.; Fernandez, E.

    2010-03-08

    The nuclear receptor CAR is a xenobiotic responsive transcription factor that plays a central role in the clearance of drugs and bilirubin while promoting cocaine and acetaminophen toxicity. In addition, CAR has established a 'reverse' paradigm of nuclear receptor action where the receptor is active in the absence of ligand and inactive when bound to inverse agonists. We now report the crystal structure of murine CAR bound to the inverse agonist androstenol. Androstenol binds within the ligand binding pocket, but unlike many nuclear receptor ligands, it makes no contacts with helix H12/AF2. The transition from constitutive to basal activity (androstenol bound) appears to be associated with a ligand-induced kink between helices H10 and H11. This disrupts the previously predicted salt bridge that locks H12 in the transcriptionally active conformation. This mechanism of inverse agonism is distinct from traditional nuclear receptor antagonists thereby offering a new approach to receptor modulation.

  5. The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism.

    PubMed

    Wootten, Denise; Reynolds, Christopher A; Smith, Kevin J; Mobarec, Juan C; Koole, Cassandra; Savage, Emilia E; Pabreja, Kavita; Simms, John; Sridhar, Rohan; Furness, Sebastian G B; Liu, Mengjie; Thompson, Philip E; Miller, Laurence J; Christopoulos, Arthur; Sexton, Patrick M

    2016-06-16

    Ligand-directed signal bias offers opportunities for sculpting molecular events, with the promise of better, safer therapeutics. Critical to the exploitation of signal bias is an understanding of the molecular events coupling ligand binding to intracellular signaling. Activation of class B G protein-coupled receptors is driven by interaction of the peptide N terminus with the receptor core. To understand how this drives signaling, we have used advanced analytical methods that enable separation of effects on pathway-specific signaling from those that modify agonist affinity and mapped the functional consequence of receptor modification onto three-dimensional models of a receptor-ligand complex. This yields molecular insights into the initiation of receptor activation and the mechanistic basis for biased agonism. Our data reveal that peptide agonists can engage different elements of the receptor extracellular face to achieve effector coupling and biased signaling providing a foundation for rational design of biased agonists. PMID:27315480

  6. Unraveling mechanisms underlying partial agonism in 5-HT3A receptors.

    PubMed

    Corradi, Jeremías; Bouzat, Cecilia

    2014-12-10

    Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses, we took advantage of the high-conductance form of the mouse serotonin type 3A (5-HT3A) receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully occupied receptor overcomes transitions to closed preopen states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds. PMID:25505338

  7. Structure-Activity Analysis of Biased Agonism at the Human Adenosine A3 Receptor

    PubMed Central

    Baltos, Jo-Anne; Paoletta, Silvia; Nguyen, Anh T. N.; Gregory, Karen J.; Tosh, Dilip K.; Christopoulos, Arthur; Jacobson, Kenneth A.

    2016-01-01

    Biased agonism at G protein–coupled receptors (GPCRs) has significant implications for current drug discovery, but molecular determinants that govern ligand bias remain largely unknown. The adenosine A3 GPCR (A3AR) is a potential therapeutic target for various conditions, including cancer, inflammation, and ischemia, but for which biased agonism remains largely unexplored. We now report the generation of bias “fingerprints” for prototypical ribose containing A3AR agonists and rigidified (N)-methanocarba 5′-N-methyluronamide nucleoside derivatives with regard to their ability to mediate different signaling pathways. Relative to the reference prototypical agonist IB-MECA, (N)-methanocarba 5′-N-methyluronamide nucleoside derivatives with significant N6 or C2 modifications, including elongated aryl-ethynyl groups, exhibited biased agonism. Significant positive correlation was observed between the C2 substituent length (in Å) and bias toward cell survival. Molecular modeling suggests that extended C2 substituents on (N)-methanocarba 5′-N-methyluronamide nucleosides promote a progressive outward shift of the A3AR transmembrane domain 2, which may contribute to the subset of A3AR conformations stabilized on biased agonist binding. PMID:27136943

  8. Structure-Activity Analysis of Biased Agonism at the Human Adenosine A3 Receptor.

    PubMed

    Baltos, Jo-Anne; Paoletta, Silvia; Nguyen, Anh T N; Gregory, Karen J; Tosh, Dilip K; Christopoulos, Arthur; Jacobson, Kenneth A; May, Lauren T

    2016-07-01

    Biased agonism at G protein-coupled receptors (GPCRs) has significant implications for current drug discovery, but molecular determinants that govern ligand bias remain largely unknown. The adenosine A3 GPCR (A3AR) is a potential therapeutic target for various conditions, including cancer, inflammation, and ischemia, but for which biased agonism remains largely unexplored. We now report the generation of bias "fingerprints" for prototypical ribose containing A3AR agonists and rigidified (N)-methanocarba 5'-N-methyluronamide nucleoside derivatives with regard to their ability to mediate different signaling pathways. Relative to the reference prototypical agonist IB-MECA, (N)-methanocarba 5'-N-methyluronamide nucleoside derivatives with significant N(6) or C2 modifications, including elongated aryl-ethynyl groups, exhibited biased agonism. Significant positive correlation was observed between the C2 substituent length (in Å) and bias toward cell survival. Molecular modeling suggests that extended C2 substituents on (N)-methanocarba 5'-N-methyluronamide nucleosides promote a progressive outward shift of the A3AR transmembrane domain 2, which may contribute to the subset of A3AR conformations stabilized on biased agonist binding. PMID:27136943

  9. Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors.

    PubMed

    Rovira, Xavier; Malhaire, Fanny; Scholler, Pauline; Rodrigo, Jordi; Gonzalez-Bulnes, Patricia; Llebaria, Amadeu; Pin, Jean-Philippe; Giraldo, Jesús; Goudet, Cyril

    2015-01-01

    Type 4 metabotropic glutamate (mGlu4) receptors are emerging targets for the treatment of various disorders. Accordingly, numerous mGlu4-positive allosteric modulators (PAMs) have been identified, some of which also display agonist activity. To identify the structural bases for their allosteric action, we explored the relationship between the binding pockets of mGlu4 PAMs with different chemical scaffolds and their functional properties. By use of innovative mGlu4 biosensors and second-messenger assays, we show that all PAMs enhance agonist action on the receptor through different degrees of allosteric agonism and positive cooperativity. For example, whereas VU0155041 and VU0415374 display equivalent efficacies [log(τ(B)) = 1.15 ± 0.38 and 1.25 ± 0.44, respectively], they increase the ability of L-AP4 to stabilize the active conformation of the receptor by 4 and 39 times, respectively. Modeling and docking studies identify 2 overlapping binding pockets as follows: a first site homologous to the pocket of natural agonists of class A GPCRs linked to allosteric agonism and a second one pointing toward a site topographically homologous to the Na(+) binding pocket of class A GPCRs, occupied by PAMs exhibiting the strongest cooperativity. These results reveal that intrinsic efficacy and cooperativity of mGlu4 PAMs are correlated with their binding mode, and vice versa, integrating structural and functional knowledge from different GPCR classes. PMID:25342125

  10. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice

    PubMed Central

    Clemmensen, Christoffer; Finan, Brian; Fischer, Katrin; Tom, Robby Zachariah; Legutko, Beata; Sehrer, Laura; Heine, Daniela; Grassl, Niklas; Meyer, Carola W; Henderson, Bart; Hofmann, Susanna M; Tschöp, Matthias H; Van der Ploeg, Lex HT; Müller, Timo D

    2015-01-01

    We assessed the efficacy of simultaneous agonism at the glucagon-like peptide-1 receptor (GLP-1R) and the melanocortin-4 receptor (MC4R) for the treatment of obesity and diabetes in rodents. Diet-induced obese (DIO) mice were chronically treated with either the long-acting GLP-1R agonist liraglutide, the MC4R agonist RM-493 or a combination of RM-493 and liraglutide. Co-treatment of DIO mice with RM-493 and liraglutide improves body weight loss and enhances glycemic control and cholesterol metabolism beyond what can be achieved with either mono-therapy. The superior metabolic efficacy of this combination therapy is attributed to the anorectic and glycemic actions of both drugs, along with the ability of RM-493 to increase energy expenditure. Interestingly, compared to mice treated with liraglutide alone, hypothalamic Glp-1r expression was higher in mice treated with the combination therapy after both acute and chronic treatment. Further, RM-493 enhanced hypothalamic Mc4r expression. Hence, co-dosing with MC4R and GLP-1R agonists increases expression of each receptor, indicative of minimized receptor desensitization. Together, these findings suggest potential opportunities for employing combination treatments that comprise parallel MC4R and GLP-1R agonism for the treatment of obesity and diabetes. PMID:25652173

  11. Pharmacological characterization of the nociceptin/orphanin FQ receptor on ethanol-mediated motivational effects in infant and adolescent rats.

    PubMed

    Miranda-Morales, Roberto Sebastián; Pautassi, Ricardo M

    2016-02-01

    Activation of nociceptin/orphanin FQ (NOP) receptors attenuates ethanol drinking and prevents relapse in adult rodents. In younger rodents (i.e., infant rats), activation of NOP receptors blocks ethanol-induced locomotor activation but does not attenuate ethanol intake. The aim of the present study was to extend the analysis of NOP modulation of ethanol's effects during early ontogeny. Aversive and anxiolytic effects of ethanol were measured in infant and adolescent rats via conditioned taste aversion and the light-dark box test; whereas ethanol-induced locomotor activity and ethanol intake was measured in adolescents only. Before these tests, infant rats were treated with the natural ligand of NOP receptors, nociceptin (0.0, 0.5 or 1.0 μg) and adolescent rats were treated with the specific agonist Ro 64-6198 (0.0, 0.1 or 0.3 mg/kg). The activation of NOP receptors attenuated ethanol-induced anxiolysis in adolescents only, and had no effect on ethanol's aversive effects. Administration of Ro 64-6198 blocked ethanol-induced locomotor activation but did not modify ethanol intake patterns. The attenuation of ethanol stimulating and anxiolytic effect by activation of NOP receptors indicates a modulatory role of this receptor on ethanol effects, which is expressed early in ontogeny. PMID:25907741

  12. An investigation into the origin of the biased agonism associated with the urotensin II receptor activation.

    PubMed

    Brancaccio, Diego; Merlino, Francesco; Limatola, Antonio; Yousif, Ali Munaim; Gomez-Monterrey, Isabel; Campiglia, Pietro; Novellino, Ettore; Grieco, Paolo; Carotenuto, Alfonso

    2015-05-01

    The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U-II) and urotensin II-related peptide (URP). Extensive expression of the two ligands uncovers the diversified pathophysiological effects mediated by the urotensinergic system such as cardiovascular disorders, smooth muscle cell proliferation, renal disease, diabetes, and tumour growth. As newly reported, U-II and URP have distinct effects on transcriptional activity, cell proliferation, and myocardial contractile activities supporting the idea that U-II and URP interact with UTR in a distinct manner (biased agonism). To shed light on the origin of the divergent activities of the two endogenous ligands, we performed a conformational study on URP by solution NMR in sodium dodecyl sulfate micelle solution and compared the obtained NMR structure of URP with that of hU-II previously determined. Finally, we undertook docking studies between URP, hU-II, and an UT receptor model. PMID:25694247

  13. Partial adenosine A1 receptor agonism: a potential new therapeutic strategy for heart failure.

    PubMed

    Greene, Stephen J; Sabbah, Hani N; Butler, Javed; Voors, Adriaan A; Albrecht-Küpper, Barbara E; Düngen, Hans-Dirk; Dinh, Wilfried; Gheorghiade, Mihai

    2016-01-01

    Heart failure (HF) represents a global public health and economic problem associated with unacceptable rates of death, hospitalization, and healthcare expenditure. Despite available therapy, HF carries a prognosis comparable to many forms of cancer with a 5-year survival rate of ~50%. The current treatment paradigm for HF with reduced ejection fraction (EF) centers on blocking maladaptive neurohormonal activation and decreasing cardiac workload with therapies that concurrently lower blood pressure and heart rate. Continued development of hemodynamically active medications for stepwise addition to existing therapies carries the risk of limited tolerability and safety. Moreover, this treatment paradigm has thus far failed for HF with preserved EF. Accordingly, development of hemodynamically neutral HF therapies targeting primary cardiac pathologies must be considered. In this context, a partial adenosine A1 receptor (A1R) agonist holds promise as a potentially hemodynamically neutral therapy for HF that could simultaneous improve cardiomyocyte energetics, calcium homeostasis, cardiac structure and function, and long-term clinical outcomes when added to background therapies. In this review, we describe the physiology and pathophysiology of HF as it relates to adenosine agonism, examine the existing body of evidence and biologic rationale for modulation of adenosine A1R activity, and review the current state of drug development of a partial A1R agonist for the treatment of HF. PMID:26701329

  14. NMDA Receptor Agonism and Antagonism within the Amygdaloid Central Nucleus Suppresses Pain Affect: Differential Contribution of the Ventrolateral Periaqueductal Gray

    PubMed Central

    Spuz, Catherine A.; Tomaszycki, Michelle L.; Borszcz, George S.

    2015-01-01

    The amygdala contributes to the generation of pain affect and the amygdaloid central nucleus (CeA) receives nociceptive input that is mediated by glutamatergic neurotransmission. The present study compared the contribution of N-methyl-D-aspartate (NMDA) receptor agonism and antagonism in CeA to generation of the affective response of rats to an acute noxious stimulus. Vocalizations that occur following a brief tail shock (vocalization afterdischarges) are a validated rodent model of pain affect, and were preferentially suppressed, in a dose dependent manner, by bilateral injection into CeA of NMDA (.1 µg, .25 µg, .5 µg, or 1 µg/side), or the NMDA receptor antagonist D-2-amino-5-phosphonovalerate (AP5, 1 µg, 2 µg, or 4 µg/side). Vocalizations that occur during tail shock were suppressed to a lesser degree, whereas, spinal motor reflexes (tail flick and hind limb movements) were unaffected by injection of NMDA or AP5 into CeA. Injection of NMDA, but not AP5, into CeA increased c-Fos immunoreactivity in the ventrolateral periaqueductal gray (vlPAG), and unilateral injection of the µ-opiate receptor antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP, 0.25 µg) into vlPAG prevented the antinociception generated by injection of NMDA into CeA. These findings demonstrate that although NMDA receptor agonism and antagonism in CeA produce similar suppression of pain behaviors they do so via different neurobiological mechanisms. Perspective The amygdala contributes to production of the emotional dimension of pain. NMDA receptor agonism and antagonism within the central nucleus of the amygdala suppressed rats’ emotional response to acute painful stimulation. Understanding the neurobiology underlying emotional responses to pain will provide insights into new treatments for pain and its associated affective disorders. PMID:25261341

  15. Quantitative Signaling and Structure-Activity Analyses Demonstrate Functional Selectivity at the Nociceptin/Orphanin FQ Opioid Receptor.

    PubMed

    Chang, Steven D; Mascarella, S Wayne; Spangler, Skylar M; Gurevich, Vsevolod V; Navarro, Hernan A; Carroll, F Ivy; Bruchas, Michael R

    2015-09-01

    Comprehensive studies that consolidate selective ligands, quantitative comparisons of G protein versus arrestin-2/3 coupling, together with structure-activity relationship models for G protein-coupled receptor (GPCR) systems are less commonly employed. Here we examine biased signaling at the nociceptin/orphanin FQ opioid receptor (NOPR), the most recently identified member of the opioid receptor family. Using real-time, live-cell assays, we identified the signaling profiles of several NOPR-selective ligands in upstream GPCR signaling (G protein and arrestin pathways) to determine their relative transduction coefficients and signaling bias. Complementing this analysis, we designed novel ligands on the basis of NOPR antagonist J-113,397 [(±)-1-[(3R*,4R*)-1-(cyclooctylmethyl)-3-(hydroxymethyl)-4-piperidinyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one] to explore structure-activity relationships. Our study shows that NOPR is capable of biased signaling, and further, the NOPR selective ligands MCOPPB [1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-(3R)-3-piperidinyl-1H-benzimidazole trihydrochloride] and NNC 63-0532 [8-(1-naphthalenylmethyl)-4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decane-3-acetic acid, methyl ester] are G protein-biased agonists. Additionally, minor structural modification of J-113,397 can dramatically shift signaling from antagonist to partial agonist activity. We explore these findings with in silico modeling of binding poses. This work is the first to demonstrate functional selectivity and identification of biased ligands at the nociceptin opioid receptor. PMID:26134494

  16. Prostaglandin I2 Receptor Agonism Preserves β-Cell Function and Attenuates Albuminuria Through Nephrin-Dependent Mechanisms.

    PubMed

    Batchu, Sri N; Majumder, Syamantak; Bowskill, Bridgit B; White, Kathryn E; Advani, Suzanne L; Brijmohan, Angela S; Liu, Youan; Thai, Kerri; Azizi, Paymon M; Lee, Warren L; Advani, Andrew

    2016-05-01

    Discovery of common pathways that mediate both pancreatic β-cell function and end-organ function offers the opportunity to develop therapies that modulate glucose homeostasis and separately slow the development of diabetes complications. Here, we investigated the in vitro and in vivo effects of pharmacological agonism of the prostaglandin I2 (IP) receptor in pancreatic β-cells and in glomerular podocytes. The IP receptor agonist MRE-269 increased intracellular 3',5'-cyclic adenosine monophosphate (cAMP), augmented glucose-stimulated insulin secretion (GSIS), and increased viability in MIN6 β-cells. Its prodrug form, selexipag, augmented GSIS and preserved islet β-cell mass in diabetic mice. Determining that this preservation of β-cell function is mediated through cAMP/protein kinase A (PKA)/nephrin-dependent pathways, we found that PKA inhibition, nephrin knockdown, or targeted mutation of phosphorylated nephrin tyrosine residues 1176 and 1193 abrogated the actions of MRE-269 in MIN6 cells. Because nephrin is important to glomerular permselectivity, we next set out to determine whether IP receptor agonism similarly affects nephrin phosphorylation in podocytes. Expression of the IP receptor in podocytes was confirmed in cultured cells by immunoblotting and quantitative real-time PCR and in mouse kidneys by immunogold electron microscopy, and its agonism 1) increased cAMP, 2) activated PKA, 3) phosphorylated nephrin, and 4) attenuated albumin transcytosis. Finally, treatment of diabetic endothelial nitric oxide synthase knockout mice with selexipag augmented renal nephrin phosphorylation and attenuated albuminuria development independently of glucose change. Collectively, these observations describe a pharmacological strategy that posttranslationally modifies nephrin and the effects of this strategy in the pancreas and in the kidney. PMID:26868296

  17. Fulfilling the Promise of "Biased" G Protein-Coupled Receptor Agonism.

    PubMed

    Luttrell, Louis M; Maudsley, Stuart; Bohn, Laura M

    2015-09-01

    The fact that over 30% of current pharmaceuticals target heptahelical G protein-coupled receptors (GPCRs) attests to their tractability as drug targets. Although GPCR drug development has traditionally focused on conventional agonists and antagonists, the growing appreciation that GPCRs mediate physiologically relevant effects via both G protein and non-G protein effectors has prompted the search for ligands that can "bias" downstream signaling in favor of one or the other process. Biased ligands are novel entities with distinct signaling profiles dictated by ligand structure, and the potential prospect of biased ligands as better drugs has been pleonastically proclaimed. Indeed, preclinical proof-of-concept studies have demonstrated that both G protein and arrestin pathway-selective ligands can promote beneficial effects in vivo while simultaneously antagonizing deleterious ones. But along with opportunity comes added complexity and new challenges for drug discovery. If ligands can be biased, then ligand classification becomes assay dependent, and more nuanced screening approaches are needed to capture ligand efficacy across several dimensions of signaling. Moreover, because the signaling repertoire of biased ligands differs from that of the native agonist, unpredicted responses may arise in vivo as these unbalanced signals propagate. For any given GPCR target, establishing a framework relating in vitro efficacy to in vivo biologic response is crucial to biased drug discovery. This review discusses approaches to describing ligand efficacy in vitro, translating ligand bias into biologic response, and developing a systems-level understanding of biased agonism in vivo, with the overall goal of overcoming current barriers to developing biased GPCR therapeutics. PMID:26134495

  18. Fulfilling the Promise of "Biased" G Protein–Coupled Receptor Agonism

    PubMed Central

    Maudsley, Stuart; Bohn, Laura M.

    2015-01-01

    The fact that over 30% of current pharmaceuticals target heptahelical G protein–coupled receptors (GPCRs) attests to their tractability as drug targets. Although GPCR drug development has traditionally focused on conventional agonists and antagonists, the growing appreciation that GPCRs mediate physiologically relevant effects via both G protein and non–G protein effectors has prompted the search for ligands that can "bias" downstream signaling in favor of one or the other process. Biased ligands are novel entities with distinct signaling profiles dictated by ligand structure, and the potential prospect of biased ligands as better drugs has been pleonastically proclaimed. Indeed, preclinical proof-of-concept studies have demonstrated that both G protein and arrestin pathway-selective ligands can promote beneficial effects in vivo while simultaneously antagonizing deleterious ones. But along with opportunity comes added complexity and new challenges for drug discovery. If ligands can be biased, then ligand classification becomes assay dependent, and more nuanced screening approaches are needed to capture ligand efficacy across several dimensions of signaling. Moreover, because the signaling repertoire of biased ligands differs from that of the native agonist, unpredicted responses may arise in vivo as these unbalanced signals propagate. For any given GPCR target, establishing a framework relating in vitro efficacy to in vivo biologic response is crucial to biased drug discovery. This review discusses approaches to describing ligand efficacy in vitro, translating ligand bias into biologic response, and developing a systems-level understanding of biased agonism in vivo, with the overall goal of overcoming current barriers to developing biased GPCR therapeutics. PMID:26134495

  19. Pharmacological profiles of presynaptic nociceptin/orphanin FQ receptors modulating 5-hydroxytryptamine and noradrenaline release in the rat neocortex

    PubMed Central

    Marti, Matteo; Stocchi, Sara; Paganini, Francesca; Mela, Flora; Risi, Carmela De; Calo', Girolamo; Guerrini, Remo; Barnes, Timothy A; Lambert, David G; Beani, Lorenzo; Bianchi, Clementina; Morari, Michele

    2003-01-01

    The pharmacological profiles of presynaptic nociceptin/orphanin FQ (N/OFQ) peptide receptors (NOP) modulating 5-hydroxytryptamine (5-HT) and noradrenaline (NE) release in the rat neocortex were characterized in a preparation of superfused synaptosomes challenged with 10 mM KCl. N/OFQ concentration-dependently inhibited K+-evoked [3H]-5-HT and [3H]-NE overflow with similar potency (pEC50 ∼7.9 and ∼7.7, respectively) and efficacy (maximal inhibition ∼40%). N/OFQ (0.1 μM) inhibition of [3H]-5-HT and [3H]-NE overflow was antagonized by selective NOP receptor antagonists of peptide ([Nphe1]N/OFQ(1-13)NH2 and UFP-101; 10 and 1 μM, respectively) and non-peptide (J-113397 and JTC-801; both 0.1 μM) nature. Antagonists were routinely applied 3 min before N/OFQ. However, a 21 min pre-application time was necessary for J-113397 and JTC-801 to prevent N/OFQ inhibition of [3H]-NE overflow. The NOP receptor ligand [Phe1ψ(CH2-NH)Gly2]N/OFQ(1-13)NH2 ([F/G]N/OFQ(1-13)NH2; 3 μM) did not affect K+-evoked [3H]-NE but inhibited K+-evoked [3H]-5-HT overflow in a UFP-101 sensitive manner. [F/G]N/OFQ(1-13)NH2 antagonized N/OFQ actions on both neurotransmitters. The time-dependency of JTC-801 action was studied in CHO cells expressing human NOP receptors. N/OFQ inhibited forskolin-stimulated cAMP accumulation and JTC-801, tested at different concentrations (0.1–10 μM) and pre-incubation times (0, 40 and 90 min), antagonized this effect in a time-dependent manner. The Schild-type analysis excluded a competitive type of antagonism. We conclude that presynaptic NO receptors inhibiting 5-HT and NE release in the rat neocortex have similar pharmacological profiles. Nevertheless, they can be differentiated pharmacologically on the basis of responsiveness to [F/G]N/OFQ(1-13)NH2 and time-dependent sensitivity towards non-peptide antagonists. PMID:12522077

  20. Divergent transducer-specific molecular efficacies generate biased agonism at a G protein-coupled receptor (GPCR).

    PubMed

    Strachan, Ryan T; Sun, Jin-peng; Rominger, David H; Violin, Jonathan D; Ahn, Seungkirl; Rojas Bie Thomsen, Alex; Zhu, Xiao; Kleist, Andrew; Costa, Tommaso; Lefkowitz, Robert J

    2014-05-16

    The concept of "biased agonism" arises from the recognition that the ability of an agonist to induce a receptor-mediated response (i.e. "efficacy") can differ across the multiple signal transduction pathways (e.g. G protein and β-arrestin (βarr)) emanating from a single GPCR. Despite the therapeutic promise of biased agonism, the molecular mechanism(s) whereby biased agonists selectively engage signaling pathways remain elusive. This is due in large part to the challenges associated with quantifying ligand efficacy in cells. To address this, we developed a cell-free approach to directly quantify the transducer-specific molecular efficacies of balanced and biased ligands for the angiotensin II type 1 receptor (AT1R), a prototypic GPCR. Specifically, we defined efficacy in allosteric terms, equating shifts in ligand affinity (i.e. KLo/KHi) at AT1R-Gq and AT1R-βarr2 fusion proteins with their respective molecular efficacies for activating Gq and βarr2. Consistent with ternary complex model predictions, transducer-specific molecular efficacies were strongly correlated with cellular efficacies for activating Gq and βarr2. Subsequent comparisons across transducers revealed that biased AT1R agonists possess biased molecular efficacies that were in strong agreement with the signaling bias observed in cellular assays. These findings not only represent the first measurements of the thermodynamic driving forces underlying differences in ligand efficacy between transducers but also support a molecular mechanism whereby divergent transducer-specific molecular efficacies generate biased agonism at a GPCR. PMID:24668815

  1. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor.

    PubMed

    Takezako, Takanobu; Unal, Hamiyet; Karnik, Sadashiva S; Node, Koichi

    2015-09-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109(TM3), Phe182(ECL2), Gln257(TM6), Tyr292(TM7), and Asn295(TM7)) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108(TM3), Ser109(TM3), Ala163(TM4), Phe182(ECL2), Lys199(TM5), Tyr292(TM7), and Asn295(TM7)), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R. PMID:26121982

  2. Phosphodiesterase inhibitor-dependent inverse agonism of agouti-related protein on melanocortin 4 receptor in sea bass (Dicentrarchus labrax)

    PubMed Central

    Sánchez, Elisa; Rubio, Vera Cruz; Thompson, Darren; Metz, Juriaan; Flik, Gert; Millhauser, Glenn L.; Cerdá-Reverter, José Miguel

    2009-01-01

    The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor mainly expressed in the central nervous system of vertebrates. Activation of the MC4R leads to a decrease in food intake, whereas inactivating mutations are a genetic cause of obesity. The binding of agouti-related protein (AGRP) reduces not only agonist-stimulated cAMP production (competitive antagonist) but also the basal activity of the receptor, as an inverse agonist. Transgenic zebrafish overexpressing AGRP display increased food intake and linear growth, indicative of a physiological role for the melanocortin system in the control of the energy balance in fish. We report on the cloning, pharmacological characterization, tissue distribution, and detailed brain mapping of a sea bass (Dicentrarchus labrax) MC4R ortholog. Sea bass MC4R is profusely expressed within food intake-controlling pathways of the fish brain. However, the activity of the melanocortin system during progressive fasting does not depend on the hypothalamic/pituitary proopiomelanocortin (POMC) and MC4R expression, which suggests that sea bass MC4R is constitutively activated and regulated by AGRP binding. We demonstrate that AGRP acts as competitive antagonist and reduces MTII-induced cAMP production. AGRP also decreases the basal activity of the receptor as an inverse agonist. This observation suggests that MC4R is constitutively active and supports the evolutionary conservation of the AGRP/MC4R interactions. The inverse agonism, but not the competitive antagonism, depends on the presence of a phosphodiesterase inhibitor (IBMX). This suggests that inverse agonism and competitive antagonism operate through different intracellular signaling pathways, a view that opens up new targets for the treatment of melanocortin-induced metabolic syndrome. PMID:19225141

  3. Involvement of neurotransmitters in the action of the nociceptin/orphanin FQ peptide-receptor system on passive avoidance learning in rats.

    PubMed

    Palotai, Miklós; Adamik, Agnes; Telegdy, Gyula

    2014-08-01

    The nociceptin/orphanin FQ peptide (NOP) receptor and its endogenous ligand plays role in several physiologic functions of the central nervous system, including pain, locomotion, anxiety and depression, reward and drug addiction, learning and memory. Previous studies demonstrated that the NOP-receptor system induces impairment in memory and learning. However, we have little evidence about the underlying neuromodulation. The aim of the present study was to investigate the involvement of distinct neurotransmitters in the action of the selective NOP receptor agonist orphan G protein-coupled receptor (GPCR) SP9155 P550 on memory consolidation in a passive avoidance learning test in rats. Accordingly, rats were pretreated with a nonselective muscarinic acetylcholine receptor antagonist, atropine, a γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline, a D2, D3, D4 dopamine receptor antagonist, haloperidol, a nonselective opioid receptor antagonist, naloxone, a non-specific nitric oxide synthase inhibitor, nitro-L-arginine, a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a β-adrenergic receptor antagonist, propranolol. Atropine, bicuculline, naloxone and phenoxybenzamine reversed the orphan GPCR SP9155 P550-induced memory impairment, whereas propranolol, haloperidol and nitro-L-arginine were ineffective. Our results suggest that the NOP system-induced impairment of memory consolidation is mediated through muscarinic cholinergic, GABA-A-ergic, opioid and α-adrenergic receptors, whereas β-adrenergic, D2, D3, D4-dopaminergic and nitrergic mechanisms are not be implicated. PMID:24893797

  4. Role of Nociceptin/Orphanin FQ and NOP Receptors in the Response to Acute and Repeated Restraint Stress in Rats

    PubMed Central

    Delaney, G; Dawe, K L; Hogan, R; Hunjan, T; Roper, J; Hazell, G; Lolait, S J; Fulford, A J

    2012-01-01

    Central nociceptin/orphanin FQ (N/OFQ)-expressing neurones are abundantly expressed in the hypothalamus and limbic system and are implicated in the regulation of activity of the hypothalamic-pituitary-adrenal axis (HPA) and stress responses. We investigated the role of the endogenous N/OFQ receptor (NOP) system using the nonpeptidic NOP antagonist, JTC-801 [N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxy-methyl)benzamide monohydrochloride], during the HPA axis response to acute physical/psychological stress (60 min of restraint). Although i.v. JTC-801 (0.05 mg/kg in 100 μl) had no significant effect on restraint-induced plasma corticosterone release at 30 or 60 min post-injection, i.v. JTC-801 (0.05 mg/kg in 100 μl) in quiescent rats significantly increased basal plasma corticosterone at the 30-min time-point compared to i.v. vehicle (1% dimethysulphoxide in sterile saline). Central injection of JTC-801 i.c.v. was associated with increased Fos expression in the parvocellular paraventricular nucleus 90 min after infusion compared to vehicle control. These findings contrast to the effects of i.c.v. UFP-101, a NOP antagonist that we have previously shown to have no effect on HPA activity in quiescent rats. To determine whether restraint stress was associated with compensatory changes in N/OFQ precursor (ppN/OFQ) or NOP receptor mRNAs, in a separate study, we undertook reverse transcriptase-polymerase chain reaction and in situ hybridisation analysis of ppN/OFQ and NOP transcripts in the brains of male Sprague–Dawley rats. In support of an endogenous role for central N/OFQ in psychological stress, we found that acute restraint significantly decreased preproN/OFQ transcript expression in the hippocampus 2 h after stress compared to unstressed controls. PpN/OFQ mRNA was also reduced in the mediodorsal forebrain 4 h after stress. NOP mRNA was reduced in the hypothalamus 2 h after restraint and at 4 h in mediodorsal forebrain and hippocampus. In situ hybridisation

  5. Roles of μ-Opioid Receptors and Nociceptin/Orphanin FQ Peptide Receptors in Buprenorphine-Induced Physiological Responses in Primates

    PubMed Central

    Cremeans, Colette M.; Gruley, Erin; Kyle, Donald J.

    2012-01-01

    Buprenorphine is known as a μ-opioid peptide (MOP) receptor agonist, but its antinociception is compromised by the activation of nociceptin/orphanin FQ peptide (NOP) receptors in rodents. The aim of this study was to investigate the roles of MOP and NOP receptors in regulating buprenorphine-induced physiological responses in primates (rhesus monkeys). The effects of MOP antagonist (naltrexone), NOP antagonist [(±)-1-[(3R*,4R*)-1-(cyclooctylmethyl)-3-(hydroxymethyl)-4-piperidinyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (J-113397)], and NOP agonists [(1S,3aS)-8-(2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5] decan-4-one (Ro 64-6198) and 3-endo-8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol (SCH 221510)] on buprenorphine were studied in three functional assays for measuring analgesia, respiratory depression, and itch in primates. Over the dose range of 0.01 to 0.1 mg/kg, buprenorphine dose-dependently produced antinociception, respiratory depression, and itch/scratching responses, and there was a ceiling effect at higher doses (0.1–1 mg/kg). Naltrexone (0.03 mg/kg) produced similar degrees of rightward shifts of buprenorphine's dose-response curves for all three endpoints. Mean pKB values of naltrexone (8.1–8.3) confirmed that MOP receptors mediated mainly buprenorphine-induced antinociception, respiratory depression, and itch/scratching. In contrast, J-113397 (0.1 mg/kg) did not change buprenorphine-induced physiological responses, indicating that there were no functional NOP receptors in buprenorphine-induced effects. More importantly, both NOP agonists, Ro 64-6198 and SCH 221510, enhanced buprenorphine-induced antinociception without respiratory depression and itch/ scratching. The dose-addition analysis revealed that buprenorphine in combination with the NOP agonist synergistically produced antinociceptive effects. These findings provided functional evidence that the activation of NOP receptors did not

  6. Effects of Spinally Administered Bifunctional Nociceptin/Orphanin FQ Peptide Receptor/μ-Opioid Receptor Ligands in Mouse Models of Neuropathic and Inflammatory Pain

    PubMed Central

    Sukhtankar, Devki D.; Zaveri, Nurulain T.; Husbands, Stephen M.

    2013-01-01

    Nociceptin/orphanin FQ peptide receptor (NOP) agonists produce antinociceptive effects in animal models after spinal administration and potentiate μ-opioid receptor (MOP)-mediated antinociception. This study determined the antinociceptive effects of spinally administered bifunctional NOP/MOP ligands and the antinociceptive functions of spinal NOP and MOP receptors in mice. Antinociceptive effects of bifunctional NOP/MOP ligands BU08028 [(2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol] and SR16435 [1-(1-(2,3,3α,4,5,6-hexahydro-1H-phenalen-1-yl)piperidin-4-yl)-indolin-2-one] were pharmacologically compared with the putative bifunctional ligand buprenorphine, selective NOP agonist SCH221510 [3-endo-8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol] and selective MOP agonist morphine in neuropathic and inflammatory pain models. Additionally, the degree of tolerance development to the antiallodynic effects of SR16435 and buprenorphine were determined after repeated intrathecal administration. Our data indicated that BU08028 and SR16435 were more potent than morphine and SCH221510 in attenuating nerve injury-induced tactile allodynia and inflammation-induced thermal hyperalgesia. Coadministration of receptor-selective antagonists further revealed that both NOP and MOP in the spinal cord mediated the antiallodynic effects of BU08028 and SR16435, but intrathecal buprenorphine-induced antiallodynic effects were primarily mediated by MOP. Repeated intrathecal administration of SR16435 resulted in reduced and slower development of tolerance to its antiallodynic effects compared with buprenorphine. In conclusion, both NOP and MOP receptors in the spinal cord independently drive antinociception in mice. Spinally administered bifunctional NOP/MOP ligands not only can effectively attenuate neuropathic and inflammatory pain, but also have higher antinociceptive potency with reduced

  7. Cannabinoid receptor agonism suppresses tremor, cognition disturbances and anxiety-like behaviors in a rat model of essential tremor.

    PubMed

    Abbassian, Hassan; Esmaeili, Parisa; Tahamtan, Mahshid; Aghaei, Iraj; Vaziri, Zohreh; Sheibani, Vahid; Whalley, Benjamin J; Shabani, Mohammad

    2016-10-01

    Cognitive and motor disturbances are serious consequences of tremor induced by motor disorders. Despite a lack of effective clinical treatment, some potential therapeutic agents have been used to alleviate the cognitive symptoms in the animal models of tremor. In the current study, the effects of WIN55, 212-2 (WIN), a cannabinoid receptor (CBR) agonist, on harmaline-induced motor and cognitive impairments were studied. Adult rats were treated with WIN (0.5mg/kg; i.p.) 15min before harmaline administration (10mg/kg; ip) after which exploratory and anxiety related behaviors, and cognitive function were assessed using open-field behavior and shuttle box tests. Rats that received harmaline only exhibited a markedly reduced number of central square entries when compared to harmaline vehicle-treated controls, whereas those treated with WIN and harmaline showed a significant increase in central square entries, compared to harmaline only treated. The passive avoidance memory impairments observed in harmaline treated rats, was reversed somewhat by administration of WIN. The neuroprotective and anxiolytic effects of WIN demonstrated in the current study can be offered cannabinoid receptor (CBR) agonism as a potential neuroprotective agent in the treatment of patients with tremor that manifest mental dysfunctions. PMID:27317835

  8. Cardioprotective Effect of Beta-3 Adrenergic Receptor Agonism: Role of Neuronal Nitric Oxide Synthase

    PubMed Central

    Niu, Xiaolin; Watts, Vabren L.; Cingolani, Oscar H.; Sivakumaran, Vidhya; Leyton-Mange, Jordan S.; Ellis, Carla L.; Miller, Karen L.; Vandegaer, Konrad; Bedja, Djahida; Gabrielson, Kathleen L.; Paolocci, Nazareno; Kass, David A.; Barouch, Lili A.

    2012-01-01

    Objective The aim of this study is to determine if activation of β3-adrenoceptor (β3-AR) and downstream signaling of NOS isoforms protects the heart from failure and hypertrophy induced by pressure overload. Background β3-AR and its downstream signaling pathways are recognized as novel modulators of heart function. Unlike _1- and _2-ARs, _3-ARs are stimulated at high catecholamine concentrations and induce negative inotropic effects, serving as a “brake” to protect the heart from catecholamine overstimulation. Methods C57BL/6J and nNOS knock-out mice were assigned to receive transverse aortic constriction (TAC), BRL37344 (β3-agonist, BRL0.1 mg/kg/hour), or both. Results Three weeks of BRL treatment in wild type mice attenuated left ventricular dilation and systolic dysfunction, and partially reduced cardiac hypertrophy induced by TAC. This effect was associated with increased nitric oxide (NO) production and superoxide suppression. TAC decreased endothelial NO synthase (eNOS) dimerization, indicating eNOS uncoupling, which was not reversed by BRL treatment. However, nNOS protein expression was up-regulated 2-fold by BRL, and the suppressive effect of BRL on superoxide generation was abrogated by acute neuronal NO synthase (nNOS) inhibition. Furthermore, BRL cardioprotective effects were actually detrimental in nNOS−/− mice. Conclusion These results are the first to show in vivo cardioprotective effects of β3-AR specific agonism in pressure overload hypertrophy and heart failure, and support nNOS as the primary downstream NOS isoform in maintaining NO and reactive oxygen species (ROS) balance in the failing heart. PMID:22624839

  9. Nociceptin/orphanin FQ peptide receptor antagonist JTC-801 reverses pain and anxiety symptoms in a rat model of post-traumatic stress disorder

    PubMed Central

    Zhang, Y; Simpson-Durand, C D; Standifer, K M

    2015-01-01

    BACKGROUND AND PURPOSE Single-prolonged stress (SPS), a rat model of post-traumatic stress disorder (PTSD), also induces long-lasting hyperalgesia associated with hypocortisolism and elevated nociceptin/orphanin FQ (N/OFQ) levels in serum and CSF. Here, we determined the effect of JTC-801 (N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl) benzamide monohydrochloride), a nociceptin/orphanin FQ peptide (NOP) receptor antagonist, on symptoms of pain and anxiety in rats after SPS exposure, and examined N/OFQ-NOP receptor system changes. EXPERIMENTAL APPROACH Male Sprague Dawley rats received JTC-801 (6 mg kg−1 i.p., once daily) during days 7–21 of SPS. The ability of JTC-801 to inhibit N/OFQ-stimulated [35S]-GTPγS binding was confirmed in rat brain membranes. Anxiety-like behaviour and pain sensitivity were monitored by changes in elevated plus maze performance and withdrawal responses to thermal and mechanical stimuli. Serum corticosterone and N/OFQ content in CSF, serum and brain tissues were determined by radioimmunoassay; NOP receptor protein and gene expression in amygdala, hippocampus and periaqueductal grey (PAG) were examined by immunoblotting and real-time PCR respectively. KEY RESULTS JTC-801 treatment reversed SPS-induced mechanical allodynia, thermal hyperalgesia, anxiety-like behaviour and hypocortisolism. Elevated N/OFQ levels in serum, CSF, PAG and hippocampus at day 21 of SPS were blocked by JTC-801; daily JTC-801 treatment also reversed NOP receptor protein and mRNA up-regulation in amygdala and PAG. CONCLUSION AND IMPLICATIONS JTC-801 reversed SPS-induced anxiety- and pain-like behaviours, and NOP receptor system up-regulation. These findings suggest that N/OFQ plays an important role in hyperalgesia and allodynia maintenance after SPS. NOP receptor antagonists may provide effective treatment for co-morbid PTSD and pain. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view

  10. Pharmacological characterization of the novel nociceptin/orphanin FQ receptor ligand, ZP120: in vitro and in vivo studies in mice.

    PubMed

    Rizzi, Anna; Rizzi, Daniela; Marzola, Giuliano; Regoli, Domenico; Larsen, Bjarne Due; Petersen, Jorgen Soberg; Calo', Girolamo

    2002-10-01

    1 This study reports on the pharmacological characterization of ZP120, a novel ligand of the nociceptin/orphanin FQ (N/OFQ) peptide receptor, NOP. ZP120 is a structure inducing probes modified NOP ligand: Zealand Pharma proprietary SIP technology was used to increase the enzymatic stability and half-life of peptide. 2 In vitro, ZP120 mimicked the inhibitory effects of N/OFQ in the electrically stimulated mouse vas deferens, showing however higher potency (pEC(50) 8.88 vs 7.74), lower maximal effects (E(max) 69+/-5% vs 91+/-2%), and slower onset of action. Like N/OFQ, the effects of ZP120 were not modified by 1 micro M naloxone, but they were antagonized by the NOP receptor selective antagonist J-113397 (pA(2) 7.80 vs ZP120, 7.81 vs N/OFQ). 3 In vivo, ZP120 mimicked the effects of N/OFQ, producing pronociceptive effects in the tail withdrawal assay and decreased locomotor activity after i.c.v., but not after i.v. administration in mice. ZP120 elicited similar maximal effects as N/OFQ, but it was about 10 fold more potent and its effects lasted longer. 4 In conclusion, the novel NOP receptor ligand ZP120 is a highly potent and selective partial agonist of the NOP receptor with prolonged effects in vivo. PMID:12237257

  11. [Nphe1,Arg14,Lys15]Nociceptin-NH2, a novel potent and selective antagonist of the nociceptin/orphanin FQ receptor

    PubMed Central

    Calo, Girolamo; Rizzi, Anna; Rizzi, Daniela; Bigoni, Raffaella; Guerrini, Remo; Marzola, Giuliano; Marti, Matteo; McDonald, John; Morari, Michele; Lambert, David G; Salvadori, Severo; Regoli, Domenico

    2002-01-01

    Nociceptin/orphanin FQ (N/OFQ) modulates several biological functions by activating a specific G-protein coupled receptor (NOP). Few molecules are available that selectively activate or block the NOP receptor. Here we describe the in vitro and in vivo pharmacological profile of a novel NOP receptor ligand, [Nphe1,Arg14,Lys15]N/OFQ-NH2 (UFP-101).UFP-101 binds to the human recombinant NOP receptor expressed in Chinese hamster ovary (CHO) cells with high affinity (pKi 10.2) and shows more than 3000 fold selectivity over classical opioid receptors. UFP-101 competitively antagonizes the effects of N/OFQ on GTPγ35S binding in CHOhNOP cell membranes (pA2 9.1) and on cyclic AMP accumulation in CHOhNOP cells (pA2 7.1), being per se inactive at concentrations up to 10 μM.In isolated peripheral tissues of mice, rats and guinea-pigs, and in rat cerebral cortex synaptosomes preloaded with [3H]-5-HT, UFP-101 competitively antagonized the effects of N/OFQ with pA2 values in the range of 7.3–7.7. In the same preparations, the peptide was inactive alone and did not modify the effects of classical opioid receptor agonists.UFP-101 is also active in vivo where it prevented the depressant action on locomotor activity and the pronociceptive effect induced by 1 nmol N/OFQ i.c.v. in the mouse. In the tail withdrawal assay, UFP-101 at 10 nmol produces per se a robust and long lasting antinociceptive effect.UFP-101 is a novel, potent and selective NOP receptor antagonist which appears to be a useful tool for future investigations of the N/OFQ-NOP receptor system. PMID:12010780

  12. Pharmacological characterization of mGlu1 receptors in cerebellar granule cells reveals biased agonism

    PubMed Central

    Hathaway, Hannah A.; Pshenichkin, Sergey; Grajkowska, Ewa; Gelb, Tara; Emery, Andrew C.; Wolfe, Barry B.; Wroblewski, Jarda T.

    2015-01-01

    The majority of existing research on the function of metabotropic glutamate (mGlu) receptor 1 focuses on G protein-mediated outcomes. However, similar to other G protein-coupled receptors (GPCR), it is becoming apparent that mGlu1 receptor signaling is multi-dimensional and does not always involve G protein activation. Previously, in transfected CHO cells, we showed that mGlu1 receptors activate a G protein-independent, β-arrestin-dependent signal transduction mechanism and that some mGlu1 receptor ligands were incapable of stimulating this response. Here we set out to investigate the physiological relevance of these findings in a native system using primary cultures of cerebellar granule cells. We tested the ability of a panel of compounds to stimulate two mGlu1 receptor-mediated outcomes: (1) protection from decreased cell viability after withdrawal of trophic support and (2) G protein-mediated phosphoinositide (PI) hydrolysis. We report that the commonly used mGlu1 receptor ligands quisqualate, DHPG, and ACPD are completely biased towards PI hydrolysis and do not induce mGlu1 receptor-stimulated neuroprotection. On the other hand, endogenous compounds including glutamate, aspartate, cysteic acid, cysteine sulfinic acid, and homocysteic acid stimulate both responses. These results show that some commonly used mGlu1 receptor ligands are biased agonists, stimulating only a fraction of mGlu1 receptor-mediated responses in neurons. This emphasizes the importance of utilizing multiple agonists and assays when studying GPCR function. PMID:25700650

  13. Gγ7 proteins contribute to coupling of nociceptin/orphanin FQ peptide (NOP) opioid receptors and voltage-gated Ca(2+) channels in rat stellate ganglion neurons.

    PubMed

    Mahmoud, Saifeldin; Farrag, Mohamed; Ruiz-Velasco, Victor

    2016-08-01

    The nociceptin/orphanin FQ peptide (NOP) opioid receptors regulate neurotransmitter release via inhibition of voltage-gated Ca(2+) channels (CaV2.2) in sympathetic and sensory neurons. Stimulation of NOP receptors by its endogenous agonist, nociception (Noc), leads to membrane-delimited, voltage-dependent (VD) block of CaV2.2 channel currents mediated by Gβγ protein subunits. Previously we reported that the pertussis toxin-sensitive Gαi1 and Gβ2/β4 isoforms mediate the functional coupling of NOP opioid receptors with CaV channels in rat stellate ganglion (SG) sympathetic neurons. In the present report we extended our studies by identifying the Gγ subunit that forms the heterotrimer within this signaling pathway. Small interference RNA (or siRNA) was employed to silence the expression of the natively expressed Gγ subunits. Initial PCR assays indicated that SG neurons expressed seven Gγ subunits. Silencing Gγ3 subunits did not alter signaling between NOP receptors and Ca(2+) channels. However, after Gγ7 isoforms were silenced, the Noc-mediated inhibition of CaV channels was significantly decreased when compared to SG neurons transfected with scrambled siRNA. We observed that Gγ10 and Gγ11 mRNA levels increased 2.5- and 2.7-fold, respectively, after Gγ7 subunits were silenced. However, this compensatory increase in mRNA expression did not appear to fully rescue the NOP receptor coupling efficiency. Additionally, both Gγ2 and Gγ5 levels increased 50 and 75%, respectively, while Gγ3 and Gγ4 expression levels remained relatively unchanged. Taken together, our findings suggest that the Gαi1/Gβ2(β4)/Gγ7 heterotrimeric G protein complex determines the NOP receptor-mediated modulation of CaV channels in SG neurons. PMID:27238748

  14. Kinin receptor agonism restores hindlimb postischemic neovascularization capacity in diabetic mice.

    PubMed

    Desposito, Dorinne; Potier, Louis; Chollet, Catherine; Gobeil, Fernand; Roussel, Ronan; Alhenc-Gelas, Francois; Bouby, Nadine; Waeckel, Ludovic

    2015-02-01

    Limb ischemia is a major complication of thromboembolic diseases. Diabetes worsens prognosis by impairing neovascularization. Genetic or pharmacological inactivation of the kallikrein-kinin system aggravates limb ischemia in nondiabetic animals, whereas angiotensin I-converting enzyme/kininase II inhibition improves outcome. The role of kinins in limb ischemia in the setting of diabetes is not documented. We assessed whether selective activation of kinin receptors by pharmacological agonists can influence neovascularization in diabetic mice with limb ischemia and have a therapeutic effect. Selective pseudopeptide kinin B1 or B2 receptor agonists resistant to peptidase action were administered by osmotic minipumps at a nonhypotensive dosage for 14 days after unilateral femoral artery ligation in mice previously rendered diabetic by streptozotocin. Comparison was made with ligatured, nonagonist-treated nondiabetic and diabetic mice. Diabetes reduced neovascularization, assessed by microangiography and histologic capillary density analysis, by roughly 40%. B1 receptor agonist or B2 receptor agonist similarly restored neovascularization in diabetic mice. Neovascularization in agonist-treated diabetic mice was indistinguishable from nondiabetic mice. Both treatments restored blood flow in the ischemic hindfoot, measured by laser-Doppler perfusion imaging. Macrophage infiltration increased 3-fold in the ischemic gastrocnemius muscle during B1 receptor agonist or B2 receptor agonist treatment, and vascular endothelial growth factor (VEGF) level increased 2-fold. Both treatments increased, by 50-100%, circulating CD45/CD11b-positive monocytes and CD34(+)/VEGFR2(+) progenitor cells. Thus, selective pharmacological activation of B1 or B2 kinin receptor overcomes the effect of diabetes on postischemic neovascularization and restores tissue perfusion through monocyte/macrophage mobilization. Kinin receptors are potential therapeutic targets in limb ischemia in diabetes. PMID

  15. A Novel Method for Analyzing Extremely Biased Agonism at G Protein–Coupled Receptors

    PubMed Central

    Zhou, Lei; Ehlert, Frederick J.; Bohn, Laura M.

    2015-01-01

    Seven transmembrane receptors were originally named and characterized based on their ability to couple to heterotrimeric G proteins. The assortment of coupling partners for G protein–coupled receptors has subsequently expanded to include other effectors (most notably the βarrestins). This diversity of partners available to the receptor has prompted the pursuit of ligands that selectively activate only a subset of the available partners. A biased or functionally selective ligand may be able to distinguish between different active states of the receptor, and this would result in the preferential activation of one signaling cascade more than another. Although application of the “standard” operational model for analyzing ligand bias is useful and suitable in most cases, there are limitations that arise when the biased agonist fails to induce a significant response in one of the assays being compared. In this article, we describe a quantitative method for measuring ligand bias that is particularly useful for such cases of extreme bias. Using simulations and experimental evidence from several κ opioid receptor agonists, we illustrate a “competitive” model for quantitating the degree and direction of bias. By comparing the results obtained from the competitive model with the standard model, we demonstrate that the competitive model expands the potential for evaluating the bias of very partial agonists. We conclude the competitive model provides a useful mechanism for analyzing the bias of partial agonists that exhibit extreme bias. PMID:25680753

  16. AOP description: Androgen receptor agonism leading to reproductive dysfunction (in fish)

    EPA Science Inventory

    This adverse outcome pathway details the linkage between binding and activation of androgen receptor as a nuclear transcription factor in females and the adverse effect of reduced cumulative fecundity in repeat-spawning fish species. Cumulative fecundity is the most apical endpoi...

  17. Sphingosine-1-phosphate receptor 1 agonism attenuates lung ischemia-reperfusion injury.

    PubMed

    Stone, Matthew L; Sharma, Ashish K; Zhao, Yunge; Charles, Eric J; Huerter, Mary E; Johnston, William F; Kron, Irving L; Lynch, Kevin R; Laubach, Victor E

    2015-06-15

    Outcomes for lung transplantation are the worst of any solid organ, and ischemia-reperfusion injury (IRI) limits both short- and long-term outcomes. Presently no therapeutic agents are available to prevent IRI. Sphingosine 1-phosphate (S1P) modulates immune function through binding to a set of G protein-coupled receptors (S1PR1-5). Although S1P has been shown to attenuate lung IRI, the S1P receptors responsible for protection have not been defined. The present study tests the hypothesis that protection from lung IRI is primarily mediated through S1PR1 activation. Mice were treated with either vehicle, FTY720 (a nonselective S1P receptor agonist), or VPC01091 (a selective S1PR1 agonist and S1PR3 antagonist) before left lung IR. Function, vascular permeability, cytokine expression, neutrophil infiltration, and myeloperoxidase levels were measured in lungs. After IR, both FTY720 and VPC01091 significantly improved lung function (reduced pulmonary artery pressure and increased pulmonary compliance) vs. vehicle control. In addition, FTY720 and VPC01091 significantly reduced vascular permeability, expression of proinflammatory cytokines (IL-6, IL-17, IL-12/IL-23 p40, CC chemokine ligand-2, and TNF-α), myeloperoxidase levels, and neutrophil infiltration compared with control. No significant differences were observed between VPC01091 and FTY720 treatment groups. VPC01091 did not significantly affect elevated invariant natural killer T cell infiltration after IR, and administration of an S1PR1 antagonist reversed VPC01091-mediated protection after IR. In conclusion, VPC01091 and FTY720 provide comparable protection from lung injury and dysfunction after IR. These findings suggest that S1P-mediated protection from IRI is mediated by S1PR1 activation, independent of S1PR3, and that selective S1PR1 agonists may provide a novel therapeutic strategy to prevent lung IRI. PMID:25910934

  18. Brain and Whole-Body Imaging in Rhesus Monkeys of 11C-NOP-1A, a Promising PET Radioligand for Nociceptin/Orphanin FQ Peptide Receptors

    PubMed Central

    Kimura, Yasuyuki; Fujita, Masahiro; Hong, Jinsoo; Lohith, Talakad G.; Gladding, Robert L.; Zoghbi, Sami S.; Tauscher, Johannes A.; Goebl, Nancy; Rash, Karen S.; Chen, Zhaogen; Pedregal, Concepcion; Barth, Vanessa N.; Pike, Victor W.; Innis, Robert B.

    2011-01-01

    Our laboratory developed (S)-3-(2′-fluoro-6′,7′-dihydrospiro [piperidine-4,4′-thieno[3,2-c]pyran]-1-yl)-2-(2-fluorobenzyl)-N-methylpropanamide (11C-NOP-1A), a new radioligand for the nociceptin/orphanin FQ peptide (NOP) receptor, with high affinity (Ki, 0.15 nM) and appropriate lipophilicity (measured logD, 3.4) for PET brain imaging. Here, we assessed the utility of 11C-NOP-1A for quantifying NOP receptors in the monkey brain and estimated the radiation safety profile of this radioligand based on its biodistribution in monkeys. Methods Baseline and blocking PET scans were acquired from head to thigh for 3 rhesus monkeys for approximately 120 min after 11C-NOP-1A injection. These 6 PET scans were used to quantify NOP receptors in the brain and to estimate radiation exposure to organs of the body. In the blocked scans, a selective nonradioactive NOP receptor antagonist (SB-612111; 1 mg/kg intravenously) was administered before 11C-NOP-1A. In all scans, arterial blood was sampled to measure the parent radioligand 11C-NOP-1A. Distribution volume (VT; a measure of receptor density) was calculated with a compartment model using brain and arterial plasma data. Radiation-absorbed doses were calculated using the MIRD Committee scheme. Results After 11C-NOP-1A injection, peak uptake of radioactivity in the brain had a high concentration (~5 standardized uptake value), occurred early (~12 min), and thereafter washed out quickly. VT (mL cm−3) was highest in the neocortex (~20) and lowest in hypothalamus and cerebellum (~13). SB-612111 blocked approximately 50%–70% of uptake and reduced VT in all brain regions to approximately 7 mL cm−3. Distribution was well identified within 60 min of injection and stable for the remaining 60 min, consistent with only parent radioligand and not radiometabolites entering the brain. Whole-body scans confirmed that the brain had specific (i.e., displaceable) binding but could not detect specific binding in peripheral organs. The

  19. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer.

    PubMed

    Singhal, Hari; Greene, Marianne E; Tarulli, Gerard; Zarnke, Allison L; Bourgo, Ryan J; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G; Raj, Ganesh V; Hickey, Theresa E; Tilley, Wayne D; Greene, Geoffrey L

    2016-06-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER(+) (estrogen receptor-positive)/PR(+) human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER(+)/PR(+) breast cancers should be explored. PMID:27386569

  20. Inverse agonism of SQ 29,548 and Ramatroban on Thromboxane A2 receptor.

    PubMed

    Chakraborty, Raja; Bhullar, Rajinder P; Dakshinamurti, Shyamala; Hwa, John; Chelikani, Prashen

    2014-01-01

    G protein-coupled receptors (GPCRs) show some level of basal activity even in the absence of an agonist, a phenomenon referred to as constitutive activity. Such constitutive activity in GPCRs is known to have important pathophysiological roles in human disease. The thromboxane A2 receptor (TP) is a GPCR that promotes thrombosis in response to binding of the prostanoid, thromboxane A2. TP dysfunction is widely implicated in pathophysiological conditions such as bleeding disorders, hypertension and cardiovascular disease. Recently, we reported the characterization of a few constitutively active mutants (CAMs) in TP, including a genetic variant A160T. Using these CAMs as reporters, we now test the inverse agonist properties of known antagonists of TP, SQ 29,548, Ramatroban, L-670596 and Diclofenac, in HEK293T cells. Interestingly, SQ 29,548 reduced the basal activity of both, WT-TP and the CAMs while Ramatroban was able to reduce the basal activity of only the CAMs. Diclofenac and L-670596 showed no statistically significant reduction in basal activity of WT-TP or CAMs. To investigate the role of these compounds on human platelet function, we tested their effects on human megakaryocyte based system for platelet activation. Both SQ 29,548 and Ramatroban reduced the platelet hyperactivity of the A160T genetic variant. Taken together, our results suggest that SQ 29,548 and Ramatroban are inverse agonists for TP, whereas, L-670596 and Diclofenac are neutral antagonists. Our findings have important therapeutic applications in the treatment of TP mediated pathophysiological conditions. PMID:24465800

  1. NK₃ receptor agonism reinstates temporal order memory in the hemiparkinsonian rat.

    PubMed

    Chao, Owen Y; Wang, An-Li; Nikolaus, Susanne; de Souza Silva, Maria A

    2015-05-15

    Animals treated with unilateral 6-hydroxydopamine (6-ODHA) injections, an animal model of Parkinson's disease, exhibit deficits in memory for temporal order, but show intact novel object recognition. Since senktide, a potent neurokinin-3 receptor (NK3-R) agonist, has been shown to have promnestic effects in the aged rat and to alleviate scopolamine-induced impairment, the present study aimed to assess possible promnestic effects of senktide in the hemiparkinsonian rat model. Animals received unilateral 6-ODHA microinjections into the medial forebrain bundle. Two weeks later, they were randomly assigned to treatment with vehicle, 0.2, or 0.4 mg/kg senktide. Temporal order memory and place recognition tests were conducted, locomotor activity and turning behavior were assessed in the open field and anxiety-related behavior was measured in the light-dark box. Treatments were administered 30 min prior to behavioral testing with an interval of seven days between tests. The animals treated with 0.2 mg/kg senktide exhibited temporal order memory, unlike the vehicle-treated group. No significant treatment effects were found in the open field and light-dark box. Administration of 0.2 mg/kg senktide may influence the prefrontal cortex and hippocampus, leading to compensations for deficits in memory for temporal order. PMID:24928770

  2. Brain and Whole-Body Imaging of Nociceptin/Orphanin FQ Peptide Receptor in Humans Using the PET Ligand 11C-NOP-1A

    PubMed Central

    Lohith, Talakad G.; Zoghbi, Sami S.; Morse, Cheryl L.; Araneta, Maria F.; Barth, Vanessa N.; Goebl, Nancy A.; Tauscher, Johannes T.; Pike, Victor W.; Innis, Robert B.; Fujita, Masahiro

    2013-01-01

    Nociceptin/orphanin FQ peptide (NOP) receptor is a new class of opioid receptor that may play a pathophysiologic role in anxiety and drug abuse and is a potential therapeutic target in these disorders. We previously developed a high-affinity PET ligand, 11C-NOP-1A, which yielded promising results in monkey brain. Here, we assessed the ability of 11C-NOP-1A to quantify NOP receptors in human brain and estimated its radiation safety profile. Methods After intravenous injection of 11C-NOP-1A, 7 healthy subjects underwent brain PET for 2 h and serial sampling of radial arterial blood to measure parent radioligand concentrations. Distribution volume (VT; a measure of receptor density) was determined by compartmental (1- and 2-tissue) and noncompartmental (Logan analysis and Ichise’s bilinear analysis [MA1]) methods. A separate group of 9 healthy subjects underwent whole-body PET to estimate whole-body radiation exposure (effective dose). Results After 11C-NOP-1A injection, the peak concentration of radioactivity in brain was high (~5–7 standardized uptake values), occurred early (~10 min), and then washed out quickly. The unconstrained 2-tissue-compartment model gave excellent VT identifiability (~1.1% SE) and fitted the data better than a 1-tissue-compartment model. Regional VT values (mL·cm−3) ranged from 10.1 in temporal cortex to 5.6 in cerebellum. VT was well identified in the initial 70 min of imaging and remained stable for the remaining 50 min, suggesting that brain radioactivity was most likely parent radioligand, as supported by the fact that all plasma radiometabolites of 11C-NOP-1A were less lipophilic than the parent radioligand. Voxel-based MA1 VT values correlated well with results from the 2-tissue-compartment model, showing that parametric methods can be used to compare populations. Whole-body scans showed radioactivity in brain and in peripheral organs expressing NOP receptors, such as heart, pancreas, and spleen. 11C-NOP-1A was significantly

  3. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor–positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored. PMID:27386569

  4. The Minimal Pharmacophore for Silent Agonism of the α7 Nicotinic Acetylcholine Receptor

    PubMed Central

    Chojnacka, Kinga; Horenstein, Nicole A.

    2014-01-01

    The minimum pharmacophore for activation of the human α7 nicotinic acetylcholine receptor (nAChR) is the tetramethylammonium cation. Previous work demonstrated that larger quaternary ammonium compounds, such as diethyldimethylammonium or 1-methyl quinuclidine, were α7-selective partial agonists, but additional increase in the size of the ammonium cation or the quinuclidine N-alkyl group by a single carbon to an N-ethyl group led to a loss of efficacy for ion channel activation. We report that although such compounds are ineffective at inducing the normal channel open state, they nonetheless regulate the induction of specific conformational states normally considered downstream of channel activation. We synthesized several panels of quaternary ammonium nAChR ligands that systematically varied the size of the substituents bonded to the central positively charged nitrogen atom. In these molecular series, we found a correlation between the molecular volume of the ligand and/or charge density, and the receptor’s preferred distribution among conformational states including the closed state, the active state, a nonconducting state that could be converted to an activated state by a positive allosteric modulator (PAM), and a PAM-insensitive nonconducting state. We hypothesize that the changes of molecular volume of an agonist’s cationic core subtly impact interactions at the subunit interface constituting the orthosteric binding site in such a way as to regulate the probability of conversions among the conformational states. We define a new minimal pharmacophore for the class of compounds we have termed “silent agonists,” which are able to induce allosteric modulator-dependent activation but not the normal activated state. PMID:24990939

  5. Biased Agonism and Biased Allosteric Modulation at the CB1 Cannabinoid Receptor.

    PubMed

    Khajehali, Elham; Malone, Daniel T; Glass, Michelle; Sexton, Patrick M; Christopoulos, Arthur; Leach, Katie

    2015-08-01

    CB1 cannabinoid receptors (CB1Rs) are attractive therapeutic targets for numerous central nervous system disorders. However, clinical application of cannabinoid ligands has been hampered owing to their adverse on-target effects. Ligand-biased signaling from, and allosteric modulation of, CB1Rs offer pharmacological approaches that may enable the development of improved CB1R drugs, through modulation of only therapeutically desirable CB1R signaling pathways. There is growing evidence that CB1Rs are subject to ligand-biased signaling and allosterism. Therefore, in the present study, we quantified ligand-biased signaling and allosteric modulation at CB1Rs. Cannabinoid agonists displayed distinct biased signaling profiles at CB1Rs. For instance, whereas 2-arachidonylglycerol and WIN55,212-2 [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone] showed little preference for inhibition of cAMP and phosphorylation of extracellular signal-regulated kinase 1/2 (pERK1/2), N-arachidonoylethanolamine (anandamide), methanandamide, CP55940 [2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan-2-yl)phenol], and HU-210 [11-hydroxy-Δ(8)-THC-dimethylheptyl] were biased toward cAMP inhibition. The small-molecule allosteric modulator Org27569 [5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)ethyl]amide] displayed biased allosteric effects by blocking cAMP inhibition mediated by all cannabinoid ligands tested, at the same time having little or no effect on ERK1/2 phosphorylation mediated by a subset of these ligands. Org27569 also displayed negative binding cooperativity with [(3)H]SR141716A [5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide]; however, it had minimal effects on binding of cannabinoid agonists. Furthermore, we highlight the need to validate the reported allosteric effects of the endogenous ligands lipoxin A4 and

  6. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons.

    PubMed

    Tenenbaum, Alexander; Motro, Michael; Fisman, Enrique Z

    2005-01-01

    There are three peroxisome proliferator-activated receptors (PPARs) subtypes which are commonly designated PPAR alpha, PPAR gamma and PPAR beta/delta. PPAR alpha activation increases high density lipoprotein (HDL) cholesterol synthesis, stimulates "reverse" cholesterol transport and reduces triglycerides. PPAR gamma activation results in insulin sensitization and antidiabetic action. Until recently, the biological role of PPAR beta/delta remained unclear. However, treatment of obese animals by specific PPAR delta agonists results in normalization of metabolic parameters and reduction of adiposity. Combined treatments with PPAR gamma and alpha agonists may potentially improve insulin resistance and alleviate atherogenic dyslipidemia, whereas PPAR delta properties may prevent the development of overweight which typically accompanies "pure" PPAR gamma ligands. The new generation of dual-action PPARs--the glitazars, which target PPAR-gamma and PPAR-alpha (like muraglitazar and tesaglitazar) are on deck in late-stage clinical trials and may be effective in reducing cardiovascular risk, but their long-term clinical effects are still unknown. A number of glitazars have presented problems at a late stage of clinical trials because of serious side-effects (including ragaglitazar and farglitazar). The old and well known lipid-lowering fibric acid derivative bezafibrate is the first clinically tested pan--(alpha, beta/delta, gamma) PPAR activator. It is the only pan-PPAR activator with more than a quarter of a century of therapeutic experience with a good safety profile. Therefore, bezafibrate could be considered (indeed, as a "post hoc" understanding) as an "archetype" of a clinically tested pan-PPAR ligand. Bezafibrate leads to considerable raising of HDL cholesterol and reduces triglycerides, improves insulin sensitivity and reduces blood glucose level, significantly lowering the incidence of cardiovascular events and new diabetes in patients with features of metabolic

  7. Evaluation of the potential of the phytocannabinoids, cannabidivarin (CBDV) and Δ9-tetrahydrocannabivarin (THCV), to produce CB1 receptor inverse agonism symptoms of nausea in rats

    PubMed Central

    Rock, Erin M; Sticht, Martin A; Duncan, Marnie; Stott, Colin; Parker, Linda A

    2013-01-01

    BACKGROUND AND PURPOSE The cannabinoid 1 (CB1) receptor inverse agonists/antagonists, rimonabant (SR141716, SR) and AM251, produce nausea and potentiate toxin-induced nausea by inverse agonism (rather than antagonism) of the CB1 receptor. Here, we evaluated two phytocannabinoids, cannabidivarin (CBDV) and Δ9-tetrahydrocannabivarin (THCV), for their ability to produce these behavioural effect characteristics of CB1 receptor inverse agonism in rats. EXPERIMENTAL APPROACH In experiment 1, we investigated the potential of THCV and CBDV to produce conditioned gaping (measure of nausea-induced behaviour) in the same manner as SR and AM251. In experiment 2, we investigated the potential of THCV and CBDV to enhance conditioned gaping produced by a toxin in the same manner as CB1 receptor inverse agonists. KEY RESULTS SR (10 and 20 mg·kg−1) and AM251 (10 mg·kg−1) produced conditioned gaping; however, THCV (10 or 20 mg·kg−1) and CBDV (10 or 200 mg·kg−1) did not. At a subthreshold dose for producing nausea, SR (2.5 mg·kg−1) enhanced lithium chloride (LiCl)-induced conditioned gaping, whereas Δ9-tetrahydrocannabinol (THC, 2.5 and 10 mg·kg−1), THCV (2.5 or 10 mg·kg−1) and CBDV (2.5 or 200 mg·kg−1) did not; in fact, THC (2.5 and 10 mg·kg−1), THCV (10 mg·kg−1) and CBDV (200 mg·kg−1) suppressed LiCl-induced conditioned gaping, suggesting anti-nausea potential. CONCLUSIONS AND IMPLICATIONS The pattern of findings indicates that neither THCV nor CBDV produced a behavioural profile characteristic of CB1 receptor inverse agonists. As well, these compounds may have therapeutic potential in reducing nausea. PMID:23902479

  8. Evidence for association of two variants of the nociceptin/orphanin FQ receptor gene OPRL1 with vulnerability to develop opiate addiction in Caucasians

    PubMed Central

    Briant, Judith A.; Nielsen, David A.; Proudnikov, Dmitri; Londono, Douglas; Ho, Ann; Ott, Jurg; Kreek, Mary Jeanne

    2013-01-01

    Objectives The OPRL1 gene encodes the nociceptin/orphanin FQ receptor (NOP-R), which plays a role in regulating tolerance and behavioral responses to morphine. However, there is limited information on whether variants of OPRL1 are associated with vulnerability to develop opiate addiction. In this study, we examined five variants of OPRL1 and their role in determining vulnerability to develop opiate addiction. Methods We recruited 447 subjects: 271 former severe heroin addicts and 176 healthy controls. Using a 5′-fluorogenic exonuclease assay (TaqMan®), we genotyped subjects at five variants in OPRL1. It was then determined whether there was a significant association of allele, genotype, or haplotype frequency with vulnerability to develop opiate addiction. Results When the cohort was stratified by ethnicity, we found that, in Caucasians but not in African Americans or Hispanics, the allele frequency of rs6090041 and rs6090043 were significantly associated point-wise with opiate addiction (P = 0.03 and 0.04, respectively). Of the haplotypes formed by these two variants, one haplotype was found to be associated with protection from developing opiate addiction in both African Americans (point-wise P = 0.04) and Caucasians (point-wise P = 0.04), and another haplotype with vulnerability to develop opiate addiction in Caucasians only (P = 0.020). Conclusions This study provides evidence for an association of two variants of the OPRL1 gene, rs6090041 and rs6090043, with vulnerability to develop opiate addiction, suggesting a role for NOP-R in the development of opiate addiction. PMID:20032820

  9. Comparison of the β-Adrenergic Receptor Antagonists Landiolol and Esmolol: Receptor Selectivity, Partial Agonism, and Pharmacochaperoning Actions.

    PubMed

    Nasrollahi-Shirazi, Shahrooz; Sucic, Sonja; Yang, Qiong; Freissmuth, Michael; Nanoff, Christian

    2016-10-01

    Blockage of β1-adrenergic receptors is one of the most effective treatments in cardiovascular medicine. Esmolol was introduced some three decades ago as a short-acting β1-selective antagonist. Landiolol is a more recent addition. Here we compared the two compounds for their selectivity for β1-adrenergic receptors over β2-adrenergic receptors, partial agonistic activity, signaling bias, and pharmacochaperoning action by using human embryonic kidney (HEK)293 cell lines, which heterologously express each human receptor subtype. The affinity of landiolol for β1-adrenergic receptors and β2-adrenergic receptors was higher and lower than that of esmolol, respectively, resulting in an improved selectivity (216-fold versus 30-fold). The principal metabolite of landiolol (M1) was also β1-selective, but its affinity was very low. Both landiolol and esmolol caused a very modest rise in cAMP levels but a robust increase in the phosphorylation of extracellular signal regulated kinases 1 and 2, indicating that the two drugs exerted partial agonist activity with a signaling bias. If cells were incubated for ≥24 hours in the presence of ≥1 μM esmolol, the levels of β1-adrenergic-but not of β2-adrenergic-receptors increased. This effect was contingent on export of the β1-receptor from endoplasmic reticulum and was not seen in the presence of landiolol. On the basis of these observations, we conclude that landiolol offers the advantage of: 1) improved selectivity and 2) the absence of pharmacochaperoning activity, which sensitizes cells to rebound effects upon drug discontinuation. PMID:27451411

  10. Occupancy of Nociceptin/Orphanin FQ Peptide Receptors by the Antagonist LY2940094 in Rats and Healthy Human Subjects.

    PubMed

    Raddad, Eyas; Chappell, Amy; Meyer, Jeffery; Wilson, Alan; Ruegg, Charles E; Tauscher, Johannes; Statnick, Michael A; Barth, Vanessa; Zhang, Xin; Verfaille, Steven J

    2016-09-01

    Therapeutic benefits from nociceptin opioid peptide receptor (NOP) antagonism were proposed for obesity, eating disorders, and depression. LY2940094 ([2-[4-[(2-chloro-4,4-difluoro-spiro[5H-thieno[2,3-c]pyran-7,4'-piperidine]-1'-yl)methyl]-3-methyl-pyrazol-1-yl]-3-pyridyl]methanol) is a novel, orally bioavailable, potent, and selective NOP antagonist. We studied NOP receptor occupancy (RO) after single oral LY2940094 doses in rat hypothalamus and human brain by use of liquid chromatography with tandem mass spectrometry (LC-MS/MS) (LSN2810397) and positron emission tomography (PET) ([(11)C]NOP-1A) tracers, respectively. A bolus plus constant infusion tracer protocol with PET was employed in humans at 2.5 and 26.5 hours after administration of the LY2940094 dose. The RO was calculated from the change in regional distributional volume (VT) corrected for nondisplaceable volume using Lasson plots. The RO followed a simple Emax relationship to plasma LY2940094 concentration, reaching near complete occupancy in both species. For rat hypothalamus, the plasma concentration at half-maximum RO (EC50) was 5.8 ng/ml. In humans, LY2940094 was well tolerated and safe over the 4-40 mg dose range, and it peaked in plasma at 2 to 6 hours after a 1- to 2-hour lag, with approximate dose-proportional exposure. After 4-40 mg doses, NOP RO was similar across the prefrontal cortex, occipital cortex, putamen, and thalamus, with EC50 of 2.94 to 3.46 ng/ml, less than 2-fold lower than in rats. Over 4-40 mg doses, LY2940094 mean plasma levels at peak and 24 hours were 7.93-102 and 1.17-14.1 ng/ml, corresponding to the cross-region average NOP RO of 73%-97% and 28%-82%, respectively. The rat EC50 translates well to humans. LY2940094 readily penetrates the human brain, and a once-daily oral dose of 40 mg achieves sustainably high (>80%) NOP RO levels suitable for testing clinical efficacy. PMID:27353045

  11. SONU20176289, a compound combining partial dopamine D(2) receptor agonism with specific serotonin reuptake inhibitor activity, affects neuroplasticity in an animal model for depression.

    PubMed

    Michael-Titus, Adina T; Albert, Monika; Michael, Gregory J; Michaelis, Thomas; Watanabe, Takashi; Frahm, Jens; Pudovkina, Olga; van der Hart, Marieke G C; Hesselink, Mayke B; Fuchs, Eberhard; Czéh, Boldizsár

    2008-11-19

    We investigated the efficacy of SONU20176289, a member of a group of novel phenylpiperazine derivatives with a mixed dopamine D(2) receptor partial agonist and specific serotonin reuptake inhibitor (SSRI) activity, in a chronic stress model of depression in male tree shrews. Animals were subjected to a 7-day period of psychosocial stress before treatment for 28 days with SONU20176289 (6 mg/kg/day, p.o.), during which stress was maintained. Stress reduced the in vivo brain concentrations of N-acetyl-aspartate, total creatine, and choline-containing compounds, as measured by localized proton magnetic resonance spectroscopy. Post mortem analyses revealed a reduced adult dentate cell proliferation and a decreased GluR2 expression in the prefrontal cortex. All these alterations were prevented by concomitant administration of SONU20176289. The results provide further support to the concept that antidepressant treatments may act by normalizing disturbed neuroplasticity, and indicate that combining dopamine D(2) receptor agonism with SSRI activity may serve as an effective tool in the treatment of depressive/anxiety syndromes. PMID:18822282

  12. Recent developments in biased agonism

    PubMed Central

    Wisler, James W.; Xiao, Kunhong; Thomsen, Alex R.B.; Lefkowitz, Robert J.

    2014-01-01

    The classic paradigm of G protein-coupled receptor (GPCR) activation was based on the understanding that agonist binding to a receptor induces or stabilizes a conformational change to an “active” conformation. In the past decade, however, it has been appreciated that ligands can induce distinct “active” receptor conformations with unique downstream functional signaling profiles. Building on the initial recognition of the existence of such “biased ligands”, recent years have witnessed significant developments in several areas of GPCR biology. These include increased understanding of structural and biophysical mechanisms underlying biased agonism, improvements in characterization and quantification of ligand efficacy, as well as clinical development of these novel ligands. Here we review recent major developments in these areas over the past several years. PMID:24680426

  13. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism.

    PubMed

    du Jardin, Kristian Gaarn; Jensen, Jesper Bornø; Sanchez, Connie; Pehrson, Alan L

    2014-01-01

    We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism. PMID:23916504

  14. Discovery of small-molecule nonpeptide antagonists of nociceptin/orphanin FQ receptor: The studies of design, synthesis, and structure-activity relationships for (4-arylpiperidine substituted-methyl)-[bicyclic (hetero)cycloalkanobenzene] derivatives.

    PubMed

    Hayashi, Shigeo; Ohashi, Katsuyo; Mihara, Sachiko; Nakata, Eriko; Emoto, Chie; Ohta, Atsuko

    2016-05-23

    Nociceptin/orphanin FQ (N/OFQ) and N/OFQ peptide (NOP) receptor are expressed and distributed in various regions such as central nervous system (CNS), peripheral nervous system, immune system, and peripheral tissues. N/OFQ and NOP receptor have important roles on a variety of physiological, pathophysiological, regulatory, and dysregulatory mechanisms in the living body. Both activation and blockade of NOP receptor function have displayed clinical potential of NOP receptor agonists and antagonists for the treatment of various diseases or pathophysiological conditions, respectively. Potent and selective NOP receptor agonists/antagonists are also useful tools to investigate the various mechanisms mediated by NOP receptor-N/OFQ system. As the present study, a series of (4-arylpiperidine substituted-methyl)-[bicyclic (hetero)cycloalkanobenzene] analogs was designed, synthesized, and biologically evaluated in vitro to seek and identify potent and selective, small-molecules of nonpeptide NOP receptor antagonists, which resulted in the discovery of novel potent small-molecule 15 with high human NOP receptor selectivity over human μ receptor. The structure-activity relationship (SAR) of the potency and selectivity, structure-metabolic stability relationship (SMR), and SAR of hERG (human ether-a-go-go related gene) potassium ion channel binding affinity for the analogs in the present studies in vitro provided or suggested significant and/or useful structural determinants and insights for the respective purposes. The superior profiles of compound 15 are discussed with a viewpoint of multisite interactions between ligand and NOP receptor, together with the results of previous NOP receptor agonist/antagonist studies. PMID:27043173

  15. Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism

    PubMed Central

    Di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio

    2015-01-01

    Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation. PMID:26567894

  16. Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism

    NASA Astrophysics Data System (ADS)

    di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio

    2015-11-01

    Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation.

  17. Dual motor response to l-dopa and nociceptin/orphanin FQ receptor antagonists in 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) treated mice: Paradoxical inhibition is relieved by D(2)/D(3) receptor blockade.

    PubMed

    Viaro, Riccardo; Marti, Matteo; Morari, Michele

    2010-06-01

    Motor activity of mice acutely treated with the parkinsonian toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) was monitored for 6 days using behavioral tests which provide complementary information on motor function: the bar, reaction time, drag, stair climbing, grip, rotarod and footprinting tests. These tests consistently disclosed a prolonged motor impairment characterized by akinesia, bradykinesia, speed reduction, loss of coordination and gait patterns. This impairment was associated with approximately 60% loss of striatal dopamine terminals, as revealed by tyrosine hydroxylase immunohistochemistry, and was attenuated by dopaminergic drugs. Indeed, the dopamine precursor, l-dopa (1-10 mg/kg), and the D(3)/D(2) receptor agonist pramipexole (0.0001-0.001 mg/kg) promoted stepping activity in the drag test (a test for akinesia/bradykinesia). The novel nociceptin/orphanin FQ receptor (NOP) antagonist 1-[1-(cyclooctylmethyl)-1,2,3,6-tetrahydro-5-(hydroxymethyl)-4-pyridinyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (Trap-101, 0.001-0.1 mg/kg), an analogue of 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (J-113397), also promoted stepping and synergistically or additively (depending on test) attenuated parkinsonism when combined to dopamine agonists. High doses of l-dopa (100 mg/kg), pramipexole (0.1 mg/kg), Trap-101 and J-113397 (1 mg/kg), however, failed to modulate stepping, worsening immobility time and/or rotarod performance. Low doses of amisulpride (0.1 mg/kg) reversed motor inhibition induced by l-dopa and J-113397, suggesting involvement of D(2)/D(3) receptors. This study brings further evidence for a dopamine-dependent motor phenotype in MPTP-treated mice reinforcing the view that this model can be predictive of symptomatic antiparkinsonian activity provided the appropriate test is used. Moreover, it offers mechanistic interpretation to clinical reports of paradoxical worsening of parkinsonism

  18. Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions: EVIDENCE FOR PARTIAL ALLOSTERIC AGONISM IN COMPARISON WITH CXCL12 CHEMOKINE.

    PubMed

    Rajasekaran, Deepa; Gröning, Sabine; Schmitz, Corinna; Zierow, Swen; Drucker, Natalie; Bakou, Maria; Kohl, Kristian; Mertens, André; Lue, Hongqi; Weber, Christian; Xiao, Annie; Luker, Gary; Kapurniotu, Aphrodite; Lolis, Elias; Bernhagen, Jürgen

    2016-07-22

    An emerging number of non-chemokine mediators are found to bind to classical chemokine receptors and to elicit critical biological responses. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that exhibits chemokine-like activities through non-cognate interactions with the chemokine receptors CXCR2 and CXCR4, in addition to activating the type II receptor CD74. Activation of the MIF-CXCR2 and -CXCR4 axes promotes leukocyte recruitment, mediating the exacerbating role of MIF in atherosclerosis and contributing to the wealth of other MIF biological activities. Although the structural basis of the MIF-CXCR2 interaction has been well studied and was found to engage a pseudo-ELR and an N-like loop motif, nothing is known about the regions of CXCR4 and MIF that are involved in binding to each other. Using a genetic strain of Saccharomyces cerevisiae that expresses a functional CXCR4 receptor, site-specific mutagenesis, hybrid CXCR3/CXCR4 receptors, pharmacological reagents, peptide array analysis, chemotaxis, fluorescence spectroscopy, and circular dichroism, we provide novel molecular information about the structural elements that govern the interaction between MIF and CXCR4. The data identify similarities with classical chemokine-receptor interactions but also provide evidence for a partial allosteric agonist compared with CXCL12 that is possible due to the two binding sites of CXCR4. PMID:27226569

  19. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats.

    PubMed

    Simone, J J; Malivoire, B L; McCormick, C M

    2015-10-15

    There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol. PMID:26311003

  20. Dipyridamole attenuates ischemia reperfusion induced acute kidney injury through adenosinergic A1 and A2A receptor agonism in rats.

    PubMed

    Puri, Nikkita; Mohey, Vinita; Singh, Manjinder; Kaur, Tajpreet; Pathak, Devendra; Buttar, Harpal Singh; Singh, Amrit Pal

    2016-04-01

    Dipyridamole (DYP) is an anti-platelet agent with marked vasodilator, anti-oxidant, and anti-inflammatory activity. The present study investigated the role of adenosine receptors in DYP-mediated protection against ischemia reperfusion-induced acute kidney injury (AKI) in rats. The rats were subjected to bilateral renal ischemia for 40 min followed by reperfusion for 24 h. The renal damage induced by ischemia reperfusion injury (IRI) was assessed by measuring creatinine clearance, blood urea nitrogen, uric acid, plasma potassium, fractional excretion of sodium, and microproteinuria in rats. The oxidative stress in renal tissues was assessed by quantification of thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The hematoxylin-eosin staining was carried out to observe histopathological changes in renal tissues. DYP (10 and 30 mg/kg, intraperitoneal, i.p.) was administered 30 min before subjecting the rats to renal IRI. In separate groups, caffeine (50 mg/kg, i.p.), an adenosinergic A1 and A2A receptor antagonist was administered with and without DYP treatment before subjecting the rats to renal IRI. The ischemia reperfusion-induced AKI was demonstrated by significant changes in serum as well as urinary parameters, enhanced oxidative stress, and histopathological changes in renal tissues. The administration of DYP demonstrated protection against AKI. The prior treatment with caffeine abolished DYP-mediated reno-protection suggesting role of A1 and A2A adenosine receptors in DYP-mediated reno-protection in rats. It is concluded that adenosine receptors find their definite involvement in DYP-mediated anti-oxidative and reno-protective effect against ischemia reperfusion-induced AKI. PMID:26728617

  1. Differential effects of CB1 receptor agonism in behavioural tests of unconditioned and conditioned fear in adult male rats.

    PubMed

    Simone, Jonathan J; Green, Matthew R; Hodges, Travis E; McCormick, Cheryl M

    2015-02-15

    We investigated the effects of the highly selective CB1 receptor agonist ACEA and the CB1 receptor antagonist/inverse agonist AM251 on two behavioural tests of unconditioned fear, the elevated plus maze (EPM) and open field test (OFT), as well as on the recall and extinction of a conditioned auditory fear. Both ACEA and AM251 increased anxiety-like behaviour in the EPM and OFT. There was no effect of either drug on recall of the conditioned fear, and ACEA enhanced and AM251 impaired fear extinction. Further, though both the low (0.1 mg/kg) and high (0.5 mg/kg) dose of ACEA facilitated fear extinction, the low dose attenuated, and the high dose potentiated, fear induced corticosterone release suggesting independent effects of the drug on fear and stress responses. Although the extent to which cannabinoids are anxiogenic or anxiolytic has been proposed to be dose-dependent, these results indicate that the same dose has differential effects across tasks, likely based in differences in sensitivities of CB1 receptors to the agonist in the neural regions subserving unconditioned and conditioned fear. PMID:25446756

  2. Inverse agonism and its therapeutic significance

    PubMed Central

    Khilnani, Gurudas; Khilnani, Ajeet Kumar

    2011-01-01

    A large number of G-protein-coupled receptors (GPCRs) show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced) receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity) or prevent the effect of an agonist (antagonist with zero intrinsic activity). Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity). Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors) have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics) have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H1 and H2 antihistaminics (antagonists) have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D2 receptors antagonist), antihypertensive (AT1 receptor antagonists), antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103), a highly selective 5-HT2A inverse

  3. Oligodendrocyte responses to buprenorphine uncover novel and opposing roles of μ-opioid- and nociceptin/orphanin FQ receptors in cell development: implications for drug addiction treatment during pregnancy.

    PubMed

    Eschenroeder, Andrew C; Vestal-Laborde, Allison A; Sanchez, Emilse S; Robinson, Susan E; Sato-Bigbee, Carmen

    2012-01-01

    Although the classical function of myelin is the facilitation of saltatory conduction, this membrane and the oligodendrocytes, the cells that make myelin in the central nervous system (CNS), are now recognized as important regulators of plasticity and remodeling in the developing brain. As such, oligodendrocyte maturation and myelination are among the most vulnerable processes along CNS development. We have shown previously that rat brain myelination is significantly altered by buprenorphine, an opioid analogue currently used in clinical trials for managing pregnant opioid addicts. Perinatal exposure to low levels of this drug induced accelerated and increased expression of myelin basic proteins (MBPs), cellular and myelin components that are markers of mature oligodendrocytes. In contrast, supra-therapeutic drug doses delayed MBP brain expression and resulted in a decreased number of myelinated axons. We have now found that this biphasic-dose response to buprenorphine can be attributed to the participation of both the μ-opioid receptor (MOR) and the nociceptin/orphanin FQ receptor (NOP receptor) in the oligodendrocytes. This is particularly intriguing because the NOP receptor/nociceptin system has been primarily linked to behavior and pain regulation, but a role in CNS development or myelination has not been described before. Our findings suggest that balance between signaling mediated by (a) MOR activation and (b) a novel, yet unidentified pathway that includes the NOP receptor, plays a crucial role in the timing of oligodendrocyte maturation and myelin synthesis. Moreover, exposure to opioids could disrupt the normal interplay between these two systems altering the developmental pattern of brain myelination. PMID:22002899

  4. Oligodendrocyte Responses to Buprenorphine Uncover Novel and Opposing Roles of μ-Opioid- and Nociceptin/Orphanin FQ Receptors in Cell Development: Implications for Drug Addiction Treatment During Pregnancy

    PubMed Central

    Eschenroeder, Andrew C.; Vestal-Laborde, Allison A.; Sanchez, Emilse S.; Robinson, Susan E.; Sato-Bigbee, Carmen

    2011-01-01

    While the classical function of myelin is the facilitation of saltatory conduction, this membrane and the oligodendrocytes, the cells that make myelin in the central nervous system (CNS), are now recognized as important regulators of plasticity and remodeling in the developing brain. As such, oligodendrocyte maturation and myelination are among the most vulnerable processes along CNS development. We have shown previously that rat brain myelination is significantly altered by buprenorphine, an opioid analogue currently used in clinical trials for managing pregnant opioid addicts. Perinatal exposure to low levels of this drug induced accelerated and increased expression of myelin basic proteins (MBPs), cellular and myelin components that are markers of mature oligodendrocytes. In contrast, supra-therapeutic drug doses delayed MBP brain expression and resulted in a decreased number of myelinated axons. We have now found that this biphasic-dose response to buprenorphine can be attributed to the participation of both the μ-opioid receptor (MOR) and the nociceptin/orphanin FQ receptor (NOP receptor) in the oligodendrocytes. This is particularly intriguing because the NOP receptor/nociceptin system has been primarily linked to behavior and pain regulation, but a role in CNS development or myelination has not been described before. Our findings suggest that balance between signaling mediated by (a) MOR activation and (b) a novel, yet unidentified pathway that includes the NOP receptor, plays a crucial role in the timing of oligodendrocyte maturation and myelin synthesis. Moreover, exposure to opioids could disrupt the normal interplay between these two systems altering the developmental pattern of brain myelination. PMID:22002899

  5. Adenosine 2A receptor agonism: A single intrathecal administration attenuates motor paralysis in experimental autoimmune encephalopathy in rats.

    PubMed

    Loram, Lisa C; Strand, Keith A; Taylor, Frederick R; Sloane, Evan; Van Dam, Anne-Marie; Rieger, Jayson; Maier, Steven F; Watkins, Linda R

    2015-05-01

    A single intrathecal dose of adenosine 2A receptor (A2AR) agonist was previously reported to produce a multi-week reversal of allodynia in two different models of neuropathic pain in addition to downregulating glial activation markers in the spinal cord. We aimed to determine whether a single intrathecal administration of an A2AR agonist was able to attenuate motor symptoms induced by experimental autoimmune encephalopathy. Two A2AR agonists (CGS21680 and ATL313) significantly attenuated progression of motor symptoms following a single intrathecal administration at the onset of motor symptoms. OX-42, a marker of microglial activation, was significantly attenuated in the lumbar spinal cord following A2AR administration compared to vehicle. Therefore, A2AR agonists attenuate motor symptoms of EAE by acting on A2AR in the spinal cord. PMID:25653191

  6. Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism.

    PubMed

    Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N; Conteh, Abass M; Herring, B Paul; McClintick, Jeanette N; Tune, Johnathan D; Mather, Kieren J

    2016-07-01

    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miRNA) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-minutes coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect the blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca(2+) binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion. PMID:27234258

  7. Combined serotonin (5-HT)1A agonism, 5-HT(2A) and dopamine D₂ receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats.

    PubMed

    Oyamada, Yoshihiro; Horiguchi, Masakuni; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y

    2015-05-15

    Subchronic administration of an N-methyl-D-aspartate receptor (NMDAR) antagonist, e.g. phencyclidine (PCP), produces prolonged impairment of novel object recognition (NOR), suggesting they constitute a hypoglutamate-based model of cognitive impairment in schizophrenia (CIS). Acute administration of atypical, e.g. lurasidone, but not typical antipsychotic drugs (APDs), e.g. haloperidol, are able to restore NOR following PCP (acute reversal model). Furthermore, atypical APDs, when co-administered with PCP, have been shown to prevent development of NOR deficits (prevention model). Most atypical, but not typical APDs, are more potent 5-HT(2A) receptor inverse agonists than dopamine (DA) D2 antagonists, and have been shown to enhance cortical and hippocampal efflux and to be direct or indirect 5-HT(1A) agonists in vivo. To further clarify the importance of these actions to the restoration of NOR by atypical APDs, sub-effective or non-effective doses of combinations of the 5-HT(1A) partial agonist (tandospirone), the 5-HT(2A) inverse agonist (pimavanserin), or the D2 antagonist (haloperidol), as well as the combination of all three agents, were studied in the acute reversal and prevention PCP models of CIS. Only the combination of all three agents restored NOR and prevented the development of PCP-induced deficit. Thus, this triple combination of 5-HT(1A) agonism, 5-HT(2A) antagonism/inverse agonism, and D2 antagonism is able to mimic the ability of atypical APDs to prevent or ameliorate the PCP-induced NOR deficit, possibly by stimulating signaling cascades from D1 and 5-HT(1A) receptor stimulation, modulated by D2 and 5-HT(2A) receptor antagonism. PMID:25448429

  8. Exploration of Allosteric Agonism Structure-Activity Relationships within an Acetylene Series of Metabotropic Glutamate Receptor 5 (mGlu5) Positive Allosteric Modulators (PAMs): discovery of 5-((3-fluorophenyl)ethynyl)-N-(3-methyloxetan-3-yl)picolinamide (ML254)

    PubMed Central

    Turlington, Mark; Noetzel, Meredith J.; Chun, Aspen; Zhou, Ya; Gogliotti, Rocco D.; Nguyen, Elizabeth D.; Gregory, Karen J.; Vinson, Paige N.; Rook, Jerri M.; Gogi, Kiran K.; Xiang, Zixiu; Bridges, Thomas M.; Daniels, J. Scott; Jones, Carrie; Niswender, Colleen M.; Meiler, Jens; Conn, P. Jeffrey; Lindsley, Craig W.; Stauffer, Shaun R.

    2014-01-01

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Both allosteric agonism and high glutamate fold-shift have been implicated in the neurotoxic profile of some mGlu5 PAMs; however, these hypotheses remain to be adequately addressed. To develop tool compounds to probe these hypotheses, the structure-activity relationship of allosteric agonism was examined within an acetylenic series of mGlu5 PAMs exhibiting allosteric agonism in addition to positive allosteric modulation (ago-PAMs). PAM 38t, a low glutamate fold-shift allosteric ligand (maximum fold-shift ~3.0), was selected as a potent PAM with no agonism in the in vitro system used for compound characterization and in two native electrophysiological systems using rat hippocampal slices. PAM 38t (ML254) will be useful to probe the relative contribution of cooperativity and allosteric agonism to the adverse effect liability and neurotoxicity associated with this class of mGlu5 PAMs. PMID:24050755

  9. Orphanin FQ/Nociceptin Interacts with the Basolateral Amygdala Noradrenergic System in Memory Consolidation

    ERIC Educational Resources Information Center

    Roozendaal, Benno; Lengvilas, Ray; McGaugh, James L.; Civelli, Olivier; Reinscheid, Rainer K.

    2007-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) mediates hormonal and neurotransmitter effects on the consolidation of emotionally influenced memory and that such modulatory influences involve noradrenergic activation of the BLA. As the BLA also expresses a high density of receptors for orphanin FQ/nociceptin…

  10. 2-(4-Amino-3-methylphenyl)-5-fluorobenzothiazole is a ligand and shows species-specific partial agonism of the aryl hydrocarbon receptor

    SciTech Connect

    Bazzi, Rana; Bradshaw, Tracey D.; Rowlands, J. Craig; Stevens, Malcolm F.G.; Bell, David R.

    2009-05-15

    2-(4-Amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) and related compounds are a series of anti-cancer candidate pharmaceuticals, that have been shown to activate the AhR. We show that these compounds are high-affinity ligands for the rat AhR, but a quantitative assay for their ability to induce CYP1A1 RNA in H4IIEC3 cells, a measure of activation of the AhR, showed a poor relationship between affinity for the AhR and ability to induce CYP1A1 RNA. 5F 203, an agonist with low potency, was able to antagonise the induction of CYP1A1 RNA by TCDD, while IH 445, a potent agonist, did not antagonise the induction of CYP1A1 RNA by TCDD, and Schild analysis confirmed 5F 203 to be a potent antagonist of the induction of CYP1A1 RNA by TCDD in H4IIEC3 cells. In contrast, several benzothiazoles show potent induction of CYP1A1 RNA in human MCF-7 cells, and 5F 203 is unable to detectably antagonise the induction of CYP1A1 RNA in MCF-7 cells, showing a species difference in antagonism. Evaluation of the anti-proliferative activity of benzothiazoles showed that the ability to agonise the AhR correlated with growth inhibition both in H4IIEC3 cells for a variety of benzothiazoles, and between H4IIEC3 and MCF-7 cells for 5F 203, suggesting an important role of agonism of the AhR in the anti-proliferative activity of benzothiazoles.

  11. The role of CB1 receptors in sweet versus fat reinforcement: effect of CB1 receptor deletion, CB1 receptor antagonism (SR141716A) and CB1 receptor agonism (CP-55940).

    PubMed

    Ward, S J; Dykstra, L A

    2005-09-01

    It is well established that Cannabis sativa can increase appetite, particularly for sweet and palatable foods. In laboratory animals, cannabinoid CB1 receptor antagonism decreases motivation for palatable foods, and most recently, the CB1 receptor antagonist SR141716A, or rimonabant (Acomplia), was reported to produce weight loss in obese human subjects. Indeed, the endocannabinoid system plays a select role in the rewarding properties of palatable foods, and this is well characterized in laboratory animals with sweet sucrose solutions. In the present study, CB1 knockout mice (CB1 KO) and wild-type littermate mice (WT) were trained to respond for a complex sweet as well as a pure fat reinforcer under a progressive ratio (PR) schedule, to determine whether motivation to consume different palatable foods is tonically regulated by CB1 receptors. To assess sweet reinforcement, several concentrations of the liquid nutritional drink, Ensure, were presented under the PR schedule. For fat reinforcement, several concentrations of corn oil (emulsified in 3% xanthan gum) were made available. Additionally, to compare the result of genetic invalidation of the CB1 receptor to antagonism of the CB1 receptor system, the effect of SR141716A (3.0 mg/kg) on responding for Ensure and corn oil were also assessed using the PR schedule. We also assessed the effect of the CB1 agonist CP-55940 (30 microg/kg) on responding for Ensure and corn oil. CB1 KOs took significantly longer to acquire operant responding maintained by Ensure, and responding for Ensure under the PR schedule was significantly reduced in CB1 KOs as well as in WTs pretreated with SR141716A, as compared to WT controls. Additionally, pretreatment with the CB1 agonist CP-55940 increased responding for Ensure. In contrast, responding for corn oil during acquisition and under the PR schedule was not significantly different in CB1 KOs versus wild-type mice. However, SR141716A did reduce responding for corn oil in WTs, and CP

  12. Investigating the Role of Loop C Hydrophilic Residue ‘T244’ in the Binding Site of ρ1 GABAC Receptors via Site Mutation and Partial Agonism

    PubMed Central

    Naffaa, Moawiah M.; Absalom, Nathan; Solomon, V. Raja; Chebib, Mary; Hibbs, David E.; Hanrahan, Jane R.

    2016-01-01

    The loop C hydrophilic residue, threonine 244 lines the orthosteric binding site of ρ1 GABAC receptors was studied by point mutation into serine, alanine and cysteine, and tested with GABA, some representative partial agonists and antagonists. Thr244 has a hydroxyl group essential for GABA activity that is constrained by the threonine methyl group, orienting it toward the binding site. Significant decreases in activation effects of the studied ligands at ρ1 T244S mutant receptors, suggests a critical role for this residue. Results of aliphatic and heteroaromatic partial agonists demonstrate different pharmacological effects at ρ1 T244S mutant receptors when co-applied with GABA EC50 responses. ρ1 T244A and ρ1 T244C mutant receptors have minimal sensitivity to GABA at high mM concentrations, whereas, the ρ1 WT partial agonists, β-alanine and MTSEA demonstrate more efficacy and potency, respectively, than GABA at these mutant receptors. This study explores the role of Thr244 in the binding of agonists as an initial step during channel gating by moving loop C towards the ligand. PMID:27244450

  13. Cannabinoid 2 (CB2) receptor agonism reduces lithium chloride-induced vomiting in Suncus murinus and nausea-induced conditioned gaping in rats.

    PubMed

    Rock, Erin M; Boulet, Nathalie; Limebeer, Cheryl L; Mechoulam, Raphael; Parker, Linda A

    2016-09-01

    We aimed to investigate the potential anti-emetic and anti-nausea properties of targeting the cannabinoid 2 (CB2) receptor. We investigated the effect of the selective CB2 agonist, HU-308, on lithium chloride- (LiCl) induced vomiting in Suncus murinus (S. murinus) and conditioned gaping (nausea-induced behaviour) in rats. Additionally, we determined whether these effects could be prevented by pretreatment with AM630 (a selective CB2 receptor antagonist/inverse agonist). In S. murinus, HU-308 (2.5, 5mg/kg, i.p.) reduced, but did not completely block, LiCl-induced vomiting; an effect that was prevented with AM630. In rats, HU-308 (5mg/kg, i.p.) suppressed, but did not completely block, LiCl-induced conditioned gaping to a flavour; an effect that was prevented by AM630. These findings are the first to demonstrate the ability of a selective CB2 receptor agonist to reduce nausea in animal models, indicating that targeting the CB2 receptor may be an effective strategy, devoid of psychoactive effects, for managing toxin-induced nausea and vomiting. PMID:27263826

  14. Lithium differs from anticonvulsant mood stabilizers in prefrontal cortical and accumbal dopamine release: role of 5-HT(1A) receptor agonism.

    PubMed

    Ichikawa, Junji; Dai, Jin; Meltzer, Herbert Y

    2005-07-12

    Anticonvulsant mood stabilizers, e.g., valproic acid and carbamazepine, and atypical antipsychotic drugs (APDs), e.g., clozapine, quetiapine, olanzapine, risperidone, and ziprasidone, have been reported to preferentially increase dopamine (DA) release in rat medial prefrontal cortex (mPFC), an effect partially or fully inhibited by WAY100635, a selective 5-HT(1A) antagonist. These atypical APDs have themselves been reported to be effective mood stabilizers, although the importance of increased cortical DA release to mood stabilization has not been established. The purpose of the present study was to determine whether zonisamide, another anticonvulsant mood stabilizer, as well as lithium, a mood stabilizer without anticonvulsant properties, also increases prefrontal cortical DA release and, if so, whether this release is also inhibited by 5-HT(1A) antagonism. As with valproic acid and carbamazepine, zonisamide (12.5 and 25 mg/kg) increased DA release in the mPFC, but not the NAC, an increase abolished by WAY100635 (0.2 mg/kg). However, lithium (100 and 250 mg/kg) decreased DA release in the NAC, an effect also attenuated by WAY100635 (0.2 mg/kg). Lithium itself had no effect in the mPFC but the combination of WAY100635 (0.2 mg/kg) and lithium (100 and 250 mg/kg) markedly increased DA release in the mPFC. Furthermore, M100907 (0.1 mg/kg), a selective 5-HT(2A) antagonist, abolished this increase in DA release in the mPFC. These results indicate that not all mood-stabilizing agents but only those, which have anticonvulsant mood-stabilizing properties, increase DA release in the cortex, and that the effect is dependent upon 5-HT(1A) receptor stimulation. However, the combination of lithium and 5-HT(1A) blockade may result in excessive 5-HT(2A) receptor stimulation, relative to 5-HT(1A) receptor stimulation, both of which can increase prefrontal cortical DA release. PMID:15936730

  15. mGlu2 Receptor Agonism, but Not Positive Allosteric Modulation, Elicits Rapid Tolerance towards Their Primary Efficacy on Sleep Measures in Rats

    PubMed Central

    Ahnaou, Abdallah; Lavreysen, Hilde; Tresadern, Gary; Cid, Jose M.; Drinkenburg, Wilhelmus H.

    2015-01-01

    G-protein-coupled receptor (GPCR) agonists are known to induce both cellular adaptations resulting in tolerance to therapeutic effects and withdrawal symptoms upon treatment discontinuation. Glutamate neurotransmission is an integral part of sleep-wake mechanisms, which processes have translational relevance for central activity and target engagement. Here, we investigated the efficacy and tolerance potential of the metabotropic glutamate receptors (mGluR2/3) agonist LY354740 versus mGluR2 positive allosteric modulator (PAM) JNJ-42153605 on sleep-wake organisation in rats. In vitro, the selectivity and potency of JNJ-42153605 were characterized. In vivo, effects on sleep measures were investigated in rats after once daily oral repeated treatment for 7 days, withdrawal and consecutive re-administration of LY354740 (1–10 mg/kg) and JNJ-42153605 (3–30 mg/kg). JNJ-42153605 showed high affinity, potency and selectivity at mGluR2. Binding site analyses and knowledge-based docking confirmed the specificity of JNJ-42153605 at the mGluR2 allosteric binding site. Acute LY354740 and JNJ-42153605 dose-dependently decreased rapid eye movement (REM) sleep time and prolonged its onset latency. Sub chronic effects of LY354740 on REM sleep measures disappeared from day 3 onwards, whereas those of JNJ-42153605 were maintained after repeated exposure. LY354740 attenuated REM sleep homeostatic recovery, while this was preserved after JNJ-42153605 administration. JNJ-42153605 enhanced sleep continuity and efficiency, suggesting its potential as an add-on medication for impaired sleep quality during early stages of treatment. Abrupt cessation of JNJ-42153605 did not induce withdrawal phenomena and sleep disturbances, while the initial drug effect was fully reinstated after re-administration. Collectively, long-term treatment with JNJ-42153605 did not induce tolerance phenomena to its primary functional effects on sleep measures, nor adverse effects at withdrawal, while it promoted

  16. New asymmetric quantum codes over Fq

    NASA Astrophysics Data System (ADS)

    Ma, Yuena; Feng, Xiaoyi; Xu, Gen

    2016-07-01

    Two families of new asymmetric quantum codes are constructed in this paper. The first family is the asymmetric quantum codes with length n=qm-1 over Fq, where qge 5 is a prime power. The second one is the asymmetric quantum codes with length n=3m-1. These asymmetric quantum codes are derived from the CSS construction and pairs of nested BCH codes. Moreover, let the defining set T1=T2^{-q}, then the real Z-distance of our asymmetric quantum codes are much larger than δ _max+1, where δ _max is the maximal designed distance of dual-containing narrow-sense BCH code, and the parameters presented here have better than the ones available in the literature.

  17. New asymmetric quantum codes over Fq

    NASA Astrophysics Data System (ADS)

    Ma, Yuena; Feng, Xiaoyi; Xu, Gen

    2016-04-01

    Two families of new asymmetric quantum codes are constructed in this paper. The first family is the asymmetric quantum codes with length n=qm-1 over Fq , where q≥ 5 is a prime power. The second one is the asymmetric quantum codes with length n=3m-1 . These asymmetric quantum codes are derived from the CSS construction and pairs of nested BCH codes. Moreover, let the defining set T1=T2^{-q} , then the real Z-distance of our asymmetric quantum codes are much larger than δ _max+1 , where δ _max is the maximal designed distance of dual-containing narrow-sense BCH code, and the parameters presented here have better than the ones available in the literature.

  18. Comparison of safety and tolerability with continuous (exenatide once weekly) or intermittent (exenatide twice daily) GLP-1 receptor agonism in patients with type 2 diabetes

    PubMed Central

    Ridge, T; Moretto, T; MacConell, L; Pencek, R; Han, J; Schulteis, C; Porter, L

    2012-01-01

    Aims Exenatide is a glucagon-like peptide-1 receptor agonist shown to improve glycaemic control in patients with type 2 diabetes (T2DM). Intermittent exenatide exposure is achieved with the twice-daily formulation (ExBID), while the once-weekly formulation (ExQW) provides continuous exenatide exposure. This integrated, retrospective analysis compared safety and tolerability of ExQW vs. ExBID in patients with T2DM. Methods Data were pooled from two open-label, randomized, comparator-controlled, trials directly comparing ExQW (N = 277) to ExBID (N = 268). Between-group differences in adverse event (AE) and hypoglycaemia incidences were calculated. Incidence over time and duration of selected AEs (nausea, vomiting, and injection-site-related AEs) were also summarized. Results The most common AEs were nausea, diarrhoea, injection-site pruritus, and vomiting. Nausea and vomiting occurred less frequently with ExQW vs. ExBID, peaking at initiation (ExQW) or at initiation and dose escalation (ExBID), and decreasing over time. Few patients discontinued because of gastrointestinal-related AEs. Injection-site AEs were more common with ExQW but decreased over time in both groups. No major hypoglycaemia occurred; minor hypoglycaemia occurred with low incidence in patients not using concomitant sulphonylurea, with no difference between ExQW and ExBID. Serious AEs and discontinuations because of AEs were reported with similar frequency in both groups. Conclusions Both exenatide formulations were generally safe and well-tolerated, with ExQW associated with less nausea and vomiting but more injection-site AEs. Continuous vs. intermittent exposure did not impact the overall tolerability profile of exenatide, with no evidence of prolonged duration or worsened intensities of AEs with continuous exposure. PMID:22734440

  19. Towards a thermodynamic definition of efficacy in partial agonism: The thermodynamics of efficacy and ligand proton transfer in a G protein-coupled receptor of the rhodopsin class.

    PubMed

    Broadley, Kenneth J; Sykes, Shane C; Davies, Robin H

    2010-11-15

    The thermodynamic binding profiles of agonist and antagonist complexes of the 4-hydroxypropanolamine partial agonist, prenalterol, on the chronotropic adrenergic response in guinea-pig right atria were determined over a 15 °C temperature range. The tissue response was compared with data on the ethanolamine agonist, isoprenaline, given by binding studies in a number of rat tissues. Utilising the residue conservatism surrounding the known active conformers bound to either of two aspartate residues (α-helices II, III) in both receptors (β(1), β(2)) and species (guinea-pig, rat and human), no significant deformation in the extended side chain could be found in prenalterol's agonist binding compared to isoprenaline. Antagonist binding gave a highly favourable entropy contribution at 30.0 °C of -4.7±1.2 kcal/mol. The enthalpy change between bound agonist and antagonist complexes, a function of the efficacy alone, was -6.4±1.1 kcal/mol, coincident with the calculated intrinsic preference of a primary/secondary amine-aspartate interaction for a neutral hydrogen-bonded form over its ion pair state, giving values of 6.3-6.6 kcal/mol with calculations of good quality, a figure expected to be close to that shown within a hydrophobic environment. Delivery of a proton to a conserved aspartate anion (α-helix II) becomes the critical determinant for agonist action with resultant proton transfer stabilisation dominating the enthalpy change. A proposed monocation-driven ligand proton pumping mechanism within the ternary complex is consistent with the data, delivery between two acid groups being created by the movement of the cation and the counter-movement of the ligand protonated amine moving from Asp 138 (α-helix III) to Asp 104 (α-helix II). PMID:20727346

  20. Primary structure and tissue distribution of the orphanin FQ precursor.

    PubMed Central

    Nothacker, H P; Reinscheid, R K; Mansour, A; Henningsen, R A; Ardati, A; Monsma, F J; Watson, S J; Civelli, O

    1996-01-01

    The heptadecapeptide orphanin FQ (OFQ) is a recently discovered neuropeptide that exhibits structural features reminiscent of the opioid peptides and that is an endogenous ligand to a G protein-coupled receptor sequentially related to the opioid receptors. We have cloned both the human and rat cDNAs encoding the OFQ precursor proteins, to investigate whether the sequence relationships existing between the opioid and OFQ systems are also found at the polypeptide precursor level, in particular whether the OFQ precursor would encode several bioactive peptides as do the opioid precursors, and to study the regional distribution of OFQ sites of synthesis. The entire precursor protein displays structural homology to the opioid peptide precursors, especially preprodynorphin and preproenkephalin. The predicted amino acid sequence of the OFQ precursor contains a putative signal peptide and one copy of the OFQ sequence flanked by pairs of basic amino acid residues. Carboxyl-terminal to the OFQ sequence, the human and rat precursors contain a stretch of 28 amino acids that is 100% conserved and thus may encode novel bioactive peptides. Two peptides derived from this stretch were synthesized but were found to be unable to activate the OFQ receptor, suggesting that if they are produced in vivo, these peptides would likely recognize receptors different from the OFQ receptor. To begin analyzing the sites of OFQ mRNA synthesis, Northern analysis of human and rat tissues were carried out and showed that the OFQ precursor mRNA is mainly expressed in the brain. In situ hybridization of rat brain slices demonstrated a regional distribution pattern of the OFQ precursor mRNA, which is distinct from that of the opioid peptide precursors. These data confirm that the OFQ system differs from the opioid system at the molecular level, although the OFQ and opioid precursors may have arisen from a common ancestral gene. Images Fig. 4 Fig. 5 PMID:8710930

  1. Analysis of thyroid hormone receptor {beta}A mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action

    SciTech Connect

    Opitz, Robert . E-mail: r.opitz@igb-berlin.de; Lutz, Ilka; Nguyen, Ngoc-Ha; Scanlan, Thomas S.; Kloas, Werner

    2006-04-01

    Amphibian metamorphosis represents a unique biological model to study thyroid hormone (TH) action in vivo. In this study, we examined the utility of thyroid hormone receptors {alpha} (TR{alpha}) and {beta}A (TR{beta}A) mRNA expression patterns in Xenopus laevis tadpoles as molecular markers indicating modulation of TH action. During spontaneous metamorphosis, only moderate changes were evident for TR{alpha} gene expression whereas a marked up-regulation of TR{beta}A mRNA occurred in hind limbs (prometamorphosis), head (late prometamorphosis), and tail tissue (metamorphic climax). Treatment of premetamorphic tadpoles with 1 nM 3,5,3'-triiodothyronine (T3) caused a rapid induction of TR{beta}A mRNA in head and tail tissue within 6 to 12 h which was maintained for at least 72 h after initiation of T3 treatment. Developmental stage had a strong influence on the responsiveness of tadpole tissues to induce TR{beta}A mRNA during 24 h treatment with thyroxine (0, 1, 5, 10 nM T4) or T3 (0, 1, 5, 10 nM). Premetamorphic tadpoles were highly sensitive in their response to T4 and T3 treatments, whereas sensitivity to TH was decreased in early prometamorphic tadpoles and strongly diminished in late prometamorphic tadpoles. To examine the utility of TR{beta}A gene expression analysis for detection of agonistic and antagonistic effects on T3 action, mRNA expression was assessed in premetamorphic tadpoles after 48 h of treatment with the synthetic agonist GC-1 (0, 10, 50, 250 nM), the synthetic antagonist NH-3 (0, 40, 200, 1000 nM), and binary combinations of NH-3 (0, 40, 200, 1000 nM) and T3 (1 nM). All tested concentrations of GC-1 as well as the highest concentration of NH-3 caused an up-regulation of TR{beta}A expression. Co-treatment with NH-3 and T3 revealed strong antagonistic effects by NH-3 on T3-induced TR{beta}A mRNA up-regulation. Results of this study suggest that TR{beta}A mRNA expression analysis could serve as a sensitive molecular testing approach to study effects

  2. The role of kinetic context in apparent biased agonism at GPCRs.

    PubMed

    Klein Herenbrink, Carmen; Sykes, David A; Donthamsetti, Prashant; Canals, Meritxell; Coudrat, Thomas; Shonberg, Jeremy; Scammells, Peter J; Capuano, Ben; Sexton, Patrick M; Charlton, Steven J; Javitch, Jonathan A; Christopoulos, Arthur; Lane, J Robert

    2016-01-01

    Biased agonism describes the ability of ligands to stabilize different conformations of a GPCR linked to distinct functional outcomes and offers the prospect of designing pathway-specific drugs that avoid on-target side effects. This mechanism is usually inferred from pharmacological data with the assumption that the confounding influences of observational (that is, assay dependent) and system (that is, cell background dependent) bias are excluded by experimental design and analysis. Here we reveal that 'kinetic context', as determined by ligand-binding kinetics and the temporal pattern of receptor-signalling processes, can have a profound influence on the apparent bias of a series of agonists for the dopamine D2 receptor and can even lead to reversals in the direction of bias. We propose that kinetic context must be acknowledged in the design and interpretation of studies of biased agonism. PMID:26905976

  3. The role of kinetic context in apparent biased agonism at GPCRs

    PubMed Central

    Klein Herenbrink, Carmen; Sykes, David A.; Donthamsetti, Prashant; Canals, Meritxell; Coudrat, Thomas; Shonberg, Jeremy; Scammells, Peter J.; Capuano, Ben; Sexton, Patrick M.; Charlton, Steven J.; Javitch, Jonathan A.; Christopoulos, Arthur; Lane, J. Robert

    2016-01-01

    Biased agonism describes the ability of ligands to stabilize different conformations of a GPCR linked to distinct functional outcomes and offers the prospect of designing pathway-specific drugs that avoid on-target side effects. This mechanism is usually inferred from pharmacological data with the assumption that the confounding influences of observational (that is, assay dependent) and system (that is, cell background dependent) bias are excluded by experimental design and analysis. Here we reveal that ‘kinetic context', as determined by ligand-binding kinetics and the temporal pattern of receptor-signalling processes, can have a profound influence on the apparent bias of a series of agonists for the dopamine D2 receptor and can even lead to reversals in the direction of bias. We propose that kinetic context must be acknowledged in the design and interpretation of studies of biased agonism. PMID:26905976

  4. Involvement of the neuropeptide nociceptin/orphanin FQ in kainate seizures.

    PubMed

    Bregola, Gianni; Zucchini, Silvia; Rodi, Donata; Binaschi, Anna; D'Addario, Claudio; Landuzzi, Daniela; Reinscheid, Rainer; Candeletti, Sanzio; Romualdi, Patrizia; Simonato, Michele

    2002-11-15

    The neuropeptide nociceptin/orphanin FQ (N/OFQ) has been shown to modulate neuronal excitability and neurotransmitter release. Previous studies indicate that the mRNA levels for the N/OFQ precursor (proN/OFQ) are increased after seizures. However, it is unclear whether N/OFQ plays a role in seizure expression. Therefore, (1) we analyzed proN/OFQ mRNA levels and NOP (the N/OFQ receptor) mRNA levels and receptor density in the kainate model of epilepsy, using Northern blot analysis, in situ hybridization, and receptor binding assay, and (2) we examined susceptibility to kainate seizure in mice treated with 1-[(3R, 4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1, 3-dihydro-benzimidazol-2-one (J-113397), a selective NOP receptor antagonist, and in proN/OFQ knock-out mice. After kainate administration, increased proN/OFQ gene expression was observed in the reticular nucleus of the thalamus and in the medial nucleus of the amygdala. In contrast, NOP mRNA levels and receptor density decreased in the amygdala, hippocampus, thalamus, and cortex. Mice treated with the NOP receptor antagonist J-113397 displayed reduced susceptibility to kainate-induced seizures (i.e., significant reduction of behavioral seizure scores). N/OFQ knock-out mice were less susceptible to kainate seizures compared with their wild-type littermates, in that lethality was reduced, latency to generalized seizure onset was prolonged, and behavioral seizure scores decreased. Intracerebroventricular administration of N/OFQ prevented reduced susceptibility to kainate seizures in N/OFQ knock-out mice. These data indicate that acute limbic seizures are associated with increased N/OFQ release in selected areas, causing downregulation of NOP receptors and activation of N/OFQ biosynthesis, and support the notion that the N/OFQ-NOP system plays a facilitatory role in kainate seizure expression. PMID:12427860

  5. Treg activation defect in type 1 diabetes: correction with TNFR2 agonism

    PubMed Central

    Okubo, Yoshiaki; Torrey, Heather; Butterworth, John; Zheng, Hui; Faustman, Denise L

    2016-01-01

    Activated T-regulatory cells (aTregs) prevent or halt various forms of autoimmunity. We show that type 1 diabetics (T1D) have a Treg activation defect through an increase in resting Tregs (rTregs, CD4+CD25+Foxp3+CD45RA) and decrease in aTregs (CD4+CD25+Foxp3+CD45RO) (n= 55 T1D, n=45 controls, P=0.01). The activation defect persists life long in T1D subjects (T1D=45, controls=45, P=0.01, P=0.04). Lower numbers of aTregs had clinical significance because they were associated with a trend for less residual C-peptide secretion from the pancreas (P=0.08), and poorer HbA1C control (P=0.03). In humans, the tumor necrosis factor receptor 2 (TNFR2) is obligatory for Treg induction, maintenance and expansion of aTregs. TNFR2 agonism is a method for stimulating Treg conversion from resting to activated. Using two separate in vitro expansion protocols, TNFR2 agonism corrected the T1D activation defect by triggering conversion of rTregs into aTregs (n=54 T1D, P<0.001). TNFR2 agonism was superior to standard protocols and TNF in proliferating Tregs. In T1D, TNFR2 agonist-expanded Tregs were homogeneous and functionally potent by virtue of suppressing autologous cytotoxic T cells in a dose-dependent manner comparable to controls. Targeting the TNFR2 receptor for Treg expansion in vitro demonstrates a means to correct the activation defect in T1D. PMID:26900470

  6. The Pharmacology of TUG-891, a Potent and Selective Agonist of the Free Fatty Acid Receptor 4 (FFA4/GPR120), Demonstrates Both Potential Opportunity and Possible Challenges to Therapeutic Agonism

    PubMed Central

    Hudson, Brian D.; Shimpukade, Bharat; Mackenzie, Amanda E.; Butcher, Adrian J.; Pediani, John D.; Christiansen, Elisabeth; Heathcote, Helen; Tobin, Andrew B.; Ulven, Trond

    2013-01-01

    TUG-891 [3-(4-((4-fluoro-4′-methyl-[1,1′-biphenyl]-2-yl)methoxy)phenyl)propanoic acid] was recently described as a potent and selective agonist for the long chain free fatty acid (LCFA) receptor 4 (FFA4; previously G protein–coupled receptor 120, or GPR120). Herein, we have used TUG-891 to further define the function of FFA4 and used this compound in proof of principle studies to indicate the therapeutic potential of this receptor. TUG-891 displayed similar signaling properties to the LCFA α-linolenic acid at human FFA4 across various assay end points, including stimulation of Ca2+ mobilization, β-arrestin-1 and β-arrestin-2 recruitment, and extracellular signal-regulated kinase phosphorylation. Activation of human FFA4 by TUG-891 also resulted in rapid phosphorylation and internalization of the receptor. While these latter events were associated with desensitization of the FFA4 signaling response, removal of TUG-891 allowed both rapid recycling of FFA4 back to the cell surface and resensitization of the FFA4 Ca2+ signaling response. TUG-891 was also a potent agonist of mouse FFA4, but it showed only limited selectivity over mouse FFA1, complicating its use in vivo in this species. Pharmacologic dissection of responses to TUG-891 in model murine cell systems indicated that activation of FFA4 was able to mimic many potentially beneficial therapeutic properties previously reported for LCFAs, including stimulating glucagon-like peptide-1 secretion from enteroendocrine cells, enhancing glucose uptake in 3T3-L1 adipocytes, and inhibiting release of proinflammatory mediators from RAW264.7 macrophages, which suggests promise for FFA4 as a therapeutic target for type 2 diabetes and obesity. Together, these results demonstrate both potential but also significant challenges that still need to be overcome to therapeutically target FFA4. PMID:23979972

  7. The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism.

    PubMed

    Hudson, Brian D; Shimpukade, Bharat; Mackenzie, Amanda E; Butcher, Adrian J; Pediani, John D; Christiansen, Elisabeth; Heathcote, Helen; Tobin, Andrew B; Ulven, Trond; Milligan, Graeme

    2013-11-01

    TUG-891 [3-(4-((4-fluoro-4'-methyl-[1,1'-biphenyl]-2-yl)methoxy)phenyl)propanoic acid] was recently described as a potent and selective agonist for the long chain free fatty acid (LCFA) receptor 4 (FFA4; previously G protein-coupled receptor 120, or GPR120). Herein, we have used TUG-891 to further define the function of FFA4 and used this compound in proof of principle studies to indicate the therapeutic potential of this receptor. TUG-891 displayed similar signaling properties to the LCFA α-linolenic acid at human FFA4 across various assay end points, including stimulation of Ca²⁺ mobilization, β-arrestin-1 and β-arrestin-2 recruitment, and extracellular signal-regulated kinase phosphorylation. Activation of human FFA4 by TUG-891 also resulted in rapid phosphorylation and internalization of the receptor. While these latter events were associated with desensitization of the FFA4 signaling response, removal of TUG-891 allowed both rapid recycling of FFA4 back to the cell surface and resensitization of the FFA4 Ca²⁺ signaling response. TUG-891 was also a potent agonist of mouse FFA4, but it showed only limited selectivity over mouse FFA1, complicating its use in vivo in this species. Pharmacologic dissection of responses to TUG-891 in model murine cell systems indicated that activation of FFA4 was able to mimic many potentially beneficial therapeutic properties previously reported for LCFAs, including stimulating glucagon-like peptide-1 secretion from enteroendocrine cells, enhancing glucose uptake in 3T3-L1 adipocytes, and inhibiting release of proinflammatory mediators from RAW264.7 macrophages, which suggests promise for FFA4 as a therapeutic target for type 2 diabetes and obesity. Together, these results demonstrate both potential but also significant challenges that still need to be overcome to therapeutically target FFA4. PMID:23979972

  8. In vitro and in vivo pharmacological characterization of nociceptin/orphanin FQ tetrabranched derivatives

    PubMed Central

    Rizzi, A; Malfacini, D; Cerlesi, M C; Ruzza, C; Marzola, E; Bird, M F; Rowbotham, D J; Salvadori, S; Guerrini, R; Lambert, D G; Calo, G

    2014-01-01

    Background and Purpose An innovative chemical approach, named peptide welding technology (PWT), allows the synthesis of multibranched peptides with extraordinary high yield, purity and reproducibility. With this approach, three different tetrabranched derivatives of nociceptin/orphanin FQ (N/OFQ) have been synthesized and named PWT1-N/OFQ, PWT2-N/OFQ and PWT3-N/OFQ. In the present study we investigated the in vitro and in vivo pharmacological profile of PWT N/OFQ derivatives and compared their actions with those of the naturally occurring peptide. Experimental Approach The following in vitro assays were used: receptor and [35S]-GTPγS binding, calcium mobilization in cells expressing the human N/OFQ peptide (NOP) receptor, or classical opioid receptors and chimeric G proteins, electrically stimulated mouse vas deferens bioassay. In vivo experiments were performed; locomotor activity was measured in normal mice and in animals with the NOP receptor gene knocked out [NOP(−/−)]. Key Results In vitro PWT derivatives of N/OFQ behaved as high affinity potent and rather selective full agonists at human recombinant and animal native NOP receptors. In vivo PWT derivatives mimicked the inhibitory effects exerted by the natural peptide on locomotor activity showing 40-fold higher potency and extremely longer lasting action. The effects of PWT2-N/OFQ were no longer evident in NOP(−/−) mice. Conclusions and Implications The results showed that the PWT can be successfully applied to the peptide sequence of N/OFQ to generate tetrabranched derivatives characterized by a pharmacological profile similar to the native peptide and associated with a higher potency and marked prolongation of action in vivo. PMID:24903280

  9. Biased agonism of the μ-opioid receptor by TRV130 increases analgesia and reduces on-target adverse effects versus morphine: A randomized, double-blind, placebo-controlled, crossover study in healthy volunteers.

    PubMed

    Soergel, David G; Subach, Ruth Ann; Burnham, Nancy; Lark, Michael W; James, Ian E; Sadler, Brian M; Skobieranda, Franck; Violin, Jonathan D; Webster, Lynn R

    2014-09-01

    Opioids provide powerful analgesia but also efficacy-limiting adverse effects, including severe nausea, vomiting, and respiratory depression, by activating μ-opioid receptors. Preclinical models suggest that differential activation of signaling pathways downstream of these receptors dissociates analgesia from adverse effects; however, this has not yet translated to a treatment with an improved therapeutic index. Thirty healthy men received single intravenous injections of the biased ligand TRV130 (1.5, 3, or 4.5mg), placebo, or morphine (10mg) in a randomized, double-blind, crossover study. Primary objectives were to measure safety and tolerability (adverse events, vital signs, electrocardiography, clinical laboratory values), and analgesia (cold pain test) versus placebo. Other measures included respiratory drive (minute volume after induced hypercapnia), subjective drug effects, and pharmacokinetics. Compared to morphine, TRV130 (3, 4.5mg) elicited higher peak analgesia (105, 116 seconds latency vs 75 seconds for morphine, P<.02), with faster onset and similar duration of action. More subjects doubled latency or achieved maximum latency (180 seconds) with TRV130 (3, 4.5mg). Respiratory drive reduction was greater after morphine than any TRV130 dose (-15.9 for morphine versus -7.3, -7.6, and -9.4 h*L/min, P<.05). More subjects experienced severe nausea after morphine (n=7) than TRV130 1.5 or 3mg (n=0, 1), but not 4.5mg (n=9). TRV130 was generally well tolerated, and exposure was dose proportional. Thus, in this study, TRV130 produced greater analgesia than morphine at doses with less reduction in respiratory drive and less severe nausea. This demonstrates early clinical translation of ligand bias as an important new concept in receptor-targeted pharmacotherapy. PMID:24954166

  10. Agonism and dominance in female blue monkeys.

    PubMed

    Klass, Keren; Cords, Marina

    2015-12-01

    Agonistic behavior features prominently in hypotheses that explain how social variation relates to ecological factors and phylogenetic constraints. Dominance systems vary along axes of despotism, tolerance, and nepotism, and comparative studies examine cross-species patterns in these classifications. To contribute to such studies, we present a comprehensive picture of agonistic behavior and dominance relationships in wild female blue monkeys (Cercopithecus mitis), an arboreal guenon, with data from 9 groups spanning 18 years. We assessed where blue monkeys fall along despotic, tolerant, and nepotistic spectra, how their dominance system compares to other primates, primarily cercopithecines, and whether their agonistic behavior matches socioecological model predictions. Blue monkeys showed low rates of mainly low-intensity agonism and little counter-aggression. Rates increased with rank and group size. Dominance asymmetry varied at different organizational levels, being more pronounced at the level of interactions than dyad or group. Hierarchies were quite stable, had moderate-to-high linearity and directional consistency and moderate steepness. There was clear maternal rank inheritance, but inconsistent adherence to Kawamura's rules. There was little between-group variation, although hierarchy metrics showed considerable variation across group-years. Overall, blue monkeys have moderately despotic, moderately tolerant, and nepotistic dominance hierarchies. They resemble other cercopithecines in having significantly linear and steep hierarchies with a generally stable, matriline-based structure, suggesting a phylogenetic basis to this aspect of their social system. Blue monkeys most closely match Sterck et al.'s [1997] Resident-Nepotistic-Tolerant dominance category, although they do not fully conform to predictions of any one socioecological model. Our results suggest that socioecological models might better predict variation within than across clades, thereby

  11. Estimation of the PPARα agonism of fibrates by a combined MM-docking approach.

    PubMed

    Lannutti, Fabio; Marrone, Alessandro; Re, Nazzareno

    2013-01-01

    Fibrates are peroxisome proliferator-activated alpha receptor (PPARα) activators derived from fibric acid and are the most clinically used therapeutics in the treatment of hypertriglyceridemia. Recently, we reported a computational approach for the investigation of the binding properties of fibrates, characterized by similar carboxylic heads but differing in the size and orientation of the hydrophobic portion. This procedure is based on a combination of standard docking and molecular mechanics approaches to better describe the adaptation of the protein target to the bound ligand. The application of our approach to a set of 23 fibrates and the use of an effective regression procedure, allowed the development of predictive models of the PPARα agonism. The obtained models are characterized by good performances realizing a fair trade-off between accuracy and computational costs. The best model is more specialized in the ranking of fibrate agonists whose binding is mainly controlled by steric rather than by electronic modulation. Here, we describe in details the application of this computational procedure for the prediction of PPARα agonism of fibrate ligands. PMID:23100237

  12. Minocycline Enhances the Effectiveness of Nociceptin/Orphanin FQ during Neuropathic Pain

    PubMed Central

    Popiolek-Barczyk, Katarzyna; Rojewska, Ewelina; Jurga, Agnieszka M.; Makuch, Wioletta; Zador, Ferenz; Piotrowska, Anna; Przewlocka, Barbara

    2014-01-01

    Nociceptin/orphanin FQ (N/OFQ) antinociception, which is mediated selectively by the N/OFQ peptide receptor (NOP), was demonstrated in pain models. In this study, we determine the role of activated microglia on the analgesic effects of N/OFQ in a rat model of neuropathic pain induced by chronic constriction injury (CCI) to the sciatic nerve. Repeated 7-day administration of minocycline (30 mg/kg i.p.), a drug that affects microglial activation, significantly reduced pain in CCI-exposed rats and it potentiates the analgesic effects of administered N/OFQ (2.5–5 μg i.t.). Minocycline also downregulates the nerve injury-induced upregulation of NOP protein in the dorsal lumbar spinal cord. Our in vitro study showed that minocycline reduced NOP mRNA, but not protein, level in rat primary microglial cell cultures. In [35S]GTPγS binding assays we have shown that minocycline increases the spinal N/OFQ-stimulated NOP signaling. We suggest that the modulation of the N/OFQ system by minocycline is due to the potentiation of its neuronal antinociceptive activity and weakening of the microglial cell activation. This effect is beneficial for pain relief, and these results suggest new targets for the development of drugs that are effective against neuropathic pain. PMID:25276817

  13. PPARδ Agonism Activates Fatty Acid Oxidation via PGC-1α but Does Not Increase Mitochondrial Gene Expression and Function

    PubMed Central

    Kleiner, Sandra; Nguyen-Tran, Van; Baré, Olivia; Huang, Xueming; Spiegelman, Bruce; Wu, Zhidan

    2009-01-01

    PPARδ (peroxisome proliferator-activated receptor δ) is a regulator of lipid metabolism and has been shown to induce fatty acid oxidation (FAO). PPARδ transgenic and knock-out mice indicate an involvement of PPARδ in regulating mitochondrial biogenesis and oxidative capacity; however, the precise mechanisms by which PPARδ regulates these pathways in skeletal muscle remain unclear. In this study, we determined the effect of selective PPARδ agonism with the synthetic ligand, GW501516, on FAO and mitochondrial gene expression in vitro and in vivo. Our results show that activation of PPARδ by GW501516 led to a robust increase in mRNA levels of key lipid metabolism genes. Mitochondrial gene expression and function were not induced under the same conditions. Additionally, the activation of Pdk4 transcription by PPARδ was coactivated by PGC-1α. PGC-1α, but not PGC-1β, was essential for full activation of Cpt-1b and Pdk4 gene expression via PPARδ agonism. Furthermore, the induction of FAO by PPARδ agonism was completely abolished in the absence of both PGC-1α and PGC-1β. Conversely, PGC-1α-driven FAO was independent of PPARδ. Neither GW501516 treatment nor knockdown of PPARδ affects PGC-1α-induced mitochondrial gene expression in primary myotubes. These results demonstrate that pharmacological activation of PPARδ induces FAO via PGC-1α. However, PPARδ agonism does not induce mitochondrial gene expression and function. PGC-1α-induced FAO and mitochondrial biogenesis appear to be independent of PPARδ. PMID:19435887

  14. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance.

    PubMed

    Fang, Sungsoon; Suh, Jae Myoung; Reilly, Shannon M; Yu, Elizabeth; Osborn, Olivia; Lackey, Denise; Yoshihara, Eiji; Perino, Alessia; Jacinto, Sandra; Lukasheva, Yelizaveta; Atkins, Annette R; Khvat, Alexander; Schnabl, Bernd; Yu, Ruth T; Brenner, David A; Coulter, Sally; Liddle, Christopher; Schoonjans, Kristina; Olefsky, Jerrold M; Saltiel, Alan R; Downes, Michael; Evans, Ronald M

    2015-02-01

    The systemic expression of the bile acid (BA) sensor farnesoid X receptor (FXR) has led to promising new therapies targeting cholesterol metabolism, triglyceride production, hepatic steatosis and biliary cholestasis. In contrast to systemic therapy, bile acid release during a meal selectively activates intestinal FXR. By mimicking this tissue-selective effect, the gut-restricted FXR agonist fexaramine (Fex) robustly induces enteric fibroblast growth factor 15 (FGF15), leading to alterations in BA composition, but does so without activating FXR target genes in the liver. However, unlike systemic agonism, we find that Fex reduces diet-induced weight gain, body-wide inflammation and hepatic glucose production, while enhancing thermogenesis and browning of white adipose tissue (WAT). These pronounced metabolic improvements suggest tissue-restricted FXR activation as a new approach in the treatment of obesity and metabolic syndrome. PMID:25559344

  15. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance

    PubMed Central

    Fang, Sungsoon; Suh, Jae Myoung; Reilly, Shannon M; Yu, Elizabeth; Osborn, Olivia; Lackey, Denise; Yoshihara, Eiji; Perino, Alessia; Jacinto, Sandra; Lukasheva, Yelizaveta; Atkins, Annette R; Khvat, Alexander; Schnabl, Bernd; Yu, Ruth T; Brenner, David A; Coulter, Sally; Liddle, Christopher; Schoonjans, Kristina; Olefsky, Jerrold M; Saltiel, Alan R; Downes, Michael; Evans, Ronald M

    2015-01-01

    The systemic expression of the bile acid (BA) sensor farnesoid X receptor (FXR) has led to promising new therapies targeting cholesterol metabolism, triglyceride production, hepatic steatosis and biliary cholestasis. In contrast to systemic therapy, bile acid release during a meal selectively activates intestinal FXR. By mimicking this tissue-selective effect, the gut-restricted FXR agonist fexaramine (Fex) robustly induces enteric fibroblast growth factor 15 (FGF15), leading to alterations in BA composition, but does so without activating FXR target genes in the liver. However, unlike systemic agonism, we find that Fex reduces diet-induced weight gain, body-wide inflammation and hepatic glucose production, while enhancing thermogenesis and browning of white adipose tissue (WAT). These pronounced metabolic improvements suggest tissue-restricted FXR activation as a new approach in the treatment of obesity and metabolic syndrome. PMID:25559344

  16. Effect of LXR/RXR agonism on brain and CSF Aβ40 levels in rats

    PubMed Central

    Wang, Songli; Wen, Paul; Wood, Stephen

    2016-01-01

    Alzheimer's disease (AD) is characterized pathologically by the presence of amyloid plaques and neurofibrillary tangles. The amyloid hypothesis contends that the abnormal accumulation of Aβ, the principal component of amyloid plaques, plays an essential role in initiating the disease. Impaired clearance of soluble Aβ from the brain, a process facilitated by apolipoprotein E (APOE), is believed to be a contributing factor in plaque formation. APOE expression is transcriptionally regulated through the action of a family of nuclear receptors including the peroxisome proliferator-activated receptor gamma and liver X receptors (LXRs) in coordination with retinoid X receptors (RXRs). It has been previously reported that various agonists of this receptor family can influence brain Aβ levels in rodents. In this study we investigated the effects of LXR/RXR agonism on brain and cerebrospinal fluid (CSF) levels of Aβ40 in naïve rats. Treatment of rats for 3 days or 7 days with the LXR agonist, T0901317 or the RXR agonist, bexarotene did not result in significant changes in brain or CSF Aβ40 levels. PMID:27239272

  17. Connecting inflammation with glutamate agonism in suicidality.

    PubMed

    Erhardt, Sophie; Lim, Chai K; Linderholm, Klas R; Janelidze, Shorena; Lindqvist, Daniel; Samuelsson, Martin; Lundberg, Kristina; Postolache, Teodor T; Träskman-Bendz, Lil; Guillemin, Gilles J; Brundin, Lena

    2013-04-01

    The NMDA-receptor antagonist ketamine has proven efficient in reducing symptoms of suicidality, although the mechanisms explaining this effect have not been detailed in psychiatric patients. Recent evidence points towards a low-grade inflammation in brains of suicide victims. Inflammation leads to production of quinolinic acid (QUIN) and kynurenic acid (KYNA), an agonist and antagonist of the glutamatergic N-methyl-D-aspartate (NMDA) receptor, respectively. We here measured QUIN and KYNA in the cerebrospinal fluid (CSF) of 64 medication-free suicide attempters and 36 controls, using gas chromatography mass spectrometry and high-performance liquid chromatography. We assessed the patients clinically using the Suicide Intent Scale and the Montgomery-Asberg Depression Rating Scale (MADRS). We found that QUIN, but not KYNA, was significantly elevated in the CSF of suicide attempters (P<0.001). As predicted, the increase in QUIN was associated with higher levels of CSF interleukin-6. Moreover, QUIN levels correlated with the total scores on Suicide Intent Scale. There was a significant decrease of QUIN in patients who came for follow-up lumbar punctures within 6 months after the suicide attempt. In summary, we here present clinical evidence of increased QUIN in the CSF of suicide attempters. An increased QUIN/KYNA quotient speaks in favor of an overall NMDA-receptor stimulation. The correlation between QUIN and the Suicide Intent Scale indicates that changes in glutamatergic neurotransmission could be specifically linked to suicidality. Our findings have important implications for the detection and specific treatment of suicidal patients, and might explain the observed remedial effects of ketamine. PMID:23299933

  18. Dysregulation of Nociceptin/Orphanin FQ activity in the amygdala is linked to excessive alcohol drinking in the rat

    PubMed Central

    Economidou, Daina; Hansson, Anita C.; Weiss, Friedbert; Terasmaa, Anton; Sommer, Wolfgang H.; Cippitelli, Andrea; Fedeli, Amalia; Martin-Fardon, Rèmi; Massi, Maurizio; Ciccocioppo, Roberto; Heilig, Markus

    2008-01-01

    Background Alcoholism is a complex behavioral disorder in which interactions between stressful life events and heritable susceptibility factors contribute to the initiation and progression of disease. Neural substrates of these interactions remain largely unknown. Here, we examined the role of the nociceptin/orphanin FQ (N/OFQ) system, using an animal model in which genetic selection for high alcohol preference has led to co-segregation of elevated behavioral sensitivity to stress (msP rats). Methods msP and Wistar rats trained to self-administer alcohol received central injections of N/OFQ. In situ hybridization, and receptor binding assays were also performed to evaluate N/OFQ receptor (NOP) function in naïve msP and Wistar rats. Results Intracerebroventricular (ICV) injection of N/OFQ significantly inhibited alcohol self-administration in msP but not in nonselected Wistar rats. NOP receptor mRNA expression and binding was upregulated across most brain regions in msP compared to Wistar rats. However, in msP rats [35S]GTPγS binding revealed a selective impairment of NOP receptor signaling in the central amygdala (CeA). Ethanol self-administration in msP rats was suppressed after N/OFQ microinjection into the CeA but not into the bed nucleus of the stria terminalis or the basolateral amygdala. Conclusions These findings indicate that dysregulation of N/OFQ-NOP receptor signaling in the CeA contributes to excessive alcohol intake in msP rats, and that this phenotype can be rescued by local administration of pharmacological doses of exogenous N/OFQ. Data are interpreted based of the anti-CRF actions of N/OFQ and the significance of the CRF system in promoting excessive alcohol drinking in msP rats. PMID:18367152

  19. Rates of agonism among female primates: a cross-taxon perspective

    PubMed Central

    2013-01-01

    Agonism is common in group-living animals, shaping dominance relationships and ultimately impacting individual fitness. Rates of agonism vary considerably among taxa, however, and explaining this variation has been central in ecological models of female social relationships in primates. Early iterations of these models posited a link to diet, with more frequent agonism predicted in frugivorous species due to the presumed greater contestability of fruits relative to other food types. Although some more recent studies have suggested that dietary categories may be poor predictors of contest competition among primates, to date there have been no broad, cross-taxa comparisons of rates of female–female agonism in relation to diet. This study tests whether dietary variables do indeed predict rates of female agonism and further investigates the role of group size (i.e., number of competitors) and substrate use (i.e., degree of arboreality) on the frequency of agonism. Data from 44 wild, unprovisioned groups, including 3 strepsirhine species, 3 platyrrhines, 5 colobines, 10 cercopithecines, and 2 hominoids were analyzed using phylogenetically controlled and uncontrolled methods. Results indicate that diet does not predict agonistic rates, with trends actually being in the opposite direction than predicted for all taxa except cercopithecines. In contrast, agonistic rates are positively associated with group size and possibly degree of terrestriality. Competitor density and perhaps the risk of fighting, thus, appear more important than general diet in predicting agonism among female primates. We discuss the implications of these results for socio-ecological hypotheses. PMID:24137045

  20. Prediction of the PPARα agonism of fibrates by combined MM-docking approaches.

    PubMed

    Lannutti, Fabio; Marrone, Alessandro; Re, Nazzareno

    2011-04-01

    Fibrates are peroxisome proliferator-activated alpha receptor (PPARα) activators derived from fibric acid and are the most clinically used therapeutics in the treatment of hypertriglyceridemia. Long standing studies on these drugs have accumulated a large body of experimental data about their biological activity and, more recently, on the molecular mechanism mediating their PPARα agonism. An immense interest for the discovery of new fibrates with improved potency and PPARα selectivity has stimulated many investigations toward a deeper understanding of structure-activity relationships controlling their activity. The present study aimed at investigating the binding properties of a set of 23 fibrates, characterized by similar carboxylic heads but differing in the size and orientation of the hydrophobic portion, using computational approaches. We combined standard docking and molecular mechanics approaches to better describe the adaptation of the protein target to the bound ligand. The agonist potencies were then regressed against the calculated binding energies to elaborate predictive model equations. The obtained models were characterized by good performances realizing a fair trade-off between accuracy and computational costs. The best model was obtained with a regression procedure allowing automatic generation of a training subset from the whole set of trials and filtering out outliers, thus highlighting the importance of regression strategies. PMID:21414824

  1. Sample matching by inferred agonal stress in gene expression analyses of the brain

    PubMed Central

    Li, Jun Z; Meng, Fan; Tsavaler, Larisa; Evans, Simon J; Choudary, Prabhakara V; Tomita, Hiroaki; Vawter, Marquis P; Walsh, David; Shokoohi, Vida; Chung, Tisha; Bunney, William E; Jones, Edward G; Akil, Huda; Watson, Stanley J; Myers, Richard M

    2007-01-01

    Background Gene expression patterns in the brain are strongly influenced by the severity and duration of physiological stress at the time of death. This agonal effect, if not well controlled, can lead to spurious findings and diminished statistical power in case-control comparisons. While some recent studies match samples by tissue pH and clinically recorded agonal conditions, we found that these indicators were sometimes at odds with observed stress-related gene expression patterns, and that matching by these criteria still sometimes results in identifying case-control differences that are primarily driven by residual agonal effects. This problem is analogous to the one encountered in genetic association studies, where self-reported race and ethnicity are often imprecise proxies for an individual's actual genetic ancestry. Results We developed an Agonal Stress Rating (ASR) system that evaluates each sample's degree of stress based on gene expression data, and used ASRs in post hoc sample matching or covariate analysis. While gene expression patterns are generally correlated across different brain regions, we found strong region-region differences in empirical ASRs in many subjects that likely reflect inter-individual variabilities in local structure or function, resulting in region-specific vulnerability to agonal stress. Conclusion Variation of agonal stress across different brain regions differs between individuals, revealing a new level of complexity for gene expression studies of brain tissues. The Agonal Stress Ratings quantitatively assess each sample's extent of regulatory response to agonal stress, and allow a strong control of this important confounder. PMID:17892578

  2. Selective V(1a) agonism attenuates vascular dysfunction and fluid accumulation in ovine severe sepsis.

    PubMed

    Rehberg, Sebastian; Yamamoto, Yusuke; Sousse, Linda; Bartha, Eva; Jonkam, Collette; Hasselbach, Anthony K; Traber, Lillian D; Cox, Robert A; Westphal, Martin; Enkhbaatar, Perenlei; Traber, Daniel L

    2012-11-15

    Vasopressin analogs are used as a supplement to norepinephrine in septic shock. The isolated effects of vasopressin agonists on sepsis-induced vascular dysfunction, however, remain controversial. Because V(2)-receptor stimulation induces vasodilation and procoagulant effects, a higher V(1a)- versus V(2)-receptor selectivity might be advantageous. We therefore hypothesized that a sole, titrated infusion of the selective V(1a)-agonist Phe(2)-Orn(8)-Vasotocin (POV) is more effective than the mixed V(1a)-/V(2)-agonist AVP for the treatment of vascular and cardiopulmonary dysfunction in methicillin resistant staphylococcus aureus pneumonia-induced, ovine sepsis. After the onset of hemodynamic instability, awake, chronically instrumented, mechanically ventilated, and fluid resuscitated sheep were randomly assigned to receive continuous infusions of either POV, AVP, or saline solution (control; each n = 6). AVP and POV were titrated to maintain mean arterial pressure above baseline - 10 mmHg. When compared with that of control animals, AVP and POV reduced neutrophil migration (myeloperoxidase activity, alveolar neutrophils) and plasma levels of nitric oxide, resulting in higher mean arterial pressures and a reduced vascular leakage (net fluid balance, chest and abdominal fluid, pulmonary bloodless wet-to-dry-weight ratio, alveolar and septal edema). Notably, POV stabilized hemodynamics at lower doses than AVP. In addition, POV, but not AVP, reduced myocardial and pulmonary tissue concentrations of 3-nitrotyrosine, VEGF, and angiopoietin-2, thereby leading to an abolishment of cumulative fluid accumulation (POV, 9 ± 15 ml/kg vs. AVP, 110 ± 13 ml/kg vs. control, 213 ± 16 ml/kg; P < 0.001 each) and an attenuated cardiopulmonary dysfunction (left ventricular stroke work index, PaO(2)-to-FiO(2) ratio) versus control animals. Highly selective V(1a)-agonism appears to be superior to unselective vasopressin analogs for the treatment of sepsis-induced vascular dysfunction. PMID

  3. ASASSN-16fq: Discovery of A Probable Supernova in M66

    NASA Astrophysics Data System (ADS)

    Bock, G.; Dong, Subo; Kochanek, C. S.; Stanek, K. Z.; Brown, J. S.; Holoien, T. W.-S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Chen, Ping; Brimacombe, J.

    2016-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy M66. ASASSN-16fq (AT 2016cok) was discovered in images obtained on UT 2016-05-28.30 at V ~ 16.7 mag. We do not detect (V > 17.1) the object in images taken on UT 2016-05-24.32 and before.

  4. Antinociceptive effects of spinally administered nociceptin/orphanin FQ and its N-terminal fragments on capsaicin-induced nociception.

    PubMed

    Katsuyama, Soh; Mizoguchi, Hirokazu; Komatsu, Takaaki; Sakurada, Chikai; Tsuzuki, Minoru; Sakurada, Shinobu; Sakurada, Tsukasa

    2011-07-01

    Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand for the N/OFQ peptide (NOP) receptors, has been shown to be metabolized into some fragments. We examined to determine whether intrathecal (i.t.) N/OFQ (1-13), (1-11) and (1-7) have antinociceptive activity in the pain-related behavior after intraplantar injection of capsaicin. The i.t. administration of N/OFQ (0.3-1.2 nmol) produced an appreciable and dose-dependent inhibition of capsaicin-induced paw-licking/biting response. The N-terminal fragments of N/OFQ, (1-13) and (1-11), were antinociceptive with a potency lower than N/OFQ. Calculated ID₅₀ values (nmol, i.t.) were 0.83 for N/OFQ, 2.5 for N/OFQ (1-13) and 4.75 for N/OFQ (1-11), respectively. The time-course effect revealed that the antinociceptive effects of these N-terminal fragments lasted longer than those of N/OFQ. Removal of amino acids down to N/OFQ (1-7) led to be less potent than N/OFQ and its fragments, (1-13) and (1-11). Antinociception induced by N/OFQ or N/OFQ (1-13) was reversed significantly by i.t. co-injection of [Nphe¹]N/OFQ (1-13)NH₂, a peptidergic antagonist for NOP receptors, whereas i.t. injection of the antagonist did not interfere with the action of N/OFQ (1-11) and (1-7). Pretreatment with the opioid receptor antagonist naloxone hydrochloride did not affect the antinociception induced by N/OFQ and its N-terminal fragments. These results suggest that N-terminal fragments of N/OFQ are active metabolites and may modulate the antinociceptive effect of N/OFQ in the spinal cord. The results also indicate that N/OFQ (1-13) still possess antinociceptive activity through NOP receptors. PMID:21672568

  5. Pharmacologically induced hypothermia via TRPV1 channel agonism provides neuroprotection following ischemic stroke when initiated 90 min after reperfusion

    PubMed Central

    Cao, Zhijuan; Balasubramanian, Adithya

    2013-01-01

    Traditional methods of therapeutic hypothermia show promise for neuroprotection against cerebral ischemia-reperfusion (I/R), however, with limitations. We examined effectiveness and specificity of pharmacological hypothermia (PH) by transient receptor potential vanilloid 1 (TRPV1) channel agonism in the treatment of focal cerebral I/R. Core temperature (Tcore) was measured after subcutaneous infusion of TRPV1 agonist dihydrocapsaicin (DHC) in conscious C57BL/6 WT and TRPV1 knockout (KO) mice. Acute measurements of heart rate (HR), mean arterial pressure (MAP), and cerebral perfusion were measured before and after DHC treatment. Focal cerebral I/R (1 h ischemia + 24 h reperfusion) was induced by distal middle cerebral artery occlusion. Hypothermia (>8 h) was initiated 90 min after start of reperfusion by DHC infusion (osmotic pump). Neurofunction (behavioral testing) and infarct volume (TTC staining) were measured at 24 h. DHC (1.25 mg/kg) produced a stable drop in Tcore (33°C) in naive and I/R mouse models but not in TRPV1 KO mice. DHC (1.25 mg/kg) had no measurable effect on HR and cerebral perfusion but produced a slight transient drop in MAP (<6 mmHg). In stroke mice, DHC infusion produced hypothermia, decreased infarct volume by 87%, and improved neurofunctional score. The hypothermic and neuroprotective effects of DHC were absent in TRPV1 KO mice or mice maintained normothermic with heat support. PH via TRPV1 agonist appears to be a well-tolerated and effective method for promoting mild hypothermia in the conscious mouse. Furthermore, TRPV1 agonism produces effective hypothermia in I/R mice and significantly improves outcome when initiated 90 min after start of reperfusion. PMID:24305062

  6. Central nociceptin/orphanin FQ system elevates food consumption by both increasing energy intake and reducing aversive responsiveness.

    PubMed

    Olszewski, Pawel K; Grace, Martha K; Fard, Shahrzad Shirazi; Le Grevès, Madeleine; Klockars, Anica; Massi, Maurizio; Schiöth, Helgi B; Levine, Allen S

    2010-08-01

    Nociceptin/orphanin FQ (N/OFQ), the nociceptin opioid peptide (NOP) receptor ligand, increases feeding when injected centrally. Initial data suggest that N/OFQ blocks the development of a conditioned taste aversion (CTA). The current project further characterized the involvement of N/OFQ in the regulation of hunger vs. aversive responses in rats by employing behavioral, immunohistochemical, and real-time PCR methodology. We determined that the same low dose of the NOP antagonist [Nphe(1)]N/OFQ(1-13)NH(2) delivered via the lateral ventricle diminishes both N/OFQ- and deprivation-induced feeding. This anorexigenic effect did not stem from aversive consequences, as the antagonist did not cause the development of a CTA. When [Nphe(1)]N/OFQ(1-13)NH(2) was administered with LiCl, it moderately delayed extinction of the LiCl-induced CTA. Injection of LiCl + antagonist compared with LiCl alone generated an increase in c-Fos immunoreactivity in the central nucleus of the amygdala. The antagonist alone elevated Fos immunoreactivity in the paraventricular nucleus of the hypothalamus, nucleus of the solitary tract, and central nucleus of the amygdala. Hypothalamic NOP mRNA levels were decreased during energy intake restriction induced by aversion, as well as in non-CTA rats food-restricted to match CTA-reduced consumption. Brain stem NOP was upregulated only in aversion. Prepro-N/OFQ mRNA showed a trend toward upregulation in restricted rats (P = 0.068). We conclude that the N/OFQ system promotes feeding by affecting the need to replenish lacking calories and by reducing aversive responsiveness. It may belong to mechanisms that shift a balance between the drive to ingest energy and avoidance of potentially tainted food. PMID:20427724

  7. Direct and indirect inhibition by nociceptin/orphanin FQ on noradrenaline release from rodent cerebral cortex in vitro

    PubMed Central

    Siniscalchi, Anna; Rodi, Donata; Morari, Michele; Marti, Matteo; Cavallini, Sabrina; Marino, Silvia; Beani, Lorenzo; Bianchi, Clementina

    2002-01-01

    The modulation exerted by nociceptin/orphanin FQ (NC) on noradrenaline (NE) release in rodent cerebral cortex slices and synaptosomes was studied. Rat, mouse and guinea-pig cortical slices and synaptosomes were preincubated with 0.1 μM [3H]-NE and superfused. NE release was evoked by 2 min of electrical (3 Hz) stimulation in slices and by 1 min pulse of 10 mM KCl in synaptosomes. In rat cortical slices, 0.01–3 μM NC reduced the evoked [3H]-NE efflux (Emax−54%), with a bell-shaped concentration-response curve, which regained its monotonic nature in the presence of either 0.1 μM naloxone (NX) or 30 μM bicuculline. In synaptosomes, the NC effect curve was sygmoidal in shape and reached a plateau at 1 μM concentration. In the rat, both 1 μM [Phe1ψ(CH2-NH)Gly2]NC(1-13)NH2 and 10 μM [Nphe1]NC(1-13)NH2 (NPhe) antagonised NC-induced inhibition, without per se modifying [3H]-NE efflux. The effects of 0.3–1 μM NC concentrations were partially prevented by 1 μM NX; 1 μM D-Phe-Cys-Thr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) was also an effective antagonist, but 0.1 μM norbinaltorphimine was not. In the mouse cerebral cortex, NC-induced inhibition of NE release (pEC50 6.87, Emax−61%, in the slices) was prevented by Nphe but was NX-insensitive. In guinea-pig cortical slices, NC effect (pEC50 6.22, Emax−38%) was prevented by Nphe, but was NX-insensitive. These findings demonstrate that NC inhibits NE release from rodent cerebral cortex via presynaptically located ORL1 receptors. In the rat, μ opioid and GABAA receptors are involved as well. PMID:12163351

  8. DNA sequence and genetic characterization of plasmid pFQ11 from Frankia alni strain CpI1.

    PubMed

    Xu, Xudong; Kong, Renqiu; de Bruijn, Frans J; He, Sheng Yang; Murry, Marcia A; Newman, Thomas; Wolk, C Peter

    2002-01-22

    An 8551-bp plasmid, pFQ11, from Frankia alni strain CpI1 was sequenced. Its sequence was found to be very similar to that presented for pFQ31 from strain ArI3. Six potential protein-encoding open reading frames (ORFs) were identified, and transcriptional activity was shown within four of those regions of the plasmid by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. An earlier study reported that ORF E(F) of pFQ31, which is nearly identical to the 3' 45% of ORF1 of pFQ11, is significantly similar to RepF. We found no such similarity. ORF2 and ORF3 predict products that are similar to a repressor protein and a partition protein, respectively. We found inverted repeats within and covering the start codon of ORF3; palindromic sequences and direct repeats between ORF3 and ORF4; and 3' from ORF3, an AT-rich sequence that extensively overlaps the promoter region of a uvrB homolog in strain ArI3. PMID:11886759

  9. Selective Attenuation of Norepinephrine Release and Stress-Induced Heart Rate Increase by Partial Adenosine A1 Agonism

    PubMed Central

    Bott-Flügel, Lorenz; Bernshausen, Alexandra; Schneider, Heike; Luppa, Peter; Zimmermann, Katja; Albrecht-Küpper, Barbara; Kast, Raimund; Laugwitz, Karl-Ludwig; Ehmke, Heimo; Knorr, Andreas; Seyfarth, Melchior

    2011-01-01

    The release of the neurotransmitter norepinephrine (NE) is modulated by presynaptic adenosine receptors. In the present study we investigated the effect of a partial activation of this feedback mechanism. We hypothesized that partial agonism would have differential effects on NE release in isolated hearts as well as on heart rate in vivo depending on the genetic background and baseline sympathetic activity. In isolated perfused hearts of Wistar and Spontaneously Hypertensive Rats (SHR), NE release was induced by electrical stimulation under control conditions (S1), and with capadenoson 6 · 10−8 M (30 µg/l), 6 · 10−7 M (300 µg/l) or 2-chloro-N6-cyclopentyladenosine (CCPA) 10−6 M (S2). Under control conditions (S1), NE release was significantly higher in SHR hearts compared to Wistar (766+/−87 pmol/g vs. 173+/−18 pmol/g, p<0.01). Capadenoson led to a concentration-dependent decrease of the stimulation–induced NE release in SHR (S2/S1 = 0.90±0.08 with capadenoson 6 · 10−8 M, 0.54±0.02 with 6 · 10−7 M), but not in Wistar hearts (S2/S1 = 1.05±0.12 with 6 · 10−8 M, 1.03±0.09 with 6 · 10−7 M). CCPA reduced NE release to a similar degree in hearts from both strains. In vivo capadenoson did not alter resting heart rate in Wistar rats or SHR. Restraint stress induced a significantly greater increase of heart rate in SHR than in Wistar rats. Capadenoson blunted this stress-induced tachycardia by 45% in SHR, but not in Wistar rats. Using a [35S]GTPγS assay we demonstrated that capadenoson is a partial agonist compared to the full agonist CCPA (74+/−2% A1-receptor stimulation). These results suggest that partial adenosine A1-agonism dampens stress-induced tachycardia selectively in rats susceptible to strong increases in sympathetic activity, most likely due to a presynaptic attenuation of NE release. PMID:21464936

  10. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders

    PubMed Central

    Vawter, MP; Tomita, H; Meng, F; Bolstad, B; Li, J; Evans, S; Choudary, P; Atz, M; Shao, L; Neal, C; Walsh, DM; Burmeister, M; Speed, T; Myers, R; Jones, EG; Watson, SJ; Akil, H; Bunney, WE

    2010-01-01

    Mitochondrial defects in gene expression have been implicated in the pathophysiology of bipolar disorder and schizophrenia. We have now contrasted control brains with low pH versus high pH and showed that 28% of genes in mitochondrial-related pathways meet criteria for differential expression. A majority of genes in the mitochondrial, chaperone and proteasome pathways of nuclear DNA-encoded gene expression were decreased with decreased brain pH, whereas a majority of genes in the apoptotic and reactive oxygen stress pathways showed an increased gene expression with a decreased brain pH. There was a significant increase in mitochondrial DNA copy number and mitochondrial DNA gene expression with increased agonal duration. To minimize effects of agonal-pH state on mood disorder comparisons, two classic approaches were used, removing all subjects with low pH and agonal factors from analysis, or grouping low and high pH as a separate variable. Three groups of potential candidate genes emerged that may be mood disorder related: (a) genes that showed no sensitivity to pH but were differentially expressed in bipolar disorder or major depressive disorder; (b) genes that were altered by agonal-pH in one direction but altered in mood disorder in the opposite direction to agonal-pH and (c) genes with agonal-pH sensitivity that displayed the same direction of changes in mood disorder. Genes from these categories such as NR4A1 and HSPA2 were confirmed with Q-PCR. The interpretation of postmortem brain studies involving broad mitochondrial gene expression and related pathway alterations must be monitored against the strong effect of agonal-pH state. Genes with the least sensitivity to agonal-pH could present a starting point for candidate gene search in neuropsychiatric disorders. PMID:16636682

  11. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders.

    PubMed

    Vawter, M P; Tomita, H; Meng, F; Bolstad, B; Li, J; Evans, S; Choudary, P; Atz, M; Shao, L; Neal, C; Walsh, D M; Burmeister, M; Speed, T; Myers, R; Jones, E G; Watson, S J; Akil, H; Bunney, W E

    2006-07-01

    Mitochondrial defects in gene expression have been implicated in the pathophysiology of bipolar disorder and schizophrenia. We have now contrasted control brains with low pH versus high pH and showed that 28% of genes in mitochondrial-related pathways meet criteria for differential expression. A majority of genes in the mitochondrial, chaperone and proteasome pathways of nuclear DNA-encoded gene expression were decreased with decreased brain pH, whereas a majority of genes in the apoptotic and reactive oxygen stress pathways showed an increased gene expression with a decreased brain pH. There was a significant increase in mitochondrial DNA copy number and mitochondrial DNA gene expression with increased agonal duration. To minimize effects of agonal-pH state on mood disorder comparisons, two classic approaches were used, removing all subjects with low pH and agonal factors from analysis, or grouping low and high pH as a separate variable. Three groups of potential candidate genes emerged that may be mood disorder related: (a) genes that showed no sensitivity to pH but were differentially expressed in bipolar disorder or major depressive disorder; (b) genes that were altered by agonal-pH in one direction but altered in mood disorder in the opposite direction to agonal-pH and (c) genes with agonal-pH sensitivity that displayed the same direction of changes in mood disorder. Genes from these categories such as NR4A1 and HSPA2 were confirmed with Q-PCR. The interpretation of postmortem brain studies involving broad mitochondrial gene expression and related pathway alterations must be monitored against the strong effect of agonal-pH state. Genes with the least sensitivity to agonal-pH could present a starting point for candidate gene search in neuropsychiatric disorders. PMID:16636682

  12. Nociceptin/Orphanin FQ Suppresses Adaptive Immune Responses in Vivo and at Picomolar Levels in Vitro

    PubMed Central

    Anton, Benito; Calva, Juan C.; Acevedo, Rodolfo; Salazar, Alberto; Matus, Maura; Flores, Anabel; Martinez, Martin; Adler, Martin W.; Gaughan, John P.; Eisenstein, Toby K.

    2014-01-01

    Nociceptin/orphanin FQ (N/OFQ), added in vitro to murine spleen cells in the picomolar range, suppressed antibody formation to sheep red blood cells in a primary and a secondary plaque-forming cell (PFC) assay. The activity of the peptide was maximal at 10−12 M, with an asymmetric U-shaped dose response curve that extended activity to 10−14 M. Suppression was not blocked by pretreatment with naloxone. Specificity of the suppressive response was shown using affinity purified rabbit antibodies against two N/OFQ peptides, and with a pharmacological antagonist. Antisera against both peptides were active, in a dose related manner, in neutralizing N/OFQ -mediated immunosuppression, when the peptide was used at concentrations from 10−12.3 to 10−11.6 M. In addition, nociceptin given in vivo by osmotic pump for 48 hr suppressed the capacity of spleen cells placed ex vivo to make an anti-sheep red blood cell response. These studies show that nociceptin directly inhibits an adaptive immune response, i.e. antibody formation, both in vitro and in vivo. PMID:20119853

  13. Selective Inhibition of PTP1B by Vitalboside A from Syzygium cumini Enhances Insulin Sensitivity and Attenuates Lipid Accumulation Via Partial Agonism to PPARγ: In Vitro and In Silico Investigation.

    PubMed

    Thiyagarajan, Gopal; Muthukumaran, Padmanaban; Sarath Kumar, Baskaran; Muthusamy, Velusamy Shanmuganathan; Lakshmi, Baddireddi Subhadra

    2016-08-01

    Although antidiabetic drugs show good insulin-sensitizing property for T2DM, they also exhibit undesirable side-effects. Partial peroxisome proliferator-activated receptor γ agonism with protein tyrosine phosphatase 1B inhibition is considered as an alternative therapeutic approach toward the development of a safe insulin sensitizer. Bioactivity-based fractionation and purification of Syzygium cumini seeds led to the isolation and identification of bifunctional Vitalboside A, which showed antidiabetic and anti-adipogenic activities, as measured by glucose uptake in L6 and 3T3-L1 adipocytes and Nile red assay. A non-competitive allosteric inhibition of protein tyrosine phosphatase 1B by Vitalboside A was observed, which was confirmed by docking studies. Inhibitor studies with wortmannin and genistein showed an IRTK- and PI3K-dependent glucose uptake. A PI3K/AKT-dependent activation of GLUT4 translocation and an inactivation of GSK3β were observed, confirming its insulin-sensitizing potential. Vitalboside A exhibited partial transactivation of peroxisome proliferator-activated receptor γ with an increase in adiponectin secretion, which was confirmed using docking analysis. Vitalboside A is a bifunctional molecule derived from edible plant showing inhibition of PTP1B and partial agonism to peroxisome proliferator-activated receptor γ which could be a promising therapeutic agent in the management of obesity and diabetes. PMID:26989847

  14. Structural basis for agonism and antagonism of hepatocyte growth factor

    SciTech Connect

    Tolbert, W. David; Daugherty-Holtrop, Jennifer; Gherardi, Ermanno; Vande Woude, George; Xu, H. Eric

    2010-11-01

    Hepatocyte growth factor (HGF) is an activating ligand of the Met receptor tyrosine kinase, whose activity is essential for normal tissue development and organ regeneration but abnormal activation of Met has been implicated in growth, invasion, and metastasis of many types of solid tumors. HGF has two natural splice variants, NK1 and NK2, which contain the N-terminal domain (N) and the first kringle (K1) or the first two kringle domains of HGF. NK1, which is a Met agonist, forms a head-to-tail dimer complex in crystal structures and mutations in the NK1 dimer interface convert NK1 to a Met antagonist. In contrast, NK2 is a Met antagonist, capable of inhibiting HGF's activity in cell proliferation without clear mechanism. Here we report the crystal structure of NK2, which forms a 'closed' monomeric conformation through interdomain interactions between the N- domain and the second kringle domain (K2). Mutations that were designed to open up the NK2 closed conformation by disrupting the N/K2 interface convert NK2 from a Met antagonist to an agonist. Remarkably, this mutated NK2 agonist can be converted back to an antagonist by a mutation that disrupts the NK1/NK1 dimer interface. These results reveal the molecular determinants that regulate the agonist/antagonist properties of HGF NK2 and provide critical insights into the dimerization mechanism that regulates the Met receptor activation by HGF.

  15. GABAB agonism promotes sleep and reduces cataplexy in murine narcolepsy.

    PubMed

    Black, Sarah Wurts; Morairty, Stephen R; Chen, Tsui-Ming; Leung, Andrew K; Wisor, Jonathan P; Yamanaka, Akihiro; Kilduff, Thomas S

    2014-05-01

    γ-Hydroxybutyrate (GHB) is an approved therapeutic for the excessive sleepiness and sudden loss of muscle tone (cataplexy) characteristic of narcolepsy. The mechanism of action for these therapeutic effects is hypothesized to be GABAB receptor dependent. We evaluated the effects of chronic administration of GHB and the GABAB agonist R-baclofen (R-BAC) on arousal state and cataplexy in two models of narcolepsy: orexin/ataxin-3 (Atax) and orexin/tTA; TetO diphtheria toxin mice (DTA). Mice were implanted for EEG/EMG monitoring and dosed with GHB (150 mg/kg), R-BAC (2.8 mg/kg), or vehicle (VEH) bid for 15 d-a treatment paradigm designed to model the twice nightly GHB dosing regimen used by human narcoleptics. In both models, R-BAC increased NREM sleep time, intensity, and consolidation during the light period; wake bout duration increased and cataplexy decreased during the subsequent dark period. GHB did not increase NREM sleep consolidation or duration, although NREM delta power increased in the first hour after dosing. Cataplexy decreased from baseline in 57 and 86% of mice after GHB and R-BAC, respectively, whereas cataplexy increased in 79% of the mice after VEH. At the doses tested, R-BAC suppressed cataplexy to a greater extent than GHB. These results suggest utility of R-BAC-based therapeutics for narcolepsy. PMID:24806675

  16. GABAB Agonism Promotes Sleep and Reduces Cataplexy in Murine Narcolepsy

    PubMed Central

    Black, Sarah Wurts; Morairty, Stephen R.; Chen, Tsui-Ming; Leung, Andrew K.; Wisor, Jonathan P.

    2014-01-01

    γ-Hydroxybutyrate (GHB) is an approved therapeutic for the excessive sleepiness and sudden loss of muscle tone (cataplexy) characteristic of narcolepsy. The mechanism of action for these therapeutic effects is hypothesized to be GABAB receptor dependent. We evaluated the effects of chronic administration of GHB and the GABAB agonist R-baclofen (R-BAC) on arousal state and cataplexy in two models of narcolepsy: orexin/ataxin-3 (Atax) and orexin/tTA; TetO diphtheria toxin mice (DTA). Mice were implanted for EEG/EMG monitoring and dosed with GHB (150 mg/kg), R-BAC (2.8 mg/kg), or vehicle (VEH) bid for 15 d–a treatment paradigm designed to model the twice nightly GHB dosing regimen used by human narcoleptics. In both models, R-BAC increased NREM sleep time, intensity, and consolidation during the light period; wake bout duration increased and cataplexy decreased during the subsequent dark period. GHB did not increase NREM sleep consolidation or duration, although NREM delta power increased in the first hour after dosing. Cataplexy decreased from baseline in 57 and 86% of mice after GHB and R-BAC, respectively, whereas cataplexy increased in 79% of the mice after VEH. At the doses tested, R-BAC suppressed cataplexy to a greater extent than GHB. These results suggest utility of R-BAC-based therapeutics for narcolepsy. PMID:24806675

  17. Anion-radical oxygen centers in small (AgO)n clusters: Density functional theory predictions

    NASA Astrophysics Data System (ADS)

    Trushin, Egor V.; Zilberberg, Igor L.

    2013-02-01

    Anion-radical form of the oxygen centers O- is predicted at the DFT level for small silver oxide particles having the AgO stoichiometry. Model clusters (AgO)n appear to be ferromagnetic with appreciable spin density at the oxygen centers. In contrast to these clusters, the Ag2O model cluster have no unpaired electrons in the ground state. The increased O/Ag ratio in the oxide particles is proved to be responsible for the spin density at oxygen centers.

  18. Restraint Stress Alters Nociceptin/Orphanin FQ and CRF Systems in the Rat Central Amygdala: Significance for Anxiety-Like Behaviors

    PubMed Central

    de Guglielmo, Giordano; Hansson, Anita C.; Ubaldi, Massimo; Kallupi, Marsida; Cruz, Maureen T.; Oleata, Christopher S.; Heilig, Markus

    2014-01-01

    Corticotropin releasing factor (CRF) is the primary mediator of stress responses, and nociceptin/orphanin FQ (N/OFQ) plays an important role in the modulation of these stress responses. Thus, in this multidisciplinary study, we explored the relationship between the N/OFQ and the CRF systems in response to stress. Using in situ hybridization (ISH), we assessed the effect of body restraint stress on the gene expression of CRF and N/OFQ-related genes in various subdivisions of the amygdala, a critical brain structure involved in the modulation of stress response and anxiety-like behaviors. We found a selective upregulation of the NOP and downregulation of the CRF1 receptor transcripts in the CeA and in the BLA after body restraint. Thus, we performed intracellular electrophysiological recordings of GABAA-mediated IPSPs in the central nucleus of the amygdala (CeA) to explore functional interactions between CRF and N/OFQ systems in this brain region. Acute application of CRF significantly increased IPSPs in the CeA, and this enhancement was blocked by N/OFQ. Importantly, in stress-restraint rats, baseline CeA GABAergic responses were elevated and N/OFQ exerted a larger inhibition of IPSPs compared with unrestraint rats. The NOP antagonist [Nphe1]-nociceptin(1–13)NH2 increased the IPSP amplitudes in restraint rats but not in unrestraint rats, suggesting a functional recruitment of the N/OFQ system after acute stress. Finally, we evaluated the anxiety-like response in rats subjected to restraint stress and nonrestraint rats after N/OFQ microinjection into the CeA. Intra-CeA injections of N/OFQ significantly and selectively reduced anxiety-like behavior in restraint rats in the elevated plus maze. These combined results demonstrate that acute stress increases N/OFQ systems in the CeA and that N/OFQ has antistress properties. PMID:24403138

  19. Development of FQ-PCR method to determine the level of ADD1 expression in fatty and lean pigs.

    PubMed

    Cui, J X; Chen, W; Zeng, Y Q

    2015-01-01

    To determine how adipocyte determination and differentiation factor 1 (ADD1), a gene involved in the determination of pork quality, is regulated in Laiwu and Large pigs, we used TaqMan fluorescence quantitative real-time polymerase chain reaction (FQ-PCR) to detect differential expression in the longissimus muscle of Laiwu (fatty) and Large White (lean) pigs. In this study, the ADD1 and GAPDH cDNA sequences were cloned using a T-A cloning assay, and the clone sequences were consistent with those deposited in GenBank. Thus, the target fragment was successfully recombined into the vector, and its integrity was maintained. The standard curve and regression equation were established through the optimized FQ-PCR protocol. The standard curve of porcine ADD1 and GAPDH cDNA was determined, and its linear range extension could reach seven orders of magnitudes. The results showed that this method was used to quantify ADD1 expression in the longissimus muscle of two breeds of pig, and was found to be accurate, sensitive, and convenient. These results provide information regarding porcine ADD1 mRNA expression and the mechanism of adipocyte differentiation, and this study could help in the effort to meet the demands of consumers interested in the maintenance of health and prevention of obesity. Furthermore, it could lead to new approaches in the prevention and clinical treatment of this disease. PMID:26535708

  20. The Bed Nucleus Is a Neuroanatomical Substrate for the Anorectic Effect of Corticotropin-Releasing Factor and for Its Reversal by Nociceptin/Orphanin FQ

    PubMed Central

    Ciccocioppo, Roberto; Fedeli, Amalia; Economidou, Daina; Policani, Federica; Weiss, Friedbert; Massi, Maurizio

    2011-01-01

    Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid N/OFQ receptor (NOP), possesses marked functional anti-stress and anti-corticotropin-releasing factor (CRF) actions. We have shown that intracerebroventricular injection of N/OFQ reverses the hypophagic effect induced by stress or by CRF given intracerebroventricularly. To shed new light on the mechanisms involved in the anti-CRF action of N/OFQ, we investigated the ability of N/OFQ to prevent CRF-induced anorexia after microinjection studies into brain areas of potential interest in the control of feeding behavior and coexpressing NOP and CRF receptors. These areas include the bed nucleus of the stria terminalis (BNST), the central amygdala (CeA), the locus ceruleus (LC), the ventromedial hypothalamus (VMH), the paraventricular nucleus (PVN), and the dorsal raphe (DR). The results demonstrated that the anorectic effect of 0.04 nmol of CRF per rat (200 ng per rat) given intracerebroventricularly is reversed by pretreatment with 0.01– 0.21 nmol of N/OFQ per rat (25–500 ng per rat) injected into the BNST but not into the CeA, LC, VMH, PVN, or DR. Microinjection of 0.01– 0.02 nmol of CRF per site (50 –100 ng per site) into the BNST but not into the CeA or the LC induced marked anorexia in food-deprived rats. Pretreatment with 0.01– 0.21 nmol of N/OFQ per site (25–500 ng per site) into the BNST also blocked the anorectic action of 0.02 nmol of CRF per site (100 ng per site) given in the same area. Finally, intra-BNST microinjection of 0.01– 0.21 nmol of N/OFQ per site (25–500 ng per site) did not modify food intake in either food-sated or food-deprived rats. These data demonstrate that the BNST is involved in the modulation of CRF-induced anorexia, which is prevented by activation of N/OFQ receptors. PMID:14561874

  1. Supplemental site inspection for Air Force Plant 59, Johnson City, New York, Volume 3: Appendices F-Q

    SciTech Connect

    Nashold, B.; Rosenblatt, D.; Hau, J.

    1995-08-01

    This summary describes a Supplemental Site Inspection (SSI) conducted by Argonne National Laboratory (ANL) at Air Force Plant 59 (AFP 59) in Johnson City, New York. All required data pertaining to this project were entered by ANL into the Air Force-wide Installation Restoration Program Information System (IRPIMS) computer format and submitted to an appropriate authority. The work was sponsored by the United States Air Force as part of its Installation Restoration Program (IRP). Previous studies had revealed the presence of contaminants at the site and identified several potential contaminant sources. Argonne`s study was conducted to answer questions raised by earlier investigations. This volume consists of appendices F-Q, which contain the analytical data from the site characterization.

  2. High sugar intake and development of skeletal muscle insulin resistance and inflammation in mice: a protective role for PPAR- δ agonism.

    PubMed

    Benetti, Elisa; Mastrocola, Raffaella; Rogazzo, Mara; Chiazza, Fausto; Aragno, Manuela; Fantozzi, Roberto; Collino, Massimo; Minetto, Marco A

    2013-01-01

    Peroxisome Proliferator Activated Receptor (PPAR)- δ agonists may serve for treating metabolic diseases. However, the effects of PPAR- δ agonism within the skeletal muscle, which plays a key role in whole-body glucose metabolism, remain unclear. This study aimed to investigate the signaling pathways activated in the gastrocnemius muscle by chronic administration of the selective PPAR- δ agonist, GW0742 (1 mg/kg/day for 16 weeks), in male C57Bl6/J mice treated for 30 weeks with high-fructose corn syrup (HFCS), the major sweetener in foods and soft-drinks (15% wt/vol in drinking water). Mice fed with the HFCS diet exhibited hyperlipidemia, hyperinsulinemia, hyperleptinemia, and hypoadiponectinemia. In the gastrocnemius muscle, HFCS impaired insulin and AMP-activated protein kinase signaling pathways and reduced GLUT-4 and GLUT-5 expression and membrane translocation. GW0742 administration induced PPAR- δ upregulation and improvement in glucose and lipid metabolism. Diet-induced activation of nuclear factor-κB and expression of inducible-nitric-oxide-synthase and intercellular-adhesion-molecule-1 were attenuated by drug treatment. These effects were accompanied by reduction in the serum concentration of interleukin-6 and increase in muscular expression of fibroblast growth factor-21. Overall, here we show that PPAR- δ activation protects the skeletal muscle against the metabolic abnormalities caused by chronic HFCS exposure by affecting multiple levels of the insulin and inflammatory cascades. PMID:23861559

  3. Antitussive effect of nociceptin/orphanin FQ in experimental cough models.

    PubMed

    McLeod, Robbie L; Bolser, Donald C; Jia, Yanlin; Parra, Leonard E; Mutter, Jennifer C; Wang, Xin; Tulshian, Deen B; Egan, Robert W; Hey, John A

    2002-01-01

    Cough is an important defensive pulmonary reflex that removes irritants, fluids or foreign materials from the airways. However, often cough is non-productive and requires suppression. Opioid mu receptor agonists, such as codeine are commonly used as antitussive agents and are among the most widely administered drugs in the world. Codeine suppresses the responsiveness of one or more components of the central reflex pathway for cough and is an efficacious antitussive drug for cough due to diverse aetiologies. However, opioids produce side effects that include sedation, addiction potential and constipation. Therefore, novel cough suppressant therapies should maintain or improve upon the antitussive efficacy profile of opioids. Moreover, these novel therapies should have a safety profile significantly better than current antitussive therapies. Presently, we discuss preclinical findings showing that activation of the 'opioid-like' receptor (NOP(1)) inhibits cough in the guinea pig and cat. PMID:12099766

  4. CD27 Agonism Plus PD-1 Blockade Recapitulates CD4+ T-cell Help in Therapeutic Anticancer Vaccination.

    PubMed

    Ahrends, Tomasz; Bąbała, Nikolina; Xiao, Yanling; Yagita, Hideo; van Eenennaam, Hans; Borst, Jannie

    2016-05-15

    While showing promise, vaccination strategies to treat cancer require further optimization. Likely barriers to efficacy involve cancer-associated immunosuppression and peripheral tolerance, which limit the generation of effective vaccine-specific cytotoxic T lymphocytes (CTL). Because CD4(+) T cells improve CTL responsiveness, next-generation vaccines include helper epitopes. Here, we demonstrate in mice how CD4(+) T-cell help optimizes the CTL response to a clinically relevant DNA vaccine engineered to combat human papillomavirus-expressing tumors. Inclusion of tumor-unrelated helper epitopes greatly increased CTL priming, effector, and memory T-cell programming. CD4(+) T-cell help optimized the CTL response in all these aspects via CD27/CD70 costimulation. Notably, administration of an agonistic CD27 antibody could largely replace helper epitopes in promoting primary and memory CTL responses, acting directly on CD8(+) T cells. CD27 agonism improved efficacy of the vaccine without helper epitopes, more so than combined PD-1 and CTLA-4 blockade. Combining CD27 agonism with CTLA-4 blockade improved vaccine-induced CTL priming and tumor infiltration, but only combination with PD-1 blockade was effective at eradicating tumors, thereby fully recapitulating the effect of CD4(+) T-cell help on vaccine efficacy. PD-1 blockade alone did not affect CTL priming or tumor infiltration, so these results implied that it cooperated with CD4(+) T-cell help by alleviating immune suppression against CTL in the tumor. Helper epitope inclusion or CD27 agonism did not stimulate regulatory T cells, and vaccine efficacy was also improved by CD27 agonism in the presence of CD4(+) T-cell help. Our findings provide a preclinical rationale to apply CD27 agonist antibodies, either alone or combined with PD-1 blockade, to improve the therapeutic efficacy of cancer vaccines and immunotherapy generally. Cancer Res; 76(10); 2921-31. ©2016 AACR. PMID:27020860

  5. Regulation of nociceptin/orphanin FQ gene expression by neuropoietic cytokines and neurotrophic factors in neurons and astrocytes.

    PubMed

    Buzas, B; Symes, A J; Cox, B M

    1999-05-01

    We have identified the gene encoding nociceptin/orphanin FQ (N/OFQ), the novel opioid-like neuropeptide, as responsive to ciliary neurotrophic factor (CNTF). N/OFQ mRNA levels were induced five- and ninefold by CNTF in striatal and cortical neurons. In primary astrocytes CNTF also increased N/OFQ mRNA levels. CNTF is a multifunctional cytokine that mediates the development and differentiation of both neurons and astrocytes and supports the survival of various neurons. CNTF is also an injury-induced factor in the brain playing a crucial role in astrogliosis. The mechanism by which CNTF elicits these effects is not well understood, but it is likely to involve regulation of specific genes. CNTF regulation of N/OFQ expression was sensitive to the kinase inhibitors H-7 and genistein but not to inhibition of protein synthesis. This pharmacological profile is consistent with CNTF activating the Janus protein tyrosine kinase (JAK)/ signal transducers and activators of transcription (STAT) pathway to induce N/OFQ transcription. In nuclear extracts of CNTF-treated striatal neurons DNA binding of STAT proteins was increased. Radioimmunoassays revealed elevated N/OFQ immunoreactivity in striatal neurons after CNTF treatment. Expression of the related proenkephalin gene was not affected by CNTF in either neuronal or glial cultures. Regulation of N/OFQ expression by CNTF might point to a possible function of N/OFQ during development and after neural injury. PMID:10217264

  6. Analysis of pFQ31, a 8551-bp cryptic plasmid from the symbiotic nitrogen-fixing actinomycete Frankia.

    PubMed

    Lavire, C; Louis, D; Perrière, G; Briolay, J; Normand, P; Cournoyer, B

    2001-04-01

    The actinomycete Frankia has never been transformed genetically. To favour the development of Frankia cloning vectors, we have fully sequenced the Frankia alni pFQ31 cryptic plasmid and performed analyses to characterise its coding and non-coding regions. This plasmid is 8551 bp-long and contains 72% G+C. Computer-assisted analyses identified 18 open reading frames (ORFs). These ORFs show a synonymous codon usage different from the one of Frankia chromosomal genes, suggesting an evolutionary bias linked to the nature of the replicon or a horizontal transfer. Three ORFs were found to encode genes likely to be involved in plasmid replication and stability: parFA (partition protein), ptrFA (transcriptional repressor of the GntR family) and repFA (initiation of replication). DNA signatures of a replication origin were identified in the ptrFA-repFA intergenic region. These structural motifs are similar to those observed among origins of iteron-containing plasmids replicating via a θ mode. PMID:11287155

  7. Soft TCPTP Agonism-Novel Target to Rescue Airway Epithelial Integrity by Exogenous Spermidine.

    PubMed

    Ghisalberti, Carlo A; Borzì, Rosa M; Cetrullo, Silvia; Flamigni, Flavio; Cairo, Gaetano

    2016-01-01

    A reparative approach of disrupted epithelium in obstructive airway diseases, namely asthma and chronic obstructive pulmonary disease (COPD), may afford protection and long-lasting results compared to conventional therapies, e.g., corticosteroids or immunosuppressant drugs. Here, we propose the polyamine spermidine as a novel therapeutic agent in airways diseases, based on a recently identified mode of action: T-cell protein tyrosine phosphatase (TCPTP) agonism. It may include and surpass single-inhibitors of stress and secondary growth factor pathway signaling, i.e., the new medicinal chemistry in lung diseases. Enhanced polyamine biosynthesis has been charged with aggravating prognosis by competing for L-arginine at detriment of nitric oxide (NO) synthesis with bronchoconstrictive effects. Although excess spermine, a higher polyamine, is harmful to airways physiology, spermidine can pivot the cell homeostasis during stress conditions by the activation of TCPTP. In fact, the dephosphorylating activity of TCPTP inhibits the signaling cascade that leads to the expression of genes involved in detachment and epithelial-to-mesenchymal transition (EMT), and increases the expression of adhesion and tight junction proteins, thereby enhancing the barrier functionality in inflammation-prone tissues. Moreover, a further beneficial effect of spermidine may derive from its ability to promote autophagy, possibly in a TCPTP-dependent way. Since doses of spermidine in the micromolar range are sufficient to activate TCPTP, low amounts of spermidine administered in sustained release modality may provide an optimal pharmacologic profile for the treatment of obstructive airway diseases. PMID:27375482

  8. Improving the developability profile of pyrrolidine progesterone receptor partial agonists

    SciTech Connect

    Kallander, Lara S.; Washburn, David G.; Hoang, Tram H.; Frazee, James S.; Stoy, Patrick; Johnson, Latisha; Lu, Qing; Hammond, Marlys; Barton, Linda S.; Patterson, Jaclyn R.; Azzarano, Leonard M.; Nagilla, Rakesh; Madauss, Kevin P.; Williams, Shawn P.; Stewart, Eugene L.; Duraiswami, Chaya; Grygielko, Eugene T.; Xu, Xiaoping; Laping, Nicholas J.; Bray, Jeffrey D.; Thompson, Scott K.

    2010-09-17

    The previously reported pyrrolidine class of progesterone receptor partial agonists demonstrated excellent potency but suffered from serious liabilities including hERG blockade and high volume of distribution in the rat. The basic pyrrolidine amine was intentionally converted to a sulfonamide, carbamate, or amide to address these liabilities. The evaluation of the degree of partial agonism for these non-basic pyrrolidine derivatives and demonstration of their efficacy in an in vivo model of endometriosis is disclosed herein.

  9. Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists

    SciTech Connect

    Thompson, Scott K.; Washburn, David G.; Frazee, James S.; Madauss, Kevin P.; Hoang, Tram H.; Lapinski, Leahann; Grygielko, Eugene T.; Glace, Lindsay E.; Trizna, Walter; Williams, Shawn P.; Duraiswami, Chaya; Bray, Jeffrey D.; Laping, Nicholas J.

    2010-09-03

    Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.

  10. Modification of anxiety-like behaviors by nociceptin/orphanin FQ (N/OFQ) and time-dependent changes in N/OFQ-NOP gene expression following ethanol withdrawal.

    PubMed

    Aujla, Harinder; Cannarsa, Rosalia; Romualdi, Patrizia; Ciccocioppo, Roberto; Martin-Fardon, Rémi; Weiss, Friedbert

    2013-05-01

    Anxiety is a key consequence of ethanol withdrawal and important risk factor for relapse. The neuropeptide nociceptin/orphanin FQ (N/OFQ) or agonists at this peptide's receptor (NOP) exert anxiolytic-like and antistress actions. N/OFQ dysfunction has been linked to both a high-anxiety behavioral phenotype and excessive ethanol intake. Recent studies suggest a possible link between genetic polymorphisms of the NOP transcript and alcoholism. Thus, in the present study, the effects of intracerebroventricularly administered N/OFQ were tested for modification of anxiety-like behaviors, using the shock-probe defensive burying and elevated plus-maze tests, in ethanol-dependent versus non-dependent rats, 1 and 3 weeks following termination of ethanol exposure. Additionally, prepro-N/OFQ (ppN/OFQ) and NOP receptor gene expression was measured in the central nucleus of the amygdala, in the bed nucleus of the stria terminalis and in the lateral hypothalamus at the same timepoints in separate subjects. One week post-ethanol, N/OFQ dose-dependently attenuated elevated anxiety-like behavior in ethanol-dependent rats and produced anxiolytic-like effects in non-dependent controls in both behavioral tests. However, 3 weeks post-ethanol, N/OFQ altered behavior consistent with anxiogenic-like actions in ethanol-dependent rats but continued to exert anxiolytic-like actions in non-dependent controls. These findings were paralleled by ethanol history-dependent changes of ppN/OFQ and NOP gene expression that showed a distinctive time course in the examined brain structures. The results demonstrate that ethanol dependence and withdrawal are associated with neuroadaptive changes in the N/OFQ-NOP system, suggesting a role of this neuropeptidergic pathway as a therapeutic target for the treatment of alcohol abuse. PMID:22804785

  11. Modification of anxiety-like behaviors by nociceptin/orphanin FQ (N/OFQ) and time-dependent changes in N/OFQ-NOP gene expression following ethanol withdrawal

    PubMed Central

    Aujla, H; Cannarsa, R; Romualdi, P; Ciccocioppo, R; Martin-Fardon, R; Weiss, F

    2012-01-01

    Anxiety is a key consequence of ethanol withdrawal and important risk factor for relapse. The neuropeptide nociceptin/orphanin FQ (N/OFQ), or agonists at this peptide’s receptor (NOP), exert anxiolytic-like and anti-stress actions. N/OFQ dysfunction has been linked to both a high-anxiety behavioral phenotype and excessive ethanol intake. Recent studies suggest a possible link between genetic polymorphisms of the NOP transcript and alcoholism. Thus, in the present study, the effects of intracerebroventricularly (ICV) administered N/OFQ were tested for modification of anxiety-like behaviors, using the shock-probe defensive burying and elevated plus maze tests, in ethanol-dependent vs. nondependent rats, one and three weeks following termination of ethanol exposure. Additionally, Prepro-N/OFQ (ppN/OFQ) and NOP receptor gene expression was measured in the central nucleus of the amygdala, in the bed nucleus of the stria terminalis, and in the lateral hypothalamus at the same time points in separate subjects. One week post-ethanol, N/OFQ dose-dependently attenuated elevated anxiety-like behavior in ethanol-dependent rats and produced anxiolytic-like effects in nondependent controls in both behavioral tests. However, three weeks post-ethanol, N/OFQ altered behavior consistent with anxiogenic-like actions in ethanol-dependent rats, but continued to exert anxiolytic-like actions in nondependent controls. These findings were paralleled by ethanol history-dependent changes of ppN/OFQ and NOP gene expression that showed a distinctive time-course in the examined brain structures. The results demonstrate that ethanol dependence and withdrawal are associated with neuroadaptive changes in the N/OFQ-NOP system suggesting a role of this neuropeptidergic pathway as a therapeutic target for the treatment of alcohol abuse. PMID:22804785

  12. Impact of environmental housing conditions on the emotional responses of mice deficient for nociceptin/orphanin FQ peptide precursor gene.

    PubMed

    Ouagazzal, A-M; Moreau, J-L; Pauly-Evers, M; Jenck, F

    2003-09-15

    Nociceptin/orphanin FQ (N/OFQ) is a newly discovered neuropeptide that has been implicated in the neurobiological regulation of the behavioral responses to stress and fear. To investigate the role of this peptide in the expression of stress/anxiety-related behaviors in mice, a gene targeting approach to disrupt N/OFQ in the pre-proN/OFQ gene was used. The impact of environmental housing conditions (single and social housing) was assessed on N/OFQ-knockout male and female mice in different experimental paradigms known to trigger distinctive types of stress and anxiety states. Neurological examination of homozygous mutant adult animals indicated that basic neurological functions (vision, audition, olfaction, tactile and pain sensitivity, motor performances) were normal. When housed individually, N/OFQ-knockout animals displayed responses similar to control animals in behavioral tests of emotional reactivity (behavioral despair, locomotor activity, light-dark preference, and acoustic startle tests). In contrast, increased emotional responses were detected when individually housed mice were crowded together (five per cage) under conditions of competitive access to food, water, space, and social contacts. Under those conditions, male mice deficient for N/OFQ developed greater home-cage aggression and increased fear/anxiety-like behaviors in the light-dark and acoustic startle tests, when compared to their wild-type littermates. Group-housed female mutants also showed higher level of anxiety in the acoustic startle test, but needed additional restrain stress to express detectable levels of anxiety in the light-dark test. These data indicate a clear environment-induced rise in fear reactions of N/OFQ-knockout mice. They further suggest that N/OFQ system is essential for development of adequate coping strategies to acute and chronic stress. PMID:12946601

  13. A quantitative analysis of antagonism and inverse agonism at wild-type and constitutively active hamster alpha1B-adrenoceptors.

    PubMed

    Hein, P; Goepel, M; Cotecchia, S; Michel, M C

    2001-01-01

    In order to characterize inverse agonism at alpha1B-adrenoceptors, we have compared the concentration-response relationships of several quinazoline and non-quinazoline alpha1-adrenoceptor antagonists at cloned hamster wild-type (WT) alpha1B-adrenoceptors and a constitutively active mutant (CAM) thereof upon stable expression in Rat-1 fibroblasts. Receptor activation or inhibition thereof was assessed as [3H]inositol phosphate (IP) accumulation. Quinazoline (alfuzosin, doxazosin, prazosin, terazosin) and non-quinazoline alpha1-adrenoceptor antagonists (BE 2254, SB 216,469, tamsulosin) concentration-dependently inhibited phenylephrine-stimulated IP formation at both WT and CAM with Ki values similar to those previously found in radioligand binding studies. At CAM in the absence of phenylephrine, the quinazolines produced concentration-dependent inhibition of basal IP formation; the maximum inhibition was approximately 55%, and the corresponding EC50 values were slightly smaller than the Ki values. In contrast, BE 2254 produced much less inhibition of basal IP formation, SB 216,469 was close to being a neutral antagonist, and tamsulosin even weakly stimulated IP formation. The inhibitory effects of the quinazolines and BE 2254 as well as the stimulatory effect of tamsulosin were equally blocked by SB 216,469 at CAM. At WT in the absence of phenylephrine, tamsulosin did not cause significant stimulation and none of the other compounds caused significant inhibition of basal IP formation. We conclude that alpha1-adrenoceptor antagonsits with a quinazoline structure exhibit greater efficacy as inverse agonists than those without. PMID:11191834

  14. The Dual NOD1/NOD2 Agonism of Muropeptides Containing a Meso-Diaminopimelic Acid Residue

    PubMed Central

    Dagil, Yulia A.; Arbatsky, Nikolai P.; Alkhazova, Biana I.; L’vov, Vyacheslav L.; Mazurov, Dmitriy V.; Pashenkov, Mikhail V.

    2016-01-01

    Muropeptides are fragments of peptidoglycan that trigger innate immune responses by activating nucleotide-binding oligomerization domain (NOD) 1 and NOD2. Muropeptides from Gram-negative bacteria contain a meso-diaminopimelic acid (meso-DAP) residue in either a terminal or a non-terminal position. While the former ones are known to be recognized by NOD1, much less is known about recognition of muropeptides with non-terminal meso-DAP, which are most abundant moieties of Gram-negative peptidoglycans. Here, we developed a novel system to assess biological activity of muropeptides, based on CRISPR/Cas9-mediated knockout (KO) of NOD1 and NOD2 genes in modified HEK293T cells. Using NOD1/NOD2 knockout and overexpression systems, as well as human monocytes and macrophages, we refine the current view of muropeptide recognition. We show that NOD2 can recognize different natural muropeptides containing a meso-DAP residue (preferably in a non-terminal position), provided they are present at micromolar concentrations. NOD2 accepts muropeptides with long and branched peptide chains and requires an intact N-acetylmuramyl residue. Muropeptides with non-terminal meso-DAP can activate NOD1 as well, but, in this case, probably require peptidase pre-processing to expose the meso-DAP residue. Depending on NOD1/NOD2 ratio in specific cell types, meso-DAP-containing muropeptides can be recognized either primarily via NOD2 (in monocytes) or via NOD1 (in monocyte-derived macrophages and HEK293T-derived cells). The dual NOD1/NOD2 agonism of meso-DAP-containing muropeptides should be taken into account when assessing cellular responses to muropeptides and designing muropeptide immunostimulants and vaccine adjuvants. PMID:27513337

  15. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae.

    PubMed

    Jiang, Juan; Liu, Hongying; Li, Qiao; Gao, Ni; Yao, Yuan; Xu, Heng

    2015-10-01

    Remediation of soil co-contaminated with heavy metals and PAHs by mushroom and bacteria is a novel technique. In this study, the combined remediation effect of mushroom (Pleurotus cornucopiae) and bacteria (FQ1, Bacillus thuringiensis) on Cd and phenanthrene co-contaminated soil was investigated. The effect of bacteria (B. thuringiensis) on mushroom growth, Cd accumulation, phenanthrene degradation by P. cornucopiae and antioxidative responses of P. cornucopiae were studied. P. cornucopiae could adapt easily and grow well in Cd-phenanthrene co-contaminated soil. It was found that inoculation of FQ1 enhanced mushroom growth (biomass) and Cd accumulation with the increment of 26.68-43.58% and 14.29-97.67% respectively. Up to 100% and 95.07% of phenanthrene were removed in the bacteria-mushroom (B+M) treatment respectively spiked with 200mg/kg and 500mg/kg phenanthrene. In addition, bacterial inoculation alleviated oxidative stress caused by co-contamination with relative decreases in lipid peroxidation and enzyme activity, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). This study demonstrated that the integrated remediation strategy of bacteria and mushroom is an effective and promising method for Cd-phenanthrene co-contaminated soil bioremediation. PMID:26117363

  16. A family of photoswitchable NMDA receptors

    PubMed Central

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Tauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991

  17. A family of photoswitchable NMDA receptors.

    PubMed

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Tauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. PMID:26929991

  18. The evolution of vertebrate opioid receptors

    PubMed Central

    Stevens, Craig W.

    2011-01-01

    The proteins that mediate the analgesic and other effects of opioid drugs and endogenous opioid peptides are known as opioid receptors. Opioid receptors consist of a family of four closely-related proteins belonging to the large superfamily of G-protein coupled receptors. The three types of opioid receptors shown unequivocally to mediate analgesia in animal models are the mu (MOR), delta (DOR), and kappa (KOR) opioid receptor proteins. The role of the fourth member of the opioid receptor family, the nociceptin or orphanin FQ receptor (ORL), is not as clear as hyperalgesia, analgesia, and no effect was reported after administration of ORL agonists. There are now cDNA sequences for all four types of opioid receptors that are expressed in the brain of six species from three different classes of vertebrates. This review presents a comparative analysis of vertebrate opioid receptors using bioinformatics and data from recent human genome studies. Results indicate that opioid receptors arose by gene duplication, that there is a vector of opioid receptor divergence, and that MOR shows evidence of rapid evolution. PMID:19273128

  19. Selective 5-HT2C receptor agonists: Design and synthesis of pyridazine-fused azepines.

    PubMed

    Green, Martin P; McMurray, Gordon; Storer, R Ian

    2016-08-15

    Heterocycle-fused azepines are discussed as potent 5-HT2C receptor agonists with excellent selectivity over 5-HT2B agonism. Synthesis and structure activity relationships are outlined for a series of bicyclic pyridazino[3,4-d]azepines. By comparison with earlier published work, in vitro assays predict a high probability for achieving CNS penetration for a potent and selective compound 15a, a pre-requisite to achieve in vivo efficacy. PMID:27381086

  20. A REACTIVITY PATTERN OF DISCRIMINATION OF ER AGONISM AND ANTAGONISM BASED ON 3-D MOLECULAR ATTRIBUTES

    EPA Science Inventory

    Various models have been developed to predict the relative binding affinity (RBA) of chemicals to estrogen receptors (ER). These models are important for prioritizing chemicals for screening in biological assays assessing the potential for endocrine disruption. One shortcoming of...

  1. Effect of Orphanin FQ/Nociceptin (OFQ/N) and Isoflurane on the Prolactin Secretory Response in OFQ/N Knockout Mice

    PubMed Central

    Zullig, Kelly L.; Murphree, Emily; Reinscheid, Rainer K.; Janik, James; Callahan, Phyllis

    2007-01-01

    The prolactin secretory response to subcutaneous injection of orphanin FQ/nociceptin (OFQ/N) was measured in wild-type and OFQ/N knockout mice. These injections were given with and without isoflurane anesthesia, to determine if isoflurane would affect the prolactin secretory response. OFQ/N injection significantly increased prolactin levels in males and females, regardless of genotype, with a more robust response in females. Isoflurane pretreatment did not affect prolactin levels in controls or in animals injected with OFQ/N. This is the first report that exogenously administered OFQ/N stimulates prolactin secretion in mice and that brief isoflurane exposure does not significantly affect this response. PMID:17698246

  2. Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia.

    PubMed

    Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Śniecikowska, Joanna; Pawłowski, Maciej; Kazek, Grzegorz; Siwek, Agata; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw

    2015-03-01

    We describe a novel class of designed multiple ligands (DMLs) combining serotonin 5-HT6 receptor (5-HT6R) antagonism with dopamine D2 receptor (D2R) partial agonism. Prototype hybrid molecules were designed using docking to receptor homology models. Diverse pharmacophore moieties yielded 3 series of hybrids with varying in vitro properties at 5-HT6R and D2R, and at M1 receptor and hERG channel antitargets. 4-(piperazin-1-yl)-1H-indole derivatives showed highest antagonist potency at 5-HT6R, with 7-butoxy-3,4-dihydroquinolin-2(1H)-one and 2-propoxybenzamide derivatives having promising D2R partial agonism. 2-(3-(4-(1-(phenylsulfonyl)-1H-indol-4-yl)piperazin-1-yl)propoxy)benzamide (47) exhibited nanomolar affinity at both 5-HT6R and D2R and was evaluated in rat models. It displayed potent antidepressant-like and anxiolytic-like activity in the Porsolt and Vogel tests, respectively, more pronounced than that of a reference selective 5-HT6R antagonist or D2R partial agonist. In addition, 47 also showed antidepressant-like activity (Porsolt's test) and anxiolytic-like activity (open field test) in aged (>18-month old) rats. In operant conditioning tests, 47 enhanced responding for sweet reward in the saccharin self-administration test, consistent with anti-anhedonic properties. Further, 47 facilitated extinction of non-reinforced responding for sweet reward, suggesting potential procognitive activity. Taken together, these studies suggest that DMLs combining 5-HT6R antagonism and D2R partial agonism may successfully target affective disorders in patients from different age groups without a risk of cognitive deficits. PMID:25557493

  3. A REACTIVITY PATTERN FOR DISCRIMINATION OF ER AGONISM AND ANTAGONISM BASED ON 3-D MOLECULAR ATTRIBUTES

    EPA Science Inventory

    Various models have been developed to predict the relative binding affinity (RBA) of chemicals to estrogen receptors (ER). These models can be used prioritize chemicals for further tiered biological testing to assess the potential for endocrine disruption. One shortcoming of mode...

  4. Discovery of 3-aryloxy-lactam analogs as potent androgen receptor full antagonists for treating castration resistant prostate cancer.

    PubMed

    Guo, Chuangxing; Kephart, Susan; Ornelas, Martha; Gonzalez, Javier; Linton, Angelica; Pairish, Mason; Nagata, Asako; Greasley, Samantha; Elleraas, Jeff; Hosea, Natilie; Engebretsen, Jon; Fanjul, Andrea N

    2012-01-15

    High throughput cell-based screening led to the identification of 3-aryloxy lactams as potent androgen receptor (AR) antagonists. Refinement of these leads to improve the ADME profile and remove residual agonism led to the discovery of 12, a potent full antagonist with greater oral bioavailability. Improvements in the ADME profile were realized by designing more ligand-efficient molecules with reduced molecular weights and lower lipophilicities. PMID:22197140

  5. Combination of cell culture assays and knockout mouse analyses for the study of opioid partial agonism.

    PubMed

    Ide, Soichiro; Minami, Masabumi; Sora, Ichiro; Ikeda, Kazutaka

    2010-01-01

    Nonselective opioid partial agonists, such as buprenorphine, butorphanol, and pentazocine, have been widely used as analgesics and for anti-addiction therapy. However, the precise molecular mechanisms underlying the therapeutic and rewarding effects of these drugs have not been clearly delineated. Recent success in developing mu-opioid receptor knockout (MOP-KO) mice has elucidated the molecular mechanisms underlying the effects of morphine and other opioids. We have revealed the in vivo roles of MOPs in the effects of opioid partial agonists by using MOP-KO mice for behavioral tests (e.g., several kinds of antinociceptive tests for analgesic effects, conditioned place preference test for dependence). The combination of the cell culture assays using cDNA for mu, delta, and kappa opioid receptors and the behavioral tests using MOP-KO mice has provided novel theories on the molecular mechanisms underlying the effects of opioid ligands, especially opioid partial agonists. PMID:20336435

  6. Review of the Structural and Dynamic Mechanisms of PPARγ Partial Agonism

    PubMed Central

    Kroker, Alice J.; Bruning, John B.

    2015-01-01

    PPARγ (peroxisome proliferator activated receptor γ) is a ligand activated transcription factor of the nuclear receptor superfamily that controls the expression of a variety of genes involved in fatty acid metabolism, adipogenesis, and insulin sensitivity. While endogenous ligands of PPARγ include fatty acids and eicosanoids, synthetic full agonists of the receptor, including members of the thiazolidinedione (TZD) class, have been widely prescribed for the treatment of type II diabetes mellitus (T2DM). Unfortunately, the use of full agonists has been hampered by harsh side effects with some removed from the market in many countries. In contrast, partial agonists of PPARγ have been shown to retain favourable insulin sensitizing effects while exhibiting little to no side effects and thus represent a new potential class of therapeutics for the treatment of T2DM. Partial agonists have been found to not only display differences in transcriptional and cellular outcomes, but also act through distinct structural and dynamic mechanisms within the ligand binding cavity compared to full agonists. PMID:26435709

  7. Metabolic profiling of CHO-AβPP695 cells revealed mitochondrial dysfunction prior to amyloid-β pathology and potential therapeutic effects of both PPARγ and PPARα Agonisms for Alzheimer's disease.

    PubMed

    Chang, Kai Lun; Pee, Hai Ning; Tan, Wee Pin; Dawe, Gavin S; Holmes, Elaine; Nicholson, Jeremy K; Chan, Eric C Y; Ho, Paul C

    2015-01-01

    In this study, we performed gas chromatography time-of-flight mass spectrometry (GC-TOFMS)-based extracellular metabolic profiling on AβPP-transfected CHO cells (CHO-AβPP695) and its wildtype. Orthogonal partial least squares discriminant analysis (OPLS-DA) was then used to identify discriminant metabolites, which gave clues on the effects of AβPP transgene on cellular processes. To confirm the hypotheses generated based on the metabolic data, we performed biochemical assays to gather further evidence to support our findings. The OPLS-DA showed a robust differentiation following 24 h of incubation (Q2(cum) = 0.884) and 15 discriminant metabolites were identified. In contrast, extracellular Aβ42 was identified to increase significantly in CHO-AβPP695 only after incubation for 48 h. The observed 24-h metabolic fluxes were associated with increased mitochondrial AβPP and reduced mitochondrial viabilities, which occurred before extracellular Aβ accumulation. We also investigated the therapeutic potential of peroxisome proliferator-activated receptor gamma (PPARγ) agonists, namely rosiglitazone (RSG) and pioglitazone (PIO), by employing the same approach to characterize the metabolic profiles of CHO-AβPP695 treated with RSG and PIO, with or without their respective receptor blockers. Treatment with PIO was found to reduce the perturbation of the discriminant metabolites in CHO-AβPP695 to a larger extent than treatment with RSG. We also attributed the PIO effects on the lowering of Aβ42, and restoration of mitochondrial activity to PPARγ and PPARα agonism, respectively. Taken together, PIO was demonstrated to be therapeutically superior to RSG. Our findings provide further insights into early disease stages in this AβPP model, and support the advancement of PIO in AD therapy. PMID:25201780

  8. Free-fatty acid receptor-4 (GPR120): Cellular and molecular function and its role in metabolic disorders.

    PubMed

    Moniri, Nader H

    2016-06-15

    Over the last decade, a subfamily of G protein-coupled receptors that are agonized by endogenous and dietary free-fatty acids (FFA) has been discovered. These free-fatty acid receptors include FFA2 and FFA3, which are agonized by short-chained FFA, as well as FFA1 and FFA4, which are agonized by medium-to-long chained FFA. Ligands for FFA1 and FFA4 comprise the family of long chain polyunsaturated omega-3 fatty acids including α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), suggesting that many of the long-known beneficial effects of these fats may be receptor mediated. In this regard, FFA4 has gathered considerable interest due to its role in ameliorating inflammation, promoting insulin sensitization, and regulating energy metabolism in response to FFA ligands. The goal of this review is to summarize the body of evidence in regard to FFA4 signal transduction, its mechanisms of regulation, and its functional role in a variety of tissues. In addition, recent endeavors toward discovery of small molecules that modulate FFA4 activity are also presented. PMID:26827942

  9. A survey of factors associated with the successful recognition of agonal breathing and cardiac arrest by 9-1-1 call takers: design and methodology

    PubMed Central

    Vaillancourt, Christian; Jensen, Jan L; Grimshaw, Jeremy; Brehaut, Jamie C; Charette, Manya; Kasaboski, Ann; Osmond, Martin; Wells, George A; Stiell, Ian G

    2009-01-01

    Background Cardiac arrest victims most often collapse at home, where only a modest proportion receives life-saving bystander cardiopulmonary resuscitation. As many as 40% of all sudden cardiac arrest victims have agonal or abnormal breathing in the first minutes following cardiac arrest. 9-1-1 call takers may wrongly interpret agonal breathing as a sign of life, and not initiate telephone cardiopulmonary resuscitation instructions. Improving 9-1-1 call takers' ability to recognize agonal breathing as a sign of cardiac arrest could result in improved bystander cardiopulmonary resuscitation and survival rates for out-of-hospital cardiac arrest victims. Methods/Design The overall goal of this study is to design and conduct a survey of 9-1-1 call takers in the province of Ontario to better understand the factors associated with the successful identification of cardiac arrest (including patients with agonal breathing) over the phone, and subsequent administration of cardiopulmonary resuscitation instructions to callers. This study will be conducted in three phases using the Theory of Planned Behaviour. In Phase One, we will conduct semi-structured qualitative interviews with a purposeful selection of 9-1-1 call takers from Ontario, and identify common themes and belief categories. In Phase Two, we will use the qualitative interview results to design and pilot a quantitative survey. In Phase Three, a final version of the quantitative survey will be administered via an electronic medium to all registered call takers in the province of Ontario. We will perform qualitative thematic analysis (Phase One) and regression modelling (Phases Two and Three), to determine direct and indirect relationship of behavioural constructs with intentions to provide cardiopulmonary resuscitation instructions. Discussion The results of this study will provide valuable insight into the factors associated with the successful recognition of agonal breathing and cardiac arrest by 9-1-1 call takers

  10. Differential effect of meclizine on the activity of human pregnane X receptor and constitutive androstane receptor.

    PubMed

    Lau, Aik Jiang; Yang, Guixiang; Rajaraman, Ganesh; Baucom, Christie C; Chang, Thomas K H

    2011-03-01

    Conflicting data exist as to whether meclizine is an activator of human pregnane X receptor (hPXR). Therefore, we conducted a detailed, systematic investigation to determine whether meclizine affects hPXR activity by performing a cell-based reporter gene assay, a time-resolved fluorescence resonance energy transfer competitive ligand-binding assay, a mammalian two-hybrid assay to assess coactivator recruitment, and a hPXR target gene expression assay. In pregnane X receptor (PXR)-transfected HepG2 cells, meclizine activated hPXR to a greater extent than rat PXR. It bound to hPXR ligand-binding domain and recruited steroid receptor coactivator-1 to the receptor. Consistent with its hPXR agonism, meclizine increased hPXR target gene expression (CYP3A4) in human hepatocytes. However, it did not increase but decreased testosterone 6β-hydroxylation, suggesting inhibition of CYP3A catalytic activity. Meclizine has also been reported to be an inverse agonist and antagonist of human constitutive androstane receptor (hCAR). Therefore, given that certain tissues (e.g., liver) express both hPXR and hCAR and that various genes are cross-regulated by them, we quantified the expression of a hCAR- and hPXR-regulated gene (CYP2B6) in cultured human hepatocytes treated with meclizine. This drug did not decrease constitutive CYP2B6 mRNA expression or attenuate hCAR agonist-mediated increase in CYP2B6 mRNA and CYP2B6-catalyzed bupropion hydroxylation levels. These observations reflect hPXR agonism and the lack of hCAR inverse agonism and antagonism by meclizine, which were assessed by a hCAR reporter gene assay and mammalian two-hybrid assay. In conclusion, meclizine is a hPXR agonist, and it does not act as a hCAR inverse agonist or antagonist in cultured human hepatocytes. PMID:21131266

  11. Induction of Autophagic Death in Cancer Cells by Agonizing TR3 and Attenuating Akt2 Activity.

    PubMed

    Wang, Wei-jia; Wang, Yuan; Hou, Pei-pei; Li, Feng-wei; Zhou, Bo; Chen, Hang-zi; Bian, Xue-li; Cai, Qi-xu; Xing, Yong-zhen; He, Jian-ping; Zhang, Hongkui; Huang, Pei-qiang; Lin, Tianwei; Wu, Qiao

    2015-08-20

    Apoptotic resistance is becoming a significant obstacle for cancer therapy as the majority of treatment takes the route of apoptotic induction. It is of great importance to develop an alternative strategy to induce cancer cell death. We previously reported that autophagic cell death mediated by nuclear receptor TR3 and driven by a chemical agonist, 1-(3,4,5-trihydroxyphenyl)nonan-1-one (THPN), is highly effective in the therapy of melanoma but not any other cancer types. Here, we discovered that the insensitivity of cancer cells to THPN originated from a high cellular Akt2 activity. Akt2 phosphorylation interferes with TR3 export to cytoplasm and targeting to mitochondria, which lead to the autophagic induction. Therefore, the TR3-mediated autophagy could be effectively induced in the otherwise insensitive cells by downregulating Akt2 activity. Highly effective antineoplastic compounds are developed through optimizing the structure of THPN. This study implicates a general strategy for cancer therapy by the induction of autophagic cell death. PMID:26235054

  12. Derivation of ligands for the complement C3a receptor from the C-terminus of C5a

    PubMed Central

    Halai, Reena; Bellows-Peterson, Meghan L; Branchett, Will; Smadbeck, James; Kieslich, Chris A; Croker, Daniel E; Cooper, Matthew A; Morikis, Dimitrios; Woodruff, Trent M; Floudas, Christodoulos A; Monk, Peter N

    2014-01-01

    The complement cascade is a highly sophisticated network of proteins that are well regulated and directed in response to invading pathogens or tissue injury. Complement C3a and C5a are key mediators produced by this cascade, and their dysregulation has been linked to a plethora of inflammatory and autoimmune diseases. Consequently, this has stimulated interest in the development of ligands for the receptors for these complement peptides, C3a receptor, and C5a1 (C5aR/CD88). In this study we used computational methods to design novel C5a1 receptor ligands. However, functional screening in human monocyte-derived macrophages using the xCELLigence label-free platform demonstrated altered specificity of our ligands. No agonist/antagonist activity was observed at C5a1, but we instead saw that the ligands were able to partially agonize the closely related complement receptor C3a receptor. This was verified in the presence of C3a receptor antagonist SB 290157 and in a stable cell line expressing either C5a1 or C3a receptor alone. C3a agonism has been suggested to be a potential treatment of acute neutrophil-driven traumatic pathologies, and may have great potential as a therapeutic avenue in this arena. PMID:25446428

  13. Knock-In Mice with NOP-eGFP Receptors Identify Receptor Cellular and Regional Localization

    PubMed Central

    Ozawa, Akihiko; Brunori, Gloria; Mercatelli, Daniela; Wu, Jinhua; Cippitelli, Andrea; Zou, Bende; Xie, Xinmin (Simon); Williams, Melissa; Zaveri, Nurulain T.; Low, Sarah; Scherrer, Grégory; Kieffer, Brigitte L.

    2015-01-01

    The nociceptin/orphanin FQ (NOP) receptor, the fourth member of the opioid receptor family, is involved in many processes common to the opioid receptors including pain and drug abuse. To better characterize receptor location and trafficking, knock-in mice were created by inserting the gene encoding enhanced green fluorescent protein (eGFP) into the NOP receptor gene (Oprl1) and producing mice expressing a functional NOP-eGFP C-terminal fusion in place of the native NOP receptor. The NOP-eGFP receptor was present in brain of homozygous knock-in animals in concentrations somewhat higher than in wild-type mice and was functional when tested for stimulation of [35S]GTPγS binding in vitro and in patch-clamp electrophysiology in dorsal root ganglia (DRG) neurons and hippocampal slices. Inhibition of morphine analgesia was equivalent when tested in knock-in and wild-type mice. Imaging revealed detailed neuroanatomy in brain, spinal cord, and DRG and was generally consistent with in vitro autoradiographic imaging of receptor location. Multicolor immunohistochemistry identified cells coexpressing various spinal cord and DRG cellular markers, as well as coexpression with μ-opioid receptors in DRG and brain regions. Both in tissue slices and primary cultures, the NOP-eGFP receptors appear throughout the cell body and in processes. These knock-in mice have NOP receptors that function both in vitro and in vivo and appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function. SIGNIFICANCE STATEMENT The NOP receptor, the fourth member of the opioid receptor family, is involved in pain, drug abuse, and a number of other CNS processes. The regional and cellular distribution has been difficult to determine due to lack of validated antibodies for immunohistochemical analysis. To provide a new tool for the investigation of receptor localization, we have produced knock-in mice with a fluorescent-tagged NOP receptor in place of the native

  14. Three nonlethal ligature strangulations filmed by an autoerotic practitioner: comparison of early agonal responses in strangulation by ligature, hanging, and manual strangulation.

    PubMed

    Sauvageau, Anny; Ambrosi, Corinne; Kelly, Sean

    2012-12-01

    Despite great advances in forensic sciences in the last decades, our knowledge of the pathophysiology of ligature strangulation is still largely based on old writings from the 19th and beginning of the 20th century. The study of filmed hangings by the Working Group on Human Asphyxia has contributed to a better understanding of the agonal responses to strangulation by hanging, and judo-related studies have given some insight into the pathophysiology of manual strangulation, but the pathophysiology of ligature strangulation has remained largely unexplored so far. Three nonlethal strangulations filmed by an autoerotic practitioner are here presented. In these 3 ligature strangulations, the 35-year-old man is sitting on a chair. A pair of pajama pants is rolled once around his neck, with the extremities of the pants falling down on each side of his chest. The man is pulling the extremities of the pants with both hands to apply compression on his neck. After losing consciousness, he ceases to pull on the ligature, and the pants slowly loosen around the neck. A few seconds later, he regains consciousness and gets up from the chair. In the 3 nonlethal ligature strangulations presented in this study, the loss of consciousness occurred in 11 seconds. The loss of consciousness was closely followed by the onset of convulsions (7-11 seconds). These results are compared with the early agonal responses documented in filmed hangings and judo studies. PMID:22922552

  15. Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study.

    PubMed

    Becker, G; Bolbos, R; Costes, N; Redouté, J; Newman-Tancredi, A; Zimmer, L

    2016-01-01

    Serotonin 1A (5-HT1A) receptors are involved in several physiological and pathological processes and constitute therefore an important therapeutic target. The recent pharmacological concept of biased agonism asserts that highly selective agonists can preferentially direct receptor signaling to specific intracellular responses, opening the possibility of drugs targeting a receptor subtype in specific brain regions. The present study brings additional support to this concept thanks to functional magnetic resonance imaging (7 Tesla-fMRI) in anaesthetized rats. Three 5-HT1A receptor agonists (8-OH-DPAT, F13714 and F15599) and one 5-HT1A receptor antagonist (MPPF) were compared in terms of influence on the brain blood oxygen level-dependent (BOLD) signal. Our study revealed for the first time contrasting BOLD signal patterns of biased agonists in comparison to a classical agonist and a silent antagonist. By providing functional information on the influence of pharmacological activation of 5-HT1A receptors in specific brain regions, this neuroimaging approach, translatable to the clinic, promises to be useful in exploring the new concept of biased agonism in neuropsychopharmacology. PMID:27211078

  16. Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study

    PubMed Central

    Becker, G.; Bolbos, R.; Costes, N.; Redouté, J.; Newman-Tancredi, A.; Zimmer, L.

    2016-01-01

    Serotonin 1A (5-HT1A) receptors are involved in several physiological and pathological processes and constitute therefore an important therapeutic target. The recent pharmacological concept of biased agonism asserts that highly selective agonists can preferentially direct receptor signaling to specific intracellular responses, opening the possibility of drugs targeting a receptor subtype in specific brain regions. The present study brings additional support to this concept thanks to functional magnetic resonance imaging (7 Tesla-fMRI) in anaesthetized rats. Three 5-HT1A receptor agonists (8-OH-DPAT, F13714 and F15599) and one 5-HT1A receptor antagonist (MPPF) were compared in terms of influence on the brain blood oxygen level-dependent (BOLD) signal. Our study revealed for the first time contrasting BOLD signal patterns of biased agonists in comparison to a classical agonist and a silent antagonist. By providing functional information on the influence of pharmacological activation of 5-HT1A receptors in specific brain regions, this neuroimaging approach, translatable to the clinic, promises to be useful in exploring the new concept of biased agonism in neuropsychopharmacology. PMID:27211078

  17. Mechanisms of inverse agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Strange, Philip G

    2005-05-01

    Mechanisms of inverse agonist action at the D2(short) dopamine receptor have been examined. Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [3H]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. Competition of inverse agonists versus [3H]NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K(i) values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K(coupled) and K(uncoupled) were statistically different for the set of compounds tested (ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. These observations were supported by simulations of these competition experiments according to the extended ternary complex model. Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [35S]GTP gamma S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism. PMID:15735658

  18. Design, Synthesis, and Evaluation of Tetrasubstituted Pyridines as Potent 5-HT2C Receptor Agonists

    PubMed Central

    2015-01-01

    A series of pyrido[3,4-d]azepines that are potent and selective 5-HT2C receptor agonists is disclosed. Compound 7 (PF-04781340) is identified as a suitable lead owing to good 5-HT2C potency, selectivity over 5-HT2B agonism, and in vitro ADME properties commensurate with an orally available and CNS penetrant profile. The synthesis of a novel bicyclic tetrasubstituted pyridine core template is outlined, including rationale to account for the unexpected formation of aminopyridine 13 resulting from an ammonia cascade cyclization. PMID:25815155

  19. Pharmacological characterisation of the goldfish somatostatin sst5 receptor.

    PubMed

    Nunn, Caroline; Feuerbach, Dominik; Lin, Xinwei; Peter, Richard; Hoyer, Daniel

    2002-02-01

    Somatostatin (somatotropin release inhibiting factor, SRIF), exerts its effects via specific G protein coupled receptors of which five subtypes have been cloned (sst1-5). Recently, SRIF receptors have also been cloned from fish tissues. In this study, goldfish sst5 receptors (gfsst5) were expressed and characterised in the Chinese hamster lung fibroblast cell line, that harbours the luciferase reporter gene driven by the serum responsive element (CCL39-SRE-Luci). The agonist radioligands [125I]-LTT-SRIF-28 ([Leu8, DTrp22, 125I-Tyr25]SRIF-28) and [125I][Tyr10]cortistatin-14 labelled similar receptor densities with high affinity and in a saturable manner (pKd: 9.99-9.71; Bmax: 300-350 fmol mg-1). 5'-Guanylyl-imidodiphosphate inhibited radioligand binding to some degree (38.5-57.9%). In competition binding studies, the pharmacological profile of SRIF binding sites defined with [125I]LTT-SRIF-28 and [125I][Tyr10]cortistatin-14 correlated significantly (r2=0.97, n=20). Pharmacological profiles of human and mouse sst5 receptors expressed in CCL39 cells correlated markedly less with those of the gfsst5 profile (r2=0.52-0.78, n > or = b16). Functional expression of the gfsst5 receptor was examined by measurement of agonist-induced luciferase expression and stimulation of [35S]GTPgammaS ([35S]guanosine 5'-O-(3-thiotriphosphate) binding. Profiles were similar to those achieved in radioligand binding studies (r2=0.81-0.93, n=20), although relative potency (pEC50) was reduced compared to pKd values. Relative efficacy profiles of luciferase expression and [35S]GTPgammaS binding, were rather divergent (r2=0.48, n=20) with peptides showing full agonism at one pathway and absence of agonism at the other. BIM 23056 (D-Phe-Phe-Tyr-D-Trp-Lys-Val-Phe-D-Nal-NH2) acted as an antagonist on the effects of SRIF-14 (pKB=6.74 +/- 0.23) on stimulation of [35S]GTPgammaS binding. Pertussis toxin abolished the effect of SRIF-14 on luciferase expression and [35S]GTPgammaS binding suggesting

  20. Characteristics of myocardial US -adrenergic receptors during endotoxicosis in the rat

    SciTech Connect

    Romano, F.D.; Jones, S.B.

    1986-08-01

    The effects of in vivo endotoxin administration on US -adrenergic receptors in rat ventricle membranes were studied using (TH)dihydroalprenolol as a radioligand. Nonlinear regression analysis of saturation binding indicated one-site binding of antagonist in both control and endotoxic tissues. There was no change in maximum binding or dissociation constant of (TH)dihydroalprenolol at 0.5 or 3 h after endotoxin administration or when the rats were in the agonal stage of shock. Isoproterenol competition studies revealed that there was an increase in the slope of the curve from endotoxic tissues at the agonal stages and that there was a decrease in affinity for isoproterenol binding. Control binding modeled to a two-state fit, whereas binding to endotoxin-exposed membranes modeled to one state of lower affinity. These data suggest that there is an alteration in receptor-adenylate cyclase coupling, which may account for an attenuation of agonist-stimulated cyclase activity. A modification in the US -adrenergic receptor may contribute to the decrease in myocardial performance during shock.

  1. NMDA Receptor Modulators in the Treatment of Drug Addiction

    PubMed Central

    Tomek, Seven E.; LaCrosse, Amber L.; Nemirovsky, Natali E.; Olive, M. Foster

    2013-01-01

    Glutamate plays a pivotal role in drug addiction, and the N-methyl-d-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy, and side effect profile of NMDA receptor ligands that are currently in use or being explored for the treatment of drug addiction. These ligands include the NMDA receptor modulators memantine and acamprosate, as well as the partial NMDA agonist d-Cycloserine. Data collected to date suggest that direct NMDA receptor modulators have relatively limited efficacy in the treatment of drug addiction, and that partial agonism of NMDA receptors may have some efficacy with regards to extinction learning during cue exposure therapy. However, the lack of consistency in results to date clearly indicates that additional studies are needed, as are studies examining novel ligands with indirect mechanisms for altering NMDA receptor function. PMID:24275950

  2. Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data.

    PubMed

    Stott, Lisa A; Hall, David A; Holliday, Nicholas D

    2016-02-01

    Stephenson's empirical definition of an agonist, as a ligand with binding affinity and intrinsic efficacy (the ability to activate the receptor once bound), underpins classical receptor pharmacology. Quantifying intrinsic efficacy using functional concentration response relationships has always presented an experimental challenge. The requirement for realistic determination of efficacy is emphasised by recent developments in our understanding of G protein coupled receptor (GPCR) agonists, with recognition that some ligands stabilise different active conformations of the receptor, leading to pathway-selective, or biased agonism. Biased ligands have potential as therapeutics with improved selectivity and clinical efficacy, but there are also pitfalls to the identification of pathway selective effects. Here we explore the basics of concentration response curve analysis, beginning with the need to distinguish ligand bias from other influences of the functional system under study. We consider the different approaches that have been used to quantify and compare biased ligands, many of which are based on the Black and Leff operational model of agonism. Some of the practical issues that accompany these analyses are highlighted, with opportunities to improve estimates in future, particularly in the separation of true agonist intrinsic efficacy from the contributions of system dependent coupling efficiency. Such methods are by their nature practical approaches, and all rely on Stephenson's separation of affinity and efficacy parameters, which are interdependent at the mechanistic level. Nevertheless, operational analysis methods can be justified by mechanistic models of GPCR activation, and if used wisely are key elements to biased ligand identification. PMID:26478533

  3. Quantitative Measure of Receptor Agonist and Modulator Equi-Response and Equi-Occupancy Selectivity

    PubMed Central

    Zhang, Rumin; Kavana, Michael

    2016-01-01

    G protein-coupled receptors (GPCRs) are an important class of drug targets. Quantitative analysis by global curve fitting of properly designed dose-dependent GPCR agonism and allosterism data permits the determination of all affinity and efficacy parameters based on a general operational model. We report here a quantitative and panoramic measure of receptor agonist and modulator equi-response and equi-occupancy selectivity calculated from these parameters. The selectivity values help to differentiate not only one agonist or modulator from another, but on-target from off-target receptor or functional pathway as well. Furthermore, in conjunction with target site free drug concentrations and endogenous agonist tones, the allosterism parameters and selectivity values may be used to predict in vivo efficacy and safety margins. PMID:27116909

  4. Ligand-directed trafficking of receptor stimulus.

    PubMed

    Chilmonczyk, Zdzisław; Bojarski, Andrzej J; Sylte, Ingebrigt

    2014-12-01

    GPCRs are seven transmembrane-spanning receptors that convey specific extracellular stimuli to intracellular signalling. They represent the largest family of cell surface proteins that are therapeutically targeted. According to the traditional two-state model of receptor theory, GPCRs were considered as operating in equilibrium between two functional conformations, an active (R*) and inactive (R) state. Thus, it was assumed that a GPCR can exist either in an "off" or "on" conformation causing either no activation or equal activation of all its signalling pathways. Over the past several years it has become evident that this model is too simple and that GPCR signalling is far more complex. Different studies have presented a multistate model of receptor activation in which ligand-specific receptor conformations are able to differentiate between distinct signalling partners. Recent data show that beside G proteins numerous other proteins, such as β-arrestins and kinases, may interact with GPCRs and activate intracellular signalling pathways. GPCR activation may therefore involve receptor desensitization, coupling to multiple G proteins, Gα or Gβγ signalling, and pathway activation that is independent of G proteins. This latter effect leads to agonist "functional selectivity" (also called ligand-directed receptor trafficking, stimulus trafficking, biased agonism, biased signalling), and agonist intervention with functional selectivity may improve the therapy. Many commercially available drugs with beneficial efficacy also show various undesirable side effects. Further studies of biased signalling might facilitate our understanding of the side effects of current drugs and take us to new avenues to efficiently design pathway-specific medications. PMID:25443729

  5. Navigating CYP1A Induction and Arylhydrocarbon Receptor Agonism in Drug Discovery. A Case History with S1P1 Agonists.

    PubMed

    Taylor, Simon J; Demont, Emmanuel H; Gray, James; Deeks, Nigel; Patel, Aarti; Nguyen, Dung; Taylor, Maxine; Hood, Steve; Watson, Robert J; Bit, Rino A; McClure, Fiona; Ashall, Holly; Witherington, Jason

    2015-10-22

    This article describes the finding of substantial upregulation of mRNA and enzymes of the cytochrome P450 1A family during a lead optimization campaign for small molecule S1P1 agonists. Fold changes in mRNA up to 10,000-fold for CYP1A1 in vivo in rat and cynomolgus monkey and up to 45-fold for CYP1A1 and CYP1A2 in vitro in rat and human hepatocytes were observed. Challenges observed with correlating induction in vitro and induction in vivo resulted in the implementation of a short, 4 day in vivo screening study in the rat which successfully identified noninducers. Subtle structure-activity relationships in this series of S1P1 agonists are described extending beyond planarity and lipophilicity, and the impact and considerations of AhR and CYP1A induction in the context of drug development are discussed. PMID:26393276

  6. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  7. A prototypical Sigma-1 receptor antagonist protects against brain ischemia

    PubMed Central

    Schetz, John A.; Perez, Evelyn; Liu, Ran; Chen, Shiuhwei; Lee, Ivan; Simpkins, James W.

    2016-01-01

    Previous studies indicate that the Sigma-1 ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) protects the brain from ischemia. Less clear is whether protection is mediated by agonism or antagonism of the Sigma-1 receptor, and whether drugs already in use for other indications and that interact with the Sigma-1 receptor might also prevent oxidative damage due to conditions such as cerebral ischemic stroke. The antipsychotic drug haloperidol is an antagonist of Sigma-1 receptors and in this study it potently protects against oxidative stress-related cell death in vitro at low concentrations. The protective potency of haloperidol and a number of other butyrophenone compounds positively correlate with their affinity for a cloned Sigma-1 receptor, and the protection is mimicked by a Sigma-1 receptor-selective antagonist (BD1063), but not an agonist (PRE-084). In vivo, an acute low dose (0.05 mg/kg s.c.) of haloperidol reduces by half the ischemic lesion volume induced by a transient middle cerebral artery occlusion. These in vitro and in vivo pre-clinical results suggest that a low dose of acutely administered haloperidol might have a novel application as a protective agent against ischemic cerebral stroke and other types of brain injury with an ischemic component. PMID:17919467

  8. Structure and function of serotonin G protein-coupled receptors.

    PubMed

    McCorvy, John D; Roth, Bryan L

    2015-06-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein-coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  9. Structure and Function of Serotonin G protein Coupled Receptors

    PubMed Central

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  10. Synthesis and biological activity of small peptides as NOP and opioid receptors' ligands: view on current developments.

    PubMed

    Naydenova, Emilia; Todorov, Petar; Zamfirova, Rositza

    2015-01-01

    The heptadecapeptide nociceptin, also called orphanin FQ (N/OFQ), is the endogenous agonist of the N/OFQ peptide receptor (NOP receptor) and is involved in several central nervous system pathways, such as nociception, reward, tolerance, and feeding. The discovery of small molecule ligands for NOP is being actively pursued for several therapeutic applications. This review presents overview of the several recently reported NOP ligands (agonists and antagonists), with an emphasis of the structural features that may be important for modulating the intrinsic activity of these ligands. In addition, a brief account on the characterization of newly synthesized ligands of NOP receptor with aminophosphonate moiety and β-tryptophan analogues will be presented. PMID:25677770

  11. Fruitful adrenergic α(2C)-agonism/α(2A)-antagonism combination to prevent and contrast morphine tolerance and dependence.

    PubMed

    Del Bello, Fabio; Mattioli, Laura; Ghelfi, Francesca; Giannella, Mario; Piergentili, Alessandro; Quaglia, Wilma; Cardinaletti, Claudia; Perfumi, Marina; Thomas, Russell J; Zanelli, Ugo; Marchioro, Carla; Dal Cin, Michele; Pigini, Maria

    2010-11-11

    The functional in vitro study of the enantiomers of imidazolines 4-7 highlighted the role played by the nature of the ortho phenyl substituent in determining the preferred α(2C)-AR configuration. Indeed, the (S) enantiomers of 4-6 or (R) enantiomer of 7 behave as eutomers and activate this subtype as full agonists; the corresponding distomers are partial agonists. Because in clinical pain management with opioids α(2C)-AR agonists, devoid of the α(2A)-AR-mediated side effects, may represent an improvement over current therapies with clonidine like drugs, 4 and its enantiomers, showing α(2C)-agonism/α(2A)-antagonism, have been studied in vivo. The data suggest that partial α(2C)-activation is compatible with effective enhancement of morphine analgesia and reduction both of morphine tolerance acquisition and morphine dependence acquisition and expression. On the contrary, full α(2C)-activation appears advantageous in reducing morphine tolerance expression. Interestingly, the biological profile displayed by 4 (allyphenyline) and its eutomer (S)-(+)-4 has been found to be very unusual. PMID:20925410

  12. Fluorescent Approaches for Understanding Interactions of Ligands with G Protein Coupled Receptors

    PubMed Central

    Sridharan, Rajashri; Zuber, Jeffrey; Connelly, Sara M.; Mathew, Elizabeth; Dumont, Mark E.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remains unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes, that can be difficult to extract from x-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of GPCRs and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in GPCRs. PMID:24055822

  13. Label-free integrative pharmacology on-target of opioid ligands at the opioid receptor family

    PubMed Central

    2013-01-01

    Background In vitro pharmacology of ligands is typically assessed using a variety of molecular assays based on predetermined molecular events in living cells. Many ligands including opioid ligands pose the ability to bind more than one receptor, and can also provide distinct operational bias to activate a specific receptor. Generating an integrative overview of the binding and functional selectivity of ligands for a receptor family is a critical but difficult step in drug discovery and development. Here we applied a newly developed label-free integrative pharmacology on-target (iPOT) approach to systematically survey the selectivity of a library of fifty-five opioid ligands against the opioid receptor family. All ligands were interrogated using dynamic mass redistribution (DMR) assays in both recombinant and native cell lines that express specific opioid receptor(s). The cells were modified with a set of probe molecules to manifest the binding and functional selectivity of ligands. DMR profiles were collected and translated to numerical coordinates that was subject to similarity analysis. A specific set of opioid ligands were then selected for quantitative pharmacology determination. Results Results showed that among fifty-five opioid ligands examined most ligands displayed agonist activity in at least one opioid receptor expressing cell line under different conditions. Further, many ligands exhibited pathway biased agonism. Conclusion We demonstrate that the iPOT effectively sorts the ligands into distinct clusters based on their binding and functional selectivity at the opioid receptor family. PMID:23497702

  14. The potential role of dopamine D3 receptor neurotransmission in cognition

    PubMed Central

    Nakajima, Shinichiro; Gerretsen, Philip; Takeuchi, Hiroyoshi; Caravaggio, Fernando; Chow, Tiffany; Le Foll, Bernard; Mulsant, Benoit; Pollock, Bruce; Graff-Guerrero, Ariel

    2013-01-01

    Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, such as schizophrenia, Parkinson’s disease and Alzheimer’s disease. The primary objective of this work is to review the literature on the role of dopamine D3 receptors in cognition, and propose dopamine D3 receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. A literature search was performed to identify animal and human studies on D3 receptors and cognition using PubMed, MEDLINE and EMBASE. The search terms included “dopamine D3 receptor” and “cognition”. The literature search identified 164 articles. The results revealed: (1) D3 receptors are associated with cognitive functioning in both healthy individuals and those with neuropsychiatric disorders; (2) D3 receptor blockade appears to enhance while D3 receptor agonism seems to impair cognitive function, including memory, attention, learning, processing speed, social recognition and executive function independent of age; and (3) D3 receptor antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings suggest that D3 receptor blockade may enhance cognitive performance in healthy individuals and treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are needed to confirm these effects. PMID:23791072

  15. Pharmacology of nociceptin and its receptor: a novel therapeutic target

    PubMed Central

    Calo', Girolamo; Guerrini, Remo; Rizzi, Anna; Salvadori, Severo; Regoli, Domenico

    2000-01-01

    Nociceptin (NC), alias Orphanin FQ, has been recently identified as the endogenous ligand of the opioid receptor-like 1 receptor (OP4). This new NC/OP4 receptor system belongs to the opioid family and has been characterized pharmacologically with functional and binding assays on native (mouse, rat, guinea-pig) and recombinant (human) receptors, by using specific and selective agonists (NC, NC(1–13)NH2) and a pure and competitive antagonist, [Nphe1]NC(1–13)NH2. The similar order of potency of agonists and affinity values of the antagonist indicate that the same receptor is present in the four species. OP4 is expressed in neurons, where it reduces activation of adenylyl cyclase and Ca2+ channels while activating K+ channels in a manner similar to opioids. In this way, OP4 mediates inhibitory effects in the autonomic nervous system, but its activities in the central nervous system can be either similar or opposite to those of opioids. In vivo experiments have demonstrated that NC modulates a variety of biological functions ranging from nociception to food intake, from memory processes to cardiovascular and renal functions, from spontaneous locomotor activity to gastrointestinal motility, from anxiety to the control of neurotransmitter release at peripheral and central sites. These actions have been demonstrated using NC and various pharmacological tools, as antisense oligonucleotides targeting OP4 or the peptide precursor genes, antibodies against NC, an OP4 receptor selective antagonist and with data obtained from animals in which the receptor or the peptide precursor genes were knocked out. These new advances have contributed to better understanding of the pathophysiological role of the NC/OP4 system, and ultimately will help to identify the therapeutic potential of new OP4 receptor ligands. PMID:10742280

  16. Delineating biased ligand efficacy at 7TM receptors from an experimental perspective.

    PubMed

    Galandrin, Ségolène; Onfroy, Lauriane; Poirot, Mathias Charles; Sénard, Jean-Michel; Galés, Céline

    2016-08-01

    During the last 10 years, the concept of "biased agonism" also called "functional selectivity" swamped the pharmacology of 7 transmembrane receptors and paved the way for developing signaling pathway-selective drugs with increased efficacy and less adverse effects. Initially thought to select the activation of only a subset of the signaling pathways by the reference agonist, bias ligands revealed higher complexity as they have been shown to stabilize variable receptor conformations that associate with distinct signaling events from the reference. Today, one major challenge relies on the in vitro determination of the bias and classification of these ligands, as a prerequisite for future in vivo and clinical translation. In this review, current experimental considerations for the bias evaluation related to choice of the cellular model, of the signaling pathway as well as of the assays are presented and discussed. PMID:27107932

  17. Deciphering the Code to Aminergic G-Protein Coupled Receptor Drug Design

    PubMed Central

    Tan, Edwin S.; Groban, Eli S.; Jacobson, Matthew P.; Scanlan, Thomas S.

    2009-01-01

    Summary The trace amine-associated receptor 1 (TAAR1) is a biogenic amine G-protein coupled receptor (GPCR) that is potently activated by 3-iodothyronamine (1, T1AM) in vitro. Compound 1 is an endogenous derivative of the thyroid hormone thyroxine that rapidly induces hypothermia, anergia, and bradycardia when administered to mice. To explore the role of TAAR1 in mediating the effects of 1, we rationally designed and synthesized rat TAAR1 superagonists and lead antagonists using the rotamer toggle switch model of aminergic GPCR activation. The functional activity of a ligand was found to be correlated to the nature of its interactions with the rotamer switch residues. Allowing the rotamer switch residues to toggle to their active conformation was associated with agonism while interfering with this conformational transition resulted in antagonism. These agonist and antagonist design principles provide a conceptual model for understanding the relationship between the molecular structure of a drug and its pharmacological properties. PMID:18420141

  18. Synthesis and structure activity relationship investigation of triazolo[1,5-a]pyrimidines as CB2 cannabinoid receptor inverse agonists.

    PubMed

    Aghazadeh Tabrizi, Mojgan; Baraldi, Pier Giovanni; Ruggiero, Emanuela; Saponaro, Giulia; Baraldi, Stefania; Poli, Giulio; Tuccinardi, Tiziano; Ravani, Annalisa; Vincenzi, Fabrizio; Borea, Pier Andrea; Varani, Katia

    2016-05-01

    CB2 cannabinoid receptor ligands are known to be therapeutically important for the treatment of numerous diseases. Recently, we have identified the heteroaryl-4-oxopyridine/7-oxopyrimidine derivatives as highly potent and selective CB2 receptor ligands, showing that the pharmakodynamics of the new compounds was controlled by the nature of the heterocycle core. In this paper we describe the synthesis and biological evaluation of 7-oxo-4-pentyl-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide derivatives that led to the identification of novel CB2 receptor inverse agonists. Cyclic AMP experiments on CB2 receptors expressed in CHO cells revealed that introduction of structural modifications at position 2 of triazolopyrimidine template changes the functional activity from partial to inverse agonism. The molecular docking analysis of the novel structures is reported. PMID:26922225

  19. A long-acting and highly selective prostacyclin receptor agonist prodrug, 2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide (NS-304), ameliorates rat pulmonary hypertension with unique relaxant responses of its active form, {4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid (MRE-269), on rat pulmonary artery.

    PubMed

    Kuwano, Keiichi; Hashino, Asami; Noda, Kumiko; Kosugi, Keiji; Kuwabara, Kenji

    2008-09-01

    2-{4-[(5,6-Diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide (NS-304) is an orally available, long-acting nonprostanoid prostacyclin receptor (IP receptor) agonist prodrug. In a rat model of pulmonary hypertension induced by monocrotaline (MCT), NS-304 ameliorated vascular endothelial dysfunction, pulmonary arterial wall hypertrophy, and right ventricular hypertrophy, and it elevated right ventricular systolic pressure and improved survival. {4-[(5,6-Diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid (MRE-269), the active form of NS-304, is much more selective for the IP receptor than are the prostacyclin analogs beraprost and iloprost, which also have high affinity for the EP(3) receptor. To investigate the effect of receptor selectivity on vasodilation of the pulmonary artery, we assessed the relaxant response to these IP agonists in rats. MRE-269 induced vasodilation equally in large pulmonary arteries (LPA) and small pulmonary arteries (SPA), whereas beraprost and iloprost induced less vasodilation in SPA than in LPA. An EP(3) agonist, sulprostone, induced SPA and LPA vasoconstriction, and an EP(3) antagonist attenuated the vasoconstriction. Beraprost showed EP(3) agonism and induced LPA and SPA vasoconstriction, whereas the EP(3) antagonist inhibited this vasoconstriction and enhanced beraprost- and iloprost-induced SPA vasodilation. These findings suggest that the EP(3) agonism of beraprost and iloprost interfered with the SPA vasodilation resulting from their IP receptor agonism. Endothelium removal markedly attenuated the vasodilation induced by beraprost, but not that induced by MRE-269 or iloprost. Moreover, the vasodilation induced by beraprost and iloprost, but not that induced by MRE-269, was more strongly attenuated in LPA from MCT-treated rats than from normal rats. NS-304 is a promising alternative medication for pulmonary arterial hypertension with prospects for good patient compliance. PMID:18552131

  20. Computational methods for studying G protein-coupled receptors (GPCRs).

    PubMed

    Kaczor, Agnieszka A; Rutkowska, Ewelina; Bartuzi, Damian; Targowska-Duda, Katarzyna M; Matosiuk, Dariusz; Selent, Jana

    2016-01-01

    The functioning of GPCRs is classically described by the ternary complex model as the interplay of three basic components: a receptor, an agonist, and a G protein. According to this model, receptor activation results from an interaction with an agonist, which translates into the activation of a particular G protein in the intracellular compartment that, in turn, is able to initiate particular signaling cascades. Extensive studies on GPCRs have led to new findings which open unexplored and exciting possibilities for drug design and safer and more effective treatments with GPCR targeting drugs. These include discovery of novel signaling mechanisms such as ligand promiscuity resulting in multitarget ligands and signaling cross-talks, allosteric modulation, biased agonism, and formation of receptor homo- and heterodimers and oligomers which can be efficiently studied with computational methods. Computer-aided drug design techniques can reduce the cost of drug development by up to 50%. In particular structure- and ligand-based virtual screening techniques are a valuable tool for identifying new leads and have been shown to be especially efficient for GPCRs in comparison to water-soluble proteins. Modern computer-aided approaches can be helpful for the discovery of compounds with designed affinity profiles. Furthermore, homology modeling facilitated by a growing number of available templates as well as molecular docking supported by sophisticated techniques of molecular dynamics and quantitative structure-activity relationship models are an excellent source of information about drug-receptor interactions at the molecular level. PMID:26928552

  1. Pharmacological Investigations of N-Substituent Variation in Morphine and Oxymorphone: Opioid Receptor Binding, Signaling and Antinociceptive Activity

    PubMed Central

    Ben Haddou, Tanila; Béni, Szabolcs; Hosztafi, Sándor; Malfacini, Davide; Calo, Girolamo; Schmidhammer, Helmut; Spetea, Mariana

    2014-01-01

    Morphine and structurally related derivatives are highly effective analgesics, and the mainstay in the medical management of moderate to severe pain. Pharmacological actions of opioid analgesics are primarily mediated through agonism at the µ opioid peptide (MOP) receptor, a G protein-coupled receptor. Position 17 in morphine has been one of the most manipulated sites on the scaffold and intensive research has focused on replacements of the 17-methyl group with other substituents. Structural variations at the N-17 of the morphinan skeleton led to a diversity of molecules appraised as valuable and potential therapeutics and important research probes. Discovery of therapeutically useful morphine-like drugs has also targeted the C-6 hydroxyl group, with oxymorphone as one of the clinically relevant opioid analgesics, where a carbonyl instead of a hydroxyl group is present at position 6. Herein, we describe the effect of N-substituent variation in morphine and oxymorphone on in vitro and in vivo biological properties and the emerging structure-activity relationships. We show that the presence of a N-phenethyl group in position 17 is highly favorable in terms of improved affinity and selectivity at the MOP receptor, potent agonism and antinociceptive efficacy. The N-phenethyl derivatives of morphine and oxymorphone were very potent in stimulating G protein coupling and intracellular calcium release through the MOP receptor. In vivo, they were highly effective against acute thermal nociception in mice with marked increased antinociceptive potency compared to the lead molecules. It was also demonstrated that a carbonyl group at position 6 is preferable to a hydroxyl function in these N-phenethyl derivatives, enhancing MOP receptor affinity and agonist potency in vitro and in vivo. These results expand the understanding of the impact of different moieties at the morphinan nitrogen on ligand-receptor interaction, molecular mode of action and signaling, and may be

  2. Identification of Neuropeptide Receptors Expressed by Melanin-Concentrating Hormone Neurons

    PubMed Central

    Parks, Gregory S.; Wang, Lien; Wang, Zhiwei; Civelli, Olivier

    2014-01-01

    Melanin-concentrating Hormone (MCH) is a 19 amino acid cyclic neuropeptide that acts in rodents via the MCH receptor 1 (MCHR1) to regulate a wide variety of physiological functions. MCH is produced by a distinct population of neurons located in the lateral hypothalamus (LH) and zona incerta (ZI) but MCHR1 mRNA is widely expressed throughout the brain. The physiological responses and behaviors regulated by the MCH system have been investigated, but less is known about how MCH neurons are regulated. The effects of most classical neurotransmitters on MCH neurons have been studied, but those of neuropeptides are poorly understood. In order to gain insight into how neuropeptides regulate the MCH system, we investigated which neuropeptide receptors are expressed by MCH neurons using double in situ hybridization. In all, twenty receptors, selected based upon either a suspected interaction with the MCH system or demonstrated high expression levels in the LH and ZI, were tested to determine whether they are expressed by MCH neurons. Overall, eleven neuropeptide receptors were found to exhibit significant colocalization with MCH neurons: Nociceptin / Orphanin FQ Opioid receptor (NOP), MCHR1, both Orexin receptors (ORX), Somatostatin receptor 1 and 2 (SSTR1, SSTR2), the Kisspeptin receotor (KissR1), Neurotensin receptor 1 (NTSR1), Neuropeptide S receptor (NPSR), Cholecystokinin receptor A (CCKAR) and the κ-opioid receptor (KOR). Of these receptors, six have never before been linked to the MCH system. Surprisingly, several receptors thought to regulate MCH neurons displayed minimal colocalization with MCH, suggesting that they may not directly regulate the MCH system. PMID:24978951

  3. The human 5-HT7 serotonin receptor splice variants: constitutive activity and inverse agonist effects

    PubMed Central

    Krobert, Kurt A; Levy, Finn Olav

    2002-01-01

    Using membranes from stably or transiently transfected HEK293 cells cultured in 5-HT-free medium and expressing the recombinant human 5-HT7 receptor splice variants (h5-HT7(a), h5-HT7(b) and h5-HT7(d)), we compared their abilities to constitutively activate adenylyl cyclase (AC).All h5-HT7 splice variants elevated basal and forskolin-stimulated AC. The basal AC activity was reduced by the 5-HT7 antagonist methiothepin and this effect was blocked by mesulergine (neutral 5-HT7 antagonist) indicating that the inhibitory effect of methiothepin is inverse agonism at the 5-HT7 receptor.Receptor density correlated poorly with constitutive AC activity in stable clonal cell lines and transiently transfected cells. Mean constitutive AC activity as a percentage of forskolin-stimulated AC was significantly higher for the h5-HT7(b) splice variant compared to the h5-HT7(a) and h5-HT7(d) splice variants but only in stable cell lines.All eight 5-HT antagonists tested inhibited constitutive AC activity of all splice variants in a concentration-dependent manner. No differences in inverse agonist potencies (pIC50) were observed between the splice variants. The rank order of potencies was in agreement and highly correlated with antagonist potencies (pKb) determined by antagonism of 5-HT-stimulated AC activity (methiothepin>metergoline>mesulergine⩾clozapine⩾spiperone⩾ritanserin>methysergide>ketanserin).The efficacy of inverse agonism was not receptor level dependent and varied for several 5-HT antagonists between membrane preparations of transiently and stably transfected cells.It is concluded that the h5-HT7 splice variants display similar constitutive activity and inverse agonist properties. PMID:11906971

  4. Characterisation of AmphiAmR11, an amphioxus (Branchiostoma floridae) D2-dopamine-like G protein-coupled receptor.

    PubMed

    Bayliss, Asha L; Evans, Peter D

    2013-01-01

    The evolution of the biogenic amine signalling system in vertebrates is unclear. However, insights can be obtained from studying the structures and signalling properties of biogenic amine receptors from the protochordate, amphioxus, which is an invertebrate species that exists at the base of the chordate lineage. Here we describe the signalling properties of AmphiAmR11, an amphioxus (Branchiostoma floridae) G protein-coupled receptor which has structural similarities to vertebrate α2-adrenergic receptors but which functionally acts as a D2 dopamine-like receptor when expressed in Chinese hamster ovary -K1 cells. AmphiAmR11 inhibits forskolin-stimulated cyclic AMP levels with tyramine, phenylethylamine and dopamine being the most potent agonists. AmphiAmR11 also increases mitogen-activated protein kinase activity and calcium mobilisation, and in both pathways, dopamine was found to be more potent than tyramine. Thus, differences in the relative effectiveness of various agonists in the different second messenger assay systems suggest that the receptor displays agonist-specific coupling (biased agonism) whereby different agonists stabilize different conformations of the receptor which lead to the enhancement of one signalling pathway over another. The present study provides insights into the evolution of α2-adrenergic receptor signalling and support the hypothesis that α2-adrenergic receptors evolved from D2-dopamine receptors. The AmphiAmR11 receptor may represent a transition state between D2-dopamine receptors and α2-adrenergic receptors. PMID:24265838

  5. Impaired firing properties of dentate granule neurons in an Alzheimer's disease animal model are rescued by PPARγ agonism

    PubMed Central

    Nenov, Miroslav N.; Denner, Larry; Dineley, Kelly T.

    2014-01-01

    Early cognitive impairment in Alzheimer's disease (AD) correlates with medial temporal lobe dysfunction, including two areas essential for memory formation: the entorhinal cortex and dentate gyrus (DG). In the Tg2576 animal model for AD amyloidosis, activation of the peroxisome proliferator-activated receptor-gamma (PPARγ) with rosiglitazone (RSG) ameliorates hippocampus-dependent cognitive impairment and restores aberrant synaptic activity at the entorhinal cortex to DG granule neuron inputs. It is unknown, however, whether intrinsic firing properties of DG granule neurons in these animals are affected by amyloid-β pathology and if they are sensitive to RSG treatment. Here, we report that granule neurons from 9-mo-old wild-type and Tg2576 animals can be segregated into two cell types with distinct firing properties and input resistance that correlate with less mature type I and more mature type II neurons. The DG type I cell population was greater than type II in wild-type littermates. In the Tg2576 animals, the type I and type II cell populations were nearly equal but could be restored to wild-type levels through cognitive enhancement with RSG. Furthermore, Tg2576 cell firing frequency and spike after depolarization were decreased in type I and increased in type II cells, both of which could also be restored to wild-type levels upon RSG treatment. That these parameters were restored by PPARγ activation emphasizes the therapeutic value of RSG against early AD cognitive impairment. PMID:25540218

  6. Dissociated nonsteroidal glucocorticoid receptor modulators; discovery of the agonist trigger in a tetrahydronaphthalene-benzoxazine series.

    PubMed

    Barker, Mike; Clackers, Margaret; Copley, Royston; Demaine, Derek A; Humphreys, Davina; Inglis, Graham G A; Johnston, Michael J; Jones, Haydn T; Haase, Michael V; House, David; Loiseau, Richard; Nisbet, Lesley; Pacquet, Francois; Skone, Philip A; Shanahan, Stephen E; Tape, Dan; Vinader, Victoria M; Washington, Melanie; Uings, Iain; Upton, Richard; McLay, Iain M; Macdonald, Simon J F

    2006-07-13

    The tetrahydronaphthalene-benzoxazine glucocorticoid receptor (GR) partial agonist 4b was optimized to produce potent full agonists of GR. Aromatic ring substitution of the tetrahydronaphthalene leads to weak GR antagonists. Discovery of an "agonist trigger" substituent on the saturated ring of the tetrahydronaphthalene leads to increased potency and efficacious GR agonism. These compounds are efficacy selective in an NFkB GR agonist assay (representing transrepression effects) over an MMTV GR agonist assay (representing transactivation effects). 52 and 60 have NFkB pIC(50) = 8.92 (105%) and 8.69 (92%) and MMTV pEC(50) = 8.20 (47%) and 7.75 (39%), respectively. The impact of the trigger substituent on agonism is modeled within GR and discussed. 36, 52, and 60 have anti-inflammatory activity in a mouse model of inflammation after topical dosing with 52 and 60, having an effect similar to that of dexamethasone. The original lead was discovered by a manual agreement docking method, and automation of this method is also described. PMID:16821781

  7. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism

    PubMed Central

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-01-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80–90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine’s acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine’s acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences. PMID:26174134

  8. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism.

    PubMed

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-10-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80-90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine's acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine's acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences. PMID:26174134

  9. Chronic treatment with the serotonin 2A/2C receptor antagonist SR 46349B enhances the retention and efficiency of rule-guided behavior in mice.

    PubMed

    Dougherty, John P; Oristaglio, Jeff

    2013-07-01

    Animal studies have established that drugs activating the serotonin 2A (5-HT2A) receptor can enhance learning and memory in a variety of classical and operant conditioning tasks. Unfortunately, long-term agonism typically results in receptor downregulation, which can negate such nootropic effects. Conversely, chronic antagonism can act to increase receptor density, an adaptation which, in principle, should enhance cognition in a manner similar to acute agonism. In this study, we questioned whether chronic treatment with the 5-HT2A receptor antagonist, SR 46349B, a drug known to increase 5-HT2A receptor density in vivo, would improve cognitive performance in normal mice. To address this question, we administered SR 46349B to mice for 4 days following initial training on a simple rule-based reward acquisition task. We subsequently tested their recall of this task and, finally, their ability to adapt to a reversal in reward contingency (reversal learning). For comparison, two additional groups were treated with the 5-HT2A/2C receptor agonist, DOI, which downregulates the 5-HT2A receptor. SR 46349B improved retention of the previously-learned task but did not affect reversal learning. Subjects treated with SR 46349B also completed trials faster and with greater motor efficiency than vehicle- or DOI-treated subjects. We hypothesize that long-term drug treatments resulting in 5-HT2A receptor up-regulation may be useful in enhancing recall of learned behaviors and, thus, may have potential for treating cognitive impairment associated with neurodegenerative disorders. PMID:23587729

  10. Functional pharmacology of H1 histamine receptors expressed in mouse preoptic/anterior hypothalamic neurons

    PubMed Central

    Tabarean, I V

    2013-01-01

    BACKGROUND AND PURPOSE Histamine H1 receptors are highly expressed in hypothalamic neurons and mediate histaminergic modulation of several brain-controlled physiological functions, such as sleep, feeding and thermoregulation. In spite of the fact that the mouse is used as an experimental model for studying histaminergic signalling, the pharmacological characteristics of mouse H1 receptors have not been studied. In particular, selective and potent H1 receptor agonists have not been identified. EXPERIMENTAL APPROACH Ca2+ imaging using fura-2 fluorescence signals and whole-cell patch-clamp recordings were carried out in mouse preoptic/anterior hypothalamic neurons in culture. KEY RESULTS The H1 receptor antagonists mepyramine and trans-triprolidine potently antagonized the activation by histamine of these receptors with IC50 values of 0.02 and 0.2 μM respectively. All H1 receptor agonists studied had relatively low potency at the H1 receptors expressed by these neurons. Methylhistaprodifen and 2-(3-trifluoromethylphenyl)histamine had full-agonist activity with potencies similar to that of histamine. In contrast, 2-pyridylethylamine and betahistine showed only partial agonist activity and lower potency than histamine. The histamine receptor agonist, 6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl)heptanecarboxamide (HTMT) had no agonist activity at the H1 receptors H1 receptors expressed by mouse preoptic/anterior hypothalamic neurons but displayed antagonist activity. CONCLUSIONS AND IMPLICATIONS Methylhistaprodifen and 2-(3-trifluoromethylphenyl)histamine were identified as full agonists of mouse H1 receptors. These results also indicated that histamine H1 receptors in mice exhibited a pharmacological profile in terms of agonism, significantly different from those of H1 receptors expressed in other species. PMID:23808378

  11. Role of innate and drug-induced dysregulation of brain stress and arousal systems in addiction: Focus on corticotropin-releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin

    PubMed Central

    Martin-Fardon, Rémi; Zorrilla, Eric P.; Ciccocioppo, Roberto; Weiss, Friedbert

    2010-01-01

    Stress-like symptoms are an integral part of acute and protracted drug withdrawal, and several lines of evidence have shown that dysregulation of brain stress systems, including the extrahypothalamic corticotropin-releasing factor (CRF) system, following long-term drug use is of major importance in maintaining drug and alcohol addiction. Recently, two other neuropeptide systems have attracted interest, the nociceptin/orphanin FQ (N/OFQ) and orexin/hypocretin (Orx/Hcrt) systems. N/OFQ participates in a wide range of physiological responses, and the hypothalamic Orx/Hcrt system helps regulate several physiological processes, including feeding, energy metabolism, and arousal. Moreover, these two systems have been suggested to participate in psychiatric disorders, including anxiety and drug addiction. Dysregulation of these systems by chronic drug exposure has been hypothesized to play a role in the maintenance of addiction and dependence. Recent evidence demonstrated that interactions between CRF-N/OFQ and CRF-Orx/Hcrt systems may be functionally relevant for the control of stress-related addictive behavior. The present review discusses recent findings that support the hypotheses of the participation and dysregulation of these systems in drug addiction and evaluates the current understanding of interactions among these stress-regulatory peptides. PMID:20026088

  12. Induction of G protein-coupled receptor kinases 2 and 3 contributes to the cross-talk between mu and ORL1 receptors following prolonged agonist exposure.

    PubMed

    Thakker, D R; Standifer, K M

    2002-11-01

    The molecular mechanism(s) underlying cross-tolerance between mu and opioid receptor-like 1 (ORL1) receptor agonists were investigated using two human neuroblastoma cell lines endogenously expressing these receptors and G protein-coupled receptor kinases (GRKs). Prolonged (24 h) activation of the mu receptor desensitized both mu and ORL1 receptor-mediated inhibition of forskolin-stimulated cAMP accumulation and upregulated GRK2 levels in SH-SY5Y and BE(2)-C cells. Prolonged ORL1 activation increased GRK2 levels and desensitized both receptors in SH-SY5Y cells. Upregulation of GRK2 correlated with increases in levels of transcription factors Sp1 or AP-2. PD98059, an upstream inhibitor of extracellular signal-regulated kinases 1 and 2 (ERK1/2), reversed all these events. Pretreatment with orphanin FQ/nociceptin (OFQ/N) also upregulated GRK3 levels in both cell lines, and desensitized both receptors in BE(2)-C cells. Protein kinase C (PKC), but not ERK1/2, inhibition blocked OFQ/N-mediated GRK3 induction and mu and ORL1 receptor desensitization in BE(2)-C cells. Antisense DNA treatment confirmed the involvement of GRK2/3 in mu and ORL1 desensitization. Here, we demonstrate for the first time a role for ERK1/2-mediated GRK2 induction in the development of tolerance to mu agonists, as well as cross-tolerance to OFQ/N. We also demonstrate that chronic OFQ/N-mediated desensitization of ORL1 and mu receptors occurs via cell-specific pathways, involving ERK1/2-dependent GRK2, or PKC-dependent and ERK1/2-independent GRK3 induction. PMID:12423667

  13. Melanocortin 1 Receptor Agonists Reduce Proteinuria

    PubMed Central

    Ebefors, Kerstin; Johansson, Martin E.; Stefánsson, Bergur; Granqvist, Anna; Arnadottir, Margret; Berg, Anna-Lena; Nyström, Jenny; Haraldsson, Börje

    2010-01-01

    Membranous nephropathy is one of the most common causes of nephrotic syndrome in adults. Recent reports suggest that treatment with adrenocorticotropic hormone (ACTH) reduces proteinuria, but the mechanism of action is unknown. Here, we identified gene expression of the melanocortin receptor MC1R in podocytes, glomerular endothelial cells, mesangial cells, and tubular epithelial cells. Podocytes expressed most MC1R protein, which colocalized with synaptopodin but not with an endothelial-specific lectin. We treated rats with passive Heymann nephritis (PHN) with MS05, a specific MC1R agonist, which significantly reduced proteinuria compared with untreated PHN rats (P < 0.01). Furthermore, treatment with MC1R agonists improved podocyte morphology and reduced oxidative stress. In summary, podocytes express MC1R, and MC1R agonism reduces proteinuria, improves glomerular morphology, and reduces oxidative stress in nephrotic rats with PHN. These data may explain the proteinuria-reducing effects of ACTH observed in patients with membranous nephropathy, and MC1R agonists may provide a new therapeutic option for these patients. PMID:20507942

  14. Antipsychotic treatment modulates glutamate transport and NMDA receptor expression.

    PubMed

    Zink, Mathias; Englisch, Susanne; Schmitt, Andrea

    2014-11-01

    Schizophrenia patients often suffer from treatment-resistant cognitive and negative symptoms, both of which are influenced by glutamate neurotransmission. Innovative therapeutic strategies such as agonists at metabotropic glutamate receptors or glycin reuptake inhibitors try to modulate the brain's glutamate network. Interactions of amino acids with monoamines have been described on several levels, and first- and second-generation antipsychotic agents (FGAs, SGAs) are known to exert modulatory effects on the glutamatergic system. This review summarizes the current knowledge on effects of FGAs and SGAs on glutamate transport and receptor expression derived from pharmacological studies. Such studies serve as a control for molecular findings in schizophrenia brain tissue and are clinically relevant. Moreover, they may validate animal models for psychosis, foster basic research on antipsychotic substances and finally lead to a better understanding of how monoaminergic and amino acid neurotransmissions are intertwined. In the light of these results, important differences dependent on antipsychotic substances, dosage and duration of treatment became obvious. While some post-mortem findings might be confounded with multifold drug effects, others are unlikely to be influenced by antipsychotic treatment and could represent important markers of schizophrenia pathophysiology. In similarity to the convergence of toxic and psychotomimetic effects of dopaminergic, serotonergic and anti-glutamatergic substances, the therapeutic mechanisms of SGAs might merge on a yet to be defined molecular level. In particular, serotonergic effects of SGAs, such as an agonism at 5HT1A receptors, represent important targets for further clinical research. PMID:25214389

  15. Delineating the molecular mechanisms of tamoxifen's oncolytic actions in estrogen receptor-negative cancers.

    PubMed

    Radin, Daniel P; Patel, Parth

    2016-06-15

    Since its clinical inception, tamoxifen (TAM) has proved to be a powerful tool in treating estrogen receptor-positive breast cancers while exhibiting manageable side effects. Although TAM was synthesized as an estrogen receptor antagonist, reports have found that a significant fraction of women with estrogen receptor-negative cancers have benefitted from TAM treatment, suggesting the possibility of an alternate anti-cancer mechanism. In this paper, we present a review of recent and past literature in an attempt to clarify how TAM inhibits cell proliferation and induces apoptosis in cells lacking the estrogen receptor. Our analysis indicates that micromolar concentrations of TAM selectively elevate intracellular calcium concentrations in malignant cells, possibly by inversely agonizing cannabinoid receptors, producing considerable mitochondrial distress followed by the rapid production of reactive oxygen species. In response, cytoplasmic proteins such as JNK1 are activated, which mediates the activation of caspase-8. Fyn kinase auto phosphorylates in response to increased reactive oxygen species and directs the ubiquitin ligase c-Cbl to tag growth factor receptors for ubiquitination, potentially abrogating constitutively active survival pathways that are hallmarks of cancer progression. We attempt to differentiate the effect that TAM has on purified Protein Kinase C (PKC) compared to that in an intact cell, suggesting that low micromolar concentrations of TAM indirectly inhibit PKC by inducing EGFR destruction and high micromolar concentrations of TAM inhibits PKC through a direct binding mechanism. PMID:27083550

  16. A small difference in the molecular structure of angiotensin II receptor blockers induces AT1 receptor-dependent and -independent beneficial effects

    PubMed Central

    Fujino, Masahiro; Miura, Shin-ichiro; Kiya, Yoshihiro; Tominaga, Yukio; Matsuo, Yoshino; Karnik, Sadashiva S; Saku, Keijiro

    2013-01-01

    Angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) induce multiple pharmacological beneficial effects, but not all ARBs have the same effects and the molecular mechanisms underlying their actions are not certain. In this study, irbesartan and losartan were examined because of their different molecular structures (irbesartan has a cyclopentyl group whereas losartan has a chloride group). We analyzed the binding affinity and production of inositol phosphate (IP), monocyte chemoattractant protein-1 (MCP-1) and adiponectin. Compared with losartan, irbesartan showed a significantly higher binding affinity and slower dissociation rate from the AT1 receptor and a significantly higher degree of inverse agonism and insurmountability toward IP production. These effects of irbesartan were not seen with the AT1-Y113A mutant receptor. On the basis of the molecular modeling of the ARBs–AT1 receptor complex and a mutagenesis study, the phenyl group at Tyr113 in the AT1 receptor and the cyclopentyl group of irbesartan may form a hydrophobic interaction that is stronger than the losartan–AT1 receptor interaction. Interestingly, irbesartan inhibited MCP-1 production more strongly than losartan. This effect was mediated by the inhibition of nuclear factor-kappa B activation that was independent of the AT1 receptor in the human coronary endothelial cells. In addition, irbesartan, but not losartan, induced significant adiponectin production that was mediated by peroxisome proliferator-activated receptor-γ activation in 3T3-L1 adipocytes, and this effect was not mediated by the AT1 receptor. In conclusion, irbesartan induced greater beneficial effects than losartan due to small differences between their molecular structures, and these differential effects were both dependent on and independent of the AT1 receptor. PMID:20668453

  17. Development of flavonoid-based inverse agonists of the key signaling receptor US28 of human cytomegalovirus.

    PubMed

    Kralj, Ana; Nguyen, Mai-Thao; Tschammer, Nuska; Ocampo, Nicolette; Gesiotto, Quinto; Heinrich, Markus R; Phanstiel, Otto

    2013-06-27

    A series of 31 chalcone- and flavonoid-based derivatives were synthesized in good overall yields and screened for their inverse agonist activity on the US28 receptor of human cytomegalovirus (HCMV). With one exception (e.g., 2-(5-bromo-2-methoxyphenyl)-3-hydroxy-4H-chromen-4-one), halogen-substituted flavonoids were typically more potent inverse agonists than their related hydro derivatives. While toxicity could be used to partially explain the inverse agonist activity of some members of the series, 5-(benzyloxy)-2-(5-bromo-2-methoxyphenyl)-4H-chromen-4-one (11b) acted on the US28 receptor as a nontoxic, inverse agonist. The full inverse agonism (efficacy, -89%) and potency (EC50 = 3.5 μM) observed with flavonoid 11b is especially important as it provides both a new tool to study US28 signaling and a potential platform for the future development of HCMV-targeting drugs. PMID:23768434

  18. Stimulation of glutamate receptors in the ventral tegmental area is necessary for serotonin-2 receptor-induced increases in mesocortical dopamine release.

    PubMed

    Pehek, E A; Hernan, A E

    2015-04-01

    Modulation of dopamine (DA) released by serotonin-2 (5-HT2) receptors has been implicated in the mechanism of action of antipsychotic drugs. The mesocortical DA system has been implicated particularly in the cognitive deficits observed in schizophrenia. Agonism at 5-HT2A receptors in the prefrontal cortex (PFC) is associated with increases in cortical DA release. Evidence indicates that 5-HT2A receptors in the cortex regulate mesocortical DA release through stimulation of a "long-loop" feedback system from the PFC to the ventral tegmental area (VTA) and back. However, a causal role for VTA glutamate in the 5-HT2-induced increases in PFC DA has not been established. The present study does so by measuring 5-HT2 agonist-induced DA release in the cortex after infusions of glutamate antagonists into the VTA of the rat. Infusions of a combination of a N-methyl-d-aspartic acid (NMDA) (AP-5: 2-amino-5-phosphopentanoic acid) and an AMPA/kainate (CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione) receptor antagonist into the VTA blocked the increases in cortical DA produced by administration of the 5-HT2 agonist DOI [(±)-2,5-dimethoxy-4-iodoamphetamine] (2.5mg/kg s.c.). These results demonstrate that stimulation of glutamate receptors in the VTA is necessary for 5-HT2 agonist-induced increases in cortical DA. PMID:25637799

  19. NOP receptor mediates anti-analgesia induced by agonist-antagonist opioids.

    PubMed

    Gear, R W; Bogen, O; Ferrari, L F; Green, P G; Levine, J D

    2014-01-17

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ∼90min after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J-113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  20. 4-Phenylpyridin-2-one Derivatives: A Novel Class of Positive Allosteric Modulator of the M1 Muscarinic Acetylcholine Receptor.

    PubMed

    Mistry, Shailesh N; Jörg, Manuela; Lim, Herman; Vinh, Natalie B; Sexton, Patrick M; Capuano, Ben; Christopoulos, Arthur; Lane, J Robert; Scammells, Peter J

    2016-01-14

    Positive allosteric modulators (PAMs) of the M1 muscarinic acetylcholine receptor (M1 mAChR) are a promising strategy for the treatment of the cognitive deficits associated with diseases including Alzheimer's and schizophrenia. Herein, we report the design, synthesis, and characterization of a novel family of M1 mAChR PAMs. The most active compounds of the 4-phenylpyridin-2-one series exhibited comparable binding affinity to the reference compound, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (BQCA) (1), but markedly improved positive cooperativity with acetylcholine, and retained exquisite selectivity for the M1 mAChR. Furthermore, our pharmacological characterization revealed ligands with a diverse range of activities, including modulators that displayed both high intrinsic efficacy and PAM activity, those that showed no detectable agonism but robust PAM activity and ligands that displayed robust allosteric agonism but little modulatory activity. Thus, the 4-phenylpyridin-2-one scaffold offers an attractive starting point for further lead optimization. PMID:26624844

  1. Muscarinic Receptors as Model Targets and Antitargets for Structure-Based Ligand Discovery

    PubMed Central

    Kruse, Andrew C.; Weiss, Dahlia R.; Rossi, Mario; Hu, Jianxin; Hu, Kelly; Eitel, Katrin; Gmeiner, Peter; Wess, Jürgen

    2013-01-01

    G protein–coupled receptors (GPCRs) regulate virtually all aspects of human physiology and represent an important class of therapeutic drug targets. Many GPCR-targeted drugs resemble endogenous agonists, often resulting in poor selectivity among receptor subtypes and restricted pharmacologic profiles. The muscarinic acetylcholine receptor family exemplifies these problems; thousands of ligands are known, but few are receptor subtype–selective and nearly all are cationic in nature. Using structure-based docking against the M2 and M3 muscarinic receptors, we screened 3.1 million molecules for ligands with new physical properties, chemotypes, and receptor subtype selectivities. Of 19 docking-prioritized molecules tested against the M2 subtype, 11 had substantial activity and 8 represented new chemotypes. Intriguingly, two were uncharged ligands with low micromolar to high nanomolar Ki values, an observation with few precedents among aminergic GPCRs. To exploit a single amino-acid substitution among the binding pockets between the M2 and M3 receptors, we selected molecules predicted by docking to bind to the M3 and but not the M2 receptor. Of 16 molecules tested, 8 bound to the M3 receptor. Whereas selectivity remained modest for most of these, one was a partial agonist at the M3 receptor without measurable M2 agonism. Consistent with this activity, this compound stimulated insulin release from a mouse β-cell line. These results support the ability of structure-based discovery to identify new ligands with unexplored chemotypes and physical properties, leading to new biologic functions, even in an area as heavily explored as muscarinic pharmacology. PMID:23887926

  2. Discovery of Dual-Action Membrane-Anchored Modulators of Incretin Receptors

    PubMed Central

    Fortin, Jean-Philippe; Chinnapen, Daniel; Beinborn, Martin; Lencer, Wayne; Kopin, Alan S.

    2011-01-01

    Background The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptors are considered complementary therapeutic targets for type 2 diabetes. Using recombinant membrane-tethered ligand (MTL) technology, the present study focused on defining optimized modulators of these receptors, as well as exploring how local anchoring influences soluble peptide function. Methodology/Principal Findings Serial substitution of residue 7 in membrane-tethered GIP (tGIP) led to a wide range of activities at the GIP receptor, with [G7]tGIP showing enhanced efficacy compared to the wild type construct. In contrast, introduction of G7 into the related ligands, tGLP-1 and tethered exendin-4 (tEXE4), did not affect signaling at the cognate GLP-1 receptor. Both soluble and tethered GIP and GLP-1 were selective activators of their respective receptors. Although soluble EXE4 is highly selective for the GLP-1 receptor, unexpectedly, tethered EXE4 was found to be a potent activator of both the GLP-1 and GIP receptors. Diverging from the pharmacological properties of soluble and tethered GIP, the newly identified GIP-R agonists, (i.e. [G7]tGIP and tEXE4) failed to trigger cognate receptor endocytosis. In an attempt to recapitulate the dual agonism observed with tEXE4, we conjugated soluble EXE4 to a lipid moiety. Not only did this soluble peptide activate both the GLP-1 and GIP receptors but, when added to receptor expressing cells, the activity persists despite serial washes. Conclusions These findings suggest that conversion of a recombinant MTL to a soluble membrane anchored equivalent offers a means to prolong ligand function, as well as to design agonists that can simultaneously act on more than one therapeutic target. PMID:21935440

  3. Serotonin-2C Receptor Agonists Decrease Potassium-Stimulated GABA Release In the Nucleus Accumbens

    PubMed Central

    Kasper, James M; Booth, Raymond G; Peris, Joanna

    2014-01-01

    The serotonin 5-HT2C receptor has shown promise in vivo as a pharmacotherapeutic target for alcoholism. For example, recently, a novel 4-phenyl-2-N,N-dimethylaminotetralin (PAT) drug candidate, that demonstrates 5-HT2C receptor agonist activity together with 5-HT2A/2B receptor inverse agonist activity, was shown to reduce operant responding for ethanol after peripheral administration to rats. Previous studies have shown that the 5-HT2C receptor is found throughout the mesoaccumbens pathway and that 5-HT2C receptor agonism causes activation of ventral tegmental area (VTA) GABA neurons. It is unknown what effect 5-HT2C receptor modulation has on GABA release in the nucleus accumbens core (NAcc). To this end, microdialysis coupled to capillary electrophoresis with laser-induced fluorescence was used to quantify extracellular neurotransmitter concentrations in the NAcc under basal and after potassium stimulation conditions, in response to PAT analogs and other 5-HT2C receptor modulators administered by reverse dialysis to rats. 5-HT2C receptor agonists specifically attenuated stimulated GABA release in the NAcc while 5-HT2C antagonists or inverse agonists had no effect. Agents with activity at 5-HT2A receptors had no effect on GABA release. Thus, in contrast to results reported for the VTA, current results suggest 5-HT2C receptor agonists decrease stimulated GABA release in the NAcc, and provide a possible mechanism of action for 5HT2C-mediated negative modulation of ethanol self-administration. PMID:25382408

  4. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection.

    PubMed

    Ye, Libin; Van Eps, Ned; Zimmer, Marco; Ernst, Oliver P; Prosser, R Scott

    2016-05-12

    Conformational selection and induced fit are two prevailing mechanisms to explain the molecular basis for ligand-based activation of receptors. G-protein-coupled receptors are the largest class of cell surface receptors and are important drug targets. A molecular understanding of their activation mechanism is critical for drug discovery and design. However, direct evidence that addresses how agonist binding leads to the formation of an active receptor state is scarce. Here we use (19)F nuclear magnetic resonance to quantify the conformational landscape occupied by the adenosine A2A receptor (A2AR), a prototypical class A G-protein-coupled receptor. We find an ensemble of four states in equilibrium: (1) two inactive states in millisecond exchange, consistent with a formed (state S1) and a broken (state S2) salt bridge (known as 'ionic lock') between transmembrane helices 3 and 6; and (2) two active states, S3 and S3', as identified by binding of a G-protein-derived peptide. In contrast to a recent study of the β2-adrenergic receptor, the present approach allowed identification of a second active state for A2AR. Addition of inverse agonist (ZM241385) increases the population of the inactive states, while full agonists (UK432097 or NECA) stabilize the active state, S3', in a manner consistent with conformational selection. In contrast, partial agonist (LUF5834) and an allosteric modulator (HMA) exclusively increase the population of the S3 state. Thus, partial agonism is achieved here by conformational selection of a distinct active state which we predict will have compromised coupling to the G protein. Direct observation of the conformational equilibria of ligand-dependent G-protein-coupled receptor and deduction of the underlying mechanisms of receptor activation will have wide-reaching implications for our understanding of the function of G-protein-coupled receptor in health and disease. PMID:27144352

  5. Pharmacological profile of the cyclic nociceptin/orphanin FQ analogues c[Cys10,14]N/OFQ(1-14)NH2 and c[Nphe1,Cys10,14]N/OFQ(1-14)NH2.

    PubMed

    Kitayama, M; Barnes, T A; Carra, G; McDonald, J; Calo, G; Guerrini, R; Rowbotham, D J; Smith, G; Lambert, D G

    2003-12-01

    In this study we describe the activity of two cyclic nociceptin/orphanin FQ (N/OFQ) peptides; c[Cys(10,14)]N/OFQ(1-14)NH(2) (c[Cys(10,14)]) and its [Nphe(1)] derivative c[Nphe(1),Cys(10,14)]N/OFQ(1-14)NH(2) (c[Nphe(1),Cys(10,14)]) in native rat and mouse and recombinant human N/OFQ receptors (NOP). Cyclisation may protect the peptide from metabolic degradation. In competition binding studies of rat, mouse and human NOP the following rank order pK(i) was obtained: N/OFQ(1-13)NH(2)(reference agonist)>N/OFQ=c[Cys(10,14)]>c[Nphe(1)Cys(10,14)]. In GTPgamma(35)S studies of Chinese hamster ovary cells expressing human NOP (CHO(hNOP)) c[Cys(10,14)] (pEC(50) 8.29) and N/OFQ(1-13)NH(2) (pEC(50) 8.57) were full agonists whilst c[Nphe(1)Cys(10,14)] alone was inactive. Following 30 min pre-incubation c[Nphe(1)Cys(10,14)] competitively antagonised the effects of N/OFQ(1-13)NH(2) with a pA(2) and slope factor of 6.92 and 1.01 respectively. In cAMP assays c[Cys(10,14)] (pEC(50) 9.29, E(max) 102% inhibition of the forskolin stimulated response), N/OFQ(1-13)NH(2) (pEC(50) 10.16, E(max) 103% inhibition) and c[Nphe(1)Cys(10,14)] (~80% inhibition at 10 microM) displayed agonist activity. In the mouse vas deferens c[Cys(10,14)] (pEC(50) 6.82, E(max) 89% inhibition of electrically evoked contractions) and N/OFQ(1-13)NH(2) (pEC(50) 7.47, E(max) 93% inhibition) were full agonists whilst c[Nphe(1)Cys(10,14)] alone was inactive. c[Nphe(1)Cys(10,14)] (10 microM) competitively antagonised the effects of N/OFQ(1-13)NH(2) with a pK(B) of 5.66. In a crude attempt to assess metabolic stability, c[Cys(10,14)] was incubated with rat brain membranes and then the supernatant assayed for remaining peptide. Following 60 min incubation 64% of the 1 nM added peptide was metabolised (compared with 54% for N/OFQ-NH(2)). In summary, we report that c[Cys(10,14)] is a full agonist with a small reduction in potency but no improvement in stability whilst c[Nphe(1)Cys(10,14)] displays tissue (antagonist in the

  6. The NOP (ORL1) receptor antagonist Compound B stimulates mesolimbic dopamine release and is rewarding in mice by a non-NOP-receptor-mediated mechanism.

    PubMed

    Koizumi, Miwako; Sakoori, Kazuto; Midorikawa, Naoko; Murphy, Niall P

    2004-09-01

    1. Compound B (1-[(3R, 4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one, CompB) is a nociceptin/orphanin FQ (N/OFQ) antagonist showing high selectivity for the NOP (ORL1) receptor over classical opioid receptors. We studied the effect of subcutaneous CompB administration on the release of mesolimbic dopamine (DA) and the expression of hedonia in mice. 2. CompB (0.3-30 mg kg(-1)) dose dependently stimulated mesolimbic DA release as measured by in vivo freely moving microdialysis, without any change in locomotor activity. However, intracerebroventricular administered N/OFQ (endogenous agonist of the NOP receptor, 6 nmol) did not influence CompB- (10 mg kg(-1)) induced DA release, despite clearly suppressing release when administered alone. 3. Studies using NOP receptor knockout mice and no-net-flux microdialysis revealed mildly, but not statistically significantly higher endogenous DA levels in mice lacking the NOP receptor compared to wild-type mice. Administration of CompB (10 mg kg(-1)) induced identical increases in mesolimbic DA release in wild-type and NOP receptor knockout mice. 4. CompB was rewarding in approximately the same dose range in which CompB induced major increases in mesolimbic DA release when assayed using a conditioned place preference paradigm. The rewarding effect of CompB (30 mg kg(-1)) was maintained in NOP receptor knockout mice. 5. These results show that CompB stimulates mesolimbic DA release and is rewarding by an action independent of the NOP receptor, the precise site of which is unclear. Consequently, caution should be exercised when interpreting the results of studies using this drug, particularly when administered by a peripheral route. PMID:15289286

  7. Basic sciences agonize in Turkey!

    NASA Astrophysics Data System (ADS)

    Akdemir, Fatma; Araz, Asli; Akman, Ferdi; Durak, Rıdvan

    2016-04-01

    In this study, changes from past to present in the departments of physics, chemistry, biology and mathematics, which are considered as the basic sciences in Turkey, are shown. The importance of basic science for the country emphasized and the status of our country was discussed with a critical perspective. The number of academic staff, the number of students, opened quotas according to years for these four departments at universities were calculated and analysis of the resulting changes were made. In examined graphics changes to these four departments were similar. Especially a significant change was observed in the physics department. Lack of jobs employing young people who have graduated from basic science is also an issue that must be discussed. There are also qualitative results of this study that we have discussed as quantitative. Psychological problems caused by unemployment have become a disease among young people. This study was focused on more quantitative results. We have tried to explain the causes of obtained results and propose solutions.

  8. 5-HT1A receptor agonist-antagonist binding affinity difference as a measure of intrinsic activity in recombinant and native tissue systems

    PubMed Central

    Watson, J; Collin, L; Ho, M; Riley, G; Scott, C; Selkirk, J V; Price, G W

    2000-01-01

    It has been reported that radiolabelled agonist : antagonist binding affinity ratios can predict functional efficacy at several different receptors. This study investigates whether this prediction is true for recombinant and native tissue 5-HT1A receptors. Saturation studies using [3H]-8-OH-DPAT and [3H]-MPPF revealed a single, high affinity site (KD∼1 nM) in HEK293 cells expressing human 5-HT1A receptors and rat cortex. In recombinant cells, [3H]-MPPF labelled 3–4 fold more sites than [3H]-8-OH-DPAT suggesting the presence of more than one affinity state of the receptor. [3H]-Spiperone labelled a single, lower affinity site in HEK293 cells expressing h5-HT1A receptors but did not bind to native tissue 5-HT1A receptors. These data suggest that, in transfected HEK293 cells, human 5-HT1A receptors exist in different affinity states but in native rat cortical tissue the majority of receptors appear to exist in the high agonist affinity state. Receptor agonists inhibited [3H]-MPPF binding from recombinant 5-HT1A receptors in a biphasic manner, whereas antagonists and partial agonists gave monophasic inhibition curves. All compounds displaced [3H]-8-OH-DPAT and [3H]-spiperone binding in a monophasic manner. In rat cortex, all compounds displaced [3H]-MPPF and [3H]-8-OH-DPAT in a monophasic manner. Functional evaluation of compounds, using [35S]-GTPγS binding, produced a range of intrinsic activities from full agonism, displayed by 5-HT and 5-CT to inverse agonism displayed by spiperone. [3H]-8-OH-DPAT : [3H]-MPPF pKi difference correlated well with functional intrinsic activity (r=0.86) as did [3H]-8-OH-DPAT : [3H]-spiperone pKi difference with functional intrinsic activity (r=0.96). Thus agonist : antagonist binding affinity differences may be used to predict functional efficacy at human 5-HT1A receptors expressed in HEK293 cells where both high and low agonist affinity states are present but not at native rat cortical 5-HT1A receptors in which

  9. Synthesis and Biological Evaluation of Sphingosine Kinase Substrates as Sphingosine-1-Phosphate Receptor Prodrugs

    PubMed Central

    Foss, Frank W.; Mathews, Thomas P.; Kharel, Yugesh; Kennedy, Perry C.; Snyder, Ashley H.; Davis, Michael D.; Lynch, Kevin R.; Macdonald, Timothy L.

    2009-01-01

    In the search for bioactive sphingosine 1-phosphate (S1P) receptor ligands, a series of 2-amino-2-heterocyclic-propanols were synthesized. These molecules were discovered to be substrates of human-sphingosine kinases 1 and 2 (SPHK1 and SPHK2). When phosphorylated, the resultant phosphates showed varied activities at the five sphingosine-1-phosphate (S1P) receptors (S1P1–5). Agonism at S1P1 was displayed in vivo by induction of lymphopenia. A stereochemical preference of the quaternary carbon was crucial for phosphorylation by the kinases and alters binding affinities at the S1P receptors. Oxazole and oxadiazole compounds are superior kinase substrates to FTY720, the prototypical prodrug immunomodulator, fingolimod (FTY720). The oxazole-derived structure was the most active for human SPHK2. Imidazole analogues were less active substrates for SPHKs, but more potent and selective agonists of the S1P1 receptor; additionally, the imidazole class of compounds rendered mice lymphopenic. PMID:19632123

  10. Different in vitro and in vivo profiles of substituted 3-aminopropylphosphinate and 3-aminopropyl(methyl)phosphinate GABAB receptor agonists as inhibitors of transient lower oesophageal sphincter relaxation

    PubMed Central

    Lehmann, A; Antonsson, M; Aurell-Holmberg, A; Blackshaw, LA; Brändén, L; Elebring, T; Jensen, J; Kärrberg, L; Mattsson, JP; Nilsson, K; Oja, SS; Saransaari, P; von Unge, S

    2012-01-01

    BACKGROUND AND PURPOSE Gastro-oesophageal reflux is predominantly caused by transient lower oesophageal sphincter relaxation (TLOSR) and GABAB receptor stimulation inhibits TLOSR. Lesogaberan produces fewer CNS side effects than baclofen, which has been attributed to its affinity for the GABA transporter (GAT), the action of which limits stimulation of central GABAB receptors. To understand the structure–activity relationship for analogues of lesogaberan (3-aminopropylphosphinic acids), and corresponding 3-aminopropyl(methyl)phosphinic acids, we have compared representatives of these classes in different in vitro and in vivo models. EXPERIMENTAL APPROACH The compounds were characterized in terms of GABAB agonism in vitro. Binding to GATs and cellular uptake was done using rat brain membranes and slices respectively. TLOSR was measured in dogs, and CNS side effects were evaluated as hypothermia in mice and rats. KEY RESULTS 3-Aminopropylphosphinic acids inhibited TLOSR with a superior therapeutic index compared to 3-aminopropyl(methyl)phosphinic acids. This difference was most likely due to differential GAT-mediated uptake into brain cells of the former but not latter. In agreement, 3-aminopropyl(methyl)phosphinic acids were much more potent in producing hypothermia in rats even when administered i.c.v. CONCLUSIONS AND IMPLICATIONS An enhanced therapeutic window for 3-aminopropylphosphinic acids compared with 3-aminopropyl(methyl)phosphinic acids with respect to inhibition of TLOSR was observed and is probably mechanistically linked to neural cell uptake of the former but not latter group of compounds. These findings offer a platform for discovery of new GABAB receptor agonists for the treatment of reflux disease and other conditions where selective peripheral GABAB receptor agonism may afford therapeutic effects. PMID:21950457

  11. Investigation of the Fate of Type I Angiotensin Receptor after Biased Activation

    PubMed Central

    Szakadáti, Gyöngyi; Tóth, András D.; Oláh, Ilona; Erdélyi, László Sándor; Balla, Tamas; Várnai, Péter; Balla, András

    2015-01-01

    Biased agonism on the type I angiotensin receptor (AT1-R) can achieve different outcomes via activation of G protein–dependent and –independent cellular responses. In this study, we investigated whether the biased activation of AT1-R can lead to different regulation and intracellular processing of the receptor. We analyzed β-arrestin binding, endocytosis, and subsequent trafficking steps, such as early and late phases of recycling of AT1-R in human embryonic kidney 293 cells expressing wild-type or biased mutant receptors in response to different ligands. We used Renilla luciferase–tagged receptors and yellow fluorescent protein–tagged β-arrestin2, Rab5, Rab7, and Rab11 proteins in bioluminescence resonance energy transfer measurements to follow the fate of the receptor after stimulation. We found that not only is the signaling of the receptor different upon using selective ligands, but the fate within the cells is also determined by the type of the stimulation. β-arrestin binding and the internalization kinetics of the angiotensin II–stimulated AT1-R differed from those stimulated by the biased agonists. Similarly, angiotensin II–stimulated wild-type AT1-R showed differences compared with a biased mutant AT1-R (DRY/AAY AT1-R) with regards to β-arrestin binding and endocytosis. We found that the differences in the internalization kinetics of the receptor in response to biased agonist stimulation are due to the differences in plasma membrane phosphatidylinositol 4,5-bisphosphate depletion. Moreover, the stability of the β-arrestin binding is a major determinant of the later fate of the internalized AT1-R receptor. PMID:25804845

  12. Direct angiotensin II type 2 receptor stimulation decreases dopamine synthesis in the rat striatum.

    PubMed

    Mertens, Birgit; Vanderheyden, Patrick; Michotte, Yvette; Sarre, Sophie

    2010-06-01

    A relationship between the central renin angiotensin system and the dopaminergic system has been described in the striatum. However, the role of the angiotensin II type 2 (AT(2)) receptor in this interaction has not yet been established. The present study examined the outcome of direct AT(2) receptor stimulation on dopamine (DA) release and synthesis by means of the recently developed nonpeptide AT(2) receptor agonist, compound 21 (C21). The effects of AT(2) receptor agonism on the release of DA and its major metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) and on the activity of tyrosine hydroxylase (TH), the rate-limiting enzyme in the catecholamine biosynthesis, were investigated using in vivo microdialysis. Local administration of C21 (0.1 and 1 microM) resulted in a decrease of the extracellular DOPAC levels, whereas extracellular DA concentrations remained unaltered, suggesting a reduced synthesis of DA. This effect was mediated by the AT(2) receptor since it could be blocked by the AT(2) receptor antagonist PD123319 (1 microM). A similar effect was observed after local striatal (10 nM) as well as systemic (0.3 and 3 mg/kg i.p.) administration of the AT(1) receptor antagonist, candesartan. TH activity as assessed by accumulation of extracellular levels of L-DOPA after inhibition of amino acid decarboxylase with NSD1015, was also reduced after local administration of C21 (0.1 and 1 microM) and candesartan (10 nM). Together, these data suggest that AT(1) and AT(2) receptors in the striatum exert an opposite effect on the modulation of DA synthesis rather than DA release. PMID:20097214

  13. Discovery of a Selective S1P1 Receptor Agonist Efficacious at Low Oral Dose and Devoid of Effects on Heart Rate

    PubMed Central

    2011-01-01

    Gilenya (fingolimod, FTY720) was recently approved by the U.S. FDA for the treatment of patients with remitting relapsing multiple sclerosis (RRMS). It is a potent agonist of four of the five sphingosine 1-phosphate (S1P) G-protein-coupled receptors (S1P1 and S1P3−5). It has been postulated that fingolimod's efficacy is due to S1P1 agonism, while its cardiovascular side effects (transient bradycardia and hypertension) are due to S1P3 agonism. We have discovered a series of selective S1P1 agonists, which includes 3-[6-(5-{3-cyano-4-[(1-methylethyl)oxy]phenyl}-1,2,4-oxadiazol-3-yl)-5-methyl-3,4-dihydro-2(1H)-isoquinolinyl]propanoate, 20, a potent, S1P3-sparing, orally active S1P1 agonist. Compound 20 is as efficacious as fingolimod in a collagen-induced arthritis model and shows excellent pharmacokinetic properties preclinically. Importantly, the selectivity of 20 against S1P3 is responsible for an absence of cardiovascular signal in telemetered rats, even at high dose levels. PMID:24900328

  14. 1,2-Dihydro-2-oxopyridine-3-carboxamides: the C-5 substituent is responsible for functionality switch at CB2 cannabinoid receptor.

    PubMed

    Lucchesi, Valentina; Parkkari, Teija; Savinainen, Juha R; Malfitano, Anna Maria; Allarà, Marco; Bertini, Simone; Castelli, Francesca; Del Carlo, Sara; Laezza, Chiara; Ligresti, Alessia; Saccomanni, Giuseppe; Bifulco, Maurizio; Di Marzo, Vincenzo; Macchia, Marco; Manera, Clementina

    2014-03-01

    The relevance of CB2R-mediated therapeutic effects is well-known for the treatment of inflammatory and neuropathic pain and neurodegenerative disorders. In our search for new cannabinoid receptor modulators, we report the optimization of a series of 1,2-dihydro-2-oxopyridine-3-carboxamide derivatives as CB2R ligands. In particular, N-cycloheptyl-5-(4-methoxyphenyl)-1-(4-fluorobenzyl)-pyridin-2(1H)-on-3-carboxamide (17) showed high CB2R affinity (K(i) = 1.0 nM), accompanied by interesting K(i)(CB1R)/K(i)(CB2R) selectivity ratio (SI = 43.4). Compound 17 was also identified as a potent CB2R neutral antagonist/weak partial inverse agonist. Finally we found that the functionality activity of the series of 1,2-dihydro-2-oxopyridine is controlled by the presence of a substituent in position 5 of the heterocyclic nucleus. In fact when the hydrogen atom in position 5 of the unsubstituted compound 1 was replaced with a phenyl group (compound 18) the CB2R activity was shifted from agonism to inverse agonism whereas the introduction in the same position of p-methoxyphenyl group lead to compound 17 which showed a behavior as CB2R neutral antagonist/weak partial inverse agonist. PMID:24518874

  15. Proinflammatory Stimulation of Toll-Like Receptor 9 with High Dose CpG ODN 1826 Impairs Endothelial Regeneration and Promotes Atherosclerosis in Mice

    PubMed Central

    Steinmetz, Martin; Asdonk, Tobias; Lahrmann, Catharina; Lütjohann, Dieter; Nickenig, Georg; Zimmer, Sebastian

    2016-01-01

    Background Toll-like receptors (TLR) of the innate immune system have been closely linked with the development of atherosclerotic lesions. TLR9 is activated by unmethylated CpG motifs within ssDNA, but also by CpG motifs in nucleic acids released during vascular apoptosis and necrosis. The role of TLR9 in vascular disease remains controversial and we sought to investigate the effects of a proinflammatory TLR9 stimulation in mice. Methods and Findings TLR9-stimulation with high dose CpG ODN at concentrations between 6.25nM to 30nM induced a significant proinflammatory cytokine response in mice. This was associated with impaired reendothelialization upon acute denudation of the carotid and increased numbers of circulating endothelial microparticles, as a marker for amplified endothelial damage. Chronic TLR9 agonism in apolipoprotein E-deficient (ApoE-/-) mice fed a cholesterol-rich diet increased aortic production of reactive oxygen species, the number of circulating endothelial microparticles, circulating sca-1/flk-1 positive cells, and most importantly augmented atherosclerotic plaque formation when compared to vehicle treated animals. Importantly, high concentrations of CpG ODN are required for these proatherogenic effects. Conclusions Systemic stimulation of TLR9 with high dose CpG ODN impaired reendothelialization upon acute vascular injury and increased atherosclerotic plaque development in ApoE-/- mice. Further studies are necessary to fully decipher the contradictory finding of TLR9 agonism in vascular biology. PMID:26751387

  16. Soluble (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor.

    PubMed

    Lu, Xiaohan; Wang, Fei; Xu, Chuanming; Soodvilai, Sunny; Peng, Kexin; Su, Jiahui; Zhao, Long; Yang, Kevin T; Feng, Yumei; Zhou, Shu-Feng; Gustafsson, Jan-Åke; Yang, Tianxin

    2016-03-29

    The extracellular domain of the (pro)renin receptor (PRR) is cleaved to produce a soluble (pro)renin receptor (sPRR) that is detected in biological fluid and elevated under certain pathological conditions. The present study was performed to define the antidiuretic action of sPRR and its potential interaction with liver X receptors (LXRs), which are known regulators of urine-concentrating capability. Water deprivation consistently elevated urinary sPRR excretion in mice and humans. A template-based algorithm for protein-protein interaction predicted the interaction between sPRR and frizzled-8 (FZD8), which subsequently was confirmed by coimmunoprecipitation. A recombinant histidine-tagged sPRR (sPRR-His) in the nanomolar range induced a remarkable increase in the abundance of renal aquaporin 2 (AQP2) protein in primary rat inner medullary collecting duct cells. The AQP2 up-regulation relied on sequential activation of FZD8-dependent β-catenin signaling and cAMP-PKA pathways. Inhibition of FZD8 or tankyrase in rats induced polyuria, polydipsia, and hyperosmotic urine. Administration of sPRR-His alleviated the symptoms of diabetes insipidus induced in mice by vasopressin 2 receptor antagonism. Administration of the LXR agonist TO901317 to C57/BL6 mice induced polyuria and suppressed renal AQP2 expression associated with reduced renal PRR expression and urinary sPRR excretion. Administration of sPRR-His reversed most of the effects of TO901317. In cultured collecting duct cells, TO901317 suppressed PRR protein expression, sPRR release, and PRR transcriptional activity. Overall we demonstrate, for the first time to our knowledge, that sPRR exerts antidiuretic action via FZD8-dependent stimulation of AQP2 expression and that inhibition of this pathway contributes to the pathogenesis of diabetes insipidus induced by LXR agonism. PMID:26984496

  17. Design, Syntheses, and Biological Evaluation of 14-Heteroaromatic Substituted Naltrexone Derivatives: Pharmacological Profile Switch from Mu Opioid Receptor Selectivity to Mu/Kappa Opioid Receptor Dual Selectivity

    PubMed Central

    Yuan, Yunyun; Zaidi, Saheem A.; Elbegdorj, Orgil; Aschenbach, Lindsey C. K.; Li, Guo; Stevens, David L.; Scoggins, Krista L.; Dewey, William L.; Selley, Dana E.; Zhang, Yan

    2015-01-01

    Based on a mu opioid receptor (MOR) homology model and the “isosterism” concept, three generations of 14-heteroaromatically substituted naltrexone derivatives were designed, synthesized, and evaluated as potential MOR selective ligands. The first generation ligands appeared to be MOR selective, whereas the second and the third generation ones showed MOR/kappa opioid receptor (KOR) dual selectivity. Docking of ligands 2 (MOR selective) and 10 (MOR/KOR dual selective) to the three opioid receptor crystal structures revealed a non-conserved residue facilitated “hydrogen bonding network” that could be responsible for their distinctive selectivity profiles. The MOR/KOR dual selective ligand 10 showed no agonism and acted as a potent antagonist in the tail flick assay. It also produced less severe opioid withdrawal symptoms than naloxone in morphine dependent mice. In conclusion, ligand 10 may serve as a novel lead compound to develop MOR/KOR dual selective ligands, which might possess unique therapeutic value for opioid addiction treatment. PMID:24144240

  18. Discovery of a Series of Imidazo[4,5-b]pyridines with Dual Activity at Angiotensin II Type 1 Receptor and Peroxisome Proliferator-Activated Receptor-[gamma

    SciTech Connect

    Casimiro-Garcia, Agustin; Filzen, Gary F.; Flynn, Declan; Bigge, Christopher F.; Chen, Jing; Davis, Jo Ann; Dudley, Danette A.; Edmunds, Jeremy J.; Esmaeil, Nadia; Geyer, Andrew; Heemstra, Ronald J.; Jalaie, Mehran; Ohren, Jeffrey F.; Ostroski, Robert; Ellis, Teresa; Schaum, Robert P.; Stoner, Chad

    2013-03-07

    Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPAR{gamma} confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPAR{gamma} activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC{sub 50} = 1.6 nM) with partial PPAR{gamma} agonism (EC{sub 50} = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.

  19. Discovery of a series of imidazo[4,5-b]pyridines with dual activity at angiotensin II type 1 receptor and peroxisome proliferator-activated receptor-γ.

    PubMed

    Casimiro-Garcia, Agustin; Filzen, Gary F; Flynn, Declan; Bigge, Christopher F; Chen, Jing; Davis, Jo Ann; Dudley, Danette A; Edmunds, Jeremy J; Esmaeil, Nadia; Geyer, Andrew; Heemstra, Ronald J; Jalaie, Mehran; Ohren, Jeffrey F; Ostroski, Robert; Ellis, Teresa; Schaum, Robert P; Stoner, Chad

    2011-06-23

    Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-γ (PPARγ) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPARγ confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPARγ activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC(50) = 1.6 nM) with partial PPARγ agonism (EC(50) = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat. PMID:21557540

  20. Mechanism of H2 histamine receptor dependent modulation of body temperature and neuronal activity in the medial preoptic nucleus

    PubMed Central

    Tabarean, Iustin V.; Sanchez-Alavez, Manuel; Sethi, Jasmine

    2012-01-01

    Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice histamine activates H2 subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H2 receptors and are excited by histamine or H2 specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing “sag” observed during hyperpolarizing current injections. Furthermore, at −60 mV holding potential activation of H2 receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (Ih). Indeed, activation of H2 receptors resulted in increased Ih amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H2 specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H2 receptors. PMID:22366077

  1. Mechanism of H₂ histamine receptor dependent modulation of body temperature and neuronal activity in the medial preoptic nucleus.

    PubMed

    Tabarean, Iustin V; Sanchez-Alavez, Manuel; Sethi, Jasmine

    2012-08-01

    Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice, histamine activates H(2) subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H(2) receptors and are excited by histamine or H(2) specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing "sag" observed during hyperpolarizing current injections. Furthermore, at -60 mV holding potential, activation of H(2) receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (I(h)). Indeed, activation of H(2) receptors resulted in increased I(h) amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H(2) specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H(2) receptors. PMID:22366077

  2. Roles of affinity and lipophilicity in the slow kinetics of prostanoid receptor antagonists on isolated smooth muscle preparations

    PubMed Central

    Jones, RL; Woodward, DF; Wang, JW; Clark, RL

    2011-01-01

    BACKGROUND AND PURPOSE The highly lipophilic acyl-sulphonamides L-798106 and L-826266 showed surprisingly slow antagonism of the prostanoid EP3 receptor system in guinea-pig aorta. Roles of affinity and lipophilicity in the onset kinetics of these and other prostanoid ligands were investigated. EXPERIMENTAL APPROACH Antagonist selectivity was assessed using a panel of human recombinant prostanoid receptor-fluorimetric imaging plate reader assays. Potencies/affinities and onset half-times of agonists and antagonists were obtained on guinea-pig-isolated aorta and vas deferens. n-Octanol-water partition coefficients were predicted. KEY RESULTS L-798106, L-826266 and the less lipophilic congener (DG)-3ap appear to behave as selective, competitive-reversible EP3 antagonists. For ligands of low to moderate lipophilicity, potency increments for EP3 and TP (thromboxane-like) agonism on guinea-pig aorta (above pEC50 of 8.0) were associated with progressively longer onset half-times; similar trends were found for TP and histamine H1 antagonism above a pA2 limit of 8.0. In contrast, L-798106 (EP3), L-826266 (EP3, TP) and the lipophilic H1 antagonists astemizole and terfenadine exhibited very slow onset rates despite their moderate affinities; (DG)-3ap (EP3) had a faster onset. Agonism and antagonism on the vas deferens EP3 system were overall much faster, although trends were similar. CONCLUSIONS AND IMPLICATIONS High affinity and high liphophilicity may contribute to the slow onsets of prostanoid ligands in some isolated smooth muscle preparations. Both relationships are explicable by tissue disposition under the limited diffusion model. EP3 antagonists used as research tools should have moderate lipophilicity. The influence of lipophilicity on the potential clinical use of EP3 antagonists is discussed. PMID:20973775

  3. A Cannabinoid Receptor Agonist N-Arachidonoyl Dopamine Inhibits Adipocyte Differentiation in Human Mesenchymal Stem Cells

    PubMed Central

    Ahn, Seyeon; Yi, Sodam; Seo, Won Jong; Lee, Myeong Jung; Song, Young Keun; Baek, Seung Yong; Yu, Jinha; Hong, Soo Hyun; Lee, Jinyoung; Shin, Dong Wook; Jeong, Lak Shin; Noh, Minsoo

    2015-01-01

    Endocannabinoids can affect multiple cellular targets, such as cannabinoid (CB) receptors, transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and peroxisome proliferator-activated receptor γ (PPARγ). The stimuli to induce adipocyte differentiation in hBM-MSCs increase the gene transcription of the CB1 receptor, TRPV1 and PPARγ. In this study, the effects of three endocannabinoids, N-arachidonoyl ethanolamine (AEA), N-arachidonoyl dopamine (NADA) and 2-arachidonoyl glycerol (2-AG), on adipogenesis in hBM-MSCs were evaluated. The adipocyte differentiation was promoted by AEA whereas inhibited by NADA. No change was observed by the treatment of non-cytotoxic concentrations of 2-AG. The difference between AEA and NADA in the regulation of adipogenesis is associated with their effects on PPARγ transactivation. AEA can directly activate PPARγ. The effect of AEA on PPARγ in hBM-MSCs may prevail over that on the CB1 receptor mediated signal transduction, giving rise to the AEA-induced promotion of adipogenesis. In contrast, NADA had no effect on the PPARγ activity in the PPARγ transactivation assay. The inhibitory effect of NADA on adipogenesis in hBM-MSCs was reversed not by capsazepine, a TRPV1 antagonist, but by rimonabant, a CB1 antagonist/inverse agonist. Rimonabant by itself promoted adipogenesis in hBM-MSCs, which may be interpreted as the result of the inverse agonism of the CB1 receptor. This result suggests that the constantly active CB1 receptor may contribute to suppress the adipocyte differentiation of hBM-MSCs. Therefore, the selective CB1 agonists that are unable to affect cellular PPARγ activity inhibit adipogenesis in hBM-MSCs. PMID:25995819

  4. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    SciTech Connect

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  5. Nociceptin Opioid Receptor (NOP) as a Therapeutic Target: Progress in Translation from Preclinical Research to Clinical Utility.

    PubMed

    Zaveri, Nurulain T

    2016-08-11

    In the two decades since the discovery of the nociceptin opioid receptor (NOP) and its ligand, nociceptin/orphaninFQ (N/OFQ), steady progress has been achieved in understanding the pharmacology of this fourth opioid receptor/peptide system, aided by genetic and pharmacologic approaches. This research spawned an explosion of small-molecule NOP receptor ligands from discovery programs in major pharmaceutical companies. NOP agonists have been investigated for their efficacy in preclinical models of anxiety, cough, substance abuse, pain (spinal and peripheral), and urinary incontinence, whereas NOP antagonists have been investigated for treatment of pain, depression, and motor symptoms in Parkinson's disease. Translation of preclinical findings into the clinic is guided by PET and receptor occupancy studies, particularly for NOP antagonists. Recent progress in preclinical NOP research suggests that NOP agonists may have clinical utility for pain treatment and substance abuse pharmacotherapy. This review discusses the progress toward validating the NOP-N/OFQ system as a therapeutic target. PMID:26878436

  6. Identification of key neoculin residues responsible for the binding and activation of the sweet taste receptor

    PubMed Central

    Koizumi, Taichi; Terada, Tohru; Nakajima, Ken-ichiro; Kojima, Masaki; Koshiba, Seizo; Matsumura, Yoshitaka; Kaneda, Kohei; Asakura, Tomiko; Shimizu-Ibuka, Akiko; Abe, Keiko; Misaka, Takumi

    2015-01-01

    Neoculin (NCL) is a heterodimeric protein isolated from the edible fruit of Curculigo latifolia. It exerts a taste-modifying activity by converting sourness to sweetness. We previously demonstrated that NCL changes its action on the human sweet receptor hT1R2-hT1R3 from antagonism to agonism as the pH changes from neutral to acidic values, and that the histidine residues of NCL molecule play critical roles in this pH-dependent functional change. Here, we comprehensively screened key amino acid residues of NCL using nuclear magnetic resonance (NMR) spectroscopy and alanine scanning mutagenesis. We found that the mutations of Arg48, Tyr65, Val72 and Phe94 of NCL basic subunit increased or decreased both the antagonist and agonist activities. The mutations had only a slight effect on the pH-dependent functional change. These residues should determine the affinity of NCL for the receptor regardless of pH. Their locations were separated from the histidine residues responsible for the pH-dependent functional change in the tertiary structure. From these results, we concluded that NCL interacts with hT1R2-hT1R3 through a pH-independent affinity interface including the four residues and a pH-dependent activation interface including the histidine residues. Thus, the receptor activation is induced by local structural changes in the pH-dependent interface. PMID:26263392

  7. The Nociceptin Receptor as an Emerging Molecular Target for Cocaine Addiction.

    PubMed

    Lutfy, Kabirullah; Zaveri, Nurulain T

    2016-01-01

    Cocaine addiction is a global public health and socioeconomic issue that requires pharmacological and cognitive therapies. Currently there are no FDA-approved medications to treat cocaine addiction. However, in preclinical studies, interventions ranging from herbal medicine to deep-brain stimulation have shown promise for the therapy of cocaine addiction. Recent developments in molecular biology, pharmacology, and medicinal chemistry have enabled scientists to identify novel molecular targets along the pathways involved in drug addiction. In 1994, a receptor that showed a great deal of homology to the traditional opioid receptors was characterized. However, endogenous and exogenous opioids failed to bind to this receptor, which led scientists to name it opioid receptor-like receptor, now referred to as the nociceptin receptor. The endogenous ligand of NOPr was identified a year later and named orphanin FQ/nociceptin. Nociceptin and NOPr are widely distributed throughout the CNS and are involved in many physiological responses, such as food intake, nociceptive processing, neurotransmitter release, etc. Furthermore, exogenous nociceptin has been shown to regulate the activity of mesolimbic dopaminergic neurons, glutamate, and opioid systems, and the stress circuit. Importantly, exogenous nociceptin has been shown to reduce the rewarding and addictive actions of a number of drugs of abuse, such as psychostimulants, alcohol, and opioids. This paper reviews the existing literature on the role of endogenous nociceptin in the rewarding and addictive actions of cocaine. The effect of exogenous nociceptin on these processes is also reviewed. Furthermore, the effects of novel small-molecule NOPr ligands on these actions of cocaine are discussed. Overall, a review of the literature suggests that NOPr could be an emerging target for cocaine addiction pharmacotherapy. PMID:26810001

  8. Mediation of buprenorphine analgesia by a combination of traditional and truncated mu opioid receptor splice variants.

    PubMed

    Grinnell, Steven G; Ansonoff, Michael; Marrone, Gina F; Lu, Zhigang; Narayan, Ankita; Xu, Jin; Rossi, Grace; Majumdar, Susruta; Pan, Ying-Xian; Bassoni, Daniel L; Pintar, John; Pasternak, Gavril W

    2016-10-01

    Buprenorphine has long been classified as a mu analgesic, although its high affinity for other opioid receptor classes and the orphanin FQ/nociceptin ORL1 receptor may contribute to its other actions. The current studies confirmed a mu mechanism for buprenorphine analgesia, implicating several subsets of mu receptor splice variants. Buprenorphine analgesia depended on the expression of both exon 1-associated traditional full length 7 transmembrane (7TM) and exon 11-associated truncated 6 transmembrane (6TM) MOR-1 variants. In genetic models, disruption of delta, kappa1 or ORL1 receptors had no impact on buprenorphine analgesia, while loss of the traditional 7TM MOR-1 variants in an exon 1 knockout (KO) mouse markedly lowered buprenorphine analgesia. Loss of the truncated 6TM variants in an exon 11 KO mouse totally eliminated buprenorphine analgesia. In distinction to analgesia, the inhibition of gastrointestinal transit and stimulation of locomotor activity were independent of truncated 6TM variants. Restoring expression of a 6TM variant with a lentivirus rescued buprenorphine analgesia in an exon 11 KO mouse that still expressed the 7TM variants. Despite a potent and robust stimulation of (35) S-GTPγS binding in MOR-1 expressing CHO cells, buprenorphine failed to recruit β-arrestin-2 binding at doses as high as 10 µM. Buprenorphine was an antagonist in DOR-1 expressing cells and an inverse agonist in KOR-1 cells. Buprenorphine analgesia is complex and requires multiple mu receptor splice variant classes but other actions may involve alternative receptors. PMID:27223691

  9. Discovery and SAR of N-(1-((substituted piperidin-4-yl)methyl)-3-methoxypiperidin-4-yl)-2-methoxybenzamide derivatives: 5-Hydroxytryptamine receptor 4 agonist as a potent prokinetic agent.

    PubMed

    Park, Jung Sang; Im, Weonbin; Choi, Sunghak; Park, Sook Jin; Jung, Jun Min; Baek, Ki Seon; Son, Han Pyo; Sharma, Satyasheel; Kim, In Su; Jung, Young Hoon

    2016-02-15

    A series of novel benzamide derivatives, altering the 4-fluorophenylalkyl moiety in cisapride, were synthesized as 5-HT4 receptor agonists, and SAR of these analogs was examined on in vitro and in vivo prokinetic activities. These compounds were synthesized for high 5-HT4 receptor binding affinities and low hERG affinities. Several types of analogs were obtained and screened for 5-HT4 binding, hERG blocking, agonism, and gastric emptying assessment. Among the analogues, compound 23g showed promising results compared with the other analogs with respect to gastric emptying rates in rats. Therefore, we suggest that it may be a clinical candidate for the development of a potent prokinetic agent to treat GI disorders. PMID:26761776

  10. Inverted-U shaped effects of D1 dopamine receptor stimulation in the medial preoptic nucleus on sexually motivated song in male European starlings.

    PubMed

    Riters, Lauren V; Pawlisch, Benjamin A; Kelm-Nelson, Cynthia A; Stevenson, Sharon A

    2014-02-01

    Past studies in songbirds have highlighted a central role for the medial preoptic nucleus (mPOA) in context-appropriate vocal communication. During the breeding season, male songbirds sing primarily to attract females (sexually motivated song) and to repel competitors (agonistically motivated song). Past data have linked dopamine and D1 dopamine receptors in the mPOA to sexually motivated but not agonistically motivated song; however, direct effects of dopamine receptor manipulations in the mPOA on song have not been experimentally tested. Here, we tested the hypothesis that D1 receptor stimulation in the mPOA selectively influences sexually motivated male song, and the possibility that the effects of D1 receptor agonism differ at low and high doses. In a first study, breeding-condition male European starlings received infusions of saline or a single dose of the D1 receptor agonist SKF 38393 on separate test days into the mPOA or hypothalamic control areas. Stimulation of D1 receptors in the mPOA triggered sexually motivated but not agonistically motivated song. A second study showed inverted-U shaped dose-response effects of the agonist, such that low levels of sexually motivated song were observed at low and high levels of D1 receptor activation. A third study showed that the effects of the D1 receptor agonist were blocked by the D1 receptor antagonist SCH 23390. These findings suggest that an optimal level of D1 receptor stimulation in the mPOA is needed to facilitate sexually motivated vocal production. The results support a central, context-specific role for the mPOA in vocal communication, and more broadly demonstrate a complex, modulatory influence of D1 receptors in the mPOA on sexually motivated behavior. PMID:24528137