NASA Astrophysics Data System (ADS)
Deng, Chengbin; Wu, Changshan
2013-12-01
Urban impervious surface information is essential for urban and environmental applications at the regional/national scales. As a popular image processing technique, spectral mixture analysis (SMA) has rarely been applied to coarse-resolution imagery due to the difficulty of deriving endmember spectra using traditional endmember selection methods, particularly within heterogeneous urban environments. To address this problem, we derived endmember signatures through a least squares solution (LSS) technique with known abundances of sample pixels, and integrated these endmember signatures into SMA for mapping large-scale impervious surface fraction. In addition, with the same sample set, we carried out objective comparative analyses among SMA (i.e. fully constrained and unconstrained SMA) and machine learning (i.e. Cubist regression tree and Random Forests) techniques. Analysis of results suggests three major conclusions. First, with the extrapolated endmember spectra from stratified random training samples, the SMA approaches performed relatively well, as indicated by small MAE values. Second, Random Forests yields more reliable results than Cubist regression tree, and its accuracy is improved with increased sample sizes. Finally, comparative analyses suggest a tentative guide for selecting an optimal approach for large-scale fractional imperviousness estimation: unconstrained SMA might be a favorable option with a small number of samples, while Random Forests might be preferred if a large number of samples are available.
NASA Astrophysics Data System (ADS)
Barlow, J. M.; Palmer, P. I.; Bruhwiler, L. M.; Tans, P.
2015-12-01
Atmospheric variations of carbon dioxide (CO2) mole fraction reflect changes in atmospheric transport and regional patterns of surface emission and uptake. Here we present a study of changes in the observed high northern latitude CO2 seasonal cycle. We report new estimates for changes in the phase and amplitude of the seasonal variations, indicative of biospheric changes, by spectrally decomposing multi-decadal records of surface CO2 mole fraction using a wavelet transform to isolate the changes in the observed seasonal cycle. We also perform similar analysis of the first derivative of CO2 mole fraction, ΔtCO2, that is a crude proxy for changes in CO2 flux. Using numerical experiments, we quantify the aliasing error associated with independently identifying trends in phase and peak uptake and release to be 10-25 %, with the smallest biases in phase associated with the analysis of ΔtCO2. We report our analysis from Barrow, Alaska (BRW), during 1973-2013, which is representative of the broader Arctic region. We determine an amplitude trend of 0.09 ± 0.02 ppm yr-1, which is consistent with previous work. Using ΔtCO2 we determine estimates for the timing of the onset of net uptake and release of CO2 of -0.14 ± 0.14 and -0.25 ± 0.08 days yr-1 respectively and a corresponding net uptake period of -0.11 ± 0.16 days yr-1, which are significantly different to previously reported estimates. We find that the wavelet transform method has significant skill in characterizing changes in the peak uptake and release. We find a trend of 0.65 ± 0.34 % yr-1 (p < 0.01) and 0.42 ± 0.34 % yr-1 (p < 0.05) for rates of peak uptake and release respectively. Our analysis does not provide direct evidence about the balance between uptake and release of carbon when integrated throughout the year, but the increase in the seasonal amplitude of CO2 together with an invariant net carbon uptake period provides evidence that high northern latitude ecosystems are progressively taking up more
The Use of Fractionation Scales for Communication Audits.
ERIC Educational Resources Information Center
Barnett, George A.; And Others
A study investigated a new method of measuring organizational communication other than the audit methods currently in use. The method, which employs fractionation procedures, was used with workers from five different business groups within a large multinational corporation. The results showed that: (1) workers could use the scales reliably, (2)…
Modes of planetary-scale Fe isotope fractionation
NASA Astrophysics Data System (ADS)
Schoenberg, Ronny; Blanckenburg, Friedhelm von
2006-12-01
A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the
Scaling in sensitivity analysis
Link, W.A.; Doherty, P.F., Jr.
2002-01-01
Population matrix models allow sets of demographic parameters to be summarized by a single value 8, the finite rate of population increase. The consequences of change in individual demographic parameters are naturally measured by the corresponding changes in 8; sensitivity analyses compare demographic parameters on the basis of these changes. These comparisons are complicated by issues of scale. Elasticity analysis attempts to deal with issues of scale by comparing the effects of proportional changes in demographic parameters, but leads to inconsistencies in evaluating demographic rates. We discuss this and other problems of scaling in sensitivity analysis, and suggest a simple criterion for choosing appropriate scales. We apply our suggestions to data for the killer whale, Orcinus orca.
Regional Scale Characterization of Soil Carbon Fractions with Pedometrics
NASA Astrophysics Data System (ADS)
Keskin, H.; Grunwald, S.; Myers, D. B.; Harris, W. G.
2015-12-01
Regional scale characterization of the spatial distribution of soil carbon (C) fractions can facilitate a better understanding of the lability and recalcitrance of C across diverse land uses, soils, and climatic gradients. While C lability is associated with decomposition and transport processes in soils in, the stable portion of soil C persists in soil for decades to millennia. To better understand storage, flux and processes of soil C from across the soil-landscape continuum, we upscaled different fractions of soil C. Recalcitrant carbon (RC), hydrolysable carbon (HC) and total carbon (TC) were derived from the topsoil (0-20 cm) at 1,014 georeferenced sites in Florida (~150 000 km2). These were identified using a random-stratified sampling design with landuse-soil suborders strata. The Boruta method was employed for identifying all-relevant variables from the available 327 soil-environmental variables in order to develop the most parsimonious model for TC, RC and HC. We compared eight methods: Classification and Regression Tree (CaRT), Bagged Regression Tree (BaRT), Boosted Regression Tree (BoRT), Random Forest (RF), Support Vector Machine (SVM), Partial Least Square Regression (PLSR), Regression Kriging (RK), and Ordinary Kriging (OK). The accuracy of each method was assessed from 304 randomly chosen samples that were used for validation. Overall, 36, 20 and 25 variables stood out as all-relevant to TC, RC and HC, respectively. We predicted TC with a mean of 4.89 kg m-2 and standard error of 3.71 kg m-2. The prediction performance based on the ratio of prediction error to inter-quartile range in order of accuracy for TC was as follows: RF>BoRT>BaRT>SVM>PLSR>RK>CART>OK; however, BoRT outperformed RF for RC and HC, and the remaining order was identical for RC and HC. The best models, explained 71.6, 73.2, and 32.9 % of the total variation for TC, RC and HC, respectively. No residual spatial autocorrelation was left among the evaluated models. This indicates that
Mode analysis in optics through fractional transforms.
Alieva, T; Bastiaans, M J
1999-09-01
The relationship between the mode content and the fractional Fourier and fractional Hankel transforms of a function is established. It is shown that the Laguerre-Gauss spectrum of a rotationally symmetric wave front can be determined from the wave front's fractional Hankel transforms taken at the optical axis. PMID:18073985
Online Nanoflow Multidimensional Fractionation for High Efficiency Phosphopeptide Analysis*
Ficarro, Scott B.; Zhang, Yi; Carrasco-Alfonso, Marlene J.; Garg, Brijesh; Adelmant, Guillaume; Webber, James T.; Luckey, C. John; Marto, Jarrod A.
2011-01-01
Despite intense, continued interest in global analyses of signaling cascades through mass spectrometry-based studies, the large-scale, systematic production of phosphoproteomics data has been hampered in-part by inefficient fractionation strategies subsequent to phosphopeptide enrichment. Here we explore two novel multidimensional fractionation strategies for analysis of phosphopeptides. In the first technique we utilize aliphatic ion pairing agents to improve retention of phosphopeptides at high pH in the first dimension of a two-dimensional RP-RP. The second approach is based on the addition of strong anion exchange as the second dimension in a three-dimensional reversed phase (RP)-strong anion exchange (SAX)-RP configuration. Both techniques provide for automated, online data acquisition, with the 3-D platform providing the highest performance both in terms of separation peak capacity and the number of unique phosphopeptide sequences identified per μg of cell lysate consumed. Our integrated RP-SAX-RP platform provides several analytical figures of merit, including: (1) orthogonal separation mechanisms in each dimension; (2) high separation peak capacity (3) efficient retention of singly- and multiply-phosphorylated peptides; (4) compatibility with automated, online LC-MS analysis. We demonstrate the reproducibility of RP-SAX-RP and apply it to the analysis of phosphopeptides derived from multiple biological contexts, including an in vitro model of acute myeloid leukemia in addition to primary polyclonal CD8+ T-cells activated in vivo through bacterial infection and then purified from a single mouse. PMID:21788404
Pilot-scale fractionation of whey proteins with supercritical CO2
Technology Transfer Automated Retrieval System (TEKTRAN)
A new pilot-scale process is being developed and optimized for the separation of whey proteins into two enriched, highly functional fractions that are free of contaminants. The fractionation of whey protein isolate (WPI), which contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lac...
Representing Fractions with Standard Notation: A Developmental Analysis
ERIC Educational Resources Information Center
Saxe, Geoffrey B.; Taylor, Edd V.; McIntosh, Clifton; Gearhart, Maryl
2005-01-01
This study had two purposes: (a) to investigate the developmental relationship between students' uses of fractions notation and their understandings of part-whole relations; and (b) to produce an analysis of the role of fractions instruction in students' use of notation to represent parts of an area. Elementary students (n = 384) in 19 classes…
NASA Astrophysics Data System (ADS)
Druhan, Jennifer L.; Steefel, Carl I.; Williams, Kenneth H.; DePaolo, Donald J.
2013-10-01
It is the purpose of this study to demonstrate that the molecular scale reaction mechanisms describing calcite precipitation and calcium isotope fractionations under highly controlled laboratory conditions also reproduce field scale measurements of δ44Ca in groundwater systems. We present data collected from an aquifer during active carbonate mineral precipitation and develop a reactive transport model capturing the observed chemical and isotopic variations. Carbonate mineral precipitation and associated fluid δ44Ca data were measured in multiple clogged well bores during organic carbon amended biogenic reduction of a uranium contaminated aquifer in western Colorado, USA. Secondary mineral formation induced by carbonate alkalinity generated during the biostimulation process lead to substantial permeability reduction in multiple electron-donor injection wells at the field site. These conditions resulted in removal of aqueous calcium from a background concentration of 6 mM to <1 mM while δ44Ca enrichment ranged from 1‰ to greater than 2.5‰. The relationship between aqueous calcium removal and isotopic enrichment did not conform to Rayleigh model behavior. Explicit treatment of the individual isotopes of calcium within the CrunchFlow reactive transport code demonstrates that the system did not achieve isotopic reequilibration over the time scale of sample collection. Measured fluid δ44Ca values are accurately reproduced by a linear rate law when the Ca2+:CO32- activity ratio remains substantially greater than unity. Variation in the measured δ44Ca between wells is shown to originate from a difference in carbonate alkalinity generated in each well bore. The influence of fluid Ca2+:CO32- ratio on the precipitation rate and δ44Ca is modeled by coupling the CrunchFlow reactive transport code to an ion by ion growth model. This study presents the first coupled ion-by-ion and reactive transport model for isotopic enrichment and demonstrates that reproducing field-scale
Fractional dynamics of tracer transport in fractured media from local to regional scales
NASA Astrophysics Data System (ADS)
Zhang, Yong; Reeves, Donald M.; Pohlmann, Karl; Chapman, Jenny B.; Russell, Charles E.
2013-06-01
Tracer transport through fractured media exhibits concurrent direction-dependent super-diffusive spreading along high-permeability fractures and sub-diffusion caused by mass transfer between fractures and the rock matrix. The resultant complex dynamics challenge the applicability of conventional physical models based on Fick's law. This study proposes a multi-scaling tempered fractional-derivative (TFD) model to explore fractional dynamics for tracer transport in fractured media. Applications show that the TFD model can capture anomalous transport observed in small-scale single fractures, intermediate-scale fractured aquifers, and two-dimensional large-scale discrete fracture networks. Tracer transport in fractured media from local (0.255-meter long) to regional (400-meter long) scales therefore can be quantified by a general fractional-derivative model. Fractional dynamics in fractured media can be scale dependent, owning to 1) the finite length of fractures that constrains the large displacement of tracers, and 2) the increasing mass exchange capacity along the travel path that enhances sub-diffusion.
Contrast Analysis for Scale Differences.
ERIC Educational Resources Information Center
Olejnik, Stephen F.; And Others
Research on tests for scale equality have focused exclusively on an overall test statistic and have not examined procedures for identifying specific differences in multiple group designs. The present study compares four contrast analysis procedures for scale differences in the single factor four-group design: (1) Tukey HSD; (2) Kramer-Tukey; (3)…
Spiritual Competency Scale: Further Analysis
ERIC Educational Resources Information Center
Dailey, Stephanie F.; Robertson, Linda A.; Gill, Carman S.
2015-01-01
This article describes a follow-up analysis of the Spiritual Competency Scale, which initially validated ASERVIC's (Association for Spiritual, Ethical and Religious Values in Counseling) spiritual competencies. The study examined whether the factor structure of the Spiritual Competency Scale would be supported by participants (i.e., ASERVIC…
Network meta-analysis of survival data with fractional polynomials
2011-01-01
Background Pairwise meta-analysis, indirect treatment comparisons and network meta-analysis for aggregate level survival data are often based on the reported hazard ratio, which relies on the proportional hazards assumption. This assumption is implausible when hazard functions intersect, and can have a huge impact on decisions based on comparisons of expected survival, such as cost-effectiveness analysis. Methods As an alternative to network meta-analysis of survival data in which the treatment effect is represented by the constant hazard ratio, a multi-dimensional treatment effect approach is presented. With fractional polynomials the hazard functions of interventions compared in a randomized controlled trial are modeled, and the difference between the parameters of these fractional polynomials within a trial are synthesized (and indirectly compared) across studies. Results The proposed models are illustrated with an analysis of survival data in non-small-cell lung cancer. Fixed and random effects first and second order fractional polynomials were evaluated. Conclusion (Network) meta-analysis of survival data with models where the treatment effect is represented with several parameters using fractional polynomials can be more closely fitted to the available data than meta-analysis based on the constant hazard ratio. PMID:21548941
Surface diagnostics for scale analysis.
Dunn, S; Impey, S; Kimpton, C; Parsons, S A; Doyle, J; Jefferson, B
2004-01-01
Stainless steel, polymethylmethacrylate and polytetrafluoroethylene coupons were analysed for surface topographical and adhesion force characteristics using tapping mode atomic force microscopy and force-distance microscopy techniques. The two polymer materials were surface modified by polishing with silicon carbide papers of known grade. The struvite scaling rate was determined for each coupon and related to the data gained from the surface analysis. The scaling rate correlated well with adhesion force measurements indicating that lower energy materials scale at a lower rate. The techniques outlined in the paper provide a method for the rapid screening of materials in potential scaling applications. PMID:14982180
Theoretical analysis of the performance of a foam fractionation column
Tobin, S. T.; Weaire, D.; Hutzler, S.
2014-01-01
A model system for theory and experiment which is relevant to foam fractionation consists of a column of foam moving through an inverted U-tube between two pools of surfactant solution. The foam drainage equation is used for a detailed theoretical analysis of this process. In a previous paper, we focused on the case where the lengths of the two legs are large. In this work, we examine the approach to the limiting case (i.e. the effects of finite leg lengths) and how it affects the performance of the fractionation column. We also briefly discuss some alternative set-ups that are of interest in industry and experiment, with numerical and analytical results to support them. Our analysis is shown to be generally applicable to a range of fractionation columns. PMID:24808752
A global analysis of parenchyma tissue fractions in secondary xylem of seed plants.
Morris, Hugh; Plavcová, Lenka; Cvecko, Patrick; Fichtler, Esther; Gillingham, Mark A F; Martínez-Cabrera, Hugo I; McGlinn, Daniel J; Wheeler, Elisabeth; Zheng, Jingming; Ziemińska, Kasia; Jansen, Steven
2016-03-01
Parenchyma is an important tissue in secondary xylem of seed plants, with functions ranging from storage to defence and with effects on the physical and mechanical properties of wood. Currently, we lack a large-scale quantitative analysis of ray parenchyma (RP) and axial parenchyma (AP) tissue fractions. Here, we use data from the literature on AP and RP fractions to investigate the potential relationships of climate and growth form with total ray and axial parenchyma fractions (RAP). We found a 29-fold variation in RAP fraction, which was more strongly related to temperature than with precipitation. Stem succulents had the highest RAP values (mean ± SD: 70.2 ± 22.0%), followed by lianas (50.1 ± 16.3%), angiosperm trees and shrubs (26.3 ± 12.4%), and conifers (7.6 ± 2.6%). Differences in RAP fraction between temperate and tropical angiosperm trees (21.1 ± 7.9% vs 36.2 ± 13.4%, respectively) are due to differences in the AP fraction, which is typically three times higher in tropical than in temperate trees, but not in RP fraction. Our results illustrate that both temperature and growth form are important drivers of RAP fractions. These findings should help pave the way to better understand the various functions of RAP in plants. PMID:26551018
Non-Hermiticity and potential scaling in the method of continued fractions for scattering problems
Makowski, A.J.; Raczynski, A.; Staszewska, G.
1986-01-01
The recently formulated method of continued fractions for scattering problems is generalized (i) for the case of non-Hermitian potentials and Green functions and (ii) for the formulation through Volterra-type equations. A practically important possibility of potential scaling is also presented.
Scaling of velocity and mixture fraction fields in laminar counterflow configurations
NASA Astrophysics Data System (ADS)
Bisetti, Fabrizio; Scribano, Gianfranco
2015-11-01
Counterflow configurations are widely used to characterize premixed, nonpremixed, and partially premixed laminar flames. We performed a systematic analysis of the velocity and mixture fraction fields in the counterflow configuration and obtained scaling laws, which depend on two suitable nondimensional numbers: (i) the Reynolds number based on the bulk velocity U and half the separation distance between the nozzles L, and (ii) the ratio of the separation distance H = 2 L to the nozzle diameter D. Our study combines velocity measurements via Particle Image Velocimetry, detailed two-dimensional simulations including the nozzle geometry, and an exhaustive analysis of the data based on the nondimensional numbers. The flow field is shown to be moderately sensitive to the Reynolds number and strongly affected by the ratio H / D . By describing the self-similar behavior of the flow field in counterflow configurations comprehensively, our results provide a systematic explanation of existing burner designs as well as clear guidelines for the design of counterflows for pressurized nonpremixed flames. Finally, questions related to the limitations of one-dimensional models for counterflows are addressed conclusively.
Microfluidic digital isoelectric fractionation for rapid multidimensional glycoprotein analysis.
Mai, Junyu; Sommer, Gregory J; Hatch, Anson V
2012-04-17
Here we present an integrated microfluidic device for rapid and automated isolation and quantification of glycoprotein biomarkers directly from biological samples on a multidimensional analysis platform. In the first dimension, digital isoelectric fractionation (dIEF) uses discrete pH-specific membranes to separate proteins and their isoforms into precise bins in a highly flexible spatial arrangement on-chip. dIEF provides high sample preconcentration factors followed by immediate high-fidelity transfer of fractions for downstream analysis. We successfully fractionate isoforms of two potential glycoprotein cancer markers, fetuin and prostate-specific antigen (PSA), with 10 min run time, and results are compared qualitatively and quantitatively to conventional slab gel IEF. In the second dimension, functionalized monolithic columns are used to capture and detect targeted analytes from each fraction. We demonstrate rapid two-dimensional fractionation, immunocapture, and detection of C-reactive protein (CRP) spiked in human serum. This rapid, flexible, and automated approach is well-suited for glycoprotein biomarker research and verification studies and represents a practical avenue for glycoprotein isoform-based diagnostic testing. PMID:22409593
Analysis of Fractions Curriculum for Constructivist College Remedial Mathematics Education.
ERIC Educational Resources Information Center
Narode, Ronald B.
This document analyzes one chapter of a textbook for college remedial mathematics. This analysis is done by one of the textbook authors. The chapter under discussion deals with fractions. The text authors, writing from a constructivist perspective, attempted to write problems which not only developed specific conceptual and heuristic objectives…
Analysis of fractionation in corn-to-ethanol plants
NASA Astrophysics Data System (ADS)
Nelson, Camille
As the dry grind ethanol industry has grown, the research and technology surrounding ethanol production and co-product value has increased. Including use of back-end oil extraction and front-end fractionation. Front-end fractionation is pre-fermentation separation of the corn kernel into 3 fractions: endosperm, bran, and germ. The endosperm fraction enters the existing ethanol plant, and a high protein DDGS product remains after fermentation. High value oil is extracted out of the germ fraction. This leaves corn germ meal and bran as co-products from the other two streams. These 3 co-products have a very different composition than traditional corn DDGS. Installing this technology allows ethanol plants to increase profitability by tapping into more diverse markets, and ultimately could allow for an increase in profitability. An ethanol plant model was developed to evaluate both back-end oil extraction and front-end fractionation technology and predict the change in co-products based on technology installed. The model runs in Microsoft Excel and requires inputs of whole corn composition (proximate analysis), amino acid content, and weight to predict the co-product quantity and quality. User inputs include saccharification and fermentation efficiencies, plant capacity, and plant process specifications including front-end fractionation and backend oil extraction, if applicable. This model provides plants a way to assess and monitor variability in co-product composition due to the variation in whole corn composition. Additionally the co-products predicted in this model are entered into the US Pork Center of Excellence, National Swine Nutrition Guide feed formulation software. This allows the plant user and animal nutritionists to evaluate the value of new co-products in existing animal diets.
Performance analysis of fractional order extremum seeking control.
Malek, Hadi; Dadras, Sara; Chen, YangQuan
2016-07-01
Extremum-seeking scheme is a powerful adaptive technique to optimize steady-state system performance. In this paper, a novel extremum-seeking scheme for the optimization of nonlinear plants using fractional order calculus is proposed. The fractional order extremum-seeking algorithm only utilizes output measurements of the plant, however, it performs superior in many aspects such as convergence speed and robustness. A detailed stability analysis is given to not only guarantee a faster convergence of the system to an adjustable neighborhood of the optimum but also confirm a better robustness for proposed algorithm. Furthermore, simulation and experimental results demonstrate that the fractional order extremum-seeking scheme for nonlinear systems outperforms the traditional integer order one. PMID:27000632
Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation
Armstrong, Ryan T.; Wildenschild, Dorthe
2012-10-24
Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.
Multiple satellite estimates of urban fractions and climate effects at regional scale
NASA Astrophysics Data System (ADS)
Jia, G.; Xu, R.; He, Y.
2014-12-01
Regional climate is controlled by large scale forcing at lateral boundary and physical processes within the region. Landuse in East Asia has been changed substantially in the last three decades, featured with expansion of urban built-up at unprecedented scale and speed. The fast expansion of urban areas could contribute to local even regional climate change. However, current spatial datasets of urban fractions do not well represent extend and expansion of urban areas in the regions, and the best available satellite data and remote sensing techniques have not been well applied to serve regional modeling of urbanization impacts on near surface temperature and other climate variables. Better estimates of localized urban fractions and urban climate effects are badly needed. Here we use high and mid resolution satellite data to estimate urban fractions and to assess effects of urban heat islands at local and regional scales. With our fractional cover, data fusion, and differentiated threshold approaches, estimated urban extent was greater than previously reported in many global datasets. Many city clusters were merging into each other, with gradual blurring boundaries and disappearing of gaps among member cities. Cities and towns were more connected with roads and commercial corridors, while wildland and urban greens became more isolated as patches among built-up areas. Those new estimates are expected to effectively improve climate simulation at local and regional scales in East Asia. There were significant positive relations between urban fraction and urban heat island effects as demonstrated by VNIR and TIR data from multiple satellites. Stronger warming was detected at the meteorological stations that experienced greater urbanization, i.e., those with a higher urbanization rate. While the total urban area affects the absolute temperature values, the change of the urban area (urbanization rate) likely affects the temperature trend. Increases of approximately 10% in
Hepatic extraction fraction of hepatobiliary radiopharmaceuticals measured using spectral analysis.
Murase, K; Tsuda, T; Mochizuki, T; Ikezoe, J
1999-11-01
Measuring the hepatic extraction fraction (HEF) of a hepatobiliary radiopharmaceutical helps to differentiate hepatocyte from biliary tract diseases, and it is generally performed using deconvolution analysis. In this study, we measured HEF using spectral analysis. With spectral analysis, HEF was calculated from (the sum of the spectral data obtained by spectral analysis--the highest frequency component of the spectrum) divided by (the sum of the spectral data) x 100 (%). We applied this method to dynamic liver scintigraphic data obtained from six healthy volunteers and from 46 patients with various liver diseases, using 99Tcm-N-pyridoxyl-5-methyltryptophan (PMT). We also measured HEF using deconvolution analysis, in which the modified Fourier transform technique was employed. The HEF values obtained by spectral analysis correlated closely with those obtained by deconvolution analysis (r = 0.925), suggesting our method is valid. The HEF values obtained by spectral analysis decreased as the severity of liver disease progressed. The values were 100.0 +/- 0.0%, 94.7 +/- 13.6%, 76.2 +/- 27.4%, 45.7 +/- 15.6%, 82.7 +/- 24.2% and 95.2 +/- 11.8% (mean +/- S.D.) for the normal controls (n = 6), mild liver cirrhosis (n = 16), moderate liver cirrhosis (n = 11), severe liver cirrhosis (n = 5), acute hepatitis (n = 8) and chronic hepatitis groups (n = 6), respectively. The HEF was obtained more simply and rapidly by spectral analysis than by deconvolution analysis. The results suggest that our method using spectral analysis can be used as an alternative to the conventional procedure using deconvolution analysis for measuring HEF. PMID:10572914
Modeling subgrid scale mixture fraction variance in LES of evaporating spray
Pera, Cecile; Reveillon, Julien; Vervisch, Luc; Domingo, Pascale
2006-09-15
Simulations of a dilute spray evaporating in spatially decaying homogeneous turbulence are performed. An Eulerian description of the flow is adopted, while the behavior of the discrete liquid phase is captured using Lagrangian modeling. Time and length scales of the continuous carrier phase are fully simulated; and by varying the properties of the modeled spray, a database of spray carrier phase direct numerical simulation (CP-DNS) is obtained. The CP-DNS is then filtered on a coarse grid to conduct a priori tests of subgrid scale (SGS) closures. The objective is to provide methods for approximating the level of SGS mixture fraction variance in large eddy simulation (LES) of fuel spray turbulent combustion. Direct estimation of the variance from the scales resolved in LES is first discussed. Then, the solving of a balance equation to get the variance is addressed, with closures for the scalar dissipation rate and the correlation between vapor source and mixture fraction. From the results, a procedure to couple spray evaporation with SGS turbulent combustion modeling emerges. (author)
Viewable Gap Fraction in Forests at the Landscape and Stand Scale near Fraser, Colorado, USA
NASA Astrophysics Data System (ADS)
Melloh, R. A.; Woodcock, C. E.; Liu, J. C.; Hardy, J. P.; Koenig, G. G.; Davis, R. E.
2002-12-01
The 3-dimensional organization of canopy elements impacts the retrieval of snow and soil properties from remote sensing platforms, and influences the optical and infrared radiative environment within the forest. The number and size of gaps within and between tree crowns determines the type and amount of information that can be obtained remotely. One of the objectives of the NASA-Cold Land Process Experiment is to advance techniques for large-scale observation of hydrologic properties, including water storage and freeze-thaw state. Particular focus is placed on passive and active microwave sensors. The purpose of this paper is to: 1) describe gap fraction distributions and within-stand spatial variation of solar radiation in continuous and discontinuous tree stands in the Fraser Local Observation Site (LSOS), and 2) describe the information content that will be available in landscape scale viewable gap fraction maps (30-m resolution) for intensive study sites (ISA's) near Fraser, Colorado, USA. Hemispherical photographs were taken with a Nikkor 8mm/f2 lens at 20-m grid spacing in the Fraser-LSOS, an area of predominantly Lodgepole Pine (Pinus contorta), and were analyzed with Gap Light Analyzer software. Gap fraction probability distributions were determined for 10 degree zenith angle increments. Maximum mid-day radiation transmittance typically occurs at zenith angles between 51 and 61 degrees during mid to late February and 35 to 50 degrees for late March. The zenith angle ranges of maximum transmittance correspond to gap fraction probability distributions that peak at 0.4 in February, and 0.47 in March. The difference between transmittance into the north-edge and south-edge of clearings is more pronounced in February when mid-day sun angles are lower. Canopy openness at the site ranged from 22 to 60%. Direct transmittance ranged from 9 to 83%, and diffuse transmittance 24 to 81%. Viewable gap fraction is the proportion of the forest floor that can be viewed from
Scaling analysis of stock markets
NASA Astrophysics Data System (ADS)
Bu, Luping; Shang, Pengjian
2014-06-01
In this paper, we apply the detrended fluctuation analysis (DFA), local scaling detrended fluctuation analysis (LSDFA), and detrended cross-correlation analysis (DCCA) to investigate correlations of several stock markets. DFA method is for the detection of long-range correlations used in time series. LSDFA method is to show more local properties by using local scale exponents. DCCA method is a developed method to quantify the cross-correlation of two non-stationary time series. We report the results of auto-correlation and cross-correlation behaviors in three western countries and three Chinese stock markets in periods 2004-2006 (before the global financial crisis), 2007-2009 (during the global financial crisis), and 2010-2012 (after the global financial crisis) by using DFA, LSDFA, and DCCA method. The findings are that correlations of stocks are influenced by the economic systems of different countries and the financial crisis. The results indicate that there are stronger auto-correlations in Chinese stocks than western stocks in any period and stronger auto-correlations after the global financial crisis for every stock except Shen Cheng; The LSDFA shows more comprehensive and detailed features than traditional DFA method and the integration of China and the world in economy after the global financial crisis; When it turns to cross-correlations, it shows different properties for six stock markets, while for three Chinese stocks, it reaches the weakest cross-correlations during the global financial crisis.
Fractional-order elastic models of cartilage: A multi-scale approach
NASA Astrophysics Data System (ADS)
Magin, Richard L.; Royston, Thomas J.
2010-03-01
The objective of this research is to develop new quantitative methods to describe the elastic properties (e.g., shear modulus, viscosity) of biological tissues such as cartilage. Cartilage is a connective tissue that provides the lining for most of the joints in the body. Tissue histology of cartilage reveals a multi-scale architecture that spans a wide range from individual collagen and proteoglycan molecules to families of twisted macromolecular fibers and fibrils, and finally to a network of cells and extracellular matrix that form layers in the connective tissue. The principal cells in cartilage are chondrocytes that function at the microscopic scale by creating nano-scale networks of proteins whose biomechanical properties are ultimately expressed at the macroscopic scale in the tissue's viscoelasticity. The challenge for the bioengineer is to develop multi-scale modeling tools that predict the three-dimensional macro-scale mechanical performance of cartilage from micro-scale models. Magnetic resonance imaging (MRI) and MR elastography (MRE) provide a basis for developing such models based on the nondestructive biomechanical assessment of cartilage in vitro and in vivo. This approach, for example, uses MRI to visualize developing proto-cartilage structure, MRE to characterize the shear modulus of such structures, and fractional calculus to describe the dynamic behavior. Such models can be extended using hysteresis modeling to account for the non-linear nature of the tissue. These techniques extend the existing computational methods to predict stiffness and strength, to assess short versus long term load response, and to measure static versus dynamic response to mechanical loads over a wide range of frequencies (50-1500 Hz). In the future, such methods can perhaps be used to help identify early changes in regenerative connective tissue at the microscopic scale and to enable more effective diagnostic monitoring of the onset of disease.
NASA Astrophysics Data System (ADS)
Schuessler, J. A.; von Blanckenburg, F.
2012-12-01
The stable isotope fractionation of metals and metalloids during chemical weathering and alteration of rocks at low temperature is a topic receiving increasing scientific attention. For these systems, weathering of primary minerals leads to selective partitioning of isotopes between the secondary minerals formed from them, and the dissolved phase of soil or river water. While the isotopic signatures of these processes have been mapped-out at the catchment or the soil scale, the actual isotopic fractionation is occurring at the mineral scale. To identify the processes underlying such micro-scale fractionation, the development of micro-analytical tools allows to investigate mechanisms of isotope fractionation in-situ, in combination with textural information of weathering reactions. We have developed a second-generation UV femtosecond (fs) laser system at GFZ Potsdam. The advantage of UV-fs laser ablation is the reduction of laser-induced isotopic and elemental fractionation by avoiding 'thermal effects' during ablation, such that accurate isotope ratios can be measured by standard-sample-standard bracketing using laser ablation multicollector ICP-MS; where the matrix of the bracketing standard does not need to match that of the sample [1]. Our system consists of the latest generation femtosecond solid-state laser (Newport Spectra Physics Solstice), producing an ultra short pulse width of about 100 femtoseconds at a wavelength of 196 nm. The system is combined with a custom-build computer-controlled sample stage and allows fully automated isotope analyses through synchronised operation of the laser with the Neptune MC-ICP-MS. To assess precision and accuracy of our laser ablation method, we analysed various geological reference materials. We obtained δ30Si values of -0.31 ± 0.23 (2SD, n = 13) for basalt glass BHVO-2G, and -1.25 ± 0.21 (2SD, n = 27) for pure Si IRMM17 when bracketed against NBS-28 quartz. δ56Fe and δ26Mg values obtained from non-matrix matched
Pilot-scale resin adsorption as a means to recover and fractionate apple polyphenols.
Kammerer, Dietmar R; Carle, Reinhold; Stanley, Roger A; Saleh, Zaid S
2010-06-01
The purification and fractionation of phenolic compounds from crude plant extracts using a food-grade acrylic adsorbent were studied at pilot-plant scale. A diluted apple juice concentrate served as a model phenolic solution for column adsorption and desorption trials. Phenolic concentrations were evaluated photometrically using the Folin-Ciocalteu assay and by HPLC-DAD. Recovery rates were significantly affected by increasing phenolic concentrations of the feed solutions applied to the column. In contrast, the flow rate during column loading hardly influenced adsorption efficiency, whereas the temperature and pH value were shown to be crucial parameters determining both total phenolic recovery rates and the adsorption behavior of individual polyphenols. As expected, the eluent composition had the greatest impact on the desorption characteristics of both total and individual phenolic compounds. HPLC analyses revealed significantly different elution profiles of individual polyphenols depending on lipophilicity. This technique allows fractionation of crude plant phenolic extracts, thus providing the opportunity to design the functional properties of the resulting phenolic fractions selectively, and the present study delivers valuable information with regard to the adjustment of individual process parameters. PMID:20476784
An Extensive Analysis of Preservice Elementary Teachers' Knowledge of Fractions
ERIC Educational Resources Information Center
Newton, Kristie Jones
2008-01-01
The study of preservice elementary teachers' knowledge of fractions is important because fractions are notoriously difficult to learn and teach. Unfortunately, studies of preservice teachers' fraction knowledge are limited and have focused primarily on division. The present study included all four operations to provide a more comprehensive…
NASA Astrophysics Data System (ADS)
Benson, D. A.; Zhang, Y.
2006-12-01
Conservative solute transport through natural media is typically "anomalous" or non-Fickian. The anomalous transport may be characterized by faster than linear growth of the centered second moment, or non-Gaussian leading or trailing edges of a plume emanating from a point source. These characteristics develop because of non-local dependence on either past (time) or far upstream (space) concentrations. Non-local equations developed to describe anomalous dispersion usually focus on constant transport parameters and/or independence of the transport on space dimension. These simplifications have been useful for fitting simple transport processes, such as laboratory column tests or 1-D projections of field data. However, they may be insufficient for real field settings, where direction-dependent depositional processes and nonstationary heterogeneity can occur. We develop a generalized, multi-dimensional, spatiotemporal fractional advection- dispersion equation (fADE) with variable parameters to characterize regional-scale anomalous dispersion processes including trapping in immobile zones and/or super-Fickian rapid transport. A Lagrangian numerical model of the space-time fractional transport equation is developed in which solute particles can disperse in both space and time, depending on the medium heterogeneity properties, such as the connectivity and statistical distributions of high versus low-permeability deposits. In the generalized fADE, the range of the order of fractional time derivative is (0 2], representing a wide range of possible trapping behavior. The extension of the order to the range (1 2] is novel to transport theory. We apply the numerical model in 1-D and 2-D to the MADE site tritium plumes, and results indicate that this method can capture the main behaviors of realistic plumes, including local variations of spreading, direction-dependent scaling rates, and arbitrary rapid transport along preferential flow paths. Since the governing equation
Mokken Scale Analysis Using Hierarchical Clustering Procedures
ERIC Educational Resources Information Center
van Abswoude, Alexandra A. H.; Vermunt, Jeroen K.; Hemker, Bas T.; van der Ark, L. Andries
2004-01-01
Mokken scale analysis (MSA) can be used to assess and build unidimensional scales from an item pool that is sensitive to multiple dimensions. These scales satisfy a set of scaling conditions, one of which follows from the model of monotone homogeneity. An important drawback of the MSA program is that the sequential item selection and scale…
Dick Wingerson
2004-12-15
PureVision Technology, Inc. (PureVision) was the recipient of a $200,000 Invention and Innovations (I&I) grant from the U. S. Department of Energy (DOE) to complete prepilot tasks in order to scale up its patented biomass fractionation pretreatment apparatus from batch to continuous processing. The initial goal of the I&I program, as detailed in PureVision's original application to the DOE, was to develop the design criteria to build a small continuous biomass fractionation pilot apparatus utilizing a retrofitted extruder with a novel screw configuration to create multiple reaction zones, separated by dynamic plugs within the reaction chamber that support the continuous counter-flow of liquids and solids at elevated temperature and pressure. Although the ultimate results of this 27-month I&I program exceeded the initial expectations, some of the originally planned tasks were not completed due to a modification of direction in the program. PureVision achieved its primary milestone by establishing the design criteria for a continuous process development unit (PDU). In addition, PureVision was able to complete the procurement, assembly, and initiate shake down of the PDU at Western Research Institute (WRI) in Laramie, WY during August 2003 to February 2004. During the month of March 2004, PureVision and WRI performed initial testing of the continuous PDU at WRI.
Yang, Pengyi; Humphrey, Sean J; Fazakerley, Daniel J; Prior, Matthew J; Yang, Guang; James, David E; Yang, Jean Yee-Hwa
2012-05-01
A key step in the analysis of mass spectrometry (MS)-based proteomics data is the inference of proteins from identified peptide sequences. Here we describe Re-Fraction, a novel machine learning algorithm that enhances deterministic protein identification. Re-Fraction utilizes several protein physical properties to assign proteins to expected protein fractions that comprise large-scale MS-based proteomics data. This information is then used to appropriately assign peptides to specific proteins. This approach is sensitive, highly specific, and computationally efficient. We provide algorithms and source code for the current version of Re-Fraction, which accepts output tables from the MaxQuant environment. Nevertheless, the principles behind Re-Fraction can be applied to other protein identification pipelines where data are generated from samples fractionated at the protein level. We demonstrate the utility of this approach through reanalysis of data from a previously published study and generate lists of proteins deterministically identified by Re-Fraction that were previously only identified as members of a protein group. We find that this approach is particularly useful in resolving protein groups composed of splice variants and homologues, which are frequently expressed in a cell- or tissue-specific manner and may have important biological consequences. PMID:22428558
Mapping canopy gap fraction and leaf area index at continent-scale from satellite lidar
NASA Astrophysics Data System (ADS)
Mahoney, C.; Hopkinson, C.; Held, A. A.
2015-12-01
Information on canopy cover is essential for understanding spatial and temporal variability in vegetation biomass, local meteorological processes and hydrological transfers within vegetated environments. Gap fraction (GF), an index of canopy cover, is often derived over large areas (100's km2) via airborne laser scanning (ALS), estimates of which are reasonably well understood. However, obtaining country-wide estimates is challenging due to the lack of spatially distributed point cloud data. The Geoscience Laser Altimeter System (GLAS) removes spatial limitations, however, its large footprint nature and continuous waveform data measurements make derivations of GF challenging. ALS data from 3 Australian sites are used as a basis to scale-up GF estimates to GLAS footprint data by the use of a physically-based Weibull function. Spaceborne estimates of GF are employed in conjunction with supplementary predictor variables in the predictive Random Forest algorithm to yield country-wide estimates at a 250 m spatial resolution; country-wide estimates are accompanied with uncertainties at the pixel level. Preliminary estimates of effective Leaf Area Index (eLAI) are also presented by converting GF via the Beer-Lambert law, where an extinction coefficient of 0.5 is employed; deemed acceptable at such spatial scales. The need for such wide-scale quantification of GF and eLAI are key in the assessment and modification of current forest management strategies across Australia. Such work also assists Australia's Terrestrial Ecosystem Research Network (TERN), a key asset to policy makers with regards to the management of the national ecosystem, in fulfilling their government issued mandates.
Lie group analysis method for two classes of fractional partial differential equations
NASA Astrophysics Data System (ADS)
Chen, Cheng; Jiang, Yao-Lin
2015-09-01
In this paper we deal with two classes of fractional partial differential equation: n order linear fractional partial differential equation and nonlinear fractional reaction diffusion convection equation, by using the Lie group analysis method. The infinitesimal generators general formula of n order linear fractional partial differential equation is obtained. For nonlinear fractional reaction diffusion convection equation, the properties of their infinitesimal generators are considered. The four special cases are exhaustively investigated respectively. At the same time some examples of the corresponding case are also given. So it is very convenient to solve the infinitesimal generator of some fractional partial differential equation.
HERTING DL
2008-09-16
The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.
Lie group analysis and similarity solution for fractional Blasius flow
NASA Astrophysics Data System (ADS)
Pan, Mingyang; Zheng, Liancun; Liu, Fawang; Zhang, Xinxin
2016-08-01
This paper presents an investigation for boundary layer flow of viscoelastic fluids past a flat plate. Fractional-order Blasius equation with spatial fractional Riemann-Liouville derivative is derived firstly by using Lie group transformation. The solution is obtained numerically by the generalized shooting method, employing the shifted Grünwald formula and classical fourth order Runge-Kutta method as the iterative scheme. The effects of the order of fractional derivative and the generalized Reynolds number on the velocity profiles are analyzed and discussed. Numerical results show that the smaller the value of the fractional order derivative leads to the faster velocity of viscoelastic fluids near the plate but not to hold near the outer flow. As the Reynolds number increases, the fluid is moving faster in the whole boundary layer consistently.
Usefulness of Skin Explants for Histologic Analysis after Fractional Photothermolysis
Park, Gyeong-Hun; Bang, Seunghyun; Won, Kwang Hee; Won, Chong Hyun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan
2015-01-01
Background Fractional laser resurfacing treatment has been extensively investigated and is widely used. However, the mechanism underlying its effects is poorly understood because of the ethical and cosmetic problems of obtaining skin biopsies required to study the changes after laser treatment. Objective To evaluate the usefulness of human skin explants for the investigation of fractional photothermolysis. Methods Full-thickness discarded skin was treated in 4 ways: no treatment (control), fractional carbon dioxide laser, fractional Er:YAG laser, and fractional 1,550-nm erbium-doped fiber laser. Both treated and non-treated skin samples were cultured ex vivo at the air-medium interface for 7 days. Frozen tissue was sectioned and stained with hematoxylin & eosin for histologic examination and nitro blue tetrazolium chloride for viability testing. Results Skin explants cultured for up to 3 days exhibited histologic changes similar to those observed in in vivo studies, including microscopic treatment zones surrounded by a thermal coagulation zone, re-epithelialization, and formation of microscopic epidermal necrotic debris. However, the explant structure lost its original form within 7 days of culture. The viability of skin explants was maintained for 3 days of culture but was also lost within 7 days. Conclusion The skin explant model may be a useful tool for investigating the immediate or early changes following fractional photothermolysis, but further improvements are required to evaluate the long-term and dermal changes. PMID:26082585
NASA Astrophysics Data System (ADS)
Crow, S. E.
2011-12-01
stock in the top 0-15 cm of mineral soil by 26%; however, sequential density separation into 7 fractions revealed 50-69% increases in C within low density fractions with MRT of less than 5 yr but over 300% losses of soil C within dense fraction with MRT of over 1275 yr. In these Andisols, the sequential density fractionation method was highly sensitive to land use change and the range of densities are hypothesized to be associated with different mechanisms for soil C stabilization acting over different time scales, which was confirmed by the radiocarbon-based MRT estimates. Although soil fractionation methods are powerful, other results from similar Andisols suggest that over geologic time scales MRT estimates for bulk soil profiles can be more informative than soil fractions. Careful consideration of the scientific question, study system, and scale is important when choosing a method for fractionating soil. Radiocarbon measurements can provide confirmation that the actual nature of the recovered fractions matches the theoretical one.
Uncertainty analysis of fission fraction for reactor antineutrino experiments
NASA Astrophysics Data System (ADS)
Ma, X. B.; Lu, F.; Wang, L. Z.; Chen, Y. X.; Zhong, W. L.; An, F. P.
2016-06-01
Reactor simulation is an important source of uncertainties for a reactor neutrino experiment. Therefore, how to evaluate the antineutrino flux uncertainty results from reactor simulation is an important question. In this study, a method of the antineutrino flux uncertainty result from reactor simulation was proposed by considering the correlation coefficient. In order to use this method in the Daya Bay antineutrino experiment, the open source code DRAGON was improved and used for obtaining the fission fraction and correlation coefficient. The average fission fraction between DRAGON and SCIENCE code was compared and the difference was less than 5% for all the four isotopes. The uncertainty of fission fraction was evaluated by comparing simulation atomic density of four main isotopes with Takahama-3 experiment measurement. After that, the uncertainty of the antineutrino flux results from reactor simulation was evaluated as 0.6% per core for Daya Bay antineutrino experiment.
Popovic, Olga; Hjorth, Maibritt; Jensen, Lars Stoumann
2012-09-01
Pig slurry separation is a slurry treatment technique that can reduce excess loads of P, Cu and Zn to the arable land. This study investigated the effects of different commercial and laboratory separation treatments for pig slurry on P, Cu and Zn distribution into solid and liquid fractions. Solid and liquid separation fractions were collected from two commercial separators installed on the farm. Five different separation treatments were performed (polymer flocculation and drainage; coagulation with iron sulphate addition and polymer flocculation and drainage; ozonation and centrifugation; centrifugation only; and natural sedimentation) on sow and suckling piglet raw slurry. Particle size fractionation was performed on raw slurry and all separation fractions by sequential wet sieving and P, Cu and Zn concentrations were then measured in the particle size classes. Dry matter and total P, Cu and Zn were separated with higher efficiency when chemical pretreatments with flocculants and coagulants were introduced before mechanical separation at both commercial and laboratory scale. When solid fractions are utilized as crop fertilizer (primarily as P fertilizer), the loads of Cu and Zn to the soils are not markedly different than the loads applied with raw slurry. When liquid fractions are used as crop fertilizer (primarily as N fertilizer), the loads of Cu and Zn are markedly lower than those supplied with raw slurry. The loads of Cu and Zn introduced to the soil were lowest on application of the liquid fraction produced by optimized separation treatments that included flocculation and coagulation. PMID:23240207
Contribution of protein fractionation to depth of analysis of the serum and plasma proteomes.
Faca, Vitor; Pitteri, Sharon J; Newcomb, Lisa; Glukhova, Veronika; Phanstiel, Doug; Krasnoselsky, Alexei; Zhang, Qing; Struthers, Jason; Wang, Hong; Eng, Jimmy; Fitzgibbon, Matt; McIntosh, Martin; Hanash, Samir
2007-09-01
In-depth analysis of the serum and plasma proteomes by mass spectrometry is challenged by the vast dynamic range of protein abundance and substantial complexity. There is merit in reducing complexity through fractionation to facilitate mass spectrometry analysis of low-abundance proteins. However, fractionation reduces throughput and has the potential of diluting individual proteins or inducing their loss. Here, we have investigated the contribution of extensive fractionation of intact proteins to depth of analysis. Pooled serum depleted of abundant proteins was fractionated by an orthogonal two-dimensional system consisting of anion-exchange and reversed-phase chromatography. The resulting protein fractions were aliquotted; one aliquot was analyzed by shotgun LC-MS/MS, and another was further resolved into protein bands in a third dimension using SDS-PAGE. Individual gel bands were excised and subjected to in situ digestion and mass spectrometry. We demonstrate that increased fractionation results in increased depth of analysis based on total number of proteins identified in serum and based on representation in individual fractions of specific proteins identified in gel bands following a third-dimension SDS gel analysis. An intact protein analysis system (IPAS) based on a two-dimensional plasma fractionation schema was implemented that resulted in identification of 1662 proteins with high confidence with representation of protein isoforms that differed in their chromatographic mobility. Further increase in depth of analysis was accomplished by repeat analysis of aliquots from the same set of two-dimensional fractions resulting in overall identification of 2254 proteins. We conclude that substantial depth of analysis of proteins from milliliter quantities of serum or plasma and detection of isoforms are achieved with depletion of abundant proteins followed by two-dimensional protein fractionation and MS analysis of individual fractions. PMID:17696519
Flutter analysis of a flag of fractional viscoelastic material
NASA Astrophysics Data System (ADS)
Chen, Ming; Jia, Lai-Bing; Chen, Xiao-Peng; Yin, Xie-Zhen
2014-12-01
We develop a two-dimensional model to study the effects of the material viscoelasticity on the dynamics of a flag in flow. Two periodic states of an elastic flag are firstly identified with different dimensionless bending stiffness: a lower frequency state and a higher frequency state. The Scott-Blair model and the fractional Kelvin-Voigt model are further used to represent the viscoelasticity of the flag material. When the Scott-Blair model is used, with the increase of the fractional derivative order α, the flag flapping frequency of the higher frequency state decreases abruptly, and that of the lower frequency state also shows a downward trend. When the system parameters are in a certain range, an interesting phenomenon is observed, where the time needed to achieve the periodic steady state initially increases and then decreases with increasing α. The phenomenon implies that the flag has a higher energy harvesting speed when α approaches 1. When the fractional Kelvin-Voigt model is used, the increasing α also causes the transition from the higher frequency state to the lower frequency state, and quasi-periodic states are observed during the transition. The fractional Kelvin-Voigt type viscoelasticity produces complex effects on the lower frequency state.
The ALHAMBRA survey: Accurate photometric merger fractions from PDF analysis
NASA Astrophysics Data System (ADS)
López-Sanjuan, C.; Cenarro, A. J..; Varela, J.; Viironen, K.; ALHAMBRA Team
2015-05-01
The estimation of the merger fraction in photometric surveys is limited by the large uncertainty in the photometric redshift compared with the velocity difference in kinematical close pairs (less than 500 km s^{-1}). Several efforts have conducted to deal with this limitation and we present the latest improvements. Our new method (i) provides a robust estimation of the merger fraction by using full probability distribution functions (PDFs) instead of Gaussian distributions, as in previous work; (ii) takes into account the dependence of the luminosity on redshift in both the selection of the samples and the definition of major/minor mergers; and (iii) deals with partial PDFs to define ``red" (E/S0 templates) and ``blue" (spiral/starburst templates) samples without apply any colour selection. We highlight our new method with the estimation of the merger fraction at z < 1 in the ALHAMBRA photometric survey. We find that our merger fractions and rates nicely agree with those from previous spectroscopic work. This new method will be capital for current and future large photometric surveys such as DES, SHARDS, J-PAS, or LSST.
Stability analysis of impulsive functional systems of fractional order
NASA Astrophysics Data System (ADS)
Stamova, Ivanka; Stamov, Gani
2014-03-01
In this paper, a class of impulsive fractional functional differential systems is investigated. Sufficient conditions for stability of the zero solution are proved, extending the corresponding theory of impulsive functional differential equations. The investigations are carried out by using the comparison principle, coupled with the Lyapunov function method. We apply our results to an impulsive single species model of Lotka-Volterra type.
Scaling analysis of affinity propagation.
Furtlehner, Cyril; Sebag, Michèle; Zhang, Xiangliang
2010-06-01
We analyze and exploit some scaling properties of the affinity propagation (AP) clustering algorithm proposed by Frey and Dueck [Science 315, 972 (2007)]. Following a divide and conquer strategy we setup an exact renormalization-based approach to address the question of clustering consistency, in particular, how many cluster are present in a given data set. We first observe that the divide and conquer strategy, used on a large data set hierarchically reduces the complexity O(N2) to O(N((h+2)/(h+1))) , for a data set of size N and a depth h of the hierarchical strategy. For a data set embedded in a d -dimensional space, we show that this is obtained without notably damaging the precision except in dimension d=2 . In fact, for d larger than 2 the relative loss in precision scales such as N((2-d)/(h+1)d). Finally, under some conditions we observe that there is a value s* of the penalty coefficient, a free parameter used to fix the number of clusters, which separates a fragmentation phase (for ss*) of the underlying hidden cluster structure. At this precise point holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate its position, as a result of an exact decimation procedure. From this observation, a strategy based on AP can be defined to find out how many clusters are present in a given data set. PMID:20866473
Combined analysis of charm-quark fragmentation-fraction measurements
NASA Astrophysics Data System (ADS)
Lisovyi, Mykhailo; Verbytskyi, Andrii; Zenaiev, Oleksandr
2016-07-01
A summary of measurements of the fragmentation of charm quarks into a specific hadron is given. Measurements performed in photoproduction and deep inelastic scattering in e± p, pp and e+e‒ collisions are compared, using up-to-date branching ratios. Within uncertainties, all measurements agree, supporting the hypothesis that fragmentation is independent of the specific production process. Averages of the fragmentation fractions over all measurements are presented. The average has significantly reduced uncertainties compared to individual measurements.
NASA Astrophysics Data System (ADS)
Alvarez-Zaldívar, Pablo; Imfeld, Gwenaël; Maier, Uli; Centler, Florian; Thullner, Martin
2013-04-01
In recent years, the use of (constructed) wetlands has gained significant attention for the in situ remediation of groundwater contaminated with (chlorinated) organic hydrocarbons. Although many sophisticated experimental methods exist for the assessment of contaminant removal in such wetlands the understanding how changes in wetland hydrochemistry affect the removal processes is still limited. This knowledge gap might be reduced by the use of biogeochemical reactive transport models. This study presents the reactive transport simulation of a small-scale constructed wetland treated with groundwater containing cis-1,2-dichloroethene (cDCE). Simulated processes consider different cDCE biodegradation pathways and the associated carbon isotope fractionation, a set of further (bio)geochemical processes as well as the activity of the plant roots. Spatio-temporal hydrochemical and isotope data from a long-term constructed wetland experiment [1] are used to constrain the model. Simulation results for the initial oxic phase of the wetland experiment indicate carbon isotope enrichment factors typical for cometabolic DCE oxidation, which suggests that aerobic treatment of cDCE is not an optimal remediation strategy. For the later anoxic phase of the experiment model derived enrichment factors indicate reductive dechlorination pathways. This degradation is promoted at all wetland depths by a sufficient availability of electron donor and carbon sources from root exudates, which makes the anoxic treatment of groundwater in such wetlands an effective remediation strategy. In combination with the previous experimental data results from this study suggest that constructed wetlands are viable remediation means for the treatment of cDCE contaminated groundwater. Reactive transport models can improve the understanding of the factors controlling chlorinated ethenes removal, and the used model approach would also allow for an optimization of the wetland operation needed for a complete
Analysis of football player's motion in view of fractional calculus
NASA Astrophysics Data System (ADS)
Couceiro, Micael; Clemente, Filipe; Martins, Fernando
2013-06-01
Accurately retrieving the position of football players over time may lay the foundations for a whole series of possible new performance metrics for coaches and assistants. Despite the recent developments of automatic tracking systems, the misclassification problem (i.e., misleading a given player by another) still exists and requires human operators as final evaluators. This paper proposes an adaptive fractional calculus (FC) approach to improve the accuracy of tracking methods by estimating the position of players based on their trajectory so far. One half-time of an official football match was used to evaluate the accuracy of the proposed approach under different sampling periods of 250, 500 and 1000 ms. Moreover, the performance of the FC approach was compared with position-based and velocity-based methods. The experimental evaluation shows that the FC method presents a high classification accuracy for small sampling periods. Such results suggest that fractional dynamics may fit the trajectory of football players, thus being useful to increase the autonomy of tracking systems.
Analysis of football player's motion in view of fractional calculus
NASA Astrophysics Data System (ADS)
Couceiro, Micael S.; Clemente, Filipe M.; Martins, Fernando M. L.
2013-06-01
Accurately retrieving the position of football players over time may lay the foundations for a whole series of possible new performance metrics for coaches and assistants. Despite the recent developments of automatic tracking systems, the misclassification problem ( i.e., misleading a given player by another) still exists and requires human operators as final evaluators. This paper proposes an adaptive fractional calculus (FC) approach to improve the accuracy of tracking methods by estimating the position of players based on their trajectory so far. One half-time of an official football match was used to evaluate the accuracy of the proposed approach under different sampling periods of 250, 500 and 1000 ms. Moreover, the performance of the FC approach was compared with position-based and velocity-based methods. The experimental evaluation shows that the FC method presents a high classification accuracy for small sampling periods. Such results suggest that fractional dynamics may fit the trajectory of football players, thus being useful to increase the autonomy of tracking systems.
Singhakant, C; Koottatep, T; Satayavivad, J
2009-01-01
Arsenic (As) removal in subsurface-flow constructed wetlands (CW) planting with vetiver grasses was experimented by comparing between two different configurations; (i) deep-bed units (dpCW) with length to depth (L:D) ratio=2 and (ii) shallow-bed units (shCW) with L:D ratio=8; operating at hydraulic retention time (HRT) of 6, 9, and 12 days. The tracer study of CW units revealed that no effect of L:D ratio on dispersion number could be determined, but affecting to the effective volume ratio. Based on the data obtained from the pilot-scale experiments of CW units for 117 days, it is apparent that the dpCW could achieve relatively high As removals (52.9%, 59.2%, and 72.1% at HRT of 6, 9, and 12 days, respectively). Analysis of As mass balance showed that only 0.2-0.4% of As input was uptaken by vetiver grasses whereas the major portion was retained in the CW media (38.9-77.6%). Forms of the retained As was determined by sequential fractionation which could indicate As complexation with iron and manganese on the media surface of 31-38% and As trapping into the media of 42-52% of the total. No obvious difference of As fractions in bed of between dpCW and shCW units was observable. PMID:19809139
Scaling analysis for the investigation of slip mechanisms in nanofluids
NASA Astrophysics Data System (ADS)
Savithiri, S.; Pattamatta, Arvind; Das, Sarit K.
2011-07-01
The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles. The magnitudes of slip mechanisms are found to be higher for particles of size between 10 and 80 nm. The Brownian force is found to dominate in smaller particles below 10 nm and also at smaller volume fraction. However, the drag force is found to dominate in smaller particles below 10 nm and at higher volume fraction. The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration. In terms of time scales, the Brownian and gravity forces act considerably over a longer duration than the other forces. For copper-water-based nanofluid, the effective contribution of slip mechanisms leads to a heat transfer augmentation which is approximately 36% over that of the base fluid. The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it.
Instantaneous signal attenuation method for analysis of PFG fractional diffusions
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2016-08-01
An instantaneous signal attenuation (ISA) method for analyzing pulsed field gradient (PFG) fractional diffusion (FD) has been developed, which is modified from the propagator approach developed in 2001 by Lin et al. for analyzing PFG normal diffusion. Both, the current ISA method and the propagator method have the same fundamental basis that the total signal attenuation (SA) is the accumulation of all the ISA, and the ISA is the average SA of the whole diffusion system at each moment. However, the manner of calculating ISA is different. Unlike the use of the instantaneous propagator in the propagator method, the current method directly calculates ISA as A(K(t‧), t‧ + dt‧)/A(K(t‧), t‧), where A(K(t‧), t‧ + dt‧) and A(K(t‧), t‧) are the SA. This modification makes the current method applicable to PFG FD as the instantaneous propagator may not be obtainable in FD. The ISA method was applied to study PFG SA including the effect of finite gradient pulse widths (FGPW) for free FD, restricted FD and the FD affected by a non-homogeneous gradient field. The SA expressions were successfully obtained for all three types of free FDs while other current methods still have difficulty in obtaining all of them. The results from this method agree with reported results such as that obtained by the effective phase shift diffusion equation (EPSDE) method. The M-Wright phase distribution approximation was also used to derive an SA expression for time FD as a comparison, which agrees with ISA method. Additionally, the continuous-time random walk (CTRW) simulation was performed to simulate the SA of PFG FD, and the simulation results agree with the analytical results. Particularly, the CTRW simulation results give good support to the analytical results including FGPW effect for free FD and restricted time FD based on a fractional derivative model where there have been no corresponding theoretical reports to date. The theoretical SA expressions including FGPW obtained
Instantaneous signal attenuation method for analysis of PFG fractional diffusions.
Lin, Guoxing
2016-08-01
An instantaneous signal attenuation (ISA) method for analyzing pulsed field gradient (PFG) fractional diffusion (FD) has been developed, which is modified from the propagator approach developed in 2001 by Lin et al. for analyzing PFG normal diffusion. Both, the current ISA method and the propagator method have the same fundamental basis that the total signal attenuation (SA) is the accumulation of all the ISA, and the ISA is the average SA of the whole diffusion system at each moment. However, the manner of calculating ISA is different. Unlike the use of the instantaneous propagator in the propagator method, the current method directly calculates ISA as A(K(t'),t'+dt')/A(K(t'),t'), where A(K(t'),t'+dt') and A(K(t'),t') are the SA. This modification makes the current method applicable to PFG FD as the instantaneous propagator may not be obtainable in FD. The ISA method was applied to study PFG SA including the effect of finite gradient pulse widths (FGPW) for free FD, restricted FD and the FD affected by a non-homogeneous gradient field. The SA expressions were successfully obtained for all three types of free FDs while other current methods still have difficulty in obtaining all of them. The results from this method agree with reported results such as that obtained by the effective phase shift diffusion equation (EPSDE) method. The M-Wright phase distribution approximation was also used to derive an SA expression for time FD as a comparison, which agrees with ISA method. Additionally, the continuous-time random walk (CTRW) simulation was performed to simulate the SA of PFG FD, and the simulation results agree with the analytical results. Particularly, the CTRW simulation results give good support to the analytical results including FGPW effect for free FD and restricted time FD based on a fractional derivative model where there have been no corresponding theoretical reports to date. The theoretical SA expressions including FGPW obtained here such as [Formula: see
Incorporating scale into digital terrain analysis
NASA Astrophysics Data System (ADS)
Dragut, L. D.; Eisank, C.; Strasser, T.
2009-04-01
Digital Elevation Models (DEMs) and their derived terrain attributes are commonly used in soil-landscape modeling. Process-based terrain attributes meaningful to the soil properties of interest are sought to be produced through digital terrain analysis. Typically, the standard 3 X 3 window-based algorithms are used for this purpose, thus tying the scale of resulting layers to the spatial resolution of the available DEM. But this is likely to induce mismatches between scale domains of terrain information and soil properties of interest, which further propagate biases in soil-landscape modeling. We have started developing a procedure to incorporate scale into digital terrain analysis for terrain-based environmental modeling (Drăguţ et al., in press). The workflow was exemplified on crop yield data. Terrain information was generalized into successive scale levels with focal statistics on increasing neighborhood size. The degree of association between each terrain derivative and crop yield values was established iteratively for all scale levels through correlation analysis. The first peak of correlation indicated the scale level to be further retained. While in a standard 3 X 3 window-based analysis mean curvature was one of the poorest correlated terrain attribute, after generalization it turned into the best correlated variable. To illustrate the importance of scale, we compared the regression results of unfiltered and filtered mean curvature vs. crop yield. The comparison shows an improvement of R squared from a value of 0.01 when the curvature was not filtered, to 0.16 when the curvature was filtered within 55 X 55 m neighborhood size. This indicates the optimum size of curvature information (scale) that influences soil fertility. We further used these results in an object-based image analysis environment to create terrain objects containing aggregated values of both terrain derivatives and crop yield. Hence, we introduce terrain segmentation as an alternative
ANALYSIS OF RESPIRATORY DESPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS
ANALYSIS OF RESPIRATORY DEPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS. Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *S...
Spectral analysis and structure preserving preconditioners for fractional diffusion equations
NASA Astrophysics Data System (ADS)
Donatelli, Marco; Mazza, Mariarosa; Serra-Capizzano, Stefano
2016-02-01
Fractional partial order diffusion equations are a generalization of classical partial differential equations, used to model anomalous diffusion phenomena. When using the implicit Euler formula and the shifted Grünwald formula, it has been shown that the related discretizations lead to a linear system whose coefficient matrix has a Toeplitz-like structure. In this paper we focus our attention on the case of variable diffusion coefficients. Under appropriate conditions, we show that the sequence of the coefficient matrices belongs to the Generalized Locally Toeplitz class and we compute the symbol describing its asymptotic eigenvalue/singular value distribution, as the matrix size diverges. We employ the spectral information for analyzing known methods of preconditioned Krylov and multigrid type, with both positive and negative results and with a look forward to the multidimensional setting. We also propose two new tridiagonal structure preserving preconditioners to solve the resulting linear system, with Krylov methods such as CGNR and GMRES. A number of numerical examples show that our proposal is more effective than recently used circulant preconditioners.
Analysis of insecticidal Azadirachta indica A. Juss. fractions.
Siddiqui, Bina Shaheen; Rasheed, Munawwer; Ilyas, Firdous; Gulzar, Tahsin; Tariq, Rajput Mohammad; Naqvi, Syed Naim-ul-Hassan
2004-01-01
As a result of chemical investigation on the ethanolic extract of fresh fruit coatings of Azadirachta indica A. Juss. (neem), twenty-seven compounds were identified in non-polar to less polar fractions which showed pesticidal activity determined by WHO method against Anopheles stephensi Liston. These identifications were basically made through GC-EIMS and were further supported by other spectroscopic techniques, including 13C NMR, UV and FTIR as well as retention indices. Thus sixteen n-alkanes, 1-16; three aromatics 2,6-bis-(1,1-dimethylethyl)-4-methyl phenol (17), 2-(phenylmethylene)-octanal (20), 1,2,4-trimethoxy-5-(1Z-propenyl)-benzene (27); three benzopyranoids 3,4-dihydro-4,4,5,8-tetramethylcoumarin (18), 3,4-dihydro-4,4,7,8-tetramethylcoumarin-6-ol (19), 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta[g]-2-benzopyran (22); one sesquiterpene methyl-3,7,11-trimethyl-2E,6E,10-dodecatrienoate (21); three esters of fatty acids methyl 14-methyl-pentadecanoate (23), ethyl hexadecanoate (24), ethyl 9Z-octadecenoate (25) and one monoterpene 3,7-dimethyl-1-octen-7-ol (26) were identified. Except 6, 8, 24 and 25 all these compounds were identified for the first time from the pericarp and fifteen of these, 1-3, 7, 9, 10, 17-23, 26, 27, are hitherto unreported previously from any part of the tree. Although this tree is a rich source of various natural products, it is the first report of identification of mono- and sesquiterpenes 26 and 21 and a potent antioxidant, 17. PMID:15018062
Scale-Specific Multifractal Medical Image Analysis
Braverman, Boris
2013-01-01
Fractal geometry has been applied widely in the analysis of medical images to characterize the irregular complex tissue structures that do not lend themselves to straightforward analysis with traditional Euclidean geometry. In this study, we treat the nonfractal behaviour of medical images over large-scale ranges by considering their box-counting fractal dimension as a scale-dependent parameter rather than a single number. We describe this approach in the context of the more generalized Rényi entropy, in which we can also compute the information and correlation dimensions of images. In addition, we describe and validate a computational improvement to box-counting fractal analysis. This improvement is based on integral images, which allows the speedup of any box-counting or similar fractal analysis algorithm, including estimation of scale-dependent dimensions. Finally, we applied our technique to images of invasive breast cancer tissue from 157 patients to show a relationship between the fractal analysis of these images over certain scale ranges and pathologic tumour grade (a standard prognosticator for breast cancer). Our approach is general and can be applied to any medical imaging application in which the complexity of pathological image structures may have clinical value. PMID:24023588
Scale Free Reduced Rank Image Analysis.
ERIC Educational Resources Information Center
Horst, Paul
In the traditional Guttman-Harris type image analysis, a transformation is applied to the data matrix such that each column of the transformed data matrix is the best least squares estimate of the corresponding column of the data matrix from the remaining columns. The model is scale free. However, it assumes (1) that the correlation matrix is…
Hall, Michael; Mishra, Yogesh; Schröder, Wolfgang P
2011-01-01
For many studies regarding important chloroplast processes such as oxygenic photosynthesis, fractionation of the total chloroplast proteome is a necessary first step. Here, we describe a method for isolating the stromal, the thylakoid membrane, and the thylakoid lumen subchloroplast fractions from Arabidopsis thaliana leaf material. All three fractions can be isolated sequentially from the same plant material in a single day preparation. The isolated fractions are suitable for various proteomic analyses such as simple mapping studies or for more complex experiments such as differential expression analysis using two-dimensional difference gel electrophoresis (2D-DIGE) or mass spectrometry (MS)-based techniques. Besides this, the obtained fractions can also be used for many other purposes such as immunological assays, enzymatic activity assays, and studies of protein complexes by native-polyacrylamide gel electrophoresis (native-PAGE). PMID:21863445
NASA Astrophysics Data System (ADS)
Milovanov, Alexander V.
2001-04-01
The formulation of the fractional Fokker-Planck-Kolmogorov (FPK) equation [Physica D 76, 110 (1994)] has led to important advances in the description of the stochastic dynamics of Hamiltonian systems. Here, the long-time behavior of the basic transport processes obeying the fractional FPK equation is analyzed. A derivation of the large-scale turbulent transport coefficient for a Hamiltonian system with 112 degrees of freedom is proposed in connection with the fractal structure of the particle chaotic trajectories. The principal transport regimes (i.e., a diffusion-type process, ballistic motion, subdiffusion in the limit of the frozen Hamiltonian, and behavior associated with self-organized criticality) are obtained as partial cases of the generalized transport law. A comparison with recent numerical and experimental studies is given.
Milovanov, A V
2001-04-01
The formulation of the fractional Fokker-Planck-Kolmogorov (FPK) equation [Physica D 76, 110 (1994)] has led to important advances in the description of the stochastic dynamics of Hamiltonian systems. Here, the long-time behavior of the basic transport processes obeying the fractional FPK equation is analyzed. A derivation of the large-scale turbulent transport coefficient for a Hamiltonian system with 11 / 2 degrees of freedom is proposed in connection with the fractal structure of the particle chaotic trajectories. The principal transport regimes (i.e., a diffusion-type process, ballistic motion, subdiffusion in the limit of the frozen Hamiltonian, and behavior associated with self-organized criticality) are obtained as partial cases of the generalized transport law. A comparison with recent numerical and experimental studies is given. PMID:11308983
Plasma Fractionation Enriches Post-Myocardial Infarction Samples Prior to Proteomics Analysis
de Castro Brás, Lisandra E.; DeLeon, Kristine Y.; Ma, Yonggang; Dai, Qiuxia; Hakala, Kevin; Weintraub, Susan T.; Lindsey, Merry L.
2012-01-01
Following myocardial infarction (MI), matrix metalloproteinase-9 (MMP-9) levels increase, and MMP-9 deletion improves post-MI remodeling of the left ventricle (LV). We provide here a technical report on plasma-analysis from wild type (WT) and MMP-9 null mice using fractionation and mass-spectrometry-based proteomics. MI was induced by coronary artery ligation in male WT and MMP-9 null mice (4–8 months old; n = 3/genotype). Plasma was collected on days 0 (pre-) and 1 post-MI. Plasma proteins were fractionated and proteins in the lowest (fraction 1) and highest (fraction 12) molecular weight fractions were separated by 1-D SDS-PAGE, digested in-gel with trypsin and analyzed by HPLC-ESI-MS/MS on an Orbitrap Velos. We tried five different fractionation protocols, before reaching an optimized protocol that allowed us to identify over 100 proteins. Serum amyloid A substantially increased post-MI in both genotypes, while alpha-2 macroglobulin increased only in the null samples. In fraction 12, extracellular matrix proteins were observed only post-MI. Interestingly, fibronectin-1, a substrate of MMP-9, was identified at both day 0 and day 1 post-MI in the MMP-9 null mice but was only identified post-MI in the WT mice. In conclusion, plasma fractionation offers an improved depletion-free method to evaluate plasma changes following MI. PMID:22778955
Hedman, Bjoern . E-mail: bjorn.hedman@chem.umu.se; Burvall, Jan; Nilsson, Calle; Marklund, Stellan
2005-07-01
In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.
Resolution or Analysis Scale: What Matters Most?
NASA Astrophysics Data System (ADS)
Miller, Bradley
2016-04-01
Identifying the scale at which different covariates best explain the variation of soil properties reflects the geographic strategy of using map generalization (relative size of map delineations) to identify the scale at which phenomena occur. The size of map delineations corresponds to resolution in raster data models. Although not always considered in digital soil mapping studies, resolution is widely recognized as an important factor in identifying covariates in digital spatial analysis. However, many variables that are useful as predictors in digital soil mapping are dependent upon spatial context. For example, the slope gradient at a specific location can only be calculated by considering the surrounding area. In these cases, an analysis neighborhood is used when calculating such variables using a raster data model. The context or area considered is then dependent upon both the resolution and the number of cells (window size) used to define the neighborhood. This presentation explores the difference between resolution and analysis scale, then tests which concept is most important for identifying optimal scales of correlation for digital soil informatics.
Subcellular fractionation of human neutrophils and analysis of subcellular markers.
Clemmensen, Stine Novrup; Udby, Lene; Borregaard, Niels
2014-01-01
The neutrophil has long been recognized for its impressive number of cytoplasmic granules that harbor proteins indispensable for innate immunity. Analysis of isolated granules has provided important information on how the neutrophil grades its response to match the challenges it meets on its passage from blood to tissues. Nitrogen cavitation was developed as a method for disruption of cells on the assumption that sudden reduction of the partial pressure of nitrogen would lead to aeration of nitrogen dissolved in the lipid bilayer of plasma membranes. We find that cells are broken by the shear stress that is associated with passage through the outlet valve under high pressure and that this results in disruption of the neutrophil cell membrane while granules remain intact. The unique properties of Percoll as a sedimentable density medium with no inherent tonicity or viscosity are used for creation of continuous density gradients with shoulders in the density profile created to optimize the physical separation of granule subsets and light membranes. Immunological methods (sandwich enzyme-linked immunosorbent assays) are used for quantitation of proteins that are characteristic constituents of the granule subsets of neutrophils. PMID:24504946
EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM
Leishear, R; Hector Guerrero, H; Michael Restivo, M
2008-09-11
Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself
Barbanti, A.; Bothner, Michael H.
1993-01-01
A method to separate sediments into discrete size fractions for geochemical analysis has been tested. The procedures were chosen to minimize the destruction or formation of aggregates and involved gentle sieving and settling of wet samples. Freeze-drying and sonication pretreatments, known to influence aggregates, were used for comparison. Freeze-drying was found to increase the silt/clay ratio by an average of 180 percent compared to analysis of a wet sample that had been wet sieved only. Sonication of a wet sample decreased the silt/clay ratio by 51 percent. The concentrations of metals and organic carbon in the separated fractions changed depending on the pretreatment procedures in a manner consistent with the hypothesis that aggregates consist of fine-grained organic- and metal-rich particles. The coarse silt fraction of a freeze-dried sample contained 20-44 percent higher concentrations of Zn, Cu, and organic carbon than the coarse silt fraction of the wet sample. Sonication resulted in concentrations of these analytes that were 18-33 percent lower in the coarse silt fraction than found in the wet sample. Sonication increased the concentration of lead in the clay fraction by an average of 40 percent compared to an unsonicated sample. Understanding the magnitude of change caused by different analysis protocols is an aid in designing future studies that seek to interpret the spatial distribution of contaminated sediments and their transport mechanisms. ?? 1993 Springer-Verlag.
Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapour isotopes
Technology Transfer Automated Retrieval System (TEKTRAN)
The isotopic fluxes of carbon dioxide (CO2) and water vapour (H2O) between the atmosphere and terrestrial plants provide powerful constraints on carbon sequestration on land 1-2, changes in vegetation cover 3 and the Earth’s Dole effect 4. Past studies, relying mainly on leaf-scale observations, hav...
Fractional calculus ties the microscopic and macroscopic scales of complex network dynamics
NASA Astrophysics Data System (ADS)
West, B. J.; Turalska, M.; Grigolini, Paolo
2015-04-01
A two-state, master equation-based decision-making model has been shown to generate phase transitions, to be topologically complex, and to manifest temporal complexity through an inverse power-law probability distribution function in the switching times between the two critical states of consensus. These properties are entailed by the fundamental assumption that the network elements in the decision-making model imperfectly imitate one another. The process of subordination establishes that a single network element can be described by a fractional master equation whose analytic solution yields the observed inverse power-law probability distribution obtained by numerical integration of the two-state master equation to a high degree of accuracy.
Investigating energy scales of fractional quantum Hall states using scanning gate microscopy
NASA Astrophysics Data System (ADS)
Braem, B. A.; Krähenmann, T.; Hennel, S.; Reichl, C.; Wegscheider, W.; Ensslin, K.; Ihn, T.
2016-03-01
We use the voltage biased tip of a scanning force microscope at a temperature of 35 mK to locally induce the fractional quantum Hall state of ν =1 /3 in a split-gate defined constriction. Different tip positions allow us to vary the potential landscape. From the temperature dependence of the conductance plateau at G =1 /3 ×e2/h we determine the activation energy of this local ν =1 /3 state. We find that at a magnetic field of 6 T the activation energy is between 153 and 194 μ eV independent of the shape of the confining potential, but about 50% lower than for bulk samples.
Ul-Haq, Ihsan; Ullah, Nazif; Bibi, Gulnaz; Kanwal, Simab; Sheeraz Ahmad, Muhammad; Mirza, Bushra
2012-01-01
Euphorbia wallichii a perennial herb growing mainly in Himalayas has been widely used in folk medicines for its medicinal properties. In the present study, the crude methanolic root extract (CME) and its fractions; n-Hexane Fraction (NHF), n-Butanol Fraction (NBF), Chloroform Fraction (CHF), Ethyl acetate Fraction (EAF) and Aqueous Fraction (AQF) of this plant specie were investigated for antioxidant and cytotoxic activities and phytochemical analysis. Antioxidant activity was determined by using 2,2-diphenyl-1-picryl-hydrazyl free radical (DPPH) and DNA protection assay performed on pBR322 plasmid DNA. In both these assays, promising results were obtained for CME as well as other fractions. The IC50 values for DPPH assay were in a range of 7.89 to 63.35 μg/ml in which EAF showed the best anti-oxidant potential and almost all the tested samples showed certain level of DNA protection. The cytotoxic activity was assessed by using Sulforhodamine B (SRB) assay on human cell lines; H157 (Lung Carcinoma) and HT144 (Malignant Melanoma). The IC50 values of the tested samples ranged from 0.18 to 1.4 mg/mL against H157 cell line whereas against HT144 cell line the IC50 values ranged from 0.46 to 17.88 mg/mL with NBF fraction showing maximum potential for both. Furthermore, the phytochemical analysis of CME and its fractions showed the presences of flavonoids, saponins, tannins, terpenoides and cardiac glycosides with varying concentrations. PMID:24250446
Dark matter fraction of low-mass cluster members probed by galaxy-scale strong lensing
NASA Astrophysics Data System (ADS)
Parry, W. G.; Grillo, C.; Mercurio, A.; Balestra, I.; Rosati, P.; Christensen, L.; Lombardi, M.; Caminha, G. B.; Nonino, M.; Koekemoer, A. M.; Umetsu, K.
2016-05-01
We present a strong lensing system, composed of four multiple images of a source at z = 2.387, created by two lens galaxies, G1 and G2, belonging to the galaxy cluster MACS J1115.9+0129 at z = 0.353. We use observations taken as part of the Cluster Lensing and Supernova survey with Hubble, and its spectroscopic follow-up programme at the Very Large Telescope, to estimate the total mass distributions of the two galaxies and the cluster through strong gravitational lensing models. We find that the total projected mass values within the half-light radii, Re, of the two lens galaxies are MT,G1(
Mallick, Md. Nasar; Singh, Mhaveer; Parveen, Rabea; Khan, Washim; Ahmad, Sayeed; Zeeshan Najm, Mohammad; Husain, Syed Akhtar
2015-01-01
Objective. Hydroalcoholic extract of Picrorhiza kurroa and its fractions were subjected to in vitro screening for cytotoxicity; further best active fraction (BAF) obtained was tested against Ehrlich ascites carcinoma (EAC) model in Balb/c mice after its quality control analysis. Methods. Cytotoxicities of all the fractions and mother extract of P. kurroa were determined, using MTT assay on breast cancer (MCF-7, MDA-MB 231) and cervical cancer (HeLa, SiHa) cell lines. Metabolic fingerprinting was developed using HPTLC with quantification of biomarkers (cucurbitacins B and E; betulinic acid; picrosides 1 and 2; and apocynin) in BAF. The EAC tumor-bearing mice were used for in vivo anticancer activity after oral administration (50 mg Kg−1) for 10 days. Results. Cytotoxicity assay of mother extract and its fractions over breast cancer and cervix cancer cell lines showed that dichloromethane (DCM) fraction was most cytotoxic (IC50 36.0–51.0 µg mL−1 at 72 h). Oral administration of DCM fraction showed significant reduction in tumor regression parameters, viable tumor cell count and restoration of hematological parameters may be due to presence of cucurbitacins B and E; betulinic acid; picrosides 1 and 2; and apocynin, as compared to the untreated mice of the control group. Conclusion. The DCM fraction of P. kurroa displayed potent anticancer activity and can be further explored for the development of a potential candidate for cancer therapy. PMID:26557675
Gagnon, Keith T.; Li, Liande; Janowski, Bethany A.; Corey, David R.
2014-01-01
RNA interference (RNAi) is well known for its ability to regulate gene expression in the cytoplasm of mammalian cells. In mammalian cell nuclei, however, the impact of RNAi has remained more controversial. A key technical hurdle has been a lack of optimized protocols for the isolation and analysis of cell nuclei. Here we describe a simplified protocol for nuclei isolation from cultured cells that incorporates a method for obtaining nucleoplasmic and chromatin fractions and removing cytoplasmic contamination. Cell fractions can then be used to detect the presence and activity of RNAi factors in the nucleus. We present a protocol for investigating an early step in RNAi, Argonaute protein loading with small RNAs, which is enabled by our improved extract preparations. These protocols facilitate characterization of nuclear RNAi and can be applied to the analysis of other nuclear proteins and pathways. From cellular fractionation to analysis of Argonaute loading results, this protocol takes 4–6 d to complete. PMID:25079428
Dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation
NASA Astrophysics Data System (ADS)
Wen, Shao-Fang; Shen, Yong-Jun; Wang, Xiao-Na; Yang, Shao-Pu; Xing, Hai-Jun
2016-08-01
In this paper, the computation schemes for periodic solutions of the forced fractional-order Mathieu-Duffing equation are derived based on incremental harmonic balance (IHB) method. The general forms of periodic solutions are founded by the IHB method, which could be useful to obtain the periodic solutions with higher precision. The comparisons of the approximate analytical solutions by the IHB method and numerical integration are fulfilled, and the results certify the correctness and higher precision of the solutions by the IHB method. The dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation is investigated by the IHB method. Then, the effects of the excitation frequency, fractional order, fractional coefficient, and nonlinear stiffness coefficient on the complex dynamical behaviors are analyzed. At last, the detailed results are summarized and the conclusions are made, which present some useful information to analyze and/or control the dynamical response of this kind of system.
Dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation.
Wen, Shao-Fang; Shen, Yong-Jun; Wang, Xiao-Na; Yang, Shao-Pu; Xing, Hai-Jun
2016-08-01
In this paper, the computation schemes for periodic solutions of the forced fractional-order Mathieu-Duffing equation are derived based on incremental harmonic balance (IHB) method. The general forms of periodic solutions are founded by the IHB method, which could be useful to obtain the periodic solutions with higher precision. The comparisons of the approximate analytical solutions by the IHB method and numerical integration are fulfilled, and the results certify the correctness and higher precision of the solutions by the IHB method. The dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation is investigated by the IHB method. Then, the effects of the excitation frequency, fractional order, fractional coefficient, and nonlinear stiffness coefficient on the complex dynamical behaviors are analyzed. At last, the detailed results are summarized and the conclusions are made, which present some useful information to analyze and/or control the dynamical response of this kind of system. PMID:27586626
Chanakya, H N; Sharma, Isha; Ramachandra, T V
2009-04-01
The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks. PMID:19081239
Chanakya, H.N. Sharma, Isha; Ramachandra, T.V.
2009-04-15
The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.
Yang, Ganglong; Huang, Luyu; Zhang, Jiaxu; Yu, Hanjie; Li, Zheng; Guan, Feng
2016-01-01
Compartmentalization of cellular components and their associated biological processes is crucial for cellular function. Protein glycosylation provides a basis for diversity of protein functions. Diversity of glycan composition in animal cells remains poorly understood. We used differential centrifugation techniques to isolate four subcellular protein fractions from homogenate of metastatic bladder YTS1 cells, low grade nonmuscle invasive bladder cancer KK47 cells and normal bladder epithelia HCV29 cells: microsomal (Mic), mitochondrial (Mito), nuclear (Nuc), and cytosolic (Cyto). An integrated strategy combining lectin microarray and mass spectrometry (MS) analysis was then applied to evaluate protein glycosylation of the four fractions. Lectin microarray analysis revealed significant differences among the four fractions in terms of glycan binding to the lectins LCA, AAL, MPL, WGA and PWM in YTS1 cell, STL, Jacalin, VVA, LCA and WGA in KK47, and ConA, GNA, VVA and ACA in HCV29 cell. Among a total of 40, 32 and 15 N-glycans in four fractions of three cells detected by MS analysis, high-mannose and fucosylated structures were predominant, 10 N-glycans in YTS1, 5 N-glycans in KK47 and 7 N-glycans in HCV29 were present in all four fractions; and 10 N-glycans in YTS1, 16 N-glycans in KK47, and 3 N-glycans in HCV29 were present in only one fraction. Glycans in the latter category are considered potential markers for the corresponding organelles. The integrated strategy described here allows detailed examination of glycomes subcellular fraction with high resolution and sensitivity, and will be useful for elucidation of the functional roles of glycans and corresponding glycosylated proteins in distinct organelles. PMID:27313494
Yang, Ganglong; Huang, Luyu; Zhang, Jiaxu; Yu, Hanjie; Li, Zheng; Guan, Feng
2016-01-01
Compartmentalization of cellular components and their associated biological processes is crucial for cellular function. Protein glycosylation provides a basis for diversity of protein functions. Diversity of glycan composition in animal cells remains poorly understood. We used differential centrifugation techniques to isolate four subcellular protein fractions from homogenate of metastatic bladder YTS1 cells, low grade nonmuscle invasive bladder cancer KK47 cells and normal bladder epithelia HCV29 cells: microsomal (Mic), mitochondrial (Mito), nuclear (Nuc), and cytosolic (Cyto). An integrated strategy combining lectin microarray and mass spectrometry (MS) analysis was then applied to evaluate protein glycosylation of the four fractions. Lectin microarray analysis revealed significant differences among the four fractions in terms of glycan binding to the lectins LCA, AAL, MPL, WGA and PWM in YTS1 cell, STL, Jacalin, VVA, LCA and WGA in KK47, and ConA, GNA, VVA and ACA in HCV29 cell. Among a total of 40, 32 and 15 N-glycans in four fractions of three cells detected by MS analysis, high-mannose and fucosylated structures were predominant, 10 N-glycans in YTS1, 5 N-glycans in KK47 and 7 N-glycans in HCV29 were present in all four fractions; and 10 N-glycans in YTS1, 16 N-glycans in KK47, and 3 N-glycans in HCV29 were present in only one fraction. Glycans in the latter category are considered potential markers for the corresponding organelles. The integrated strategy described here allows detailed examination of glycomes subcellular fraction with high resolution and sensitivity, and will be useful for elucidation of the functional roles of glycans and corresponding glycosylated proteins in distinct organelles. PMID:27313494
Myjavcová, Renáta; Marhol, Petr; Křen, Vladimír; Simánek, Vilím; Ulrichová, Jitka; Palíková, Irena; Papoušková, Barbora; Lemr, Karel; Bednář, Petr
2010-12-17
Anthocyanins from the fruit Lonicera caerulea L. var. kamtschatica (blueberry honeysuckle, Caprifoliaceae) were studied via (semi)preparative chromatographic fractionation followed by MS and μLC/MS analysis. The extraction procedure was optimized with respect to analytical purposes as well as its potential use for the preparation of nutraceuticals. The highest yield of anthocyanins was obtained using acidified methanol as the extraction medium. A comparable total anthocyanin content was obtained using a mixture of methanol and acetone. However, when Lonicera anthocyanins were in contact with acetone, a condensation reaction occurred to a large extent and related 5-methylpyranoanthocyanins were found. The effect of other extraction media, including ethanol as a "green" solvent, is also discussed. The potential of two fractionation procedures for extract purification differing in their chromatographic selectivity and scale was studied (i.e. using a Sephadex LH-20 gel column and a reversed phase). Fractions obtained by both procedures were used for a detailed analysis. MS and μLC/MS(2) methods were used for monitoring anthocyanin and 5-methylpyranoderivatives content as well as identifying less common and more complex dyes (dimer of cyanidin-3-hexoside, cyanidin-ethyl-catechin-hexosides, etc.). These more complex dyes are most likely formed during fruit treatment. PMID:21111888
On SCALE Validation for PBR Analysis
Ilas, Germina
2010-01-01
Studies were performed to assess the capabilities of the SCALE code system to provide accurate cross sections for analyses of pebble bed reactor configurations. The analyzed configurations are representative of fuel in the HTR-10 reactor in the first critical core and at full power operation conditions. Relevant parameters-multiplication constant, spectral indices, few-group cross sections-are calculated with SCALE for the considered configurations. The results are compared to results obtained with corresponding consistent MCNP models. The code-to-code comparison shows good agreement at both room and operating temperatures, indicating a good performance of SCALE for analysis of doubly heterogeneous fuel configurations. The development of advanced methods and computational tools for the analysis of pebble bed reactor (PBR) configurations has been a research area of renewed interest for the international community during recent decades. The PBR, which is a High Temperature Gas Cooled Reactor (HTGR) system, represents one of the potential candidates for future deployment throughout the world of reactor systems that would meet the increased requirements of efficiency, safety, and proliferation resistance and would support other applications such as hydrogen production or nuclear waste recycling. In the U.S, the pebble bed design is one of the two designs under consideration by the Next Generation Nuclear Plant (NGNP) Program.
Rakkiyappan, R; Velmurugan, G; Cao, Jinde
2015-04-01
In this paper, the problem of the existence, uniqueness and uniform stability of memristor-based fractional-order neural networks (MFNNs) with two different types of memductance functions is extensively investigated. Moreover, we formulate the complex-valued memristor-based fractional-order neural networks (CVMFNNs) with two different types of memductance functions and analyze the existence, uniqueness and uniform stability of such networks. By using Banach contraction principle and analysis technique, some sufficient conditions are obtained to ensure the existence, uniqueness and uniform stability of the considered MFNNs and CVMFNNs with two different types of memductance functions. The analysis results establish from the theory of fractional-order differential equations with discontinuous right-hand sides. Finally, four numerical examples are presented to show the effectiveness of our theoretical results. PMID:25861402
NASA Astrophysics Data System (ADS)
Li, Hui-Chuan
2014-10-01
This study examines students' procedural and conceptual achievement in fraction addition in England and Taiwan. A total of 1209 participants (561 British students and 648 Taiwanese students) at ages 12 and 13 were recruited from England and Taiwan to take part in the study. A quantitative design by means of a self-designed written test is adopted as central to the methodological considerations. The test has two major parts: the concept part and the skill part. The former is concerned with students' conceptual knowledge of fraction addition and the latter is interested in students' procedural competence when adding fractions. There were statistically significant differences both in concept and skill parts between the British and Taiwanese groups with the latter having a higher score. The analysis of the students' responses to the skill section indicates that the superiority of Taiwanese students' procedural achievements over those of their British peers is because most of the former are able to apply algorithms to adding fractions far more successfully than the latter. Earlier, Hart [1] reported that around 30% of the British students in their study used an erroneous strategy (adding tops and bottoms, for example, 2/3 + 1/7 = 3/10) while adding fractions. This study also finds that nearly the same percentage of the British group remained using this erroneous strategy to add fractions as Hart found in 1981. The study also provides evidence to show that students' understanding of fractions is confused and incomplete, even those who are successfully able to perform operations. More research is needed to be done to help students make sense of the operations and eventually attain computational competence with meaningful grounding in the domain of fractions.
ERIC Educational Resources Information Center
Isik, Cemalettin; Kar, Tugrul
2012-01-01
The present study aimed to make an error analysis in the problems posed by pre-service elementary mathematics teachers about fractional division operation. It was carried out with 64 pre-service teachers studying in their final year in the Department of Mathematics Teaching in an eastern university during the spring semester of academic year…
Invariant analysis and conservation laws for the time fractional foam drainage equation
NASA Astrophysics Data System (ADS)
Rui, Wenjuan; Zhang, Xiangzhi
2015-10-01
In this paper, the Lie group analysis method is applied to derive Lie point symmetries of the time fractional foam drainage equation with the Riemann-Liouville derivative. Symmetry reductions are constructed and conservation laws are obtained by using the Lie symmetries of the equation.
Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong
2016-01-01
Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (εwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (εwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of -140‰ for monocotyledonous species, -107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the εwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants. PMID:26806719
Shi, Yijing; Wells, George; Morgenroth, Eberhard
2016-10-01
The purpose of this study was to determine the abundance, distribution and activity of aerobic ammonia-oxidizing bacteria (AOB) and anammox in size fractionated aggregates from full-scale suspended growth combined nitritation-anammox sidestream reactors. Plants with or without a cyclone device were also studied to assess a purported enrichment of anammox granules. Specific aerobic ammonium oxidation rates (p=0.01) and specific oxygen uptake rates (p=0.02) were significantly greater in flocs than in granules. AOB abundance measured using quantitative FISH was significantly higher in flocs than in granules (p=0.01). Conversely, anammox abundance was significantly greater in granules (p=0.03). The average ratio of anammox/AOB in systems employing hydrocyclone separation devices was 2.4, significantly higher (p=0.02) than the average ratio (0.5) in a system without a hydrocyclone. Our results demonstrate substantial functional and population-level segregation between floccular and granular fractions, and provide a key corroboration that cyclone separation devices can increase anammox levels in such systems. PMID:27347796
NASA Astrophysics Data System (ADS)
Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong
2016-01-01
Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (ɛwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (ɛwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of -140‰ for monocotyledonous species, -107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the ɛwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants.
Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong
2016-01-01
Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (εwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (εwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of −140‰ for monocotyledonous species, −107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the εwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants. PMID:26806719
Parashar, R.; Cushman, J.H.
2008-06-20
Microbial motility is often characterized by 'run and tumble' behavior which consists of bacteria making sequences of runs followed by tumbles (random changes in direction). As a superset of Brownian motion, Levy motion seems to describe such a motility pattern. The Eulerian (Fokker-Planck) equation describing these motions is similar to the classical advection-diffusion equation except that the order of highest derivative is fractional, {alpha} element of (0, 2]. The Lagrangian equation, driven by a Levy measure with drift, is stochastic and employed to numerically explore the dynamics of microbes in a flow cell with sticky boundaries. The Eulerian equation is used to non-dimensionalize parameters. The amount of sorbed time on the boundaries is modeled as a random variable that can vary over a wide range of values. Salient features of first passage time are studied with respect to scaled parameters.
Scaling, dimensional analysis, and hardness measurements
NASA Astrophysics Data System (ADS)
Cheng, Yang-Tse; Cheng, Che-Min; Li, Zhiyong
2000-03-01
Hardness is one of the frequently used concepts in tribology. For nearly one hundred years, indentation experiments have been performed to obtain the hardness of materials. Recent years have seen significant improvements in indentation equipment and a growing need to measure the mechanical properties of materials on small scales. However, questions remain, including what properties can be measured using instrumented indention techniques and what is hardness? We discuss these basic questions using dimensional analysis together with finite element calculations. We derive scaling relationships for loading and unloading curve, initial unloading slope, contact depth, and hardness. Hardness is shown to depend on elastic, as well as plastic properties of materials. The conditions for "piling-up" and "sinking-in" of surface profiles in indentation are obtained. The methods for estimating contact area are examined. The work done during indentation is also studied. A relationship between hardness, elastic modulus, and the work of indentation is revealed. This relationship offers a new method for obtaining hardness and elastic modulus. In addition, we demonstrate that stress-strain relationships may not be uniquely determined from loading/unloading curves alone using a conical or pyramidal indenter. The dependence of hardness on indenter geometry is also studied. Finally, a scaling theory for indentation in power-law creep solids using self-similar indenters is developed. A connection between creep and "indentation size effect" is established.
NASA Astrophysics Data System (ADS)
Schindewolf, Marcus; Seher, Wiebke; Pfeffer, Eduard; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen
2016-04-01
The erosional transport of organic carbon has an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon historically accumulated in the soil humus fraction. The colluvial organic carbon could be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. The selective nature of soil erosion results in a preferential transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. As a precondition of process based lateral carbon flux modeling, carbon distribution on soil particle size fractions has to be known. In this regard the present study refers to the determination of organic carbon contents on soil particle size separates by a combined sieve-sedimentation method for different tropical and temperate soils Our results suggest high influences of parent material and climatic conditions on carbon distribution on soil particle separates. By applying these results in erosion modeling a test slope was simulated with the EROSION 2D simulation software covering certain land use and soil management scenarios referring to different rainfall events. These simulations allow first insights on carbon loss and depletion on sediment delivery areas as well as carbon gains and enrichments on deposition areas on the landscape scale and could be used as a step forward in landscape scaled carbon redistribution modeling.
Isoform analysis of LC-MS/MS data from multidimensional fractionation of the serum proteome.
Krasnoselsky, Alexei L; Faca, Vitor M; Pitteri, Sharon J; Zhang, Qing; Hanash, Samir M
2008-06-01
We developed a visualization approach for the identification of protein isoforms, precursor/mature protein combinations, and fragments from LC-MS/MS analysis of multidimensional fractionation of serum and plasma proteins. We also describe a pattern recognition algorithm to automatically detect and flag potentially heterogeneous species of proteins in proteomic experiments that involve extensive fractionation and result in a large number of identified serum or plasma proteins in an experiment. Examples are given of proteins with known isoforms that validate our approach and present a subset of precursor/mature protein pairs that were detected with this approach. Potential applications include identification of differentially expressed isoforms in disease states. PMID:18419151
Analytically Solved Solid Fraction Model for the Newtonian Thermal Analysis of Casting
NASA Astrophysics Data System (ADS)
Erbaş, Kadir Can
2016-04-01
This study reports on the development of an alternative model which overcomes the drawbacks of the Newtonian thermal analysis of casting summarized from the literature. The alternative Analytically Solved Solid Fraction Model (AS-SFM) aims to improve the reliability of the measurement of latent heat and solid fraction. The latent heat of pure tin is computed by AS-SFM and the other models in the literature, and the results are compared with the literal value of the latent heat. The new method is shown to be a more reliable latent heat predictor than the other methods given in the literature.
Analytically Solved Solid Fraction Model for the Newtonian Thermal Analysis of Casting
NASA Astrophysics Data System (ADS)
Erbaş, Kadir Can
2016-06-01
This study reports on the development of an alternative model which overcomes the drawbacks of the Newtonian thermal analysis of casting summarized from the literature. The alternative Analytically Solved Solid Fraction Model (AS-SFM) aims to improve the reliability of the measurement of latent heat and solid fraction. The latent heat of pure tin is computed by AS-SFM and the other models in the literature, and the results are compared with the literal value of the latent heat. The new method is shown to be a more reliable latent heat predictor than the other methods given in the literature.
NASA Astrophysics Data System (ADS)
Yan, Hui; Wang, K. G.; Jones, Jim E.
2016-06-01
A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.
Cu isotope fractionation during bornite dissolution: An in situ X-ray diffraction analysis
Wall, Andrew J.; Mathur, Ryan; Post, Jeffrey E.; Heaney, Peter J.
2012-10-24
Low-temperature ore deposits exhibit a large variation in {delta}{sup 65}Cu ({approx}12{per_thousand}), and this range has been attributed, in part, to isotope fractionation during weathering reactions of primary minerals such as chalcocite and chalcopyrite. Here, we examine the fractionation of Cu isotopes during dissolution of another important Cu ore mineral, bornite, using a novel approach that combines time-resolved X-ray diffraction (XRD) and isotope analysis of reaction products. During the initial stages of bornite oxidative dissolution by ferric sulfate (< 5 mol% of total Cu leached), dissolved Cu was enriched in isotopically heavy Cu ({sup 65}Cu) relative to the solid, with an average apparent isotope fractionation ({Delta}{sub aq - min} = {delta}{sup 65}Cu{sub aq} - {delta}{sup 65}Cu{sub min}{sup 0}) of 2.20 {+-} 0.25{per_thousand}. When > 20 mol% Cu was leached from the solid, the difference between the Cu isotope composition of the aqueous and mineral phases approached zero, with {Delta}{sub aq - min}{sup 0} values ranging from - 0.21 {+-} 0.61{per_thousand} to 0.92 {+-} 0.25{per_thousand}. XRD analysis allowed us to correlate changes in the atomic structure of bornite with the apparent isotope fractionation as the dissolution reaction progressed. These data revealed that the greatest degree of apparent fractionation is accompanied by a steep contraction in the unit-cell volume, which we identified as a transition from stoichiometric to non-stoichiometric bornite. We propose that the initially high {Delta}{sub aq - min} values result from isotopically heavy Cu ({sup 65}Cu) concentrating within Cu{sup 2+} during dissolution. The decrease in the apparent isotope fractionation as the reaction progresses occurs from the distillation of isotopically heavy Cu ({sup 65}Cu) during dissolution or kinetic isotope effects associated with the depletion of Cu from the surfaces of bornite particles.
Nakatsukasa, Kunio; Kamura, Takumi
2016-01-01
During ER-associated degradation (ERAD), misfolded polytopic membrane proteins are ubiquitinated and retrotranslocated to the cytosol for proteasomal degradation. However, our understanding as to how polytopic membrane proteins are extracted from the ER to the cytosol remains largely unclear. To better define the localization and physical properties of ubiquitinated polytopic membrane substrates in vivo, we performed subcellular fractionation analysis of Ste6*, a twelve transmembrane protein that is ubiquitinated primarily by Doa10 E3 ligase in yeast. Consistent with previous in vitro studies, ubiquitinated Ste6* was extracted from P20 (20,000 g pellet) fraction to S20 (20,000 g supernatant) fraction in a Cdc48/p97-dependent manner. Similarly, Ubx2p, which recruits Cdc48/p97 to the ER, facilitated the extraction of Ste6*. By contrast, lipid droplet formation, which was suggested to be dispensable for the degradation of Hrd1-substrates in yeast, was not required for the degradation of Ste6*. Intriguingly, we found that ubiquitinated Ste6* in the S20 fraction could be enriched by further centrifugation at 100,000 g. Although it is currently uncertain whether ubiquitinated Ste6* in P100 fraction is completely free from any lipids, membrane flotation analysis suggested the existence of two distinct populations of ubiquitinated Ste6* with different states of membrane association. Together, these results imply that ubiquitinated Ste6* may be sequestered into a putative quality control sub-structure by Cdc48/p97. Fractionation assays developed in the present study provide a means to further dissect the ill-defined post-ubiquitination step during ERAD of polytopic membrane substrates. PMID:26849222
NASA Technical Reports Server (NTRS)
Blanchard, D. P.; Jacobs, J. W.; Brannon, J. C.; Brown, R. W.
1976-01-01
Each bulk soil and both the magnetic and nonmagnetic components of the 90-150 micron and below 20 micron fractions of five soils from drive tube 60009 were analyzed. Samples were analyzed for FeO, Na2O, Sc, Cr, Co, Ni, Hf, Ta, Th, La, Ce, Sm, Eu, Tb, Yb, and Lu by neutron activation analysis. Several samples were fused and analyzed for major elements by electron microprobe analysis. Compositional variations are not systematically related to depth. The compositions of the five soils studied are well explained by a two-component mixing model whose end members are a submature Apollo 16-type soil and an extremely immature anorthositic material similar to 60025. There is evidence that the anorthositic component had received a small amount of exposure before these soils were mixed. After mixing, the soils received little exposure suggesting mixing and deposition on a rapid time scale.
Reum, Jonathan C P; Jennings, Simon; Hunsicker, Mary E
2015-11-01
Nitrogen stable isotope ratios (δ(15) N) may be used to estimate community-level relationships between trophic level (TL) and body size in size-structured food webs and hence the mean predator to prey body mass ratio (PPMR). In turn, PPMR is used to estimate mean food chain length, trophic transfer efficiency and rates of change in abundance with body mass (usually reported as slopes of size spectra) and to calibrate and validate food web models. When estimating TL, researchers had assumed that fractionation of δ(15) N (Δδ(15) N) did not change with TL. However, a recent meta-analysis indicated that this assumption was not as well supported by data as the assumption that Δδ(15) N scales negatively with the δ(15) N of prey. We collated existing fish community δ(15) N-body size data for the Northeast Atlantic and tropical Western Arabian Sea with new data from the Northeast Pacific. These data were used to estimate TL-body mass relationships and PPMR under constant and scaled Δδ(15) N assumptions, and to assess how the scaled Δδ(15) N assumption affects our understanding of the structure of these food webs. Adoption of the scaled Δδ(15) N approach markedly reduces the previously reported differences in TL at body mass among fish communities from different regions. With scaled Δδ(15) N, TL-body mass relationships became more positive and PPMR fell. Results implied that realized prey size in these size-structured fish communities are less variable than previously assumed and food chains potentially longer. The adoption of generic PPMR estimates for calibration and validation of size-based fish community models is better supported than hitherto assumed, but predicted slopes of community size spectra are more sensitive to a given change or error in realized PPMR when PPMR is small. PMID:26046788
Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions
Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.
2011-10-06
potential for blending into finished fuels. Fractions from the lowest oxygen content oil exhibited some phenolic acidity, but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. PIONA analysis of the Light and Naphtha fractions shows benzene content of 0.5 and 0.4 vol%, and predicted (RON + MON)/2 of 63 and 70, respectively.
Fractional order Buck-Boost converter in CCM: modelling, analysis and simulations
NASA Astrophysics Data System (ADS)
Wang, Faqiang; Ma, Xikui
2014-12-01
In this paper, the modelling, analysis and the power electronics simulator (PSIM) simulations of the fractional order Buck-Boost converter operating in continuous conduction mode (CCM) operation are investigated. Based on the three-terminal switch device method, the average circuit model of the fractional order Buck-Boost converter is established, and the corresponding DC equivalent circuit model and AC small signal equivalent circuit model are presented. And then, the equilibrium point and the transfer functions are derived. It is found that the equilibrium point is not influenced by the inductor's or the capacitor's order, but both these orders are included in the derived transfer functions. Finally, the comparisons between the theoretical analysis and the PSIM simulations are given for confirmation.
Structural analysis of gluten-free doughs by fractional rheological model
NASA Astrophysics Data System (ADS)
Orczykowska, Magdalena; Dziubiński, Marek; Owczarz, Piotr
2015-02-01
This study examines the effects of various components of tested gluten-free doughs, such as corn starch, amaranth flour, pea protein isolate, and cellulose in the form of plantain fibers on rheological properties of such doughs. The rheological properties of gluten-free doughs were assessed by using the rheological fractional standard linear solid model (FSLSM). Parameter analysis of the Maxwell-Wiechert fractional derivative rheological model allows to state that gluten-free doughs present a typical behavior of viscoelastic quasi-solid bodies. We obtained the contribution dependence of each component used in preparations of gluten-free doughs (either hard-gel or soft-gel structure). The complicate analysis of the mechanical structure of gluten-free dough was done by applying the FSLSM to explain quite precisely the effects of individual ingredients of the dough on its rheological properties.
NASA Astrophysics Data System (ADS)
Valeriy, Shkinev; Michail, Ermolin; Peter, Fedotov; Aleksander, Rudnev; Nikolay, Bulychev; Vitaliy, Linnik; Gerardo, Moreno
2013-04-01
resulted in the formation of sulfuric acid under atmospheric conditions. A combination of methods were used for the fractionation (dry sieving, membrane filtration, sedimentation field-flow fractionation in a rotating coiled column), investigation (capillary electrophoresis, scanning electron microscopy), and analysis (ICP MS, ICP-AES) of volcanic ash samples. The combination of fractionation techniques were chosen taking into account that (1) the efficiency of separation of particles for the subsequent technique should be higher than for the preceding one; (2) the separation principles of methods should be different (separation according size, density, charge etc.); (3) the initial separation should be carried out according to size, that makes possible to create an even scale for various samples. It has been shown experimentally that the combination of fractionation methods give a possibility to separate and analyze the fractions from 10 nm to 100 μm and to obtain an information about the distribution of elements. In particular, it is founded that nearly 20% of Be, K, Bi, Th, Fe, As, Tl, Ti, W, Hf, and Zr are removed from the ash into the s
Event-based Recession Analysis across Scales
NASA Astrophysics Data System (ADS)
Chen, B.; Krajewski, W. F.
2012-12-01
Hydrograph recessions have long been a window to investigate hydrological processes and their interactions. The authors conducted an exploratory analysis of about 1000 individual hydrograph recessions in a period of around 15 years (1995-2010) from time series of hourly discharge (USGS IDA stream flow data set) at 27 USGS gauges located in Iowa and Cedar River basins with drainage area ranging from 6.7 to around 17000 km2. They calculated recession exponents with the same recession length but different time lags from the hydrograph peak ranging from ~0 to 96 hours, and then plotted them against time lags to construct the evolution of recession exponent. The result shows that, as recession continues, the recession exponent in first increases quickly, then decreases quickly, and finally stays constant. Occasionally and for different reasons, the decreasing portion is missing due to negligible contribution from soil water storage. The increasing part of the evolution of can be related to fast response to rainfall including overland flow and quick subsurface flow through macropores (or tiles), and the decreasing portion can be connected to the delayed soil water response. Lastly, the constant segment can be attributed to the groundwater storage with the slowest response. The points where recession exponent reaches its maximum and begins to plateau are the times that fast response and soil water response end, respectively. The authors conducted further theoretical analysis by combining mathematical derivation and literature results to explain the observed evolution path of the recession exponent . Their results have a direct application in hydrograph separation and important implications for dynamic basin storage-discharge relation analysis and hydrological process understanding across scales.
Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers
NASA Astrophysics Data System (ADS)
Meckenstock, Rainer U.; Morasch, Barbara; Griebler, Christian; Richnow, Hans H.
2004-12-01
The assessment of biodegradation in contaminated aquifers has become an issue of increasing importance in the recent years. To some extent, this can be related to the acceptance of intrinsic bioremediation or monitored natural attenuation as a means to manage contaminated sites. Among the few existing methods to detect biodegradation in the subsurface, stable isotope fractionation analysis (SIFA) is one of the most promising approaches which is pronounced by the drastically increasing number of applications. This review covers the recent laboratory and field studies assessing biodegradation of contaminants via stable isotope analysis. Stable isotope enrichment factors have been found that vary from no fractionation for dioxygenase reactions converting aromatic hydrocarbons over moderate fractionation by monooxygenase reactions ( ɛ=-3‰) and some anaerobic studies on microbial degradation of aromatic hydrocarbons ( ɛ=-1.7‰) to larger fractionations by anaerobic dehalogenation reactions of chlorinated solvents ( ɛ=between -5‰ and -30‰). The different isotope enrichment factors can be related to the respective biochemical reactions. Based on that knowledge, we discuss under what circumstances SIFA can be used for a qualitative or even a quantitative assessment of biodegradation in the environment. In a steadily increasing number of cases, it was possible to explain biodegradation processes in the field based on isotope enrichment factors obtained from laboratory experiments with pure cultures and measured isotope values from the field. The review will focus on the aerobic and anaerobic degradation of aromatic hydrocarbons and chlorinated solvents as the major contaminants of groundwater. Advances in the instrumental development for stable isotope analysis are only mentioned if it is important for the understanding of the application.
Lipidomic analysis of plasma lipoprotein fractions in myocardial infarction-prone rabbits.
Takeda, Hiroaki; Koike, Tomonari; Izumi, Yoshihiro; Yamada, Takayuki; Yoshida, Masaru; Shiomi, Masashi; Fukusaki, Eiichiro; Bamba, Takeshi
2015-10-01
Lipids play important roles in the body and are transported to various tissues via lipoproteins. It is commonly assumed that alteration of lipid levels in lipoproteins leads to dyslipidemia and serious diseases such as coronary artery disease (CAD). However, lipid compositions in each lipoprotein fraction induced by lipoprotein metabolism are poorly understood. Lipidomics, which involves the comprehensive and quantitative analysis of lipids, is expected to provide valuable information regarding the pathogenic mechanism of CAD. Here, we performed a lipidomic analysis of plasma and its lipoprotein fractions in myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbits. In total, 172 lipids in plasma obtained from normal and WHHLMI rabbits were quantified with high throughput and accuracy using supercritical fluid chromatography hybrid quadrupole-Orbitrap mass spectrometry (SFC/Q-Orbitrap-MS). Plasma levels of each lipid class (i.e., phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, lysophosphatidylcholine, lysophosphatidylethanolamine, sphingomyelin, ceramide, triacylglycerol, diacylglycerol, and cholesterol ester, except for free fatty acids) in 21-month-old WHHLMI rabbits were significantly higher than those in normal rabbits. High levels of functional lipids, such as alkyl-phosphatidylcholines, phospholipids including ω-6 fatty acids, and plasmalogens, were also observed in WHHLMI rabbit plasma. In addition, high-resolution lipidomic analysis using very low density lipoprotein (VLDL) and low density lipoprotein (LDL) provided information on the specific molecular species of lipids in each lipoprotein fraction. In particular, higher levels of phosphatidylethanolamine plasmalogens were detected in LDL than in VLDL. Our lipidomics approach for plasma lipoprotein fractions will be useful for in-depth studies on the pathogenesis of CAD. PMID:26162515
NASA Astrophysics Data System (ADS)
Henkel, S.; Kasten, S.; Poulton, S.; Hartmann, J.; Staubwasser, M.
2014-12-01
Reactive Fe (oxyhydr)oxides preferentially undergo early diagenetic cycling and may cause a diffusive flux of dissolved Fe2+ from sediments towards the sediment-water interface. The partitioning of Fe in sediments has traditionally been studied by applying sequential extractions based on reductive dissolution of Fe minerals. We complemented the sequential leaching method by Poulton and Canfield [1] in order to be able to gain δ56Fe data for specific Fe fractions, as such data are potentially useful to study Fe cycling in marine environments. The specific mineral fractions are Fe-carbonates, ferrihydrite + lepidocrocite, goethite + hematite, and magnetite. Leaching was performed with acetic acid, hydroxylamine-HCl, Na-dithionite and oxalic acid. The processing of leachates for δ56Fe analysis involved boiling the samples in HCl/HNO3/H2O2, Fe precipitation and anion exchange column chromatography. The new method was applied to short sediment cores from the North Sea and a bay of King George Island (South Shetland Islands, Antarctica). Downcore mineral-specific variations in δ56Fe revealed differing contributions of Fe (oxyhydr)oxides to redox cycling. A slight decrease in easily reducible Fe oxides correlating with a slight increase in δ56Fe for this fraction with depth, which is in line with progessive dissimilatory iron reduction [2,3], is visible in the top 10 cm of the North Sea core, but not in the antarctic sediments. Less reactive (dithionite and oxalate leachable) fractions did not reveal isotopic trends. The acetic acid-soluble fraction displayed pronounced δ56Fe trends at both sites that cannot be explained by acid volatile sulfides that are also extracted by acetic acid [1]. We suggest that low δ56Fe values in this fraction relative to the pool of easily reducible Fe oxides result from adsorbed Fe(II) that was open to isotopic exchange with oxide surfaces, affirming the experimental results of Crosby el al. [2]. Hence, δ56Fe analyses on marine
The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases.
Repetto, Ivan E; Monti, Riccardo; Tropiano, Marta; Tomasi, Simone; Arbini, Alessia; Andrade-Moraes, Carlos-Humberto; Lent, Roberto; Vercelli, Alessandro
2016-01-01
One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington's disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole
The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases
Repetto, Ivan E.; Monti, Riccardo; Tropiano, Marta; Tomasi, Simone; Arbini, Alessia; Andrade-Moraes, Carlos-Humberto; Lent, Roberto; Vercelli, Alessandro
2016-01-01
One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington’s disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole
The New Environmental Paradigm and Further Scale Analysis.
ERIC Educational Resources Information Center
Noe, Francis P.; Snow, Rob
1990-01-01
Examined were the responses of park visitors to the New Environmental Paradigm scale. Research methods, and results including reliabilities and factor analysis of the scales on the survey are discussed. (CW)
Comprehensive triblock copolymer analysis by coupled thermal field-flow fractionation-NMR.
van Aswegen, Werner; Hiller, Wolf; Hehn, Mathias; Pasch, Harald
2013-07-12
Thermal field-flow fractionation (ThFFF) is used as a novel fractionation technique to investigate the molecular heterogeneity of PB-b-PVP-b-PtBMA triblock copolymers. Such copolymers cause major problems in liquid chromatography due to very strong polar interactions with the stationary phase. ThFFF separates the copolymers with regard to size and/or chemical composition based on the normal and thermal diffusion coefficients. The separation mechanism in ThFFF and the chemical composition of the separated species is elucidated by online (1) H NMR. Based on the compositional analysis and a calibration of the system with the respective homopolymers, the samples are quantified regarding their molar masses, chemical compositions, and microstructures providing comprehensive information on the complex structure of these block copolymers. PMID:23722993
del Hierro, Pilar
2010-01-01
The introduction of single-site catalysts in the polyolefins industry opens new routes to design resins with improved performance through multicatalyst-multireactor processes. Physical combination of various polyolefin types in a secondary extrusion process is also a common practice to achieve new products with improved properties. The new resins have complex structures, especially in terms of composition distribution, and their characterization is not always an easy task. Techniques like temperature rising elution fractionation (TREF) or crystallization analysis fractionation (CRYSTAF) are currently used to characterize the composition distribution of these resins. It has been shown that certain combinations of polyolefins may result in equivocal results if only TREF or CRYSTAF is used separately for their characterization. PMID:20730530
Peppas, T K; Karfopoulos, K L; Karangelos, D J; Rouni, P K; Anagnostakis, M J; Simopoulos, S E
2010-09-15
The concentration of trace elements and radionuclides in fly ash particles of different size can exhibit significant variation, due to the various processes taking place during combustion inside a coal-fired power plant. An investigation of this effect has been performed by analyzing samples of fly ash originating in two different coal-fired power plants, after separation into size fractions by sieving. The samples were analyzed by gamma-ray spectrometry, including low-energy techniques, radon exhalation measurement and instrumental neutron activation analysis for the determination of Al, As, Ga, K, La, Na, Mn, Mg, Sr, Sc, and V. Variations are observed in the results of various samples analyzed, while the activity balances calculated from the results of individual size fractions are consistent with those of the raw ash samples. Correlations among the radionuclides examined are also observed, while individual nuclide behavior varies between the two types of fly ash examined. PMID:20605322
NASA Astrophysics Data System (ADS)
Ahangari, Zahra
2016-02-01
This paper explores the impact of indium mole fraction on the electrical characteristic of In x Ga1- x As double-gate Schottky MOSFET (SBFET) in nanoscale regime. A 20-band sp 3 d 5 s * tight-binding formalism is applied to compute the bandstructure of ultra-thin body structure as a function of indium mole fraction. The injection velocity of carriers is increased as the indium mole fraction approaches to x = 1. Quantum confinement results in an increment of the effective Schottky barrier height especially for the increased values of indium mole fraction. The ultra-scaled In x Ga1- x As SBFET suffers from a low conduction band DOS in the Γ valley that results in serious degradation of the gate capacitance. The electrical characteristic of this device is considered by solving self-consistent 2D Schrődinger-Poisson equations based on non-equilibrium Green's function formalism. For channel thicknesses where the effect of quantum confinement on the gate capacitance is not dominant, shrinking the channel thickness besides increasing the indium mole fraction improves the electrical characteristic of the device. However, for the ultra-scaled structure, the indium mole fraction enhancement degrades the device performance due to the enhanced value of Schottky barrier height and low DOS.
Stanislavsky, A A
2004-11-01
We consider a fractional oscillator which is a generalization of the conventional linear oscillator in the framework of fractional calculus. It is interpreted as an ensemble average of ordinary harmonic oscillators governed by a stochastic time arrow. The intrinsic absorption of the fractional oscillator results from the full contribution of the harmonic oscillator ensemble: these oscillators differ a little from each other in frequency so that each response is compensated by an antiphase response of another harmonic oscillator. This allows one to draw a parallel in the dispersion analysis for media described by a fractional oscillator and an ensemble of ordinary harmonic oscillators with damping. The features of this analysis are discussed. PMID:15600586
Financial analysis of technology acquisition using fractionated lasers as a model.
Jutkowitz, Eric; Carniol, Paul J; Carniol, Alan R
2010-08-01
Ablative fractional lasers are among the most advanced and costly devices on the market. Yet, there is a dearth of published literature on the cost and potential return on investment (ROI) of such devices. The objective of this study was to provide a methodological framework for physicians to evaluate ROI. To facilitate this analysis, we conducted a case study on the potential ROI of eight ablative fractional lasers. In the base case analysis, a 5-year lease and a 3-year lease were assumed as the purchase option with a $0 down payment and 3-month payment deferral. In addition to lease payments, service contracts, labor cost, and disposables were included in the total cost estimate. Revenue was estimated as price per procedure multiplied by total number of procedures in a year. Sensitivity analyses were performed to account for variability in model assumptions. Based on the assumptions of the model, all lasers had higher ROI under the 5-year lease agreement compared with that for the 3-year lease agreement. When comparing results between lasers, those with lower operating and purchase cost delivered a higher ROI. Sensitivity analysis indicates the model is most sensitive to purchase method. If physicians opt to purchase the device rather than lease, they can significantly enhance ROI. ROI analysis is an important tool for physicians who are considering making an expensive device acquisition. However, physicians should not rely solely on ROI and must also consider the clinical benefits of a laser. PMID:20665406
NASA Astrophysics Data System (ADS)
de Lima, Isabel; Lovejoy, Shaun
2016-04-01
The characterization of precipitation scaling regimes represents a key contribution to the improved understanding of space-time precipitation variability, which is the focus here. We conduct space-time scaling analyses of spectra and Haar fluctuations in precipitation, using three global scale precipitation products (one instrument based, one reanalysis based, one satellite and gauge based), from monthly to centennial scales and planetary down to several hundred kilometers in spatial scale. Results show the presence - similarly to other atmospheric fields - of an intermediate "macroweather" regime between the familiar weather and climate regimes: we characterize systematically the macroweather precipitation temporal and spatial, and joint space-time statistics and variability, and the outer scale limit of temporal scaling. These regimes qualitatively and quantitatively alternate in the way fluctuations vary with scale. In the macroweather regime, the fluctuations diminish with time scale (this is important for seasonal, annual, and decadal forecasts) while anthropogenic effects increase with time scale. Our approach determines the time scale at which the anthropogenic signal can be detected above the natural variability noise: the critical scale is about 20 - 40 yrs (depending on the product, on the spatial scale). This explains for example why studies that use data covering only a few decades do not easily give evidence of anthropogenic changes in precipitation, as a consequence of warming: the period is too short. Overall, while showing that precipitation can be modeled with space-time scaling processes, our results clarify the different precipitation scaling regimes and further allow us to quantify the agreement (and lack of agreement) of the precipitation products as a function of space and time scales. Moreover, this work contributes to clarify a basic problem in hydro-climatology, which is to measure precipitation trends at decadal and longer scales and to
Developmental Work Personality Scale: An Initial Analysis.
ERIC Educational Resources Information Center
Strauser, David R.; Keim, Jeanmarie
2002-01-01
The research reported in this article involved using the Developmental Model of Work Personality to create a scale to measure work personality, the Developmental Work Personality Scale (DWPS). Overall, results indicated that the DWPS may have potential applications for assessing work personality prior to client involvement in comprehensive…
NASA Astrophysics Data System (ADS)
Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.
2011-12-01
We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.
Lie Symmetry Analysis and Explicit Solutions of the Time Fractional Fifth-Order KdV Equation
Wang, Gang wei; Xu, Tian zhou; Feng, Tao
2014-01-01
In this paper, using the Lie group analysis method, we study the invariance properties of the time fractional fifth-order KdV equation. A systematic research to derive Lie point symmetries to time fractional fifth-order KdV equation is performed. In the sense of point symmetry, all of the vector fields and the symmetry reductions of the fractional fifth-order KdV equation are obtained. At last, by virtue of the sub-equation method, some exact solutions to the fractional fifth-order KdV equation are provided. PMID:24523885
Lie symmetry analysis and explicit solutions of the time fractional fifth-order KdV equation.
Wang, Gang Wei; Xu, Tian Zhou; Feng, Tao
2014-01-01
In this paper, using the Lie group analysis method, we study the invariance properties of the time fractional fifth-order KdV equation. A systematic research to derive Lie point symmetries to time fractional fifth-order KdV equation is performed. In the sense of point symmetry, all of the vector fields and the symmetry reductions of the fractional fifth-order KdV equation are obtained. At last, by virtue of the sub-equation method, some exact solutions to the fractional fifth-order KdV equation are provided. PMID:24523885
Lescuyer, Pierre; Pernin, Agnès; Hainard, Alexandre; Bigeire, Caty; Burgess, Jennifer A; Zimmermann-Ivol, Catherine; Sanchez, Jean-Charles; Schifferli, Jürg A; Hochstrasser, Denis F; Moll, Solange
2008-07-01
Podocytes (glomerular visceral epithelial cells) release vesicles into urine. Podocyte vesicle-enriched fractions from normal and pathological human urine samples were prepared for proteomic analysis. An immunoadsorption method was applied and enrichment of podocyte vesicles was assessed. We identified 76 unique proteins. One protein, serum paraoxonase/arylesterase 1 (PON-1), was newly identified in normal human urine sample. We confirmed this result and showed PON-1 expression in normal human kidney. These results demonstrated the potential for using the urine samples enriched in podocyte vesicles as a starting material in studies aimed at discovery of biomarkers for diseases. PMID:21136901
Braeuer, Andreas; Leipertz, Alfred
2009-02-01
A two-dimensional laser Raman technique was developed and applied to directly probe the population number of selected rotational and vibrational energy levels of hydrogen and nitrogen. Using three cameras simultaneously, temperature and mole fraction images could be detected. Three different combinations of rotational and vibrational Raman signals of hydrogen and nitrogen were analyzed to identify the combination that is most suitable for future mixture analysis in hydrogen internal combustion engines. Here the experiments were conducted in an injection chamber where hot hydrogen was injected into room temperature nitrogen at 1.1 MPa. PMID:19183582
Study of the free volume fraction in polylactic acid (PLA) by thermal analysis
NASA Astrophysics Data System (ADS)
Abdallah, A.; Benrekaa, N.
2015-10-01
The poly (lactic acid) or polylactide (PLA) is a biodegradable polymer with high modulus, strength and thermoplastic properties. In this work, the evolution of various properties of PLA is studied, such as glass transition temperature, mechanical modules and elongation percentage with the aim of investigating the free volume fraction. To do so, two thermal techniques have been used: the dynamic mechanical analysis (DMA) and dilatometry. The results obtained by these techniques are combined to go back to the structural properties of the studied material.
Dynamical scaling analysis of plant callus growth
NASA Astrophysics Data System (ADS)
Galeano, J.; Buceta, J.; Juarez, K.; Pumariño, B.; de la Torre, J.; Iriondo, J. M.
2003-07-01
We present experimental results for the dynamical scaling properties of the development of plant calli. We have assayed two different species of plant calli, Brassica oleracea and Brassica rapa, under different growth conditions, and show that their dynamical scalings share a universality class. From a theoretical point of view, we introduce a scaling hypothesis for systems whose size evolves in time. We expect our work to be relevant for the understanding and characterization of other systems that undergo growth due to cell division and differentiation, such as, for example, tumor development.
Failure Analysis of a Pilot Scale Melter
Imrich, K J
2001-09-14
Failure of the pilot-scale test melter resulted from severe overheating of the Inconel 690 jacketed molybdenum electrode. Extreme temperatures were required to melt the glass during this campaign because the feed material contained a very high waste loading.
A Scale Analysis of the Effects of US Federal Policy
ERIC Educational Resources Information Center
Pandya, Jessica Zacher
2012-01-01
In this essay I argue that the effects of federal policy can be examined through a scale analysis that helps deconstruct the effect of the current widespread accountability movement in the US educational system. I first discuss the concept of scale, including its thus-far limited use in educational research. I define scales not only as…
Minimum Sample Size Requirements for Mokken Scale Analysis
ERIC Educational Resources Information Center
Straat, J. Hendrik; van der Ark, L. Andries; Sijtsma, Klaas
2014-01-01
An automated item selection procedure in Mokken scale analysis partitions a set of items into one or more Mokken scales, if the data allow. Two algorithms are available that pursue the same goal of selecting Mokken scales of maximum length: Mokken's original automated item selection procedure (AISP) and a genetic algorithm (GA). Minimum…
Convective scale weather analysis and forecasting
NASA Technical Reports Server (NTRS)
Purdom, J. F. W.
1984-01-01
How satellite data can be used to improve insight into the mesoscale behavior of the atmosphere is demonstrated with emphasis on the GOES-VAS sounding and image data. This geostationary satellite has the unique ability to observe frequently the atmosphere (sounders) and its cloud cover (visible and infrared) from the synoptic scale down to the cloud scale. These uniformly calibrated data sets can be combined with conventional data to reveal many of the features important in mesoscale weather development and evolution.
Detection of crossover time scales in multifractal detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Ge, Erjia; Leung, Yee
2013-04-01
Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.
Albertsson, T.; Semenov, D. A.; Henning, Th.; Vasyunin, A. I.; Herbst, E.
2013-08-15
Observations of deuterated species are useful in probing the temperature, ionization level, evolutionary stage, chemistry, and thermal history of astrophysical environments. The analysis of data from the Atacama Large Millimeter Array and other new telescopes requires an elaborate model of deuterium fractionation. This paper presents a publicly available chemical network with multi-deuterated species and an extended, up-to-date set of gas-phase and surface reactions. To test this network, we simulate deuterium fractionation in diverse interstellar sources. Two cases of initial abundances are considered: (1) atomic except for H{sub 2} and HD, and (2) molecular from a prestellar core. We reproduce the observed D/H ratios of many deuterated molecules, and sort the species according to their sensitivity to temperature gradients and initial abundances. We find that many multiply deuterated species produced at 10 K retain enhanced D/H ratios at temperatures {approx}< 100 K. We study how recent updates to reaction rates affect calculated D/H ratios, and perform a detailed sensitivity analysis of the uncertainties of the gas-phase reaction rates in the network. We find that uncertainties are generally lower in dark cloud environments than in warm infrared dark clouds and that uncertainties increase with the size of the molecule and number of D-atoms. A set of the most problematic reactions is presented. We list potentially observable deuterated species predicted to be abundant in low- and high-mass star-formation regions.
Klie, Sebastian; Krueger, Stephan; Krall, Leonard; Giavalisco, Patrick; Flügge, Ulf-Ingo; Willmitzer, Lothar; Steinhauser, Dirk
2011-01-01
With the development of high-throughput metabolic technologies, a plethora of primary and secondary compounds have been detected in the plant cell. However, there are still major gaps in our understanding of the plant metabolome. This is especially true with regards to the compartmental localization of these identified metabolites. Non-aqueous fractionation (NAF) is a powerful technique for the determination of subcellular metabolite distributions in eukaryotic cells, and it has become the method of choice to analyze the distribution of a large number of metabolites concurrently. However, the NAF technique produces a continuous gradient of metabolite distributions, not discrete assignments. Resolution of these distributions requires computational analyses based on marker molecules to resolve compartmental localizations. In this article we focus on expanding the computational analysis of data derived from NAF. Along with an experimental workflow, we describe the critical steps in NAF experiments and how computational approaches can aid in assessing the quality and robustness of the derived data. For this, we have developed and provide a new version (v1.2) of the BestFit command line tool for calculation and evaluation of subcellular metabolite distributions. Furthermore, using both simulated and experimental data we show the influence on estimated subcellular distributions by modulating important parameters, such as the number of fractions taken or which marker molecule is selected. Finally, we discuss caveats and benefits of NAF analysis in the context of the compartmentalized metabolome. PMID:22645541
NASA Astrophysics Data System (ADS)
Albertsson, T.; Semenov, D. A.; Vasyunin, A. I.; Henning, Th.; Herbst, E.
2013-08-01
Observations of deuterated species are useful in probing the temperature, ionization level, evolutionary stage, chemistry, and thermal history of astrophysical environments. The analysis of data from the Atacama Large Millimeter Array and other new telescopes requires an elaborate model of deuterium fractionation. This paper presents a publicly available chemical network with multi-deuterated species and an extended, up-to-date set of gas-phase and surface reactions. To test this network, we simulate deuterium fractionation in diverse interstellar sources. Two cases of initial abundances are considered: (1) atomic except for H2 and HD, and (2) molecular from a prestellar core. We reproduce the observed D/H ratios of many deuterated molecules, and sort the species according to their sensitivity to temperature gradients and initial abundances. We find that many multiply deuterated species produced at 10 K retain enhanced D/H ratios at temperatures <~ 100 K. We study how recent updates to reaction rates affect calculated D/H ratios, and perform a detailed sensitivity analysis of the uncertainties of the gas-phase reaction rates in the network. We find that uncertainties are generally lower in dark cloud environments than in warm infrared dark clouds and that uncertainties increase with the size of the molecule and number of D-atoms. A set of the most problematic reactions is presented. We list potentially observable deuterated species predicted to be abundant in low- and high-mass star-formation regions.
Eitzinger, Nicole; Wagner, Volker; Weisheit, Wolfram; Geimer, Stefan; Boness, David; Kreimer, Georg; Mittag, Maria
2015-01-01
Flagellate green algae possess a visual system, the eyespot. In Chlamydomonas reinhardtii it is situated at the edge of the chloroplast and consists of two carotenoid rich lipid globule layers subtended by thylakoid membranes (TM) that are attached to both chloroplast envelope membranes and a specialized area of the plasma membrane (PM). A former analysis of an eyespot fraction identified 203 proteins. To increase the understanding of eyespot related processes, knowledge of the protein composition of the membranes in its close vicinity is desirable. Here, we present a purification procedure that allows isolation of intact eyespots. This gain in intactness goes, however, hand in hand with an increase of contaminants from other organelles. Proteomic analysis identified 742 proteins. Novel candidates include proteins for eyespot development, retina-related proteins, ion pumps, and membrane-associated proteins, calcium sensing proteins as well as kinases, phosphatases and 14-3-3 proteins. Methylation of proteins at Arg or Lys is known as an important posttranslational modification involved in, e.g., signal transduction. Here, we identify several proteins from eyespot fractions that are methylated at Arg and/or Lys. Among them is the eyespot specific SOUL3 protein that influences the size and position of the eyespot and EYE2, a protein important for its development. PMID:26697039
Multidimensional Scaling versus Components Analysis of Test Intercorrelations.
ERIC Educational Resources Information Center
Davison, Mark L.
1985-01-01
Considers the relationship between coordinate estimates in components analysis and multidimensional scaling. Reports three small Monte Carlo studies comparing nonmetric scaling solutions to components analysis. Results are related to other methodological issues surrounding research on the general ability factor, response tendencies in…
NASA Astrophysics Data System (ADS)
Wang, Xiu-Bin; Tian, Shou-Fu; Qin, Chun-Yan; Zhang, Tian-Tian
2016-04-01
Under investigation in this work are the invariance properties of the generalized time fractional Burgers equation, which can be used to describe the physical processes of unidirectional propagation of weakly nonlinear acoustic waves through a gas-filled pipe. The Lie group analysis method is applied to consider its vector fields and symmetry reductions. Furthermore, based on the sub-equation method, a new type of explicit solutions for the equation is well constructed with a detailed analysis. By means of the power series theory, exact power series solutions of the equation are also constructed. Finally, by using the new conservation theorem, conservation laws of the equation are well constructed with a detailed derivation.
NASA Astrophysics Data System (ADS)
Nordon, R.; Behar, E.; Drake, S. A.
2013-02-01
Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated. An active region, predating the beginning of the campaign, repeatedly enters into our view at the same phase as it rotates from beyond the stellar limb. As a result, the abundances tend slightly, but consistently, to increase for high FIP elements (an inverse FIP effect) with phase. We estimate the abundance increase of high FIP elements in the active region to be of about 75% over the coronal mean. This observed fractionation of elements in an active region on time scales of days provides circumstantial clues regarding the element enrichment mechanism of non-flaring stellar coronae.
NASA Technical Reports Server (NTRS)
Nordon, R.; Behar, E.; Drake, S. A.
2013-01-01
Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated. An active region, predating the beginning of the campaign, repeatedly enters into our view at the same phase as it rotates from beyond the stellar limb. As a result, the abundances tend slightly, but consistently, to increase for high FIP elements (an inverse FIP effect) with phase. We estimate the abundance increase of high FIP elements in the active region to be of about 75% over the coronal mean. This observed fractionation of elements in an active region on time scales of days provides circumstantial clues regarding the element enrichment mechanism of non-flaring stellar coronae.
Sun, Zhao-Yong; Zhang, Jing; Zhong, Xiao-Zhong; Tan, Li; Tang, Yue-Qin; Kida, Kenji
2016-05-01
In the present study, we developed an efficient composting process for the solid fraction of dairy manure (SFDM) using lab-scale systems. We first evaluated the factors affecting the SFDM composting process using different thermophilic phase durations (TPD, 6 or 3days) and aeration rates (AR, 0.4 or 0.2 lmin(-1)kg(-1)-total solid (TS)). Results indicated that a similar volatile total solid (VTS) degradation efficiency (approximately 60%) was achieved with a TPD of 6 or 3days and an AR of 0.4 l min(-1) kg(-1)-TS (hereafter called higher AR), and a TPD of 3days resulted in less N loss caused by ammonia stripping. N loss was least when AR was decreased to 0.2 l min(-1) kg(-1)-TS (hereafter called lower AR) during the SFDM composting process. However, moisture content (MC) in the composting pile increased at the lower AR because of water production by VTS degradation and less water volatilization. Reduced oxygen availability caused by excess water led to lower VTS degradation efficiency and inhibition of nitrification. Adding sawdust to adjust the C/N ratio and decrease the MC improved nitrification during the composing processes; however, the addition of increasing amounts of sawdust decreased NO3(-) concentration in matured compost. When an improved composting reactor with a condensate removal and collection system was used for the SFDM composting process, the MC of the composting pile was significantly reduced, and nitrification was detected 10-14days earlier. This was attributed to the activity of ammonia-oxidizing bacteria (AOB). Highly matured compost could be generated within 40-50days. The VTS degradation efficiency reached 62.0% and the final N content, NO3(-) concentration, and germination index (GI) at the end of the composting process were 3.3%, 15.5×10(3)mg kg(-1)-TS, and 112.1%, respectively. PMID:26965212
Chemical Analysis of Fractionated Halogens in Atmospheric Aerosols Collected in Okinawa, Japan
NASA Astrophysics Data System (ADS)
Tsuhako, A.; Miyagi, Y.; Somada, Y.; Azechi, S.; Handa, D.; Oshiro, Y.; Murayama, H.; Arakaki, T.
2013-12-01
Halogens (Cl, Br and I) play important roles in the atmosphere, e.g. ozone depletion by Br during spring in Polar Regions. Sources of halogens in atmospheric aerosols are mainly from ocean. But, for example, when we analyzed Br- with ion chromatography, its concentrations were almost always below the detection limit, which is also much lower than the estimated concentrations from sodium ion concentrations. We hypothesized that portions of halogens are escaped to the atmosphere, similar to chlorine loss, changed their chemical forms to such as BrO3- and IO3-, and/or even formed precipitates. There was few reported data so far about fractionated halogen concentrations in atmospheric aerosols. Thus, purpose of this study was to determine halogen concentrations in different fractions; free ion, water-soluble chemically transformed ions and precipitates using the authentic aerosols. Moreover, we analyzed seasonal variation for each fraction. Atmospheric aerosol samples were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) of Okinawa, Japan during January 2010 and August 2013. A high volume air sampler was used for collecting total particulate matters on quartz filters on a weekly basis. Ultrapure water was used to extract water-soluble factions of halogens. The extracted solutions were filtered with the membrane filter and used for chemical analysis with ion chromatography and ICP-MS. Moreover, the total halogens in aerosols were obtained after digesting aerosols with tetramethylammonium hydroxide (TMAH) using the microwave and analysis with ICP-MS. For Cl, water-soluble Cl- accounted for about 70% of the estimates with Na content. No other forms of water-soluble Cl were found. About 30% of Cl was assumed volatilized to the gas-phase. For Br, water-soluble Br accounted for about 43% of the estimates with Na content, and within the 43%, about 10% of Br was not in the form of Br-. About 46% of Br was assumed volatilized to the gas-phase. For I
SCALING ANALYSIS OF REPOSITORY HEAT LOAD FOR REDUCED DIMENSIONALITY MODELS
MICHAEL T. ITAMUA AND CLIFFORD K. HO
1998-06-04
The thermal energy released from the waste packages emplaced in the potential Yucca Mountain repository is expected to result in changes in the repository temperature, relative humidity, air mass fraction, gas flow rates, and other parameters that are important input into the models used to calculate the performance of the engineered system components. In particular, the waste package degradation models require input from thermal-hydrologic models that have higher resolution than those currently used to simulate the T/H responses at the mountain-scale. Therefore, a combination of mountain- and drift-scale T/H models is being used to generate the drift thermal-hydrologic environment.
Longitudinal Network Analysis Using Multidimensional Scaling.
ERIC Educational Resources Information Center
Barnett, George A.; Palmer, Mark T.
The Galileo System, a variant of metric multidimensional scaling, is used in this paper to analyze over-time changes in social networks. The paper first discusses the theoretical necessity for the use of this procedure and the methodological problems associated with its use. It then examines the air traffic network among 31 major cities in the…
NASA Astrophysics Data System (ADS)
Goodwin, Nicholas; Coops, Nicholas C.; Stone, Christine
2005-05-01
Pine plantations in Australia are subject to a range of abiotic and biotic damaging agents that affect tree health and productivity. In order to optimise management decisions, plantation managers require regular intelligence relating to the status and trends in the health and condition of trees within individual compartments. Remote sensing technology offers an alternative to traditional ground-based assessment of these plantations. Automated estimation of foliar crown health, especially in degraded crowns, can be difficult due to mixed pixels when there is low or fragmented vegetation cover. In this study we apply a linear spectral unmixing approach to high spatial resolution (50 cm) multispectral imagery to quantify the fractional abundances of the key image endmembers: sunlit canopy, shadow, and soil. A number of Pinus radiata tree crown attributes were modelled using multiple linear regression and endmember fraction images. We found high levels of significance ( r2 = 0.80) for the overall crown colour and colour of the crown leader ( r2 = 0.79) in tree crowns affected by the fungal pathogen Sphaeropsis sapinea, which produces both needle necrosis and chlorosis. Results for stands associated with defoliation and chlorosis through infestation by the aphid Essigella californica were lower with an r2 = 0.33 for crown transparency and r2 = 0.31 for proportion of crown affected. Similar analysis of data from a nitrogen deficient site produced an outcome somewhat in between the other two damaging agents. Overall the sunlit canopy image fraction has been the most important variable used in the modelling of forest condition for all damaging agents.
The Bootstrap Fraction in TFTR
Hoang, G. T.
1997-04-15
The TRANSP plasma analysis code is used to calculate the bootstrap current generated during neutral-beam injection and ion cyclotron resonance frequency heating for a wide variety of TFTR discharges. An empirical scaling relation is given for the bootstrap current fraction using the ratio of the peakedness of the thermal pressure and the total current density.
NASA Astrophysics Data System (ADS)
Pimbblet, Kevin A.; Jensen, Peter C.
2012-10-01
We present an analysis of the galaxy population of the intermediate X-ray luminosity galaxy cluster, Abell 1691, from Sloan Digital Sky Survey (SDSS) and Galaxy Zoo data to elucidate the relationships between environment and galaxy stellar mass for a variety of observationally important cluster populations that include the Butcher-Oemler blue fraction, the active galactic nucleus (AGN) fraction and other spectroscopic classifications of galaxies. From 342 cluster members, we determine a cluster recession velocity of 21257 ± 54 km s-1 and velocity dispersion of 1009-36+40 km s-1 and show that although the cluster is fed by multiple filaments of galaxies it does not possess significant sub-structure in its core. We identify the AGN population of the cluster from a Baldwin, Phillips & Terlevich diagram and show that there is a mild increase in the AGN fraction with radius from the cluster centre that appears mainly driven by high-mass galaxies [log(stellar mass) > 10.8]. Although the cluster blue fraction follows the same radial trend, it is caused primarily by lower mass galaxies [log(stellar mass) < 10.8]. Significantly, the galaxies that have undergone recent starbursts or are presently starbursting but dust-shrouded [spectroscopic e(a) class galaxies] are also nearly exclusively driven by low-mass galaxies. We therefore suggest that the Butcher-Oemler effect may be a mass-dependent effect. We also examine red and passive spiral galaxies and show that the majority are massive galaxies, much like the rest of the red and spectroscopically passive cluster population. We further demonstrate that the velocity dispersion profiles of low- and high-mass cluster galaxies are different. Taken together, we infer that the duty cycle of high- and low-mass cluster galaxies is markedly different, with a significant departure in star formation and specific star formation rates observed beyond r200 and we discuss these findings.
Byeon, Seul Kee; Kim, Jin Yong; Lee, Ju Yong; Chung, Bong Chul; Seo, Hong Seog; Moon, Myeong Hee
2015-07-31
This study demonstrated the performances of top-down and bottom-up approaches in lipidomic analysis of lipoproteins from rabbits raised under different metabolic conditions: healthy controls, carrageenan-induced inflammation, dehydration, high cholesterol (HC) diet, and highest cholesterol diet with inflammation (HCI). In the bottom-up approach, the high density lipoproteins (HDL) and the low density lipoproteins (LDL) were size-sorted and collected on a semi-preparative scale using a multiplexed hollow fiber flow field-flow fractionation (MxHF5), followed by nanoflow liquid chromatography-ESI-MS/MS (nLC-ESI-MS/MS) analysis of the lipids extracted from each lipoprotein fraction. In the top-down method, size-fractionated lipoproteins were directly infused to MS for quantitative analysis of targeted lipids using chip-type asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry (cAF4-ESI-MS/MS) in selected reaction monitoring (SRM) mode. The comprehensive bottom-up analysis yielded 122 and 104 lipids from HDL and LDL, respectively. Rabbits within the HC and HCI groups had lipid patterns that contrasted most substantially from those of controls, suggesting that HC diet significantly alters the lipid composition of lipoproteins. Among the identified lipids, 20 lipid species that exhibited large differences (>10-fold) were selected as targets for the top-down quantitative analysis in order to compare the results with those from the bottom-up method. Statistical comparison of the results from the two methods revealed that the results were not significantly different for most of the selected species, except for those species with only small differences in concentration between groups. The current study demonstrated that top-down lipid analysis using cAF4-ESI-MS/MS is a powerful high-speed analytical platform for targeted lipidomic analysis that does not require the extraction of lipids from blood samples. PMID:26087967
Analysis of 953 Human Proteins from a Mitochondrial HEK293 Fraction by Complexome Profiling
Wessels, Hans J. C. T.; Vogel, Rutger O.; Lightowlers, Robert N.; Spelbrink, Johannes N.; Rodenburg, Richard J.; van den Heuvel, Lambert P.; van Gool, Alain J.; Gloerich, Jolein; Smeitink, Jan A. M.; Nijtmans, Leo G.
2013-01-01
Complexome profiling is a novel technique which uses shotgun proteomics to establish protein migration profiles from fractionated blue native electrophoresis gels. Here we present a dataset of blue native electrophoresis migration profiles for 953 proteins by complexome profiling. By analysis of mitochondrial ribosomal complexes we demonstrate its potential to verify putative protein-protein interactions identified by affinity purification – mass spectrometry studies. Protein complexes were extracted in their native state from a HEK293 mitochondrial fraction and separated by blue native gel electrophoresis. Gel lanes were cut into gel slices of even size and analyzed by shotgun proteomics. Subsequently, the acquired protein migration profiles were analyzed for co-migration via hierarchical cluster analysis. This dataset holds great promise as a comprehensive resource for de novo identification of protein-protein interactions or to underpin and prioritize candidate protein interactions from other studies. To demonstrate the potential use of our dataset we focussed on the mitochondrial translation machinery. Our results show that mitoribosomal complexes can be analyzed by blue native gel electrophoresis, as at least four distinct complexes. Analysis of these complexes confirmed that 24 proteins that had previously been reported to co-purify with mitoribosomes indeed co-migrated with subunits of the mitochondrial ribosome. Co-migration of several proteins involved in biogenesis of inner mitochondrial membrane complexes together with mitoribosomal complexes suggested the possibility of co-translational assembly in human cells. Our data also highlighted a putative ribonucleotide complex that potentially contains MRPL10, MRPL12 and MRPL53 together with LRPPRC and SLIRP. PMID:23935861
Multi-scale analysis and optimized design of laminated-MRE bearings
NASA Astrophysics Data System (ADS)
Chen, Shiwei; Li, Rui; Zhang, Ze; Wang, Xiaojie
2016-04-01
We propose a method to analyze and design a laminated MRE bearing, in which the optimal parameters of materials and mechanical structure of the MRE bearing are determined. Based on the multi-scale and magneto-mechanical coupling theories, we establish a comprehensive model for the MRE bearing considering the influence of particle volume fraction, particle distribution, and thickness of MRE laminated layers on its mechanical performance. Within the micro-scale analysis, the representative volume unit (RVU) is used to address the effect of particle volume fraction and distribution on mechanical and magnetic properties of MRE itself. Within the macro-scale analysis, we build both mechanical and magnetic models for the laminated MRE bearing. Based on the theoretical analysis, a laminated MRE bearing with four-layer MRE is designed and fabricated. The performance of the MRE bearing has been tested by using MTS test bench. The results are compared with that of model analysis. It demonstrates that the proposed method can be a useful tool in the development of laminated-MRE bearings for practical applications.
FACTOR ANALYSIS OF THE ELKINS HYPNOTIZABILITY SCALE
Elkins, Gary; Johnson, Aimee K.; Johnson, Alisa J.; Sliwinski, Jim
2015-01-01
Assessment of hypnotizability can provide important information for hypnosis research and practice. The Elkins Hypnotizability Scale (EHS) consists of 12 items and was developed to provide a time-efficient measure for use in both clinical and laboratory settings. The EHS has been shown to be a reliable measure with support for convergent validity with the Stanford Hypnotic Susceptibility Scale, Form C (r = .821, p < .001). The current study examined the factor structure of the EHS, which was administered to 252 adults (51.3% male; 48.7% female). Average time of administration was 25.8 minutes. Four factors selected on the basis of the best theoretical fit accounted for 63.37% of the variance. The results of this study provide an initial factor structure for the EHS. PMID:25978085
Differential branching fraction and angular analysis of Λ {/b 0} → Λμ + μ - decays
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A. C.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.
2015-06-01
The differential branching fraction of the rare decay Λ {/b 0} → Λμ + μ - is measured as a function of q 2, the square of the dimuon invariant mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of 3 .0 fb-1, collected by the LHCb experiment. Evidence of signal is observed in the q 2 region below the square of the J/ψ mass. Integrating over 15 < q 2 < 20 GeV2 /c 4 the differential branching fraction is measured as where the uncertainties are statistical, systematic and due to the normalisation mode, Λ {/b 0} → J/ ψΛ, respectively. In the q 2 intervals where the signal is observed, angular distributions are studied and the forward-backward asymmetries in the dimuon ( A {FB/ ℓ }) and hadron ( A {FB/ h }) systems are measured for the first time. In the range 15 < q 2 < 20 GeV2 /c 4 they are found to be [Figure not available: see fulltext.
Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao
2016-08-01
The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative. PMID:27586619
Computational methods for criticality safety analysis within the scale system
Parks, C.V.; Petrie, L.M.; Landers, N.F.; Bucholz, J.A.
1986-01-01
The criticality safety analysis capabilities within the SCALE system are centered around the Monte Carlo codes KENO IV and KENO V.a, which are both included in SCALE as functional modules. The XSDRNPM-S module is also an important tool within SCALE for obtaining multiplication factors for one-dimensional system models. This paper reviews the features and modeling capabilities of these codes along with their implementation within the Criticality Safety Analysis Sequences (CSAS) of SCALE. The CSAS modules provide automated cross-section processing and user-friendly input that allow criticality safety analyses to be done in an efficient and accurate manner. 14 refs., 2 figs., 3 tabs.
Muriano, A; Chabottaux, V; Diserens, J-M; Granier, B; Sanchez-Baeza, F; Marco, M-P
2015-07-01
A rapid high-throughput immunochemical screening (HtiS) procedure for the analysis of the sulfonamide (SA)-sugar conjugated fraction of antibiotic contaminated honey samples has been developed. Studies performed with this matrix have indicated that sulfonamide antibiotics are conjugated to sugars rapidly and quantitatively, providing samples with very low SA immunoreactivity. Therefore, sulfonamides must be first released before the analysis, and for this purpose, a simple and fast sample preparation procedure has been established consisting of hydrolyzing the sample for 5 min, adjusting the pH and buffering the sample prior to the immunochemical analysis. Under these conditions, honey samples could be directly analyzed without any additional sample treatment, other than dilution. Recovery values of the whole analytical procedure were greater than 85%. The analysis of the same samples without the hydrolysis provided recovery values below 5%. Selectivity studies performed in hydrolyzed honey samples revealed that nine relevant sulfonamide antibiotics can be detected with limit of detection (LOD) values below the action limits established by some EU countries (Belgium, 20 μg kg(-1), United Kingdom or Switzerland, 50 μg kg(-1)). PMID:25704696
NASA Astrophysics Data System (ADS)
Wang, Xiao-Tian
2011-05-01
This paper deals with the problem of discrete time option pricing using the fractional Black-Scholes model with transaction costs. Through the ‘anchoring and adjustment’ argument in a discrete time setting, a European call option pricing formula is obtained. The minimal price of an option under transaction costs is obtained. In addition, the relation between scaling and implied volatility smiles is discussed.
Local variance for multi-scale analysis in geomorphometry
Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas
2011-01-01
Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements. PMID:21779138
Lie Symmetry Analysis and Conservation Laws of a Generalized Time Fractional Foam Drainage Equation
NASA Astrophysics Data System (ADS)
Wang, Li; Tian, Shou-Fu; Zhao, Zhen-Tao; Song, Xiao-Qiu
2016-07-01
In this paper, a generalized time fractional nonlinear foam drainage equation is investigated by means of the Lie group analysis method. Based on the Riemann—Liouville derivative, the Lie point symmetries and symmetry reductions of the equation are derived, respectively. Furthermore, conservation laws with two kinds of independent variables of the equation are performed by making use of the nonlinear self-adjointness method. Supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant No. 201410290039, the Fundamental Research Funds for the Central Universities under Grant Nos. 2015QNA53 and 2015XKQY14, the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Mines, the General Financial Grant from the China Postdoctoral Science Foundation under Grant No. 2015M570498, and Natural Sciences Foundation of China under Grant No. 11301527
Lee, Chin-Pang; Chen, Yu; Jiang, Kun-Hao; Chu, Chun-Lin; Chiu, Yu-Wen; Chen, Jiun-Liang; Chen, Ching-Yen
2016-06-01
The aim of this study was to develop a psychometrically sound short version of the 17-item Aging Males' Symptoms (AMS) scale using Mokken scale analysis (MSA) and Rasch analysis. We recruited a convenient sample of 1787 men (age: mean (SD) = 43.8 (11.5) years) who visited a men's health polyclinic in Taiwan and completed the AMS scale. The scale was first assessed using MSA. The remaining items were assessed using Rasch analysis. We used a stepwise approach to remove items with χ(2) item statistics and mean square values while monitoring unidimensionality. The item reduction process resulted in a 6-item version of the AMS scale (AMS-6). The AMS-6 scale included a 5-item psychosomatic subscale (original items 1, 4, 5, 8, and 9) and a 1-item sexual subscale (original item 16). Analyses confirmed that the 5-item psychosomatic subscale was a Rasch scale. The AMS-6 correlated well with the AMS scales: the 5-item psychosomatic subscale correlated with the AMS scale (r between 0.50 and 0.92); the 1-item sexual subscale correlated with the sexual subscale of the AMS scale (r = 0.81). A 6-item short form of the AMS scale had satisfactory measurement properties. This version may be useful for estimating psychosomatic and sexual symptoms as well as health-related quality of life with a minimal burden on respondents. PMID:26984738
NASA Astrophysics Data System (ADS)
Lods, Gerard; Gouze, Philippe
2004-11-01
The identification of the hydraulic characteristics and transport properties of fractured reservoirs requires the development of specific models that account for (i) the medium heterogeneity, e.g. the presence of major conductive fractures that delimit capacitive matrix blocks, with weakly open, dead end or isolated fractures , and (ii) for the geometrical arrangement of the major conductive fractures network, which dominates the flow at the scale of the well tests. Well Tests in Fractured Media (WTFM) software takes into account these two main features by combining radial flow generalized to fractional dimension, with the theory of double-porosity, including diffusivity in the second porosity, transient inter-porosity flow and inter-porosity skin effect, and with leakance. The implementation of this nD model, with n fractional, extends usefully the domain of application of the usual 1D/2D/3D double-porosity/leakance models for a large range of connection levels of fracture networks. Although the fractures geometry and properties are not considered one by one, or by directional families, they are taken into account by averaged properties and by the impact that the whole network has on the hydrodynamic behaviour. The accuracy of the coupled transient behaviours analysis is augmented by taking into account wellbore storage and skin effects. All together, the use of these different options allows matching a wide range of pumping test curves, characteristics of distinctive behaviours, with a limited number of parameters. Distinctive well test experiments, in both sedimentary and crystalline rocks, are presented for enlightening how the pertinent use of the model options improves predictions.
NASA Astrophysics Data System (ADS)
Tan, Cheng; Liang, Zhi-Shan
2016-03-01
In this paper, based on the fact that the inductors and capacitors are of fractional order in nature, the four-order mathematical model of the fractional order quadratic Boost converter in type I and type II discontinuous conduction mode (DCM) — DCM is established by using fractional calculus theory. Direct current (DC) analysis is conducted by using the DC equivalent model and the transfer functions are derived from the corresponding alternating current (AC) equivalent model. The DCM-DCM regions of type I and type II are obtained and the relations between the regions and the orders are found. The influence of the orders on the performance of the quadratic Boost converter in DCM-DCM is verified by numerical and circuit simulations. Simulation results demonstrate the correctness of the fractional order model and the efficiency of the proposed theoretical analysis.
NASA Astrophysics Data System (ADS)
Yaşar, Emrullah; Yıldırım, Yakup; Khalique, Chaudry Masood
In this paper Lie symmetry analysis of the seventh-order time fractional Sawada-Kotera-Ito (FSKI) equation with Riemann-Liouville derivative is performed. Using the Lie point symmetries of FSKI equation, it is shown that it can be transformed into a nonlinear ordinary differential equation of fractional order with a new dependent variable. In the reduced equation the derivative is in Erdelyi-Kober sense. Furthermore, adapting the Ibragimov's nonlocal conservation method to time fractional partial differential equations, we obtain conservation laws of the underlying equation. In addition, we construct some exact travelling wave solutions for the FSKI equation using the sub-equation method.
Ding, Cody S
2005-02-01
Although multidimensional scaling (MDS) profile analysis is widely used to study individual differences, there is no objective way to evaluate the statistical significance of the estimated scale values. In the present study, a resampling technique (bootstrapping) was used to construct confidence limits for scale values estimated from MDS profile analysis. These bootstrap confidence limits were used, in turn, to evaluate the significance of marker variables of the profiles. The results from analyses of both simulation data and real data suggest that the bootstrap method may be valid and may be used to evaluate hypotheses about the statistical significance of marker variables of MDS profiles. PMID:16097342
Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery.
Zattoni, Andrea; Roda, Barbara; Borghi, Francesco; Marassi, Valentina; Reschiglian, Pierluigi
2014-01-01
Structured nanoparticles (NPs) with controlled size distribution and novel physicochemical features present fundamental advantages as drug delivery systems with respect to bulk drugs. NPs can transport and release drugs to target sites with high efficiency and limited side effects. Regulatory institutions such as the US Food and Drug Administration (FDA) and the European Commission have pointed out that major limitations to the real application of current nanotechnology lie in the lack of homogeneous, pure and well-characterized NPs, also because of the lack of well-assessed, robust routine methods for their quality control and characterization. Many properties of NPs are size-dependent, thus the particle size distribution (PSD) plays a fundamental role in determining the NP properties. At present, scanning and transmission electron microscopy (SEM, TEM) are among the most used techniques to size characterize NPs. Size-exclusion chromatography (SEC) is also applied to the size separation of complex NP samples. SEC selectivity is, however, quite limited for very large molar mass analytes such as NPs, and interactions with the stationary phase can alter NP morphology. Flow field-flow fractionation (F4) is increasingly used as a mature separation method to size sort and characterize NPs in native conditions. Moreover, the hyphenation with light scattering (LS) methods can enhance the accuracy of size analysis of complex samples. In this paper, the applications of F4-LS to NP analysis used as drug delivery systems for their size analysis, and the study of stability and drug release effects are reviewed. PMID:24012480
NASA Astrophysics Data System (ADS)
Heitkamp, Felix; Vuong, Xuan; Reimer, Andreas; Jungkunst, Hermann
2015-04-01
Organic carbon (OC) in environmental samples consists of a continuum of molecules with different chemistry and turnover. Thermal methods provide a useful tool to differentiate OC fractions according to their activation energies. The higher the temperature needed for combustion, the higher the activation energy and the lower the energy-gain for microorganisms in the decomposition process. However, until now there is no method, which is able to quantify organic carbon fractions as well as total, organic and inorganic carbon in one analytical run. Here, we present methodological tests regarding effects of (1) ramp speed (12 vs. 35°C), (2) introduction of temperature plateaus (hold) for better peak separation and (3) sample amount, all of which potentially affecting results of thermal analysis. The used machine is a MCD RC-412 (Leco corporation) with highly resolved IR detection of CO2 (3 times per second) during ramped combustion. Regression analysis of the two ramp speeds showed, that the outcome of anlysis was not affected. The intercept was not significantly different from 0 (0.14 ±3.15, p = 0.961) and the slope not significantly different from 1 (0.996 ±0.0094, p = 0.969). A ramp speed of 35oC min-1 is preferred because of decreased analysis time. Performing analytical runs with and without holds showed again, that the intercept was not significantly different from 0 (-1.40 ± 1.14, p = 0.232) and the slope did not differ significantly from 1 (1.081 ± 0.042, p =0.067). Inclusion of a ramp increases confidence in results due to better peak separation. However, this was only tested for a range of different soils and care should be taken to transfer results to other environmental media and should be tested specifically for soil types not tested, yet. The amount of sample had some effect, especially when using more than 20 mg sample. Thus, sample amount shoulb be kept low, which calls for excellent homogenization of sample material. Overall, the MCD RC-412 with
Rasch Analysis of the Geriatric Depression Scale--Short Form
ERIC Educational Resources Information Center
Chiang, Karl S.; Green, Kathy E.; Cox, Enid O.
2009-01-01
Purpose: The purpose of this study was to examine scale dimensionality, reliability, invariance, targeting, continuity, cutoff scores, and diagnostic use of the Geriatric Depression Scale-Short Form (GDS-SF) over time with a sample of 177 English-speaking U.S. elders. Design and Methods: An item response theory, Rasch analysis, was conducted with…
Component Cost Analysis of Large Scale Systems
NASA Technical Reports Server (NTRS)
Skelton, R. E.; Yousuff, A.
1982-01-01
The ideas of cost decomposition is summarized to aid in the determination of the relative cost (or 'price') of each component of a linear dynamic system using quadratic performance criteria. In addition to the insights into system behavior that are afforded by such a component cost analysis CCA, these CCA ideas naturally lead to a theory for cost-equivalent realizations.
NASA Astrophysics Data System (ADS)
Samkharadze, N.; Watson, J. D.; Gardner, G.; Manfra, M. J.; Pfeiffer, L. N.; West, K. W.; Csáthy, G. A.
2011-09-01
We report a reliable method to estimate the disorder broadening parameter from the scaling of the gaps of the even and major odd denominator fractional quantum Hall states of the second Landau level. We apply this technique to several samples of vastly different densities and grown in different molecular beam epitaxy chambers. Excellent agreement is found between the estimated intrinsic and numerically obtained energy gaps for the ν=5/2 fractional quantum Hall state. Furthermore, we quantify the dependence of the intrinsic gap at ν=5/2 on Landau-level mixing.
Lin, Guoxing
2015-10-01
Pulsed field gradient (PFG) diffusion measurement has a lot of applications in NMR and MRI. Its analysis relies on the ability to obtain the signal attenuation expressions, which can be obtained by averaging over the accumulating phase shift distribution (APSD). However, current theoretical models are not robust or require approximations to get the APSD. Here, a new formalism, an effective phase shift diffusion (EPSD) equation method is presented to calculate the APSD directly. This is based on the idea that the gradient pulse effect on the change of the APSD can be viewed as a diffusion process in the virtual phase space (VPS). The EPSD has a diffusion coefficient, K(β)(t)D rad(β)/s(α), where α is time derivative order and β is a space derivative order, respectively. The EPSD equations of VPS are built based on the diffusion equations of real space by replacing the diffusion coefficients and the coordinate system (from real space coordinate to virtual phase coordinate). Two different models, the fractal derivative model and the fractional derivative model from the literature were used to build the EPSD fractional diffusion equations. The APSD obtained from solving these EPSD equations were used to calculate the PFG signal attenuation. From the fractal derivative model the attenuation is exp(-γ(β)g(β)δ(β)Df1t(α)), a stretched exponential function (SEF) attenuation, while from the fractional derivative model the attenuation is Eα,1(-γ(β)g(β)δ(β)Df2t(α)), a Mittag-Leffler function (MLF) attenuation. The MLF attenuation can be reduced to SEF attenuation when α=1, and can be approximated as a SEF attenuation when the attenuation is small. Additionally, the effect of finite gradient pulse widths (FGPW) is calculated. From the fractal derivative model, the signal attenuation including FGPW effect is exp[ -Df1∫0(τ) K(β)(t)dt(α)]. The results obtained in this study are in good agreement with the results in literature. Several expressions that
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2015-10-01
Pulsed field gradient (PFG) diffusion measurement has a lot of applications in NMR and MRI. Its analysis relies on the ability to obtain the signal attenuation expressions, which can be obtained by averaging over the accumulating phase shift distribution (APSD). However, current theoretical models are not robust or require approximations to get the APSD. Here, a new formalism, an effective phase shift diffusion (EPSD) equation method is presented to calculate the APSD directly. This is based on the idea that the gradient pulse effect on the change of the APSD can be viewed as a diffusion process in the virtual phase space (VPS). The EPSD has a diffusion coefficient, Kβ(t)D radβ/sα, where α is time derivative order and β is a space derivative order, respectively. The EPSD equations of VPS are built based on the diffusion equations of real space by replacing the diffusion coefficients and the coordinate system (from real space coordinate to virtual phase coordinate). Two different models, the fractal derivative model and the fractional derivative model from the literature were used to build the EPSD fractional diffusion equations. The APSD obtained from solving these EPSD equations were used to calculate the PFG signal attenuation. From the fractal derivative model the attenuation is exp(-γβgβδβDf1 tα), a stretched exponential function (SEF) attenuation, while from the fractional derivative model the attenuation is Eα,1(-γβgβδβDf2 tα), a Mittag-Leffler function (MLF) attenuation. The MLF attenuation can be reduced to SEF attenuation when α = 1, and can be approximated as a SEF attenuation when the attenuation is small. Additionally, the effect of finite gradient pulse widths (FGPW) is calculated. From the fractal derivative model, the signal attenuation including FGPW effect is exp[ -Df1 ∫0τ Kβ (t)dtα ] . The results obtained in this study are in good agreement with the results in literature. Several expressions that describe signal
SCALE ANALYSIS OF CONVECTIVE MELTING WITH INTERNAL HEAT GENERATION
John Crepeau
2011-03-01
Using a scale analysis approach, we model phase change (melting) for pure materials which generate internal heat for small Stefan numbers (approximately one). The analysis considers conduction in the solid phase and natural convection, driven by internal heat generation, in the liquid regime. The model is applied for a constant surface temperature boundary condition where the melting temperature is greater than the surface temperature in a cylindrical geometry. We show the time scales in which conduction and convection heat transfer dominate.
A new transform for the analysis of complex fractionated atrial electrograms
2011-01-01
Background Representation of independent biophysical sources using Fourier analysis can be inefficient because the basis is sinusoidal and general. When complex fractionated atrial electrograms (CFAE) are acquired during atrial fibrillation (AF), the electrogram morphology depends on the mix of distinct nonsinusoidal generators. Identification of these generators using efficient methods of representation and comparison would be useful for targeting catheter ablation sites to prevent arrhythmia reinduction. Method A data-driven basis and transform is described which utilizes the ensemble average of signal segments to identify and distinguish CFAE morphologic components and frequencies. Calculation of the dominant frequency (DF) of actual CFAE, and identification of simulated independent generator frequencies and morphologies embedded in CFAE, is done using a total of 216 recordings from 10 paroxysmal and 10 persistent AF patients. The transform is tested versus Fourier analysis to detect spectral components in the presence of phase noise and interference. Correspondence is shown between ensemble basis vectors of highest power and corresponding synthetic drivers embedded in CFAE. Results The ensemble basis is orthogonal, and efficient for representation of CFAE components as compared with Fourier analysis (p ≤ 0.002). When three synthetic drivers with additive phase noise and interference were decomposed, the top three peaks in the ensemble power spectrum corresponded to the driver frequencies more closely as compared with top Fourier power spectrum peaks (p ≤ 0.005). The synthesized drivers with phase noise and interference were extractable from their corresponding ensemble basis with a mean error of less than 10%. Conclusions The new transform is able to efficiently identify CFAE features using DF calculation and by discerning morphologic differences. Unlike the Fourier transform method, it does not distort CFAE signals prior to analysis, and is relatively
Scaling analysis of multi-variate intermittent time series
NASA Astrophysics Data System (ADS)
Kitt, Robert; Kalda, Jaan
2005-08-01
The scaling properties of the time series of asset prices and trading volumes of stock markets are analysed. It is shown that similar to the asset prices, the trading volume data obey multi-scaling length-distribution of low-variability periods. In the case of asset prices, such scaling behaviour can be used for risk forecasts: the probability of observing next day a large price movement is (super-universally) inversely proportional to the length of the ongoing low-variability period. Finally, a method is devised for a multi-factor scaling analysis. We apply the simplest, two-factor model to equity index and trading volume time series.
Scaling Limit Analysis of Borromean Halos
NASA Astrophysics Data System (ADS)
Souza, L. A.; Bellotti, F. F.; Frederico, T.; Yamashita, M. T.; Tomio, Lauro
2016-05-01
The analysis of the core recoil momentum distribution of neutron-rich isotopes of light exotic nuclei is performed within a model of halo nuclei described by a core and two neutrons dominated by the s-wave channel. We adopt the renormalized three-body model with a zero-range force, which accounts for the Efimov physics. This model is applicable to nuclei with large two-neutron halos compared to the core size, and a neutron-core scattering length larger than the interaction range. The halo wave function in momentum space is obtained by using as inputs the two-neutron separation energy and the energies of the singlet neutron-neutron and neutron-core virtual states. Within our model, we obtain the momentum probability densities for the Borromean exotic nuclei Lithium-11 (^{11}Li), Berylium-14 (^{14}Be) and Carbon-22 (^{22}C). A fair reproduction of the experimental data was obtained in the case of the core recoil momentum distribution of ^{11}Li and ^{14}Be, without free parameters. By extending the model to ^{22}C, the combined analysis of the core momentum distribution and matter radius suggest (i) a ^{21}C virtual state well below 1 MeV; (ii) an overestimation of the extracted matter ^{22}C radius; and (iii) a two-neutron separation energy between 100 and 400 keV.
NASA Astrophysics Data System (ADS)
Frąckowiak, Anna; Koźlecki, Tomasz; Skibiński, PrzemysŁaw; GaweŁ, WiesŁaw; Zaczyńska, Ewa; Czarny, Anna; Piekarska, Katarzyna; Gancarz, Roman
2010-11-01
Procedures for obtaining noncytotoxic and nonmutagenic extracts from Humulus lupulus L. of high potency for inhibition and dissolving of model (calcium oxalate crystals) and real kidney stones, obtained from patients after surgery, are presented. Multistep extraction procedures were performed in order to obtain the preparations with the highest calcium complexing properties. The composition of obtained active fractions was analyzed by GC/MS and NMR methods. The influence of preparations on inhibition of formation and dissolution of model and real kidney stones were evaluated based on conductrometric titration, flame photometry and microscopic analysis. The "fraction soluble in methanol" obtained from water-alkaline extracts contains sugar alcohols and organic acids, and is effective in dissolving the kidney stones. The "fraction insoluble in methanol" contains only sugar derivatives and it changes the morphology of the crystals, making them "jelly-like". Both fractions are potentially effective in kidney stone therapy.
Scaling Analysis of Nanoelectromechanical Memory Devices
NASA Astrophysics Data System (ADS)
Nagami, Tasuku; Tsuchiya, Yoshishige; Uchida, Ken; Mizuta, Hiroshi; Oda, Shunri
2010-04-01
Numerical simulation of electromechanical switching for bistable bridges in non-volatile nanoelectromechanical (NEM) memory devices suggests that performance of memory characteristics enhanced by decreasing suspended floating gate length. By conducting a two-dimensional finite element electromechanical simulation combined with a drift-diffusion analysis, we analyze the electromechanical switching operation of miniaturized structures. By shrinking the NEM floating gate length from 1000 to 100 nm, the switching (set/reset) voltage reduces from 7.2 to 2.8 V, switching time from 63 to 4.6 ns, power consumption from 16.9 to 0.13 fJ. This indicates the advantage of fast and low-power memory characteristics.
NASA Astrophysics Data System (ADS)
Naveen, T.; Supe, Sanjay S.; Ganesh, K. M.; Samuel, Jacob
2009-01-01
Bone metastases develop in up to 70% of newly diagnosed cancer patients and result in immobility, anxiety, and depression, severely diminishing the patients quality of life. Radiotherapy is a frequently used modality for bone metastasis and has been shown to be effective in reducing metastatic bone pain and in some instances, causing tumor shrinkage or growth inhibition. There is controversy surrounding the optimal fractionation schedule and total dose of external beam radiotherapy, despite many randomized trials and overviews addressing the issue. This study was undertaken to apply BED to clinical fractionation data of radiotherapeutic management of bone metastases in order to arrive at optimum BED values for acceptable level of response rate. A computerised literature search was conducted to identify all prospective clinical studies that addressed the issue of fractionation for the treatment of bone metastasis. The results of these studies were pooled together to form the database for the analysis. A total of 4111 number of patients received radiation dose ranging from 4 to 40.5 Gy in 1 to 15 fractions with dose per fraction ranging from 2 to 10 Gy. Single fraction treatments were delivered in 2013 patients and the dose varied from 4 to 10 Gy. Multifraction treatments were delivered in 2098 patients and the dose varied from 15 to 40.5 Gy. The biological effective dose (BED) was evaluated for each fractionation schedule using the linear quadratic model and an α/β value of 10 Gy. Response rate increased significantly beyond a BED value of 14.4 Gy (p < 0.01). Based on our analysis and indications from the literature about higher retreatment and fracture rate of single fraction treatments, minimum BED value of 14.4 Gy is recommended.
NASA Astrophysics Data System (ADS)
Makarova, Yuliya; Sokolov, Sergey; Glukhov, Anton
2014-05-01
The Shamanikha-Stolbovsky gold cluster is located in the North-East of Russia, in the basin of the Kolyma River. In 1933, gold placers were discovered there, but the search for significant gold targets for more than 50 years did not give positive results. In 2009-2011, geochemical and geophysical studies, mining and drilling were conducted within this cluster. Geochemical exploration was carried out in a modification based on superimposed secondary sorption-salt haloes (sampling density of 250x250 m, 250x50 m, 250x20 m) using the superfine fraction analysis method (SFAM) because of complicated landscape conditions (thick Quaternary sediments, widespread permafrost). The method consists in the extraction of superfine fraction (<10 microns) from unconsolidated sediment samples followed by transfer to a solution of sorption-salt forms of elements and analysis using quantitative methods. The method worked well in areal geochemical studies of various scales in the Karelian-Kola region and in the Far East. Main results of the work in the Shamanikha-Stolbovsky area: 1. Geochemical exploration using the hyperfine fractions analysis method with sampling density of 250x250 m allowed the identification of zonal anomalous geochemical fields (AGCF) classified as an ore deposit promising for the discovery of gold mineralization (Nadezhda, Timsha, and Temny prospects). These AGCF are characterized by following three-zonal structure (from the center to the periphery): nucleus zone - area of centripetal elements concentration (Au, Ag, Sb, As, Cu, Hg, Bi, Pb, Mo); exchange zone - area of centrifugal elements concentration (Mn, Zn, V, Ti, Co, Cr, Ni); flank concentration zone - area of elevated contents of centripetal elements with subbackground centrifugal elements. 2. Detailed AGCF studies with sampling density of 250x50 m (250x20 m) in the Nadezhda, Timsha, and Temny prospects made it possible to refine the composition and structure of anomalous geochemical fields, identify
Brand, Janina; Voigt, Katharina; Zochowski, Bianca; Kulozik, Ulrich
2016-03-18
The application of membrane adsorbers instead of classical packed bed columns for protein fractionation is still a growing field. In the case of egg white protein fractionation, the application of classical chromatography is additionally limited due to its high viscosity that impairs filtration. By using tangential flow membrane adsorbers as stationary phase this limiting factor can be left out, as they can be loaded with particle containing substrates. The flow conditions existing in tangential flow membrane adsorbers are not fully understood yet. Thus, the aim of the present study was to gain a deeper understanding of the transport mechanisms in tangential flow membrane adsorbers. It was found that loading in recirculation mode instead of single pass mode increased the binding capacity (0.39 vs. 0.52mgcm(-2)). Further, it was shown that either higher flow rates (0.39mgcm(-2) vs. 0.57mgcm(-2) at 1CVmin(-1) or 20CVmin(-1), respectively) or higher amounts of the target protein in the feed (0.24mgcm(-2) vs. 0.85mgcm(-2) for 2.5 or 39.0g lysozyme, respectively) led to more protein binding. These results show that, in contrast to radial flow or flat sheet membrane adsorbers, the transport in tangential flow membrane adsorbers is not purely based on convection, but on a mix of convection and diffusion. Additionally, investigations concerning the influence of fouling formation were performed that can lead to transport limitations. It was found that this impact is neglectable. It can be concluded that the usage of tangential flow membrane adsorbers is very recommendable for egg white protein fractionations, although the transport is partly diffusion-limited. PMID:26898148
Psychometric Analysis of Role Conflict and Ambiguity Scales in Academia
ERIC Educational Resources Information Center
Khan, Anwar; Yusoff, Rosman Bin Md.; Khan, Muhammad Muddassar; Yasir, Muhammad; Khan, Faisal
2014-01-01
A comprehensive Psychometric Analysis of Rizzo et al.'s (1970) Role Conflict & Ambiguity (RCA) scales were performed after its distribution among 600 academic staff working in six universities of Pakistan. The reliability analysis includes calculation of Cronbach Alpha Coefficients and Inter-Items statistics, whereas validity was determined by…
A Statistical Analysis of the Charles F. Kettering Climate Scale.
ERIC Educational Resources Information Center
Johnson, William L.; Dixon, Paul N.
A statistical analysis was performed on the Charles F. Kettering (CFK) Scale, a popular four-section measure of school climate. The study centered on a multivariate analysis of Part A, the General Climate Factors section of the instrument, using data gathered from several elementary, junior high, and high school campuses in a large school district…
ERIC Educational Resources Information Center
de la Torre, Jimmy; Douglas, Jeffrey A.
2008-01-01
This paper studies three models for cognitive diagnosis, each illustrated with an application to fraction subtraction data. The objective of each of these models is to classify examinees according to their mastery of skills assumed to be required for fraction subtraction. We consider the DINA model, the NIDA model, and a new model that extends the…
Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine
2014-01-01
Background Forestry residues consisting of softwood are a major lignocellulosic resource for production of liquid biofuels. Scots pine, a commercially important forest tree, was fractionated into seven fractions of chips: juvenile heartwood, mature heartwood, juvenile sapwood, mature sapwood, bark, top parts, and knotwood. The different fractions were characterized analytically with regard to chemical composition and susceptibility to dilute-acid pretreatment and enzymatic saccharification. Results All fractions were characterized by a high glucan content (38-43%) and a high content of other carbohydrates (11-14% mannan, 2-4% galactan) that generate easily convertible hexose sugars, and by a low content of inorganic material (0.2-0.9% ash). The lignin content was relatively uniform (27-32%) and the syringyl-guaiacyl ratio of the different fractions were within the range 0.021-0.025. The knotwood had a high content of extractives (9%) compared to the other fractions. The effects of pretreatment and enzymatic saccharification were relatively similar, but without pretreatment the bark fraction was considerably more susceptible to enzymatic saccharification. Conclusions Since sawn timber is a main product from softwood species such as Scots pine, it is an important issue whether different parts of the tree are equally suitable for bioconversion processes. The investigation shows that bioconversion of Scots pine is facilitated by that most of the different fractions exhibit relatively similar properties with regard to chemical composition and susceptibility to techniques used for bioconversion of woody biomass. PMID:24641769
Mehmood, Nasir; Zubaır, Muhammad; Rızwan, Komal; Rasool, Nasır; Shahid, Muhammad; Uddin Ahmad, Viqar
2012-01-01
This study was carried out to evaluate the antimicrobial and antioxidant effectiveness of methanolic extract and different fractions (n-butanol, ethyl acetate, chloroform and n-hexane) of C.intybus seeds. The antimicrobial activity was determined by the disc diffusion method and minimum inhibitory concentration (MIC) against a panel of microorganisms (four bacterial strains, i.e. P. multocida, E. coli, B. subtilis and S. aureus and three fungal strains, i.e A. flavus, A. niger and R. solani). The results indicated that seeds extract and fractions of C. intybus showed moderate activity as antibacterial agent. While Antifungal activity of C. intybus seeds extract/fractions was very low against A. flavus and A. niger while mild against R. solani. The C.intybus seeds extract/fractions contained appreciable levels of total phenolic contents (50.8-285 GAE mg/100g of Dry plant matter) and total flavonoid contents (43.3-150 CE mg/100g of Dry plant matter). The C. intybus seed extract/fractions also exhibited good DPPH radical scavenging activity, with IC50 ranging from 21.28-72.14 μg/mL. Of the C .intybus seeds solvent extract/fractions tested, 100% methanolic extract and ethylacetate fraction exhibited the maximum antioxidant activity. The results of the present investigation demonstrated significant (p < 0.01) variations in the antioxidant and antimicrobial activities of C. intybus seeds solvent extract/fractions. PMID:24250548
Analysis of the Two-Fraction Method for Generating Primitive Pythagoras Triples
ERIC Educational Resources Information Center
Babajee, Diyashvir Kreetee Rajiv
2012-01-01
Finding methods for generating Pythagorean triples have been of great interest to Mathematicians since the Babylonians (from 1900 to 1600 BC). One of these methods is the less known two-fraction method which works for any two fractions whose product is 2. In this work, we analyse the method and show that it can be obtained from the fact that the…
Honeycomb: Visual Analysis of Large Scale Social Networks
NASA Astrophysics Data System (ADS)
van Ham, Frank; Schulz, Hans-Jörg; Dimicco, Joan M.
The rise in the use of social network sites allows us to collect large amounts of user reported data on social structures and analysis of this data could provide useful insights for many of the social sciences. This analysis is typically the domain of Social Network Analysis, and visualization of these structures often proves invaluable in understanding them. However, currently available visual analysis tools are not very well suited to handle the massive scale of this network data, and often resolve to displaying small ego networks or heavily abstracted networks. In this paper, we present Honeycomb, a visualization tool that is able to deal with much larger scale data (with millions of connections), which we illustrate by using a large scale corporate social networking site as an example. Additionally, we introduce a new probability based network metric to guide users to potentially interesting or anomalous patterns and discuss lessons learned during design and implementation.
Analysis of Fractional Flow for Transient Two-Phase Flow in Fractal Porous Medium
NASA Astrophysics Data System (ADS)
Lu, Ting; Duan, Yonggang; Fang, Quantang; Dai, Xiaolu; Wu, Jinsui
2016-03-01
Prediction of fractional flow in fractal porous medium is important for reservoir engineering and chemical engineering as well as hydrology. A physical conceptual fractional flow model of transient two-phase flow is developed in fractal porous medium based on the fractal characteristics of pore-size distribution and on the approximation that porous medium consist of a bundle of tortuous capillaries. The analytical expression for fractional flow for wetting phase is presented, and the proposed expression is the function of structural parameters (such as tortuosity fractal dimension, pore fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as contact angle, viscosity and interfacial tension) in fractal porous medium. The sensitive parameters that influence fractional flow and its derivative are formulated, and their impacts on fractional flow are discussed.
An Analysis of Model Scale Data Transformation to Full Scale Flight Using Chevron Nozzles
NASA Technical Reports Server (NTRS)
Brown, Clifford; Bridges, James
2003-01-01
Ground-based model scale aeroacoustic data is frequently used to predict the results of flight tests while saving time and money. The value of a model scale test is therefore dependent on how well the data can be transformed to the full scale conditions. In the spring of 2000, a model scale test was conducted to prove the value of chevron nozzles as a noise reduction device for turbojet applications. The chevron nozzle reduced noise by 2 EPNdB at an engine pressure ratio of 2.3 compared to that of the standard conic nozzle. This result led to a full scale flyover test in the spring of 2001 to verify these results. The flyover test confirmed the 2 EPNdB reduction predicted by the model scale test one year earlier. However, further analysis of the data revealed that the spectra and directivity, both on an OASPL and PNL basis, do not agree in either shape or absolute level. This paper explores these differences in an effort to improve the data transformation from model scale to full scale.
Straub, Anthony P; Lin, Shihong; Elimelech, Menachem
2014-10-21
We investigate the performance of pressure retarded osmosis (PRO) at the module scale, accounting for the detrimental effects of reverse salt flux, internal concentration polarization, and external concentration polarization. Our analysis offers insights on optimization of three critical operation and design parameters--applied hydraulic pressure, initial feed flow rate fraction, and membrane area--to maximize the specific energy and power density extractable in the system. For co- and counter-current flow modules, we determine that appropriate selection of the membrane area is critical to obtain a high specific energy. Furthermore, we find that the optimal operating conditions in a realistic module can be reasonably approximated using established optima for an ideal system (i.e., an applied hydraulic pressure equal to approximately half the osmotic pressure difference and an initial feed flow rate fraction that provides equal amounts of feed and draw solutions). For a system in counter-current operation with a river water (0.015 M NaCl) and seawater (0.6 M NaCl) solution pairing, the maximum specific energy obtainable using performance properties of commercially available membranes was determined to be 0.147 kWh per m(3) of total mixed solution, which is 57% of the Gibbs free energy of mixing. Operating to obtain a high specific energy, however, results in very low power densities (less than 2 W/m(2)), indicating that the trade-off between power density and specific energy is an inherent challenge to full-scale PRO systems. Finally, we quantify additional losses and energetic costs in the PRO system, which further reduce the net specific energy and indicate serious challenges in extracting net energy in PRO with river water and seawater solution pairings. PMID:25222561
NASA Astrophysics Data System (ADS)
Shah, Nehad Ali; Khan, Ilyas
2016-07-01
This paper presents a Caputo-Fabrizio fractional derivatives approach to the thermal analysis of a second grade fluid over an infinite oscillating vertical flat plate. Together with an oscillating boundary motion, the heat transfer is caused by the buoyancy force induced by temperature differences between the plate and the fluid. Closed form solutions of the fluid velocity and temperature are obtained by means of the Laplace transform. The solutions of ordinary second grade and Newtonian fluids corresponding to time derivatives of integer and fractional orders are obtained as particular cases of the present solutions. Numerical computations and graphical illustrations are used in order to study the effects of the Caputo-Fabrizio time-fractional parameter α, the material parameter α _2 , and the Prandtl and Grashof numbers on the velocity field. A comparison for time derivative of integer order versus fractional order is shown graphically for both Newtonian and second grade fluids. It is found that fractional fluids (second grade and Newtonian) have highest velocities. This shows that the fractional parameter enhances the fluid flow.
Tiessen, Axel; Nerlich, Annika; Faix, Benjamin; Hümmer, Christine; Fox, Simon; Trafford, Kay; Weber, Hans; Weschke, Winfriede; Geigenberger, Peter
2012-01-01
Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80–90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published Km values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective Km values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass–action ratios
Tiessen, Axel; Nerlich, Annika; Faix, Benjamin; Hümmer, Christine; Fox, Simon; Trafford, Kay; Weber, Hans; Weschke, Winfriede; Geigenberger, Peter
2012-03-01
Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80-90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published K(m) values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective K(m) values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass-action ratios
NASA Astrophysics Data System (ADS)
Defliese, W.; Hren, M. T.; Lohmann, K. C.
2014-12-01
An essential procedure to increase the analytical efficiency of Δ47 measurements requires raising the temperature of phosphoric acid digestion for carbonate materials. This temperature change introduces a fractionation offset in Δ47 that must be accounted for prior to calculation of temperatures of carbonate formation and to allow interlaboratory comparison of results. We measured the phosphoric acid fractionation factor relative to reaction at 25 °C for calcite, aragonite, and dolomite across a temperature range from 25-90 °C. Significantly, all three minerals behave similarly during phosphoric acid digestion, allowing for a single temperature dependent acid fractionation relationship: 1000ln∝𝐶𝑂2(𝐴𝑐𝑖𝑑)-𝛥47=(0.022434±0.001490)∗10^6 𝑇2 -(0.2524±0.0168) where α is the phosphoric acid fractionation factor, and T is in degrees Kelvin. Mineralogical or isotopic compositional effects on the fractionation factor were not observed, suggesting that this acid fractionation factor may be valid for all carbonate minerals. We also present inorganic temperature calibrations for both calcite and aragonite at low temperatures (5-70 °C) and find them to agree with prior published data. Using the new acid fractionation factor, published Δ47-temperature calibrations are recalculated. This analysis confirms a statistically significant Δ47-temperature calibration difference between data analyzed at 25 °C versus higher temperatures. The origin of the discrepancy remains unknown, but it appears that the acid fractionation factor is not the cause.
NASA Astrophysics Data System (ADS)
Obata, Kenta; Huete, Alfredo R.
2014-01-01
This study investigated the mechanisms underlying the scaling effects that apply to a fraction of vegetation cover (FVC) estimates derived using two-band spectral vegetation index (VI) isoline-based linear mixture models (VI isoline-based LMM). The VIs included the normalized difference vegetation index, a soil-adjusted vegetation index, and a two-band enhanced vegetation index (EVI2). This study focused in part on the monotonicity of an area-averaged FVC estimate as a function of spatial resolution. The proof of monotonicity yielded measures of the intrinsic area-averaged FVC uncertainties due to scaling effects. The derived results demonstrate that a factor ξ, which was defined as a function of "true" and "estimated" endmember spectra of the vegetated and nonvegetated surfaces, was responsible for conveying monotonicity or nonmonotonicity. The monotonic FVC values displayed a uniform increasing or decreasing trend that was independent of the choice of the two-band VI. Conditions under which scaling effects were eliminated from the FVC were identified. Numerical simulations verifying the monotonicity and the practical utility of the scaling theory were evaluated using numerical experiments applied to Landsat7-Enhanced Thematic Mapper Plus (ETM+) data. The findings contribute to developing scale-invariant FVC estimation algorithms for multisensor and data continuity.
Multiple-length-scale deformation analysis in a thermoplastic polyurethane.
Sui, Tan; Baimpas, Nikolaos; Dolbnya, Igor P; Prisacariu, Cristina; Korsunsky, Alexander M
2015-01-01
Thermoplastic polyurethane elastomers enjoy an exceptionally wide range of applications due to their remarkable versatility. These block co-polymers are used here as an example of a structurally inhomogeneous composite containing nano-scale gradients, whose internal strain differs depending on the length scale of consideration. Here we present a combined experimental and modelling approach to the hierarchical characterization of block co-polymer deformation. Synchrotron-based small- and wide-angle X-ray scattering and radiography are used for strain evaluation across the scales. Transmission electron microscopy image-based finite element modelling and fast Fourier transform analysis are used to develop a multi-phase numerical model that achieves agreement with the combined experimental data using a minimal number of adjustable structural parameters. The results highlight the importance of fuzzy interfaces, that is, regions of nanometre-scale structure and property gradients, in determining the mechanical properties of hierarchical composites across the scales. PMID:25758945
Multiple-length-scale deformation analysis in a thermoplastic polyurethane
Sui, Tan; Baimpas, Nikolaos; Dolbnya, Igor P.; Prisacariu, Cristina; Korsunsky, Alexander M.
2015-01-01
Thermoplastic polyurethane elastomers enjoy an exceptionally wide range of applications due to their remarkable versatility. These block co-polymers are used here as an example of a structurally inhomogeneous composite containing nano-scale gradients, whose internal strain differs depending on the length scale of consideration. Here we present a combined experimental and modelling approach to the hierarchical characterization of block co-polymer deformation. Synchrotron-based small- and wide-angle X-ray scattering and radiography are used for strain evaluation across the scales. Transmission electron microscopy image-based finite element modelling and fast Fourier transform analysis are used to develop a multi-phase numerical model that achieves agreement with the combined experimental data using a minimal number of adjustable structural parameters. The results highlight the importance of fuzzy interfaces, that is, regions of nanometre-scale structure and property gradients, in determining the mechanical properties of hierarchical composites across the scales. PMID:25758945
Analysis of Reduced-Scale Nova Hohlraum Experiments
NASA Astrophysics Data System (ADS)
Powers, L. V.; Berger, R. L.; Kirkwood, R. K.; Kruer, W. L.; Langdon, A. B.; MacGowan, B. J.; Orzechowski, T. J.; Rosen, M. D.; Springer, P. T.; Still, C. H.; Suter, L. J.; Williams, E. A.; Blain, M. A.
1996-11-01
Establishing the practical limit on achievable radiation temperature in high-Z hohlraums is of interest both for ignition targets( S.M. Haan, et al., Phys. Plasmas 2, 2480 (1995).) for the National Ignition Facility (NIF), and for high energy density physics experiments( S.B. Libby, Energy and Technology Review, UCRL-52000-94-12, 23 (1994)). Two related efforts are underway to define the physics issues of high energy density hohlraum targets: 1) experiments on the Nova laser in reduced scale hohlraums, and 2) evaluation of high-temperature hohlraums designs for the NIF. Reduced scale Nova hohlraums approach conditions relevant to NIF high temperature designs, albeit at smaller scale. Analysis of reduced-scale experiments on Nova therefore provides valuable physics information for evaluating the capabilities of NIF for producing high energy density in hohlraums. Simulations of Nova reduced scale hohlraum experiments will be presented, and the relevance to a range of NIF hohlraum target designs will be discussed.
Multiple-length-scale deformation analysis in a thermoplastic polyurethane
NASA Astrophysics Data System (ADS)
Sui, Tan; Baimpas, Nikolaos; Dolbnya, Igor P.; Prisacariu, Cristina; Korsunsky, Alexander M.
2015-03-01
Thermoplastic polyurethane elastomers enjoy an exceptionally wide range of applications due to their remarkable versatility. These block co-polymers are used here as an example of a structurally inhomogeneous composite containing nano-scale gradients, whose internal strain differs depending on the length scale of consideration. Here we present a combined experimental and modelling approach to the hierarchical characterization of block co-polymer deformation. Synchrotron-based small- and wide-angle X-ray scattering and radiography are used for strain evaluation across the scales. Transmission electron microscopy image-based finite element modelling and fast Fourier transform analysis are used to develop a multi-phase numerical model that achieves agreement with the combined experimental data using a minimal number of adjustable structural parameters. The results highlight the importance of fuzzy interfaces, that is, regions of nanometre-scale structure and property gradients, in determining the mechanical properties of hierarchical composites across the scales.
Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone
Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J
2014-01-01
Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2–1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2–1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms. PMID:24030599
Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone.
Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J
2014-01-01
Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2-1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2-1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms. PMID:24030599
[Factorial analysis of the Hamilton depression scale, II].
Dreyfus, J F; Guelfi, J D; Ruschel, S; Blanchard, C; Pichot, P
1981-04-01
A factorial analysis (principal components with Varimax rotation) was performed on 85 ratings of the Hamilton Depression Rating Scale obtained in 1979-1980 on inpatients with a major depressive illness. Using a replicable statistical technique, 4 factors were obtained. These factors do not overlap with those obtain on a similar sample with a similar technique nor with those obtained by other authors. It thus appears that there is no such thing as a factorial structure of this scale. PMID:7305179
Analysis of time-fractional hunter-saxton equation: a model of neumatic liquid crystal
NASA Astrophysics Data System (ADS)
Atangana, Abdon; Baleanu, Dumitru; Alsaedi, Ahmed
2016-04-01
In this work, a theoretical study of diffusion of neumatic liquid crystals was done using the concept of fractional order derivative. This version of fractional derivative is very easy to handle and obey to almost all the properties satisfied by the conventional Newtonian concept of derivative. The mathematical equation underpinning this physical phenomenon was solved analytically via the so-called homotopy decomposition method. In order to show the accuracy of this iteration method, we constructed a Hilbert space in which we proved its stability for the time-fractional Hunder-Saxton equation.
Haberstroh,P.; Brandes, J.; Gelinas, Y.; Dickens, A.; Wirick, S.; Cody, G.
2006-01-01
The chemical composition of the graphitic black carbon (GBC) fraction of marine organic matter was explored in several marine and freshwater sedimentary environments along the west coast of North America and the Pacific Ocean. Analysis by carbon x-ray absorption near edge structure (C-XANES) spectroscopy and scanning transmission x-ray microscopy (STXM) show the GBC-fraction of Stillaguamish River surface sediments to be dominated by more highly-ordered and impure forms of graphite, together forming about 80% of the GBC, with a smaller percent of an aliphatic carbon component. Eel River Margin surface sediments had very little highly-ordered graphite, and were instead dominated by amorphous carbon and to a lesser extent, impure graphite. However, the GBC of surface sediments from the Washington State Slope and the Mexico Margin were composed almost solely of amorphous carbon. Pre-anthropogenic, highly-oxidized deep-sea sediments from the open Equatorial Pacific Ocean contained over half their GBC in different forms of graphite as well as highly-aliphatic carbon, low aromatic/highly-acidic aliphatic carbon, low aromatic/highly aliphatic carbon, and amorphous forms of carbon. Our results clearly show the impact of graphite and amorphous C phases in the BC fraction in modern riverine sediments and nearby marine shelf deposits. The pre-anthropogenic Equatorial Pacific GBC fraction is remarkable in the existence of highly-ordered graphite.
NASA Astrophysics Data System (ADS)
Sofue, Yoshiaki; Nakanishi, Hiroyuki
2016-06-01
Three-dimensional (3D) distribution of the volume-density molecular fraction, defined by f_mol^ρ=ρ_H_2/(ρ_{H I}+ρ_H_2), is studied in the Milky Way Galaxy. The molecular front appears at galacto-centric distance of R ˜ 8 kpc, where the galactic-scale phase transition from atomic to molecular hydrogen occurs with f_mol^ρ dropping from ˜0.8 to 0.2 within a radial interval as narrow as ˜0.5 kpc. The f_mol^ρ front is much sharper than that of the surface density molecular fraction. The f_mol^ρ front also appears in the direction vertical to the galactic plane with a full width of the high-f_mol^ρ disk to be ˜100 pc. The radial and vertical f_mol^ρ profiles, particularly the front behavior, are fitted by theoretical curves calculated using the observed density profile and assumed radiation field and metallicity with exponential gradients. The molecular fraction was found to be enhanced along spiral arms at radii R ˜ 6 to 10 kpc, such as the Perseus arm. This implies that the molecular clouds are produced from H I in the arms and are dissociated in the interarm regions in the transition region around the molecular front. We also show that there is a threshold value of mean H I density, over which H I is transformed into molecular gas.
NASA Astrophysics Data System (ADS)
Sofue, Yoshiaki; Nakanishi, Hiroyuki
2016-08-01
Three-dimensional (3D) distribution of the volume-density molecular fraction, defined by f_mol^ρ =ρ _H_2/(ρ _{H I}+ρ _H_2), is studied in the Milky Way Galaxy. The molecular front appears at galacto-centric distance of R ˜ 8 kpc, where the galactic-scale phase transition from atomic to molecular hydrogen occurs with f_mol^ρ dropping from ˜0.8 to 0.2 within a radial interval as narrow as ˜0.5 kpc. The f_mol^ρ front is much sharper than that of the surface density molecular fraction. The f_mol^ρ front also appears in the direction vertical to the galactic plane with a full width of the high-f_mol^ρ disk to be ˜100 pc. The radial and vertical f_mol^ρ profiles, particularly the front behavior, are fitted by theoretical curves calculated using the observed density profile and assumed radiation field and metallicity with exponential gradients. The molecular fraction was found to be enhanced along spiral arms at radii R ˜ 6 to 10 kpc, such as the Perseus arm. This implies that the molecular clouds are produced from H I in the arms and are dissociated in the interarm regions in the transition region around the molecular front. We also show that there is a threshold value of mean H I density, over which H I is transformed into molecular gas.
Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model
NASA Technical Reports Server (NTRS)
Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh
2014-01-01
This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.
Proteomics beyond large-scale protein expression analysis.
Boersema, Paul J; Kahraman, Abdullah; Picotti, Paola
2015-08-01
Proteomics is commonly referred to as the application of high-throughput approaches to protein expression analysis. Typical results of proteomics studies are inventories of the protein content of a sample or lists of differentially expressed proteins across multiple conditions. Recently, however, an explosion of novel proteomics workflows has significantly expanded proteomics beyond the analysis of protein expression. Targeted proteomics methods, for example, enable the analysis of the fine dynamics of protein systems, such as a specific pathway or a network of interacting proteins, and the determination of protein complex stoichiometries. Structural proteomics tools allow extraction of restraints for structural modeling and identification of structurally altered proteins on a proteome-wide scale. Other variations of the proteomic workflow can be applied to the large-scale analysis of protein activity, location, degradation and turnover. These exciting developments provide new tools for multi-level 'omics' analysis and for the modeling of biological networks in the context of systems biology studies. PMID:25636126
Geographical Scale Effects on the Analysis of Leptospirosis Determinants
Gracie, Renata; Barcellos, Christovam; Magalhães, Mônica; Souza-Santos, Reinaldo; Barrocas, Paulo Rubens Guimarães
2014-01-01
Leptospirosis displays a great diversity of routes of exposure, reservoirs, etiologic agents, and clinical symptoms. It occurs almost worldwide but its pattern of transmission varies depending where it happens. Climate change may increase the number of cases, especially in developing countries, like Brazil. Spatial analysis studies of leptospirosis have highlighted the importance of socioeconomic and environmental context. Hence, the choice of the geographical scale and unit of analysis used in the studies is pivotal, because it restricts the indicators available for the analysis and may bias the results. In this study, we evaluated which environmental and socioeconomic factors, typically used to characterize the risks of leptospirosis transmission, are more relevant at different geographical scales (i.e., regional, municipal, and local). Geographic Information Systems were used for data analysis. Correlations between leptospirosis incidence and several socioeconomic and environmental indicators were calculated at different geographical scales. At the regional scale, the strongest correlations were observed between leptospirosis incidence and the amount of people living in slums, or the percent of the area densely urbanized. At the municipal scale, there were no significant correlations. At the local level, the percent of the area prone to flooding best correlated with leptospirosis incidence. PMID:25310536
Rasch analysis of the Multiple Sclerosis Impact Scale (MSIS-29)
Ramp, Melina; Khan, Fary; Misajon, Rose Anne; Pallant, Julie F
2009-01-01
Background Multiple Sclerosis (MS) is a degenerative neurological disease that causes impairments, including spasticity, pain, fatigue, and bladder dysfunction, which negatively impact on quality of life. The Multiple Sclerosis Impact Scale (MSIS-29) is a disease-specific health-related quality of life (HRQoL) instrument, developed using the patient's perspective on disease impact. It consists of two subscales assessing the physical (MSIS-29-PHYS) and psychological (MSIS-29-PSYCH) impact of MS. Although previous studies have found support for the psychometric properties of the MSIS-29 using traditional methods of scale evaluation, the scale has not been subjected to a detailed Rasch analysis. Therefore, the objective of this study was to use Rasch analysis to assess the internal validity of the scale, and its response format, item fit, targeting, internal consistency and dimensionality. Methods Ninety-two persons with definite MS residing in the community were recruited from a tertiary hospital database. Patients completed the MSIS-29 as part of a larger study. Rasch analysis was undertaken to assess the psychometric properties of the MSIS-29. Results Rasch analysis showed overall support for the psychometric properties of the two MSIS-29 subscales, however it was necessary to reduce the response format of the MSIS-29-PHYS to a 3-point response scale. Both subscales were unidimensional, had good internal consistency, and were free from item bias for sex and age. Dimensionality testing indicated it was not appropriate to combine the two subscales to form a total MSIS score. Conclusion In this first study to use Rasch analysis to fully assess the psychometric properties of the MSIS-29 support was found for the two subscales but not for the use of the total scale. Further use of Rasch analysis on the MSIS-29 in larger and broader samples is recommended to confirm these findings. PMID:19545445
Scale analysis using X-ray microfluorescence and computed radiography
NASA Astrophysics Data System (ADS)
Candeias, J. P.; de Oliveira, D. F.; dos Anjos, M. J.; Lopes, R. T.
2014-02-01
Scale deposits are the most common and most troublesome damage problems in the oil field and can occur in both production and injection wells. They occur because the minerals in produced water exceed their saturation limit as temperatures and pressures change. Scale can vary in appearance from hard crystalline material to soft, friable material and the deposits can contain other minerals and impurities such as paraffin, salt and iron. In severe conditions, scale creates a significant restriction, or even a plug, in the production tubing. This study was conducted to qualify the elements present in scale samples and quantify the thickness of the scale layer using synchrotron radiation micro-X-ray fluorescence (SRμXRF) and computed radiography (CR) techniques. The SRμXRF results showed that the elements found in the scale samples were strontium, barium, calcium, chromium, sulfur and iron. The CR analysis showed that the thickness of the scale layer was identified and quantified with accuracy. These results can help in the decision making about removing the deposited scale.
Bully-Victimization Scale: Using Rasch Modeling in the Analysis of a Qualitative Scale
ERIC Educational Resources Information Center
Lehto, Marybeth
2009-01-01
The primary purpose of this study was to determine whether the data from the qualitative study fit Rasch model requirements for the definition of a measure, as well as to address concern in the extant literature regarding the appropriate number of items needed in analysis to assure unidimensionality. The self-report victimization scale was…
Finite-mode analysis by means of intensity information in fractional optical systems.
Alieva, Tatiana; Bastiaans, Martin J
2002-03-01
It is shown how a coherent optical signal that contains only a finite number of Hermite-Gauss modes can be reconstructed from the knowledge of its Radon-Wigner transform-associated with the intensity distribution in a fractional-Fourier-transform optical system-at only two transversal points. The proposed method can be generalized to any fractional system whose generator transform has a complete orthogonal set of eigenfunctions. PMID:11876310
Käsermann, Fabian; Boerema, David J.; Rüegsegger, Monika; Hofmann, Andreas; Wymann, Sandra; Zuercher, Adrian W.; Miescher, Sylvia
2012-01-01
It has been proposed that the anti-inflammatory effects of intravenous immunoglobulin (IVIG) might be due to the small fraction of Fc-sialylated IgG. In this study we biochemically and functionally characterized sialic acid-enriched IgG obtained by Sambucus nigra agglutinin (SNA) lectin fractionation. Two main IgG fractions isolated by elution with lactose (E1) or acidified lactose (E2) were analyzed for total IgG, F(ab’)2 and Fc-specific sialic acid content, their pattern of specific antibodies and anti-inflammatory potential in a human in vitro inflammation system based on LPS- or PHA-stimulated whole blood. HPLC and LC-MS testing revealed an increase of sialylated IgG in E1 and more substantially in the E2 fraction. Significantly, the increased amount of sialic acid residues was primarily found in the Fab region whereas only a minor increase was observed in the Fc region. This indicates preferential binding of the Fab sialic acid to SNA. ELISA analyses of a representative range of pathogen and auto-antigens indicated a skewed antibody pattern of the sialylated IVIG fractions. Finally, the E2 fraction exerted a more profound anti-inflammatory effect compared to E1 or IVIG, evidenced by reduced CD54 expression on monocytes and reduced secretion of MCP-1 (CCL2); again these effects were Fab- but not Fc-dependent. Our results show that SNA fractionation of IVIG yields a minor fraction (approx. 10%) of highly sialylated IgG, wherein the sialic acid is mainly found in the Fab region. The tested anti-inflammatory activity was associated with Fab not Fc sialylation. PMID:22675478
Shielding analysis methods available in the scale computational system
Parks, C.V.; Tang, J.S.; Hermann, O.W.; Bucholz, J.A.; Emmett, M.B.
1986-01-01
Computational tools have been included in the SCALE system to allow shielding analysis to be performed using both discrete-ordinates and Monte Carlo techniques. One-dimensional discrete ordinates analyses are performed with the XSDRNPM-S module, and point dose rates outside the shield are calculated with the XSDOSE module. Multidimensional analyses are performed with the MORSE-SGC/S Monte Carlo module. This paper will review the above modules and the four Shielding Analysis Sequences (SAS) developed for the SCALE system. 7 refs., 8 figs.
Multi-scale analysis for environmental dispersion in wetland flow
NASA Astrophysics Data System (ADS)
Wu, Zi; Li, Z.; Chen, G. Q.
2011-08-01
Presented in this work is a multi-scale analysis for longitudinal evolution of contaminant concentration in a fully developed flow through a shallow wetland channel. An environmental dispersion model for the mean concentration is devised as an extension of Taylor's classical formulation by a multi-scale analysis. Corresponding environmental dispersivity is found identical to that determined by the method of concentration moments. For typical contaminant constituents of chemical oxygen demand, biochemical oxygen demand, total phosphorus, total nitrogen and heavy metal, the evolution of contaminant cloud is illustrated with the critical length and duration of the contaminant cloud with constituent concentration beyond some given environmental standard level.
Full-scale system impact analysis: Digital document storage project
NASA Technical Reports Server (NTRS)
1989-01-01
The Digital Document Storage Full Scale System can provide cost effective electronic document storage, retrieval, hard copy reproduction, and remote access for users of NASA Technical Reports. The desired functionality of the DDS system is highly dependent on the assumed requirements for remote access used in this Impact Analysis. It is highly recommended that NASA proceed with a phased, communications requirement analysis to ensure that adequate communications service can be supplied at a reasonable cost in order to validate recent working assumptions upon which the success of the DDS Full Scale System is dependent.
Dai, Neng; Lv, Hui-Jie; Xiang, Ya-Fei; Fan, Bing
2016-01-01
Introduction Noninvasive fractional flow reserve (FFR) computed from CT (FFRCT) is a novel method for determining the physiologic significance of coronary artery disease (CAD). Several clinical trials have been conducted, but its diagnostic performance varied among different trials. Aim To determine the cut-off value of FFRCT and its correlation with the gold standard used to diagnose CAD in clinical practice. Material and methods Forty patients with single vessel disease were included in our study. Computed tomography scan and coronary angiography with FFR were conducted for these patients. Three-dimensional geometric reconstruction and numerical analysis based on the computed tomographic angiogram (CTA) of coronary arteries were applied to obtain the values of FFRCT. The correlation between FFRCT and the gold standard used in clinical practice was tested. Results For FFRCT, the best cut-off value was 0.76, with the sensitivity, specificity, positive predictive value and negative predictive values of 84.6%, 92.9%, 88% and 73.3%, respectively. The area under the receiver-operator characteristics curve was 0.945 (p < 0.0001). There was a good correlation of FFRCT values with FFR values (r = 0.94, p < 0.0001), with a slight overestimation of FFRCT as compared with measured FFR (mean difference 0.01 ±0.11, p < 0.05). For inter-observer agreement, the mean κ value was 0.69 (0.61 to 0.78) and for intra-observer agreement the mean κ value was 0.61 (0.50 to 0.72). Conclusions FFRCT derived from CT of the coronary artery is a reliable non-invasive way providing reliable functional information of coronary artery stenosis. PMID:26966446
Analysis of Fraction Skill Score properties for a displaced rainy grid point in a rectangular domain
NASA Astrophysics Data System (ADS)
Skok, Gregor
2016-03-01
The Fraction Skill Score (FSS) is a recently developed and popular metric used for precipitation verification. A compact analytical expression for FSS is derived for a case with a single displaced rainy grid point in a rectangular domain. The existence of an analytical solution is used to determine some properties of FSS, which might also be applicable in other cases since the rain areas of any shape will asymptote towards this solution if the displacement is sufficiently large. The use of the simple square shape of the neighborhood causes the FSS value to be dependent on the direction of the displacements (not only on the displacement size). The effect is limited in scope but can increase or decrease the FSS value by 0.1. Moving a nearby border closer to the rainy points can either increase or decrease the FSS value, depending on the location of the border. The FSS value near a border can be at most 33% larger than the FSS value in the infinite domain, assuming the same neighborhood size and displacement. The effect of the nearby corner is similar to the effect of the nearby border but is stronger. The useful forecast criteria (FSSuseful) is defined as a value of FSS for a precipitation feature with a displacement half the neighborhood size. FSSuseful for a displaced rainy grid point depends on the orientation of the displacement being the largest for displacements that are parallel to the borders and the smallest for a diagonal displacement for which the value can be as low as 0.42. An analysis of a real dataset was also performed, which showed that the border effect is usually small, but in some cases the effect becomes large (an increase of FSS value up to 70% was identified). The likelihood of a strong border effect in real datasets increases significantly if the neighborhood size at FSS = 0.5 is comparable or larger than the domain size.
Time-series analysis of mortality effects from airborne particulate matter size fractions in Beijing
NASA Astrophysics Data System (ADS)
Li, Pei; Xin, Jinyuan; Wang, Yuesi; Wang, Shigong; Shang, Kezheng; Liu, Zirui; Li, Guoxing; Pan, Xiaochuan; Wei, Linbo; Wang, Mingzhen
2013-12-01
Evidence concerning the health risk of fine and coarse particles is limited in developing Asian countries. The modifying effect between particles and temperature and season also remains unclear. Our study is one of the first to investigate the acute effect of particles size fractions, modifying effects and interannual variations of relative risk in a developing megacity where particulate levels are extraordinarily high compared to other Asian cities. After controlling for potential confounding, the results of a time-series analysis during the period 2005-2009 show that a 10 μg m-3 increase in PM2.5 levels is associated with a 0.65% (95% CI: 0.29-0.80%), 0.63% (95% CI: 0.25-0.83%), and 1.38% (95% CI: 0.51-1.71%) increase in non-accidental mortality, respiratory mortality, and circulatory mortality, respectively, while a 10 μg m-3 increase in PM10 is similarly associated with increases of 0.15% (95% CI: 0.04-0.22%), 0.08% (95% CI: 0.01-0.18%), and 0.44% (95% CI: 0.12-0.63%). We did not find a significant effect of PM2.5-10 on daily mortality outcomes. Our analyses conclude that temperature and particulates, exposures to both of which are expected to increase with climate change, might act together to worsen human health in Beijing, especially in the cool seasons. The level of the estimated percentage increase assume an escalating tendency during the study period, in addition to having a low value in 2008, and after the Olympic Games, the values increased significantly as the temporary atmospheric pollution control measures were terminated mostly.
Elsamadony, M; Tawfik, A
2015-11-01
A long-term evaluation of a mesophilic up-flow intermittently stirred tank reactor (UISTR) for hydrogen production from the organic fraction of municipal solid waste was investigated. UISTR was operated at five different hydraulic retention times (HRTs) of 10, 7.5, 5, 3 and 2days. This corresponds to organic loading rates (OLRs) of 18.1, 26.2, 41.3, 61.0, and 97.2gCOD/L/day, respectively. The highest volumetric H2 production of 2.20±0.19L/L/d and H2 yield of 2.05±0.33molH2/molCarbohydrate were achieved at HRT of 3days and OLR of 61.0gCOD/L/day. This revealed a higher sCOD/tCOD ratio of 0.46±0.08 and a lower particle size diameter of 307.6μm in the digestate, with a reduction of 72.0%. The maximum carbohydrates, proteins, and lipids conversions amounted to 68.2±13.0%, 37.5±6.7% and 48.6±4.7%, respectively recorded at HRT of 10days and OLR of 18.1gCOD/L/day. PMID:26218185
Tools for Large-Scale Mobile Malware Analysis
Bierma, Michael
2014-01-01
Analyzing mobile applications for malicious behavior is an important area of re- search, and is made di cult, in part, by the increasingly large number of appli- cations available for the major operating systems. There are currently over 1.2 million apps available in both the Google Play and Apple App stores (the respec- tive o cial marketplaces for the Android and iOS operating systems)[1, 2]. Our research provides two large-scale analysis tools to aid in the detection and analysis of mobile malware. The rst tool we present, Andlantis, is a scalable dynamic analysis system capa- ble of processing over 3000 Android applications per hour. Traditionally, Android dynamic analysis techniques have been relatively limited in scale due to the compu- tational resources required to emulate the full Android system to achieve accurate execution. Andlantis is the most scalable Android dynamic analysis framework to date, and is able to collect valuable forensic data, which helps reverse-engineers and malware researchers identify and understand anomalous application behavior. We discuss the results of running 1261 malware samples through the system, and provide examples of malware analysis performed with the resulting data. While techniques exist to perform static analysis on a large number of appli- cations, large-scale analysis of iOS applications has been relatively small scale due to the closed nature of the iOS ecosystem, and the di culty of acquiring appli- cations for analysis. The second tool we present, iClone, addresses the challenges associated with iOS research in order to detect application clones within a dataset of over 20,000 iOS applications.
Hemmings, W. A.; Jones, R. E.
1974-01-01
Twelve-day-old rats were fed a mixture of fast and slow chromatographically prepared fractions of bovine IgG, labelled with 125I and 131I. The pooled young rat sera were submitted to analysis by electrofocusing. The results show a wide variation of concentration quotients between the different pI peaks of IgG, with the more basic fractions being transmitted more readily in both fractions. One slow IgG peak (pI 7.8) in particular is transmitted very readily. These findings reinforce the concept of selectivity in transmission. The possible use of the young rat gut as a test for protein integrity is discussed. ImagesFIG. 1FIG. 2FIG. 3 PMID:4413997
Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis
Dosemeci, Ayse . E-mail: dosemeca@mail.nih.gov; Tao-Cheng, J.-H.; Vinade, Lucia; Jaffe, Howard
2006-01-13
Hippocampal slices offer an excellent experimental system for the study of activity-induced changes in the postsynaptic density (PSD). While studies have documented electrophysiological and structural changes at synapses in response to precise manipulations of hippocampal slices, parallel biochemical and proteomic analyses were hampered by the lack of subcellular fractionation techniques applicable to starting tissue about three orders of magnitude smaller than that used in conventional protocols. Here, we describe a simple and convenient method for the preparation of PSD fractions from hippocampal slices and the identification of its components by proteomic techniques. The 'micro PSD fraction' obtained following two consecutive extractions of a synaptosomal fraction with Triton X-100 shows a significant enrichment in the marker protein PSD-95. Thin section electron microscopy shows PSDs similar to those observed in situ. However, other particulate material, especially myelin, and membrane vesicles are also present. The composition of the PSD fraction from hippocampal slices was analyzed by 2D LC/MS/MS. The proteomic approach which utilizes as little as 10 {mu}g total protein allowed the identification of >100 proteins. Many of the proteins detected in the fraction are the same as those identified in conventional PSD preparations including specialized PSD-scaffolding proteins, signaling molecules, cytoskeletal elements as well as certain contaminants. The results show the feasibility of the preparation of a PSD fraction from hippocampal slices of reasonable purity and of sufficient yield for proteomic analyses. In addition, we show that further purification of PSDs is possible using magnetic beads coated with a PSD-95 antibody.
AN ANALYSIS OF THE DEUTERIUM FRACTIONATION OF STAR-FORMING CORES IN THE PERSEUS MOLECULAR CLOUD
Friesen, R. K.; Kirk, H. M.; Shirley, Y. L.
2013-03-01
We have performed a pointed survey of N{sub 2}D{sup +} 2-1 and N{sub 2}D{sup +} 3-2 emission toward 64 N{sub 2}H{sup +}-bright starless and protostellar cores in the Perseus molecular cloud using the Arizona Radio Observatory Submillimeter Telescope and Kitt Peak 12 m telescope. We find a mean deuterium fractionation in N{sub 2}H{sup +}, R{sub D} = N(N{sub 2}D{sup +})/N(N{sub 2}H{sup +}), of 0.08, with a maximum R{sub D} = 0.2. In detected sources, we find no significant difference in the deuterium fractionation between starless and protostellar cores, nor between cores in clustered or isolated environments. We compare the deuterium fraction in N{sub 2}H{sup +} with parameters linked to advanced core evolution. We only find significant correlations between the deuterium fraction and increased H{sub 2} column density, as well as with increased central core density, for all cores. Toward protostellar sources, we additionally find a significant anticorrelation between R{sub D} and bolometric temperature. We show that the Perseus cores are characterized by low CO depletion values relative to previous studies of star-forming cores, similar to recent results in the Ophiuchus molecular cloud. We suggest that the low average CO depletion is the dominant mechanism that constrains the average deuterium fractionation in the Perseus cores to small values. While current equilibrium and dynamic chemical models are able to reproduce the range of deuterium fractionation values we find in Perseus, reproducing the scatter across the cores requires variation in parameters such as the ionization fraction or the ortho-to-para-H{sub 2} ratio across the cloud, or a range in core evolution timescales.
An Analysis of the Deuterium Fractionation of Star-forming Cores in the Perseus Molecular Cloud
NASA Astrophysics Data System (ADS)
Friesen, R. K.; Kirk, H. M.; Shirley, Y. L.
2013-03-01
We have performed a pointed survey of N2D+ 2-1 and N2D+ 3-2 emission toward 64 N2H+-bright starless and protostellar cores in the Perseus molecular cloud using the Arizona Radio Observatory Submillimeter Telescope and Kitt Peak 12 m telescope. We find a mean deuterium fractionation in N2H+, RD = N(N2D+)/N(N2H+), of 0.08, with a maximum RD = 0.2. In detected sources, we find no significant difference in the deuterium fractionation between starless and protostellar cores, nor between cores in clustered or isolated environments. We compare the deuterium fraction in N2H+ with parameters linked to advanced core evolution. We only find significant correlations between the deuterium fraction and increased H2 column density, as well as with increased central core density, for all cores. Toward protostellar sources, we additionally find a significant anticorrelation between RD and bolometric temperature. We show that the Perseus cores are characterized by low CO depletion values relative to previous studies of star-forming cores, similar to recent results in the Ophiuchus molecular cloud. We suggest that the low average CO depletion is the dominant mechanism that constrains the average deuterium fractionation in the Perseus cores to small values. While current equilibrium and dynamic chemical models are able to reproduce the range of deuterium fractionation values we find in Perseus, reproducing the scatter across the cores requires variation in parameters such as the ionization fraction or the ortho-to-para-H2 ratio across the cloud, or a range in core evolution timescales.
NASA Astrophysics Data System (ADS)
Karanasiou, A. A.; Siskos, P. A.; Eleftheriadis, K.
This study was conducted in order to investigate the differences observed in source profiles in the urban environment, when chemical composition parameters from different aerosol size fractions are subjected to factor analysis. Source apportionment was performed in an urban area where representative types of emission sources are present. PM 10 and PM 2 samples were collected within the Athens Metropolitan area and analysed for trace elements, inorganic ions and black carbon. Analysis by two-way and three-way Positive Matrix Factorization was performed, in order to resolve sources from data obtained for the fine and coarse aerosol fractions. A difference was observed: seven factors describe the best solution in PMF3 while six factors in PMF2. Six factors derived from PMF3 analysis correspond to those described by the PMF2 solution for the fine and coarse particles separately. These sources were attributed to road dust, marine aerosol, soil, motor vehicles, biomass burning, and oil combustion. The additional source resolved by PMF3 was attributed to a different type of road dust. Combustion sources (oil combustion and biomass burning) were correctly attributed by PMF3 solely to the fine fraction and the soil source to the coarse fraction. However, a motor vehicle's contribution to the coarse fraction was found only by three-way PMF. When PMF2 was employed in PM 10 concentrations the optimum solution included six factors. Four source profiles corresponded to the previously identified as vehicles, road dust, biomass burning and marine aerosol, while two could not be clearly identified. Source apportionment by PMF2 analysis based solely on PM 10 aerosol composition data, yielded unclear results, compared to results from PMF2 and PMF3 analyses on fine and coarse aerosol composition data.
Complexity of carbon market from multi-scale entropy analysis
NASA Astrophysics Data System (ADS)
Fan, Xinghua; Li, Shasha; Tian, Lixin
2016-06-01
Complexity of carbon market is the consequence of economic dynamics and extreme social political events in global carbon markets. The multi-scale entropy can measure the long-term structures in the daily price return time series. By using multi-scale entropy analysis, we explore the complexity of carbon market and mean reversion trend of daily price return. The logarithmic difference of data Dec16 from August 6, 2010 to May 22, 2015 is selected as the sample. The entropy is higher in small time scale, while lower in large. The dependence of the entropy on the time scale reveals the mean reversion of carbon prices return in the long run. A relatively great fluctuation over some short time period indicates that the complexity of carbon market evolves consistently with economic development track and the events of international climate conferences.
NASA Technical Reports Server (NTRS)
Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.
1991-01-01
A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semiempirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produces predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis of fully-dense materials are in good agreement with those calculated from elastic properties.
NASA Astrophysics Data System (ADS)
Smirnov, A. S.; Belozerov, G. A.; Smirnova, E. O.; Konovalov, A. V.; Shveikin, V. P.; Muizemnek, O. Yu.
2016-06-01
The paper deals with a procedure of preparing a specimen surface for the EBSD analysis of a metal matrix composite (MMC) with a high volume fraction of reinforcing particles. Unlike standard procedures of preparing a specimen surface for the EBSD analysis, the proposed procedure is iterative with consecutive application of mechanical and electrochemical polishing. This procedure significantly improves the results of an indexed MMC matrix in comparison with the standard procedure of specimen preparation. The procedure was verified on a MMC with pure aluminum (99.8% Al) as the matrix, SiC particles being used as reinforcing elements. The average size of the SiC particles is 14 μm, and their volume fraction amounts to 50% of the total volume of the composite. It has been experimentally found that, for making the EBSD analysis of a material matrix near reinforcing particles, the difference in height between the particles and the matrix should not exceed 2 µm.
Roth, D.J.; Swickard, S.M.; Stang, D.B.; Deguire, M.R.
1990-03-01
A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties.
NASA Technical Reports Server (NTRS)
Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.
1990-01-01
A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties.
NASA Astrophysics Data System (ADS)
Smirnov, A. S.; Belozerov, G. A.; Smirnova, E. O.; Konovalov, A. V.; Shveikin, V. P.; Muizemnek, O. Yu.
2016-07-01
The paper deals with a procedure of preparing a specimen surface for the EBSD analysis of a metal matrix composite (MMC) with a high volume fraction of reinforcing particles. Unlike standard procedures of preparing a specimen surface for the EBSD analysis, the proposed procedure is iterative with consecutive application of mechanical and electrochemical polishing. This procedure significantly improves the results of an indexed MMC matrix in comparison with the standard procedure of specimen preparation. The procedure was verified on a MMC with pure aluminum (99.8% Al) as the matrix, SiC particles being used as reinforcing elements. The average size of the SiC particles is 14 μm, and their volume fraction amounts to 50% of the total volume of the composite. It has been experimentally found that, for making the EBSD analysis of a material matrix near reinforcing particles, the difference in height between the particles and the matrix should not exceed 2 µm.
Analysis of tristable energy harvesting system having fractional order viscoelastic material
Oumbé Tékam, G. T.; Woafo, P.; Kitio Kwuimy, C. A.
2015-01-15
A particular attention is devoted to analyze the dynamics of a strongly nonlinear energy harvester having fractional order viscoelastic flexible material. The strong nonlinearity is obtained from the magnetic interaction between the end free of the flexible material and three equally spaced magnets. Periodic responses are computed using the KrylovBogoliubov averaging method, and the effects of fractional order damping on the output electric energy are analyzed. It is obtained that the harvested energy is enhanced for small order of the fractional derivative. Considering the order and strength of the fractional viscoelastic property as control parameter, the complexity of the system response is investigated through the Melnikov criteria for horseshoes chaos, which allows us to derive the mathematical expression of the boundary between intra-well motion and bifurcations appearance domain. We observe that the order and strength of the fractional viscoelastic property can be effectively used to control chaos in the system. The results are confirmed by the smooth and fractal shape of the basin of attraction as the order of derivative decreases. The bifurcation diagrams and the corresponding Lyapunov exponents are plotted to get insight into the nonlinear response of the system.
Bogyo, Matthew; Conrad, Patricia A.; Boothroyd, John C.
2012-01-01
Toxoplasma gondii is an obligate intracellular parasite that is unique in its ability to infect a broad range of birds and mammals, including humans, leading to an extremely high worldwide prevalence and distribution. This work focuses on the environmentally resistant oocyst, which is the product of sexual replication in felids and an important source of human infection. Due to the difficulty in producing and working with oocysts, relatively little is known about how this stage is able to resist extreme environmental stresses and how they initiate a new infection, once ingested. To fill this gap, the proteome of the wall and sporocyst/sporozoite fractions of mature, sporulated oocysts were characterized using one-dimensional gel electrophoresis followed by LC-MS/MS on trypsin-digested peptides. A combined total of 1021 non-redundant T. gondii proteins were identified in the sporocyst/sporozoite fraction and 226 were identified in the oocyst wall fraction. Significantly, 172 of the identified proteins have not previously been identified in Toxoplasma proteomic studies. Among these are several of interest for their likely role in conferring environmental resistance including a family of small, tyrosine-rich proteins present in the oocyst wall fractions and late embryogenesis abundant domain-containing (LEA) proteins in the cytosolic fractions. The latter are known from other systems to be key to enabling survival against desiccation. PMID:22279555
The Hong Psychological Reactance Scale: A Confirmatory Factor Analysis.
ERIC Educational Resources Information Center
Thomas, Adrian; Donnell, Alison J.; Buboltz, Walter C., Jr.
2001-01-01
Study uses confirmatory factor analysis to assess four models of the Hong Psychological Reactance Scale (HPRS) and attempts to provide psychometric information about the subscales. Results found inadequate fit for Hong's four orthogonal models but sufficient fit for two nonorthogonal models. (Contains 29 references and 3 tables.) (GCP)
A Confirmatory Factor Analysis of the Professional Opinion Scale
ERIC Educational Resources Information Center
Greeno, Elizabeth J.; Hughes, Anne K.; Hayward, R. Anna; Parker, Karen L.
2007-01-01
The Professional Opinion Scale (POS) was developed to measure social work values orientation. Objective: A confirmatory factor analysis was performed on the POS. Method: This cross-sectional study used a mailed survey design with a national random (simple) sample of members of the National Association of Social Workers. Results: The study…
Exploratory Factor Analysis of African Self-Consciousness Scale Scores
ERIC Educational Resources Information Center
Bhagwat, Ranjit; Kelly, Shalonda; Lambert, Michael C.
2012-01-01
This study replicates and extends prior studies of the dimensionality, convergent, and external validity of African Self-Consciousness Scale scores with appropriate exploratory factor analysis methods and a large gender balanced sample (N = 348). Viable one- and two-factor solutions were cross-validated. Both first factors overlapped significantly…
Dynamic analysis of a fractional order delayed predator-prey system with harvesting.
Song, Ping; Zhao, Hongyong; Zhang, Xuebing
2016-06-01
In the study, we consider a fractional order delayed predator-prey system with harvesting terms. Our discussion is divided into two cases. Without harvesting, we investigate the stability of the model, as well as deriving some criteria by analyzing the associated characteristic equation. With harvesting, we investigate the dynamics of the system from the aspect of local stability and analyze the influence of harvesting to prey and predator. Finally, numerical simulations are presented to verify our theoretical results. In addition, using numerical simulations, we investigate the effects of fractional order and harvesting terms on dynamic behavior. Our numerical results show that fractional order can affect not only the stability of the system without harvesting terms, but also the switching times from stability to instability and to stability. The harvesting can convert the equilibrium point, the stability and the stability switching times. PMID:27026265
NASA Astrophysics Data System (ADS)
Tilly, David; Ahnesjö, Anders
2015-07-01
A fast algorithm is constructed to facilitate dose calculation for a large number of randomly sampled treatment scenarios, each representing a possible realisation of a full treatment with geometric, fraction specific displacements for an arbitrary number of fractions. The algorithm is applied to construct a dose volume coverage probability map (DVCM) based on dose calculated for several hundred treatment scenarios to enable the probabilistic evaluation of a treatment plan. For each treatment scenario, the algorithm calculates the total dose by perturbing a pre-calculated dose, separately for the primary and scatter dose components, for the nominal conditions. The ratio of the scenario specific accumulated fluence, and the average fluence for an infinite number of fractions is used to perturb the pre-calculated dose. Irregularities in the accumulated fluence may cause numerical instabilities in the ratio, which is mitigated by regularisation through convolution with a dose pencil kernel. Compared to full dose calculations the algorithm demonstrates a speedup factor of ~1000. The comparisons to full calculations show a 99% gamma index (2%/2 mm) pass rate for a single highly modulated beam in a virtual water phantom subject to setup errors during five fractions. The gamma comparison shows a 100% pass rate in a moving tumour irradiated by a single beam in a lung-like virtual phantom. DVCM iso-probability lines computed with the fast algorithm, and with full dose calculation for each of the fractions, for a hypo-fractionated prostate case treated with rotational arc therapy treatment were almost indistinguishable.
Tilly, David; Ahnesjö, Anders
2015-07-21
A fast algorithm is constructed to facilitate dose calculation for a large number of randomly sampled treatment scenarios, each representing a possible realisation of a full treatment with geometric, fraction specific displacements for an arbitrary number of fractions. The algorithm is applied to construct a dose volume coverage probability map (DVCM) based on dose calculated for several hundred treatment scenarios to enable the probabilistic evaluation of a treatment plan.For each treatment scenario, the algorithm calculates the total dose by perturbing a pre-calculated dose, separately for the primary and scatter dose components, for the nominal conditions. The ratio of the scenario specific accumulated fluence, and the average fluence for an infinite number of fractions is used to perturb the pre-calculated dose. Irregularities in the accumulated fluence may cause numerical instabilities in the ratio, which is mitigated by regularisation through convolution with a dose pencil kernel.Compared to full dose calculations the algorithm demonstrates a speedup factor of ~1000. The comparisons to full calculations show a 99% gamma index (2%/2 mm) pass rate for a single highly modulated beam in a virtual water phantom subject to setup errors during five fractions. The gamma comparison shows a 100% pass rate in a moving tumour irradiated by a single beam in a lung-like virtual phantom. DVCM iso-probability lines computed with the fast algorithm, and with full dose calculation for each of the fractions, for a hypo-fractionated prostate case treated with rotational arc therapy treatment were almost indistinguishable. PMID:26118844
Rades, Dirk; Huttenlocher, Stefan; Šegedin, Barbara; Perpar, Ana; Conde, Antonio J.; Garcia, Raquel; Veninga, Theo; Stalpers, Lukas J.A.; Cacicedo, Jon; Rudat, Volker; Schild, Steven E.
2015-10-01
Purpose: This study compared single-fraction to multi-fraction short-course radiation therapy (RT) for symptomatic metastatic epidural spinal cord compression (MESCC) in patients with limited survival prognosis. Methods and Materials: A total of 121 patients who received 8 Gy × 1 fraction were matched (1:1) to 121 patients treated with 4 Gy × 5 fractions for 10 factors including age, sex, performance status, primary tumor type, number of involved vertebrae, other bone metastases, visceral metastases, interval between tumor diagnosis and MESCC, pre-RT ambulatory status, and time developing motor deficits prior to RT. Endpoints included in-field repeated RT (reRT) for MESCC, overall survival (OS), and impact of RT on motor function. Univariate analyses were performed with the Kaplan-Meier method and log-rank test for in-field reRT for MESCC and OS and with the ordered-logit model for effect of RT on motor function. Results: Doses of 8 Gy × 1 fraction and 4 Gy × 5 fractions were not significantly different with respect to the need for in-field reRT for MESCC (P=.11) at 6 months (18% vs 9%, respectively) and 12 months (30% vs 22%, respectively). The RT regimen also had no significant impact on OS (P=.65) and post-RT motor function (P=.21). OS rates at 6 and 12 months were 24% and 9%, respectively, after 8 Gy × 1 fraction versus 25% and 13%, respectively, after 4 Gy × 5 fractions. Improvement of motor function was observed in 17% of patients after 8 Gy × 1 fraction and 23% after 4 Gy × 5 fractions, respectively. Conclusions: There were no significant differences with respect to need for in-field reRT for MESCC, OS, and motor function by dose fractionation regimen. Thus, 8 Gy × 1 fraction may be a reasonable option for patients with survival prognosis of a few months.
Sesame fractions and lipid profiles: a systematic review and meta-analysis of controlled trials.
Khalesi, Saman; Paukste, Ernesta; Nikbakht, Elham; Khosravi-Boroujeni, Hossein
2016-03-14
Increased plasma lipid profiles are among the most important risk factors of CHD and stroke. Sesame contains considerable amounts of vitamin E, MUFA, fibre and lignans, which are thought to be associated with its plasma lipid-lowering properties. This study aimed to systematically review the evidence and identify the effects of sesame consumption on blood lipid profiles using a meta-analysis of controlled trials. PubMed, CINAHL and Cochrane Library databases were searched (from 1960 to May 2015). A total of ten controlled trials were identified based on the eligibility criteria. Both the Cochrane Collaboration tool and the Rosendal scale were used to assess the risk of bias of the included studies. The meta-analysis results showed that consumption of sesame did not significantly change the concentrations of total blood cholesterol (-0·32 mmol/l; 95% CI -0·75, 0·11; P=0·14, I(2)=96%), LDL-cholesterol (-0·15 mmol/l; 95% CI -0·50, 0·19; P=0·39, I(2)=96%) or HDL-cholesterol (0·01 mmol/l; 95% CI -0·00, 0·02; P=0·16, I(2)=0%). However, a significant reduction was observed in serum TAG levels (-0·24 mmol/l; 95% CI -0·32, -0·15; P<0·001, I(2)=84%) after consumption of sesame. It was concluded that sesame consumption can significantly reduce blood TAG levels but there is insufficient evidence to support its hypocholesterolaemic effects. Further studies are required to determine the potential effect of sesame consumption on lipid profiles and cardiovascular risk factors. PMID:26758593
Exploratory Data analysis ENvironment eXtreme scale (EDENx)
Steed, Chad Allen
2015-07-01
EDENx is a multivariate data visualization tool that allows interactive user driven analysis of large-scale data sets with high dimensionality. EDENx builds on our earlier system, called EDEN to enable analysis of more dimensions and larger scale data sets. EDENx provides an initial overview of summary statistics for each variable in the data set under investigation. EDENx allows the user to interact with graphical summary plots of the data to investigate subsets and their statistical associations. These plots include histograms, binned scatterplots, binned parallel coordinate plots, timeline plots, and graphical correlation indicators. From the EDENx interface, a user can select a subsample of interest and launch a more detailed data visualization via the EDEN system. EDENx is best suited for high-level, aggregate analysis tasks while EDEN is more appropriate for detail data investigations.