Science.gov

Sample records for fractional scaling analysis

  1. The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques

    NASA Astrophysics Data System (ADS)

    Deng, Chengbin; Wu, Changshan

    2013-12-01

    Urban impervious surface information is essential for urban and environmental applications at the regional/national scales. As a popular image processing technique, spectral mixture analysis (SMA) has rarely been applied to coarse-resolution imagery due to the difficulty of deriving endmember spectra using traditional endmember selection methods, particularly within heterogeneous urban environments. To address this problem, we derived endmember signatures through a least squares solution (LSS) technique with known abundances of sample pixels, and integrated these endmember signatures into SMA for mapping large-scale impervious surface fraction. In addition, with the same sample set, we carried out objective comparative analyses among SMA (i.e. fully constrained and unconstrained SMA) and machine learning (i.e. Cubist regression tree and Random Forests) techniques. Analysis of results suggests three major conclusions. First, with the extrapolated endmember spectra from stratified random training samples, the SMA approaches performed relatively well, as indicated by small MAE values. Second, Random Forests yields more reliable results than Cubist regression tree, and its accuracy is improved with increased sample sizes. Finally, comparative analyses suggest a tentative guide for selecting an optimal approach for large-scale fractional imperviousness estimation: unconstrained SMA might be a favorable option with a small number of samples, while Random Forests might be preferred if a large number of samples are available.

  2. Analysis of CO2 mole fraction data: first evidence of large-scale changes in CO2 uptake at high northern latitudes

    NASA Astrophysics Data System (ADS)

    Barlow, J. M.; Palmer, P. I.; Bruhwiler, L. M.; Tans, P.

    2015-12-01

    Atmospheric variations of carbon dioxide (CO2) mole fraction reflect changes in atmospheric transport and regional patterns of surface emission and uptake. Here we present a study of changes in the observed high northern latitude CO2 seasonal cycle. We report new estimates for changes in the phase and amplitude of the seasonal variations, indicative of biospheric changes, by spectrally decomposing multi-decadal records of surface CO2 mole fraction using a wavelet transform to isolate the changes in the observed seasonal cycle. We also perform similar analysis of the first derivative of CO2 mole fraction, ΔtCO2, that is a crude proxy for changes in CO2 flux. Using numerical experiments, we quantify the aliasing error associated with independently identifying trends in phase and peak uptake and release to be 10-25 %, with the smallest biases in phase associated with the analysis of ΔtCO2. We report our analysis from Barrow, Alaska (BRW), during 1973-2013, which is representative of the broader Arctic region. We determine an amplitude trend of 0.09 ± 0.02 ppm yr-1, which is consistent with previous work. Using ΔtCO2 we determine estimates for the timing of the onset of net uptake and release of CO2 of -0.14 ± 0.14 and -0.25 ± 0.08 days yr-1 respectively and a corresponding net uptake period of -0.11 ± 0.16 days yr-1, which are significantly different to previously reported estimates. We find that the wavelet transform method has significant skill in characterizing changes in the peak uptake and release. We find a trend of 0.65 ± 0.34 % yr-1 (p < 0.01) and 0.42 ± 0.34 % yr-1 (p < 0.05) for rates of peak uptake and release respectively. Our analysis does not provide direct evidence about the balance between uptake and release of carbon when integrated throughout the year, but the increase in the seasonal amplitude of CO2 together with an invariant net carbon uptake period provides evidence that high northern latitude ecosystems are progressively taking up more

  3. The Use of Fractionation Scales for Communication Audits.

    ERIC Educational Resources Information Center

    Barnett, George A.; And Others

    A study investigated a new method of measuring organizational communication other than the audit methods currently in use. The method, which employs fractionation procedures, was used with workers from five different business groups within a large multinational corporation. The results showed that: (1) workers could use the scales reliably, (2)…

  4. Modes of planetary-scale Fe isotope fractionation

    NASA Astrophysics Data System (ADS)

    Schoenberg, Ronny; Blanckenburg, Friedhelm von

    2006-12-01

    A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the

  5. Scaling in sensitivity analysis

    USGS Publications Warehouse

    Link, W.A.; Doherty, P.F., Jr.

    2002-01-01

    Population matrix models allow sets of demographic parameters to be summarized by a single value 8, the finite rate of population increase. The consequences of change in individual demographic parameters are naturally measured by the corresponding changes in 8; sensitivity analyses compare demographic parameters on the basis of these changes. These comparisons are complicated by issues of scale. Elasticity analysis attempts to deal with issues of scale by comparing the effects of proportional changes in demographic parameters, but leads to inconsistencies in evaluating demographic rates. We discuss this and other problems of scaling in sensitivity analysis, and suggest a simple criterion for choosing appropriate scales. We apply our suggestions to data for the killer whale, Orcinus orca.

  6. Regional Scale Characterization of Soil Carbon Fractions with Pedometrics

    NASA Astrophysics Data System (ADS)

    Keskin, H.; Grunwald, S.; Myers, D. B.; Harris, W. G.

    2015-12-01

    Regional scale characterization of the spatial distribution of soil carbon (C) fractions can facilitate a better understanding of the lability and recalcitrance of C across diverse land uses, soils, and climatic gradients. While C lability is associated with decomposition and transport processes in soils in, the stable portion of soil C persists in soil for decades to millennia. To better understand storage, flux and processes of soil C from across the soil-landscape continuum, we upscaled different fractions of soil C. Recalcitrant carbon (RC), hydrolysable carbon (HC) and total carbon (TC) were derived from the topsoil (0-20 cm) at 1,014 georeferenced sites in Florida (~150 000 km2). These were identified using a random-stratified sampling design with landuse-soil suborders strata. The Boruta method was employed for identifying all-relevant variables from the available 327 soil-environmental variables in order to develop the most parsimonious model for TC, RC and HC. We compared eight methods: Classification and Regression Tree (CaRT), Bagged Regression Tree (BaRT), Boosted Regression Tree (BoRT), Random Forest (RF), Support Vector Machine (SVM), Partial Least Square Regression (PLSR), Regression Kriging (RK), and Ordinary Kriging (OK). The accuracy of each method was assessed from 304 randomly chosen samples that were used for validation. Overall, 36, 20 and 25 variables stood out as all-relevant to TC, RC and HC, respectively. We predicted TC with a mean of 4.89 kg m-2 and standard error of 3.71 kg m-2. The prediction performance based on the ratio of prediction error to inter-quartile range in order of accuracy for TC was as follows: RF>BoRT>BaRT>SVM>PLSR>RK>CART>OK; however, BoRT outperformed RF for RC and HC, and the remaining order was identical for RC and HC. The best models, explained 71.6, 73.2, and 32.9 % of the total variation for TC, RC and HC, respectively. No residual spatial autocorrelation was left among the evaluated models. This indicates that

  7. Mode analysis in optics through fractional transforms.

    PubMed

    Alieva, T; Bastiaans, M J

    1999-09-01

    The relationship between the mode content and the fractional Fourier and fractional Hankel transforms of a function is established. It is shown that the Laguerre-Gauss spectrum of a rotationally symmetric wave front can be determined from the wave front's fractional Hankel transforms taken at the optical axis. PMID:18073985

  8. Online Nanoflow Multidimensional Fractionation for High Efficiency Phosphopeptide Analysis*

    PubMed Central

    Ficarro, Scott B.; Zhang, Yi; Carrasco-Alfonso, Marlene J.; Garg, Brijesh; Adelmant, Guillaume; Webber, James T.; Luckey, C. John; Marto, Jarrod A.

    2011-01-01

    Despite intense, continued interest in global analyses of signaling cascades through mass spectrometry-based studies, the large-scale, systematic production of phosphoproteomics data has been hampered in-part by inefficient fractionation strategies subsequent to phosphopeptide enrichment. Here we explore two novel multidimensional fractionation strategies for analysis of phosphopeptides. In the first technique we utilize aliphatic ion pairing agents to improve retention of phosphopeptides at high pH in the first dimension of a two-dimensional RP-RP. The second approach is based on the addition of strong anion exchange as the second dimension in a three-dimensional reversed phase (RP)-strong anion exchange (SAX)-RP configuration. Both techniques provide for automated, online data acquisition, with the 3-D platform providing the highest performance both in terms of separation peak capacity and the number of unique phosphopeptide sequences identified per μg of cell lysate consumed. Our integrated RP-SAX-RP platform provides several analytical figures of merit, including: (1) orthogonal separation mechanisms in each dimension; (2) high separation peak capacity (3) efficient retention of singly- and multiply-phosphorylated peptides; (4) compatibility with automated, online LC-MS analysis. We demonstrate the reproducibility of RP-SAX-RP and apply it to the analysis of phosphopeptides derived from multiple biological contexts, including an in vitro model of acute myeloid leukemia in addition to primary polyclonal CD8+ T-cells activated in vivo through bacterial infection and then purified from a single mouse. PMID:21788404

  9. Pilot-scale fractionation of whey proteins with supercritical CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new pilot-scale process is being developed and optimized for the separation of whey proteins into two enriched, highly functional fractions that are free of contaminants. The fractionation of whey protein isolate (WPI), which contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lac...

  10. Representing Fractions with Standard Notation: A Developmental Analysis

    ERIC Educational Resources Information Center

    Saxe, Geoffrey B.; Taylor, Edd V.; McIntosh, Clifton; Gearhart, Maryl

    2005-01-01

    This study had two purposes: (a) to investigate the developmental relationship between students' uses of fractions notation and their understandings of part-whole relations; and (b) to produce an analysis of the role of fractions instruction in students' use of notation to represent parts of an area. Elementary students (n = 384) in 19 classes…

  11. Calcium isotope fractionation in groundwater: Molecular scale processes influencing field scale behavior

    NASA Astrophysics Data System (ADS)

    Druhan, Jennifer L.; Steefel, Carl I.; Williams, Kenneth H.; DePaolo, Donald J.

    2013-10-01

    It is the purpose of this study to demonstrate that the molecular scale reaction mechanisms describing calcite precipitation and calcium isotope fractionations under highly controlled laboratory conditions also reproduce field scale measurements of δ44Ca in groundwater systems. We present data collected from an aquifer during active carbonate mineral precipitation and develop a reactive transport model capturing the observed chemical and isotopic variations. Carbonate mineral precipitation and associated fluid δ44Ca data were measured in multiple clogged well bores during organic carbon amended biogenic reduction of a uranium contaminated aquifer in western Colorado, USA. Secondary mineral formation induced by carbonate alkalinity generated during the biostimulation process lead to substantial permeability reduction in multiple electron-donor injection wells at the field site. These conditions resulted in removal of aqueous calcium from a background concentration of 6 mM to <1 mM while δ44Ca enrichment ranged from 1‰ to greater than 2.5‰. The relationship between aqueous calcium removal and isotopic enrichment did not conform to Rayleigh model behavior. Explicit treatment of the individual isotopes of calcium within the CrunchFlow reactive transport code demonstrates that the system did not achieve isotopic reequilibration over the time scale of sample collection. Measured fluid δ44Ca values are accurately reproduced by a linear rate law when the Ca2+:CO32- activity ratio remains substantially greater than unity. Variation in the measured δ44Ca between wells is shown to originate from a difference in carbonate alkalinity generated in each well bore. The influence of fluid Ca2+:CO32- ratio on the precipitation rate and δ44Ca is modeled by coupling the CrunchFlow reactive transport code to an ion by ion growth model. This study presents the first coupled ion-by-ion and reactive transport model for isotopic enrichment and demonstrates that reproducing field-scale

  12. Fractional dynamics of tracer transport in fractured media from local to regional scales

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Reeves, Donald M.; Pohlmann, Karl; Chapman, Jenny B.; Russell, Charles E.

    2013-06-01

    Tracer transport through fractured media exhibits concurrent direction-dependent super-diffusive spreading along high-permeability fractures and sub-diffusion caused by mass transfer between fractures and the rock matrix. The resultant complex dynamics challenge the applicability of conventional physical models based on Fick's law. This study proposes a multi-scaling tempered fractional-derivative (TFD) model to explore fractional dynamics for tracer transport in fractured media. Applications show that the TFD model can capture anomalous transport observed in small-scale single fractures, intermediate-scale fractured aquifers, and two-dimensional large-scale discrete fracture networks. Tracer transport in fractured media from local (0.255-meter long) to regional (400-meter long) scales therefore can be quantified by a general fractional-derivative model. Fractional dynamics in fractured media can be scale dependent, owning to 1) the finite length of fractures that constrains the large displacement of tracers, and 2) the increasing mass exchange capacity along the travel path that enhances sub-diffusion.

  13. Contrast Analysis for Scale Differences.

    ERIC Educational Resources Information Center

    Olejnik, Stephen F.; And Others

    Research on tests for scale equality have focused exclusively on an overall test statistic and have not examined procedures for identifying specific differences in multiple group designs. The present study compares four contrast analysis procedures for scale differences in the single factor four-group design: (1) Tukey HSD; (2) Kramer-Tukey; (3)…

  14. Spiritual Competency Scale: Further Analysis

    ERIC Educational Resources Information Center

    Dailey, Stephanie F.; Robertson, Linda A.; Gill, Carman S.

    2015-01-01

    This article describes a follow-up analysis of the Spiritual Competency Scale, which initially validated ASERVIC's (Association for Spiritual, Ethical and Religious Values in Counseling) spiritual competencies. The study examined whether the factor structure of the Spiritual Competency Scale would be supported by participants (i.e., ASERVIC…

  15. Network meta-analysis of survival data with fractional polynomials

    PubMed Central

    2011-01-01

    Background Pairwise meta-analysis, indirect treatment comparisons and network meta-analysis for aggregate level survival data are often based on the reported hazard ratio, which relies on the proportional hazards assumption. This assumption is implausible when hazard functions intersect, and can have a huge impact on decisions based on comparisons of expected survival, such as cost-effectiveness analysis. Methods As an alternative to network meta-analysis of survival data in which the treatment effect is represented by the constant hazard ratio, a multi-dimensional treatment effect approach is presented. With fractional polynomials the hazard functions of interventions compared in a randomized controlled trial are modeled, and the difference between the parameters of these fractional polynomials within a trial are synthesized (and indirectly compared) across studies. Results The proposed models are illustrated with an analysis of survival data in non-small-cell lung cancer. Fixed and random effects first and second order fractional polynomials were evaluated. Conclusion (Network) meta-analysis of survival data with models where the treatment effect is represented with several parameters using fractional polynomials can be more closely fitted to the available data than meta-analysis based on the constant hazard ratio. PMID:21548941

  16. Surface diagnostics for scale analysis.

    PubMed

    Dunn, S; Impey, S; Kimpton, C; Parsons, S A; Doyle, J; Jefferson, B

    2004-01-01

    Stainless steel, polymethylmethacrylate and polytetrafluoroethylene coupons were analysed for surface topographical and adhesion force characteristics using tapping mode atomic force microscopy and force-distance microscopy techniques. The two polymer materials were surface modified by polishing with silicon carbide papers of known grade. The struvite scaling rate was determined for each coupon and related to the data gained from the surface analysis. The scaling rate correlated well with adhesion force measurements indicating that lower energy materials scale at a lower rate. The techniques outlined in the paper provide a method for the rapid screening of materials in potential scaling applications. PMID:14982180

  17. Theoretical analysis of the performance of a foam fractionation column

    PubMed Central

    Tobin, S. T.; Weaire, D.; Hutzler, S.

    2014-01-01

    A model system for theory and experiment which is relevant to foam fractionation consists of a column of foam moving through an inverted U-tube between two pools of surfactant solution. The foam drainage equation is used for a detailed theoretical analysis of this process. In a previous paper, we focused on the case where the lengths of the two legs are large. In this work, we examine the approach to the limiting case (i.e. the effects of finite leg lengths) and how it affects the performance of the fractionation column. We also briefly discuss some alternative set-ups that are of interest in industry and experiment, with numerical and analytical results to support them. Our analysis is shown to be generally applicable to a range of fractionation columns. PMID:24808752

  18. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants.

    PubMed

    Morris, Hugh; Plavcová, Lenka; Cvecko, Patrick; Fichtler, Esther; Gillingham, Mark A F; Martínez-Cabrera, Hugo I; McGlinn, Daniel J; Wheeler, Elisabeth; Zheng, Jingming; Ziemińska, Kasia; Jansen, Steven

    2016-03-01

    Parenchyma is an important tissue in secondary xylem of seed plants, with functions ranging from storage to defence and with effects on the physical and mechanical properties of wood. Currently, we lack a large-scale quantitative analysis of ray parenchyma (RP) and axial parenchyma (AP) tissue fractions. Here, we use data from the literature on AP and RP fractions to investigate the potential relationships of climate and growth form with total ray and axial parenchyma fractions (RAP). We found a 29-fold variation in RAP fraction, which was more strongly related to temperature than with precipitation. Stem succulents had the highest RAP values (mean ± SD: 70.2 ± 22.0%), followed by lianas (50.1 ± 16.3%), angiosperm trees and shrubs (26.3 ± 12.4%), and conifers (7.6 ± 2.6%). Differences in RAP fraction between temperate and tropical angiosperm trees (21.1 ± 7.9% vs 36.2 ± 13.4%, respectively) are due to differences in the AP fraction, which is typically three times higher in tropical than in temperate trees, but not in RP fraction. Our results illustrate that both temperature and growth form are important drivers of RAP fractions. These findings should help pave the way to better understand the various functions of RAP in plants. PMID:26551018

  19. Non-Hermiticity and potential scaling in the method of continued fractions for scattering problems

    SciTech Connect

    Makowski, A.J.; Raczynski, A.; Staszewska, G.

    1986-01-01

    The recently formulated method of continued fractions for scattering problems is generalized (i) for the case of non-Hermitian potentials and Green functions and (ii) for the formulation through Volterra-type equations. A practically important possibility of potential scaling is also presented.

  20. Scaling of velocity and mixture fraction fields in laminar counterflow configurations

    NASA Astrophysics Data System (ADS)

    Bisetti, Fabrizio; Scribano, Gianfranco

    2015-11-01

    Counterflow configurations are widely used to characterize premixed, nonpremixed, and partially premixed laminar flames. We performed a systematic analysis of the velocity and mixture fraction fields in the counterflow configuration and obtained scaling laws, which depend on two suitable nondimensional numbers: (i) the Reynolds number based on the bulk velocity U and half the separation distance between the nozzles L, and (ii) the ratio of the separation distance H = 2 L to the nozzle diameter D. Our study combines velocity measurements via Particle Image Velocimetry, detailed two-dimensional simulations including the nozzle geometry, and an exhaustive analysis of the data based on the nondimensional numbers. The flow field is shown to be moderately sensitive to the Reynolds number and strongly affected by the ratio H / D . By describing the self-similar behavior of the flow field in counterflow configurations comprehensively, our results provide a systematic explanation of existing burner designs as well as clear guidelines for the design of counterflows for pressurized nonpremixed flames. Finally, questions related to the limitations of one-dimensional models for counterflows are addressed conclusively.

  1. Microfluidic digital isoelectric fractionation for rapid multidimensional glycoprotein analysis.

    PubMed

    Mai, Junyu; Sommer, Gregory J; Hatch, Anson V

    2012-04-17

    Here we present an integrated microfluidic device for rapid and automated isolation and quantification of glycoprotein biomarkers directly from biological samples on a multidimensional analysis platform. In the first dimension, digital isoelectric fractionation (dIEF) uses discrete pH-specific membranes to separate proteins and their isoforms into precise bins in a highly flexible spatial arrangement on-chip. dIEF provides high sample preconcentration factors followed by immediate high-fidelity transfer of fractions for downstream analysis. We successfully fractionate isoforms of two potential glycoprotein cancer markers, fetuin and prostate-specific antigen (PSA), with 10 min run time, and results are compared qualitatively and quantitatively to conventional slab gel IEF. In the second dimension, functionalized monolithic columns are used to capture and detect targeted analytes from each fraction. We demonstrate rapid two-dimensional fractionation, immunocapture, and detection of C-reactive protein (CRP) spiked in human serum. This rapid, flexible, and automated approach is well-suited for glycoprotein biomarker research and verification studies and represents a practical avenue for glycoprotein isoform-based diagnostic testing. PMID:22409593

  2. Analysis of Fractions Curriculum for Constructivist College Remedial Mathematics Education.

    ERIC Educational Resources Information Center

    Narode, Ronald B.

    This document analyzes one chapter of a textbook for college remedial mathematics. This analysis is done by one of the textbook authors. The chapter under discussion deals with fractions. The text authors, writing from a constructivist perspective, attempted to write problems which not only developed specific conceptual and heuristic objectives…

  3. Analysis of fractionation in corn-to-ethanol plants

    NASA Astrophysics Data System (ADS)

    Nelson, Camille

    As the dry grind ethanol industry has grown, the research and technology surrounding ethanol production and co-product value has increased. Including use of back-end oil extraction and front-end fractionation. Front-end fractionation is pre-fermentation separation of the corn kernel into 3 fractions: endosperm, bran, and germ. The endosperm fraction enters the existing ethanol plant, and a high protein DDGS product remains after fermentation. High value oil is extracted out of the germ fraction. This leaves corn germ meal and bran as co-products from the other two streams. These 3 co-products have a very different composition than traditional corn DDGS. Installing this technology allows ethanol plants to increase profitability by tapping into more diverse markets, and ultimately could allow for an increase in profitability. An ethanol plant model was developed to evaluate both back-end oil extraction and front-end fractionation technology and predict the change in co-products based on technology installed. The model runs in Microsoft Excel and requires inputs of whole corn composition (proximate analysis), amino acid content, and weight to predict the co-product quantity and quality. User inputs include saccharification and fermentation efficiencies, plant capacity, and plant process specifications including front-end fractionation and backend oil extraction, if applicable. This model provides plants a way to assess and monitor variability in co-product composition due to the variation in whole corn composition. Additionally the co-products predicted in this model are entered into the US Pork Center of Excellence, National Swine Nutrition Guide feed formulation software. This allows the plant user and animal nutritionists to evaluate the value of new co-products in existing animal diets.

  4. Performance analysis of fractional order extremum seeking control.

    PubMed

    Malek, Hadi; Dadras, Sara; Chen, YangQuan

    2016-07-01

    Extremum-seeking scheme is a powerful adaptive technique to optimize steady-state system performance. In this paper, a novel extremum-seeking scheme for the optimization of nonlinear plants using fractional order calculus is proposed. The fractional order extremum-seeking algorithm only utilizes output measurements of the plant, however, it performs superior in many aspects such as convergence speed and robustness. A detailed stability analysis is given to not only guarantee a faster convergence of the system to an adjustable neighborhood of the optimum but also confirm a better robustness for proposed algorithm. Furthermore, simulation and experimental results demonstrate that the fractional order extremum-seeking scheme for nonlinear systems outperforms the traditional integer order one. PMID:27000632

  5. Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation

    SciTech Connect

    Armstrong, Ryan T.; Wildenschild, Dorthe

    2012-10-24

    Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.

  6. Multiple satellite estimates of urban fractions and climate effects at regional scale

    NASA Astrophysics Data System (ADS)

    Jia, G.; Xu, R.; He, Y.

    2014-12-01

    Regional climate is controlled by large scale forcing at lateral boundary and physical processes within the region. Landuse in East Asia has been changed substantially in the last three decades, featured with expansion of urban built-up at unprecedented scale and speed. The fast expansion of urban areas could contribute to local even regional climate change. However, current spatial datasets of urban fractions do not well represent extend and expansion of urban areas in the regions, and the best available satellite data and remote sensing techniques have not been well applied to serve regional modeling of urbanization impacts on near surface temperature and other climate variables. Better estimates of localized urban fractions and urban climate effects are badly needed. Here we use high and mid resolution satellite data to estimate urban fractions and to assess effects of urban heat islands at local and regional scales. With our fractional cover, data fusion, and differentiated threshold approaches, estimated urban extent was greater than previously reported in many global datasets. Many city clusters were merging into each other, with gradual blurring boundaries and disappearing of gaps among member cities. Cities and towns were more connected with roads and commercial corridors, while wildland and urban greens became more isolated as patches among built-up areas. Those new estimates are expected to effectively improve climate simulation at local and regional scales in East Asia. There were significant positive relations between urban fraction and urban heat island effects as demonstrated by VNIR and TIR data from multiple satellites. Stronger warming was detected at the meteorological stations that experienced greater urbanization, i.e., those with a higher urbanization rate. While the total urban area affects the absolute temperature values, the change of the urban area (urbanization rate) likely affects the temperature trend. Increases of approximately 10% in

  7. Hepatic extraction fraction of hepatobiliary radiopharmaceuticals measured using spectral analysis.

    PubMed

    Murase, K; Tsuda, T; Mochizuki, T; Ikezoe, J

    1999-11-01

    Measuring the hepatic extraction fraction (HEF) of a hepatobiliary radiopharmaceutical helps to differentiate hepatocyte from biliary tract diseases, and it is generally performed using deconvolution analysis. In this study, we measured HEF using spectral analysis. With spectral analysis, HEF was calculated from (the sum of the spectral data obtained by spectral analysis--the highest frequency component of the spectrum) divided by (the sum of the spectral data) x 100 (%). We applied this method to dynamic liver scintigraphic data obtained from six healthy volunteers and from 46 patients with various liver diseases, using 99Tcm-N-pyridoxyl-5-methyltryptophan (PMT). We also measured HEF using deconvolution analysis, in which the modified Fourier transform technique was employed. The HEF values obtained by spectral analysis correlated closely with those obtained by deconvolution analysis (r = 0.925), suggesting our method is valid. The HEF values obtained by spectral analysis decreased as the severity of liver disease progressed. The values were 100.0 +/- 0.0%, 94.7 +/- 13.6%, 76.2 +/- 27.4%, 45.7 +/- 15.6%, 82.7 +/- 24.2% and 95.2 +/- 11.8% (mean +/- S.D.) for the normal controls (n = 6), mild liver cirrhosis (n = 16), moderate liver cirrhosis (n = 11), severe liver cirrhosis (n = 5), acute hepatitis (n = 8) and chronic hepatitis groups (n = 6), respectively. The HEF was obtained more simply and rapidly by spectral analysis than by deconvolution analysis. The results suggest that our method using spectral analysis can be used as an alternative to the conventional procedure using deconvolution analysis for measuring HEF. PMID:10572914

  8. Modeling subgrid scale mixture fraction variance in LES of evaporating spray

    SciTech Connect

    Pera, Cecile; Reveillon, Julien; Vervisch, Luc; Domingo, Pascale

    2006-09-15

    Simulations of a dilute spray evaporating in spatially decaying homogeneous turbulence are performed. An Eulerian description of the flow is adopted, while the behavior of the discrete liquid phase is captured using Lagrangian modeling. Time and length scales of the continuous carrier phase are fully simulated; and by varying the properties of the modeled spray, a database of spray carrier phase direct numerical simulation (CP-DNS) is obtained. The CP-DNS is then filtered on a coarse grid to conduct a priori tests of subgrid scale (SGS) closures. The objective is to provide methods for approximating the level of SGS mixture fraction variance in large eddy simulation (LES) of fuel spray turbulent combustion. Direct estimation of the variance from the scales resolved in LES is first discussed. Then, the solving of a balance equation to get the variance is addressed, with closures for the scalar dissipation rate and the correlation between vapor source and mixture fraction. From the results, a procedure to couple spray evaporation with SGS turbulent combustion modeling emerges. (author)

  9. Viewable Gap Fraction in Forests at the Landscape and Stand Scale near Fraser, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Melloh, R. A.; Woodcock, C. E.; Liu, J. C.; Hardy, J. P.; Koenig, G. G.; Davis, R. E.

    2002-12-01

    The 3-dimensional organization of canopy elements impacts the retrieval of snow and soil properties from remote sensing platforms, and influences the optical and infrared radiative environment within the forest. The number and size of gaps within and between tree crowns determines the type and amount of information that can be obtained remotely. One of the objectives of the NASA-Cold Land Process Experiment is to advance techniques for large-scale observation of hydrologic properties, including water storage and freeze-thaw state. Particular focus is placed on passive and active microwave sensors. The purpose of this paper is to: 1) describe gap fraction distributions and within-stand spatial variation of solar radiation in continuous and discontinuous tree stands in the Fraser Local Observation Site (LSOS), and 2) describe the information content that will be available in landscape scale viewable gap fraction maps (30-m resolution) for intensive study sites (ISA's) near Fraser, Colorado, USA. Hemispherical photographs were taken with a Nikkor 8mm/f2 lens at 20-m grid spacing in the Fraser-LSOS, an area of predominantly Lodgepole Pine (Pinus contorta), and were analyzed with Gap Light Analyzer software. Gap fraction probability distributions were determined for 10 degree zenith angle increments. Maximum mid-day radiation transmittance typically occurs at zenith angles between 51 and 61 degrees during mid to late February and 35 to 50 degrees for late March. The zenith angle ranges of maximum transmittance correspond to gap fraction probability distributions that peak at 0.4 in February, and 0.47 in March. The difference between transmittance into the north-edge and south-edge of clearings is more pronounced in February when mid-day sun angles are lower. Canopy openness at the site ranged from 22 to 60%. Direct transmittance ranged from 9 to 83%, and diffuse transmittance 24 to 81%. Viewable gap fraction is the proportion of the forest floor that can be viewed from

  10. Scaling analysis of stock markets

    NASA Astrophysics Data System (ADS)

    Bu, Luping; Shang, Pengjian

    2014-06-01

    In this paper, we apply the detrended fluctuation analysis (DFA), local scaling detrended fluctuation analysis (LSDFA), and detrended cross-correlation analysis (DCCA) to investigate correlations of several stock markets. DFA method is for the detection of long-range correlations used in time series. LSDFA method is to show more local properties by using local scale exponents. DCCA method is a developed method to quantify the cross-correlation of two non-stationary time series. We report the results of auto-correlation and cross-correlation behaviors in three western countries and three Chinese stock markets in periods 2004-2006 (before the global financial crisis), 2007-2009 (during the global financial crisis), and 2010-2012 (after the global financial crisis) by using DFA, LSDFA, and DCCA method. The findings are that correlations of stocks are influenced by the economic systems of different countries and the financial crisis. The results indicate that there are stronger auto-correlations in Chinese stocks than western stocks in any period and stronger auto-correlations after the global financial crisis for every stock except Shen Cheng; The LSDFA shows more comprehensive and detailed features than traditional DFA method and the integration of China and the world in economy after the global financial crisis; When it turns to cross-correlations, it shows different properties for six stock markets, while for three Chinese stocks, it reaches the weakest cross-correlations during the global financial crisis.

  11. Fractional-order elastic models of cartilage: A multi-scale approach

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Royston, Thomas J.

    2010-03-01

    The objective of this research is to develop new quantitative methods to describe the elastic properties (e.g., shear modulus, viscosity) of biological tissues such as cartilage. Cartilage is a connective tissue that provides the lining for most of the joints in the body. Tissue histology of cartilage reveals a multi-scale architecture that spans a wide range from individual collagen and proteoglycan molecules to families of twisted macromolecular fibers and fibrils, and finally to a network of cells and extracellular matrix that form layers in the connective tissue. The principal cells in cartilage are chondrocytes that function at the microscopic scale by creating nano-scale networks of proteins whose biomechanical properties are ultimately expressed at the macroscopic scale in the tissue's viscoelasticity. The challenge for the bioengineer is to develop multi-scale modeling tools that predict the three-dimensional macro-scale mechanical performance of cartilage from micro-scale models. Magnetic resonance imaging (MRI) and MR elastography (MRE) provide a basis for developing such models based on the nondestructive biomechanical assessment of cartilage in vitro and in vivo. This approach, for example, uses MRI to visualize developing proto-cartilage structure, MRE to characterize the shear modulus of such structures, and fractional calculus to describe the dynamic behavior. Such models can be extended using hysteresis modeling to account for the non-linear nature of the tissue. These techniques extend the existing computational methods to predict stiffness and strength, to assess short versus long term load response, and to measure static versus dynamic response to mechanical loads over a wide range of frequencies (50-1500 Hz). In the future, such methods can perhaps be used to help identify early changes in regenerative connective tissue at the microscopic scale and to enable more effective diagnostic monitoring of the onset of disease.

  12. Micro-scale novel stable isotope fractionation during weathering disclosed by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Schuessler, J. A.; von Blanckenburg, F.

    2012-12-01

    The stable isotope fractionation of metals and metalloids during chemical weathering and alteration of rocks at low temperature is a topic receiving increasing scientific attention. For these systems, weathering of primary minerals leads to selective partitioning of isotopes between the secondary minerals formed from them, and the dissolved phase of soil or river water. While the isotopic signatures of these processes have been mapped-out at the catchment or the soil scale, the actual isotopic fractionation is occurring at the mineral scale. To identify the processes underlying such micro-scale fractionation, the development of micro-analytical tools allows to investigate mechanisms of isotope fractionation in-situ, in combination with textural information of weathering reactions. We have developed a second-generation UV femtosecond (fs) laser system at GFZ Potsdam. The advantage of UV-fs laser ablation is the reduction of laser-induced isotopic and elemental fractionation by avoiding 'thermal effects' during ablation, such that accurate isotope ratios can be measured by standard-sample-standard bracketing using laser ablation multicollector ICP-MS; where the matrix of the bracketing standard does not need to match that of the sample [1]. Our system consists of the latest generation femtosecond solid-state laser (Newport Spectra Physics Solstice), producing an ultra short pulse width of about 100 femtoseconds at a wavelength of 196 nm. The system is combined with a custom-build computer-controlled sample stage and allows fully automated isotope analyses through synchronised operation of the laser with the Neptune MC-ICP-MS. To assess precision and accuracy of our laser ablation method, we analysed various geological reference materials. We obtained δ30Si values of -0.31 ± 0.23 (2SD, n = 13) for basalt glass BHVO-2G, and -1.25 ± 0.21 (2SD, n = 27) for pure Si IRMM17 when bracketed against NBS-28 quartz. δ56Fe and δ26Mg values obtained from non-matrix matched

  13. Pilot-scale resin adsorption as a means to recover and fractionate apple polyphenols.

    PubMed

    Kammerer, Dietmar R; Carle, Reinhold; Stanley, Roger A; Saleh, Zaid S

    2010-06-01

    The purification and fractionation of phenolic compounds from crude plant extracts using a food-grade acrylic adsorbent were studied at pilot-plant scale. A diluted apple juice concentrate served as a model phenolic solution for column adsorption and desorption trials. Phenolic concentrations were evaluated photometrically using the Folin-Ciocalteu assay and by HPLC-DAD. Recovery rates were significantly affected by increasing phenolic concentrations of the feed solutions applied to the column. In contrast, the flow rate during column loading hardly influenced adsorption efficiency, whereas the temperature and pH value were shown to be crucial parameters determining both total phenolic recovery rates and the adsorption behavior of individual polyphenols. As expected, the eluent composition had the greatest impact on the desorption characteristics of both total and individual phenolic compounds. HPLC analyses revealed significantly different elution profiles of individual polyphenols depending on lipophilicity. This technique allows fractionation of crude plant phenolic extracts, thus providing the opportunity to design the functional properties of the resulting phenolic fractions selectively, and the present study delivers valuable information with regard to the adjustment of individual process parameters. PMID:20476784

  14. An Extensive Analysis of Preservice Elementary Teachers' Knowledge of Fractions

    ERIC Educational Resources Information Center

    Newton, Kristie Jones

    2008-01-01

    The study of preservice elementary teachers' knowledge of fractions is important because fractions are notoriously difficult to learn and teach. Unfortunately, studies of preservice teachers' fraction knowledge are limited and have focused primarily on division. The present study included all four operations to provide a more comprehensive…

  15. Simulation of Field-Scale Non-Fickian Plumes With Spatiotemporal Fractional Advection- Dispersion Equations

    NASA Astrophysics Data System (ADS)

    Benson, D. A.; Zhang, Y.

    2006-12-01

    Conservative solute transport through natural media is typically "anomalous" or non-Fickian. The anomalous transport may be characterized by faster than linear growth of the centered second moment, or non-Gaussian leading or trailing edges of a plume emanating from a point source. These characteristics develop because of non-local dependence on either past (time) or far upstream (space) concentrations. Non-local equations developed to describe anomalous dispersion usually focus on constant transport parameters and/or independence of the transport on space dimension. These simplifications have been useful for fitting simple transport processes, such as laboratory column tests or 1-D projections of field data. However, they may be insufficient for real field settings, where direction-dependent depositional processes and nonstationary heterogeneity can occur. We develop a generalized, multi-dimensional, spatiotemporal fractional advection- dispersion equation (fADE) with variable parameters to characterize regional-scale anomalous dispersion processes including trapping in immobile zones and/or super-Fickian rapid transport. A Lagrangian numerical model of the space-time fractional transport equation is developed in which solute particles can disperse in both space and time, depending on the medium heterogeneity properties, such as the connectivity and statistical distributions of high versus low-permeability deposits. In the generalized fADE, the range of the order of fractional time derivative is (0 2], representing a wide range of possible trapping behavior. The extension of the order to the range (1 2] is novel to transport theory. We apply the numerical model in 1-D and 2-D to the MADE site tritium plumes, and results indicate that this method can capture the main behaviors of realistic plumes, including local variations of spreading, direction-dependent scaling rates, and arbitrary rapid transport along preferential flow paths. Since the governing equation

  16. Mokken Scale Analysis Using Hierarchical Clustering Procedures

    ERIC Educational Resources Information Center

    van Abswoude, Alexandra A. H.; Vermunt, Jeroen K.; Hemker, Bas T.; van der Ark, L. Andries

    2004-01-01

    Mokken scale analysis (MSA) can be used to assess and build unidimensional scales from an item pool that is sensitive to multiple dimensions. These scales satisfy a set of scaling conditions, one of which follows from the model of monotone homogeneity. An important drawback of the MSA program is that the sequential item selection and scale…

  17. Completing Pre-Pilot Tasks To Scale Up Biomass Fractionation Pretreatment Apparatus From Batch To Continuous

    SciTech Connect

    Dick Wingerson

    2004-12-15

    PureVision Technology, Inc. (PureVision) was the recipient of a $200,000 Invention and Innovations (I&I) grant from the U. S. Department of Energy (DOE) to complete prepilot tasks in order to scale up its patented biomass fractionation pretreatment apparatus from batch to continuous processing. The initial goal of the I&I program, as detailed in PureVision's original application to the DOE, was to develop the design criteria to build a small continuous biomass fractionation pilot apparatus utilizing a retrofitted extruder with a novel screw configuration to create multiple reaction zones, separated by dynamic plugs within the reaction chamber that support the continuous counter-flow of liquids and solids at elevated temperature and pressure. Although the ultimate results of this 27-month I&I program exceeded the initial expectations, some of the originally planned tasks were not completed due to a modification of direction in the program. PureVision achieved its primary milestone by establishing the design criteria for a continuous process development unit (PDU). In addition, PureVision was able to complete the procurement, assembly, and initiate shake down of the PDU at Western Research Institute (WRI) in Laramie, WY during August 2003 to February 2004. During the month of March 2004, PureVision and WRI performed initial testing of the continuous PDU at WRI.

  18. Re-fraction: a machine learning approach for deterministic identification of protein homologues and splice variants in large-scale MS-based proteomics.

    PubMed

    Yang, Pengyi; Humphrey, Sean J; Fazakerley, Daniel J; Prior, Matthew J; Yang, Guang; James, David E; Yang, Jean Yee-Hwa

    2012-05-01

    A key step in the analysis of mass spectrometry (MS)-based proteomics data is the inference of proteins from identified peptide sequences. Here we describe Re-Fraction, a novel machine learning algorithm that enhances deterministic protein identification. Re-Fraction utilizes several protein physical properties to assign proteins to expected protein fractions that comprise large-scale MS-based proteomics data. This information is then used to appropriately assign peptides to specific proteins. This approach is sensitive, highly specific, and computationally efficient. We provide algorithms and source code for the current version of Re-Fraction, which accepts output tables from the MaxQuant environment. Nevertheless, the principles behind Re-Fraction can be applied to other protein identification pipelines where data are generated from samples fractionated at the protein level. We demonstrate the utility of this approach through reanalysis of data from a previously published study and generate lists of proteins deterministically identified by Re-Fraction that were previously only identified as members of a protein group. We find that this approach is particularly useful in resolving protein groups composed of splice variants and homologues, which are frequently expressed in a cell- or tissue-specific manner and may have important biological consequences. PMID:22428558

  19. Mapping canopy gap fraction and leaf area index at continent-scale from satellite lidar

    NASA Astrophysics Data System (ADS)

    Mahoney, C.; Hopkinson, C.; Held, A. A.

    2015-12-01

    Information on canopy cover is essential for understanding spatial and temporal variability in vegetation biomass, local meteorological processes and hydrological transfers within vegetated environments. Gap fraction (GF), an index of canopy cover, is often derived over large areas (100's km2) via airborne laser scanning (ALS), estimates of which are reasonably well understood. However, obtaining country-wide estimates is challenging due to the lack of spatially distributed point cloud data. The Geoscience Laser Altimeter System (GLAS) removes spatial limitations, however, its large footprint nature and continuous waveform data measurements make derivations of GF challenging. ALS data from 3 Australian sites are used as a basis to scale-up GF estimates to GLAS footprint data by the use of a physically-based Weibull function. Spaceborne estimates of GF are employed in conjunction with supplementary predictor variables in the predictive Random Forest algorithm to yield country-wide estimates at a 250 m spatial resolution; country-wide estimates are accompanied with uncertainties at the pixel level. Preliminary estimates of effective Leaf Area Index (eLAI) are also presented by converting GF via the Beer-Lambert law, where an extinction coefficient of 0.5 is employed; deemed acceptable at such spatial scales. The need for such wide-scale quantification of GF and eLAI are key in the assessment and modification of current forest management strategies across Australia. Such work also assists Australia's Terrestrial Ecosystem Research Network (TERN), a key asset to policy makers with regards to the management of the national ecosystem, in fulfilling their government issued mandates.

  20. Lie group analysis method for two classes of fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Jiang, Yao-Lin

    2015-09-01

    In this paper we deal with two classes of fractional partial differential equation: n order linear fractional partial differential equation and nonlinear fractional reaction diffusion convection equation, by using the Lie group analysis method. The infinitesimal generators general formula of n order linear fractional partial differential equation is obtained. For nonlinear fractional reaction diffusion convection equation, the properties of their infinitesimal generators are considered. The four special cases are exhaustively investigated respectively. At the same time some examples of the corresponding case are also given. So it is very convenient to solve the infinitesimal generator of some fractional partial differential equation.

  1. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    SciTech Connect

    HERTING DL

    2008-09-16

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  2. Lie group analysis and similarity solution for fractional Blasius flow

    NASA Astrophysics Data System (ADS)

    Pan, Mingyang; Zheng, Liancun; Liu, Fawang; Zhang, Xinxin

    2016-08-01

    This paper presents an investigation for boundary layer flow of viscoelastic fluids past a flat plate. Fractional-order Blasius equation with spatial fractional Riemann-Liouville derivative is derived firstly by using Lie group transformation. The solution is obtained numerically by the generalized shooting method, employing the shifted Grünwald formula and classical fourth order Runge-Kutta method as the iterative scheme. The effects of the order of fractional derivative and the generalized Reynolds number on the velocity profiles are analyzed and discussed. Numerical results show that the smaller the value of the fractional order derivative leads to the faster velocity of viscoelastic fluids near the plate but not to hold near the outer flow. As the Reynolds number increases, the fluid is moving faster in the whole boundary layer consistently.

  3. Usefulness of Skin Explants for Histologic Analysis after Fractional Photothermolysis

    PubMed Central

    Park, Gyeong-Hun; Bang, Seunghyun; Won, Kwang Hee; Won, Chong Hyun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan

    2015-01-01

    Background Fractional laser resurfacing treatment has been extensively investigated and is widely used. However, the mechanism underlying its effects is poorly understood because of the ethical and cosmetic problems of obtaining skin biopsies required to study the changes after laser treatment. Objective To evaluate the usefulness of human skin explants for the investigation of fractional photothermolysis. Methods Full-thickness discarded skin was treated in 4 ways: no treatment (control), fractional carbon dioxide laser, fractional Er:YAG laser, and fractional 1,550-nm erbium-doped fiber laser. Both treated and non-treated skin samples were cultured ex vivo at the air-medium interface for 7 days. Frozen tissue was sectioned and stained with hematoxylin & eosin for histologic examination and nitro blue tetrazolium chloride for viability testing. Results Skin explants cultured for up to 3 days exhibited histologic changes similar to those observed in in vivo studies, including microscopic treatment zones surrounded by a thermal coagulation zone, re-epithelialization, and formation of microscopic epidermal necrotic debris. However, the explant structure lost its original form within 7 days of culture. The viability of skin explants was maintained for 3 days of culture but was also lost within 7 days. Conclusion The skin explant model may be a useful tool for investigating the immediate or early changes following fractional photothermolysis, but further improvements are required to evaluate the long-term and dermal changes. PMID:26082585

  4. Fractionating soils so that others do not have to: radiocarbon informs choice of method for scale, ecosystem, or process

    NASA Astrophysics Data System (ADS)

    Crow, S. E.

    2011-12-01

    stock in the top 0-15 cm of mineral soil by 26%; however, sequential density separation into 7 fractions revealed 50-69% increases in C within low density fractions with MRT of less than 5 yr but over 300% losses of soil C within dense fraction with MRT of over 1275 yr. In these Andisols, the sequential density fractionation method was highly sensitive to land use change and the range of densities are hypothesized to be associated with different mechanisms for soil C stabilization acting over different time scales, which was confirmed by the radiocarbon-based MRT estimates. Although soil fractionation methods are powerful, other results from similar Andisols suggest that over geologic time scales MRT estimates for bulk soil profiles can be more informative than soil fractions. Careful consideration of the scientific question, study system, and scale is important when choosing a method for fractionating soil. Radiocarbon measurements can provide confirmation that the actual nature of the recovered fractions matches the theoretical one.

  5. Uncertainty analysis of fission fraction for reactor antineutrino experiments

    NASA Astrophysics Data System (ADS)

    Ma, X. B.; Lu, F.; Wang, L. Z.; Chen, Y. X.; Zhong, W. L.; An, F. P.

    2016-06-01

    Reactor simulation is an important source of uncertainties for a reactor neutrino experiment. Therefore, how to evaluate the antineutrino flux uncertainty results from reactor simulation is an important question. In this study, a method of the antineutrino flux uncertainty result from reactor simulation was proposed by considering the correlation coefficient. In order to use this method in the Daya Bay antineutrino experiment, the open source code DRAGON was improved and used for obtaining the fission fraction and correlation coefficient. The average fission fraction between DRAGON and SCIENCE code was compared and the difference was less than 5% for all the four isotopes. The uncertainty of fission fraction was evaluated by comparing simulation atomic density of four main isotopes with Takahama-3 experiment measurement. After that, the uncertainty of the antineutrino flux results from reactor simulation was evaluated as 0.6% per core for Daya Bay antineutrino experiment.

  6. Phosphorus, copper and zinc in solid and liquid fractions from full-scale and laboratory-separated pig slurry.

    PubMed

    Popovic, Olga; Hjorth, Maibritt; Jensen, Lars Stoumann

    2012-09-01

    Pig slurry separation is a slurry treatment technique that can reduce excess loads of P, Cu and Zn to the arable land. This study investigated the effects of different commercial and laboratory separation treatments for pig slurry on P, Cu and Zn distribution into solid and liquid fractions. Solid and liquid separation fractions were collected from two commercial separators installed on the farm. Five different separation treatments were performed (polymer flocculation and drainage; coagulation with iron sulphate addition and polymer flocculation and drainage; ozonation and centrifugation; centrifugation only; and natural sedimentation) on sow and suckling piglet raw slurry. Particle size fractionation was performed on raw slurry and all separation fractions by sequential wet sieving and P, Cu and Zn concentrations were then measured in the particle size classes. Dry matter and total P, Cu and Zn were separated with higher efficiency when chemical pretreatments with flocculants and coagulants were introduced before mechanical separation at both commercial and laboratory scale. When solid fractions are utilized as crop fertilizer (primarily as P fertilizer), the loads of Cu and Zn to the soils are not markedly different than the loads applied with raw slurry. When liquid fractions are used as crop fertilizer (primarily as N fertilizer), the loads of Cu and Zn are markedly lower than those supplied with raw slurry. The loads of Cu and Zn introduced to the soil were lowest on application of the liquid fraction produced by optimized separation treatments that included flocculation and coagulation. PMID:23240207

  7. Contribution of protein fractionation to depth of analysis of the serum and plasma proteomes.

    PubMed

    Faca, Vitor; Pitteri, Sharon J; Newcomb, Lisa; Glukhova, Veronika; Phanstiel, Doug; Krasnoselsky, Alexei; Zhang, Qing; Struthers, Jason; Wang, Hong; Eng, Jimmy; Fitzgibbon, Matt; McIntosh, Martin; Hanash, Samir

    2007-09-01

    In-depth analysis of the serum and plasma proteomes by mass spectrometry is challenged by the vast dynamic range of protein abundance and substantial complexity. There is merit in reducing complexity through fractionation to facilitate mass spectrometry analysis of low-abundance proteins. However, fractionation reduces throughput and has the potential of diluting individual proteins or inducing their loss. Here, we have investigated the contribution of extensive fractionation of intact proteins to depth of analysis. Pooled serum depleted of abundant proteins was fractionated by an orthogonal two-dimensional system consisting of anion-exchange and reversed-phase chromatography. The resulting protein fractions were aliquotted; one aliquot was analyzed by shotgun LC-MS/MS, and another was further resolved into protein bands in a third dimension using SDS-PAGE. Individual gel bands were excised and subjected to in situ digestion and mass spectrometry. We demonstrate that increased fractionation results in increased depth of analysis based on total number of proteins identified in serum and based on representation in individual fractions of specific proteins identified in gel bands following a third-dimension SDS gel analysis. An intact protein analysis system (IPAS) based on a two-dimensional plasma fractionation schema was implemented that resulted in identification of 1662 proteins with high confidence with representation of protein isoforms that differed in their chromatographic mobility. Further increase in depth of analysis was accomplished by repeat analysis of aliquots from the same set of two-dimensional fractions resulting in overall identification of 2254 proteins. We conclude that substantial depth of analysis of proteins from milliliter quantities of serum or plasma and detection of isoforms are achieved with depletion of abundant proteins followed by two-dimensional protein fractionation and MS analysis of individual fractions. PMID:17696519

  8. Flutter analysis of a flag of fractional viscoelastic material

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Jia, Lai-Bing; Chen, Xiao-Peng; Yin, Xie-Zhen

    2014-12-01

    We develop a two-dimensional model to study the effects of the material viscoelasticity on the dynamics of a flag in flow. Two periodic states of an elastic flag are firstly identified with different dimensionless bending stiffness: a lower frequency state and a higher frequency state. The Scott-Blair model and the fractional Kelvin-Voigt model are further used to represent the viscoelasticity of the flag material. When the Scott-Blair model is used, with the increase of the fractional derivative order α, the flag flapping frequency of the higher frequency state decreases abruptly, and that of the lower frequency state also shows a downward trend. When the system parameters are in a certain range, an interesting phenomenon is observed, where the time needed to achieve the periodic steady state initially increases and then decreases with increasing α. The phenomenon implies that the flag has a higher energy harvesting speed when α approaches 1. When the fractional Kelvin-Voigt model is used, the increasing α also causes the transition from the higher frequency state to the lower frequency state, and quasi-periodic states are observed during the transition. The fractional Kelvin-Voigt type viscoelasticity produces complex effects on the lower frequency state.

  9. Stability analysis of impulsive functional systems of fractional order

    NASA Astrophysics Data System (ADS)

    Stamova, Ivanka; Stamov, Gani

    2014-03-01

    In this paper, a class of impulsive fractional functional differential systems is investigated. Sufficient conditions for stability of the zero solution are proved, extending the corresponding theory of impulsive functional differential equations. The investigations are carried out by using the comparison principle, coupled with the Lyapunov function method. We apply our results to an impulsive single species model of Lotka-Volterra type.

  10. The ALHAMBRA survey: Accurate photometric merger fractions from PDF analysis

    NASA Astrophysics Data System (ADS)

    López-Sanjuan, C.; Cenarro, A. J..; Varela, J.; Viironen, K.; ALHAMBRA Team

    2015-05-01

    The estimation of the merger fraction in photometric surveys is limited by the large uncertainty in the photometric redshift compared with the velocity difference in kinematical close pairs (less than 500 km s^{-1}). Several efforts have conducted to deal with this limitation and we present the latest improvements. Our new method (i) provides a robust estimation of the merger fraction by using full probability distribution functions (PDFs) instead of Gaussian distributions, as in previous work; (ii) takes into account the dependence of the luminosity on redshift in both the selection of the samples and the definition of major/minor mergers; and (iii) deals with partial PDFs to define ``red" (E/S0 templates) and ``blue" (spiral/starburst templates) samples without apply any colour selection. We highlight our new method with the estimation of the merger fraction at z < 1 in the ALHAMBRA photometric survey. We find that our merger fractions and rates nicely agree with those from previous spectroscopic work. This new method will be capital for current and future large photometric surveys such as DES, SHARDS, J-PAS, or LSST.

  11. Scaling analysis of affinity propagation.

    PubMed

    Furtlehner, Cyril; Sebag, Michèle; Zhang, Xiangliang

    2010-06-01

    We analyze and exploit some scaling properties of the affinity propagation (AP) clustering algorithm proposed by Frey and Dueck [Science 315, 972 (2007)]. Following a divide and conquer strategy we setup an exact renormalization-based approach to address the question of clustering consistency, in particular, how many cluster are present in a given data set. We first observe that the divide and conquer strategy, used on a large data set hierarchically reduces the complexity O(N2) to O(N((h+2)/(h+1))) , for a data set of size N and a depth h of the hierarchical strategy. For a data set embedded in a d -dimensional space, we show that this is obtained without notably damaging the precision except in dimension d=2 . In fact, for d larger than 2 the relative loss in precision scales such as N((2-d)/(h+1)d). Finally, under some conditions we observe that there is a value s* of the penalty coefficient, a free parameter used to fix the number of clusters, which separates a fragmentation phase (for ss*) of the underlying hidden cluster structure. At this precise point holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate its position, as a result of an exact decimation procedure. From this observation, a strategy based on AP can be defined to find out how many clusters are present in a given data set. PMID:20866473

  12. Combined analysis of charm-quark fragmentation-fraction measurements

    NASA Astrophysics Data System (ADS)

    Lisovyi, Mykhailo; Verbytskyi, Andrii; Zenaiev, Oleksandr

    2016-07-01

    A summary of measurements of the fragmentation of charm quarks into a specific hadron is given. Measurements performed in photoproduction and deep inelastic scattering in e± p, pp and e+e‒ collisions are compared, using up-to-date branching ratios. Within uncertainties, all measurements agree, supporting the hypothesis that fragmentation is independent of the specific production process. Averages of the fragmentation fractions over all measurements are presented. The average has significantly reduced uncertainties compared to individual measurements.

  13. Biogeochemial modeling of biodegradation and stable isotope fractionation of DCE in a small-scale wetland

    NASA Astrophysics Data System (ADS)

    Alvarez-Zaldívar, Pablo; Imfeld, Gwenaël; Maier, Uli; Centler, Florian; Thullner, Martin

    2013-04-01

    In recent years, the use of (constructed) wetlands has gained significant attention for the in situ remediation of groundwater contaminated with (chlorinated) organic hydrocarbons. Although many sophisticated experimental methods exist for the assessment of contaminant removal in such wetlands the understanding how changes in wetland hydrochemistry affect the removal processes is still limited. This knowledge gap might be reduced by the use of biogeochemical reactive transport models. This study presents the reactive transport simulation of a small-scale constructed wetland treated with groundwater containing cis-1,2-dichloroethene (cDCE). Simulated processes consider different cDCE biodegradation pathways and the associated carbon isotope fractionation, a set of further (bio)geochemical processes as well as the activity of the plant roots. Spatio-temporal hydrochemical and isotope data from a long-term constructed wetland experiment [1] are used to constrain the model. Simulation results for the initial oxic phase of the wetland experiment indicate carbon isotope enrichment factors typical for cometabolic DCE oxidation, which suggests that aerobic treatment of cDCE is not an optimal remediation strategy. For the later anoxic phase of the experiment model derived enrichment factors indicate reductive dechlorination pathways. This degradation is promoted at all wetland depths by a sufficient availability of electron donor and carbon sources from root exudates, which makes the anoxic treatment of groundwater in such wetlands an effective remediation strategy. In combination with the previous experimental data results from this study suggest that constructed wetlands are viable remediation means for the treatment of cDCE contaminated groundwater. Reactive transport models can improve the understanding of the factors controlling chlorinated ethenes removal, and the used model approach would also allow for an optimization of the wetland operation needed for a complete

  14. Analysis of football player's motion in view of fractional calculus

    NASA Astrophysics Data System (ADS)

    Couceiro, Micael; Clemente, Filipe; Martins, Fernando

    2013-06-01

    Accurately retrieving the position of football players over time may lay the foundations for a whole series of possible new performance metrics for coaches and assistants. Despite the recent developments of automatic tracking systems, the misclassification problem (i.e., misleading a given player by another) still exists and requires human operators as final evaluators. This paper proposes an adaptive fractional calculus (FC) approach to improve the accuracy of tracking methods by estimating the position of players based on their trajectory so far. One half-time of an official football match was used to evaluate the accuracy of the proposed approach under different sampling periods of 250, 500 and 1000 ms. Moreover, the performance of the FC approach was compared with position-based and velocity-based methods. The experimental evaluation shows that the FC method presents a high classification accuracy for small sampling periods. Such results suggest that fractional dynamics may fit the trajectory of football players, thus being useful to increase the autonomy of tracking systems.

  15. Analysis of football player's motion in view of fractional calculus

    NASA Astrophysics Data System (ADS)

    Couceiro, Micael S.; Clemente, Filipe M.; Martins, Fernando M. L.

    2013-06-01

    Accurately retrieving the position of football players over time may lay the foundations for a whole series of possible new performance metrics for coaches and assistants. Despite the recent developments of automatic tracking systems, the misclassification problem ( i.e., misleading a given player by another) still exists and requires human operators as final evaluators. This paper proposes an adaptive fractional calculus (FC) approach to improve the accuracy of tracking methods by estimating the position of players based on their trajectory so far. One half-time of an official football match was used to evaluate the accuracy of the proposed approach under different sampling periods of 250, 500 and 1000 ms. Moreover, the performance of the FC approach was compared with position-based and velocity-based methods. The experimental evaluation shows that the FC method presents a high classification accuracy for small sampling periods. Such results suggest that fractional dynamics may fit the trajectory of football players, thus being useful to increase the autonomy of tracking systems.

  16. Fractional analysis of arsenic in subsurface-flow constructed wetlands with different length to depth ratios.

    PubMed

    Singhakant, C; Koottatep, T; Satayavivad, J

    2009-01-01

    Arsenic (As) removal in subsurface-flow constructed wetlands (CW) planting with vetiver grasses was experimented by comparing between two different configurations; (i) deep-bed units (dpCW) with length to depth (L:D) ratio=2 and (ii) shallow-bed units (shCW) with L:D ratio=8; operating at hydraulic retention time (HRT) of 6, 9, and 12 days. The tracer study of CW units revealed that no effect of L:D ratio on dispersion number could be determined, but affecting to the effective volume ratio. Based on the data obtained from the pilot-scale experiments of CW units for 117 days, it is apparent that the dpCW could achieve relatively high As removals (52.9%, 59.2%, and 72.1% at HRT of 6, 9, and 12 days, respectively). Analysis of As mass balance showed that only 0.2-0.4% of As input was uptaken by vetiver grasses whereas the major portion was retained in the CW media (38.9-77.6%). Forms of the retained As was determined by sequential fractionation which could indicate As complexation with iron and manganese on the media surface of 31-38% and As trapping into the media of 42-52% of the total. No obvious difference of As fractions in bed of between dpCW and shCW units was observable. PMID:19809139

  17. Scaling analysis for the investigation of slip mechanisms in nanofluids

    NASA Astrophysics Data System (ADS)

    Savithiri, S.; Pattamatta, Arvind; Das, Sarit K.

    2011-07-01

    The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles. The magnitudes of slip mechanisms are found to be higher for particles of size between 10 and 80 nm. The Brownian force is found to dominate in smaller particles below 10 nm and also at smaller volume fraction. However, the drag force is found to dominate in smaller particles below 10 nm and at higher volume fraction. The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration. In terms of time scales, the Brownian and gravity forces act considerably over a longer duration than the other forces. For copper-water-based nanofluid, the effective contribution of slip mechanisms leads to a heat transfer augmentation which is approximately 36% over that of the base fluid. The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it.

  18. Instantaneous signal attenuation method for analysis of PFG fractional diffusions.

    PubMed

    Lin, Guoxing

    2016-08-01

    An instantaneous signal attenuation (ISA) method for analyzing pulsed field gradient (PFG) fractional diffusion (FD) has been developed, which is modified from the propagator approach developed in 2001 by Lin et al. for analyzing PFG normal diffusion. Both, the current ISA method and the propagator method have the same fundamental basis that the total signal attenuation (SA) is the accumulation of all the ISA, and the ISA is the average SA of the whole diffusion system at each moment. However, the manner of calculating ISA is different. Unlike the use of the instantaneous propagator in the propagator method, the current method directly calculates ISA as A(K(t'),t'+dt')/A(K(t'),t'), where A(K(t'),t'+dt') and A(K(t'),t') are the SA. This modification makes the current method applicable to PFG FD as the instantaneous propagator may not be obtainable in FD. The ISA method was applied to study PFG SA including the effect of finite gradient pulse widths (FGPW) for free FD, restricted FD and the FD affected by a non-homogeneous gradient field. The SA expressions were successfully obtained for all three types of free FDs while other current methods still have difficulty in obtaining all of them. The results from this method agree with reported results such as that obtained by the effective phase shift diffusion equation (EPSDE) method. The M-Wright phase distribution approximation was also used to derive an SA expression for time FD as a comparison, which agrees with ISA method. Additionally, the continuous-time random walk (CTRW) simulation was performed to simulate the SA of PFG FD, and the simulation results agree with the analytical results. Particularly, the CTRW simulation results give good support to the analytical results including FGPW effect for free FD and restricted time FD based on a fractional derivative model where there have been no corresponding theoretical reports to date. The theoretical SA expressions including FGPW obtained here such as [Formula: see

  19. Instantaneous signal attenuation method for analysis of PFG fractional diffusions

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2016-08-01

    An instantaneous signal attenuation (ISA) method for analyzing pulsed field gradient (PFG) fractional diffusion (FD) has been developed, which is modified from the propagator approach developed in 2001 by Lin et al. for analyzing PFG normal diffusion. Both, the current ISA method and the propagator method have the same fundamental basis that the total signal attenuation (SA) is the accumulation of all the ISA, and the ISA is the average SA of the whole diffusion system at each moment. However, the manner of calculating ISA is different. Unlike the use of the instantaneous propagator in the propagator method, the current method directly calculates ISA as A(K(t‧), t‧ + dt‧)/A(K(t‧), t‧), where A(K(t‧), t‧ + dt‧) and A(K(t‧), t‧) are the SA. This modification makes the current method applicable to PFG FD as the instantaneous propagator may not be obtainable in FD. The ISA method was applied to study PFG SA including the effect of finite gradient pulse widths (FGPW) for free FD, restricted FD and the FD affected by a non-homogeneous gradient field. The SA expressions were successfully obtained for all three types of free FDs while other current methods still have difficulty in obtaining all of them. The results from this method agree with reported results such as that obtained by the effective phase shift diffusion equation (EPSDE) method. The M-Wright phase distribution approximation was also used to derive an SA expression for time FD as a comparison, which agrees with ISA method. Additionally, the continuous-time random walk (CTRW) simulation was performed to simulate the SA of PFG FD, and the simulation results agree with the analytical results. Particularly, the CTRW simulation results give good support to the analytical results including FGPW effect for free FD and restricted time FD based on a fractional derivative model where there have been no corresponding theoretical reports to date. The theoretical SA expressions including FGPW obtained

  20. Incorporating scale into digital terrain analysis

    NASA Astrophysics Data System (ADS)

    Dragut, L. D.; Eisank, C.; Strasser, T.

    2009-04-01

    Digital Elevation Models (DEMs) and their derived terrain attributes are commonly used in soil-landscape modeling. Process-based terrain attributes meaningful to the soil properties of interest are sought to be produced through digital terrain analysis. Typically, the standard 3 X 3 window-based algorithms are used for this purpose, thus tying the scale of resulting layers to the spatial resolution of the available DEM. But this is likely to induce mismatches between scale domains of terrain information and soil properties of interest, which further propagate biases in soil-landscape modeling. We have started developing a procedure to incorporate scale into digital terrain analysis for terrain-based environmental modeling (Drăguţ et al., in press). The workflow was exemplified on crop yield data. Terrain information was generalized into successive scale levels with focal statistics on increasing neighborhood size. The degree of association between each terrain derivative and crop yield values was established iteratively for all scale levels through correlation analysis. The first peak of correlation indicated the scale level to be further retained. While in a standard 3 X 3 window-based analysis mean curvature was one of the poorest correlated terrain attribute, after generalization it turned into the best correlated variable. To illustrate the importance of scale, we compared the regression results of unfiltered and filtered mean curvature vs. crop yield. The comparison shows an improvement of R squared from a value of 0.01 when the curvature was not filtered, to 0.16 when the curvature was filtered within 55 X 55 m neighborhood size. This indicates the optimum size of curvature information (scale) that influences soil fertility. We further used these results in an object-based image analysis environment to create terrain objects containing aggregated values of both terrain derivatives and crop yield. Hence, we introduce terrain segmentation as an alternative

  1. Spectral analysis and structure preserving preconditioners for fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Donatelli, Marco; Mazza, Mariarosa; Serra-Capizzano, Stefano

    2016-02-01

    Fractional partial order diffusion equations are a generalization of classical partial differential equations, used to model anomalous diffusion phenomena. When using the implicit Euler formula and the shifted Grünwald formula, it has been shown that the related discretizations lead to a linear system whose coefficient matrix has a Toeplitz-like structure. In this paper we focus our attention on the case of variable diffusion coefficients. Under appropriate conditions, we show that the sequence of the coefficient matrices belongs to the Generalized Locally Toeplitz class and we compute the symbol describing its asymptotic eigenvalue/singular value distribution, as the matrix size diverges. We employ the spectral information for analyzing known methods of preconditioned Krylov and multigrid type, with both positive and negative results and with a look forward to the multidimensional setting. We also propose two new tridiagonal structure preserving preconditioners to solve the resulting linear system, with Krylov methods such as CGNR and GMRES. A number of numerical examples show that our proposal is more effective than recently used circulant preconditioners.

  2. ANALYSIS OF RESPIRATORY DESPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS. Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *S...

  3. Analysis of insecticidal Azadirachta indica A. Juss. fractions.

    PubMed

    Siddiqui, Bina Shaheen; Rasheed, Munawwer; Ilyas, Firdous; Gulzar, Tahsin; Tariq, Rajput Mohammad; Naqvi, Syed Naim-ul-Hassan

    2004-01-01

    As a result of chemical investigation on the ethanolic extract of fresh fruit coatings of Azadirachta indica A. Juss. (neem), twenty-seven compounds were identified in non-polar to less polar fractions which showed pesticidal activity determined by WHO method against Anopheles stephensi Liston. These identifications were basically made through GC-EIMS and were further supported by other spectroscopic techniques, including 13C NMR, UV and FTIR as well as retention indices. Thus sixteen n-alkanes, 1-16; three aromatics 2,6-bis-(1,1-dimethylethyl)-4-methyl phenol (17), 2-(phenylmethylene)-octanal (20), 1,2,4-trimethoxy-5-(1Z-propenyl)-benzene (27); three benzopyranoids 3,4-dihydro-4,4,5,8-tetramethylcoumarin (18), 3,4-dihydro-4,4,7,8-tetramethylcoumarin-6-ol (19), 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta[g]-2-benzopyran (22); one sesquiterpene methyl-3,7,11-trimethyl-2E,6E,10-dodecatrienoate (21); three esters of fatty acids methyl 14-methyl-pentadecanoate (23), ethyl hexadecanoate (24), ethyl 9Z-octadecenoate (25) and one monoterpene 3,7-dimethyl-1-octen-7-ol (26) were identified. Except 6, 8, 24 and 25 all these compounds were identified for the first time from the pericarp and fifteen of these, 1-3, 7, 9, 10, 17-23, 26, 27, are hitherto unreported previously from any part of the tree. Although this tree is a rich source of various natural products, it is the first report of identification of mono- and sesquiterpenes 26 and 21 and a potent antioxidant, 17. PMID:15018062

  4. Scale-Specific Multifractal Medical Image Analysis

    PubMed Central

    Braverman, Boris

    2013-01-01

    Fractal geometry has been applied widely in the analysis of medical images to characterize the irregular complex tissue structures that do not lend themselves to straightforward analysis with traditional Euclidean geometry. In this study, we treat the nonfractal behaviour of medical images over large-scale ranges by considering their box-counting fractal dimension as a scale-dependent parameter rather than a single number. We describe this approach in the context of the more generalized Rényi entropy, in which we can also compute the information and correlation dimensions of images. In addition, we describe and validate a computational improvement to box-counting fractal analysis. This improvement is based on integral images, which allows the speedup of any box-counting or similar fractal analysis algorithm, including estimation of scale-dependent dimensions. Finally, we applied our technique to images of invasive breast cancer tissue from 157 patients to show a relationship between the fractal analysis of these images over certain scale ranges and pathologic tumour grade (a standard prognosticator for breast cancer). Our approach is general and can be applied to any medical imaging application in which the complexity of pathological image structures may have clinical value. PMID:24023588

  5. Scale Free Reduced Rank Image Analysis.

    ERIC Educational Resources Information Center

    Horst, Paul

    In the traditional Guttman-Harris type image analysis, a transformation is applied to the data matrix such that each column of the transformed data matrix is the best least squares estimate of the corresponding column of the data matrix from the remaining columns. The model is scale free. However, it assumes (1) that the correlation matrix is…

  6. Preparation of stroma, thylakoid membrane, and lumen fractions from Arabidopsis thaliana chloroplasts for proteomic analysis.

    PubMed

    Hall, Michael; Mishra, Yogesh; Schröder, Wolfgang P

    2011-01-01

    For many studies regarding important chloroplast processes such as oxygenic photosynthesis, fractionation of the total chloroplast proteome is a necessary first step. Here, we describe a method for isolating the stromal, the thylakoid membrane, and the thylakoid lumen subchloroplast fractions from Arabidopsis thaliana leaf material. All three fractions can be isolated sequentially from the same plant material in a single day preparation. The isolated fractions are suitable for various proteomic analyses such as simple mapping studies or for more complex experiments such as differential expression analysis using two-dimensional difference gel electrophoresis (2D-DIGE) or mass spectrometry (MS)-based techniques. Besides this, the obtained fractions can also be used for many other purposes such as immunological assays, enzymatic activity assays, and studies of protein complexes by native-polyacrylamide gel electrophoresis (native-PAGE). PMID:21863445

  7. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: Large-scale behavior of the turbulent transport coefficient

    NASA Astrophysics Data System (ADS)

    Milovanov, Alexander V.

    2001-04-01

    The formulation of the fractional Fokker-Planck-Kolmogorov (FPK) equation [Physica D 76, 110 (1994)] has led to important advances in the description of the stochastic dynamics of Hamiltonian systems. Here, the long-time behavior of the basic transport processes obeying the fractional FPK equation is analyzed. A derivation of the large-scale turbulent transport coefficient for a Hamiltonian system with 112 degrees of freedom is proposed in connection with the fractal structure of the particle chaotic trajectories. The principal transport regimes (i.e., a diffusion-type process, ballistic motion, subdiffusion in the limit of the frozen Hamiltonian, and behavior associated with self-organized criticality) are obtained as partial cases of the generalized transport law. A comparison with recent numerical and experimental studies is given.

  8. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: large-scale behavior of the turbulent transport coefficient.

    PubMed

    Milovanov, A V

    2001-04-01

    The formulation of the fractional Fokker-Planck-Kolmogorov (FPK) equation [Physica D 76, 110 (1994)] has led to important advances in the description of the stochastic dynamics of Hamiltonian systems. Here, the long-time behavior of the basic transport processes obeying the fractional FPK equation is analyzed. A derivation of the large-scale turbulent transport coefficient for a Hamiltonian system with 11 / 2 degrees of freedom is proposed in connection with the fractal structure of the particle chaotic trajectories. The principal transport regimes (i.e., a diffusion-type process, ballistic motion, subdiffusion in the limit of the frozen Hamiltonian, and behavior associated with self-organized criticality) are obtained as partial cases of the generalized transport law. A comparison with recent numerical and experimental studies is given. PMID:11308983

  9. Plasma Fractionation Enriches Post-Myocardial Infarction Samples Prior to Proteomics Analysis

    PubMed Central

    de Castro Brás, Lisandra E.; DeLeon, Kristine Y.; Ma, Yonggang; Dai, Qiuxia; Hakala, Kevin; Weintraub, Susan T.; Lindsey, Merry L.

    2012-01-01

    Following myocardial infarction (MI), matrix metalloproteinase-9 (MMP-9) levels increase, and MMP-9 deletion improves post-MI remodeling of the left ventricle (LV). We provide here a technical report on plasma-analysis from wild type (WT) and MMP-9 null mice using fractionation and mass-spectrometry-based proteomics. MI was induced by coronary artery ligation in male WT and MMP-9 null mice (4–8 months old; n = 3/genotype). Plasma was collected on days 0 (pre-) and 1 post-MI. Plasma proteins were fractionated and proteins in the lowest (fraction 1) and highest (fraction 12) molecular weight fractions were separated by 1-D SDS-PAGE, digested in-gel with trypsin and analyzed by HPLC-ESI-MS/MS on an Orbitrap Velos. We tried five different fractionation protocols, before reaching an optimized protocol that allowed us to identify over 100 proteins. Serum amyloid A substantially increased post-MI in both genotypes, while alpha-2 macroglobulin increased only in the null samples. In fraction 12, extracellular matrix proteins were observed only post-MI. Interestingly, fibronectin-1, a substrate of MMP-9, was identified at both day 0 and day 1 post-MI in the MMP-9 null mice but was only identified post-MI in the WT mice. In conclusion, plasma fractionation offers an improved depletion-free method to evaluate plasma changes following MI. PMID:22778955

  10. Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste

    SciTech Connect

    Hedman, Bjoern . E-mail: bjorn.hedman@chem.umu.se; Burvall, Jan; Nilsson, Calle; Marklund, Stellan

    2005-07-01

    In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.

  11. Resolution or Analysis Scale: What Matters Most?

    NASA Astrophysics Data System (ADS)

    Miller, Bradley

    2016-04-01

    Identifying the scale at which different covariates best explain the variation of soil properties reflects the geographic strategy of using map generalization (relative size of map delineations) to identify the scale at which phenomena occur. The size of map delineations corresponds to resolution in raster data models. Although not always considered in digital soil mapping studies, resolution is widely recognized as an important factor in identifying covariates in digital spatial analysis. However, many variables that are useful as predictors in digital soil mapping are dependent upon spatial context. For example, the slope gradient at a specific location can only be calculated by considering the surrounding area. In these cases, an analysis neighborhood is used when calculating such variables using a raster data model. The context or area considered is then dependent upon both the resolution and the number of cells (window size) used to define the neighborhood. This presentation explores the difference between resolution and analysis scale, then tests which concept is most important for identifying optimal scales of correlation for digital soil informatics.

  12. Subcellular fractionation of human neutrophils and analysis of subcellular markers.

    PubMed

    Clemmensen, Stine Novrup; Udby, Lene; Borregaard, Niels

    2014-01-01

    The neutrophil has long been recognized for its impressive number of cytoplasmic granules that harbor proteins indispensable for innate immunity. Analysis of isolated granules has provided important information on how the neutrophil grades its response to match the challenges it meets on its passage from blood to tissues. Nitrogen cavitation was developed as a method for disruption of cells on the assumption that sudden reduction of the partial pressure of nitrogen would lead to aeration of nitrogen dissolved in the lipid bilayer of plasma membranes. We find that cells are broken by the shear stress that is associated with passage through the outlet valve under high pressure and that this results in disruption of the neutrophil cell membrane while granules remain intact. The unique properties of Percoll as a sedimentable density medium with no inherent tonicity or viscosity are used for creation of continuous density gradients with shoulders in the density profile created to optimize the physical separation of granule subsets and light membranes. Immunological methods (sandwich enzyme-linked immunosorbent assays) are used for quantitation of proteins that are characteristic constituents of the granule subsets of neutrophils. PMID:24504946

  13. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    SciTech Connect

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-09-11

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  14. Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapour isotopes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The isotopic fluxes of carbon dioxide (CO2) and water vapour (H2O) between the atmosphere and terrestrial plants provide powerful constraints on carbon sequestration on land 1-2, changes in vegetation cover 3 and the Earth’s Dole effect 4. Past studies, relying mainly on leaf-scale observations, hav...

  15. A procedure for partitioning bulk sediments into distinct grain-size fractions for geochemical analysis

    USGS Publications Warehouse

    Barbanti, A.; Bothner, Michael H.

    1993-01-01

    A method to separate sediments into discrete size fractions for geochemical analysis has been tested. The procedures were chosen to minimize the destruction or formation of aggregates and involved gentle sieving and settling of wet samples. Freeze-drying and sonication pretreatments, known to influence aggregates, were used for comparison. Freeze-drying was found to increase the silt/clay ratio by an average of 180 percent compared to analysis of a wet sample that had been wet sieved only. Sonication of a wet sample decreased the silt/clay ratio by 51 percent. The concentrations of metals and organic carbon in the separated fractions changed depending on the pretreatment procedures in a manner consistent with the hypothesis that aggregates consist of fine-grained organic- and metal-rich particles. The coarse silt fraction of a freeze-dried sample contained 20-44 percent higher concentrations of Zn, Cu, and organic carbon than the coarse silt fraction of the wet sample. Sonication resulted in concentrations of these analytes that were 18-33 percent lower in the coarse silt fraction than found in the wet sample. Sonication increased the concentration of lead in the clay fraction by an average of 40 percent compared to an unsonicated sample. Understanding the magnitude of change caused by different analysis protocols is an aid in designing future studies that seek to interpret the spatial distribution of contaminated sediments and their transport mechanisms. ?? 1993 Springer-Verlag.

  16. Investigating energy scales of fractional quantum Hall states using scanning gate microscopy

    NASA Astrophysics Data System (ADS)

    Braem, B. A.; Krähenmann, T.; Hennel, S.; Reichl, C.; Wegscheider, W.; Ensslin, K.; Ihn, T.

    2016-03-01

    We use the voltage biased tip of a scanning force microscope at a temperature of 35 mK to locally induce the fractional quantum Hall state of ν =1 /3 in a split-gate defined constriction. Different tip positions allow us to vary the potential landscape. From the temperature dependence of the conductance plateau at G =1 /3 ×e2/h we determine the activation energy of this local ν =1 /3 state. We find that at a magnetic field of 6 T the activation energy is between 153 and 194 μ eV independent of the shape of the confining potential, but about 50% lower than for bulk samples.

  17. Fractional calculus ties the microscopic and macroscopic scales of complex network dynamics

    NASA Astrophysics Data System (ADS)

    West, B. J.; Turalska, M.; Grigolini, Paolo

    2015-04-01

    A two-state, master equation-based decision-making model has been shown to generate phase transitions, to be topologically complex, and to manifest temporal complexity through an inverse power-law probability distribution function in the switching times between the two critical states of consensus. These properties are entailed by the fundamental assumption that the network elements in the decision-making model imperfectly imitate one another. The process of subordination establishes that a single network element can be described by a fractional master equation whose analytic solution yields the observed inverse power-law probability distribution obtained by numerical integration of the two-state master equation to a high degree of accuracy.

  18. Dark matter fraction of low-mass cluster members probed by galaxy-scale strong lensing

    NASA Astrophysics Data System (ADS)

    Parry, W. G.; Grillo, C.; Mercurio, A.; Balestra, I.; Rosati, P.; Christensen, L.; Lombardi, M.; Caminha, G. B.; Nonino, M.; Koekemoer, A. M.; Umetsu, K.

    2016-05-01

    We present a strong lensing system, composed of four multiple images of a source at z = 2.387, created by two lens galaxies, G1 and G2, belonging to the galaxy cluster MACS J1115.9+0129 at z = 0.353. We use observations taken as part of the Cluster Lensing and Supernova survey with Hubble, and its spectroscopic follow-up programme at the Very Large Telescope, to estimate the total mass distributions of the two galaxies and the cluster through strong gravitational lensing models. We find that the total projected mass values within the half-light radii, Re, of the two lens galaxies are MT,G1(fractions within Re of 0.11 ± 0.03, for G1, and 0.73 ± 0.32, for G2. The fact that the less massive galaxy, G1, is dark matter-dominated in its inner regions raises the question of whether the dark matter fraction in the core of early-type galaxies depends on their mass. Further investigating strong lensing systems will help us understand the influence that dark matter has on the structure and evolution of the inner regions of galaxies.

  19. Antioxidant and Cytotoxic Activities and Phytochemical Analysis of Euphorbia wallichii Root Extract and its Fractions

    PubMed Central

    Ul-Haq, Ihsan; Ullah, Nazif; Bibi, Gulnaz; Kanwal, Simab; Sheeraz Ahmad, Muhammad; Mirza, Bushra

    2012-01-01

    Euphorbia wallichii a perennial herb growing mainly in Himalayas has been widely used in folk medicines for its medicinal properties. In the present study, the crude methanolic root extract (CME) and its fractions; n-Hexane Fraction (NHF), n-Butanol Fraction (NBF), Chloroform Fraction (CHF), Ethyl acetate Fraction (EAF) and Aqueous Fraction (AQF) of this plant specie were investigated for antioxidant and cytotoxic activities and phytochemical analysis. Antioxidant activity was determined by using 2,2-diphenyl-1-picryl-hydrazyl free radical (DPPH) and DNA protection assay performed on pBR322 plasmid DNA. In both these assays, promising results were obtained for CME as well as other fractions. The IC50 values for DPPH assay were in a range of 7.89 to 63.35 μg/ml in which EAF showed the best anti-oxidant potential and almost all the tested samples showed certain level of DNA protection. The cytotoxic activity was assessed by using Sulforhodamine B (SRB) assay on human cell lines; H157 (Lung Carcinoma) and HT144 (Malignant Melanoma). The IC50 values of the tested samples ranged from 0.18 to 1.4 mg/mL against H157 cell line whereas against HT144 cell line the IC50 values ranged from 0.46 to 17.88 mg/mL with NBF fraction showing maximum potential for both. Furthermore, the phytochemical analysis of CME and its fractions showed the presences of flavonoids, saponins, tannins, terpenoides and cardiac glycosides with varying concentrations. PMID:24250446

  20. HPTLC Analysis of Bioactivity Guided Anticancer Enriched Fraction of Hydroalcoholic Extract of Picrorhiza kurroa

    PubMed Central

    Mallick, Md. Nasar; Singh, Mhaveer; Parveen, Rabea; Khan, Washim; Ahmad, Sayeed; Zeeshan Najm, Mohammad; Husain, Syed Akhtar

    2015-01-01

    Objective. Hydroalcoholic extract of Picrorhiza kurroa and its fractions were subjected to in vitro screening for cytotoxicity; further best active fraction (BAF) obtained was tested against Ehrlich ascites carcinoma (EAC) model in Balb/c mice after its quality control analysis. Methods. Cytotoxicities of all the fractions and mother extract of P. kurroa were determined, using MTT assay on breast cancer (MCF-7, MDA-MB 231) and cervical cancer (HeLa, SiHa) cell lines. Metabolic fingerprinting was developed using HPTLC with quantification of biomarkers (cucurbitacins B and E; betulinic acid; picrosides 1 and 2; and apocynin) in BAF. The EAC tumor-bearing mice were used for in vivo anticancer activity after oral administration (50 mg Kg−1) for 10 days. Results. Cytotoxicity assay of mother extract and its fractions over breast cancer and cervix cancer cell lines showed that dichloromethane (DCM) fraction was most cytotoxic (IC50 36.0–51.0 µg mL−1 at 72 h). Oral administration of DCM fraction showed significant reduction in tumor regression parameters, viable tumor cell count and restoration of hematological parameters may be due to presence of cucurbitacins B and E; betulinic acid; picrosides 1 and 2; and apocynin, as compared to the untreated mice of the control group. Conclusion. The DCM fraction of P. kurroa displayed potent anticancer activity and can be further explored for the development of a potential candidate for cancer therapy. PMID:26557675

  1. Analysis of Nuclear RNA Interference (RNAi) in Human Cells by Subcellular Fractionation and Argonaute Loading

    PubMed Central

    Gagnon, Keith T.; Li, Liande; Janowski, Bethany A.; Corey, David R.

    2014-01-01

    RNA interference (RNAi) is well known for its ability to regulate gene expression in the cytoplasm of mammalian cells. In mammalian cell nuclei, however, the impact of RNAi has remained more controversial. A key technical hurdle has been a lack of optimized protocols for the isolation and analysis of cell nuclei. Here we describe a simplified protocol for nuclei isolation from cultured cells that incorporates a method for obtaining nucleoplasmic and chromatin fractions and removing cytoplasmic contamination. Cell fractions can then be used to detect the presence and activity of RNAi factors in the nucleus. We present a protocol for investigating an early step in RNAi, Argonaute protein loading with small RNAs, which is enabled by our improved extract preparations. These protocols facilitate characterization of nuclear RNAi and can be applied to the analysis of other nuclear proteins and pathways. From cellular fractionation to analysis of Argonaute loading results, this protocol takes 4–6 d to complete. PMID:25079428

  2. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste.

    PubMed

    Chanakya, H N; Sharma, Isha; Ramachandra, T V

    2009-04-01

    The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks. PMID:19081239

  3. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste

    SciTech Connect

    Chanakya, H.N. Sharma, Isha; Ramachandra, T.V.

    2009-04-15

    The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

  4. Dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation

    NASA Astrophysics Data System (ADS)

    Wen, Shao-Fang; Shen, Yong-Jun; Wang, Xiao-Na; Yang, Shao-Pu; Xing, Hai-Jun

    2016-08-01

    In this paper, the computation schemes for periodic solutions of the forced fractional-order Mathieu-Duffing equation are derived based on incremental harmonic balance (IHB) method. The general forms of periodic solutions are founded by the IHB method, which could be useful to obtain the periodic solutions with higher precision. The comparisons of the approximate analytical solutions by the IHB method and numerical integration are fulfilled, and the results certify the correctness and higher precision of the solutions by the IHB method. The dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation is investigated by the IHB method. Then, the effects of the excitation frequency, fractional order, fractional coefficient, and nonlinear stiffness coefficient on the complex dynamical behaviors are analyzed. At last, the detailed results are summarized and the conclusions are made, which present some useful information to analyze and/or control the dynamical response of this kind of system.

  5. Dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation.

    PubMed

    Wen, Shao-Fang; Shen, Yong-Jun; Wang, Xiao-Na; Yang, Shao-Pu; Xing, Hai-Jun

    2016-08-01

    In this paper, the computation schemes for periodic solutions of the forced fractional-order Mathieu-Duffing equation are derived based on incremental harmonic balance (IHB) method. The general forms of periodic solutions are founded by the IHB method, which could be useful to obtain the periodic solutions with higher precision. The comparisons of the approximate analytical solutions by the IHB method and numerical integration are fulfilled, and the results certify the correctness and higher precision of the solutions by the IHB method. The dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation is investigated by the IHB method. Then, the effects of the excitation frequency, fractional order, fractional coefficient, and nonlinear stiffness coefficient on the complex dynamical behaviors are analyzed. At last, the detailed results are summarized and the conclusions are made, which present some useful information to analyze and/or control the dynamical response of this kind of system. PMID:27586626

  6. Global Identification and Differential Distribution Analysis of Glycans in Subcellular Fractions of Bladder Cells

    PubMed Central

    Yang, Ganglong; Huang, Luyu; Zhang, Jiaxu; Yu, Hanjie; Li, Zheng; Guan, Feng

    2016-01-01

    Compartmentalization of cellular components and their associated biological processes is crucial for cellular function. Protein glycosylation provides a basis for diversity of protein functions. Diversity of glycan composition in animal cells remains poorly understood. We used differential centrifugation techniques to isolate four subcellular protein fractions from homogenate of metastatic bladder YTS1 cells, low grade nonmuscle invasive bladder cancer KK47 cells and normal bladder epithelia HCV29 cells: microsomal (Mic), mitochondrial (Mito), nuclear (Nuc), and cytosolic (Cyto). An integrated strategy combining lectin microarray and mass spectrometry (MS) analysis was then applied to evaluate protein glycosylation of the four fractions. Lectin microarray analysis revealed significant differences among the four fractions in terms of glycan binding to the lectins LCA, AAL, MPL, WGA and PWM in YTS1 cell, STL, Jacalin, VVA, LCA and WGA in KK47, and ConA, GNA, VVA and ACA in HCV29 cell. Among a total of 40, 32 and 15 N-glycans in four fractions of three cells detected by MS analysis, high-mannose and fucosylated structures were predominant, 10 N-glycans in YTS1, 5 N-glycans in KK47 and 7 N-glycans in HCV29 were present in all four fractions; and 10 N-glycans in YTS1, 16 N-glycans in KK47, and 3 N-glycans in HCV29 were present in only one fraction. Glycans in the latter category are considered potential markers for the corresponding organelles. The integrated strategy described here allows detailed examination of glycomes subcellular fraction with high resolution and sensitivity, and will be useful for elucidation of the functional roles of glycans and corresponding glycosylated proteins in distinct organelles. PMID:27313494

  7. Global Identification and Differential Distribution Analysis of Glycans in Subcellular Fractions of Bladder Cells.

    PubMed

    Yang, Ganglong; Huang, Luyu; Zhang, Jiaxu; Yu, Hanjie; Li, Zheng; Guan, Feng

    2016-01-01

    Compartmentalization of cellular components and their associated biological processes is crucial for cellular function. Protein glycosylation provides a basis for diversity of protein functions. Diversity of glycan composition in animal cells remains poorly understood. We used differential centrifugation techniques to isolate four subcellular protein fractions from homogenate of metastatic bladder YTS1 cells, low grade nonmuscle invasive bladder cancer KK47 cells and normal bladder epithelia HCV29 cells: microsomal (Mic), mitochondrial (Mito), nuclear (Nuc), and cytosolic (Cyto). An integrated strategy combining lectin microarray and mass spectrometry (MS) analysis was then applied to evaluate protein glycosylation of the four fractions. Lectin microarray analysis revealed significant differences among the four fractions in terms of glycan binding to the lectins LCA, AAL, MPL, WGA and PWM in YTS1 cell, STL, Jacalin, VVA, LCA and WGA in KK47, and ConA, GNA, VVA and ACA in HCV29 cell. Among a total of 40, 32 and 15 N-glycans in four fractions of three cells detected by MS analysis, high-mannose and fucosylated structures were predominant, 10 N-glycans in YTS1, 5 N-glycans in KK47 and 7 N-glycans in HCV29 were present in all four fractions; and 10 N-glycans in YTS1, 16 N-glycans in KK47, and 3 N-glycans in HCV29 were present in only one fraction. Glycans in the latter category are considered potential markers for the corresponding organelles. The integrated strategy described here allows detailed examination of glycomes subcellular fraction with high resolution and sensitivity, and will be useful for elucidation of the functional roles of glycans and corresponding glycosylated proteins in distinct organelles. PMID:27313494

  8. On SCALE Validation for PBR Analysis

    SciTech Connect

    Ilas, Germina

    2010-01-01

    Studies were performed to assess the capabilities of the SCALE code system to provide accurate cross sections for analyses of pebble bed reactor configurations. The analyzed configurations are representative of fuel in the HTR-10 reactor in the first critical core and at full power operation conditions. Relevant parameters-multiplication constant, spectral indices, few-group cross sections-are calculated with SCALE for the considered configurations. The results are compared to results obtained with corresponding consistent MCNP models. The code-to-code comparison shows good agreement at both room and operating temperatures, indicating a good performance of SCALE for analysis of doubly heterogeneous fuel configurations. The development of advanced methods and computational tools for the analysis of pebble bed reactor (PBR) configurations has been a research area of renewed interest for the international community during recent decades. The PBR, which is a High Temperature Gas Cooled Reactor (HTGR) system, represents one of the potential candidates for future deployment throughout the world of reactor systems that would meet the increased requirements of efficiency, safety, and proliferation resistance and would support other applications such as hydrogen production or nuclear waste recycling. In the U.S, the pebble bed design is one of the two designs under consideration by the Next Generation Nuclear Plant (NGNP) Program.

  9. Analysis of anthocyanin pigments in Lonicera (Caerulea) extracts using chromatographic fractionation followed by microcolumn liquid chromatography-mass spectrometry.

    PubMed

    Myjavcová, Renáta; Marhol, Petr; Křen, Vladimír; Simánek, Vilím; Ulrichová, Jitka; Palíková, Irena; Papoušková, Barbora; Lemr, Karel; Bednář, Petr

    2010-12-17

    Anthocyanins from the fruit Lonicera caerulea L. var. kamtschatica (blueberry honeysuckle, Caprifoliaceae) were studied via (semi)preparative chromatographic fractionation followed by MS and μLC/MS analysis. The extraction procedure was optimized with respect to analytical purposes as well as its potential use for the preparation of nutraceuticals. The highest yield of anthocyanins was obtained using acidified methanol as the extraction medium. A comparable total anthocyanin content was obtained using a mixture of methanol and acetone. However, when Lonicera anthocyanins were in contact with acetone, a condensation reaction occurred to a large extent and related 5-methylpyranoanthocyanins were found. The effect of other extraction media, including ethanol as a "green" solvent, is also discussed. The potential of two fractionation procedures for extract purification differing in their chromatographic selectivity and scale was studied (i.e. using a Sephadex LH-20 gel column and a reversed phase). Fractions obtained by both procedures were used for a detailed analysis. MS and μLC/MS(2) methods were used for monitoring anthocyanin and 5-methylpyranoderivatives content as well as identifying less common and more complex dyes (dimer of cyanidin-3-hexoside, cyanidin-ethyl-catechin-hexosides, etc.). These more complex dyes are most likely formed during fruit treatment. PMID:21111888

  10. Stability analysis of memristor-based fractional-order neural networks with different memductance functions.

    PubMed

    Rakkiyappan, R; Velmurugan, G; Cao, Jinde

    2015-04-01

    In this paper, the problem of the existence, uniqueness and uniform stability of memristor-based fractional-order neural networks (MFNNs) with two different types of memductance functions is extensively investigated. Moreover, we formulate the complex-valued memristor-based fractional-order neural networks (CVMFNNs) with two different types of memductance functions and analyze the existence, uniqueness and uniform stability of such networks. By using Banach contraction principle and analysis technique, some sufficient conditions are obtained to ensure the existence, uniqueness and uniform stability of the considered MFNNs and CVMFNNs with two different types of memductance functions. The analysis results establish from the theory of fractional-order differential equations with discontinuous right-hand sides. Finally, four numerical examples are presented to show the effectiveness of our theoretical results. PMID:25861402

  11. A comparative analysis of British and Taiwanese students' conceptual and procedural knowledge of fraction addition

    NASA Astrophysics Data System (ADS)

    Li, Hui-Chuan

    2014-10-01

    This study examines students' procedural and conceptual achievement in fraction addition in England and Taiwan. A total of 1209 participants (561 British students and 648 Taiwanese students) at ages 12 and 13 were recruited from England and Taiwan to take part in the study. A quantitative design by means of a self-designed written test is adopted as central to the methodological considerations. The test has two major parts: the concept part and the skill part. The former is concerned with students' conceptual knowledge of fraction addition and the latter is interested in students' procedural competence when adding fractions. There were statistically significant differences both in concept and skill parts between the British and Taiwanese groups with the latter having a higher score. The analysis of the students' responses to the skill section indicates that the superiority of Taiwanese students' procedural achievements over those of their British peers is because most of the former are able to apply algorithms to adding fractions far more successfully than the latter. Earlier, Hart [1] reported that around 30% of the British students in their study used an erroneous strategy (adding tops and bottoms, for example, 2/3 + 1/7 = 3/10) while adding fractions. This study also finds that nearly the same percentage of the British group remained using this erroneous strategy to add fractions as Hart found in 1981. The study also provides evidence to show that students' understanding of fractions is confused and incomplete, even those who are successfully able to perform operations. More research is needed to be done to help students make sense of the operations and eventually attain computational competence with meaningful grounding in the domain of fractions.

  12. An Error Analysis in Division Problems in Fractions Posed by Pre-Service Elementary Mathematics Teachers

    ERIC Educational Resources Information Center

    Isik, Cemalettin; Kar, Tugrul

    2012-01-01

    The present study aimed to make an error analysis in the problems posed by pre-service elementary mathematics teachers about fractional division operation. It was carried out with 64 pre-service teachers studying in their final year in the Department of Mathematics Teaching in an eastern university during the spring semester of academic year…

  13. Invariant analysis and conservation laws for the time fractional foam drainage equation

    NASA Astrophysics Data System (ADS)

    Rui, Wenjuan; Zhang, Xiangzhi

    2015-10-01

    In this paper, the Lie group analysis method is applied to derive Lie point symmetries of the time fractional foam drainage equation with the Riemann-Liouville derivative. Symmetry reductions are constructed and conservation laws are obtained by using the Lie symmetries of the equation.

  14. Different hydrogen isotope fractionations during lipid formation in higher plants: Implications for paleohydrology reconstruction at a global scale.

    PubMed

    Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong

    2016-01-01

    Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (εwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (εwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of -140‰ for monocotyledonous species, -107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the εwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants. PMID:26806719

  15. Different hydrogen isotope fractionations during lipid formation in higher plants: Implications for paleohydrology reconstruction at a global scale

    PubMed Central

    Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong

    2016-01-01

    Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (εwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (εwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of −140‰ for monocotyledonous species, −107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the εwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants. PMID:26806719

  16. Microbial activity balance in size fractionated suspended growth biomass from full-scale sidestream combined nitritation-anammox reactors.

    PubMed

    Shi, Yijing; Wells, George; Morgenroth, Eberhard

    2016-10-01

    The purpose of this study was to determine the abundance, distribution and activity of aerobic ammonia-oxidizing bacteria (AOB) and anammox in size fractionated aggregates from full-scale suspended growth combined nitritation-anammox sidestream reactors. Plants with or without a cyclone device were also studied to assess a purported enrichment of anammox granules. Specific aerobic ammonium oxidation rates (p=0.01) and specific oxygen uptake rates (p=0.02) were significantly greater in flocs than in granules. AOB abundance measured using quantitative FISH was significantly higher in flocs than in granules (p=0.01). Conversely, anammox abundance was significantly greater in granules (p=0.03). The average ratio of anammox/AOB in systems employing hydrocyclone separation devices was 2.4, significantly higher (p=0.02) than the average ratio (0.5) in a system without a hydrocyclone. Our results demonstrate substantial functional and population-level segregation between floccular and granular fractions, and provide a key corroboration that cyclone separation devices can increase anammox levels in such systems. PMID:27347796

  17. Different hydrogen isotope fractionations during lipid formation in higher plants: Implications for paleohydrology reconstruction at a global scale

    NASA Astrophysics Data System (ADS)

    Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong

    2016-01-01

    Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (ɛwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (ɛwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of -140‰ for monocotyledonous species, -107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the ɛwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants.

  18. Scaling the fractional advective-dispersive equation for numerical evaluation of microbial dynamics in confined geometries with sticky boundaries

    SciTech Connect

    Parashar, R.; Cushman, J.H.

    2008-06-20

    Microbial motility is often characterized by 'run and tumble' behavior which consists of bacteria making sequences of runs followed by tumbles (random changes in direction). As a superset of Brownian motion, Levy motion seems to describe such a motility pattern. The Eulerian (Fokker-Planck) equation describing these motions is similar to the classical advection-diffusion equation except that the order of highest derivative is fractional, {alpha} element of (0, 2]. The Lagrangian equation, driven by a Levy measure with drift, is stochastic and employed to numerically explore the dynamics of microbes in a flow cell with sticky boundaries. The Eulerian equation is used to non-dimensionalize parameters. The amount of sorbed time on the boundaries is modeled as a random variable that can vary over a wide range of values. Salient features of first passage time are studied with respect to scaled parameters.

  19. Scaling, dimensional analysis, and hardness measurements

    NASA Astrophysics Data System (ADS)

    Cheng, Yang-Tse; Cheng, Che-Min; Li, Zhiyong

    2000-03-01

    Hardness is one of the frequently used concepts in tribology. For nearly one hundred years, indentation experiments have been performed to obtain the hardness of materials. Recent years have seen significant improvements in indentation equipment and a growing need to measure the mechanical properties of materials on small scales. However, questions remain, including what properties can be measured using instrumented indention techniques and what is hardness? We discuss these basic questions using dimensional analysis together with finite element calculations. We derive scaling relationships for loading and unloading curve, initial unloading slope, contact depth, and hardness. Hardness is shown to depend on elastic, as well as plastic properties of materials. The conditions for "piling-up" and "sinking-in" of surface profiles in indentation are obtained. The methods for estimating contact area are examined. The work done during indentation is also studied. A relationship between hardness, elastic modulus, and the work of indentation is revealed. This relationship offers a new method for obtaining hardness and elastic modulus. In addition, we demonstrate that stress-strain relationships may not be uniquely determined from loading/unloading curves alone using a conical or pyramidal indenter. The dependence of hardness on indenter geometry is also studied. Finally, a scaling theory for indentation in power-law creep solids using self-similar indenters is developed. A connection between creep and "indentation size effect" is established.

  20. Determining organic carbon distributions in soil particle size fractions as a precondition of lateral carbon transport modeling at large scales

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Seher, Wiebke; Pfeffer, Eduard; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2016-04-01

    The erosional transport of organic carbon has an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon historically accumulated in the soil humus fraction. The colluvial organic carbon could be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. The selective nature of soil erosion results in a preferential transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. As a precondition of process based lateral carbon flux modeling, carbon distribution on soil particle size fractions has to be known. In this regard the present study refers to the determination of organic carbon contents on soil particle size separates by a combined sieve-sedimentation method for different tropical and temperate soils Our results suggest high influences of parent material and climatic conditions on carbon distribution on soil particle separates. By applying these results in erosion modeling a test slope was simulated with the EROSION 2D simulation software covering certain land use and soil management scenarios referring to different rainfall events. These simulations allow first insights on carbon loss and depletion on sediment delivery areas as well as carbon gains and enrichments on deposition areas on the landscape scale and could be used as a step forward in landscape scaled carbon redistribution modeling.

  1. Analytically Solved Solid Fraction Model for the Newtonian Thermal Analysis of Casting

    NASA Astrophysics Data System (ADS)

    Erbaş, Kadir Can

    2016-06-01

    This study reports on the development of an alternative model which overcomes the drawbacks of the Newtonian thermal analysis of casting summarized from the literature. The alternative Analytically Solved Solid Fraction Model (AS-SFM) aims to improve the reliability of the measurement of latent heat and solid fraction. The latent heat of pure tin is computed by AS-SFM and the other models in the literature, and the results are compared with the literal value of the latent heat. The new method is shown to be a more reliable latent heat predictor than the other methods given in the literature.

  2. Isoform analysis of LC-MS/MS data from multidimensional fractionation of the serum proteome.

    PubMed

    Krasnoselsky, Alexei L; Faca, Vitor M; Pitteri, Sharon J; Zhang, Qing; Hanash, Samir M

    2008-06-01

    We developed a visualization approach for the identification of protein isoforms, precursor/mature protein combinations, and fragments from LC-MS/MS analysis of multidimensional fractionation of serum and plasma proteins. We also describe a pattern recognition algorithm to automatically detect and flag potentially heterogeneous species of proteins in proteomic experiments that involve extensive fractionation and result in a large number of identified serum or plasma proteins in an experiment. Examples are given of proteins with known isoforms that validate our approach and present a subset of precursor/mature protein pairs that were detected with this approach. Potential applications include identification of differentially expressed isoforms in disease states. PMID:18419151

  3. Analytically Solved Solid Fraction Model for the Newtonian Thermal Analysis of Casting

    NASA Astrophysics Data System (ADS)

    Erbaş, Kadir Can

    2016-04-01

    This study reports on the development of an alternative model which overcomes the drawbacks of the Newtonian thermal analysis of casting summarized from the literature. The alternative Analytically Solved Solid Fraction Model (AS-SFM) aims to improve the reliability of the measurement of latent heat and solid fraction. The latent heat of pure tin is computed by AS-SFM and the other models in the literature, and the results are compared with the literal value of the latent heat. The new method is shown to be a more reliable latent heat predictor than the other methods given in the literature.

  4. Large-scale three-dimensional phase-field simulations for phase coarsening at ultrahigh volume fraction on high-performance architectures

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Wang, K. G.; Jones, Jim E.

    2016-06-01

    A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.

  5. Cu isotope fractionation during bornite dissolution: An in situ X-ray diffraction analysis

    SciTech Connect

    Wall, Andrew J.; Mathur, Ryan; Post, Jeffrey E.; Heaney, Peter J.

    2012-10-24

    Low-temperature ore deposits exhibit a large variation in {delta}{sup 65}Cu ({approx}12{per_thousand}), and this range has been attributed, in part, to isotope fractionation during weathering reactions of primary minerals such as chalcocite and chalcopyrite. Here, we examine the fractionation of Cu isotopes during dissolution of another important Cu ore mineral, bornite, using a novel approach that combines time-resolved X-ray diffraction (XRD) and isotope analysis of reaction products. During the initial stages of bornite oxidative dissolution by ferric sulfate (< 5 mol% of total Cu leached), dissolved Cu was enriched in isotopically heavy Cu ({sup 65}Cu) relative to the solid, with an average apparent isotope fractionation ({Delta}{sub aq - min} = {delta}{sup 65}Cu{sub aq} - {delta}{sup 65}Cu{sub min}{sup 0}) of 2.20 {+-} 0.25{per_thousand}. When > 20 mol% Cu was leached from the solid, the difference between the Cu isotope composition of the aqueous and mineral phases approached zero, with {Delta}{sub aq - min}{sup 0} values ranging from - 0.21 {+-} 0.61{per_thousand} to 0.92 {+-} 0.25{per_thousand}. XRD analysis allowed us to correlate changes in the atomic structure of bornite with the apparent isotope fractionation as the dissolution reaction progressed. These data revealed that the greatest degree of apparent fractionation is accompanied by a steep contraction in the unit-cell volume, which we identified as a transition from stoichiometric to non-stoichiometric bornite. We propose that the initially high {Delta}{sub aq - min} values result from isotopically heavy Cu ({sup 65}Cu) concentrating within Cu{sup 2+} during dissolution. The decrease in the apparent isotope fractionation as the reaction progresses occurs from the distillation of isotopically heavy Cu ({sup 65}Cu) during dissolution or kinetic isotope effects associated with the depletion of Cu from the surfaces of bornite particles.

  6. Subcellular Fractionation Analysis of the Extraction of Ubiquitinated Polytopic Membrane Substrate during ER-Associated Degradation.

    PubMed

    Nakatsukasa, Kunio; Kamura, Takumi

    2016-01-01

    During ER-associated degradation (ERAD), misfolded polytopic membrane proteins are ubiquitinated and retrotranslocated to the cytosol for proteasomal degradation. However, our understanding as to how polytopic membrane proteins are extracted from the ER to the cytosol remains largely unclear. To better define the localization and physical properties of ubiquitinated polytopic membrane substrates in vivo, we performed subcellular fractionation analysis of Ste6*, a twelve transmembrane protein that is ubiquitinated primarily by Doa10 E3 ligase in yeast. Consistent with previous in vitro studies, ubiquitinated Ste6* was extracted from P20 (20,000 g pellet) fraction to S20 (20,000 g supernatant) fraction in a Cdc48/p97-dependent manner. Similarly, Ubx2p, which recruits Cdc48/p97 to the ER, facilitated the extraction of Ste6*. By contrast, lipid droplet formation, which was suggested to be dispensable for the degradation of Hrd1-substrates in yeast, was not required for the degradation of Ste6*. Intriguingly, we found that ubiquitinated Ste6* in the S20 fraction could be enriched by further centrifugation at 100,000 g. Although it is currently uncertain whether ubiquitinated Ste6* in P100 fraction is completely free from any lipids, membrane flotation analysis suggested the existence of two distinct populations of ubiquitinated Ste6* with different states of membrane association. Together, these results imply that ubiquitinated Ste6* may be sequestered into a putative quality control sub-structure by Cdc48/p97. Fractionation assays developed in the present study provide a means to further dissect the ill-defined post-ubiquitination step during ERAD of polytopic membrane substrates. PMID:26849222

  7. Drive tube 60009 - A chemical study of magnetic separates of size fractions from five strata. [lunar soil analysis

    NASA Technical Reports Server (NTRS)

    Blanchard, D. P.; Jacobs, J. W.; Brannon, J. C.; Brown, R. W.

    1976-01-01

    Each bulk soil and both the magnetic and nonmagnetic components of the 90-150 micron and below 20 micron fractions of five soils from drive tube 60009 were analyzed. Samples were analyzed for FeO, Na2O, Sc, Cr, Co, Ni, Hf, Ta, Th, La, Ce, Sm, Eu, Tb, Yb, and Lu by neutron activation analysis. Several samples were fused and analyzed for major elements by electron microprobe analysis. Compositional variations are not systematically related to depth. The compositions of the five soils studied are well explained by a two-component mixing model whose end members are a submature Apollo 16-type soil and an extremely immature anorthositic material similar to 60025. There is evidence that the anorthositic component had received a small amount of exposure before these soils were mixed. After mixing, the soils received little exposure suggesting mixing and deposition on a rapid time scale.

  8. Implications of scaled δ15N fractionation for community predator-prey body mass ratio estimates in size-structured food webs.

    PubMed

    Reum, Jonathan C P; Jennings, Simon; Hunsicker, Mary E

    2015-11-01

    Nitrogen stable isotope ratios (δ(15) N) may be used to estimate community-level relationships between trophic level (TL) and body size in size-structured food webs and hence the mean predator to prey body mass ratio (PPMR). In turn, PPMR is used to estimate mean food chain length, trophic transfer efficiency and rates of change in abundance with body mass (usually reported as slopes of size spectra) and to calibrate and validate food web models. When estimating TL, researchers had assumed that fractionation of δ(15) N (Δδ(15) N) did not change with TL. However, a recent meta-analysis indicated that this assumption was not as well supported by data as the assumption that Δδ(15) N scales negatively with the δ(15) N of prey. We collated existing fish community δ(15) N-body size data for the Northeast Atlantic and tropical Western Arabian Sea with new data from the Northeast Pacific. These data were used to estimate TL-body mass relationships and PPMR under constant and scaled Δδ(15) N assumptions, and to assess how the scaled Δδ(15) N assumption affects our understanding of the structure of these food webs. Adoption of the scaled Δδ(15) N approach markedly reduces the previously reported differences in TL at body mass among fish communities from different regions. With scaled Δδ(15) N, TL-body mass relationships became more positive and PPMR fell. Results implied that realized prey size in these size-structured fish communities are less variable than previously assumed and food chains potentially longer. The adoption of generic PPMR estimates for calibration and validation of size-based fish community models is better supported than hitherto assumed, but predicted slopes of community size spectra are more sensitive to a given change or error in realized PPMR when PPMR is small. PMID:26046788

  9. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

    SciTech Connect

    Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

    2011-10-06

    potential for blending into finished fuels. Fractions from the lowest oxygen content oil exhibited some phenolic acidity, but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. PIONA analysis of the Light and Naphtha fractions shows benzene content of 0.5 and 0.4 vol%, and predicted (RON + MON)/2 of 63 and 70, respectively.

  10. Structural analysis of gluten-free doughs by fractional rheological model

    NASA Astrophysics Data System (ADS)

    Orczykowska, Magdalena; Dziubiński, Marek; Owczarz, Piotr

    2015-02-01

    This study examines the effects of various components of tested gluten-free doughs, such as corn starch, amaranth flour, pea protein isolate, and cellulose in the form of plantain fibers on rheological properties of such doughs. The rheological properties of gluten-free doughs were assessed by using the rheological fractional standard linear solid model (FSLSM). Parameter analysis of the Maxwell-Wiechert fractional derivative rheological model allows to state that gluten-free doughs present a typical behavior of viscoelastic quasi-solid bodies. We obtained the contribution dependence of each component used in preparations of gluten-free doughs (either hard-gel or soft-gel structure). The complicate analysis of the mechanical structure of gluten-free dough was done by applying the FSLSM to explain quite precisely the effects of individual ingredients of the dough on its rheological properties.

  11. Fractional order Buck-Boost converter in CCM: modelling, analysis and simulations

    NASA Astrophysics Data System (ADS)

    Wang, Faqiang; Ma, Xikui

    2014-12-01

    In this paper, the modelling, analysis and the power electronics simulator (PSIM) simulations of the fractional order Buck-Boost converter operating in continuous conduction mode (CCM) operation are investigated. Based on the three-terminal switch device method, the average circuit model of the fractional order Buck-Boost converter is established, and the corresponding DC equivalent circuit model and AC small signal equivalent circuit model are presented. And then, the equilibrium point and the transfer functions are derived. It is found that the equilibrium point is not influenced by the inductor's or the capacitor's order, but both these orders are included in the derived transfer functions. Finally, the comparisons between the theoretical analysis and the PSIM simulations are given for confirmation.

  12. Combination of Methods for the Fractionation, Investigation, and Analysis of Micro/Nano Particles in Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Valeriy, Shkinev; Michail, Ermolin; Peter, Fedotov; Aleksander, Rudnev; Nikolay, Bulychev; Vitaliy, Linnik; Gerardo, Moreno

    2013-04-01

    resulted in the formation of sulfuric acid under atmospheric conditions. A combination of methods were used for the fractionation (dry sieving, membrane filtration, sedimentation field-flow fractionation in a rotating coiled column), investigation (capillary electrophoresis, scanning electron microscopy), and analysis (ICP MS, ICP-AES) of volcanic ash samples. The combination of fractionation techniques were chosen taking into account that (1) the efficiency of separation of particles for the subsequent technique should be higher than for the preceding one; (2) the separation principles of methods should be different (separation according size, density, charge etc.); (3) the initial separation should be carried out according to size, that makes possible to create an even scale for various samples. It has been shown experimentally that the combination of fractionation methods give a possibility to separate and analyze the fractions from 10 nm to 100 μm and to obtain an information about the distribution of elements. In particular, it is founded that nearly 20% of Be, K, Bi, Th, Fe, As, Tl, Ti, W, Hf, and Zr are removed from the ash into the s

  13. Event-based Recession Analysis across Scales

    NASA Astrophysics Data System (ADS)

    Chen, B.; Krajewski, W. F.

    2012-12-01

    Hydrograph recessions have long been a window to investigate hydrological processes and their interactions. The authors conducted an exploratory analysis of about 1000 individual hydrograph recessions in a period of around 15 years (1995-2010) from time series of hourly discharge (USGS IDA stream flow data set) at 27 USGS gauges located in Iowa and Cedar River basins with drainage area ranging from 6.7 to around 17000 km2. They calculated recession exponents with the same recession length but different time lags from the hydrograph peak ranging from ~0 to 96 hours, and then plotted them against time lags to construct the evolution of recession exponent. The result shows that, as recession continues, the recession exponent in first increases quickly, then decreases quickly, and finally stays constant. Occasionally and for different reasons, the decreasing portion is missing due to negligible contribution from soil water storage. The increasing part of the evolution of can be related to fast response to rainfall including overland flow and quick subsurface flow through macropores (or tiles), and the decreasing portion can be connected to the delayed soil water response. Lastly, the constant segment can be attributed to the groundwater storage with the slowest response. The points where recession exponent reaches its maximum and begins to plateau are the times that fast response and soil water response end, respectively. The authors conducted further theoretical analysis by combining mathematical derivation and literature results to explain the observed evolution path of the recession exponent . Their results have a direct application in hydrograph separation and important implications for dynamic basin storage-discharge relation analysis and hydrological process understanding across scales.

  14. Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers

    NASA Astrophysics Data System (ADS)

    Meckenstock, Rainer U.; Morasch, Barbara; Griebler, Christian; Richnow, Hans H.

    2004-12-01

    The assessment of biodegradation in contaminated aquifers has become an issue of increasing importance in the recent years. To some extent, this can be related to the acceptance of intrinsic bioremediation or monitored natural attenuation as a means to manage contaminated sites. Among the few existing methods to detect biodegradation in the subsurface, stable isotope fractionation analysis (SIFA) is one of the most promising approaches which is pronounced by the drastically increasing number of applications. This review covers the recent laboratory and field studies assessing biodegradation of contaminants via stable isotope analysis. Stable isotope enrichment factors have been found that vary from no fractionation for dioxygenase reactions converting aromatic hydrocarbons over moderate fractionation by monooxygenase reactions ( ɛ=-3‰) and some anaerobic studies on microbial degradation of aromatic hydrocarbons ( ɛ=-1.7‰) to larger fractionations by anaerobic dehalogenation reactions of chlorinated solvents ( ɛ=between -5‰ and -30‰). The different isotope enrichment factors can be related to the respective biochemical reactions. Based on that knowledge, we discuss under what circumstances SIFA can be used for a qualitative or even a quantitative assessment of biodegradation in the environment. In a steadily increasing number of cases, it was possible to explain biodegradation processes in the field based on isotope enrichment factors obtained from laboratory experiments with pure cultures and measured isotope values from the field. The review will focus on the aerobic and anaerobic degradation of aromatic hydrocarbons and chlorinated solvents as the major contaminants of groundwater. Advances in the instrumental development for stable isotope analysis are only mentioned if it is important for the understanding of the application.

  15. Lipidomic analysis of plasma lipoprotein fractions in myocardial infarction-prone rabbits.

    PubMed

    Takeda, Hiroaki; Koike, Tomonari; Izumi, Yoshihiro; Yamada, Takayuki; Yoshida, Masaru; Shiomi, Masashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2015-10-01

    Lipids play important roles in the body and are transported to various tissues via lipoproteins. It is commonly assumed that alteration of lipid levels in lipoproteins leads to dyslipidemia and serious diseases such as coronary artery disease (CAD). However, lipid compositions in each lipoprotein fraction induced by lipoprotein metabolism are poorly understood. Lipidomics, which involves the comprehensive and quantitative analysis of lipids, is expected to provide valuable information regarding the pathogenic mechanism of CAD. Here, we performed a lipidomic analysis of plasma and its lipoprotein fractions in myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbits. In total, 172 lipids in plasma obtained from normal and WHHLMI rabbits were quantified with high throughput and accuracy using supercritical fluid chromatography hybrid quadrupole-Orbitrap mass spectrometry (SFC/Q-Orbitrap-MS). Plasma levels of each lipid class (i.e., phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, lysophosphatidylcholine, lysophosphatidylethanolamine, sphingomyelin, ceramide, triacylglycerol, diacylglycerol, and cholesterol ester, except for free fatty acids) in 21-month-old WHHLMI rabbits were significantly higher than those in normal rabbits. High levels of functional lipids, such as alkyl-phosphatidylcholines, phospholipids including ω-6 fatty acids, and plasmalogens, were also observed in WHHLMI rabbit plasma. In addition, high-resolution lipidomic analysis using very low density lipoprotein (VLDL) and low density lipoprotein (LDL) provided information on the specific molecular species of lipids in each lipoprotein fraction. In particular, higher levels of phosphatidylethanolamine plasmalogens were detected in LDL than in VLDL. Our lipidomics approach for plasma lipoprotein fractions will be useful for in-depth studies on the pathogenesis of CAD. PMID:26162515

  16. Iron Cycling in Marine Sediments - New Insights from Isotope Analysis on Sequentially Extracted Fe Fractions

    NASA Astrophysics Data System (ADS)

    Henkel, S.; Kasten, S.; Poulton, S.; Hartmann, J.; Staubwasser, M.

    2014-12-01

    Reactive Fe (oxyhydr)oxides preferentially undergo early diagenetic cycling and may cause a diffusive flux of dissolved Fe2+ from sediments towards the sediment-water interface. The partitioning of Fe in sediments has traditionally been studied by applying sequential extractions based on reductive dissolution of Fe minerals. We complemented the sequential leaching method by Poulton and Canfield [1] in order to be able to gain δ56Fe data for specific Fe fractions, as such data are potentially useful to study Fe cycling in marine environments. The specific mineral fractions are Fe-carbonates, ferrihydrite + lepidocrocite, goethite + hematite, and magnetite. Leaching was performed with acetic acid, hydroxylamine-HCl, Na-dithionite and oxalic acid. The processing of leachates for δ56Fe analysis involved boiling the samples in HCl/HNO3/H2O2, Fe precipitation and anion exchange column chromatography. The new method was applied to short sediment cores from the North Sea and a bay of King George Island (South Shetland Islands, Antarctica). Downcore mineral-specific variations in δ56Fe revealed differing contributions of Fe (oxyhydr)oxides to redox cycling. A slight decrease in easily reducible Fe oxides correlating with a slight increase in δ56Fe for this fraction with depth, which is in line with progessive dissimilatory iron reduction [2,3], is visible in the top 10 cm of the North Sea core, but not in the antarctic sediments. Less reactive (dithionite and oxalate leachable) fractions did not reveal isotopic trends. The acetic acid-soluble fraction displayed pronounced δ56Fe trends at both sites that cannot be explained by acid volatile sulfides that are also extracted by acetic acid [1]. We suggest that low δ56Fe values in this fraction relative to the pool of easily reducible Fe oxides result from adsorbed Fe(II) that was open to isotopic exchange with oxide surfaces, affirming the experimental results of Crosby el al. [2]. Hence, δ56Fe analyses on marine

  17. The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases.

    PubMed

    Repetto, Ivan E; Monti, Riccardo; Tropiano, Marta; Tomasi, Simone; Arbini, Alessia; Andrade-Moraes, Carlos-Humberto; Lent, Roberto; Vercelli, Alessandro

    2016-01-01

    One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington's disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole

  18. The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases

    PubMed Central

    Repetto, Ivan E.; Monti, Riccardo; Tropiano, Marta; Tomasi, Simone; Arbini, Alessia; Andrade-Moraes, Carlos-Humberto; Lent, Roberto; Vercelli, Alessandro

    2016-01-01

    One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington’s disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole

  19. The New Environmental Paradigm and Further Scale Analysis.

    ERIC Educational Resources Information Center

    Noe, Francis P.; Snow, Rob

    1990-01-01

    Examined were the responses of park visitors to the New Environmental Paradigm scale. Research methods, and results including reliabilities and factor analysis of the scales on the survey are discussed. (CW)

  20. Characterization of polypropylene–polyethylene blends by temperature rising elution and crystallization analysis fractionation

    PubMed Central

    del Hierro, Pilar

    2010-01-01

    The introduction of single-site catalysts in the polyolefins industry opens new routes to design resins with improved performance through multicatalyst-multireactor processes. Physical combination of various polyolefin types in a secondary extrusion process is also a common practice to achieve new products with improved properties. The new resins have complex structures, especially in terms of composition distribution, and their characterization is not always an easy task. Techniques like temperature rising elution fractionation (TREF) or crystallization analysis fractionation (CRYSTAF) are currently used to characterize the composition distribution of these resins. It has been shown that certain combinations of polyolefins may result in equivocal results if only TREF or CRYSTAF is used separately for their characterization. PMID:20730530

  1. Radiological and instrumental neutron activation analysis determined characteristics of size-fractionated fly ash.

    PubMed

    Peppas, T K; Karfopoulos, K L; Karangelos, D J; Rouni, P K; Anagnostakis, M J; Simopoulos, S E

    2010-09-15

    The concentration of trace elements and radionuclides in fly ash particles of different size can exhibit significant variation, due to the various processes taking place during combustion inside a coal-fired power plant. An investigation of this effect has been performed by analyzing samples of fly ash originating in two different coal-fired power plants, after separation into size fractions by sieving. The samples were analyzed by gamma-ray spectrometry, including low-energy techniques, radon exhalation measurement and instrumental neutron activation analysis for the determination of Al, As, Ga, K, La, Na, Mn, Mg, Sr, Sc, and V. Variations are observed in the results of various samples analyzed, while the activity balances calculated from the results of individual size fractions are consistent with those of the raw ash samples. Correlations among the radionuclides examined are also observed, while individual nuclide behavior varies between the two types of fly ash examined. PMID:20605322

  2. Comprehensive triblock copolymer analysis by coupled thermal field-flow fractionation-NMR.

    PubMed

    van Aswegen, Werner; Hiller, Wolf; Hehn, Mathias; Pasch, Harald

    2013-07-12

    Thermal field-flow fractionation (ThFFF) is used as a novel fractionation technique to investigate the molecular heterogeneity of PB-b-PVP-b-PtBMA triblock copolymers. Such copolymers cause major problems in liquid chromatography due to very strong polar interactions with the stationary phase. ThFFF separates the copolymers with regard to size and/or chemical composition based on the normal and thermal diffusion coefficients. The separation mechanism in ThFFF and the chemical composition of the separated species is elucidated by online (1) H NMR. Based on the compositional analysis and a calibration of the system with the respective homopolymers, the samples are quantified regarding their molar masses, chemical compositions, and microstructures providing comprehensive information on the complex structure of these block copolymers. PMID:23722993

  3. Impact of indium mole fraction on the quantum transport of ultra-scaled In x Ga1- x As double-gate Schottky MOSFET: tight-binding approach

    NASA Astrophysics Data System (ADS)

    Ahangari, Zahra

    2016-02-01

    This paper explores the impact of indium mole fraction on the electrical characteristic of In x Ga1- x As double-gate Schottky MOSFET (SBFET) in nanoscale regime. A 20-band sp 3 d 5 s * tight-binding formalism is applied to compute the bandstructure of ultra-thin body structure as a function of indium mole fraction. The injection velocity of carriers is increased as the indium mole fraction approaches to x = 1. Quantum confinement results in an increment of the effective Schottky barrier height especially for the increased values of indium mole fraction. The ultra-scaled In x Ga1- x As SBFET suffers from a low conduction band DOS in the Γ valley that results in serious degradation of the gate capacitance. The electrical characteristic of this device is considered by solving self-consistent 2D Schrődinger-Poisson equations based on non-equilibrium Green's function formalism. For channel thicknesses where the effect of quantum confinement on the gate capacitance is not dominant, shrinking the channel thickness besides increasing the indium mole fraction improves the electrical characteristic of the device. However, for the ultra-scaled structure, the indium mole fraction enhancement degrades the device performance due to the enhanced value of Schottky barrier height and low DOS.

  4. Fractional oscillator.

    PubMed

    Stanislavsky, A A

    2004-11-01

    We consider a fractional oscillator which is a generalization of the conventional linear oscillator in the framework of fractional calculus. It is interpreted as an ensemble average of ordinary harmonic oscillators governed by a stochastic time arrow. The intrinsic absorption of the fractional oscillator results from the full contribution of the harmonic oscillator ensemble: these oscillators differ a little from each other in frequency so that each response is compensated by an antiphase response of another harmonic oscillator. This allows one to draw a parallel in the dispersion analysis for media described by a fractional oscillator and an ensemble of ordinary harmonic oscillators with damping. The features of this analysis are discussed. PMID:15600586

  5. Financial analysis of technology acquisition using fractionated lasers as a model.

    PubMed

    Jutkowitz, Eric; Carniol, Paul J; Carniol, Alan R

    2010-08-01

    Ablative fractional lasers are among the most advanced and costly devices on the market. Yet, there is a dearth of published literature on the cost and potential return on investment (ROI) of such devices. The objective of this study was to provide a methodological framework for physicians to evaluate ROI. To facilitate this analysis, we conducted a case study on the potential ROI of eight ablative fractional lasers. In the base case analysis, a 5-year lease and a 3-year lease were assumed as the purchase option with a $0 down payment and 3-month payment deferral. In addition to lease payments, service contracts, labor cost, and disposables were included in the total cost estimate. Revenue was estimated as price per procedure multiplied by total number of procedures in a year. Sensitivity analyses were performed to account for variability in model assumptions. Based on the assumptions of the model, all lasers had higher ROI under the 5-year lease agreement compared with that for the 3-year lease agreement. When comparing results between lasers, those with lower operating and purchase cost delivered a higher ROI. Sensitivity analysis indicates the model is most sensitive to purchase method. If physicians opt to purchase the device rather than lease, they can significantly enhance ROI. ROI analysis is an important tool for physicians who are considering making an expensive device acquisition. However, physicians should not rely solely on ROI and must also consider the clinical benefits of a laser. PMID:20665406

  6. Global scale precipitation from monthly to centennial scales: empirical space-time scaling analysis, anthropogenic effects

    NASA Astrophysics Data System (ADS)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    The characterization of precipitation scaling regimes represents a key contribution to the improved understanding of space-time precipitation variability, which is the focus here. We conduct space-time scaling analyses of spectra and Haar fluctuations in precipitation, using three global scale precipitation products (one instrument based, one reanalysis based, one satellite and gauge based), from monthly to centennial scales and planetary down to several hundred kilometers in spatial scale. Results show the presence - similarly to other atmospheric fields - of an intermediate "macroweather" regime between the familiar weather and climate regimes: we characterize systematically the macroweather precipitation temporal and spatial, and joint space-time statistics and variability, and the outer scale limit of temporal scaling. These regimes qualitatively and quantitatively alternate in the way fluctuations vary with scale. In the macroweather regime, the fluctuations diminish with time scale (this is important for seasonal, annual, and decadal forecasts) while anthropogenic effects increase with time scale. Our approach determines the time scale at which the anthropogenic signal can be detected above the natural variability noise: the critical scale is about 20 - 40 yrs (depending on the product, on the spatial scale). This explains for example why studies that use data covering only a few decades do not easily give evidence of anthropogenic changes in precipitation, as a consequence of warming: the period is too short. Overall, while showing that precipitation can be modeled with space-time scaling processes, our results clarify the different precipitation scaling regimes and further allow us to quantify the agreement (and lack of agreement) of the precipitation products as a function of space and time scales. Moreover, this work contributes to clarify a basic problem in hydro-climatology, which is to measure precipitation trends at decadal and longer scales and to

  7. Developmental Work Personality Scale: An Initial Analysis.

    ERIC Educational Resources Information Center

    Strauser, David R.; Keim, Jeanmarie

    2002-01-01

    The research reported in this article involved using the Developmental Model of Work Personality to create a scale to measure work personality, the Developmental Work Personality Scale (DWPS). Overall, results indicated that the DWPS may have potential applications for assessing work personality prior to client involvement in comprehensive…

  8. Fractional order analysis of Sephadex gel structures: NMR measurements reflecting anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  9. Lie Symmetry Analysis and Explicit Solutions of the Time Fractional Fifth-Order KdV Equation

    PubMed Central

    Wang, Gang wei; Xu, Tian zhou; Feng, Tao

    2014-01-01

    In this paper, using the Lie group analysis method, we study the invariance properties of the time fractional fifth-order KdV equation. A systematic research to derive Lie point symmetries to time fractional fifth-order KdV equation is performed. In the sense of point symmetry, all of the vector fields and the symmetry reductions of the fractional fifth-order KdV equation are obtained. At last, by virtue of the sub-equation method, some exact solutions to the fractional fifth-order KdV equation are provided. PMID:24523885

  10. Lie symmetry analysis and explicit solutions of the time fractional fifth-order KdV equation.

    PubMed

    Wang, Gang Wei; Xu, Tian Zhou; Feng, Tao

    2014-01-01

    In this paper, using the Lie group analysis method, we study the invariance properties of the time fractional fifth-order KdV equation. A systematic research to derive Lie point symmetries to time fractional fifth-order KdV equation is performed. In the sense of point symmetry, all of the vector fields and the symmetry reductions of the fractional fifth-order KdV equation are obtained. At last, by virtue of the sub-equation method, some exact solutions to the fractional fifth-order KdV equation are provided. PMID:24523885

  11. Study of the free volume fraction in polylactic acid (PLA) by thermal analysis

    NASA Astrophysics Data System (ADS)

    Abdallah, A.; Benrekaa, N.

    2015-10-01

    The poly (lactic acid) or polylactide (PLA) is a biodegradable polymer with high modulus, strength and thermoplastic properties. In this work, the evolution of various properties of PLA is studied, such as glass transition temperature, mechanical modules and elongation percentage with the aim of investigating the free volume fraction. To do so, two thermal techniques have been used: the dynamic mechanical analysis (DMA) and dilatometry. The results obtained by these techniques are combined to go back to the structural properties of the studied material.

  12. Two-dimensional Raman mole-fraction and temperature measurements for hydrogen-nitrogen mixture analysis.

    PubMed

    Braeuer, Andreas; Leipertz, Alfred

    2009-02-01

    A two-dimensional laser Raman technique was developed and applied to directly probe the population number of selected rotational and vibrational energy levels of hydrogen and nitrogen. Using three cameras simultaneously, temperature and mole fraction images could be detected. Three different combinations of rotational and vibrational Raman signals of hydrogen and nitrogen were analyzed to identify the combination that is most suitable for future mixture analysis in hydrogen internal combustion engines. Here the experiments were conducted in an injection chamber where hot hydrogen was injected into room temperature nitrogen at 1.1 MPa. PMID:19183582

  13. Proteomic analysis of a podocyte vesicle-enriched fraction from human normal and pathological urine samples.

    PubMed

    Lescuyer, Pierre; Pernin, Agnès; Hainard, Alexandre; Bigeire, Caty; Burgess, Jennifer A; Zimmermann-Ivol, Catherine; Sanchez, Jean-Charles; Schifferli, Jürg A; Hochstrasser, Denis F; Moll, Solange

    2008-07-01

    Podocytes (glomerular visceral epithelial cells) release vesicles into urine. Podocyte vesicle-enriched fractions from normal and pathological human urine samples were prepared for proteomic analysis. An immunoadsorption method was applied and enrichment of podocyte vesicles was assessed. We identified 76 unique proteins. One protein, serum paraoxonase/arylesterase 1 (PON-1), was newly identified in normal human urine sample. We confirmed this result and showed PON-1 expression in normal human kidney. These results demonstrated the potential for using the urine samples enriched in podocyte vesicles as a starting material in studies aimed at discovery of biomarkers for diseases. PMID:21136901

  14. Dynamical scaling analysis of plant callus growth

    NASA Astrophysics Data System (ADS)

    Galeano, J.; Buceta, J.; Juarez, K.; Pumariño, B.; de la Torre, J.; Iriondo, J. M.

    2003-07-01

    We present experimental results for the dynamical scaling properties of the development of plant calli. We have assayed two different species of plant calli, Brassica oleracea and Brassica rapa, under different growth conditions, and show that their dynamical scalings share a universality class. From a theoretical point of view, we introduce a scaling hypothesis for systems whose size evolves in time. We expect our work to be relevant for the understanding and characterization of other systems that undergo growth due to cell division and differentiation, such as, for example, tumor development.

  15. Failure Analysis of a Pilot Scale Melter

    SciTech Connect

    Imrich, K J

    2001-09-14

    Failure of the pilot-scale test melter resulted from severe overheating of the Inconel 690 jacketed molybdenum electrode. Extreme temperatures were required to melt the glass during this campaign because the feed material contained a very high waste loading.

  16. A Scale Analysis of the Effects of US Federal Policy

    ERIC Educational Resources Information Center

    Pandya, Jessica Zacher

    2012-01-01

    In this essay I argue that the effects of federal policy can be examined through a scale analysis that helps deconstruct the effect of the current widespread accountability movement in the US educational system. I first discuss the concept of scale, including its thus-far limited use in educational research. I define scales not only as…

  17. Minimum Sample Size Requirements for Mokken Scale Analysis

    ERIC Educational Resources Information Center

    Straat, J. Hendrik; van der Ark, L. Andries; Sijtsma, Klaas

    2014-01-01

    An automated item selection procedure in Mokken scale analysis partitions a set of items into one or more Mokken scales, if the data allow. Two algorithms are available that pursue the same goal of selecting Mokken scales of maximum length: Mokken's original automated item selection procedure (AISP) and a genetic algorithm (GA). Minimum…

  18. Convective scale weather analysis and forecasting

    NASA Technical Reports Server (NTRS)

    Purdom, J. F. W.

    1984-01-01

    How satellite data can be used to improve insight into the mesoscale behavior of the atmosphere is demonstrated with emphasis on the GOES-VAS sounding and image data. This geostationary satellite has the unique ability to observe frequently the atmosphere (sounders) and its cloud cover (visible and infrared) from the synoptic scale down to the cloud scale. These uniformly calibrated data sets can be combined with conventional data to reveal many of the features important in mesoscale weather development and evolution.

  19. Detection of crossover time scales in multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Ge, Erjia; Leung, Yee

    2013-04-01

    Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

  20. New Extended Deuterium Fractionation Model: Assessment at Dense ISM Conditions and Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Albertsson, T.; Semenov, D. A.; Vasyunin, A. I.; Henning, Th.; Herbst, E.

    2013-08-01

    Observations of deuterated species are useful in probing the temperature, ionization level, evolutionary stage, chemistry, and thermal history of astrophysical environments. The analysis of data from the Atacama Large Millimeter Array and other new telescopes requires an elaborate model of deuterium fractionation. This paper presents a publicly available chemical network with multi-deuterated species and an extended, up-to-date set of gas-phase and surface reactions. To test this network, we simulate deuterium fractionation in diverse interstellar sources. Two cases of initial abundances are considered: (1) atomic except for H2 and HD, and (2) molecular from a prestellar core. We reproduce the observed D/H ratios of many deuterated molecules, and sort the species according to their sensitivity to temperature gradients and initial abundances. We find that many multiply deuterated species produced at 10 K retain enhanced D/H ratios at temperatures <~ 100 K. We study how recent updates to reaction rates affect calculated D/H ratios, and perform a detailed sensitivity analysis of the uncertainties of the gas-phase reaction rates in the network. We find that uncertainties are generally lower in dark cloud environments than in warm infrared dark clouds and that uncertainties increase with the size of the molecule and number of D-atoms. A set of the most problematic reactions is presented. We list potentially observable deuterated species predicted to be abundant in low- and high-mass star-formation regions.

  1. NEW EXTENDED DEUTERIUM FRACTIONATION MODEL: ASSESSMENT AT DENSE ISM CONDITIONS AND SENSITIVITY ANALYSIS

    SciTech Connect

    Albertsson, T.; Semenov, D. A.; Henning, Th.; Vasyunin, A. I.; Herbst, E.

    2013-08-15

    Observations of deuterated species are useful in probing the temperature, ionization level, evolutionary stage, chemistry, and thermal history of astrophysical environments. The analysis of data from the Atacama Large Millimeter Array and other new telescopes requires an elaborate model of deuterium fractionation. This paper presents a publicly available chemical network with multi-deuterated species and an extended, up-to-date set of gas-phase and surface reactions. To test this network, we simulate deuterium fractionation in diverse interstellar sources. Two cases of initial abundances are considered: (1) atomic except for H{sub 2} and HD, and (2) molecular from a prestellar core. We reproduce the observed D/H ratios of many deuterated molecules, and sort the species according to their sensitivity to temperature gradients and initial abundances. We find that many multiply deuterated species produced at 10 K retain enhanced D/H ratios at temperatures {approx}< 100 K. We study how recent updates to reaction rates affect calculated D/H ratios, and perform a detailed sensitivity analysis of the uncertainties of the gas-phase reaction rates in the network. We find that uncertainties are generally lower in dark cloud environments than in warm infrared dark clouds and that uncertainties increase with the size of the molecule and number of D-atoms. A set of the most problematic reactions is presented. We list potentially observable deuterated species predicted to be abundant in low- and high-mass star-formation regions.

  2. Analysis of the Compartmentalized Metabolome – A Validation of the Non-Aqueous Fractionation Technique

    PubMed Central

    Klie, Sebastian; Krueger, Stephan; Krall, Leonard; Giavalisco, Patrick; Flügge, Ulf-Ingo; Willmitzer, Lothar; Steinhauser, Dirk

    2011-01-01

    With the development of high-throughput metabolic technologies, a plethora of primary and secondary compounds have been detected in the plant cell. However, there are still major gaps in our understanding of the plant metabolome. This is especially true with regards to the compartmental localization of these identified metabolites. Non-aqueous fractionation (NAF) is a powerful technique for the determination of subcellular metabolite distributions in eukaryotic cells, and it has become the method of choice to analyze the distribution of a large number of metabolites concurrently. However, the NAF technique produces a continuous gradient of metabolite distributions, not discrete assignments. Resolution of these distributions requires computational analyses based on marker molecules to resolve compartmental localizations. In this article we focus on expanding the computational analysis of data derived from NAF. Along with an experimental workflow, we describe the critical steps in NAF experiments and how computational approaches can aid in assessing the quality and robustness of the derived data. For this, we have developed and provide a new version (v1.2) of the BestFit command line tool for calculation and evaluation of subcellular metabolite distributions. Furthermore, using both simulated and experimental data we show the influence on estimated subcellular distributions by modulating important parameters, such as the number of fractions taken or which marker molecule is selected. Finally, we discuss caveats and benefits of NAF analysis in the context of the compartmentalized metabolome. PMID:22645541

  3. Proteomic Analysis of a Fraction with Intact Eyespots of Chlamydomonas reinhardtii and Assignment of Protein Methylation

    PubMed Central

    Eitzinger, Nicole; Wagner, Volker; Weisheit, Wolfram; Geimer, Stefan; Boness, David; Kreimer, Georg; Mittag, Maria

    2015-01-01

    Flagellate green algae possess a visual system, the eyespot. In Chlamydomonas reinhardtii it is situated at the edge of the chloroplast and consists of two carotenoid rich lipid globule layers subtended by thylakoid membranes (TM) that are attached to both chloroplast envelope membranes and a specialized area of the plasma membrane (PM). A former analysis of an eyespot fraction identified 203 proteins. To increase the understanding of eyespot related processes, knowledge of the protein composition of the membranes in its close vicinity is desirable. Here, we present a purification procedure that allows isolation of intact eyespots. This gain in intactness goes, however, hand in hand with an increase of contaminants from other organelles. Proteomic analysis identified 742 proteins. Novel candidates include proteins for eyespot development, retina-related proteins, ion pumps, and membrane-associated proteins, calcium sensing proteins as well as kinases, phosphatases and 14-3-3 proteins. Methylation of proteins at Arg or Lys is known as an important posttranslational modification involved in, e.g., signal transduction. Here, we identify several proteins from eyespot fractions that are methylated at Arg and/or Lys. Among them is the eyespot specific SOUL3 protein that influences the size and position of the eyespot and EYE2, a protein important for its development. PMID:26697039

  4. Multidimensional Scaling versus Components Analysis of Test Intercorrelations.

    ERIC Educational Resources Information Center

    Davison, Mark L.

    1985-01-01

    Considers the relationship between coordinate estimates in components analysis and multidimensional scaling. Reports three small Monte Carlo studies comparing nonmetric scaling solutions to components analysis. Results are related to other methodological issues surrounding research on the general ability factor, response tendencies in…

  5. Variability of a stellar corona on a time scale of days. Evidence for abundance fractionation in an emerging coronal active region

    NASA Astrophysics Data System (ADS)

    Nordon, R.; Behar, E.; Drake, S. A.

    2013-02-01

    Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated. An active region, predating the beginning of the campaign, repeatedly enters into our view at the same phase as it rotates from beyond the stellar limb. As a result, the abundances tend slightly, but consistently, to increase for high FIP elements (an inverse FIP effect) with phase. We estimate the abundance increase of high FIP elements in the active region to be of about 75% over the coronal mean. This observed fractionation of elements in an active region on time scales of days provides circumstantial clues regarding the element enrichment mechanism of non-flaring stellar coronae.

  6. Variability of a Stellar Corona on a Time Scale of Days: Evidence for Abundance Fractionation in an Emerging Coronal Active Region

    NASA Technical Reports Server (NTRS)

    Nordon, R.; Behar, E.; Drake, S. A.

    2013-01-01

    Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated. An active region, predating the beginning of the campaign, repeatedly enters into our view at the same phase as it rotates from beyond the stellar limb. As a result, the abundances tend slightly, but consistently, to increase for high FIP elements (an inverse FIP effect) with phase. We estimate the abundance increase of high FIP elements in the active region to be of about 75% over the coronal mean. This observed fractionation of elements in an active region on time scales of days provides circumstantial clues regarding the element enrichment mechanism of non-flaring stellar coronae.

  7. Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Bin; Tian, Shou-Fu; Qin, Chun-Yan; Zhang, Tian-Tian

    2016-04-01

    Under investigation in this work are the invariance properties of the generalized time fractional Burgers equation, which can be used to describe the physical processes of unidirectional propagation of weakly nonlinear acoustic waves through a gas-filled pipe. The Lie group analysis method is applied to consider its vector fields and symmetry reductions. Furthermore, based on the sub-equation method, a new type of explicit solutions for the equation is well constructed with a detailed analysis. By means of the power series theory, exact power series solutions of the equation are also constructed. Finally, by using the new conservation theorem, conservation laws of the equation are well constructed with a detailed derivation.

  8. Production of nitrate-rich compost from the solid fraction of dairy manure by a lab-scale composting system.

    PubMed

    Sun, Zhao-Yong; Zhang, Jing; Zhong, Xiao-Zhong; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2016-05-01

    In the present study, we developed an efficient composting process for the solid fraction of dairy manure (SFDM) using lab-scale systems. We first evaluated the factors affecting the SFDM composting process using different thermophilic phase durations (TPD, 6 or 3days) and aeration rates (AR, 0.4 or 0.2 lmin(-1)kg(-1)-total solid (TS)). Results indicated that a similar volatile total solid (VTS) degradation efficiency (approximately 60%) was achieved with a TPD of 6 or 3days and an AR of 0.4 l min(-1) kg(-1)-TS (hereafter called higher AR), and a TPD of 3days resulted in less N loss caused by ammonia stripping. N loss was least when AR was decreased to 0.2 l min(-1) kg(-1)-TS (hereafter called lower AR) during the SFDM composting process. However, moisture content (MC) in the composting pile increased at the lower AR because of water production by VTS degradation and less water volatilization. Reduced oxygen availability caused by excess water led to lower VTS degradation efficiency and inhibition of nitrification. Adding sawdust to adjust the C/N ratio and decrease the MC improved nitrification during the composing processes; however, the addition of increasing amounts of sawdust decreased NO3(-) concentration in matured compost. When an improved composting reactor with a condensate removal and collection system was used for the SFDM composting process, the MC of the composting pile was significantly reduced, and nitrification was detected 10-14days earlier. This was attributed to the activity of ammonia-oxidizing bacteria (AOB). Highly matured compost could be generated within 40-50days. The VTS degradation efficiency reached 62.0% and the final N content, NO3(-) concentration, and germination index (GI) at the end of the composting process were 3.3%, 15.5×10(3)mg kg(-1)-TS, and 112.1%, respectively. PMID:26965212

  9. Chemical Analysis of Fractionated Halogens in Atmospheric Aerosols Collected in Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Tsuhako, A.; Miyagi, Y.; Somada, Y.; Azechi, S.; Handa, D.; Oshiro, Y.; Murayama, H.; Arakaki, T.

    2013-12-01

    Halogens (Cl, Br and I) play important roles in the atmosphere, e.g. ozone depletion by Br during spring in Polar Regions. Sources of halogens in atmospheric aerosols are mainly from ocean. But, for example, when we analyzed Br- with ion chromatography, its concentrations were almost always below the detection limit, which is also much lower than the estimated concentrations from sodium ion concentrations. We hypothesized that portions of halogens are escaped to the atmosphere, similar to chlorine loss, changed their chemical forms to such as BrO3- and IO3-, and/or even formed precipitates. There was few reported data so far about fractionated halogen concentrations in atmospheric aerosols. Thus, purpose of this study was to determine halogen concentrations in different fractions; free ion, water-soluble chemically transformed ions and precipitates using the authentic aerosols. Moreover, we analyzed seasonal variation for each fraction. Atmospheric aerosol samples were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) of Okinawa, Japan during January 2010 and August 2013. A high volume air sampler was used for collecting total particulate matters on quartz filters on a weekly basis. Ultrapure water was used to extract water-soluble factions of halogens. The extracted solutions were filtered with the membrane filter and used for chemical analysis with ion chromatography and ICP-MS. Moreover, the total halogens in aerosols were obtained after digesting aerosols with tetramethylammonium hydroxide (TMAH) using the microwave and analysis with ICP-MS. For Cl, water-soluble Cl- accounted for about 70% of the estimates with Na content. No other forms of water-soluble Cl were found. About 30% of Cl was assumed volatilized to the gas-phase. For Br, water-soluble Br accounted for about 43% of the estimates with Na content, and within the 43%, about 10% of Br was not in the form of Br-. About 46% of Br was assumed volatilized to the gas-phase. For I

  10. SCALING ANALYSIS OF REPOSITORY HEAT LOAD FOR REDUCED DIMENSIONALITY MODELS

    SciTech Connect

    MICHAEL T. ITAMUA AND CLIFFORD K. HO

    1998-06-04

    The thermal energy released from the waste packages emplaced in the potential Yucca Mountain repository is expected to result in changes in the repository temperature, relative humidity, air mass fraction, gas flow rates, and other parameters that are important input into the models used to calculate the performance of the engineered system components. In particular, the waste package degradation models require input from thermal-hydrologic models that have higher resolution than those currently used to simulate the T/H responses at the mountain-scale. Therefore, a combination of mountain- and drift-scale T/H models is being used to generate the drift thermal-hydrologic environment.

  11. Longitudinal Network Analysis Using Multidimensional Scaling.

    ERIC Educational Resources Information Center

    Barnett, George A.; Palmer, Mark T.

    The Galileo System, a variant of metric multidimensional scaling, is used in this paper to analyze over-time changes in social networks. The paper first discusses the theoretical necessity for the use of this procedure and the methodological problems associated with its use. It then examines the air traffic network among 31 major cities in the…

  12. Assessing plantation canopy condition from airborne imagery using spectral mixture analysis and fractional abundances

    NASA Astrophysics Data System (ADS)

    Goodwin, Nicholas; Coops, Nicholas C.; Stone, Christine

    2005-05-01

    Pine plantations in Australia are subject to a range of abiotic and biotic damaging agents that affect tree health and productivity. In order to optimise management decisions, plantation managers require regular intelligence relating to the status and trends in the health and condition of trees within individual compartments. Remote sensing technology offers an alternative to traditional ground-based assessment of these plantations. Automated estimation of foliar crown health, especially in degraded crowns, can be difficult due to mixed pixels when there is low or fragmented vegetation cover. In this study we apply a linear spectral unmixing approach to high spatial resolution (50 cm) multispectral imagery to quantify the fractional abundances of the key image endmembers: sunlit canopy, shadow, and soil. A number of Pinus radiata tree crown attributes were modelled using multiple linear regression and endmember fraction images. We found high levels of significance ( r2 = 0.80) for the overall crown colour and colour of the crown leader ( r2 = 0.79) in tree crowns affected by the fungal pathogen Sphaeropsis sapinea, which produces both needle necrosis and chlorosis. Results for stands associated with defoliation and chlorosis through infestation by the aphid Essigella californica were lower with an r2 = 0.33 for crown transparency and r2 = 0.31 for proportion of crown affected. Similar analysis of data from a nitrogen deficient site produced an outcome somewhat in between the other two damaging agents. Overall the sunlit canopy image fraction has been the most important variable used in the modelling of forest condition for all damaging agents.

  13. The Bootstrap Fraction in TFTR

    SciTech Connect

    Hoang, G. T.

    1997-04-15

    The TRANSP plasma analysis code is used to calculate the bootstrap current generated during neutral-beam injection and ion cyclotron resonance frequency heating for a wide variety of TFTR discharges. An empirical scaling relation is given for the bootstrap current fraction using the ratio of the peakedness of the thermal pressure and the total current density.

  14. The role of stellar mass and environment for cluster blue fraction, AGN fraction and star formation indicators from a targeted analysis of Abell 1691

    NASA Astrophysics Data System (ADS)

    Pimbblet, Kevin A.; Jensen, Peter C.

    2012-10-01

    We present an analysis of the galaxy population of the intermediate X-ray luminosity galaxy cluster, Abell 1691, from Sloan Digital Sky Survey (SDSS) and Galaxy Zoo data to elucidate the relationships between environment and galaxy stellar mass for a variety of observationally important cluster populations that include the Butcher-Oemler blue fraction, the active galactic nucleus (AGN) fraction and other spectroscopic classifications of galaxies. From 342 cluster members, we determine a cluster recession velocity of 21257 ± 54 km s-1 and velocity dispersion of 1009-36+40 km s-1 and show that although the cluster is fed by multiple filaments of galaxies it does not possess significant sub-structure in its core. We identify the AGN population of the cluster from a Baldwin, Phillips & Terlevich diagram and show that there is a mild increase in the AGN fraction with radius from the cluster centre that appears mainly driven by high-mass galaxies [log(stellar mass) > 10.8]. Although the cluster blue fraction follows the same radial trend, it is caused primarily by lower mass galaxies [log(stellar mass) < 10.8]. Significantly, the galaxies that have undergone recent starbursts or are presently starbursting but dust-shrouded [spectroscopic e(a) class galaxies] are also nearly exclusively driven by low-mass galaxies. We therefore suggest that the Butcher-Oemler effect may be a mass-dependent effect. We also examine red and passive spiral galaxies and show that the majority are massive galaxies, much like the rest of the red and spectroscopically passive cluster population. We further demonstrate that the velocity dispersion profiles of low- and high-mass cluster galaxies are different. Taken together, we infer that the duty cycle of high- and low-mass cluster galaxies is markedly different, with a significant departure in star formation and specific star formation rates observed beyond r200 and we discuss these findings.

  15. Top-down and bottom-up lipidomic analysis of rabbit lipoproteins under different metabolic conditions using flow field-flow fractionation, nanoflow liquid chromatography and mass spectrometry.

    PubMed

    Byeon, Seul Kee; Kim, Jin Yong; Lee, Ju Yong; Chung, Bong Chul; Seo, Hong Seog; Moon, Myeong Hee

    2015-07-31

    This study demonstrated the performances of top-down and bottom-up approaches in lipidomic analysis of lipoproteins from rabbits raised under different metabolic conditions: healthy controls, carrageenan-induced inflammation, dehydration, high cholesterol (HC) diet, and highest cholesterol diet with inflammation (HCI). In the bottom-up approach, the high density lipoproteins (HDL) and the low density lipoproteins (LDL) were size-sorted and collected on a semi-preparative scale using a multiplexed hollow fiber flow field-flow fractionation (MxHF5), followed by nanoflow liquid chromatography-ESI-MS/MS (nLC-ESI-MS/MS) analysis of the lipids extracted from each lipoprotein fraction. In the top-down method, size-fractionated lipoproteins were directly infused to MS for quantitative analysis of targeted lipids using chip-type asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry (cAF4-ESI-MS/MS) in selected reaction monitoring (SRM) mode. The comprehensive bottom-up analysis yielded 122 and 104 lipids from HDL and LDL, respectively. Rabbits within the HC and HCI groups had lipid patterns that contrasted most substantially from those of controls, suggesting that HC diet significantly alters the lipid composition of lipoproteins. Among the identified lipids, 20 lipid species that exhibited large differences (>10-fold) were selected as targets for the top-down quantitative analysis in order to compare the results with those from the bottom-up method. Statistical comparison of the results from the two methods revealed that the results were not significantly different for most of the selected species, except for those species with only small differences in concentration between groups. The current study demonstrated that top-down lipid analysis using cAF4-ESI-MS/MS is a powerful high-speed analytical platform for targeted lipidomic analysis that does not require the extraction of lipids from blood samples. PMID:26087967

  16. Analysis of 953 Human Proteins from a Mitochondrial HEK293 Fraction by Complexome Profiling

    PubMed Central

    Wessels, Hans J. C. T.; Vogel, Rutger O.; Lightowlers, Robert N.; Spelbrink, Johannes N.; Rodenburg, Richard J.; van den Heuvel, Lambert P.; van Gool, Alain J.; Gloerich, Jolein; Smeitink, Jan A. M.; Nijtmans, Leo G.

    2013-01-01

    Complexome profiling is a novel technique which uses shotgun proteomics to establish protein migration profiles from fractionated blue native electrophoresis gels. Here we present a dataset of blue native electrophoresis migration profiles for 953 proteins by complexome profiling. By analysis of mitochondrial ribosomal complexes we demonstrate its potential to verify putative protein-protein interactions identified by affinity purification – mass spectrometry studies. Protein complexes were extracted in their native state from a HEK293 mitochondrial fraction and separated by blue native gel electrophoresis. Gel lanes were cut into gel slices of even size and analyzed by shotgun proteomics. Subsequently, the acquired protein migration profiles were analyzed for co-migration via hierarchical cluster analysis. This dataset holds great promise as a comprehensive resource for de novo identification of protein-protein interactions or to underpin and prioritize candidate protein interactions from other studies. To demonstrate the potential use of our dataset we focussed on the mitochondrial translation machinery. Our results show that mitoribosomal complexes can be analyzed by blue native gel electrophoresis, as at least four distinct complexes. Analysis of these complexes confirmed that 24 proteins that had previously been reported to co-purify with mitoribosomes indeed co-migrated with subunits of the mitochondrial ribosome. Co-migration of several proteins involved in biogenesis of inner mitochondrial membrane complexes together with mitoribosomal complexes suggested the possibility of co-translational assembly in human cells. Our data also highlighted a putative ribonucleotide complex that potentially contains MRPL10, MRPL12 and MRPL53 together with LRPPRC and SLIRP. PMID:23935861

  17. Multi-scale analysis and optimized design of laminated-MRE bearings

    NASA Astrophysics Data System (ADS)

    Chen, Shiwei; Li, Rui; Zhang, Ze; Wang, Xiaojie

    2016-04-01

    We propose a method to analyze and design a laminated MRE bearing, in which the optimal parameters of materials and mechanical structure of the MRE bearing are determined. Based on the multi-scale and magneto-mechanical coupling theories, we establish a comprehensive model for the MRE bearing considering the influence of particle volume fraction, particle distribution, and thickness of MRE laminated layers on its mechanical performance. Within the micro-scale analysis, the representative volume unit (RVU) is used to address the effect of particle volume fraction and distribution on mechanical and magnetic properties of MRE itself. Within the macro-scale analysis, we build both mechanical and magnetic models for the laminated MRE bearing. Based on the theoretical analysis, a laminated MRE bearing with four-layer MRE is designed and fabricated. The performance of the MRE bearing has been tested by using MTS test bench. The results are compared with that of model analysis. It demonstrates that the proposed method can be a useful tool in the development of laminated-MRE bearings for practical applications.

  18. FACTOR ANALYSIS OF THE ELKINS HYPNOTIZABILITY SCALE

    PubMed Central

    Elkins, Gary; Johnson, Aimee K.; Johnson, Alisa J.; Sliwinski, Jim

    2015-01-01

    Assessment of hypnotizability can provide important information for hypnosis research and practice. The Elkins Hypnotizability Scale (EHS) consists of 12 items and was developed to provide a time-efficient measure for use in both clinical and laboratory settings. The EHS has been shown to be a reliable measure with support for convergent validity with the Stanford Hypnotic Susceptibility Scale, Form C (r = .821, p < .001). The current study examined the factor structure of the EHS, which was administered to 252 adults (51.3% male; 48.7% female). Average time of administration was 25.8 minutes. Four factors selected on the basis of the best theoretical fit accounted for 63.37% of the variance. The results of this study provide an initial factor structure for the EHS. PMID:25978085

  19. Differential branching fraction and angular analysis of Λ {/b 0} → Λμ + μ - decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A. C.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-06-01

    The differential branching fraction of the rare decay Λ {/b 0} → Λμ + μ - is measured as a function of q 2, the square of the dimuon invariant mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of 3 .0 fb-1, collected by the LHCb experiment. Evidence of signal is observed in the q 2 region below the square of the J/ψ mass. Integrating over 15 < q 2 < 20 GeV2 /c 4 the differential branching fraction is measured as where the uncertainties are statistical, systematic and due to the normalisation mode, Λ {/b 0} → J/ ψΛ, respectively. In the q 2 intervals where the signal is observed, angular distributions are studied and the forward-backward asymmetries in the dimuon ( A {FB/ ℓ }) and hadron ( A {FB/ h }) systems are measured for the first time. In the range 15 < q 2 < 20 GeV2 /c 4 they are found to be [Figure not available: see fulltext.

  20. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise.

    PubMed

    Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao

    2016-08-01

    The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative. PMID:27586619

  1. Computational methods for criticality safety analysis within the scale system

    SciTech Connect

    Parks, C.V.; Petrie, L.M.; Landers, N.F.; Bucholz, J.A.

    1986-01-01

    The criticality safety analysis capabilities within the SCALE system are centered around the Monte Carlo codes KENO IV and KENO V.a, which are both included in SCALE as functional modules. The XSDRNPM-S module is also an important tool within SCALE for obtaining multiplication factors for one-dimensional system models. This paper reviews the features and modeling capabilities of these codes along with their implementation within the Criticality Safety Analysis Sequences (CSAS) of SCALE. The CSAS modules provide automated cross-section processing and user-friendly input that allow criticality safety analyses to be done in an efficient and accurate manner. 14 refs., 2 figs., 3 tabs.

  2. Rapid immunochemical analysis of the sulfonamide-sugar conjugated fraction of antibiotic contaminated honey samples.

    PubMed

    Muriano, A; Chabottaux, V; Diserens, J-M; Granier, B; Sanchez-Baeza, F; Marco, M-P

    2015-07-01

    A rapid high-throughput immunochemical screening (HtiS) procedure for the analysis of the sulfonamide (SA)-sugar conjugated fraction of antibiotic contaminated honey samples has been developed. Studies performed with this matrix have indicated that sulfonamide antibiotics are conjugated to sugars rapidly and quantitatively, providing samples with very low SA immunoreactivity. Therefore, sulfonamides must be first released before the analysis, and for this purpose, a simple and fast sample preparation procedure has been established consisting of hydrolyzing the sample for 5 min, adjusting the pH and buffering the sample prior to the immunochemical analysis. Under these conditions, honey samples could be directly analyzed without any additional sample treatment, other than dilution. Recovery values of the whole analytical procedure were greater than 85%. The analysis of the same samples without the hydrolysis provided recovery values below 5%. Selectivity studies performed in hydrolyzed honey samples revealed that nine relevant sulfonamide antibiotics can be detected with limit of detection (LOD) values below the action limits established by some EU countries (Belgium, 20 μg kg(-1), United Kingdom or Switzerland, 50 μg kg(-1)). PMID:25704696

  3. Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black-Scholes model with transaction costs

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Tian

    2011-05-01

    This paper deals with the problem of discrete time option pricing using the fractional Black-Scholes model with transaction costs. Through the ‘anchoring and adjustment’ argument in a discrete time setting, a European call option pricing formula is obtained. The minimal price of an option under transaction costs is obtained. In addition, the relation between scaling and implied volatility smiles is discussed.

  4. Local variance for multi-scale analysis in geomorphometry

    PubMed Central

    Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas

    2011-01-01

    Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements. PMID:21779138

  5. Lie Symmetry Analysis and Conservation Laws of a Generalized Time Fractional Foam Drainage Equation

    NASA Astrophysics Data System (ADS)

    Wang, Li; Tian, Shou-Fu; Zhao, Zhen-Tao; Song, Xiao-Qiu

    2016-07-01

    In this paper, a generalized time fractional nonlinear foam drainage equation is investigated by means of the Lie group analysis method. Based on the Riemann—Liouville derivative, the Lie point symmetries and symmetry reductions of the equation are derived, respectively. Furthermore, conservation laws with two kinds of independent variables of the equation are performed by making use of the nonlinear self-adjointness method. Supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant No. 201410290039, the Fundamental Research Funds for the Central Universities under Grant Nos. 2015QNA53 and 2015XKQY14, the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Mines, the General Financial Grant from the China Postdoctoral Science Foundation under Grant No. 2015M570498, and Natural Sciences Foundation of China under Grant No. 11301527

  6. Development of a short version of the Aging Males' Symptoms scale: Mokken scaling analysis and Rasch analysis.

    PubMed

    Lee, Chin-Pang; Chen, Yu; Jiang, Kun-Hao; Chu, Chun-Lin; Chiu, Yu-Wen; Chen, Jiun-Liang; Chen, Ching-Yen

    2016-06-01

    The aim of this study was to develop a psychometrically sound short version of the 17-item Aging Males' Symptoms (AMS) scale using Mokken scale analysis (MSA) and Rasch analysis. We recruited a convenient sample of 1787 men (age: mean (SD) = 43.8 (11.5) years) who visited a men's health polyclinic in Taiwan and completed the AMS scale. The scale was first assessed using MSA. The remaining items were assessed using Rasch analysis. We used a stepwise approach to remove items with χ(2) item statistics and mean square values while monitoring unidimensionality. The item reduction process resulted in a 6-item version of the AMS scale (AMS-6). The AMS-6 scale included a 5-item psychosomatic subscale (original items 1, 4, 5, 8, and 9) and a 1-item sexual subscale (original item 16). Analyses confirmed that the 5-item psychosomatic subscale was a Rasch scale. The AMS-6 correlated well with the AMS scales: the 5-item psychosomatic subscale correlated with the AMS scale (r between 0.50 and 0.92); the 1-item sexual subscale correlated with the sexual subscale of the AMS scale (r = 0.81). A 6-item short form of the AMS scale had satisfactory measurement properties. This version may be useful for estimating psychosomatic and sexual symptoms as well as health-related quality of life with a minimal burden on respondents. PMID:26984738

  7. WTFM, software for well test analysis in fractured media combining fractional flow with double porosity and leakance approaches

    NASA Astrophysics Data System (ADS)

    Lods, Gerard; Gouze, Philippe

    2004-11-01

    The identification of the hydraulic characteristics and transport properties of fractured reservoirs requires the development of specific models that account for (i) the medium heterogeneity, e.g. the presence of major conductive fractures that delimit capacitive matrix blocks, with weakly open, dead end or isolated fractures , and (ii) for the geometrical arrangement of the major conductive fractures network, which dominates the flow at the scale of the well tests. Well Tests in Fractured Media (WTFM) software takes into account these two main features by combining radial flow generalized to fractional dimension, with the theory of double-porosity, including diffusivity in the second porosity, transient inter-porosity flow and inter-porosity skin effect, and with leakance. The implementation of this nD model, with n fractional, extends usefully the domain of application of the usual 1D/2D/3D double-porosity/leakance models for a large range of connection levels of fracture networks. Although the fractures geometry and properties are not considered one by one, or by directional families, they are taken into account by averaged properties and by the impact that the whole network has on the hydrodynamic behaviour. The accuracy of the coupled transient behaviours analysis is augmented by taking into account wellbore storage and skin effects. All together, the use of these different options allows matching a wide range of pumping test curves, characteristics of distinctive behaviours, with a limited number of parameters. Distinctive well test experiments, in both sedimentary and crystalline rocks, are presented for enlightening how the pertinent use of the model options improves predictions.

  8. Modeling and performance analysis of the fractional order quadratic Boost converter in discontinuous conduction mode-discontinuous conduction mode

    NASA Astrophysics Data System (ADS)

    Tan, Cheng; Liang, Zhi-Shan

    2016-03-01

    In this paper, based on the fact that the inductors and capacitors are of fractional order in nature, the four-order mathematical model of the fractional order quadratic Boost converter in type I and type II discontinuous conduction mode (DCM) — DCM is established by using fractional calculus theory. Direct current (DC) analysis is conducted by using the DC equivalent model and the transfer functions are derived from the corresponding alternating current (AC) equivalent model. The DCM-DCM regions of type I and type II are obtained and the relations between the regions and the orders are found. The influence of the orders on the performance of the quadratic Boost converter in DCM-DCM is verified by numerical and circuit simulations. Simulation results demonstrate the correctness of the fractional order model and the efficiency of the proposed theoretical analysis.

  9. Lie symmetry analysis, conservation laws and exact solutions of the seventh-order time fractional Sawada-Kotera-Ito equation

    NASA Astrophysics Data System (ADS)

    Yaşar, Emrullah; Yıldırım, Yakup; Khalique, Chaudry Masood

    In this paper Lie symmetry analysis of the seventh-order time fractional Sawada-Kotera-Ito (FSKI) equation with Riemann-Liouville derivative is performed. Using the Lie point symmetries of FSKI equation, it is shown that it can be transformed into a nonlinear ordinary differential equation of fractional order with a new dependent variable. In the reduced equation the derivative is in Erdelyi-Kober sense. Furthermore, adapting the Ibragimov's nonlocal conservation method to time fractional partial differential equations, we obtain conservation laws of the underlying equation. In addition, we construct some exact travelling wave solutions for the FSKI equation using the sub-equation method.

  10. Determining the significance of scale values from multidimensional scaling profile analysis using a resampling method.

    PubMed

    Ding, Cody S

    2005-02-01

    Although multidimensional scaling (MDS) profile analysis is widely used to study individual differences, there is no objective way to evaluate the statistical significance of the estimated scale values. In the present study, a resampling technique (bootstrapping) was used to construct confidence limits for scale values estimated from MDS profile analysis. These bootstrap confidence limits were used, in turn, to evaluate the significance of marker variables of the profiles. The results from analyses of both simulation data and real data suggest that the bootstrap method may be valid and may be used to evaluate hypotheses about the statistical significance of marker variables of MDS profiles. PMID:16097342

  11. Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery.

    PubMed

    Zattoni, Andrea; Roda, Barbara; Borghi, Francesco; Marassi, Valentina; Reschiglian, Pierluigi

    2014-01-01

    Structured nanoparticles (NPs) with controlled size distribution and novel physicochemical features present fundamental advantages as drug delivery systems with respect to bulk drugs. NPs can transport and release drugs to target sites with high efficiency and limited side effects. Regulatory institutions such as the US Food and Drug Administration (FDA) and the European Commission have pointed out that major limitations to the real application of current nanotechnology lie in the lack of homogeneous, pure and well-characterized NPs, also because of the lack of well-assessed, robust routine methods for their quality control and characterization. Many properties of NPs are size-dependent, thus the particle size distribution (PSD) plays a fundamental role in determining the NP properties. At present, scanning and transmission electron microscopy (SEM, TEM) are among the most used techniques to size characterize NPs. Size-exclusion chromatography (SEC) is also applied to the size separation of complex NP samples. SEC selectivity is, however, quite limited for very large molar mass analytes such as NPs, and interactions with the stationary phase can alter NP morphology. Flow field-flow fractionation (F4) is increasingly used as a mature separation method to size sort and characterize NPs in native conditions. Moreover, the hyphenation with light scattering (LS) methods can enhance the accuracy of size analysis of complex samples. In this paper, the applications of F4-LS to NP analysis used as drug delivery systems for their size analysis, and the study of stability and drug release effects are reviewed. PMID:24012480

  12. Highly resolved thermal analysis as a tool for soil organic carbon fractionation - methodological considerations

    NASA Astrophysics Data System (ADS)

    Heitkamp, Felix; Vuong, Xuan; Reimer, Andreas; Jungkunst, Hermann

    2015-04-01

    Organic carbon (OC) in environmental samples consists of a continuum of molecules with different chemistry and turnover. Thermal methods provide a useful tool to differentiate OC fractions according to their activation energies. The higher the temperature needed for combustion, the higher the activation energy and the lower the energy-gain for microorganisms in the decomposition process. However, until now there is no method, which is able to quantify organic carbon fractions as well as total, organic and inorganic carbon in one analytical run. Here, we present methodological tests regarding effects of (1) ramp speed (12 vs. 35°C), (2) introduction of temperature plateaus (hold) for better peak separation and (3) sample amount, all of which potentially affecting results of thermal analysis. The used machine is a MCD RC-412 (Leco corporation) with highly resolved IR detection of CO2 (3 times per second) during ramped combustion. Regression analysis of the two ramp speeds showed, that the outcome of anlysis was not affected. The intercept was not significantly different from 0 (0.14 ±3.15, p = 0.961) and the slope not significantly different from 1 (0.996 ±0.0094, p = 0.969). A ramp speed of 35oC min-1 is preferred because of decreased analysis time. Performing analytical runs with and without holds showed again, that the intercept was not significantly different from 0 (-1.40 ± 1.14, p = 0.232) and the slope did not differ significantly from 1 (1.081 ± 0.042, p =0.067). Inclusion of a ramp increases confidence in results due to better peak separation. However, this was only tested for a range of different soils and care should be taken to transfer results to other environmental media and should be tested specifically for soil types not tested, yet. The amount of sample had some effect, especially when using more than 20 mg sample. Thus, sample amount shoulb be kept low, which calls for excellent homogenization of sample material. Overall, the MCD RC-412 with

  13. Component Cost Analysis of Large Scale Systems

    NASA Technical Reports Server (NTRS)

    Skelton, R. E.; Yousuff, A.

    1982-01-01

    The ideas of cost decomposition is summarized to aid in the determination of the relative cost (or 'price') of each component of a linear dynamic system using quadratic performance criteria. In addition to the insights into system behavior that are afforded by such a component cost analysis CCA, these CCA ideas naturally lead to a theory for cost-equivalent realizations.

  14. Rasch Analysis of the Geriatric Depression Scale--Short Form

    ERIC Educational Resources Information Center

    Chiang, Karl S.; Green, Kathy E.; Cox, Enid O.

    2009-01-01

    Purpose: The purpose of this study was to examine scale dimensionality, reliability, invariance, targeting, continuity, cutoff scores, and diagnostic use of the Geriatric Depression Scale-Short Form (GDS-SF) over time with a sample of 177 English-speaking U.S. elders. Design and Methods: An item response theory, Rasch analysis, was conducted with…

  15. Quantitative analysis of the disorder broadening and the intrinsic gap for the ν=(5)/(2) fractional quantum Hall state

    NASA Astrophysics Data System (ADS)

    Samkharadze, N.; Watson, J. D.; Gardner, G.; Manfra, M. J.; Pfeiffer, L. N.; West, K. W.; Csáthy, G. A.

    2011-09-01

    We report a reliable method to estimate the disorder broadening parameter from the scaling of the gaps of the even and major odd denominator fractional quantum Hall states of the second Landau level. We apply this technique to several samples of vastly different densities and grown in different molecular beam epitaxy chambers. Excellent agreement is found between the estimated intrinsic and numerically obtained energy gaps for the ν=5/2 fractional quantum Hall state. Furthermore, we quantify the dependence of the intrinsic gap at ν=5/2 on Landau-level mixing.

  16. An effective phase shift diffusion equation method for analysis of PFG normal and fractional diffusions

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2015-10-01

    Pulsed field gradient (PFG) diffusion measurement has a lot of applications in NMR and MRI. Its analysis relies on the ability to obtain the signal attenuation expressions, which can be obtained by averaging over the accumulating phase shift distribution (APSD). However, current theoretical models are not robust or require approximations to get the APSD. Here, a new formalism, an effective phase shift diffusion (EPSD) equation method is presented to calculate the APSD directly. This is based on the idea that the gradient pulse effect on the change of the APSD can be viewed as a diffusion process in the virtual phase space (VPS). The EPSD has a diffusion coefficient, Kβ(t)D radβ/sα, where α is time derivative order and β is a space derivative order, respectively. The EPSD equations of VPS are built based on the diffusion equations of real space by replacing the diffusion coefficients and the coordinate system (from real space coordinate to virtual phase coordinate). Two different models, the fractal derivative model and the fractional derivative model from the literature were used to build the EPSD fractional diffusion equations. The APSD obtained from solving these EPSD equations were used to calculate the PFG signal attenuation. From the fractal derivative model the attenuation is exp(-γβgβδβDf1 tα), a stretched exponential function (SEF) attenuation, while from the fractional derivative model the attenuation is Eα,1(-γβgβδβDf2 tα), a Mittag-Leffler function (MLF) attenuation. The MLF attenuation can be reduced to SEF attenuation when α = 1, and can be approximated as a SEF attenuation when the attenuation is small. Additionally, the effect of finite gradient pulse widths (FGPW) is calculated. From the fractal derivative model, the signal attenuation including FGPW effect is exp[ -Df1 ∫0τ Kβ (t)dtα ] . The results obtained in this study are in good agreement with the results in literature. Several expressions that describe signal

  17. An effective phase shift diffusion equation method for analysis of PFG normal and fractional diffusions.

    PubMed

    Lin, Guoxing

    2015-10-01

    Pulsed field gradient (PFG) diffusion measurement has a lot of applications in NMR and MRI. Its analysis relies on the ability to obtain the signal attenuation expressions, which can be obtained by averaging over the accumulating phase shift distribution (APSD). However, current theoretical models are not robust or require approximations to get the APSD. Here, a new formalism, an effective phase shift diffusion (EPSD) equation method is presented to calculate the APSD directly. This is based on the idea that the gradient pulse effect on the change of the APSD can be viewed as a diffusion process in the virtual phase space (VPS). The EPSD has a diffusion coefficient, K(β)(t)D rad(β)/s(α), where α is time derivative order and β is a space derivative order, respectively. The EPSD equations of VPS are built based on the diffusion equations of real space by replacing the diffusion coefficients and the coordinate system (from real space coordinate to virtual phase coordinate). Two different models, the fractal derivative model and the fractional derivative model from the literature were used to build the EPSD fractional diffusion equations. The APSD obtained from solving these EPSD equations were used to calculate the PFG signal attenuation. From the fractal derivative model the attenuation is exp(-γ(β)g(β)δ(β)Df1t(α)), a stretched exponential function (SEF) attenuation, while from the fractional derivative model the attenuation is Eα,1(-γ(β)g(β)δ(β)Df2t(α)), a Mittag-Leffler function (MLF) attenuation. The MLF attenuation can be reduced to SEF attenuation when α=1, and can be approximated as a SEF attenuation when the attenuation is small. Additionally, the effect of finite gradient pulse widths (FGPW) is calculated. From the fractal derivative model, the signal attenuation including FGPW effect is exp[ -Df1∫0(τ) K(β)(t)dt(α)]. The results obtained in this study are in good agreement with the results in literature. Several expressions that

  18. SCALE ANALYSIS OF CONVECTIVE MELTING WITH INTERNAL HEAT GENERATION

    SciTech Connect

    John Crepeau

    2011-03-01

    Using a scale analysis approach, we model phase change (melting) for pure materials which generate internal heat for small Stefan numbers (approximately one). The analysis considers conduction in the solid phase and natural convection, driven by internal heat generation, in the liquid regime. The model is applied for a constant surface temperature boundary condition where the melting temperature is greater than the surface temperature in a cylindrical geometry. We show the time scales in which conduction and convection heat transfer dominate.

  19. A new transform for the analysis of complex fractionated atrial electrograms

    PubMed Central

    2011-01-01

    Background Representation of independent biophysical sources using Fourier analysis can be inefficient because the basis is sinusoidal and general. When complex fractionated atrial electrograms (CFAE) are acquired during atrial fibrillation (AF), the electrogram morphology depends on the mix of distinct nonsinusoidal generators. Identification of these generators using efficient methods of representation and comparison would be useful for targeting catheter ablation sites to prevent arrhythmia reinduction. Method A data-driven basis and transform is described which utilizes the ensemble average of signal segments to identify and distinguish CFAE morphologic components and frequencies. Calculation of the dominant frequency (DF) of actual CFAE, and identification of simulated independent generator frequencies and morphologies embedded in CFAE, is done using a total of 216 recordings from 10 paroxysmal and 10 persistent AF patients. The transform is tested versus Fourier analysis to detect spectral components in the presence of phase noise and interference. Correspondence is shown between ensemble basis vectors of highest power and corresponding synthetic drivers embedded in CFAE. Results The ensemble basis is orthogonal, and efficient for representation of CFAE components as compared with Fourier analysis (p ≤ 0.002). When three synthetic drivers with additive phase noise and interference were decomposed, the top three peaks in the ensemble power spectrum corresponded to the driver frequencies more closely as compared with top Fourier power spectrum peaks (p ≤ 0.005). The synthesized drivers with phase noise and interference were extractable from their corresponding ensemble basis with a mean error of less than 10%. Conclusions The new transform is able to efficiently identify CFAE features using DF calculation and by discerning morphologic differences. Unlike the Fourier transform method, it does not distort CFAE signals prior to analysis, and is relatively

  20. Scaling analysis of multi-variate intermittent time series

    NASA Astrophysics Data System (ADS)

    Kitt, Robert; Kalda, Jaan

    2005-08-01

    The scaling properties of the time series of asset prices and trading volumes of stock markets are analysed. It is shown that similar to the asset prices, the trading volume data obey multi-scaling length-distribution of low-variability periods. In the case of asset prices, such scaling behaviour can be used for risk forecasts: the probability of observing next day a large price movement is (super-universally) inversely proportional to the length of the ongoing low-variability period. Finally, a method is devised for a multi-factor scaling analysis. We apply the simplest, two-factor model to equity index and trading volume time series.

  1. Scaling Limit Analysis of Borromean Halos

    NASA Astrophysics Data System (ADS)

    Souza, L. A.; Bellotti, F. F.; Frederico, T.; Yamashita, M. T.; Tomio, Lauro

    2016-05-01

    The analysis of the core recoil momentum distribution of neutron-rich isotopes of light exotic nuclei is performed within a model of halo nuclei described by a core and two neutrons dominated by the s-wave channel. We adopt the renormalized three-body model with a zero-range force, which accounts for the Efimov physics. This model is applicable to nuclei with large two-neutron halos compared to the core size, and a neutron-core scattering length larger than the interaction range. The halo wave function in momentum space is obtained by using as inputs the two-neutron separation energy and the energies of the singlet neutron-neutron and neutron-core virtual states. Within our model, we obtain the momentum probability densities for the Borromean exotic nuclei Lithium-11 (^{11}Li), Berylium-14 (^{14}Be) and Carbon-22 (^{22}C). A fair reproduction of the experimental data was obtained in the case of the core recoil momentum distribution of ^{11}Li and ^{14}Be, without free parameters. By extending the model to ^{22}C, the combined analysis of the core momentum distribution and matter radius suggest (i) a ^{21}C virtual state well below 1 MeV; (ii) an overestimation of the extracted matter ^{22}C radius; and (iii) a two-neutron separation energy between 100 and 400 keV.

  2. Solubility, inhibition of crystallization and microscopic analysis of calcium oxalate crystals in the presence of fractions from Humulus lupulus L.

    NASA Astrophysics Data System (ADS)

    Frąckowiak, Anna; Koźlecki, Tomasz; Skibiński, PrzemysŁaw; GaweŁ, WiesŁaw; Zaczyńska, Ewa; Czarny, Anna; Piekarska, Katarzyna; Gancarz, Roman

    2010-11-01

    Procedures for obtaining noncytotoxic and nonmutagenic extracts from Humulus lupulus L. of high potency for inhibition and dissolving of model (calcium oxalate crystals) and real kidney stones, obtained from patients after surgery, are presented. Multistep extraction procedures were performed in order to obtain the preparations with the highest calcium complexing properties. The composition of obtained active fractions was analyzed by GC/MS and NMR methods. The influence of preparations on inhibition of formation and dissolution of model and real kidney stones were evaluated based on conductrometric titration, flame photometry and microscopic analysis. The "fraction soluble in methanol" obtained from water-alkaline extracts contains sugar alcohols and organic acids, and is effective in dissolving the kidney stones. The "fraction insoluble in methanol" contains only sugar derivatives and it changes the morphology of the crystals, making them "jelly-like". Both fractions are potentially effective in kidney stone therapy.

  3. Scaling Analysis of Nanoelectromechanical Memory Devices

    NASA Astrophysics Data System (ADS)

    Nagami, Tasuku; Tsuchiya, Yoshishige; Uchida, Ken; Mizuta, Hiroshi; Oda, Shunri

    2010-04-01

    Numerical simulation of electromechanical switching for bistable bridges in non-volatile nanoelectromechanical (NEM) memory devices suggests that performance of memory characteristics enhanced by decreasing suspended floating gate length. By conducting a two-dimensional finite element electromechanical simulation combined with a drift-diffusion analysis, we analyze the electromechanical switching operation of miniaturized structures. By shrinking the NEM floating gate length from 1000 to 100 nm, the switching (set/reset) voltage reduces from 7.2 to 2.8 V, switching time from 63 to 4.6 ns, power consumption from 16.9 to 0.13 fJ. This indicates the advantage of fast and low-power memory characteristics.

  4. External beam radiotherapy for palliation of painful bone metastases: pooled data bioeffect dose response analysis of dose fractionation

    NASA Astrophysics Data System (ADS)

    Naveen, T.; Supe, Sanjay S.; Ganesh, K. M.; Samuel, Jacob

    2009-01-01

    Bone metastases develop in up to 70% of newly diagnosed cancer patients and result in immobility, anxiety, and depression, severely diminishing the patients quality of life. Radiotherapy is a frequently used modality for bone metastasis and has been shown to be effective in reducing metastatic bone pain and in some instances, causing tumor shrinkage or growth inhibition. There is controversy surrounding the optimal fractionation schedule and total dose of external beam radiotherapy, despite many randomized trials and overviews addressing the issue. This study was undertaken to apply BED to clinical fractionation data of radiotherapeutic management of bone metastases in order to arrive at optimum BED values for acceptable level of response rate. A computerised literature search was conducted to identify all prospective clinical studies that addressed the issue of fractionation for the treatment of bone metastasis. The results of these studies were pooled together to form the database for the analysis. A total of 4111 number of patients received radiation dose ranging from 4 to 40.5 Gy in 1 to 15 fractions with dose per fraction ranging from 2 to 10 Gy. Single fraction treatments were delivered in 2013 patients and the dose varied from 4 to 10 Gy. Multifraction treatments were delivered in 2098 patients and the dose varied from 15 to 40.5 Gy. The biological effective dose (BED) was evaluated for each fractionation schedule using the linear quadratic model and an α/β value of 10 Gy. Response rate increased significantly beyond a BED value of 14.4 Gy (p < 0.01). Based on our analysis and indications from the literature about higher retreatment and fracture rate of single fraction treatments, minimum BED value of 14.4 Gy is recommended.

  5. Application of the superfine fraction analysis method in ore gold geochemical prospecting in the Shamanikha-Stolbovsky Area (Magadan Region)

    NASA Astrophysics Data System (ADS)

    Makarova, Yuliya; Sokolov, Sergey; Glukhov, Anton

    2014-05-01

    The Shamanikha-Stolbovsky gold cluster is located in the North-East of Russia, in the basin of the Kolyma River. In 1933, gold placers were discovered there, but the search for significant gold targets for more than 50 years did not give positive results. In 2009-2011, geochemical and geophysical studies, mining and drilling were conducted within this cluster. Geochemical exploration was carried out in a modification based on superimposed secondary sorption-salt haloes (sampling density of 250x250 m, 250x50 m, 250x20 m) using the superfine fraction analysis method (SFAM) because of complicated landscape conditions (thick Quaternary sediments, widespread permafrost). The method consists in the extraction of superfine fraction (<10 microns) from unconsolidated sediment samples followed by transfer to a solution of sorption-salt forms of elements and analysis using quantitative methods. The method worked well in areal geochemical studies of various scales in the Karelian-Kola region and in the Far East. Main results of the work in the Shamanikha-Stolbovsky area: 1. Geochemical exploration using the hyperfine fractions analysis method with sampling density of 250x250 m allowed the identification of zonal anomalous geochemical fields (AGCF) classified as an ore deposit promising for the discovery of gold mineralization (Nadezhda, Timsha, and Temny prospects). These AGCF are characterized by following three-zonal structure (from the center to the periphery): nucleus zone - area of centripetal elements concentration (Au, Ag, Sb, As, Cu, Hg, Bi, Pb, Mo); exchange zone - area of centrifugal elements concentration (Mn, Zn, V, Ti, Co, Cr, Ni); flank concentration zone - area of elevated contents of centripetal elements with subbackground centrifugal elements. 2. Detailed AGCF studies with sampling density of 250x50 m (250x20 m) in the Nadezhda, Timsha, and Temny prospects made it possible to refine the composition and structure of anomalous geochemical fields, identify

  6. Lysozyme fractionation from egg white at pilot scale by means of tangential flow membrane adsorbers: Investigation of the flow conditions.

    PubMed

    Brand, Janina; Voigt, Katharina; Zochowski, Bianca; Kulozik, Ulrich

    2016-03-18

    The application of membrane adsorbers instead of classical packed bed columns for protein fractionation is still a growing field. In the case of egg white protein fractionation, the application of classical chromatography is additionally limited due to its high viscosity that impairs filtration. By using tangential flow membrane adsorbers as stationary phase this limiting factor can be left out, as they can be loaded with particle containing substrates. The flow conditions existing in tangential flow membrane adsorbers are not fully understood yet. Thus, the aim of the present study was to gain a deeper understanding of the transport mechanisms in tangential flow membrane adsorbers. It was found that loading in recirculation mode instead of single pass mode increased the binding capacity (0.39 vs. 0.52mgcm(-2)). Further, it was shown that either higher flow rates (0.39mgcm(-2) vs. 0.57mgcm(-2) at 1CVmin(-1) or 20CVmin(-1), respectively) or higher amounts of the target protein in the feed (0.24mgcm(-2) vs. 0.85mgcm(-2) for 2.5 or 39.0g lysozyme, respectively) led to more protein binding. These results show that, in contrast to radial flow or flat sheet membrane adsorbers, the transport in tangential flow membrane adsorbers is not purely based on convection, but on a mix of convection and diffusion. Additionally, investigations concerning the influence of fouling formation were performed that can lead to transport limitations. It was found that this impact is neglectable. It can be concluded that the usage of tangential flow membrane adsorbers is very recommendable for egg white protein fractionations, although the transport is partly diffusion-limited. PMID:26898148

  7. Psychometric Analysis of Role Conflict and Ambiguity Scales in Academia

    ERIC Educational Resources Information Center

    Khan, Anwar; Yusoff, Rosman Bin Md.; Khan, Muhammad Muddassar; Yasir, Muhammad; Khan, Faisal

    2014-01-01

    A comprehensive Psychometric Analysis of Rizzo et al.'s (1970) Role Conflict & Ambiguity (RCA) scales were performed after its distribution among 600 academic staff working in six universities of Pakistan. The reliability analysis includes calculation of Cronbach Alpha Coefficients and Inter-Items statistics, whereas validity was determined by…

  8. A Statistical Analysis of the Charles F. Kettering Climate Scale.

    ERIC Educational Resources Information Center

    Johnson, William L.; Dixon, Paul N.

    A statistical analysis was performed on the Charles F. Kettering (CFK) Scale, a popular four-section measure of school climate. The study centered on a multivariate analysis of Part A, the General Climate Factors section of the instrument, using data gathered from several elementary, junior high, and high school campuses in a large school district…

  9. Model Evaluation and Multiple Strategies in Cognitive Diagnosis: An Analysis of Fraction Subtraction Data

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Douglas, Jeffrey A.

    2008-01-01

    This paper studies three models for cognitive diagnosis, each illustrated with an application to fraction subtraction data. The objective of each of these models is to classify examinees according to their mastery of skills assumed to be required for fraction subtraction. We consider the DINA model, the NIDA model, and a new model that extends the…

  10. Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine

    PubMed Central

    2014-01-01

    Background Forestry residues consisting of softwood are a major lignocellulosic resource for production of liquid biofuels. Scots pine, a commercially important forest tree, was fractionated into seven fractions of chips: juvenile heartwood, mature heartwood, juvenile sapwood, mature sapwood, bark, top parts, and knotwood. The different fractions were characterized analytically with regard to chemical composition and susceptibility to dilute-acid pretreatment and enzymatic saccharification. Results All fractions were characterized by a high glucan content (38-43%) and a high content of other carbohydrates (11-14% mannan, 2-4% galactan) that generate easily convertible hexose sugars, and by a low content of inorganic material (0.2-0.9% ash). The lignin content was relatively uniform (27-32%) and the syringyl-guaiacyl ratio of the different fractions were within the range 0.021-0.025. The knotwood had a high content of extractives (9%) compared to the other fractions. The effects of pretreatment and enzymatic saccharification were relatively similar, but without pretreatment the bark fraction was considerably more susceptible to enzymatic saccharification. Conclusions Since sawn timber is a main product from softwood species such as Scots pine, it is an important issue whether different parts of the tree are equally suitable for bioconversion processes. The investigation shows that bioconversion of Scots pine is facilitated by that most of the different fractions exhibit relatively similar properties with regard to chemical composition and susceptibility to techniques used for bioconversion of woody biomass. PMID:24641769

  11. Antioxidant, Antimicrobial and Phytochemical Analysis of Cichoriumintybus Seeds Extract and Various Organic Fractions

    PubMed Central

    Mehmood, Nasir; Zubaır, Muhammad; Rızwan, Komal; Rasool, Nasır; Shahid, Muhammad; Uddin Ahmad, Viqar

    2012-01-01

    This study was carried out to evaluate the antimicrobial and antioxidant effectiveness of methanolic extract and different fractions (n-butanol, ethyl acetate, chloroform and n-hexane) of C.intybus seeds. The antimicrobial activity was determined by the disc diffusion method and minimum inhibitory concentration (MIC) against a panel of microorganisms (four bacterial strains, i.e. P. multocida, E. coli, B. subtilis and S. aureus and three fungal strains, i.e A. flavus, A. niger and R. solani). The results indicated that seeds extract and fractions of C. intybus showed moderate activity as antibacterial agent. While Antifungal activity of C. intybus seeds extract/fractions was very low against A. flavus and A. niger while mild against R. solani. The C.intybus seeds extract/fractions contained appreciable levels of total phenolic contents (50.8-285 GAE mg/100g of Dry plant matter) and total flavonoid contents (43.3-150 CE mg/100g of Dry plant matter). The C. intybus seed extract/fractions also exhibited good DPPH radical scavenging activity, with IC50 ranging from 21.28-72.14 μg/mL. Of the C .intybus seeds solvent extract/fractions tested, 100% methanolic extract and ethylacetate fraction exhibited the maximum antioxidant activity. The results of the present investigation demonstrated significant (p < 0.01) variations in the antioxidant and antimicrobial activities of C. intybus seeds solvent extract/fractions. PMID:24250548

  12. Analysis of the Two-Fraction Method for Generating Primitive Pythagoras Triples

    ERIC Educational Resources Information Center

    Babajee, Diyashvir Kreetee Rajiv

    2012-01-01

    Finding methods for generating Pythagorean triples have been of great interest to Mathematicians since the Babylonians (from 1900 to 1600 BC). One of these methods is the less known two-fraction method which works for any two fractions whose product is 2. In this work, we analyse the method and show that it can be obtained from the fact that the…

  13. Honeycomb: Visual Analysis of Large Scale Social Networks

    NASA Astrophysics Data System (ADS)

    van Ham, Frank; Schulz, Hans-Jörg; Dimicco, Joan M.

    The rise in the use of social network sites allows us to collect large amounts of user reported data on social structures and analysis of this data could provide useful insights for many of the social sciences. This analysis is typically the domain of Social Network Analysis, and visualization of these structures often proves invaluable in understanding them. However, currently available visual analysis tools are not very well suited to handle the massive scale of this network data, and often resolve to displaying small ego networks or heavily abstracted networks. In this paper, we present Honeycomb, a visualization tool that is able to deal with much larger scale data (with millions of connections), which we illustrate by using a large scale corporate social networking site as an example. Additionally, we introduce a new probability based network metric to guide users to potentially interesting or anomalous patterns and discuss lessons learned during design and implementation.

  14. Analysis of Fractional Flow for Transient Two-Phase Flow in Fractal Porous Medium

    NASA Astrophysics Data System (ADS)

    Lu, Ting; Duan, Yonggang; Fang, Quantang; Dai, Xiaolu; Wu, Jinsui

    2016-03-01

    Prediction of fractional flow in fractal porous medium is important for reservoir engineering and chemical engineering as well as hydrology. A physical conceptual fractional flow model of transient two-phase flow is developed in fractal porous medium based on the fractal characteristics of pore-size distribution and on the approximation that porous medium consist of a bundle of tortuous capillaries. The analytical expression for fractional flow for wetting phase is presented, and the proposed expression is the function of structural parameters (such as tortuosity fractal dimension, pore fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as contact angle, viscosity and interfacial tension) in fractal porous medium. The sensitive parameters that influence fractional flow and its derivative are formulated, and their impacts on fractional flow are discussed.

  15. An Analysis of Model Scale Data Transformation to Full Scale Flight Using Chevron Nozzles

    NASA Technical Reports Server (NTRS)

    Brown, Clifford; Bridges, James

    2003-01-01

    Ground-based model scale aeroacoustic data is frequently used to predict the results of flight tests while saving time and money. The value of a model scale test is therefore dependent on how well the data can be transformed to the full scale conditions. In the spring of 2000, a model scale test was conducted to prove the value of chevron nozzles as a noise reduction device for turbojet applications. The chevron nozzle reduced noise by 2 EPNdB at an engine pressure ratio of 2.3 compared to that of the standard conic nozzle. This result led to a full scale flyover test in the spring of 2001 to verify these results. The flyover test confirmed the 2 EPNdB reduction predicted by the model scale test one year earlier. However, further analysis of the data revealed that the spectra and directivity, both on an OASPL and PNL basis, do not agree in either shape or absolute level. This paper explores these differences in an effort to improve the data transformation from model scale to full scale.

  16. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation.

    PubMed

    Straub, Anthony P; Lin, Shihong; Elimelech, Menachem

    2014-10-21

    We investigate the performance of pressure retarded osmosis (PRO) at the module scale, accounting for the detrimental effects of reverse salt flux, internal concentration polarization, and external concentration polarization. Our analysis offers insights on optimization of three critical operation and design parameters--applied hydraulic pressure, initial feed flow rate fraction, and membrane area--to maximize the specific energy and power density extractable in the system. For co- and counter-current flow modules, we determine that appropriate selection of the membrane area is critical to obtain a high specific energy. Furthermore, we find that the optimal operating conditions in a realistic module can be reasonably approximated using established optima for an ideal system (i.e., an applied hydraulic pressure equal to approximately half the osmotic pressure difference and an initial feed flow rate fraction that provides equal amounts of feed and draw solutions). For a system in counter-current operation with a river water (0.015 M NaCl) and seawater (0.6 M NaCl) solution pairing, the maximum specific energy obtainable using performance properties of commercially available membranes was determined to be 0.147 kWh per m(3) of total mixed solution, which is 57% of the Gibbs free energy of mixing. Operating to obtain a high specific energy, however, results in very low power densities (less than 2 W/m(2)), indicating that the trade-off between power density and specific energy is an inherent challenge to full-scale PRO systems. Finally, we quantify additional losses and energetic costs in the PRO system, which further reduce the net specific energy and indicate serious challenges in extracting net energy in PRO with river water and seawater solution pairings. PMID:25222561

  17. Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo-Fabrizio derivatives

    NASA Astrophysics Data System (ADS)

    Shah, Nehad Ali; Khan, Ilyas

    2016-07-01

    This paper presents a Caputo-Fabrizio fractional derivatives approach to the thermal analysis of a second grade fluid over an infinite oscillating vertical flat plate. Together with an oscillating boundary motion, the heat transfer is caused by the buoyancy force induced by temperature differences between the plate and the fluid. Closed form solutions of the fluid velocity and temperature are obtained by means of the Laplace transform. The solutions of ordinary second grade and Newtonian fluids corresponding to time derivatives of integer and fractional orders are obtained as particular cases of the present solutions. Numerical computations and graphical illustrations are used in order to study the effects of the Caputo-Fabrizio time-fractional parameter α, the material parameter α _2 , and the Prandtl and Grashof numbers on the velocity field. A comparison for time derivative of integer order versus fractional order is shown graphically for both Newtonian and second grade fluids. It is found that fractional fluids (second grade and Newtonian) have highest velocities. This shows that the fractional parameter enhances the fluid flow.

  18. Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method

    PubMed Central

    Tiessen, Axel; Nerlich, Annika; Faix, Benjamin; Hümmer, Christine; Fox, Simon; Trafford, Kay; Weber, Hans; Weschke, Winfriede; Geigenberger, Peter

    2012-01-01

    Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80–90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published Km values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective Km values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass–action ratios

  19. Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method.

    PubMed

    Tiessen, Axel; Nerlich, Annika; Faix, Benjamin; Hümmer, Christine; Fox, Simon; Trafford, Kay; Weber, Hans; Weschke, Winfriede; Geigenberger, Peter

    2012-03-01

    Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80-90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published K(m) values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective K(m) values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass-action ratios

  20. Compositional and Temperature Effects of Phosphoric Acid Fractionation on Δ47 Analysis and Implications for Discrepant Calibrations

    NASA Astrophysics Data System (ADS)

    Defliese, W.; Hren, M. T.; Lohmann, K. C.

    2014-12-01

    An essential procedure to increase the analytical efficiency of Δ47 measurements requires raising the temperature of phosphoric acid digestion for carbonate materials. This temperature change introduces a fractionation offset in Δ47 that must be accounted for prior to calculation of temperatures of carbonate formation and to allow interlaboratory comparison of results. We measured the phosphoric acid fractionation factor relative to reaction at 25 °C for calcite, aragonite, and dolomite across a temperature range from 25-90 °C. Significantly, all three minerals behave similarly during phosphoric acid digestion, allowing for a single temperature dependent acid fractionation relationship: 1000ln∝𝐶𝑂2(𝐴𝑐𝑖𝑑)-𝛥47=(0.022434±0.001490)∗10^6 𝑇2 -(0.2524±0.0168) where α is the phosphoric acid fractionation factor, and T is in degrees Kelvin. Mineralogical or isotopic compositional effects on the fractionation factor were not observed, suggesting that this acid fractionation factor may be valid for all carbonate minerals. We also present inorganic temperature calibrations for both calcite and aragonite at low temperatures (5-70 °C) and find them to agree with prior published data. Using the new acid fractionation factor, published Δ47-temperature calibrations are recalculated. This analysis confirms a statistically significant Δ47-temperature calibration difference between data analyzed at 25 °C versus higher temperatures. The origin of the discrepancy remains unknown, but it appears that the acid fractionation factor is not the cause.

  1. Scaling effects on area-averaged fraction of vegetation cover derived using a linear mixture model with two-band spectral vegetation index constraints

    NASA Astrophysics Data System (ADS)

    Obata, Kenta; Huete, Alfredo R.

    2014-01-01

    This study investigated the mechanisms underlying the scaling effects that apply to a fraction of vegetation cover (FVC) estimates derived using two-band spectral vegetation index (VI) isoline-based linear mixture models (VI isoline-based LMM). The VIs included the normalized difference vegetation index, a soil-adjusted vegetation index, and a two-band enhanced vegetation index (EVI2). This study focused in part on the monotonicity of an area-averaged FVC estimate as a function of spatial resolution. The proof of monotonicity yielded measures of the intrinsic area-averaged FVC uncertainties due to scaling effects. The derived results demonstrate that a factor ξ, which was defined as a function of "true" and "estimated" endmember spectra of the vegetated and nonvegetated surfaces, was responsible for conveying monotonicity or nonmonotonicity. The monotonic FVC values displayed a uniform increasing or decreasing trend that was independent of the choice of the two-band VI. Conditions under which scaling effects were eliminated from the FVC were identified. Numerical simulations verifying the monotonicity and the practical utility of the scaling theory were evaluated using numerical experiments applied to Landsat7-Enhanced Thematic Mapper Plus (ETM+) data. The findings contribute to developing scale-invariant FVC estimation algorithms for multisensor and data continuity.

  2. Analysis of Reduced-Scale Nova Hohlraum Experiments

    NASA Astrophysics Data System (ADS)

    Powers, L. V.; Berger, R. L.; Kirkwood, R. K.; Kruer, W. L.; Langdon, A. B.; MacGowan, B. J.; Orzechowski, T. J.; Rosen, M. D.; Springer, P. T.; Still, C. H.; Suter, L. J.; Williams, E. A.; Blain, M. A.

    1996-11-01

    Establishing the practical limit on achievable radiation temperature in high-Z hohlraums is of interest both for ignition targets( S.M. Haan, et al., Phys. Plasmas 2, 2480 (1995).) for the National Ignition Facility (NIF), and for high energy density physics experiments( S.B. Libby, Energy and Technology Review, UCRL-52000-94-12, 23 (1994)). Two related efforts are underway to define the physics issues of high energy density hohlraum targets: 1) experiments on the Nova laser in reduced scale hohlraums, and 2) evaluation of high-temperature hohlraums designs for the NIF. Reduced scale Nova hohlraums approach conditions relevant to NIF high temperature designs, albeit at smaller scale. Analysis of reduced-scale experiments on Nova therefore provides valuable physics information for evaluating the capabilities of NIF for producing high energy density in hohlraums. Simulations of Nova reduced scale hohlraum experiments will be presented, and the relevance to a range of NIF hohlraum target designs will be discussed.

  3. Multiple-length-scale deformation analysis in a thermoplastic polyurethane

    PubMed Central

    Sui, Tan; Baimpas, Nikolaos; Dolbnya, Igor P.; Prisacariu, Cristina; Korsunsky, Alexander M.

    2015-01-01

    Thermoplastic polyurethane elastomers enjoy an exceptionally wide range of applications due to their remarkable versatility. These block co-polymers are used here as an example of a structurally inhomogeneous composite containing nano-scale gradients, whose internal strain differs depending on the length scale of consideration. Here we present a combined experimental and modelling approach to the hierarchical characterization of block co-polymer deformation. Synchrotron-based small- and wide-angle X-ray scattering and radiography are used for strain evaluation across the scales. Transmission electron microscopy image-based finite element modelling and fast Fourier transform analysis are used to develop a multi-phase numerical model that achieves agreement with the combined experimental data using a minimal number of adjustable structural parameters. The results highlight the importance of fuzzy interfaces, that is, regions of nanometre-scale structure and property gradients, in determining the mechanical properties of hierarchical composites across the scales. PMID:25758945

  4. Multiple-length-scale deformation analysis in a thermoplastic polyurethane

    NASA Astrophysics Data System (ADS)

    Sui, Tan; Baimpas, Nikolaos; Dolbnya, Igor P.; Prisacariu, Cristina; Korsunsky, Alexander M.

    2015-03-01

    Thermoplastic polyurethane elastomers enjoy an exceptionally wide range of applications due to their remarkable versatility. These block co-polymers are used here as an example of a structurally inhomogeneous composite containing nano-scale gradients, whose internal strain differs depending on the length scale of consideration. Here we present a combined experimental and modelling approach to the hierarchical characterization of block co-polymer deformation. Synchrotron-based small- and wide-angle X-ray scattering and radiography are used for strain evaluation across the scales. Transmission electron microscopy image-based finite element modelling and fast Fourier transform analysis are used to develop a multi-phase numerical model that achieves agreement with the combined experimental data using a minimal number of adjustable structural parameters. The results highlight the importance of fuzzy interfaces, that is, regions of nanometre-scale structure and property gradients, in determining the mechanical properties of hierarchical composites across the scales.

  5. Multiple-length-scale deformation analysis in a thermoplastic polyurethane.

    PubMed

    Sui, Tan; Baimpas, Nikolaos; Dolbnya, Igor P; Prisacariu, Cristina; Korsunsky, Alexander M

    2015-01-01

    Thermoplastic polyurethane elastomers enjoy an exceptionally wide range of applications due to their remarkable versatility. These block co-polymers are used here as an example of a structurally inhomogeneous composite containing nano-scale gradients, whose internal strain differs depending on the length scale of consideration. Here we present a combined experimental and modelling approach to the hierarchical characterization of block co-polymer deformation. Synchrotron-based small- and wide-angle X-ray scattering and radiography are used for strain evaluation across the scales. Transmission electron microscopy image-based finite element modelling and fast Fourier transform analysis are used to develop a multi-phase numerical model that achieves agreement with the combined experimental data using a minimal number of adjustable structural parameters. The results highlight the importance of fuzzy interfaces, that is, regions of nanometre-scale structure and property gradients, in determining the mechanical properties of hierarchical composites across the scales. PMID:25758945

  6. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone.

    PubMed

    Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J

    2014-01-01

    Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2-1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2-1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms. PMID:24030599

  7. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone

    PubMed Central

    Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J

    2014-01-01

    Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2–1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2–1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms. PMID:24030599

  8. [Factorial analysis of the Hamilton depression scale, II].

    PubMed

    Dreyfus, J F; Guelfi, J D; Ruschel, S; Blanchard, C; Pichot, P

    1981-04-01

    A factorial analysis (principal components with Varimax rotation) was performed on 85 ratings of the Hamilton Depression Rating Scale obtained in 1979-1980 on inpatients with a major depressive illness. Using a replicable statistical technique, 4 factors were obtained. These factors do not overlap with those obtain on a similar sample with a similar technique nor with those obtained by other authors. It thus appears that there is no such thing as a factorial structure of this scale. PMID:7305179

  9. Analysis of time-fractional hunter-saxton equation: a model of neumatic liquid crystal

    NASA Astrophysics Data System (ADS)

    Atangana, Abdon; Baleanu, Dumitru; Alsaedi, Ahmed

    2016-04-01

    In this work, a theoretical study of diffusion of neumatic liquid crystals was done using the concept of fractional order derivative. This version of fractional derivative is very easy to handle and obey to almost all the properties satisfied by the conventional Newtonian concept of derivative. The mathematical equation underpinning this physical phenomenon was solved analytically via the so-called homotopy decomposition method. In order to show the accuracy of this iteration method, we constructed a Hilbert space in which we proved its stability for the time-fractional Hunder-Saxton equation.

  10. Chemical Composition of the Graphitic Black Carbon Fraction in Riverine and Marine Sediments at Submicron Scales using Carbon X-ray Spectromicroscopy

    SciTech Connect

    Haberstroh,P.; Brandes, J.; Gelinas, Y.; Dickens, A.; Wirick, S.; Cody, G.

    2006-01-01

    The chemical composition of the graphitic black carbon (GBC) fraction of marine organic matter was explored in several marine and freshwater sedimentary environments along the west coast of North America and the Pacific Ocean. Analysis by carbon x-ray absorption near edge structure (C-XANES) spectroscopy and scanning transmission x-ray microscopy (STXM) show the GBC-fraction of Stillaguamish River surface sediments to be dominated by more highly-ordered and impure forms of graphite, together forming about 80% of the GBC, with a smaller percent of an aliphatic carbon component. Eel River Margin surface sediments had very little highly-ordered graphite, and were instead dominated by amorphous carbon and to a lesser extent, impure graphite. However, the GBC of surface sediments from the Washington State Slope and the Mexico Margin were composed almost solely of amorphous carbon. Pre-anthropogenic, highly-oxidized deep-sea sediments from the open Equatorial Pacific Ocean contained over half their GBC in different forms of graphite as well as highly-aliphatic carbon, low aromatic/highly-acidic aliphatic carbon, low aromatic/highly aliphatic carbon, and amorphous forms of carbon. Our results clearly show the impact of graphite and amorphous C phases in the BC fraction in modern riverine sediments and nearby marine shelf deposits. The pre-anthropogenic Equatorial Pacific GBC fraction is remarkable in the existence of highly-ordered graphite.

  11. Three-dimensional distribution of the ISM in the Milky Way Galaxy. IV. 3D molecular fraction and Galactic-scale H I-to-H2 transition

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Nakanishi, Hiroyuki

    2016-08-01

    Three-dimensional (3D) distribution of the volume-density molecular fraction, defined by f_mol^ρ =ρ _H_2/(ρ _{H I}+ρ _H_2), is studied in the Milky Way Galaxy. The molecular front appears at galacto-centric distance of R ˜ 8 kpc, where the galactic-scale phase transition from atomic to molecular hydrogen occurs with f_mol^ρ dropping from ˜0.8 to 0.2 within a radial interval as narrow as ˜0.5 kpc. The f_mol^ρ front is much sharper than that of the surface density molecular fraction. The f_mol^ρ front also appears in the direction vertical to the galactic plane with a full width of the high-f_mol^ρ disk to be ˜100 pc. The radial and vertical f_mol^ρ profiles, particularly the front behavior, are fitted by theoretical curves calculated using the observed density profile and assumed radiation field and metallicity with exponential gradients. The molecular fraction was found to be enhanced along spiral arms at radii R ˜ 6 to 10 kpc, such as the Perseus arm. This implies that the molecular clouds are produced from H I in the arms and are dissociated in the interarm regions in the transition region around the molecular front. We also show that there is a threshold value of mean H I density, over which H I is transformed into molecular gas.

  12. Three-dimensional distribution of the ISM in the Milky Way Galaxy. IV. 3D molecular fraction and Galactic-scale H I-to-H2 transition

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Nakanishi, Hiroyuki

    2016-06-01

    Three-dimensional (3D) distribution of the volume-density molecular fraction, defined by f_mol^ρ=ρ_H_2/(ρ_{H I}+ρ_H_2), is studied in the Milky Way Galaxy. The molecular front appears at galacto-centric distance of R ˜ 8 kpc, where the galactic-scale phase transition from atomic to molecular hydrogen occurs with f_mol^ρ dropping from ˜0.8 to 0.2 within a radial interval as narrow as ˜0.5 kpc. The f_mol^ρ front is much sharper than that of the surface density molecular fraction. The f_mol^ρ front also appears in the direction vertical to the galactic plane with a full width of the high-f_mol^ρ disk to be ˜100 pc. The radial and vertical f_mol^ρ profiles, particularly the front behavior, are fitted by theoretical curves calculated using the observed density profile and assumed radiation field and metallicity with exponential gradients. The molecular fraction was found to be enhanced along spiral arms at radii R ˜ 6 to 10 kpc, such as the Perseus arm. This implies that the molecular clouds are produced from H I in the arms and are dissociated in the interarm regions in the transition region around the molecular front. We also show that there is a threshold value of mean H I density, over which H I is transformed into molecular gas.

  13. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  14. Proteomics beyond large-scale protein expression analysis.

    PubMed

    Boersema, Paul J; Kahraman, Abdullah; Picotti, Paola

    2015-08-01

    Proteomics is commonly referred to as the application of high-throughput approaches to protein expression analysis. Typical results of proteomics studies are inventories of the protein content of a sample or lists of differentially expressed proteins across multiple conditions. Recently, however, an explosion of novel proteomics workflows has significantly expanded proteomics beyond the analysis of protein expression. Targeted proteomics methods, for example, enable the analysis of the fine dynamics of protein systems, such as a specific pathway or a network of interacting proteins, and the determination of protein complex stoichiometries. Structural proteomics tools allow extraction of restraints for structural modeling and identification of structurally altered proteins on a proteome-wide scale. Other variations of the proteomic workflow can be applied to the large-scale analysis of protein activity, location, degradation and turnover. These exciting developments provide new tools for multi-level 'omics' analysis and for the modeling of biological networks in the context of systems biology studies. PMID:25636126

  15. Geographical Scale Effects on the Analysis of Leptospirosis Determinants

    PubMed Central

    Gracie, Renata; Barcellos, Christovam; Magalhães, Mônica; Souza-Santos, Reinaldo; Barrocas, Paulo Rubens Guimarães

    2014-01-01

    Leptospirosis displays a great diversity of routes of exposure, reservoirs, etiologic agents, and clinical symptoms. It occurs almost worldwide but its pattern of transmission varies depending where it happens. Climate change may increase the number of cases, especially in developing countries, like Brazil. Spatial analysis studies of leptospirosis have highlighted the importance of socioeconomic and environmental context. Hence, the choice of the geographical scale and unit of analysis used in the studies is pivotal, because it restricts the indicators available for the analysis and may bias the results. In this study, we evaluated which environmental and socioeconomic factors, typically used to characterize the risks of leptospirosis transmission, are more relevant at different geographical scales (i.e., regional, municipal, and local). Geographic Information Systems were used for data analysis. Correlations between leptospirosis incidence and several socioeconomic and environmental indicators were calculated at different geographical scales. At the regional scale, the strongest correlations were observed between leptospirosis incidence and the amount of people living in slums, or the percent of the area densely urbanized. At the municipal scale, there were no significant correlations. At the local level, the percent of the area prone to flooding best correlated with leptospirosis incidence. PMID:25310536

  16. Rasch analysis of the Multiple Sclerosis Impact Scale (MSIS-29)

    PubMed Central

    Ramp, Melina; Khan, Fary; Misajon, Rose Anne; Pallant, Julie F

    2009-01-01

    Background Multiple Sclerosis (MS) is a degenerative neurological disease that causes impairments, including spasticity, pain, fatigue, and bladder dysfunction, which negatively impact on quality of life. The Multiple Sclerosis Impact Scale (MSIS-29) is a disease-specific health-related quality of life (HRQoL) instrument, developed using the patient's perspective on disease impact. It consists of two subscales assessing the physical (MSIS-29-PHYS) and psychological (MSIS-29-PSYCH) impact of MS. Although previous studies have found support for the psychometric properties of the MSIS-29 using traditional methods of scale evaluation, the scale has not been subjected to a detailed Rasch analysis. Therefore, the objective of this study was to use Rasch analysis to assess the internal validity of the scale, and its response format, item fit, targeting, internal consistency and dimensionality. Methods Ninety-two persons with definite MS residing in the community were recruited from a tertiary hospital database. Patients completed the MSIS-29 as part of a larger study. Rasch analysis was undertaken to assess the psychometric properties of the MSIS-29. Results Rasch analysis showed overall support for the psychometric properties of the two MSIS-29 subscales, however it was necessary to reduce the response format of the MSIS-29-PHYS to a 3-point response scale. Both subscales were unidimensional, had good internal consistency, and were free from item bias for sex and age. Dimensionality testing indicated it was not appropriate to combine the two subscales to form a total MSIS score. Conclusion In this first study to use Rasch analysis to fully assess the psychometric properties of the MSIS-29 support was found for the two subscales but not for the use of the total scale. Further use of Rasch analysis on the MSIS-29 in larger and broader samples is recommended to confirm these findings. PMID:19545445

  17. Scale analysis using X-ray microfluorescence and computed radiography

    NASA Astrophysics Data System (ADS)

    Candeias, J. P.; de Oliveira, D. F.; dos Anjos, M. J.; Lopes, R. T.

    2014-02-01

    Scale deposits are the most common and most troublesome damage problems in the oil field and can occur in both production and injection wells. They occur because the minerals in produced water exceed their saturation limit as temperatures and pressures change. Scale can vary in appearance from hard crystalline material to soft, friable material and the deposits can contain other minerals and impurities such as paraffin, salt and iron. In severe conditions, scale creates a significant restriction, or even a plug, in the production tubing. This study was conducted to qualify the elements present in scale samples and quantify the thickness of the scale layer using synchrotron radiation micro-X-ray fluorescence (SRμXRF) and computed radiography (CR) techniques. The SRμXRF results showed that the elements found in the scale samples were strontium, barium, calcium, chromium, sulfur and iron. The CR analysis showed that the thickness of the scale layer was identified and quantified with accuracy. These results can help in the decision making about removing the deposited scale.

  18. Bully-Victimization Scale: Using Rasch Modeling in the Analysis of a Qualitative Scale

    ERIC Educational Resources Information Center

    Lehto, Marybeth

    2009-01-01

    The primary purpose of this study was to determine whether the data from the qualitative study fit Rasch model requirements for the definition of a measure, as well as to address concern in the extant literature regarding the appropriate number of items needed in analysis to assure unidimensionality. The self-report victimization scale was…

  19. Finite-mode analysis by means of intensity information in fractional optical systems.

    PubMed

    Alieva, Tatiana; Bastiaans, Martin J

    2002-03-01

    It is shown how a coherent optical signal that contains only a finite number of Hermite-Gauss modes can be reconstructed from the knowledge of its Radon-Wigner transform-associated with the intensity distribution in a fractional-Fourier-transform optical system-at only two transversal points. The proposed method can be generalized to any fractional system whose generator transform has a complete orthogonal set of eigenfunctions. PMID:11876310

  20. Analysis and Functional Consequences of Increased Fab-Sialylation of Intravenous Immunoglobulin (IVIG) after Lectin Fractionation

    PubMed Central

    Käsermann, Fabian; Boerema, David J.; Rüegsegger, Monika; Hofmann, Andreas; Wymann, Sandra; Zuercher, Adrian W.; Miescher, Sylvia

    2012-01-01

    It has been proposed that the anti-inflammatory effects of intravenous immunoglobulin (IVIG) might be due to the small fraction of Fc-sialylated IgG. In this study we biochemically and functionally characterized sialic acid-enriched IgG obtained by Sambucus nigra agglutinin (SNA) lectin fractionation. Two main IgG fractions isolated by elution with lactose (E1) or acidified lactose (E2) were analyzed for total IgG, F(ab’)2 and Fc-specific sialic acid content, their pattern of specific antibodies and anti-inflammatory potential in a human in vitro inflammation system based on LPS- or PHA-stimulated whole blood. HPLC and LC-MS testing revealed an increase of sialylated IgG in E1 and more substantially in the E2 fraction. Significantly, the increased amount of sialic acid residues was primarily found in the Fab region whereas only a minor increase was observed in the Fc region. This indicates preferential binding of the Fab sialic acid to SNA. ELISA analyses of a representative range of pathogen and auto-antigens indicated a skewed antibody pattern of the sialylated IVIG fractions. Finally, the E2 fraction exerted a more profound anti-inflammatory effect compared to E1 or IVIG, evidenced by reduced CD54 expression on monocytes and reduced secretion of MCP-1 (CCL2); again these effects were Fab- but not Fc-dependent. Our results show that SNA fractionation of IVIG yields a minor fraction (approx. 10%) of highly sialylated IgG, wherein the sialic acid is mainly found in the Fab region. The tested anti-inflammatory activity was associated with Fab not Fc sialylation. PMID:22675478

  1. Full-scale system impact analysis: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Digital Document Storage Full Scale System can provide cost effective electronic document storage, retrieval, hard copy reproduction, and remote access for users of NASA Technical Reports. The desired functionality of the DDS system is highly dependent on the assumed requirements for remote access used in this Impact Analysis. It is highly recommended that NASA proceed with a phased, communications requirement analysis to ensure that adequate communications service can be supplied at a reasonable cost in order to validate recent working assumptions upon which the success of the DDS Full Scale System is dependent.

  2. Shielding analysis methods available in the scale computational system

    SciTech Connect

    Parks, C.V.; Tang, J.S.; Hermann, O.W.; Bucholz, J.A.; Emmett, M.B.

    1986-01-01

    Computational tools have been included in the SCALE system to allow shielding analysis to be performed using both discrete-ordinates and Monte Carlo techniques. One-dimensional discrete ordinates analyses are performed with the XSDRNPM-S module, and point dose rates outside the shield are calculated with the XSDOSE module. Multidimensional analyses are performed with the MORSE-SGC/S Monte Carlo module. This paper will review the above modules and the four Shielding Analysis Sequences (SAS) developed for the SCALE system. 7 refs., 8 figs.

  3. Multi-scale analysis for environmental dispersion in wetland flow

    NASA Astrophysics Data System (ADS)

    Wu, Zi; Li, Z.; Chen, G. Q.

    2011-08-01

    Presented in this work is a multi-scale analysis for longitudinal evolution of contaminant concentration in a fully developed flow through a shallow wetland channel. An environmental dispersion model for the mean concentration is devised as an extension of Taylor's classical formulation by a multi-scale analysis. Corresponding environmental dispersivity is found identical to that determined by the method of concentration moments. For typical contaminant constituents of chemical oxygen demand, biochemical oxygen demand, total phosphorus, total nitrogen and heavy metal, the evolution of contaminant cloud is illustrated with the critical length and duration of the contaminant cloud with constituent concentration beyond some given environmental standard level.

  4. Three-dimensional modeling and numerical analysis of fractional flow reserve in human coronary arteries

    PubMed Central

    Dai, Neng; Lv, Hui-Jie; Xiang, Ya-Fei; Fan, Bing

    2016-01-01

    Introduction Noninvasive fractional flow reserve (FFR) computed from CT (FFRCT) is a novel method for determining the physiologic significance of coronary artery disease (CAD). Several clinical trials have been conducted, but its diagnostic performance varied among different trials. Aim To determine the cut-off value of FFRCT and its correlation with the gold standard used to diagnose CAD in clinical practice. Material and methods Forty patients with single vessel disease were included in our study. Computed tomography scan and coronary angiography with FFR were conducted for these patients. Three-dimensional geometric reconstruction and numerical analysis based on the computed tomographic angiogram (CTA) of coronary arteries were applied to obtain the values of FFRCT. The correlation between FFRCT and the gold standard used in clinical practice was tested. Results For FFRCT, the best cut-off value was 0.76, with the sensitivity, specificity, positive predictive value and negative predictive values of 84.6%, 92.9%, 88% and 73.3%, respectively. The area under the receiver-operator characteristics curve was 0.945 (p < 0.0001). There was a good correlation of FFRCT values with FFR values (r = 0.94, p < 0.0001), with a slight overestimation of FFRCT as compared with measured FFR (mean difference 0.01 ±0.11, p < 0.05). For inter-observer agreement, the mean κ value was 0.69 (0.61 to 0.78) and for intra-observer agreement the mean κ value was 0.61 (0.50 to 0.72). Conclusions FFRCT derived from CT of the coronary artery is a reliable non-invasive way providing reliable functional information of coronary artery stenosis. PMID:26966446

  5. Time-series analysis of mortality effects from airborne particulate matter size fractions in Beijing

    NASA Astrophysics Data System (ADS)

    Li, Pei; Xin, Jinyuan; Wang, Yuesi; Wang, Shigong; Shang, Kezheng; Liu, Zirui; Li, Guoxing; Pan, Xiaochuan; Wei, Linbo; Wang, Mingzhen

    2013-12-01

    Evidence concerning the health risk of fine and coarse particles is limited in developing Asian countries. The modifying effect between particles and temperature and season also remains unclear. Our study is one of the first to investigate the acute effect of particles size fractions, modifying effects and interannual variations of relative risk in a developing megacity where particulate levels are extraordinarily high compared to other Asian cities. After controlling for potential confounding, the results of a time-series analysis during the period 2005-2009 show that a 10 μg m-3 increase in PM2.5 levels is associated with a 0.65% (95% CI: 0.29-0.80%), 0.63% (95% CI: 0.25-0.83%), and 1.38% (95% CI: 0.51-1.71%) increase in non-accidental mortality, respiratory mortality, and circulatory mortality, respectively, while a 10 μg m-3 increase in PM10 is similarly associated with increases of 0.15% (95% CI: 0.04-0.22%), 0.08% (95% CI: 0.01-0.18%), and 0.44% (95% CI: 0.12-0.63%). We did not find a significant effect of PM2.5-10 on daily mortality outcomes. Our analyses conclude that temperature and particulates, exposures to both of which are expected to increase with climate change, might act together to worsen human health in Beijing, especially in the cool seasons. The level of the estimated percentage increase assume an escalating tendency during the study period, in addition to having a low value in 2008, and after the Olympic Games, the values increased significantly as the temporary atmospheric pollution control measures were terminated mostly.

  6. Analysis of Fraction Skill Score properties for a displaced rainy grid point in a rectangular domain

    NASA Astrophysics Data System (ADS)

    Skok, Gregor

    2016-03-01

    The Fraction Skill Score (FSS) is a recently developed and popular metric used for precipitation verification. A compact analytical expression for FSS is derived for a case with a single displaced rainy grid point in a rectangular domain. The existence of an analytical solution is used to determine some properties of FSS, which might also be applicable in other cases since the rain areas of any shape will asymptote towards this solution if the displacement is sufficiently large. The use of the simple square shape of the neighborhood causes the FSS value to be dependent on the direction of the displacements (not only on the displacement size). The effect is limited in scope but can increase or decrease the FSS value by 0.1. Moving a nearby border closer to the rainy points can either increase or decrease the FSS value, depending on the location of the border. The FSS value near a border can be at most 33% larger than the FSS value in the infinite domain, assuming the same neighborhood size and displacement. The effect of the nearby corner is similar to the effect of the nearby border but is stronger. The useful forecast criteria (FSSuseful) is defined as a value of FSS for a precipitation feature with a displacement half the neighborhood size. FSSuseful for a displaced rainy grid point depends on the orientation of the displacement being the largest for displacements that are parallel to the borders and the smallest for a diagonal displacement for which the value can be as low as 0.42. An analysis of a real dataset was also performed, which showed that the border effect is usually small, but in some cases the effect becomes large (an increase of FSS value up to 70% was identified). The likelihood of a strong border effect in real datasets increases significantly if the neighborhood size at FSS = 0.5 is comparable or larger than the domain size.

  7. Potential of biohydrogen production from organic fraction of municipal solid waste (OFMSW) using pilot-scale dry anaerobic reactor.

    PubMed

    Elsamadony, M; Tawfik, A

    2015-11-01

    A long-term evaluation of a mesophilic up-flow intermittently stirred tank reactor (UISTR) for hydrogen production from the organic fraction of municipal solid waste was investigated. UISTR was operated at five different hydraulic retention times (HRTs) of 10, 7.5, 5, 3 and 2days. This corresponds to organic loading rates (OLRs) of 18.1, 26.2, 41.3, 61.0, and 97.2gCOD/L/day, respectively. The highest volumetric H2 production of 2.20±0.19L/L/d and H2 yield of 2.05±0.33molH2/molCarbohydrate were achieved at HRT of 3days and OLR of 61.0gCOD/L/day. This revealed a higher sCOD/tCOD ratio of 0.46±0.08 and a lower particle size diameter of 307.6μm in the digestate, with a reduction of 72.0%. The maximum carbohydrates, proteins, and lipids conversions amounted to 68.2±13.0%, 37.5±6.7% and 48.6±4.7%, respectively recorded at HRT of 10days and OLR of 18.1gCOD/L/day. PMID:26218185

  8. Tools for Large-Scale Mobile Malware Analysis

    SciTech Connect

    Bierma, Michael

    2014-01-01

    Analyzing mobile applications for malicious behavior is an important area of re- search, and is made di cult, in part, by the increasingly large number of appli- cations available for the major operating systems. There are currently over 1.2 million apps available in both the Google Play and Apple App stores (the respec- tive o cial marketplaces for the Android and iOS operating systems)[1, 2]. Our research provides two large-scale analysis tools to aid in the detection and analysis of mobile malware. The rst tool we present, Andlantis, is a scalable dynamic analysis system capa- ble of processing over 3000 Android applications per hour. Traditionally, Android dynamic analysis techniques have been relatively limited in scale due to the compu- tational resources required to emulate the full Android system to achieve accurate execution. Andlantis is the most scalable Android dynamic analysis framework to date, and is able to collect valuable forensic data, which helps reverse-engineers and malware researchers identify and understand anomalous application behavior. We discuss the results of running 1261 malware samples through the system, and provide examples of malware analysis performed with the resulting data. While techniques exist to perform static analysis on a large number of appli- cations, large-scale analysis of iOS applications has been relatively small scale due to the closed nature of the iOS ecosystem, and the di culty of acquiring appli- cations for analysis. The second tool we present, iClone, addresses the challenges associated with iOS research in order to detect application clones within a dataset of over 20,000 iOS applications.

  9. Isoelectric focusing analysis of transmission of fractions of bovine IgG across the gut of the suckling rat

    PubMed Central

    Hemmings, W. A.; Jones, R. E.

    1974-01-01

    Twelve-day-old rats were fed a mixture of fast and slow chromatographically prepared fractions of bovine IgG, labelled with 125I and 131I. The pooled young rat sera were submitted to analysis by electrofocusing. The results show a wide variation of concentration quotients between the different pI peaks of IgG, with the more basic fractions being transmitted more readily in both fractions. One slow IgG peak (pI 7.8) in particular is transmitted very readily. These findings reinforce the concept of selectivity in transmission. The possible use of the young rat gut as a test for protein integrity is discussed. ImagesFIG. 1FIG. 2FIG. 3 PMID:4413997

  10. Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis

    SciTech Connect

    Dosemeci, Ayse . E-mail: dosemeca@mail.nih.gov; Tao-Cheng, J.-H.; Vinade, Lucia; Jaffe, Howard

    2006-01-13

    Hippocampal slices offer an excellent experimental system for the study of activity-induced changes in the postsynaptic density (PSD). While studies have documented electrophysiological and structural changes at synapses in response to precise manipulations of hippocampal slices, parallel biochemical and proteomic analyses were hampered by the lack of subcellular fractionation techniques applicable to starting tissue about three orders of magnitude smaller than that used in conventional protocols. Here, we describe a simple and convenient method for the preparation of PSD fractions from hippocampal slices and the identification of its components by proteomic techniques. The 'micro PSD fraction' obtained following two consecutive extractions of a synaptosomal fraction with Triton X-100 shows a significant enrichment in the marker protein PSD-95. Thin section electron microscopy shows PSDs similar to those observed in situ. However, other particulate material, especially myelin, and membrane vesicles are also present. The composition of the PSD fraction from hippocampal slices was analyzed by 2D LC/MS/MS. The proteomic approach which utilizes as little as 10 {mu}g total protein allowed the identification of >100 proteins. Many of the proteins detected in the fraction are the same as those identified in conventional PSD preparations including specialized PSD-scaffolding proteins, signaling molecules, cytoskeletal elements as well as certain contaminants. The results show the feasibility of the preparation of a PSD fraction from hippocampal slices of reasonable purity and of sufficient yield for proteomic analyses. In addition, we show that further purification of PSDs is possible using magnetic beads coated with a PSD-95 antibody.

  11. AN ANALYSIS OF THE DEUTERIUM FRACTIONATION OF STAR-FORMING CORES IN THE PERSEUS MOLECULAR CLOUD

    SciTech Connect

    Friesen, R. K.; Kirk, H. M.; Shirley, Y. L.

    2013-03-01

    We have performed a pointed survey of N{sub 2}D{sup +} 2-1 and N{sub 2}D{sup +} 3-2 emission toward 64 N{sub 2}H{sup +}-bright starless and protostellar cores in the Perseus molecular cloud using the Arizona Radio Observatory Submillimeter Telescope and Kitt Peak 12 m telescope. We find a mean deuterium fractionation in N{sub 2}H{sup +}, R{sub D} = N(N{sub 2}D{sup +})/N(N{sub 2}H{sup +}), of 0.08, with a maximum R{sub D} = 0.2. In detected sources, we find no significant difference in the deuterium fractionation between starless and protostellar cores, nor between cores in clustered or isolated environments. We compare the deuterium fraction in N{sub 2}H{sup +} with parameters linked to advanced core evolution. We only find significant correlations between the deuterium fraction and increased H{sub 2} column density, as well as with increased central core density, for all cores. Toward protostellar sources, we additionally find a significant anticorrelation between R{sub D} and bolometric temperature. We show that the Perseus cores are characterized by low CO depletion values relative to previous studies of star-forming cores, similar to recent results in the Ophiuchus molecular cloud. We suggest that the low average CO depletion is the dominant mechanism that constrains the average deuterium fractionation in the Perseus cores to small values. While current equilibrium and dynamic chemical models are able to reproduce the range of deuterium fractionation values we find in Perseus, reproducing the scatter across the cores requires variation in parameters such as the ionization fraction or the ortho-to-para-H{sub 2} ratio across the cloud, or a range in core evolution timescales.

  12. An Analysis of the Deuterium Fractionation of Star-forming Cores in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Friesen, R. K.; Kirk, H. M.; Shirley, Y. L.

    2013-03-01

    We have performed a pointed survey of N2D+ 2-1 and N2D+ 3-2 emission toward 64 N2H+-bright starless and protostellar cores in the Perseus molecular cloud using the Arizona Radio Observatory Submillimeter Telescope and Kitt Peak 12 m telescope. We find a mean deuterium fractionation in N2H+, RD = N(N2D+)/N(N2H+), of 0.08, with a maximum RD = 0.2. In detected sources, we find no significant difference in the deuterium fractionation between starless and protostellar cores, nor between cores in clustered or isolated environments. We compare the deuterium fraction in N2H+ with parameters linked to advanced core evolution. We only find significant correlations between the deuterium fraction and increased H2 column density, as well as with increased central core density, for all cores. Toward protostellar sources, we additionally find a significant anticorrelation between RD and bolometric temperature. We show that the Perseus cores are characterized by low CO depletion values relative to previous studies of star-forming cores, similar to recent results in the Ophiuchus molecular cloud. We suggest that the low average CO depletion is the dominant mechanism that constrains the average deuterium fractionation in the Perseus cores to small values. While current equilibrium and dynamic chemical models are able to reproduce the range of deuterium fractionation values we find in Perseus, reproducing the scatter across the cores requires variation in parameters such as the ionization fraction or the ortho-to-para-H2 ratio across the cloud, or a range in core evolution timescales.

  13. Assessment of source apportionment by Positive Matrix Factorization analysis on fine and coarse urban aerosol size fractions

    NASA Astrophysics Data System (ADS)

    Karanasiou, A. A.; Siskos, P. A.; Eleftheriadis, K.

    This study was conducted in order to investigate the differences observed in source profiles in the urban environment, when chemical composition parameters from different aerosol size fractions are subjected to factor analysis. Source apportionment was performed in an urban area where representative types of emission sources are present. PM 10 and PM 2 samples were collected within the Athens Metropolitan area and analysed for trace elements, inorganic ions and black carbon. Analysis by two-way and three-way Positive Matrix Factorization was performed, in order to resolve sources from data obtained for the fine and coarse aerosol fractions. A difference was observed: seven factors describe the best solution in PMF3 while six factors in PMF2. Six factors derived from PMF3 analysis correspond to those described by the PMF2 solution for the fine and coarse particles separately. These sources were attributed to road dust, marine aerosol, soil, motor vehicles, biomass burning, and oil combustion. The additional source resolved by PMF3 was attributed to a different type of road dust. Combustion sources (oil combustion and biomass burning) were correctly attributed by PMF3 solely to the fine fraction and the soil source to the coarse fraction. However, a motor vehicle's contribution to the coarse fraction was found only by three-way PMF. When PMF2 was employed in PM 10 concentrations the optimum solution included six factors. Four source profiles corresponded to the previously identified as vehicles, road dust, biomass burning and marine aerosol, while two could not be clearly identified. Source apportionment by PMF2 analysis based solely on PM 10 aerosol composition data, yielded unclear results, compared to results from PMF2 and PMF3 analyses on fine and coarse aerosol composition data.

  14. Complexity of carbon market from multi-scale entropy analysis

    NASA Astrophysics Data System (ADS)

    Fan, Xinghua; Li, Shasha; Tian, Lixin

    2016-06-01

    Complexity of carbon market is the consequence of economic dynamics and extreme social political events in global carbon markets. The multi-scale entropy can measure the long-term structures in the daily price return time series. By using multi-scale entropy analysis, we explore the complexity of carbon market and mean reversion trend of daily price return. The logarithmic difference of data Dec16 from August 6, 2010 to May 22, 2015 is selected as the sample. The entropy is higher in small time scale, while lower in large. The dependence of the entropy on the time scale reveals the mean reversion of carbon prices return in the long run. A relatively great fluctuation over some short time period indicates that the complexity of carbon market evolves consistently with economic development track and the events of international climate conferences.

  15. Review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials

    SciTech Connect

    Roth, D.J.; Swickard, S.M.; Stang, D.B.; Deguire, M.R.

    1990-03-01

    A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties.

  16. Review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.

    1990-01-01

    A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties.

  17. Specimen Preparation for Metal Matrix Composites with a High Volume Fraction of Reinforcing Particles for EBSD Analysis

    NASA Astrophysics Data System (ADS)

    Smirnov, A. S.; Belozerov, G. A.; Smirnova, E. O.; Konovalov, A. V.; Shveikin, V. P.; Muizemnek, O. Yu.

    2016-06-01

    The paper deals with a procedure of preparing a specimen surface for the EBSD analysis of a metal matrix composite (MMC) with a high volume fraction of reinforcing particles. Unlike standard procedures of preparing a specimen surface for the EBSD analysis, the proposed procedure is iterative with consecutive application of mechanical and electrochemical polishing. This procedure significantly improves the results of an indexed MMC matrix in comparison with the standard procedure of specimen preparation. The procedure was verified on a MMC with pure aluminum (99.8% Al) as the matrix, SiC particles being used as reinforcing elements. The average size of the SiC particles is 14 μm, and their volume fraction amounts to 50% of the total volume of the composite. It has been experimentally found that, for making the EBSD analysis of a material matrix near reinforcing particles, the difference in height between the particles and the matrix should not exceed 2 µm.

  18. Review and statistical analysis of the use of ultrasonic velocity for estimating the porosity fraction in polycrystalline materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.

    1991-01-01

    A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semiempirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produces predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis of fully-dense materials are in good agreement with those calculated from elastic properties.

  19. Specimen Preparation for Metal Matrix Composites with a High Volume Fraction of Reinforcing Particles for EBSD Analysis

    NASA Astrophysics Data System (ADS)

    Smirnov, A. S.; Belozerov, G. A.; Smirnova, E. O.; Konovalov, A. V.; Shveikin, V. P.; Muizemnek, O. Yu.

    2016-07-01

    The paper deals with a procedure of preparing a specimen surface for the EBSD analysis of a metal matrix composite (MMC) with a high volume fraction of reinforcing particles. Unlike standard procedures of preparing a specimen surface for the EBSD analysis, the proposed procedure is iterative with consecutive application of mechanical and electrochemical polishing. This procedure significantly improves the results of an indexed MMC matrix in comparison with the standard procedure of specimen preparation. The procedure was verified on a MMC with pure aluminum (99.8% Al) as the matrix, SiC particles being used as reinforcing elements. The average size of the SiC particles is 14 μm, and their volume fraction amounts to 50% of the total volume of the composite. It has been experimentally found that, for making the EBSD analysis of a material matrix near reinforcing particles, the difference in height between the particles and the matrix should not exceed 2 µm.

  20. Analysis of tristable energy harvesting system having fractional order viscoelastic material

    SciTech Connect

    Oumbé Tékam, G. T.; Woafo, P.; Kitio Kwuimy, C. A.

    2015-01-15

    A particular attention is devoted to analyze the dynamics of a strongly nonlinear energy harvester having fractional order viscoelastic flexible material. The strong nonlinearity is obtained from the magnetic interaction between the end free of the flexible material and three equally spaced magnets. Periodic responses are computed using the KrylovBogoliubov averaging method, and the effects of fractional order damping on the output electric energy are analyzed. It is obtained that the harvested energy is enhanced for small order of the fractional derivative. Considering the order and strength of the fractional viscoelastic property as control parameter, the complexity of the system response is investigated through the Melnikov criteria for horseshoes chaos, which allows us to derive the mathematical expression of the boundary between intra-well motion and bifurcations appearance domain. We observe that the order and strength of the fractional viscoelastic property can be effectively used to control chaos in the system. The results are confirmed by the smooth and fractal shape of the basin of attraction as the order of derivative decreases. The bifurcation diagrams and the corresponding Lyapunov exponents are plotted to get insight into the nonlinear response of the system.

  1. Proteomic Analysis of Fractionated Toxoplasma Oocysts Reveals Clues to Their Environmental Resistance

    PubMed Central

    Bogyo, Matthew; Conrad, Patricia A.; Boothroyd, John C.

    2012-01-01

    Toxoplasma gondii is an obligate intracellular parasite that is unique in its ability to infect a broad range of birds and mammals, including humans, leading to an extremely high worldwide prevalence and distribution. This work focuses on the environmentally resistant oocyst, which is the product of sexual replication in felids and an important source of human infection. Due to the difficulty in producing and working with oocysts, relatively little is known about how this stage is able to resist extreme environmental stresses and how they initiate a new infection, once ingested. To fill this gap, the proteome of the wall and sporocyst/sporozoite fractions of mature, sporulated oocysts were characterized using one-dimensional gel electrophoresis followed by LC-MS/MS on trypsin-digested peptides. A combined total of 1021 non-redundant T. gondii proteins were identified in the sporocyst/sporozoite fraction and 226 were identified in the oocyst wall fraction. Significantly, 172 of the identified proteins have not previously been identified in Toxoplasma proteomic studies. Among these are several of interest for their likely role in conferring environmental resistance including a family of small, tyrosine-rich proteins present in the oocyst wall fractions and late embryogenesis abundant domain-containing (LEA) proteins in the cytosolic fractions. The latter are known from other systems to be key to enabling survival against desiccation. PMID:22279555

  2. A Confirmatory Factor Analysis of the Professional Opinion Scale

    ERIC Educational Resources Information Center

    Greeno, Elizabeth J.; Hughes, Anne K.; Hayward, R. Anna; Parker, Karen L.

    2007-01-01

    The Professional Opinion Scale (POS) was developed to measure social work values orientation. Objective: A confirmatory factor analysis was performed on the POS. Method: This cross-sectional study used a mailed survey design with a national random (simple) sample of members of the National Association of Social Workers. Results: The study…

  3. The Hong Psychological Reactance Scale: A Confirmatory Factor Analysis.

    ERIC Educational Resources Information Center

    Thomas, Adrian; Donnell, Alison J.; Buboltz, Walter C., Jr.

    2001-01-01

    Study uses confirmatory factor analysis to assess four models of the Hong Psychological Reactance Scale (HPRS) and attempts to provide psychometric information about the subscales. Results found inadequate fit for Hong's four orthogonal models but sufficient fit for two nonorthogonal models. (Contains 29 references and 3 tables.) (GCP)

  4. Exploratory Factor Analysis of African Self-Consciousness Scale Scores

    ERIC Educational Resources Information Center

    Bhagwat, Ranjit; Kelly, Shalonda; Lambert, Michael C.

    2012-01-01

    This study replicates and extends prior studies of the dimensionality, convergent, and external validity of African Self-Consciousness Scale scores with appropriate exploratory factor analysis methods and a large gender balanced sample (N = 348). Viable one- and two-factor solutions were cross-validated. Both first factors overlapped significantly…

  5. Dynamic analysis of a fractional order delayed predator-prey system with harvesting.

    PubMed

    Song, Ping; Zhao, Hongyong; Zhang, Xuebing

    2016-06-01

    In the study, we consider a fractional order delayed predator-prey system with harvesting terms. Our discussion is divided into two cases. Without harvesting, we investigate the stability of the model, as well as deriving some criteria by analyzing the associated characteristic equation. With harvesting, we investigate the dynamics of the system from the aspect of local stability and analyze the influence of harvesting to prey and predator. Finally, numerical simulations are presented to verify our theoretical results. In addition, using numerical simulations, we investigate the effects of fractional order and harvesting terms on dynamic behavior. Our numerical results show that fractional order can affect not only the stability of the system without harvesting terms, but also the switching times from stability to instability and to stability. The harvesting can convert the equilibrium point, the stability and the stability switching times. PMID:27026265

  6. Fast dose algorithm for generation of dose coverage probability for robustness analysis of fractionated radiotherapy

    NASA Astrophysics Data System (ADS)

    Tilly, David; Ahnesjö, Anders

    2015-07-01

    A fast algorithm is constructed to facilitate dose calculation for a large number of randomly sampled treatment scenarios, each representing a possible realisation of a full treatment with geometric, fraction specific displacements for an arbitrary number of fractions. The algorithm is applied to construct a dose volume coverage probability map (DVCM) based on dose calculated for several hundred treatment scenarios to enable the probabilistic evaluation of a treatment plan. For each treatment scenario, the algorithm calculates the total dose by perturbing a pre-calculated dose, separately for the primary and scatter dose components, for the nominal conditions. The ratio of the scenario specific accumulated fluence, and the average fluence for an infinite number of fractions is used to perturb the pre-calculated dose. Irregularities in the accumulated fluence may cause numerical instabilities in the ratio, which is mitigated by regularisation through convolution with a dose pencil kernel. Compared to full dose calculations the algorithm demonstrates a speedup factor of ~1000. The comparisons to full calculations show a 99% gamma index (2%/2 mm) pass rate for a single highly modulated beam in a virtual water phantom subject to setup errors during five fractions. The gamma comparison shows a 100% pass rate in a moving tumour irradiated by a single beam in a lung-like virtual phantom. DVCM iso-probability lines computed with the fast algorithm, and with full dose calculation for each of the fractions, for a hypo-fractionated prostate case treated with rotational arc therapy treatment were almost indistinguishable.

  7. Fast dose algorithm for generation of dose coverage probability for robustness analysis of fractionated radiotherapy.

    PubMed

    Tilly, David; Ahnesjö, Anders

    2015-07-21

    A fast algorithm is constructed to facilitate dose calculation for a large number of randomly sampled treatment scenarios, each representing a possible realisation of a full treatment with geometric, fraction specific displacements for an arbitrary number of fractions. The algorithm is applied to construct a dose volume coverage probability map (DVCM) based on dose calculated for several hundred treatment scenarios to enable the probabilistic evaluation of a treatment plan.For each treatment scenario, the algorithm calculates the total dose by perturbing a pre-calculated dose, separately for the primary and scatter dose components, for the nominal conditions. The ratio of the scenario specific accumulated fluence, and the average fluence for an infinite number of fractions is used to perturb the pre-calculated dose. Irregularities in the accumulated fluence may cause numerical instabilities in the ratio, which is mitigated by regularisation through convolution with a dose pencil kernel.Compared to full dose calculations the algorithm demonstrates a speedup factor of ~1000. The comparisons to full calculations show a 99% gamma index (2%/2 mm) pass rate for a single highly modulated beam in a virtual water phantom subject to setup errors during five fractions. The gamma comparison shows a 100% pass rate in a moving tumour irradiated by a single beam in a lung-like virtual phantom. DVCM iso-probability lines computed with the fast algorithm, and with full dose calculation for each of the fractions, for a hypo-fractionated prostate case treated with rotational arc therapy treatment were almost indistinguishable. PMID:26118844

  8. Single-Fraction Versus 5-Fraction Radiation Therapy for Metastatic Epidural Spinal Cord Compression in Patients With Limited Survival Prognoses: Results of a Matched-Pair Analysis

    SciTech Connect

    Rades, Dirk; Huttenlocher, Stefan; Šegedin, Barbara; Perpar, Ana; Conde, Antonio J.; Garcia, Raquel; Veninga, Theo; Stalpers, Lukas J.A.; Cacicedo, Jon; Rudat, Volker; Schild, Steven E.

    2015-10-01

    Purpose: This study compared single-fraction to multi-fraction short-course radiation therapy (RT) for symptomatic metastatic epidural spinal cord compression (MESCC) in patients with limited survival prognosis. Methods and Materials: A total of 121 patients who received 8 Gy × 1 fraction were matched (1:1) to 121 patients treated with 4 Gy × 5 fractions for 10 factors including age, sex, performance status, primary tumor type, number of involved vertebrae, other bone metastases, visceral metastases, interval between tumor diagnosis and MESCC, pre-RT ambulatory status, and time developing motor deficits prior to RT. Endpoints included in-field repeated RT (reRT) for MESCC, overall survival (OS), and impact of RT on motor function. Univariate analyses were performed with the Kaplan-Meier method and log-rank test for in-field reRT for MESCC and OS and with the ordered-logit model for effect of RT on motor function. Results: Doses of 8 Gy × 1 fraction and 4 Gy × 5 fractions were not significantly different with respect to the need for in-field reRT for MESCC (P=.11) at 6 months (18% vs 9%, respectively) and 12 months (30% vs 22%, respectively). The RT regimen also had no significant impact on OS (P=.65) and post-RT motor function (P=.21). OS rates at 6 and 12 months were 24% and 9%, respectively, after 8 Gy × 1 fraction versus 25% and 13%, respectively, after 4 Gy × 5 fractions. Improvement of motor function was observed in 17% of patients after 8 Gy × 1 fraction and 23% after 4 Gy × 5 fractions, respectively. Conclusions: There were no significant differences with respect to need for in-field reRT for MESCC, OS, and motor function by dose fractionation regimen. Thus, 8 Gy × 1 fraction may be a reasonable option for patients with survival prognosis of a few months.

  9. Sesame fractions and lipid profiles: a systematic review and meta-analysis of controlled trials.

    PubMed

    Khalesi, Saman; Paukste, Ernesta; Nikbakht, Elham; Khosravi-Boroujeni, Hossein

    2016-03-14

    Increased plasma lipid profiles are among the most important risk factors of CHD and stroke. Sesame contains considerable amounts of vitamin E, MUFA, fibre and lignans, which are thought to be associated with its plasma lipid-lowering properties. This study aimed to systematically review the evidence and identify the effects of sesame consumption on blood lipid profiles using a meta-analysis of controlled trials. PubMed, CINAHL and Cochrane Library databases were searched (from 1960 to May 2015). A total of ten controlled trials were identified based on the eligibility criteria. Both the Cochrane Collaboration tool and the Rosendal scale were used to assess the risk of bias of the included studies. The meta-analysis results showed that consumption of sesame did not significantly change the concentrations of total blood cholesterol (-0·32 mmol/l; 95% CI -0·75, 0·11; P=0·14, I(2)=96%), LDL-cholesterol (-0·15 mmol/l; 95% CI -0·50, 0·19; P=0·39, I(2)=96%) or HDL-cholesterol (0·01 mmol/l; 95% CI -0·00, 0·02; P=0·16, I(2)=0%). However, a significant reduction was observed in serum TAG levels (-0·24 mmol/l; 95% CI -0·32, -0·15; P<0·001, I(2)=84%) after consumption of sesame. It was concluded that sesame consumption can significantly reduce blood TAG levels but there is insufficient evidence to support its hypocholesterolaemic effects. Further studies are required to determine the potential effect of sesame consumption on lipid profiles and cardiovascular risk factors. PMID:26758593

  10. Exploratory Data analysis ENvironment eXtreme scale (EDENx)

    SciTech Connect

    Steed, Chad Allen

    2015-07-01

    EDENx is a multivariate data visualization tool that allows interactive user driven analysis of large-scale data sets with high dimensionality. EDENx builds on our earlier system, called EDEN to enable analysis of more dimensions and larger scale data sets. EDENx provides an initial overview of summary statistics for each variable in the data set under investigation. EDENx allows the user to interact with graphical summary plots of the data to investigate subsets and their statistical associations. These plots include histograms, binned scatterplots, binned parallel coordinate plots, timeline plots, and graphical correlation indicators. From the EDENx interface, a user can select a subsample of interest and launch a more detailed data visualization via the EDEN system. EDENx is best suited for high-level, aggregate analysis tasks while EDEN is more appropriate for detail data investigations.

  11. Exploratory Data analysis ENvironment eXtreme scale (EDENx)

    Energy Science and Technology Software Center (ESTSC)

    2015-07-01

    EDENx is a multivariate data visualization tool that allows interactive user driven analysis of large-scale data sets with high dimensionality. EDENx builds on our earlier system, called EDEN to enable analysis of more dimensions and larger scale data sets. EDENx provides an initial overview of summary statistics for each variable in the data set under investigation. EDENx allows the user to interact with graphical summary plots of the data to investigate subsets and their statisticalmore » associations. These plots include histograms, binned scatterplots, binned parallel coordinate plots, timeline plots, and graphical correlation indicators. From the EDENx interface, a user can select a subsample of interest and launch a more detailed data visualization via the EDEN system. EDENx is best suited for high-level, aggregate analysis tasks while EDEN is more appropriate for detail data investigations.« less

  12. Quantitative analysis of scale of aeromagnetic data raises questions about geologic-map scale

    USGS Publications Warehouse

    Nykanen, V.; Raines, G.L.

    2006-01-01

    A recently published study has shown that small-scale geologic map data can reproduce mineral assessments made with considerably larger scale data. This result contradicts conventional wisdom about the importance of scale in mineral exploration, at least for regional studies. In order to formally investigate aspects of scale, a weights-of-evidence analysis using known gold occurrences and deposits in the Central Lapland Greenstone Belt of Finland as training sites provided a test of the predictive power of the aeromagnetic data. These orogenic-mesothermal-type gold occurrences and deposits have strong lithologic and structural controls associated with long (up to several kilometers), narrow (up to hundreds of meters) hydrothermal alteration zones with associated magnetic lows. The aeromagnetic data were processed using conventional geophysical methods of successive upward continuation simulating terrane clearance or 'flight height' from the original 30 m to an artificial 2000 m. The analyses show, as expected, that the predictive power of aeromagnetic data, as measured by the weights-of-evidence contrast, decreases with increasing flight height. Interestingly, the Moran autocorrelation of aeromagnetic data representing differing flight height, that is spatial scales, decreases with decreasing resolution of source data. The Moran autocorrelation coefficient scems to be another measure of the quality of the aeromagnetic data for predicting exploration targets. ?? Springer Science+Business Media, LLC 2007.

  13. Strategies for Teaching Fractions: Using Error Analysis for Intervention and Assessment

    ERIC Educational Resources Information Center

    Spangler, David B.

    2011-01-01

    Many students struggle with fractions and must understand them before learning higher-level math. Veteran educator David B. Spangler provides research-based tools that are aligned with NCTM and Common Core State Standards. He outlines powerful diagnostic methods for analyzing student work and providing timely, specific, and meaningful…

  14. Thermodynamic analysis of the energy recovery from the aerobic bioconversion of solid urban waste organic fraction.

    PubMed

    Di Maria, Francesco; Benavoli, Manuel; Zoppitelli, Mirco

    2008-01-01

    Waste management is of the utmost importance for many countries and especially for highly developed ones due to its implications on society. In particular, proper treatment before disposal of the solid urban waste organic fraction is one of the main issues that is addressed in waste management. In fact, the organic fraction is particularly reactive and if disposed in sanitary landfills without previous adequate treatment, a large amount of dangerous and polluting gaseous, liquid and solid substances can be produced. Some waste treatment processes can also present an opportunity to produce other by-products like energy, recycled materials and other products with both economic and environmental benefits. In this paper, the aerobic treatment of the organic fraction of solid urban waste, performed in a biocell plant with the possibility of recovering heat for civil or industrial needs, was examined from the thermodynamic point of view. A theoretical model was proposed both for the biological process of the organic fraction, as well as for the heat recovery system. The most significant results are represented and discussed. PMID:17512716

  15. Cell Fractionation and Quantitative Analysis of HIV-1 Reverse Transcription in Target Cells

    PubMed Central

    Shah, Vaibhav B; Aiken, Christopher

    2016-01-01

    This is a protocol to detect HIV-1 reverse transcription products in cytoplasmic and nuclear fractions of cells infected with VSV-G-pseudotyped envelope-defective HIV-1. This protocol can also be extended to HIV-1 with regular envelope.

  16. Analysis of Phosphorus in Soil Humic Acid Fractions by Enzymatic Hydrolysis and Ultraviolet Irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic acid is an important soil component which influences chemical, biological, and physical soil properties. In this study, we investigated lability of phosphorus (P) in the mobile humic acid (MHA) and calcium humate (CaHA) fractions of four soils by orthophosphate-releasing enzymatic hydrolysis a...

  17. Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation

    NASA Astrophysics Data System (ADS)

    Marrasé, Celia

    2004-03-01

    Researchers in aquatic sciences have long been interested in describing temporal and biological heterogeneities at different observation scales. During the 1970s, scaling studies received a boost from the application of spectral analysis to ecological sciences. Since then, new insights have evolved in parallel with advances in observation technologies and computing power. In particular, during the last 2 decades, novel theoretical achievements were facilitated by the use of microstructure profilers, the application of mathematical tools derived from fractal and wavelet analyses, and the increase in computing power that allowed more complex simulations. The idea of publishing the Handbook of Scaling Methods in Aquatic Ecology arose out of a special session of the 2001 Aquatic Science Meeting of the American Society of Limnology and Oceanography. The edition of the book is timely, because it compiles a good amount of the work done in these last 2 decades. The book is comprised of three sections: measurements, analysis, and simulation. Each contains some review chapters and a number of more specialized contributions. The contents are multidisciplinary and focus on biological and physical processes and their interactions over a broad range of scales, from micro-layers to ocean basins. The handbook topics include high-resolution observation methodologies, as well as applications of different mathematical tools for analysis and simulation of spatial structures, time variability of physical and biological processes, and individual organism behavior. The scientific background of the authors is highly diverse, ensuring broad interest for the scientific community.

  18. Multi-scale statistical analysis of coronal solar activity

    DOE PAGESBeta

    Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.

    2016-07-08

    Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.

  19. Multi-scale statistical analysis of coronal solar activity

    NASA Astrophysics Data System (ADS)

    Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.

    2016-07-01

    Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.

  20. Scaled-particle theory analysis of cylindrical cavities in solution.

    PubMed

    Ashbaugh, Henry S

    2015-04-01

    The solvation of hard spherocylindrical solutes is analyzed within the context of scaled-particle theory, which takes the view that the free energy of solvating an empty cavitylike solute is equal to the pressure-volume work required to inflate a solute from nothing to the desired size and shape within the solvent. Based on our analysis, an end cap approximation is proposed to predict the solvation free energy as a function of the spherocylinder length from knowledge regarding only the solvent density in contact with a spherical solute. The framework developed is applied to extend Reiss's classic implementation of scaled-particle theory and a previously developed revised scaled-particle theory to spherocylindrical solutes. To test the theoretical descriptions developed, molecular simulations of the solvation of infinitely long cylindrical solutes are performed. In hard-sphere solvents classic scaled-particle theory is shown to provide a reasonably accurate description of the solvent contact correlation and resulting solvation free energy per unit length of cylinders, while the revised scaled-particle theory fitted to measured values of the contact correlation provides a quantitative free energy. Applied to the Lennard-Jones solvent at a state-point along the liquid-vapor coexistence curve, however, classic scaled-particle theory fails to correctly capture the dependence of the contact correlation. Revised scaled-particle theory, on the other hand, provides a quantitative description of cylinder solvation in the Lennard-Jones solvent with a fitted interfacial free energy in good agreement with that determined for purely spherical solutes. The breakdown of classical scaled-particle theory does not result from the failure of the end cap approximation, however, but is indicative of neglected higher-order curvature dependences on the solvation free energy. PMID:25974499

  1. Angular analysis and differential branching fraction of the decay B {/s 0} → ϕμ + μ -

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusardi, N.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Matthieu, K.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Diaz, M. Vieites; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zucchelli, S.

    2015-09-01

    An angular analysis and a measurement of the differential branching fraction of the decay B s 0 → ϕμ + μ - are presented, using data corresponding to an integrated luminosity of 3 .0 fb-1 of pp collisions recorded by the LHCb experiment at √{s}=7 and 8 TeV. Measurements are reported as a function of q 2, the square of the dimuon invariant mass and results of the angular analysis are found to be consistent with the Standard Model. In the range 1 < q 2 < 6 GeV2 /c 4, where precise theoretical calculations are available, the differential branching fraction is found to be more than 3 σ below the Standard Model predictions. [Figure not available: see fulltext.

  2. [Analysis of microbial community structure at full-scale wastewater treatment plants by oxidation ditch].

    PubMed

    Guo, Yun; Yang, Dian-hai; Lu, Wen-jian

    2012-08-01

    The microbial populations of the oxidation ditch process at the full-scale municipal wastewater treatment plants (WWTP) in a city in north China were analyzed by fluorescent in situ hybridization (FISH). Fractions structure varieties and distribution characteristics of Accumulibacter as potential phosphorus accumulating organisms (PAOs), and Competibacter as potential glycogen accumulating organisms (GAOs) were quantified. The results indicated that Accumulibacter comprised around 2.0% +/- 0.6%, 3.4% +/- 0.6% and 3.5% +/- 1.2% of the total biomass in the anaerobic tank, anoxic zone and zone, respectively, while the corresponding values for Competibacter were 25.3% +/- 8.7%, 30.3% +/- 7.1% and 24.4% +/- 6.1%. Lower Accumulibacter fractions were found compared with previous full-scale reports (7%-22%), indicating low phosphorus removal efficiency in the oxidation ditch system. Statistical analysis indicated that the amount of PAOs was significantly higher in the anoxic zone and the aerobic zone compared with that in the anaerobic tank, while GAOs remained at the same level. PMID:23213894

  3. Bridgman crystal growth in low gravity - A scaling analysis

    NASA Technical Reports Server (NTRS)

    Alexander, J. I. D.; Rosenberger, Franz

    1990-01-01

    The results of an order-of-magnitude or scaling analysis are compared with those of numerical simulations of the effects of steady low gravity on compositional nonuniformity in crystals grown by the Bridgman-Stockbarger technique. In particular, the results are examined of numerical simulations of the effect of steady residual acceleration on the transport of solute in a gallium-doped germanium melt during directional solidification under low-gravity conditions. The results are interpreted in terms of the relevant dimensionless groups associated with the process, and scaling techniques are evaluated by comparing their predictions with the numerical results. It is demonstrated that, when convective transport is comparable with diffusive transport, some specific knowledge of the behavior of the system is required before scaling arguments can be used to make reasonable predictions.

  4. Moderated regression analysis and Likert scales: too coarse for comfort.

    PubMed

    Russell, C J; Bobko, P

    1992-06-01

    One of the most commonly accepted models of relationships among three variables in applied industrial and organizational psychology is the simple moderator effect. However, many authors have expressed concern over the general lack of empirical support for interaction effects reported in the literature. We demonstrate in the current sample that use of a continuous, dependent-response scale instead of a discrete, Likert-type scale, causes moderated regression analysis effect sizes to increase an average of 93%. We suggest that use of relatively coarse Likert scales to measure fine dependent responses causes information loss that, although varying widely across subjects, greatly reduces the probability of detecting true interaction effects. Specific recommendations for alternate research strategies are made. PMID:1601825

  5. [Chromatographic analysis of low molecular weight fraction of cerebrospinal fluid in children with acute neuroinfections].

    PubMed

    Alekseeva, L A; Shatik, S V; Sorokina, M N; Karasev, V V

    2002-05-01

    Low molecular-weight (oligopeptide) fraction of the cerebrospinal fluid was analyzed by high-performance reversed phase liquid chromatography in 30 children with bacterial and viral neuroinfections. The incidence and height of chromathoraphic peaks in bacterial meningitis depended on the disease etiology, stage, and severity. Qualitative and quantitative composition of low molecular-weight fraction of the liquor varied in patients with viral neuroinfections, depending on the severity of the cerebral parenchyma involvement. Differences in chromatographic profiles in complicated and uneventful course of neuroinfections indicate a possible damaging, protective, or regulatory effect of the liquor peptides. These data focus the attention on the role of oligopeptides in the genesis of neuroinfectious process, significance of search for peptide markers, their further isolation, identification, and development of test systems available for clinical application. PMID:12085699

  6. Usability of multiangular imaging spectroscopy data for analysis of vegetation canopy shadow fraction in boreal forest

    NASA Astrophysics Data System (ADS)

    Markiet, Vincent; Perheentupa, Viljami; Mõttus, Matti; Hernández-Clemente, Rocío

    2016-04-01

    Imaging spectroscopy is a remote sensing technology which records continuous spectral data at a very high (better than 10 nm) resolution. Such spectral images can be used to monitor, for example, the photosynthetic activity of vegetation. Photosynthetic activity is dependent on varying light conditions and varies within the canopy. To measure this variation we need very high spatial resolution data with resolution better than the dominating canopy element size (e.g., tree crown in a forest canopy). This is useful, e.g., for detecting photosynthetic downregulation and thus plant stress. Canopy illumination conditions are often quantified using the shadow fraction: the fraction of visible foliage which is not sunlit. Shadow fraction is known to depend on view angle (e.g., hot spot images have very low shadow fraction). Hence, multiple observation angles potentially increase the range of shadow fraction in the imagery in high spatial resolution imaging spectroscopy data. To investigate the potential of multi-angle imaging spectroscopy in investigating canopy processes which vary with shadow fraction, we obtained a unique multiangular airborne imaging spectroscopy data for the Hyytiälä forest research station located in Finland (61° 50'N, 24° 17'E) in July 2015. The main tree species are Norway spruce (Picea abies L. karst), Scots pine (Pinus sylvestris L.) and birch (Betula pubescens Ehrh., Betula pendula Roth). We used an airborne hyperspectral sensor AISA Eagle II (Specim - Spectral Imaging Ltd., Finland) mounted on a tilting platform. The tilting platform allowed us to measure at nadir and approximately 35 degrees off-nadir. The hyperspectral sensor has a 37.5 degrees field of view (FOV), 0.6m pixel size, 128 spectral bands with an average spectral bandwidth of 4.6nm and is sensitive in the 400-1000 nm spectral region. The airborne data was radiometrically, atmospherically and geometrically processed using the Parge and Atcor software (Re Se applications Schl

  7. Interpretation of orbital scale variability in mid-latitude speleothem δ18O: Significance of growth rate controlled kinetic fractionation effects

    NASA Astrophysics Data System (ADS)

    Stoll, Heather; Mendez-Vicente, Ana; Gonzalez-Lemos, Saul; Moreno, Ana; Cacho, Isabel; Cheng, Hai; Edwards, R. Lawrence

    2015-11-01

    Oxygen isotopes have been the most widely used climate indicator in stalagmites, applied to reconstruct past changes in rainfall δ18O and cave temperature. However, the δ18O signal in speleothems may also be influenced by variable kinetic fractionation effects, here conceived broadly as fractionation effects not arising from temperature variation. The regional reproducibility of speleothem δ18O signals has been proposed as a way to distinguish the δ18O variations arising directly from changes rainfall δ18O and cave temperature, from variations due to kinetic effects which may nonetheless be influenced by climate. Here, we compare isotopic records from 5 coeval stalagmites from two proximal caves in NW Spain covering the interval 140 to 70 ka, which experienced the same primary variations in temperature and rainfall δ18O, but exhibit a large range in growth rates and temporal trends in growth rate. Stalagmites growing at faster rates near 50 μm/yr have oxygen isotopic ratios over 1‰ more negative than coeval stalagmites with very slow (5 μm/yr) growth rates. Because growth rate variations also occur over time within any given stalagmite, the measured oxygen isotopic time series for a given stalagmite includes both climatic and kinetic components. Removal of the kinetic component of variation in each stalagmite, based on the dependence of the kinetic component on growth rate, is effective at distilling a common temporal evolution of among the oxygen isotopic records of the multiple stalagmites. However, this approach is limited by the quality of the age model. For time periods characterized by very slow growth and long durations between dates, the presence of crypto-hiatus may result in average growth rates which underestimate the instantaneous speleothem deposition rates and which therefore underestimate the magnitude of kinetic effects. The stacked growth rate-corrected speleothem δ18O is influenced by orbital scale variation in the cave temperature and

  8. Analysis of Reynolds number scaling for viscous vortex reconnection

    NASA Astrophysics Data System (ADS)

    Ni, Qionglin; Hussain, Fazle; Wang, Jianchun; Chen, Shiyi

    2012-10-01

    A theoretical analysis of viscous vortex reconnection is developed based on scale separation, and the Reynolds number, Re (= circulation/viscosity), scaling for the reconnection time Trec is derived. The scaling varies continuously as Re increases from T_{rec} ˜ {mathopRenolimits} ^{ - 1} to T_{rec} ˜ {mathopRenolimits} ^{ - 1/2}. This theoretical prediction agrees well with direct numerical simulations by Garten et al. [J. Fluid Mech. 426, 1 (2001)], 10.1017/S0022112000002251 and Hussain and Duraisamy [Phys. Fluids 23, 021701 (2011)], 10.1063/1.3532039. Moreover, our analysis yields two Re's, namely, a characteristic Re {mathopRenolimits} _{0.75} in left[ {Oleft({10^2 } right),Oleft({10^3 } right)} right] for the T_{rec} ˜ {mathopRenolimits} ^{ - 0.75} scaling given by Hussain and Duraisamy and the critical Re {mathopRenolimits} _c ˜ Oleft({10^4 } right) for the transition after which the first reconnection is completed. For {mathopRenolimits} > {mathopRenolimits} _c, a quiescent state follows, and then, a second reconnection may occur.

  9. Dynamical analysis of memristor-based fractional-order neural networks with time delay

    NASA Astrophysics Data System (ADS)

    Cui, Xueli; Yu, Yongguang; Wang, Hu; Hu, Wei

    2016-06-01

    In this paper, the memristor-based fractional-order neural networks with time delay are analyzed. Based on the theories of set-value maps, differential inclusions and Filippov’s solution, some sufficient conditions for asymptotic stability of this neural network model are obtained when the external inputs are constants. Besides, uniform stability condition is derived when the external inputs are time-varying, and its attractive interval is estimated. Finally, numerical examples are given to verify our results.

  10. Large-scale liquid immiscibility and fractional crystallization in the 1780 Ma Taihang dyke swarm: Implications for genesis of the bimodal Xiong'er volcanic province

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Wang, Xinping; Lai, Yong; Wang, Chong; Windley, Brian F.

    2015-11-01

    Immiscibility is a potential mechanism for the formation of high-Fe-Ti-P rocks; however, whether large-scale segregation and eruption of high-Si lavas can occur in nature has yet to be proven. In this study, we investigate the possibility of immiscibility between the cogenetic 1780 Ma high-Fe-Ti-P-bearing Taihang dykes and the 'bimodal' Xiong'er volcanics in North China. The compositions of silicate melt inclusions in plagioclase megacrysts of the dykes provide a new approach to obtain the primary liquid. Mineral and bulk-rock compositions reveal that large compositional variations in the dykes are the result of plagioclase- and clinopyroxene-dominated fractional crystallization and of density-driven mineral sorting, which together caused the liquids to be poor in Ca-Al but rich in Fe-Ti-P-K, and thus chemically immiscible. Conjugate interstitial granophyric and ilmenite-rich intergrowths and reactive microstructures especially olivine coronas in the dykes, and Si-/Fe-Ti-rich globules in the volcanics, provide petrographic evidence for the presence of two coeval, coexisting liquids in equilibrium separated by a miscibility gap, and thus for immiscibility and segregation/migration. The fractional crystallization and subsequent segregation were responsible for the compositional diversity of the Taihang dykes and also of the 'bimodal' Xiong'er volcanics. Accordingly, the dacite and rhyolite lavas are potentially the high-Si counterparts of the high-Ti dykes, and the basalt and andesite lavas are the erupted equivalents of the relatively low-Ti dykes. It is likely that the sustained plagioclase- and clinopyroxene-dominated fractional crystallization, and the enhanced fO2 were responsible for the immiscibility. The segregation probably took place during the ascent of the liquid in the pumping system (feeder dykes). This likely represents one natural example of crust-scale immiscibility from which many high-Ti dykes and silicic lavas (~ 1/3 volume of the Xiong

  11. Differential branching fraction and angular analysis of the decay B0 → K*0 μ+ μ-.

    PubMed

    Aaij, R; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Constantin, F; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koppenburg, P; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Silva Coutinho, R; Shires, A; Skwarnicki, T; Smith, A C; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Torr, N; Tournefier, E; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Voss, H; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A

    2012-05-01

    The angular distributions and the partial branching fraction of the decay B0 → K*0 μ+ μ- are studied by using an integrated luminosity of 0.37  fb(-1) of data collected with the LHCb detector. The forward-backward asymmetry of the muons, A(FB), the fraction of longitudinal polarization, F(L), and the partial branching fraction dB/dq2 are determined as a function of the dimuon invariant mass. The measurements are in good agreement with the standard model predictions and are the most precise to date. In the dimuon invariant mass squared range 1.00-6.00  GeV2/c4, the results are A(FB)=-0.06(-0.14)(+0.13)±0.04, F(L)=0.55±0.10±0.03, and dB/dq2=(0.42±0.06±0.03)×10(-7)  c4/GeV2. In each case, the first error is statistical and the second systematic. PMID:22681061

  12. Deformation analysis of polymers composites: rheological model involving time-based fractional derivative

    NASA Astrophysics Data System (ADS)

    Zhou, H. W.; Yi, H. Y.; Mishnaevsky, L.; Wang, R.; Duan, Z. Q.; Chen, Q.

    2016-08-01

    A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model, is suggested to characterize the time-dependent behavior of GFRP composites by replacing Newtonian dashpot with the Abel dashpot in the classical Maxwell model. The analytic solution for the fractional derivative Maxwell model is given and the relative parameters are determined. The results estimated by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors.

  13. Empirical analysis of scaling and fractal characteristics of outpatients

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Jiang; Liu, Zi-Xian; Guo, Jin-Li

    2014-01-01

    The paper uses power-law frequency distribution, power spectrum analysis, detrended fluctuation analysis, and surrogate data testing to evaluate outpatient registration data of two hospitals in China and to investigate the human dynamics of systems that use the “first come, first served” protocols. The research results reveal that outpatient behavior follow scaling laws. The results also suggest that the time series of inter-arrival time exhibit 1/f noise and have positive long-range correlation. Our research may contribute to operational optimization and resource allocation in hospital based on FCFS admission protocols.

  14. Bicoherence analysis of model-scale jet noise.

    PubMed

    Gee, Kent L; Atchley, Anthony A; Falco, Lauren E; Shepherd, Micah R; Ukeiley, Lawrence S; Jansen, Bernard J; Seiner, John M

    2010-11-01

    Bicoherence analysis has been used to characterize nonlinear effects in the propagation of noise from a model-scale, Mach-2.0, unheated jet. Nonlinear propagation effects are predominantly limited to regions near the peak directivity angle for this jet source and propagation range. The analysis also examines the practice of identifying nonlinear propagation by comparing spectra measured at two different distances and assuming far-field, linear propagation between them. This spectral comparison method can lead to erroneous conclusions regarding the role of nonlinearity when the observations are made in the geometric near field of an extended, directional radiator, such as a jet. PMID:21110528

  15. Floodplain management in Africa: Large scale analysis of flood data

    NASA Astrophysics Data System (ADS)

    Padi, Philip Tetteh; Baldassarre, Giuliano Di; Castellarin, Attilio

    2011-01-01

    To mitigate a continuously increasing flood risk in Africa, sustainable actions are urgently needed. In this context, we describe a comprehensive statistical analysis of flood data in the African continent. The study refers to quality-controlled, large and consistent databases of flood data, i.e. maximum discharge value and times series of annual maximum flows. Probabilistic envelope curves are derived for the African continent by means of a large scale regional analysis. Moreover, some initial insights on the statistical characteristics of African floods are provided. The results of this study are relevant and can be used to get some indications to support flood management in Africa.

  16. Consecutive anaerobic-aerobic treatment of the organic fraction of municipal solid waste and lignocellulosic materials in laboratory-scale landfill-bioreactors.

    PubMed

    Pellera, Frantseska-Maria; Pasparakis, Emmanouil; Gidarakos, Evangelos

    2016-10-01

    The scope of this study is to evaluate the use of laboratory-scale landfill-bioreactors, operated consecutively under anaerobic and aerobic conditions, for the combined treatment of the organic fraction of municipal solid waste (OFMSW) with two different co-substrates of lignocellulosic nature, namely green waste (GW) and dried olive pomace (DOP). According to the results such a system would represent a promising option for eventual larger scale applications. Similar variation patterns among bioreactors indicate a relatively defined sequence of processes. Initially operating the systems under anaerobic conditions would allow energetic exploitation of the substrates, while the implementation of a leachate treatment system ultimately aiming at nutrient recovery, especially during the anaerobic phase, could be a profitable option for the whole system, due to the high organic load that characterizes this effluent. In order to improve the overall effectiveness of such a system, measures towards enhancing methane contents of produced biogas, such as substrate pretreatment, should be investigated. Moreover, the subsequent aerobic phase should have the goal of stabilizing the residual materials and finally obtain an end material eventually suitable for other purposes. PMID:27497587

  17. COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS

    SciTech Connect

    Genzel, R.; Tacconi, L. J.; Lutz, D.; Berta, S.; Burkert, A.; Saintonge, A.; Magnelli, B.; Combes, F.; García-Burillo, S.; Neri, R.; Boissier, J.; Bolatto, A.; Contini, T.; Boone, F.; Bouché, N.; Lilly, S.; Carollo, M.; Bournaud, F.; and others

    2015-02-10

    We combine molecular gas masses inferred from CO emission in 500 star-forming galaxies (SFGs) between z = 0 and 3, from the IRAM-COLDGASS, PHIBSS1/2, and other surveys, with gas masses derived from Herschel far-IR dust measurements in 512 galaxy stacks over the same stellar mass/redshift range. We constrain the scaling relations of molecular gas depletion timescale (t {sub depl}) and gas to stellar mass ratio (M {sub mol} {sub gas}/M{sub *} ) of SFGs near the star formation ''main-sequence'' with redshift, specific star-formation rate (sSFR), and stellar mass (M{sub *} ). The CO- and dust-based scaling relations agree remarkably well. This suggests that the CO → H{sub 2} mass conversion factor varies little within ±0.6 dex of the main sequence (sSFR(ms, z, M {sub *})), and less than 0.3 dex throughout this redshift range. This study builds on and strengthens the results of earlier work. We find that t {sub depl} scales as (1 + z){sup –0.3} × (sSFR/sSFR(ms, z, M {sub *})){sup –0.5}, with little dependence on M {sub *}. The resulting steep redshift dependence of M {sub mol} {sub gas}/M {sub *} ≈ (1 + z){sup 3} mirrors that of the sSFR and probably reflects the gas supply rate. The decreasing gas fractions at high M{sub *} are driven by the flattening of the SFR-M {sub *} relation. Throughout the probed redshift range a combination of an increasing gas fraction and a decreasing depletion timescale causes a larger sSFR at constant M {sub *}. As a result, galaxy integrated samples of the M {sub mol} {sub gas}-SFR rate relation exhibit a super-linear slope, which increases with the range of sSFR. With these new relations it is now possible to determine M {sub mol} {sub gas} with an accuracy of ±0.1 dex in relative terms, and ±0.2 dex including systematic uncertainties.

  18. Bioactivity-guided fractionation and analysis of compounds with anti-influenza virus activity from Gardenia jasminoides Ellis.

    PubMed

    Yang, Quanjun; Wu, Bin; Shi, Yujing; Du, Xiaowei; Fan, Mingsong; Sun, Zhaolin; Cui, Xiaolan; Huang, Chenggang

    2012-01-01

    Bioassay-guided fractionation of extracts from Fructus Gardeniae led to analysis of its bioactive natural products. After infection by influenza virus strain A/FM/1/47-MA in vivo, antiviral activity of the extracts were investigated. The target fraction was orally administered to rats and blood was collected. High-performance liquid chromatography coupled with photo diode array detector and electrospray ion trap multiple-stage tandem mass spectrometry was applied to screen the compounds absorbed into the blood. A structural characterization based on the retention time, ultraviolet spectra, parent ions and fragmentation ions was performed. Thirteen compounds were confirmed or tentatively identified. This provides an accurate profile of the composition of bioactive compounds responsible for the anti-influenza properties. PMID:22297738

  19. The ALHAMBRA survey: accurate merger fractions derived by PDF analysis of photometrically close pairs

    NASA Astrophysics Data System (ADS)

    López-Sanjuan, C.; Cenarro, A. J.; Varela, J.; Viironen, K.; Molino, A.; Benítez, N.; Arnalte-Mur, P.; Ascaso, B.; Díaz-García, L. A.; Fernández-Soto, A.; Jiménez-Teja, Y.; Márquez, I.; Masegosa, J.; Moles, M.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Aims: Our goal is to develop and test a novel methodology to compute accurate close-pair fractions with photometric redshifts. Methods: We improved the currently used methodologies to estimate the merger fraction fm from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space; (ii) including the variation in the luminosity of the sources with z in both the sample selection and the luminosity ratio constrain; and (iii) splitting individual PDFs into red and blue spectral templates to reliably work with colour selections. We tested the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. Results: The merger fractions and rates from the ALHAMBRA survey agree excellently well with those from spectroscopic work for both the general population and red and blue galaxies. With the merger rate of bright (MB ≤ -20-1.1z) galaxies evolving as (1 + z)n, the power-law index n is higher for blue galaxies (n = 2.7 ± 0.5) than for red galaxies (n = 1.3 ± 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is Nmred = 0.57 ± 0.05 for red galaxies and Nmblue = 0.26 ± 0.02 for blue galaxies. Conclusions: Our new methodology statistically exploits all the available information provided by photometric redshift codes and yields accurate measurements of the merger fraction by close pairs from using photometric redshifts alone. Current and future photometric surveys will benefit from this new methodology. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).The catalogues, probabilities, and figures of the ALHAMBRA close pairs detected in Sect. 5.1 are available at http://https://cloud.iaa.csic.es/alhambra/catalogues/ClosePairs

  20. Multi-scale model analysis and hindcast of the 2013 Colorado Flood

    NASA Astrophysics Data System (ADS)

    Gochis, David; Yu, Wei; Sampson, Kevin; Dugger, Aubrey; McCreight, James; Zhang, Yongxin; Ikeda, Kyoko

    2015-04-01

    While the generation of most flood and flash flood events is fundamentally linked to the occurrence of heavy rainfall, the physical mechanisms responsible for translating rainfall into floods are complex and manifold. These runoff generation processes evolve over many spatial and temporal scales during the course of flooding events. As such robust flood and flash flood prediction systems need to account for multitude of terrestrial processes occurring over a wide range of space and time scales. One such extreme multiscale flood event was the 2013 Colorado Flood in which over 400 mm of rainfall fell along the Rock Mountain mountain front region over the course of a few days. The flooding impacts from this heavy rainfall event included not only high, fast flows in steep mountain streams but also included large areas of inundation on the adjacent plains and numerous soil saturation excess impacts such as hillslope failures and groundwater intrusions into domestic structures. A multi-scale and multi-process evaluation of this flood event is performed using the community WRF-Hydro modeling system. We incorporate several operational quantitative precipitation estimate and quantitative precipitation forecast products in the analysis and document the skill of multiple configurations of WRF-Hydro physics options across a range of contributing area length scales. Emphasis is placed on assessing how well the different model configurations capture the multi-scale streamflow response from small headwater catchments out to the entire South Platte River basin whose total contributing area exceeds 25,000 sq km. In addition to streamflow we also present evaluations of event simulations and hindcasts of soil saturation fraction, groundwater levels and inundated areas as a means of assessing different runoff generation mechanisms. Finally, results from a U.S. national-scale, fully-coupled hydrometeorological hindcast of the 2013 Colorado flood event using the combined WRF atmospheric

  1. Perceptual security of encrypted images based on wavelet scaling analysis

    NASA Astrophysics Data System (ADS)

    Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.

    2016-08-01

    The scaling behavior of the pixel fluctuations of encrypted images is evaluated by using the detrended fluctuation analysis based on wavelets, a modern technique that has been successfully used recently for a wide range of natural phenomena and technological processes. As encryption algorithms, we use the Advanced Encryption System (AES) in RBT mode and two versions of a cryptosystem based on cellular automata, with the encryption process applied both fully and partially by selecting different bitplanes. In all cases, the results show that the encrypted images in which no understandable information can be visually appreciated and whose pixels look totally random present a persistent scaling behavior with the scaling exponent α close to 0.5, implying no correlation between pixels when the DFA with wavelets is applied. This suggests that the scaling exponents of the encrypted images can be used as a perceptual security criterion in the sense that when their values are close to 0.5 (the white noise value) the encrypted images are more secure also from the perceptual point of view.

  2. A Single In-Vial Dual Extraction Strategy for the Simultaneous Lipidomics and Proteomics Analysis of HDL and LDL Fractions.

    PubMed

    Godzien, Joanna; Ciborowski, Michal; Armitage, Emily Grace; Jorge, Inmaculada; Camafeita, Emilio; Burillo, Elena; Martín-Ventura, Jose Luis; Rupérez, Francisco J; Vázquez, Jesús; Barbas, Coral

    2016-06-01

    A single in-vial dual extraction (IVDE) procedure for the subsequent analysis of lipids and proteins in the high-density lipoprotein (HDL) and low-density lipoprotein (LDL) fractions derived from the same biological sample is presented. On the basis of methyl-tert-butyl ether (MTBE) extraction, IVDE leads to the formation of three phases: a protein pellet at the bottom, an aqueous phase with polar compounds, and an ether phase with lipophilic compounds. After sample extraction, performed within a high-performance liquid chromatography vial insert, the ether phase was directly injected for lipid fingerprinting, while the protein pellet, after evaporation of the remaining sample, was used for proteomics analysis. Human HDL and LDL isolates were used to test the suitability of the IVDE methodology for lipid and protein analysis from a single sample in terms of data quality and matching composition to that of HDL and LDL. Subsequently, HDL and LDL fractions isolated from ApoE-KO and wild-type mice were used to validate the capacity of IVDE for revealing changes in lipid and protein abundance. Results indicate that IVDE can be successfully used for the subsequent analysis of lipids and proteins with the advantages of time saving, simplicity, and reduced sample amount. PMID:27117984

  3. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.

    1998-01-01

    Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely independent of scale. Self-similarity is defined as a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. An ideal fractal (or monofractal) curve or surface has a constant dimension over all scales, although it may not be an integer value. This is in contrast to Euclidean or topological dimensions, where discrete one, two, and three dimensions describe curves, planes, and volumes. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution. However, most geographical phenomena are not strictly self-similar at all scales, but they can often be modeled by a stochastic fractal in which the scaling and self-similarity properties of the fractal have inexact patterns that can be described by statistics. Stochastic fractal sets relax the monofractal self-similarity assumption and measure many scales and resolutions in order to represent the varying form of a phenomenon as a function of local variables across space. In image interpretation, pattern is defined as the overall spatial form of related features, and the repetition of certain forms is a characteristic pattern found in many cultural objects and some natural features. Texture is the visual impression of coarseness or smoothness caused by the variability or uniformity of image tone or color. A potential use of fractals concerns the analysis of image texture. In these situations it is commonly observed that the degree of roughness or inexactness in an image or surface is a function of scale and not of experimental technique. The fractal dimension of remote sensing data could yield quantitative insight on the spatial complexity and

  4. The Sun-Earth connect 1: A fractional d-matrix of solar emissions compared to spectral analysis evidence of solar measurements and climate proxies

    NASA Astrophysics Data System (ADS)

    Baker, Robert G. V.

    2016-02-01

    The possibility that there is a constant ratio underpinning published solar cycles provides an opportunity to explore the harmonics within emission processes. This idea is initially developed by a phenomenological matrix where the elements or emission phases are underpinned by a cyclic fractional dimension d (0.39807) which is shown here to include the fine structure constant (1/137.0356). The Sun's Carrington synodic rotation (27.275d) multiplied by the inverse of the fine structure constant creates elements of this d-matrix which yields possible sequences of self-similar phase periods between harmonic elements of solar emissions. The periodicities of the Carrington rotation is defined by row 1 (R1) and subsequent rows R2,R3,R4 are the potential phase periods of possible twisting permutations of the tachocline. For solar measurements, the first four rows of the matrix predict at least 98% of the top hundred significant periodicities determined from multi-taper spectral analysis of solar data sets (the satellite ACRIM composite irradiance; the terrestrial 10.7cm Penticton Adjusted Daily Radio Flux, Series D; and the historical mean monthly International Sunspot Number). At centennial and millennial time scales, the same matrix predicts 'average' significant periodicities (greater than 95%) reported in 23 published climate data sets. This discovery suggests there is strong empirical evidence for a d-cyclic fractional 'solar clock', where the corresponding spectrum of cycles and switching events are embedded into the historical, climatic and geological records of the Earth.

  5. Analysis of panthers full-scale heat transfer tests with RELAP5

    SciTech Connect

    Parlatan, Y.; Boyer, B.D.; Jo, J.; Rohatgi, S.

    1996-01-01

    The RELAP5 code is being assessed on the full-scale Passive Containment Cooling System (PCCS) in the Performance ANalysis and Testing of HEat Removal Systems (PANTHERS) facility at Societa Informazioni Termoidrauliche (SIET) in Italy. PANTHERS is a test facility with fall-size prototype beat exchangers for the PCCS in support of the General Electric`s (GE) Simplified Boiling Water Reactor (SBWR) program. PANTHERS tests with a low noncondensable gas concentration and with a high noncondensable gas concentration were analyzed with RELAP5. The results showed that beat transfer rate decreases significantly along the PCCS tubes. In the test case with a higher inlet noncondensable gas fraction, the PCCS removed 35% less heat than in the test case with the lower noncondensable gas fraction. The dominant resistance to the overall heat transfer is the condensation beat transfer resistance inside the tubes. This resistance increased by about 5-fold between the inlet and exit of the tube due to the build up of noncondensable gases along the tube. The RELAP5 calculations also predicted that 4% to 5% of the heat removed to the PCCS pool occurs in the inlet steam piping and PCCS upper and lower headers. These piping needs to be modeled for other tests systems. The full-scale PANTHERS predictions are also compared against 1/400 scale GIRAFFE tests. GIRAFFE has 33% larger heat surface area, but its efficiency is only 15% and 23% higher than PANTHERS for the two cases analyzed This was explained by the high heat transfer resistance inside the tubes near the exit.

  6. Reactor Physics Methods and Analysis Capabilities in SCALE

    SciTech Connect

    DeHart, Mark D; Bowman, Stephen M

    2011-01-01

    The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.

  7. Reactor Physics Methods and Analysis Capabilities in SCALE

    SciTech Connect

    Mark D. DeHart; Stephen M. Bowman

    2011-05-01

    The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.

  8. SCALE 6: Comprehensive Nuclear Safety Analysis Code System

    SciTech Connect

    Bowman, Stephen M

    2011-01-01

    Version 6 of the Standardized Computer Analyses for Licensing Evaluation (SCALE) computer software system developed at Oak Ridge National Laboratory, released in February 2009, contains significant new capabilities and data for nuclear safety analysis and marks an important update for this software package, which is used worldwide. This paper highlights the capabilities of the SCALE system, including continuous-energy flux calculations for processing multigroup problem-dependent cross sections, ENDF/B-VII continuous-energy and multigroup nuclear cross-section data, continuous-energy Monte Carlo criticality safety calculations, Monte Carlo radiation shielding analyses with automated three-dimensional variance reduction techniques, one- and three-dimensional sensitivity and uncertainty analyses for criticality safety evaluations, two- and three-dimensional lattice physics depletion analyses, fast and accurate source terms and decay heat calculations, automated burnup credit analyses with loading curve search, and integrated three-dimensional criticality accident alarm system analyses using coupled Monte Carlo criticality and shielding calculations.

  9. Horizontal Variability of Water and Its Relationship to Cloud Fraction near the Tropical Tropopause: Using Aircraft Observations of Water Vapor to Improve the Representation of Grid-scale Cloud Formation in GEOS-5

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Molod, Andrea M.

    2014-01-01

    Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.

  10. Scaling and dimensional analysis of acoustic streaming jets

    SciTech Connect

    Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H.

    2014-09-15

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.

  11. Producing fractional rangeland component predictions in a sagebrush ecosystem, a Wyoming sensitivity analysis

    USGS Publications Warehouse

    Xian, George; Homer, Collin G.; Granneman, Brian; Meyer, Debra K.

    2012-01-01

    high-resolution remote sensing data (Homer and others, 2012). This method has proven its utility; however, to develop these products across even larger areas will require additional cost efficiencies to ensure that an adequate product can be developed for the lowest cost possible. Given the vast geographic extent of shrubland ecosystems in the western United States, identifying cost efficiencies with optimal training data development and subsequent application to medium resolution satellite imagery provide the most likely areas for methodological efficiency gains. The primary objective of this research was to conduct a series of sensitivity tests to evaluate the most optimal and practical way to develop Landsat scale information for estimating the extent and distribution of sagebrush ecosystem components over large areas in the conterminous United States. An existing dataset of sagebrush components developed from extensive field measurements, high-resolution satellite imagery, and medium resolution Landsat imagery in Wyoming was used as the reference database (Homer and others, 2012). Statistical analysis was performed to analyze the relation between the accuracy of sagebrush components and the amount and distribution of training data on Landsat scenes needed to obtain accurate predictions.

  12. Detection of venous needle dislodgement during haemodialysis using fractional order shape index ratio and fuzzy colour relation analysis.

    PubMed

    Lin, Chia-Hung; Chen, Wei-Ling; Kan, Chung-Dann; Wu, Ming-Jui; Mai, Yi-Chen

    2015-12-01

    Venous needle dislodgement (VND) is a life-threatening complication during haemodialysis (HD) treatment. When VND occurs, it only takes a few minutes for blood loss in an adult patient. According to the ANNA (American Nephrology Nurses' Association) VND survey reports, VND is a concerning issue for the nephrology nurses/staff and patients. To ensure HD care and an effective treatment environment, this Letter proposes a combination of fractional order shape index ratio (SIR) and fuzzy colour relation analysis (CRA) to detect VND. If the venous needle drops out, clinical examinations show that both heart pulses and pressure wave variations have a low correlation at the venous anatomic site. Therefore, fractional order SIR is used to quantify the differences in transverse vibration pressures (TVPs) between the normal condition and meter reading. Linear regression shows that the fractional order SIR has a high correlation with the TVP variation. Fuzzy CRA is designed in a simple and visual message manner to identify the risk levels. A worst-case study demonstrated that the proposed model can be used for VND detection in clinical applications. PMID:26713159

  13. Dehazing method through polarimetric imaging and multi-scale analysis

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Shao, Xiaopeng; Liu, Fei; Wang, Lin

    2015-05-01

    An approach for haze removal utilizing polarimetric imaging and multi-scale analysis has been developed to solve one problem that haze weather weakens the interpretation of remote sensing because of the poor visibility and short detection distance of haze images. On the one hand, the polarization effects of the airlight and the object radiance in the imaging procedure has been considered. On the other hand, one fact that objects and haze possess different frequency distribution properties has been emphasized. So multi-scale analysis through wavelet transform has been employed to make it possible for low frequency components that haze presents and high frequency coefficients that image details or edges occupy are processed separately. According to the measure of the polarization feather by Stokes parameters, three linear polarized images (0°, 45°, and 90°) have been taken on haze weather, then the best polarized image min I and the worst one max I can be synthesized. Afterwards, those two polarized images contaminated by haze have been decomposed into different spatial layers with wavelet analysis, and the low frequency images have been processed via a polarization dehazing algorithm while high frequency components manipulated with a nonlinear transform. Then the ultimate haze-free image can be reconstructed by inverse wavelet reconstruction. Experimental results verify that the dehazing method proposed in this study can strongly promote image visibility and increase detection distance through haze for imaging warning and remote sensing systems.

  14. Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks

    NASA Astrophysics Data System (ADS)

    Huo, Jingjing; Zhao, Hongyong

    2016-04-01

    In this paper, a fractional SIR model with birth and death rates on heterogeneous complex networks is proposed. Firstly, we obtain a threshold value R0 based on the existence of endemic equilibrium point E∗, which completely determines the dynamics of the model. Secondly, by using Lyapunov function and Kirchhoff's matrix tree theorem, the globally asymptotical stability of the disease-free equilibrium point E0 and the endemic equilibrium point E∗ of the model are investigated. That is, when R0 < 1, the disease-free equilibrium point E0 is globally asymptotically stable and the disease always dies out; when R0 > 1, the disease-free equilibrium point E0 becomes unstable and in the meantime there exists a unique endemic equilibrium point E∗, which is globally asymptotically stable and the disease is uniformly persistent. Finally, the effects of various immunization schemes are studied and compared. Numerical simulations are given to demonstrate the main results.

  15. Third brain ventricle deformation analysis using fractional differentiation and evolution strategy in brain cine-MRI

    NASA Astrophysics Data System (ADS)

    Nakib, Amir; Aiboud, Fazia; Hodel, Jerome; Siarry, Patrick; Decq, Philippe

    2010-03-01

    In this paper, we present an original method to evaluate the deformations in the third cerebral ventricle on a brain cine- MR imaging. First, a segmentation process, based on a fractional differentiation method, is directly applied on a 2D+t dataset to detect the contours of the region of interest (i.e. lamina terminalis). Then, the successive segmented contours are matched using a procedure of global alignment, followed by a morphing process, based on the Covariance Matrix Adaptation Evolution Strategy (CMAES). Finally, local measurements of deformations are derived from the previously determined matched contours. The validation step is realized by comparing our results with the measurements achieved on the same patients by an expert.

  16. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and (31)P NMR analysis.

    PubMed

    Xu, Gang; Zhang, You; Shao, Hongbo; Sun, Junna

    2016-11-01

    Phosphorus (P) recycling or reuse by pyrolyzing crop residue has recently elicited increased research interest. However, the effects of feedstock and pyrolysis conditions on P species have not been fully understood. Such knowledge is important in identifying the agronomic and environmental uses of biochar. Residues of three main Chinese agricultural crops and the biochars (produced at 300°C-600°C) derived from these crops were used to determine P transformations during pyrolysis. Hedley sequential fractionation and (31)P NMR analyses were used in the investigation. Our results showed that P transformation in biochar was significantly affected by pyrolysis temperature regardless of feedstock (Wheat straw, maize straw and peanut husk). Pyrolysis treatment transformed water soluble P into a labile (NaHCO3-Pi) or semi-labile pool (NaOH-Pi) and into a stable pool (Dil. HCl P and residual-P). At the same time, organic P was transformed into inorganic P fractions which was identified by the rapid decomposition of organic P detected with solution (31)P NMR. The P transformation during pyrolysis process suggested more stable P was formed at a higher pyrolysis temperature. This result was also evidenced by the presence of less soluble or stable P species, such as such as poly-P, crandallite (CaAl3(OH)5(PO4)2) and Wavellite (Al3(OH)3(PO4)2·5H2O), as detected by solid-state (31)P NMR in biochars formed at a higher pyrolysis temperature. Furthermore, a significant proportion of less soluble pyrophosphate was identified by solution (2%-35%) and solid-state (8%-53%) (31)P NMR, which was also responsible for the stable P forms at higher pyrolysis temperature although their solubility or stability requires further investigation. Results suggested that a relatively lower pyrolysis temperature retains P availability regardless of feedstock during pyrolysis process. PMID:27343937

  17. Comparative context analysis of codon pairs on an ORFeome scale

    PubMed Central

    Moura, Gabriela; Pinheiro, Miguel; Silva, Raquel; Miranda, Isabel; Afreixo, Vera; Dias, Gaspar; Freitas, Adelaide; Oliveira, José L; Santos, Manuel AS

    2005-01-01

    Codon context is an important feature of gene primary structure that modulates mRNA decoding accuracy. We have developed an analytical software package and a graphical interface for comparative codon context analysis of all the open reading frames in a genome (the ORFeome). Using the complete ORFeome sequences of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Escherichia coli, we show that this methodology permits large-scale codon context comparisons and provides new insight on the rules that govern the evolution of codon-pair context. PMID:15774029

  18. Fractional watt Vuillemier cryogenic refrigerator program engineering notebook. Volume 2: Stress analysis

    NASA Technical Reports Server (NTRS)

    Miller, W. S.

    1974-01-01

    A structural analysis performed on the 1/4-watt cryogenic refrigerator. The analysis covered the complete assembly except for the cooling jacket and mounting brackets. Maximum stresses, margin of safety, and natural frequencies were calculated for structurally loaded refrigerator components shown in assembly drawings. The stress analysis indicates that the design is satisfactory for the specified vibration environment, and the proof, burst, and normal operating loads.

  19. Fractionation and proteomic analysis of the Walterinnesia aegyptia snake venom using OFFGEL and MALDI-TOF-MS techniques.

    PubMed

    Abd El Aziz, Tarek Mohamed; Bourgoin-Voillard, Sandrine; Combemale, Stéphanie; Beroud, Rémy; Fadl, Mahmoud; Seve, Michel; De Waard, Michel

    2015-10-01

    Animal venoms are complex mixtures of more than 100 different compounds, including peptides, proteins, and nonprotein compounds such as lipids, carbohydrates, and metal ions. In addition, the existing compounds show a wide range of molecular weights and concentrations within these venoms, making separation and purification procedures quite tedious. Here, we analyzed for the first time by MS the advantages of using the OFFGEL technique in the separation of the venom components of the Egyptian Elapidae Walterinnesia aegyptia snake compared to two classical methods of separation, SEC and RP-HPLC. We demonstrate that OFFGEL separates venom components over a larger scale of fractions, preserve respectable resolution with regard to the presence of a given compound in adjacent fractions and allows the identification of a greater number of ions by MS (102 over 134 total ions). We also conclude that applying several separating techniques (SEC and RP-HPLC in addition to OFFGEL) provides complementary results in terms of ion detection (21 more for SEC and 22 more with RP-HPLC). As a result, we provide a complete list of 134 ions present in the venom of W. aegyptia by using all these techniques combined. PMID:26178575

  20. Quantitative analysis of the disorder broadening and the intrinsic gap for the ν=5/2 fractional quantum Hall state

    NASA Astrophysics Data System (ADS)

    Samkharadze, Nodar; Watson, John; Gardner, Geoff; Manfra, Michael; Pfeiffer, Loren; West, Ken; Csathy, Gabor

    2012-02-01

    We analyze several different methods of extracting intrinsic gaps of fractional quantum Hall states (FQHS) of the second Landau level from experimental data. Because of the discrepancy between these methods, we introduce a new way of estimating the disorder broadening in the second Landau level based on scaling of the gaps of the major odd denominator states. The results of our technique are in good agreement with a previously used method utilizing only the gaps of the even denominator states. We successfully apply this technique to several samples of high quality and find an excellent agreement between the estimated intrinsic gap and results of numerical simulations. We also report, for the first time, the dependence of the intrinsic gap of ν=5/2 FQHS on Landau level mixing. This work was supported by the NSF grant DMR- 0907172.

  1. Microbial community analysis of two field-scale sulfate-reducing bioreactors treating mine drainage.

    PubMed

    Hiibel, Sage R; Pereyra, Luciana P; Inman, Laura Y; Tischer, April; Reisman, David J; Reardon, Kenneth F; Pruden, Amy

    2008-08-01

    The microbial communities of two field-scale pilot sulfate-reducing bioreactors treating acid mine drainage (AMD), Luttrell and Peerless Jenny King (PJK), were compared using biomolecular tools and multivariate statistical analyses. The two bioreactors were well suited for this study because their geographic locations and substrate compositions were similar while the characteristics of influent AMD, configuration and degree of exposure to oxygen were distinct. The two bioreactor communities were found to be functionally similar, including cellulose degraders, fermenters and sulfate-reducing bacteria (SRB). Significant differences were found between the two bioreactors in phylogenetic comparisons of cloned 16S rRNA genes and adenosine 5'-phosphosulfate reductase (apsA) genes. The apsA gene clones from the Luttrell bioreactor were dominated by uncultured SRB most closely related to Desulfovibrio spp., while those of the PJK bioreactor were dominated by Thiobacillus spp. The fraction of the SRB genus Desulfovibrio was also higher at Luttrell than at PJK as determined by quantitative real-time polymerase chain reaction analysis. Oxygen exposure at PJK is hypothesized to be the primary cause of these differences. This study is the first rigorous phylogenetic investigation of field-scale bioreactors treating AMD and the first reported application of multivariate statistical analysis of remediation system microbial communities applying UniFrac software. PMID:18430021

  2. Concentration and fractionation by isoelectric trapping in a micropreparative-scale multicompartmental electrolyzer having orthogonal pH gradients. Part 2.

    PubMed

    Lim, Peniel J; Vigh, Gyula

    2011-06-01

    A micropreparative-scale multicompartmental electrolyzer called ConFrac has been developed and tested for isoelectric trapping separations. ConFrac can be operated in pass-by-pass mode or recirculating mode, using either asymmetrical feeding (feed enters only the anodic or the cathodic flow-through compartment) or symmetrical feeding (feed enters both the anodic and the cathodic flow-through compartment). Symmetrical feeding results in higher processing rates and is the preferred operation mode. Residence time in the flow-through compartments is set as a compromise between processing rate and temperature rise in the effluent. Ampholytic components have been isolated from 5 to 50 mL volumes of micromolar feed solutions and hundredfold concentrated into 100-μL collection compartments. Samples containing ampholytic analytes in highly conducting salt solutions were readily desalted and fractionated in ConFrac in one operation. pH transients formerly observed in other isoelectric trapping devices were observed in ConFrac as well. The pH transients were caused by the unequal ion transmission rates of the anodic- and cathodic-side buffering membranes. PMID:21647926

  3. Scaling laws of nanoporous gold under uniaxial compression: Effects of structural disorder on the solid fraction, elastic Poisson's ratio, Young's modulus and yield strength

    NASA Astrophysics Data System (ADS)

    Roschning, B.; Huber, N.

    2016-07-01

    In this work the relationship between the structural disorder and the macroscopic mechanical behavior of nanoporous gold under uniaxial compression was investigated, using the finite element method. A recently proposed model based on a microstructure consisting of four-coordinated spherical nodes interconnected by cylindrical struts, whose node positions are randomly displaced from the lattice points of a diamond cubic lattice, was extended. This was done by including the increased density as result of the introduced structural disorder. Scaling equations for the elastic Poisson's ratio, the Young's modulus and the yield strength were determined as functions of the structural disorder and the solid fraction. The extended model was applied to identify the elastic-plastic behavior of the solid phase of nanoporous gold. It was found, that the elastic Poisson's ratio provides a robust basis for the calibration of the structural disorder. Based on this approach, a systematic study of the size effect on the yield strength was performed and the results were compared to experimental data provided in literature. An excellent agreement with recently published results for polymer infiltrated samples of nanoporous gold with varying ligament size was found.

  4. Irregularities and scaling in signal and image processing: multifractal analysis

    NASA Astrophysics Data System (ADS)

    Abry, Patrice; Jaffard, Herwig; Wendt, Stéphane

    2015-03-01

    B. Mandelbrot gave a new birth to the notions of scale invariance, self-similarity and non-integer dimensions, gathering them as the founding corner-stones used to build up fractal geometry. The first purpose of the present contribution is to review and relate together these key notions, explore their interplay and show that they are different facets of a single intuition. Second, we will explain how these notions lead to the derivation of the mathematical tools underlying multifractal analysis. Third, we will reformulate these theoretical tools into a wavelet framework, hence enabling their better theoretical understanding as well as their efficient practical implementation. B. Mandelbrot used his concept of fractal geometry to analyze real-world applications of very different natures. As a tribute to his work, applications of various origins, and where multifractal analysis proved fruitful, are revisited to illustrate the theoretical developments proposed here.

  5. Qualitative and quantitative analysis of an alkaloid fraction from Piper longum L. using ultra-high performance liquid chromatography-diode array detector-electrospray ionization mass spectrometry.

    PubMed

    Li, Kuiyong; Fan, Yunpeng; Wang, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2015-05-10

    In a previous research, an alkaloid fraction and 18 alkaloid compounds were prepared from Piper longum L. by series of purification process. In this paper, a qualitative and quantitative analysis method using ultra-high performance liquid chromatography-diode array detector-mass spectrometry (UHPLC-DAD-MS) was developed to evaluate the alkaloid fraction. Qualitative analysis of the alkaloid fraction was firstly completed by UHPLC-DAD method and 18 amide alkaloid compounds were identified. A further qualitative analysis of the alkaloid fraction was accomplished by UHPLC-MS/MS method. Another 25 amide alkaloids were identified according to their characteristic ions and neutral losses. At last, a quantitative method for the alkaloid fraction was established using four marker compounds including piperine, pipernonatine, guineensine and N-isobutyl-2E,4E-octadecadienamide. After the validation of this method, the contents of above four marker compounds in the alkaloid fraction were 57.5mg/g, 65.6mg/g, 17.7mg/g and 23.9mg/g, respectively. Moreover, the relative response factors of other three compounds to piperine were calculated. A comparative study between external standard quantification and relative response factor quantification proved no remarkable difference. UHPLC-DAD-MS method was demonstrated to be a powerful tool for the characterization of the alkaloid fraction from P. longum L. and the result proved that the quality of alkaloid fraction was efficiently improved after appropriate purification. PMID:25746504

  6. A Multi-scale Approach to Urban Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Gluch, Renne; Quattrochi, Dale A.

    2005-01-01

    An environmental consequence of urbanization is the urban heat island effect, a situation where urban areas are warmer than surrounding rural areas. The urban heat island phenomenon results from the replacement of natural landscapes with impervious surfaces such as concrete and asphalt and is linked to adverse economic and environmental impacts. In order to better understand the urban microclimate, a greater understanding of the urban thermal pattern (UTP), including an analysis of the thermal properties of individual land covers, is needed. This study examines the UTP by means of thermal land cover response for the Salt Lake City, Utah, study area at two scales: 1) the community level, and 2) the regional or valleywide level. Airborne ATLAS (Advanced Thermal Land Applications Sensor) data, a high spatial resolution (10-meter) dataset appropriate for an environment containing a concentration of diverse land covers, are used for both land cover and thermal analysis at the community level. The ATLAS data consist of 15 channels covering the visible, near-IR, mid-IR and thermal-IR wavelengths. At the regional level Landsat TM data are used for land cover analysis while the ATLAS channel 13 data are used for the thermal analysis. Results show that a heat island is evident at both the community and the valleywide level where there is an abundance of impervious surfaces. ATLAS data perform well in community level studies in terms of land cover and thermal exchanges, but other, more coarse-resolution data sets are more appropriate for large-area thermal studies. Thermal response per land cover is consistent at both levels, which suggests potential for urban climate modeling at multiple scales.

  7. Bi-component T2 * analysis of bound and pore bone water fractions fails at high field strengths.

    PubMed

    Seifert, Alan C; Wehrli, Suzanne L; Wehrli, Felix W

    2015-07-01

    Osteoporosis involves the degradation of the bone's trabecular architecture, cortical thinning and enlargement of cortical pores. Increased cortical porosity is a major cause of the decreased strength of osteoporotic bone. The majority of cortical pores, however, are below the resolution limit of MRI. Recent work has shown that porosity can be evaluated by MRI-based quantification of bone water. Bi-exponential T2 * fitting and adiabatic inversion preparation are the two most common methods purported to distinguish bound and pore water in order to quantify matrix density and porosity. To assess the viability of T2 * bi-component analysis as a method for the quantification of bound and pore water fractions, we applied this method to human cortical bone at 1.5, 3, 7 and 9.4 T, and validated the resulting pool fractions against micro-computed tomography-derived porosity and gravimetrically determined bone densities. We also investigated alternative methods: two-dimensional T1 -T2 * bi-component fitting by incorporation of saturation recovery, one- and two-dimensional fitting of Carr-Purcell-Meiboom-Gill (CPMG) echo amplitudes, and deuterium inversion recovery. The short-T2 * pool fraction was moderately correlated with porosity (R(2)  = 0.70) and matrix density (R(2)  = 0.63) at 1.5 T, but the strengths of these associations were found to diminish rapidly as the field strength increased, falling below R(2)  = 0.5 at 3 T. The addition of the T1 dimension to bi-component analysis only slightly improved the strengths of these correlations. T2 *-based bi-component analysis should therefore be used with caution. The performance of deuterium inversion recovery at 9.4 T was also poor (R(2)  = 0.50 vs porosity and R(2)  = 0.46 vs matrix density). The CPMG-derived short-T2 fraction at 9.4 T, however, was highly correlated with porosity (R(2)  = 0.87) and matrix density (R(2)  = 0.88), confirming the utility of this method for independent

  8. Bi-Component T2* Analysis of Bound and Pore Bone Water Fractions Fails at High Field Strengths

    PubMed Central

    Seifert, Alan C.; Wehrli, Suzanne L.; Wehrli, Felix W.

    2015-01-01

    Osteoporosis involves degradation of bone’s trabecular architecture, cortical thinning, and enlargement of cortical pores. Increased cortical porosity is a major cause of the decreased strength of osteoporotic bone. The majority of cortical pores, however, are below the resolution limit of MRI. Recent work has shown that porosity can be evaluated by MRI-based quantification of bone water. Bi-exponential T2* fitting and adiabatic inversion preparation are the two most common methods purported to distinguish bound and pore water in order to quantify matrix density and porosity. To assess the viability of T2* bi-component analysis as a method for quantifying bound and pore water fractions, we have applied this method to human cortical bone at 1.5T, 3T, 7T, and 9.4T, and validated the resulting pool fractions against μCT-derived porosity and gravimetrically-determined bone densities. We also investigated alternative methods: 2D T1–T2* bi-component fitting by incorporating saturation-recovery, 1D and 2D fitting of CPMG echo amplitudes, and deuterium inversion recovery. Short-T2* pool fraction was moderately correlated with porosity (R2 = 0.70) and matrix density (R2 = 0.63) at 1.5T, but the strengths of these associations were found to diminish rapidly as field strength increases, falling below R2 = 0.5 at 3T. Addition of the T1 dimension to bi-component analysis only slightly improved the strengths of these correlations. T2*-based bi-component analysis should therefore be used with caution. Performance of deuterium inversion-recovery at 9.4T was also poor (R2 = 0.50 versus porosity and R2 = 0.46 versus matrix density). CPMG-derived short-T2 fraction at 9.4T, however, is highly correlated with porosity (R2 = 0.87) and matrix density (R2 = 0.88), confirming the utility of this method for independent validation of bone water pools. PMID:25981785

  9. Benefits of β blockers in patients with heart failure and reduced ejection fraction: network meta-analysis

    PubMed Central

    Biondi-Zoccai, Giuseppe; Abbate, Antonio; D’Ascenzo, Fabrizio; Castagno, Davide; Van Tassell, Benjamin; Mukherjee, Debabrata; Lichstein, Edgar

    2013-01-01

    Objective To clarify whether any particular β blocker is superior in patients with heart failure and reduced ejection fraction or whether the benefits of these agents are mainly due to a class effect. Design Systematic review and network meta-analysis of efficacy of different β blockers in heart failure. Data sources CINAHL(1982-2011), Cochrane Collaboration Central Register of Controlled Trials (-2011), Embase (1980-2011), Medline/PubMed (1966-2011), and Web of Science (1965-2011). Study selection Randomized trials comparing β blockers with other β blockers or other treatments. Data extraction The primary endpoint was all cause death at the longest available follow-up, assessed with odds ratios and Bayesian random effect 95% credible intervals, with independent extraction by observers. Results 21 trials were included, focusing on atenolol, bisoprolol, bucindolol, carvedilol, metoprolol, and nebivolol. As expected, in the overall analysis, β blockers provided credible mortality benefits in comparison with placebo or standard treatment after a median of 12 months (odds ratio 0.69, 0.56 to 0.80). However, no obvious differences were found when comparing the different β blockers head to head for the risk of death, sudden cardiac death, death due to pump failure, or drug discontinuation. Accordingly, improvements in left ventricular ejection fraction were also similar irrespective of the individual study drug. Conclusion The benefits of β blockers in patients with heart failure with reduced ejection fraction seem to be mainly due to a class effect, as no statistical evidence from current trials supports the superiority of any single agent over the others. PMID:23325883

  10. Investigation of Biogrout processes by numerical analysis at pore scale

    NASA Astrophysics Data System (ADS)

    Bergwerff, Luke; van Paassen, Leon A.; Picioreanu, Cristian; van Loosdrecht, Mark C. M.

    2013-04-01

    Biogrout is a soil improving process that aims to improve the strength of sandy soils. The process is based on microbially induced calcite precipitation (MICP). In this study the main process is based on denitrification facilitated by bacteria indigenous to the soil using substrates, which can be derived from pretreated waste streams containing calcium salts of fatty acids and calcium nitrate, making it a cost effective and environmentally friendly process. The goal of this research is to improve the understanding of the process by numerical analysis so that it may be improved and applied properly for varying applications, such as borehole stabilization, liquefaction prevention, levee fortification and mitigation of beach erosion. During the denitrification process there are many phases present in the pore space including a liquid phase containing solutes, crystals, bacteria forming biofilms and gas bubbles. Due to the amount of phases and their dynamic changes (multiphase flow with (non-linear) reactive transport), there are many interactions making the process very complex. To understand this complexity in the system, the interactions between these phases are studied in a reductionist approach, increasing the complexity of the system by one phase at a time. The model will initially include flow, solute transport, crystal nucleation and growth in 2D at pore scale. The flow will be described by Navier-Stokes equations. Initial study and simulations has revealed that describing crystal growth for this application on a fixed grid can introduce significant fundamental errors. Therefore a level set method will be employed to better describe the interface of developing crystals in between sand grains. Afterwards the model will be expanded to 3D to provide more realistic flow, nucleation and clogging behaviour at pore scale. Next biofilms and lastly gas bubbles may be added to the model. From the results of these pore scale models the behaviour of the system may be

  11. Problems of allometric scaling analysis: examples from mammalian reproductive biology.

    PubMed

    Martin, Robert D; Genoud, Michel; Hemelrijk, Charlotte K

    2005-05-01

    Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric grades); (3) potential restrictions on statistical independence resulting from phylogenetic inertia; and (4) the need for extreme caution in inferring causation from correlation. A new non-parametric line-fitting technique has been developed that eliminates requirements for normality of distribution, greatly reduces the influence of outliers and permits objective recognition of grade shifts in substantial datasets. This technique is applied in scaling analyses of mammalian gestation periods and of neonatal body mass in primates. These analyses feed into a re-examination, conducted with partial correlation analysis, of the maternal energy hypothesis relating to mammalian brain evolution, which suggests links between body size and brain size in neonates and adults, gestation period and basal metabolic rate. Much has been made of the potential problem of phylogenetic inertia as a confounding factor in scaling analyses. However, this problem may be less severe than suspected earlier because nested analyses of variance conducted on residual variation (rather than on raw values) reveals that there is considerable variance at low taxonomic levels. In fact, limited divergence in body size between closely related species is one of the prime examples of phylogenetic inertia. One common approach to eliminating perceived problems of phylogenetic inertia in allometric analyses has been calculation of 'independent contrast values'. It is demonstrated that the reasoning behind this approach is flawed in several ways. Calculation of contrast values for closely related species of similar body size is, in fact, highly questionable, particularly when there are major deviations from the best

  12. Influence of plaque characteristics on fractional flow reserve for coronary lesions with intermediate to obstructive stenosis: insights from integrated-backscatter intravascular ultrasound analysis.

    PubMed

    Sakurai, Shinichiro; Takashima, Hiroaki; Waseda, Katsuhisa; Gosho, Masahiko; Kurita, Akiyoshi; Ando, Hirohiko; Maeda, Kazuyuki; Suzuki, Akihiro; Fujimoto, Masanobu; Amano, Tetsuya

    2015-10-01

    The aim of this study was to determine the correlation between the fractional flow reserve (FFR) values and volumetric intravascular ultrasound (IVUS) parameters derived from classic gray-scale IVUS and integrated backscatter (IB)-IVUS, taking into account known confounding factors. Patients with unstable angina pectoris with the frequent development of vulnerable plaques often showed the discrepancy between the FFR value and the quantitative coronary angiography findings. Our target population was 107 consecutive subjects with 114 isolated lesions who were scheduled for elective coronary angiography. The FFR was calculated as the mean distal coronary pressure divided by the mean aortic pressure during maximal hyperemia. Various volumetric parameters such as lipid plaque volume (LPV) and percentage of LPV (%LPV) were measured using IB-IVUS. Simple and multivariate linear regression analysis was employed to evaluate the correlation between FFR values and various classic gray-scale IVUS and IB-IVUS parameters. The Akaike information criterion (AIC) was used to compare the goodness of fit in an each model. Both the %LPV (r = -0.24; p = 0.01) and LPV (r = -0.40; p < 0.01) were significantly correlated with the FFR value. Only the LPV (AIC = -147.0; p = 0.006) and %LPV (AIC = -152.9; p = 0.005) proved to be independent predictors for the FFR value even after the adjustment of known confounding factors. The volumetric assessment by IB-IVUS could provide better information in terms of the relationship between plaque morphology and the FFR values as compared to the classic IVUS 2-dimensional gray-scale analysis. PMID:26129657

  13. Flux Coupling Analysis of Genome-Scale Metabolic Network Reconstructions

    PubMed Central

    Burgard, Anthony P.; Nikolaev, Evgeni V.; Schilling, Christophe H.; Maranas, Costas D.

    2004-01-01

    In this paper, we introduce the Flux Coupling Finder (FCF) framework for elucidating the topological and flux connectivity features of genome-scale metabolic networks. The framework is demonstrated on genome-scale metabolic reconstructions of Helicobacter pylori, Escherichia coli, and Saccharomyces cerevisiae. The analysis allows one to determine whether any two metabolic fluxes, v1 and v2, are (1) directionally coupled, if a non-zero flux for v1 implies a non-zero flux for v2 but not necessarily the reverse; (2) partially coupled, if a non-zero flux for v1 implies a non-zero, though variable, flux for v2 and vice versa; or (3) fully coupled, if a non-zero flux for v1 implies not only a non-zero but also a fixed flux for v2 and vice versa. Flux coupling analysis also enables the global identification of blocked reactions, which are all reactions incapable of carrying flux under a certain condition; equivalent knockouts, defined as the set of all possible reactions whose deletion forces the flux through a particular reaction to zero; and sets of affected reactions denoting all reactions whose fluxes are forced to zero if a particular reaction is deleted. The FCF approach thus provides a novel and versatile tool for aiding metabolic reconstructions and guiding genetic manipulations. PMID:14718379

  14. Model-based analysis of a dielectrophoretic microfluidic device for field-flow fractionation.

    PubMed

    Mathew, Bobby; Alazzam, Anas; Abutayeh, Mohammad; Stiharu, Ion

    2016-08-01

    We present the development of a dynamic model for predicting the trajectory of microparticles in microfluidic devices, employing dielectrophoresis, for Hyperlayer field-flow fractionation. The electrode configuration is such that multiple finite-sized electrodes are located on the top and bottom walls of the microchannel; the electrodes on the walls are aligned with each other. The electric potential inside the microchannel is described using the Laplace equation while the microparticles' trajectory is described using equations based on Newton's second law. All equations are solved using finite difference method. The equations of motion account for forces including inertia, buoyancy, drag, gravity, virtual mass, and dielectrophoresis. The model is used for parametric study; the geometric parameters analyzed include microparticle radius, microchannel depth, and electrode/spacing lengths while volumetric flow rate and actuation voltage are the two operating parameters considered in the study. The trajectory of microparticles is composed of transient and steady state phases; the trajectory is influenced by all parameters. Microparticle radius and volumetric flow rate, above the threshold, do not influence the steady state levitation height; microparticle levitation is not possible below the threshold of the volumetric flow rate. Microchannel depth, electrode/spacing lengths, and actuation voltage influence the steady-state levitation height. PMID:27322871

  15. In vitro determination of the indigestible fraction in foods: an alternative to dietary fiber analysis.

    PubMed

    Saura-Calixto, F; García-Alonso, A; Goñi, I; Bravo, L

    2000-08-01

    Dietary fiber (DF) intakes in Western countries only accounts for about one-third of the substrates required for colonic bacterial cell turnover. There is a general trend among nutritionists to extend the DF concept to include all food constituents reaching the colon. In this line, a method to quantify the major nondigestible components in plant foods, namely, the indigestible fraction (IF), is presented. Analytical conditions for IF determination are close to physiological. Samples, analyzed as eaten, were successively incubated with pepsin and alpha-amylase; after centrifugation and dialysis, insoluble and soluble IFs were obtained. IF values include DF, resistant starch, resistant protein, and other associated compounds. IF contents determined in common foods (cereals, legumes, vegetables, and fruits) were higher than DF contents. Calculated IF intakes were close to the estimated amount of substrates reaching the colon. IF data could be more useful than DF data from a nutritional point of view; therefore, IF is proposed as an alternative to DF for food labeling and food composition tables. PMID:10956113

  16. Analysis of Organic Anionic Surfactants in Fine and Coarse Fractions of Freshly Emitted Sea Spray Aerosol.

    PubMed

    Cochran, Richard E; Laskina, Olga; Jayarathne, Thilina; Laskin, Alexander; Laskin, Julia; Lin, Peng; Sultana, Camille; Lee, Christopher; Moore, Kathryn A; Cappa, Christopher D; Bertram, Timothy H; Prather, Kimberly A; Grassian, Vicki H; Stone, Elizabeth A

    2016-03-01

    The inclusion of organic compounds in freshly emitted sea spray aerosol (SSA) has been shown to be size-dependent, with an increasing organic fraction in smaller particles. Here we have used electrospray ionization-high resolution mass spectrometry in negative ion mode to identify organic compounds in nascent sea spray collected throughout a 25 day mesocosm experiment. Over 280 organic compounds from ten major homologous series were tentatively identified, including saturated (C8-C24) and unsaturated (C12-C22) fatty acids, fatty acid derivatives (including saturated oxo-fatty acids (C5-C18) and saturated hydroxy-fatty acids (C5-C18), organosulfates (C2-C7, C12-C17) and sulfonates (C16-C22). During the mesocosm, the distributions of molecules within some homologous series responded to variations among the levels of phytoplankton and bacteria in the seawater. The average molecular weight and carbon preference index of saturated fatty acids significantly decreased within fine SSA during the progression of the mesocosm, which was not observed in coarse SSA, sea-surface microlayer or in fresh seawater. This study helps to define the molecular composition of nascent SSA and biological processes in the ocean relate to SSA composition. PMID:26828238

  17. Chemical analysis of endolymph and the growing otolith: fractionation of metals in freshwater fish species.

    PubMed

    Melancon, Sonia; Fryer, Brian J; Markham, James L

    2009-06-01

    The fractionation of metals from water to otolith is an area of research that has received relatively limited attention, especially in freshwater systems. The objectives of the present research were to study the metal partitioning between otolith and endolymph of two freshwater species: Lake trout (Salvelinus namaycush), and burbot (Lota lota). We also included the chemical analyses of water and blood from fish of the same species collected in the same area but during different years. These results provide insight regarding the partition of metals between water and fish. This is one of the first studies to provide a range of trace metal concentrations for endolymph and the growing otolith (both aragonite and vaterite) and to directly measure otolith-endolymph partition coefficients for freshwater fish. The trace elements (Mg, Sr, and Ba) most often used as otolith elemental tracers were the ones with the lowest uptake from water to blood. We found that endolymph and whole blood had similar metal concentrations, with Mg and Fe being the only elements enriched in whole blood. Results showed few significant differences in trace metal content between wild lake trout and burbot endolymph (except for K, Mg, and Ba), but significant differences existed between their aragonitic otoliths. These results suggest two different crystallization processes in these species or the presence of different proteins (and/or organic matrices) that would selectively influence elemental incorporation in the otoliths. PMID:19154085

  18. Analysis of the fraction of clear sky at the La Palma and Mt Graham sites

    NASA Astrophysics Data System (ADS)

    Della Valle, A.; Maruccia, Y.; Ortolani, S.; Zitelli, V.

    2010-01-01

    The amount of available telescope time is one of the most important requirements when selecting astronomical sites, as it affects the performance of ground-based telescopes. We present a quantitative survey of cloud coverage at La Palma and Mt Graham using both ground- and satellite-based data. The aim of this work is to derive clear nights for the satellite infrared channels and to verify the results using ground-based observations. At La Palma, we found a mean percentage of clear nights of 62.6 per cent from ground-based data and 71.9 per cent from satellite-based data. Taking into account the fraction of common nights, we found a concordance of 80.7 per cent of clear nights for ground- and satellite-based data. At Mt Graham, we found a 97 per cent agreement between the Columbine heliograph and the night-time observing log. From the Columbine heliograph and the Total Ozone Mapping Spectrometer-Ozone Monitoring Instrument (TOMS-OMI) satellite, we found that about 45 per cent of nights were clear, while satellite data (GOES, TOMS) are much more dispersed than those of La Palma. Setting a statistical threshold, we retried a comparable seasonal trend between the heliograph and satellite.

  19. [Distributions of phosphorus fractions in suspended sediments and surface sediments of Tiaoxi mainstreams and cause analysis].

    PubMed

    Chen, Hai-Long; Yuan, Xu-Yin; Wang, Huan; Li, Zheng-Yang; Xu, Hai-Yan

    2015-02-01

    Phosphorus is a primary nutrient showing the water quality status of river and inducing eutrophication, and a different phosphorus fraction can make diverse contributions to water quality. Four phosphorus forms of suspended sediments and surface sediments in Tiaoxi mainstreams were measured using a sequential extraction procedure, and the distributions of their forms were discussed. The results showed that the tropic status of Xitiaoxi River was inferior to that of Dongtiaoxi River as a whole, and the water quality in the middle reach of Dongtiaoxi River was better than that in the upper and lower reaches. The contents of nutrient elements in suspended sediments were significantly higher than those in surface sediment, which indicated an enrichment of nutrient in fine sediment. The percentages of the loosely absorbed phosphorus ( NH4Cl-P), the reductant phosphorus (BD-P) and the metal oxide bound phosphorus (NaOH-P) in the suspended sediment were higher than those in surface sediment, while the percentage of the calcium bound phosphorus (HCl-P) showed a reverse trend. Correlation analyses between phosphorus forms and chemical compositions of suspended sediments and surface sediments were performed. The results showed the phosphorus forms in suspended sediments and surface sediments of Xitiaoxi River had weak relationships with mineral components, while those in the Dongtiaoxi River had strong relationships with mineral, especially OM and clay mineral. The cause was associated with the geological setting and material sources in Tiaoxi watershed. PMID:26031071

  20. Asymmetrical flow field-flow fractionation for the analysis of PEG-asparaginase.

    PubMed

    John, C; Herz, T; Boos, J; Langer, K; Hempel, G

    2016-01-01

    Monomethoxypolyethylene glycol L-asparaginase (PEG-ASNASE) is the PEGylated version of the enzyme L-asparaginase (ASNASE). Both are used for remission induction in acute lymphoblastic leukemia (ALL) and non-Hodgkin's lymphoma (NHL). The treatment control is generally carried out by performing activity assays, though methods to determine the actual enzyme rather than its activity are rare. Using asymmetrical flow field-flow fractionation (AF4) offered the chance to develop a method capable of simultaneously measuring PEG-ASNASE and PEG. A method validation was performed in accordance with FDA guidelines for PEG-ASNASE from non-biological solutions. The method unfolded a linearity of 15-750 U/mL with coefficients of correlation of r(2)>0.99. The coefficients of variation (CV) for within-run and between-run variability were 1.18-10.15% and 2.43-8.73%, respectively. Furthermore, the method was used to perform stability tests of the product Oncaspar® (PEG-ASNASE) and estimation of the molecular weight by multi-angle light scattering (MALS) of stressed samples to correlate them with the corresponding activity. The findings indicate that Oncaspar® stock solution should not be stored any longer than 24 h at room temperature and cannot be frozen in pure aqueous media. The validated method might be useful for the pharmaceutical industry and its quality control of PEG-ASNASE production. PMID:26695272

  1. A fractional Fourier transform analysis of the scattering of ultrasonic waves

    PubMed Central

    Tant, Katherine M.M.; Mulholland, Anthony J.; Langer, Matthias; Gachagan, Anthony

    2015-01-01

    Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time–frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time–frequency domain framework to assist in flaw identification and classification. PMID:25792967

  2. Analysis of hydrological triggered clayey landslides by small scale experiments

    NASA Astrophysics Data System (ADS)

    Spickermann, A.; Malet, J.-P.; van Asch, T. W. J.; Schanz, T.

    2010-05-01

    Hydrological processes, such as slope saturation by water, are a primary cause of landslides. This effect can occur in the form of e.g. intense rainfall, snowmelt or changes in ground-water levels. Hydrological processes can trigger a landslide and control subsequent movement. In order to forecast potential landslides, it is important to know both the mechanism leading to failure, to evaluate whether a slope will fail or not, and the mechanism that control the movement of the failure mass, to estimate how much material will move in which time. Despite numerous studies which have been done there is still uncertainty in the explanation of the processes determining the failure and post-failure. Background and motivation of the study is the Barcelonnette area that is part of the Ubaye Valley in the South French Alps which is highly affected by hydrological-controlled landslides in reworked black marls. Since landslide processes are too complex to understand it only by field observation experiments and computer calculations are used. The main focus of this work is to analyse the initialization of failure and the post-failure behaviour of hydrological triggered landslides in clays by small-scale experiments, namely by small-scale flume tests and centrifuge tests. Although a lot of effort is made to investigate the landslide problem by either small-scale or even large-scale slope experiments there is still no optimal solution. Small-scale flume tests are often criticised because of their scale-effect problems dominant in dense sands and cohesive material and boundary problems. By means of centrifuge tests the scale problem with respect to stress conditions is overcome. But also centrifuge testing is accompanied with problems. The objectives of the work are 1) to review potential failure and post-failure mechanisms, 2) to evaluate small-scale experiments, namely flume and centrifuge tests in the analysis of the failure behaviour in clayey slopes and 3) to interpret the

  3. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  4. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.

    PubMed

    Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald

    2016-04-15

    Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5 nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online

  5. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis.

    PubMed

    Freires, Irlan Almeida; Bueno-Silva, Bruno; Galvão, Lívia Câmara de Carvalho; Duarte, Marta Cristina Teixeira; Sartoratto, Adilson; Figueira, Glyn Mara; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis. PMID:25821503

  6. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis

    PubMed Central

    Freires, Irlan Almeida; Bueno-Silva, Bruno; Galvão, Lívia Câmara de Carvalho; Duarte, Marta Cristina Teixeira; Sartoratto, Adilson; Figueira, Glyn Mara; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis. PMID:25821503

  7. Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis

    PubMed Central

    Hansen, Thomas H; Laursen, Kristian H; Persson, Daniel P; Pedas, Pai; Husted, Søren; Schjoerring, Jan K

    2009-01-01

    Background Quantitative multi-elemental analysis by inductively coupled plasma (ICP) spectrometry depends on a complete digestion of solid samples. However, fast and thorough sample digestion is a challenging analytical task which constitutes a bottleneck in modern multi-elemental analysis. Additional obstacles may be that sample quantities are limited and elemental concentrations low. In such cases, digestion in small volumes with minimum dilution and contamination is required in order to obtain high accuracy data. Results We have developed a micro-scaled microwave digestion procedure and optimized it for accurate elemental profiling of plant materials (1-20 mg dry weight). A commercially available 64-position rotor with 5 ml disposable glass vials, originally designed for microwave-based parallel organic synthesis, was used as a platform for the digestion. The novel micro-scaled method was successfully validated by the use of various certified reference materials (CRM) with matrices rich in starch, lipid or protein. When the micro-scaled digestion procedure was applied on single rice grains or small batches of Arabidopsis seeds (1 mg, corresponding to approximately 50 seeds), the obtained elemental profiles closely matched those obtained by conventional analysis using digestion in large volume vessels. Accumulated elemental contents derived from separate analyses of rice grain fractions (aleurone, embryo and endosperm) closely matched the total content obtained by analysis of the whole rice grain. Conclusion A high-throughput micro-scaled method has been developed which enables digestion of small quantities of plant samples for subsequent elemental profiling by ICP-spectrometry. The method constitutes a valuable tool for screening of mutants and transformants. In addition, the method facilitates studies of the distribution of essential trace elements between and within plant organs which is relevant for, e.g., breeding programmes aiming at improvement of the

  8. The influence of photochemical fractionation on the evolution of the nitrogen isotope ratios - detailed analysis of current photochemical loss rates

    NASA Astrophysics Data System (ADS)

    Mandt, K. E.; Waite, J. H., Jr.; Westlake, J.; Magee, B.; Liang, M. C.; Bell, J.

    2012-04-01

    Tracking the evolution of molecular nitrogen over geologic time scales requires an understanding of the loss rates of both isotopologues (14N2 and 14N15N) as a function of time (e.g. Mandt et al., 2009). The relative loss rates, if different, “fractionate” the isotopes so that the ratios change as a function of time, and rate at which the ratio changes due to a loss process is determined by the “fractionation factor.” Photochemistry is known to fractionate the nitrogen isotopes in Titan’s atmosphere by preferentially removing the heavy isotope from the molecular nitrogen inventory and increasing the ratio (heavy/light) in one of the primary photochemical products, HCN. This fractionation occurs due to a selective shielding during photodissociation where the photons that dissociate 14N15N penetrate deeper into the atmosphere (Liang et al., 2007) than the photons that dissociate 14N14N. Two methods can be used to determine the photochemical fractionation factor, f. The first approach for calculating f is based on the isotopic ratios of the photochemical source and product, as measured by the Huygens Gas Chromatograph Mass Spectrometer (GCMS) (Niemann et al., 2010) and the Cassini Infrared Spectrometer (CIRS) (Vinatier et al., 2007), respectively. The second method uses the loss rates and the ratio of the source and requires detailed photochemical modeling to ensure that the loss rates are calculated accurately. We compare these two methods for calculating the photochemical fractionation factor for N2 by using measurements of the isotopic ratios of N2 and HCN combined with an updated coupled ion-neutral-thermal model (De la Haye et al., 2008). We find that accurate magnetospheric electron fluxes and a rotating model that accounts for diurnal variations are essential for accurate calculations of the HCN densities and for determination of the fractionation factor through photochemical modeling. References: De La Haye, V., J. H. Waite, Jr., T. E. Cravens, I. P

  9. Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation

    NASA Astrophysics Data System (ADS)

    Rui, Wenjuan; Zhang, Xiangzhi

    2016-05-01

    This paper investigates the invariance properties of the time fractional Derrida-Lebowitz-Speer-Spohn (FDLSS) equation with Riemann-Liouville derivative. By using the Lie group analysis method of fractional differential equations, we derive Lie symmetries for the FDLSS equation. In a particular case of scaling transformations, we transform the FDLSS equation into a nonlinear ordinary fractional differential equation. Conservation laws for this equation are obtained with the aid of the new conservation theorem and the fractional generalization of the Noether operators.

  10. Experimental studies and model analysis of noble gas fractionation in porous media

    USGS Publications Warehouse

    Ding, Xin; Kennedy, B. Mack.; Evans, William C.; Stonestrom, David A.

    2016-01-01

    The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective–diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection–diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 ´ 10−11 m2), Knudsen diffusion terms were small, and both the dusty gas model and the advection–diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from ?700 to 10,000 g m−2 d−1. The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation.

  11. Fractional Flow Reserve and Coronary Computed Tomographic Angiography: A Review and Critical Analysis.

    PubMed

    Hecht, Harvey S; Narula, Jagat; Fearon, William F

    2016-07-01

    Invasive fractional flow reserve (FFR) is now the gold standard for intervention. Noninvasive functional imaging analyses derived from coronary computed tomographic angiography (CTA) offer alternatives for evaluating lesion-specific ischemia. CT-FFR, CT myocardial perfusion imaging, and transluminal attenuation gradient/corrected contrast opacification have been studied using invasive FFR as the gold standard. CT-FFR has demonstrated significant improvement in specificity and positive predictive value compared with CTA alone for predicting FFR of ≤0.80, as well as decreasing the frequency of nonobstructive invasive coronary angiography. High-risk plaque characteristics have also been strongly implicated in abnormal FFR. Myocardial computed tomographic perfusion is an alternative method with promising results; it involves more radiation and contrast. Transluminal attenuation gradient/corrected contrast opacification is more controversial and may be more related to vessel diameter than stenosis. Important considerations remain: (1) improvement of CTA quality to decrease unevaluable studies, (2) is the diagnostic accuracy of CT-FFR sufficient? (3) can CT-FFR guide intervention without invasive FFR confirmation? (4) what are the long-term outcomes of CT-FFR-guided treatment and how do they compare with other functional imaging-guided paradigms? (5) what degree of stenosis on CTA warrants CT-FFR? (6) how should high-risk plaque be incorporated into treatment decisions? (7) how will CT-FFR influence other functional imaging test utilization, and what will be the effect on the practice of cardiology? (8) will a workstation-based CT-FFR be mandatory? Rapid progress to date suggests that CTA-based lesion-specific ischemia will be the gatekeeper to the cardiac catheterization laboratory and will transform the world of intervention. PMID:27390333

  12. Analysis of Fraction Skill Score properties for a displaced rainy grid point in a rectangular domain

    NASA Astrophysics Data System (ADS)

    Skok, Gregor

    2015-04-01

    Fraction Skill Score (FSS) is a recently developed and popular metric used for precipitation verification. A compact analytical expression for FSS is derived for a case with a single displaced rainy grid point in a rectangular domain. The existence of analytical solution is used to determine some properties of FSS which might also be applicable in other cases since the rain areas of any shape will asymptote towards this solution if the displacement is sufficiently large. The use of the simple square shape of the neighborhood causes the FSS value to be dependent on the direction of the displacements (not only on the displacement size). The effect is limited in scope but can increase or decrease the FSS value by 0.1. Moving a nearby border closer to the rainy points can either increase or decrease the FSS value depending on the location of the border. The FSS value near a border can be at most 33% larger than the FSS value in the infinite domain assuming the same neighborhood and displacement. Changing the orientation of the displacement can either increase or decrease the FSS value - the effect of the nearby border is intertwined with the effect of the square shape of the neighborhood. The effect of the nearby corner is similar to the effect of the nearby border but is stronger - assuming the same diagonal displacement in both cases. The useful forecast criteria (FSSuseful) is defined as a value of FSS for a precipitation feature with displacement half the neighborhood size. FSSuseful for a displaced rainy grid point depends on the orientation of the displacement being the largest for displacements that are parallel to the borders and the smallest for a diagonal displacement where the value can be as low as 0.42.

  13. Mucus: a new tissue fraction for rapid determination of fish diet switching using stable isotope analysis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable isotope analysis of diet switching by fishes is often hampered by slow turnover rates of the tissues analyzed (usually muscle or fins). We examined epidermal mucus as a potentially faster turnover “tissue” that might provide a more rapid assessment of diet switching. In a controlled hatchery...

  14. Mucus: A new tissue fraction for rapid determination of fish diet switching using stable isotope analysis

    EPA Science Inventory

    Stable isotope analysis of diet switching by fishes often is hampered by slow turnover rates of the tissues analyzed (usually muscle or fins). We examined epidermal mucus as a potentially faster turnover “tissue” that might provide a more rapid assessment of diet switching. In a ...

  15. Reliability analysis of a utility-scale solar power plant

    NASA Astrophysics Data System (ADS)

    Kolb, G. J.

    1992-10-01

    This paper presents the results of a reliability analysis for a solar central receiver power plant that employs a salt-in-tube receiver. Because reliability data for a number of critical plant components have only recently been collected, this is the first time a credible analysis can be performed. This type of power plant will be built by a consortium of western US utilities led by the Southern California Edison Company. The 10 MW plant is known as Solar Two and is scheduled to be on-line in 1994. It is a prototype which should lead to the construction of 100 MW commercial-scale plants by the year 2000. The availability calculation was performed with the UNIRAM computer code. The analysis predicted a forced outage rate of 5.4 percent and an overall plant availability, including scheduled outages, of 91 percent. The code also identified the most important contributors to plant unavailability. Control system failures were identified as the most important cause of forced outages. Receiver problems were rated second with turbine outages third. The overall plant availability of 91 percent exceeds the goal identified by the US utility study. This paper discuses the availability calculation and presents evidence why the 91 percent availability is a credible estimate.

  16. A kinetic analysis of leaf uptake of COS and its relation to transpiration, photosynthesis and carbon isotope fractionation

    NASA Astrophysics Data System (ADS)

    Seibt, U.; Kesselmeier, J.; Sandoval-Soto, L.; Kuhn, U.; Berry, J. A.

    2010-01-01

    Carbonyl sulfide (COS) is an atmospheric trace gas that holds great promise for studies of terrestrial carbon and water exchange. In leaves, COS follows the same pathway as CO2 during photosynthesis. Both gases are taken up in enzyme reactions, making COS and CO2 uptake closely coupled at the leaf scale. The biological background of leaf COS uptake is a hydrolysis reaction catalyzed by the enzyme carbonic anhydrase. Based on this, we derive and test a simple kinetic model of leaf COS uptake, and relate COS to CO2 and water fluxes at the leaf scale. The equation was found to predict realistic leaf COS fluxes compared to observations from field and laboratory chambers. We confirm that COS uptake at the leaf level is directly linked to stomatal conductance. As a consequence, the ratio of normalized uptake rates (uptake rates divided by ambient mole fraction) for leaf COS and CO2 fluxes can provide an estimate of Ci/Ca, the ratio of intercellular to atmospheric CO2, an important plant gas exchange parameter that cannot be measured directly. The majority of published normalized COS to CO2 uptake ratios for leaf studies on a variety of species fall in the range of 1.5 to 4, corresponding to Ci/Ca ratios of 0.5 to 0.8. In addition, we utilize the coupling of Ci/Ca and photosynthetic 13C discrimination to derive an estimate of 2.8±0.3 for the global mean normalized uptake ratio. This corresponds to a global vegetation sink of COS in the order of 900±100 Gg S yr-1. COS can now be implemented in the same model framework as CO2 and water vapour. Atmospheric COS measurements can then provide independent constraints on CO2 and water cycles at ecosystem, regional and global scales.

  17. A kinetic analysis of leaf uptake of COS and its relation to transpiration, photosynthesis and carbon isotope fractionation

    NASA Astrophysics Data System (ADS)

    Seibt, U.; Kesselmeier, J.; Sandoval-Soto, L.; Kuhn, U.; Berry, J. A.

    2009-09-01

    Carbonyl sulfide (COS) is an atmospheric trace gas that holds great promise for studies of terrestrial carbon and water exchange. In leaves, COS follows the same pathway as CO2 during photosynthesis. Both gases are taken up in enzyme reactions, making COS and CO2 uptake closely coupled at the leaf scale. The biological background of leaf COS uptake is a hydrolysis reaction catalyzed by the enzyme carbonic anhydrase. Based on this, we derive and test a simple kinetic model of leaf COS uptake, and relate COS to CO2 and water fluxes at the leaf scale. The equation was found to predict realistic COS fluxes compared to observations from field and laboratory chambers. We confirm that COS uptake at the leaf level is directly linked to stomatal conductance. As a consequence, the ratio of deposition velocities (uptake rate divided by ambient mole fraction) for leaf COS and CO2 fluxes can provide an estimate of Ci/Ca the ratio of intercellular to atmospheric CO2, an important plant gas exchange parameter that cannot be measured directly. The majority of published deposition velocity ratios for leaf studies on a variety of species fall in the range of 1.5 to 4, corresponding to Ci/Ca ratios of 0.5 to 0.8. In addition, we utilize the coupling of Ci/Ca and photosynthetic ˆ13C discrimination to derive an estimate of 2.8±0.3 for the global mean ratio of deposition velocities. This corresponds to a global vegetation sink of COS in the order of 900±100 Gg S yr-1. COS can now be implemented in the same model framework as CO2 and water vapour. Atmospheric COS measurements can then provide independent constraints on CO2 and water cycles at ecosystem, regional and global scales.

  18. 13C metabolic flux analysis at a genome-scale.

    PubMed

    Gopalakrishnan, Saratram; Maranas, Costas D

    2015-11-01

    Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on prediction fidelity of scaling-up mapping models to a genome-scale. The core mapping model employed in this study accounts for (75 reactions and 65 metabolites) primarily from central metabolism. The genome-scale metabolic mapping model (GSMM) (697 reaction and 595 metabolites) is constructed using as a basis the iAF1260 model upon eliminating reactions guaranteed not to carry flux based on growth and fermentation data for a minimal glucose growth medium. Labeling data for 17 amino acid fragments obtained from cells fed with glucose labeled at the second carbon was used to obtain fluxes and ranges. Metabolic fluxes and confidence intervals are estimated, for both core and genome-scale mapping models, by minimizing the sum of square of differences between predicted and experimentally measured labeling patterns using the EMU decomposition algorithm. Overall, we find that both topology and estimated values of the metabolic fluxes remain largely consistent between core and GSM model. Stepping up to a genome-scale mapping model leads to wider flux inference ranges for 20 key reactions present in the core model. The glycolysis flux range doubles due to the possibility of active gluconeogenesis, the TCA flux range expanded by 80% due to the availability of a bypass through arginine consistent with labeling data, and the transhydrogenase reaction flux was essentially unresolved due to the presence of as many as five routes for the inter-conversion of NADPH to NADH afforded by the genome-scale model. By globally accounting for ATP demands in the GSMM model the unused ATP decreased drastically with the lower bound matching the maintenance ATP requirement. A non

  19. Parallel Index and Query for Large Scale Data Analysis

    SciTech Connect

    Chou, Jerry; Wu, Kesheng; Ruebel, Oliver; Howison, Mark; Qiang, Ji; Prabhat,; Austin, Brian; Bethel, E. Wes; Ryne, Rob D.; Shoshani, Arie

    2011-07-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing of a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.

  20. Anomaly Detection in Multiple Scale for Insider Threat Analysis

    SciTech Connect

    Kim, Yoohwan; Sheldon, Frederick T; Hively, Lee M

    2012-01-01

    We propose a method to quantify malicious insider activity with statistical and graph-based analysis aided with semantic scoring rules. Different types of personal activities or interactions are monitored to form a set of directed weighted graphs. The semantic scoring rules assign higher scores for the events more significant and suspicious. Then we build personal activity profiles in the form of score tables. Profiles are created in multiple scales where the low level profiles are aggregated toward more stable higherlevel profiles within the subject or object hierarchy. Further, the profiles are created in different time scales such as day, week, or month. During operation, the insider s current activity profile is compared to the historical profiles to produce an anomaly score. For each subject with a high anomaly score, a subgraph of connected subjects is extracted to look for any related score movement. Finally the subjects are ranked by their anomaly scores to help the analysts focus on high-scored subjects. The threat-ranking component supports the interaction between the User Dashboard and the Insider Threat Knowledge Base portal. The portal includes a repository for historical results, i.e., adjudicated cases containing all of the information first presented to the user and including any additional insights to help the analysts. In this paper we show the framework of the proposed system and the operational algorithms.

  1. Application of wavelet transforms to reservoir data analysis and scaling

    SciTech Connect

    Panda, M.N.; Mosher, C.; Chopra, A.K.

    1996-12-31

    General characterization of physical systems uses two aspects of data analysis methods: decomposition of empirical data to determine model parameters and reconstruction of the image using these characteristic parameters. Spectral methods, involving a frequency based representation of data, usually assume stationarity. These methods, therefore, extract only the average information and hence are not suitable for analyzing data with isolated or deterministic discontinuities, such as faults or fractures in reservoir rocks or image edges in computer vision. Wavelet transforms provide a multiresolution framework for data representation. They are a family of orthogonal basis functions that separate a function or a signal into distinct frequency packets that are localized in the time domain. Thus, wavelets are well suited for analyzing non-stationary data. In other words, a projection of a function or a discrete data set onto a time-frequency space using wavelets shows how the function behaves at different scales of measurement. Because wavelets have compact support, it is easy to apply this transform to large data sets with minimal computations. We apply the wavelet transforms to one-dimensional and two-dimensional permeability data to determine the locations of layer boundaries and other discontinuities. By binning in the time-frequency plane with wavelet packets, permeability structures of arbitrary size are analyzed. We also apply orthogonal wavelets for scaling up of spatially correlated heterogeneous permeability fields.

  2. Two-field analysis of no-scale supergravity inflation

    SciTech Connect

    Ellis, John; García, Marcos A.G.; Olive, Keith A.; Nanopoulos, Dimitri V. E-mail: garciagarcia@physics.umn.edu E-mail: olive@physics.umn.edu

    2015-01-01

    Since the building-blocks of supersymmetric models include chiral superfields containing pairs of effective scalar fields, a two-field approach is particularly appropriate for models of inflation based on supergravity. In this paper, we generalize the two-field analysis of the inflationary power spectrum to supergravity models with arbitrary Kähler potential. We show how two-field effects in the context of no-scale supergravity can alter the model predictions for the scalar spectral index n{sub s} and the tensor-to-scalar ratio r, yielding results that interpolate between the Planck-friendly Starobinsky model and BICEP2-friendly predictions. In particular, we show that two-field effects in a chaotic no-scale inflation model with a quadratic potential are capable of reducing r to very small values || 0.1. We also calculate the non-Gaussianity measure f{sub NL}, finding that is well below the current experimental sensitivity.

  3. Large scale rigidity-based flexibility analysis of biomolecules

    PubMed Central

    Streinu, Ileana

    2016-01-01

    KINematics And RIgidity (KINARI) is an on-going project for in silico flexibility analysis of proteins. The new version of the software, Kinari-2, extends the functionality of our free web server KinariWeb, incorporates advanced web technologies, emphasizes the reproducibility of its experiments, and makes substantially improved tools available to the user. It is designed specifically for large scale experiments, in particular, for (a) very large molecules, including bioassemblies with high degree of symmetry such as viruses and crystals, (b) large collections of related biomolecules, such as those obtained through simulated dilutions, mutations, or conformational changes from various types of dynamics simulations, and (c) is intended to work as seemlessly as possible on the large, idiosyncratic, publicly available repository of biomolecules, the Protein Data Bank. We describe the system design, along with the main data processing, computational, mathematical, and validation challenges underlying this phase of the KINARI project. PMID:26958583

  4. Cluster coarsening during polymer collapse: Finite-size scaling analysis

    NASA Astrophysics Data System (ADS)

    Majumder, Suman; Janke, Wolfhard

    2015-06-01

    We study the kinetics of the collapse of a single flexible polymer when it is quenched from a good solvent to a poor solvent. Results obtained from Monte Carlo simulations show that the collapse occurs through a sequence of events with the formation, growth and subsequent coalescence of clusters of monomers to a single compact globule. Particular emphasis is given in this work to the cluster growth during the collapse, analyzed via the application of finite-size scaling techniques. The growth exponent obtained in our analysis is suggestive of the universal Lifshitz-Slyozov mechanism of cluster growth. The methods used in this work could be of more general validity and applicable to other phenomena such as protein folding.

  5. Large-Scale Quantitative Analysis of Painting Arts

    PubMed Central

    Kim, Daniel; Son, Seung-Woo; Jeong, Hawoong

    2014-01-01

    Scientists have made efforts to understand the beauty of painting art in their own languages. As digital image acquisition of painting arts has made rapid progress, researchers have come to a point where it is possible to perform statistical analysis of a large-scale database of artistic paints to make a bridge between art and science. Using digital image processing techniques, we investigate three quantitative measures of images – the usage of individual colors, the variety of colors, and the roughness of the brightness. We found a difference in color usage between classical paintings and photographs, and a significantly low color variety of the medieval period. Interestingly, moreover, the increment of roughness exponent as painting techniques such as chiaroscuro and sfumato have advanced is consistent with historical circumstances. PMID:25501877

  6. Multidimensional Scaling Analysis of the Dynamics of a Country Economy

    PubMed Central

    Mata, Maria Eugénia

    2013-01-01

    This paper analyzes the Portuguese short-run business cycles over the last 150 years and presents the multidimensional scaling (MDS) for visualizing the results. The analytical and numerical assessment of this long-run perspective reveals periods with close connections between the macroeconomic variables related to government accounts equilibrium, balance of payments equilibrium, and economic growth. The MDS method is adopted for a quantitative statistical analysis. In this way, similarity clusters of several historical periods emerge in the MDS maps, namely, in identifying similarities and dissimilarities that identify periods of prosperity and crises, growth, and stagnation. Such features are major aspects of collective national achievement, to which can be associated the impact of international problems such as the World Wars, the Great Depression, or the current global financial crisis, as well as national events in the context of broad political blueprints for the Portuguese society in the rising globalization process. PMID:24294132

  7. Large-Scale Quantitative Analysis of Painting Arts

    NASA Astrophysics Data System (ADS)

    Kim, Daniel; Son, Seung-Woo; Jeong, Hawoong

    2014-12-01

    Scientists have made efforts to understand the beauty of painting art in their own languages. As digital image acquisition of painting arts has made rapid progress, researchers have come to a point where it is possible to perform statistical analysis of a large-scale database of artistic paints to make a bridge between art and science. Using digital image processing techniques, we investigate three quantitative measures of images - the usage of individual colors, the variety of colors, and the roughness of the brightness. We found a difference in color usage between classical paintings and photographs, and a significantly low color variety of the medieval period. Interestingly, moreover, the increment of roughness exponent as painting techniques such as chiaroscuro and sfumato have advanced is consistent with historical circumstances.

  8. In-situ sampling of a large-scale particle simulation for interactive visualization and analysis

    SciTech Connect

    Woodring, Jonathan L; Ahrens, James P; Heitmann, Katrin

    2010-12-09

    We propose storing a random sampling of data from large scale particle simulations, such as the Roadrunner Universe MC{sup 3} cosmological simulation, to be used for interactive post-analysis and visualization. Simulation data generation rates will continue to be far greater than storage bandwidth rates and other limiting technologies by many orders of magnitude. This implies that only a very small fraction of data generated by the simulation can ever be stored and subsequently post-analyzed. The limiting technology in this situation is analogous to the problem in many population surveys: there aren't enough human resources to query a large population. To cope with the lack of resources, statistical sampling techniques are used to create a representative data set of a large population. Mirroring that situation, we propose to store a simulation-time random sampling of the particle data to cope with the bOlllenecks and support interactive, exploratory post-analysis. The particle samples are immediately stored in a level-ol-detail format for post-visualization and analysis, which amortizes the cost of post-processing for interactive visualization. Additionally, we incorporate a system for recording and visualizing sample approximation error information for confidence and importance highlighting.

  9. Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Faraji Oskouie, M.; Gholami, R.

    2016-01-01

    In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.

  10. Segmentation-based method incorporating fractional volume analysis for quantification of brain atrophy on magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Wang, Deming; Doddrell, David M.

    2001-07-01

    Partial volume effect is a major problem in brain tissue segmentation on digital images such as magnetic resonance (MR) images. In this paper, special attention has been paid to partial volume effect when developing a method for quantifying brain atrophy. Specifically, partial volume effect is minimized in the process of parameter estimation prior to segmentation by identifying and excluding those voxels with possible partial volume effect. A quantitative measure for partial volume effect was also introduced through developing a model that calculates fractional volumes for voxels with mixtures of two different tissues. For quantifying cerebrospinal fluid (CSF) volumes, fractional volumes are calculated for two classes of mixture involving gray matter and CSF, and white matter and CSF. Tissue segmentation is carried out using 1D and 2D thresholding techniques after images are intensity- corrected. Threshold values are estimated using the minimum error method. Morphological processing and region identification analysis are used extensively in the algorithm. As an application, the method was employed for evaluating rates of brain atrophy based on serially acquired structural brain MR images. Consistent and accurate rates of brain atrophy have been obtained for patients with Alzheimer's disease as well as for elderly subjects due to normal aging process.

  11. Use of methylation filtration and C(0)t fractionation for analysis of genome composition and comparative genomics in bread wheat.

    PubMed

    Bandopadhyay, Rajib; Rustgi, Sachin; Chaudhuri, Rajat Kanti; Khurana, Paramjit; Khurana, Jitendra Paul; Tyagi, Akhilesh Kumar; Balyan, Harindra Singh; Houben, Andreas; Gupta, Pushpendra Kumar

    2011-07-20

    We investigated the compositional and structural differences in sequences derived from different fractions of wheat genomic DNA obtained using methylation filtration and C(0)t fractionation. Comparative analysis of these sequences revealed large compositional and structural variations in terms of GC content, different structural elements including repeat sequences (e.g., transposable elements and simple sequence repeats), protein coding genes, and non-coding RNA genes. A correlation between methylation status [determined on the basis of selective inclusion/exclusion in methylation-filtered (MF) library] of different repeat elements and expression level was observed. The expression levels were determined by comparing MF sequences with expressed sequence tags (ESTs) available in the public domain. Only a limited overlap among MF, high C(0)t (HC), and ESTs was observed, suggesting that these sequences may largely either represent the low-copy non-transcribed sequences or include genes with low expression levels. Thus, these results indicated a need to study MF and HC sequences along with ESTs to fully appreciate complexity of wheat gene space. PMID:21777856

  12. The Multi-index Mittag-Leffler Functions and Their Applications for Solving Fractional Order Problems in Applied Analysis

    NASA Astrophysics Data System (ADS)

    Kiryakova, V. S.; Luchko, Yu. F.

    2010-11-01

    During the last few decades, differential equations and systems of fractional order (that is arbitrary one, not necessarily integer) begun to play an important role in modeling of various phenomena of physical, engineering, automatization, biological and biomedical, chemical, earth, economics, social relations, etc. nature. The so-called Special Functions of Fractional Calculus (SF of FC) provide an important tool of Fractional Calculus (FC) and Applied Analysis (AA). In particular, they are often used to represent the solutions of fractional differential equations in explicit form. Among the most popular representatives of the SF of FC are: the Mittag-Leffler (ML) function, the Wright generalized hypergeometric function pΨq, the more general Fox H-function, and the Inayat-HussainH-function. The classical Special Functions (called also SF of Mathematical Physics), including the orthogonal polynomials, and the pFq-hypergeometric functions fall in this scheme as examples of the simpler Meijer G-function. In this survey talk, we overview the properties and some applications of an important class of SF of FC, introduced for the first time in our works. For integer m>1 and arbitrary real (or complex, under suitable restrictions) indices ρ1,…,ρm>0 and μ1,…,μm, we define the multi-index (vector-index) Mittag-Leffler functions by: E(1/ρi),(μi)(z) = E)1/ρi),(μi)(m)(z) = ∑ K=0∞zk/Γ(μ1+kρ1)…Γ(μm+k/ρm) = 1Ψm[(1,1)(μ1,1/ρi)1m;z] = H1,m+11,1[-z‖(0,1)(0,1),(1-μi,1/ρi)1m]. We propose also a list of examples of SF of FC that are E(1/ρi),(μi)-functions and play important role in pure mathematics and in solving problems from natural, applied and social sciences, and state

  13. Fractionation and analysis of lipopolysaccharide-derived oligosaccharides by zwitterionic-type hydrophilic interaction liquid chromatography coupled with electrospray ionisation mass spectrometry.

    PubMed

    Man-Kupisinska, Aleksandra; Bobko, Ewelina; Gozdziewicz, Tomasz K; Maciejewska, Anna; Jachymek, Wojciech; Lugowski, Czeslaw; Lukasiewicz, Jolanta

    2016-06-01

    Lipopolysaccharide (LPS, endotoxin) is a main surface antigen and virulence factor of Gram-negative bacteria. Regardless of the source of LPS, this molecule, isolated from the smooth forms of bacteria, is characterised by a general structural layout encompassing three regions: (i) an O-specific polysaccharide (O-PS) - a polymer of repeating oligosaccharide units, (ii) core oligosaccharide (OS), and (iii) the lipid A anchoring LPS in the outer membrane of the cell envelope of Gram-negative bacteria. Structural analysis usually requires degradation of LPS and further efficient separation of various poly- and oligosaccharide glycoforms. The hydrophilic interaction liquid chromatography (HILIC) was shown as an efficient technique for separation of labelled or native neutral and acidic glycans, glycopeptides, sialylated glycans, glycosylated and nonglycosylated peptides. Herein we adopted ZIC(®) (zwitterionic stationary phase covalently attached to porous silica)-HILIC technology in combination with electrospray ionisation mass spectrometry to separate different LPS-derived oligosaccharides. As a result three effective procedures have been developed: (i) to separate different core oligosaccharides of Escherichia coli R1 LOS, (ii) to separate RU-[Hep]-Kdo oligosaccharides from core OS glycoforms of Hafnia alvei PCM 1200 LPS, and (iii) to separate Hep and Kdo-containing mono, di-, tri- and tetrasaccharides of H. alvei PCM 1200 LPS. Moreover, some of developed analytical procedures were scaled to semi-preparative protocols and used to obtain highly-purified fractions of the interest in larger quantities required for future evaluation, analysis, and biological applications. PMID:27085741

  14. Investigating concentration distributions of arsenic, gold and antimony in grain-size fractions of gold ore using instrumental neutron activation analysis.

    PubMed

    Nyarku, M; Nyarko, B J B; Serfor-Armah, Y; Osae, S

    2010-02-01

    Instrumental neutron activation analysis (INAA) has been used to quantify concentrations of arsenic (As), gold (Au) and antimony (Sb) in grain-size fractions of a gold ore. The ore, which was taken from the Ahafo project site of Newmont Ghana Gold Ltd., was fractionated into 14 grain-size fractions using state-of-the-art analytical sieve machine. The minimum sieve mesh size used was 36mum and grains >2000mum were not considered for analysis. Result of the sieving was analysed with easysieve(R) software. The<36mum subfraction was found to be the optimum, hosting bulk of all three elements. Arsenic was found to be highly concentrated in<36-100mum size fractions and erratically distributed in from 150mum fraction and above. For gold, with the exception of the subfraction <36mum which had exceptionally high concentration, the element was found to be approximately equally distributed in all the size fractions but slightly "played out" in 150-400mum size fractions. Antimony occurrence in the sample was relatively high in <36mum size fraction followed by 600, 800, 400 and 36mum size fractions in that order. Gold content in the sample was comparatively far greater than arsenic and antimony; this is indicative of level of gold mineralization in the concession where the sample ore was taken. The concentration of gold in the composite sample was in the range 564-8420ppm as compared to 14.33-186.92ppm for arsenic and 1.09-9.48ppm for antimony. Elemental concentrations were correlated with each other and with grain-size fractions and the relationships between these descriptive parameters were established. PMID:19896855

  15. Frequencies and Flutter Speed Estimation for Damaged Aircraft Wing Using Scaled Equivalent Plate Analysis

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Thiagarajan

    2010-01-01

    Equivalent plate analysis is often used to replace the computationally expensive finite element analysis in initial design stages or in conceptual design of aircraft wing structures. The equivalent plate model can also be used to design a wind tunnel model to match the stiffness characteristics of the wing box of a full-scale aircraft wing model while satisfying strength-based requirements An equivalent plate analysis technique is presented to predict the static and dynamic response of an aircraft wing with or without damage. First, a geometric scale factor and a dynamic pressure scale factor are defined to relate the stiffness, load and deformation of the equivalent plate to the aircraft wing. A procedure using an optimization technique is presented to create scaled equivalent plate models from the full scale aircraft wing using geometric and dynamic pressure scale factors. The scaled models are constructed by matching the stiffness of the scaled equivalent plate with the scaled aircraft wing stiffness. It is demonstrated that the scaled equivalent plate model can be used to predict the deformation of the aircraft wing accurately. Once the full equivalent plate geometry is obtained, any other scaled equivalent plate geometry can be obtained using the geometric scale factor. Next, an average frequency scale factor is defined as the average ratio of the frequencies of the aircraft wing to the frequencies of the full-scaled equivalent plate. The average frequency scale factor combined with the geometric scale factor is used to predict the frequency response of the aircraft wing from the scaled equivalent plate analysis. A procedure is outlined to estimate the frequency response and the flutter speed of an aircraft wing from the equivalent plate analysis using the frequency scale factor and geometric scale factor. The equivalent plate analysis is demonstrated using an aircraft wing without damage and another with damage. Both of the problems show that the scaled

  16. Relative Spectral Mixture Analysis for monitoring natural hazards that impact vegetation cover: the importance of the nonphotosynthetic fraction in understanding landscape response to drought, fire, and hurricane damage

    NASA Astrophysics Data System (ADS)

    Okin, G. S.

    2007-12-01

    Remote sensing provides a unique ability to monitor natural hazards that impact vegetation hydrologically. Here, the use of a new multitemporal remote sensing technique that employs free, coarse multispectral remote sensing data is demonstrated in monitoring short- and long-term drought, fire occurrence and recovery, and damage to hurricane-related mangrove ecosystems and subsequent recovery of these systems. The new technique, relative spectral mixture analysis (RSMA), provides information about the nonphotosynthetic fraction (nonphotosynthetic vegetation plus litter) of ground cover in addition to the green vegetation fraction. In some cases, RSMA even provides an improved ability to monitor changes in the green fraction compared to traditional vegetation indices or standard remote sensing products. In arid and semiarid regions, the nonphotosynthetic fraction can vary on an annual basis significantly more than the green fraction and is thus perfectly suited for monitoring drought in these regions. Mortality of evergreen trees due to long-term drought also shows up strongly in the nonphotosynthetic fraction as green vegetation is replaced by dry needles and bare trunks. The response of the nonphotosynthetic fraction to fire is significantly different from that of drought because of the combustion of nonphotosynthetic material. Finally, damage to mangrove ecosystems from hurricane damage, and their subsequent recovery, is readily observable in both the green and nonphotosynthetic fractions as estimated by RSMA.

  17. Bilateral photoplethysmography analysis for arteriovenous fistula dysfunction screening with fractional-order feature and cooperative game-based embedded detector

    PubMed Central

    Wu, Jian-Xing; Wu, Ming-Jui; Li, Chien-Ming; Lim, Bee-Yen; Du, Yi-Chun

    2015-01-01

    The bilateral photoplethysmography (PPG) analysis for arteriovenous fistula (AVF) dysfunction screening with a fractional-order feature and a cooperative game (CG)-based embedded detector is proposed. The proposed detector uses a feature extraction method and a CG to evaluate the risk level for AVF dysfunction for patients undergoing haemodialysis treatment. A Sprott system is used to design a self-synchronisation error formulation to quantify the differences in the changes of blood volume for the sinister and dexter thumbs’ PPG signals. Bilateral PPGs exhibit a significant difference in rise time and amplitude, which is proportional to the degree of stenosis. A less parameterised CG model is then used to evaluate the risk level. The proposed detector is also studied using an embedded system and bilateral optical measurements. The experimental results show that the risk of AVF stenosis during haemodialysis treatment is detected earlier. PMID:26609407

  18. Quantification of bovine casein fractions by direct chromatographic analysis of milk. Approaching the application to a real production context.

    PubMed

    Bonizzi, Ivan; Buffoni, Joanna Natalia; Feligini, Maria

    2009-01-01

    The ability to quantify the casein content by an exact and cost-effective approach represents an issue of crucial importance in the dairy industry as the natural variations in milk protein concentration can markedly affect the yield of the cheesemaking processes, thus causing a direct and significant economic impact on the producers. In this work, the separation and quantification of alpha(s1)-, alpha(s2)-, kappa- and beta-casein was carried out by direct RP-HPLC analysis of milk. The identification of each casein was established by electrospray ionization mass spectrometry. The data show that this method is able to effectively separate the bovine casein fractions, it provides simplified analytical conditions (with special regard to mobile phase composition and gradient profile) and faster separation while ensuring adequate precision to achieve reliable quantifications in milk samples from dairy production. PMID:19062022

  19. Bilateral photoplethysmography analysis for arteriovenous fistula dysfunction screening with fractional-order feature and cooperative game-based embedded detector.

    PubMed

    Wu, Jian-Xing; Lin, Chia-Hung; Wu, Ming-Jui; Li, Chien-Ming; Lim, Bee-Yen; Du, Yi-Chun

    2015-06-01

    The bilateral photoplethysmography (PPG) analysis for arteriovenous fistula (AVF) dysfunction screening with a fractional-order feature and a cooperative game (CG)-based embedded detector is proposed. The proposed detector uses a feature extraction method and a CG to evaluate the risk level for AVF dysfunction for patients undergoing haemodialysis treatment. A Sprott system is used to design a self-synchronisation error formulation to quantify the differences in the changes of blood volume for the sinister and dexter thumbs' PPG signals. Bilateral PPGs exhibit a significant difference in rise time and amplitude, which is proportional to the degree of stenosis. A less parameterised CG model is then used to evaluate the risk level. The proposed detector is also studied using an embedded system and bilateral optical measurements. The experimental results show that the risk of AVF stenosis during haemodialysis treatment is detected earlier. PMID:26609407

  20. High pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis

    SciTech Connect

    Yang, Feng; Shen, Yufeng; Camp, David G.; Smith, Richard D.

    2012-04-01

    Orthogonal high-resolution separations are critical for attaining improved analytical dynamic ranges of proteome measurements. Concatenated high pH reversed phase liquid chromatography affords better separations than the strong cation exchange conventionally applied for two-dimensional shotgun proteomic analysis. For example, concatenated high pH reversed phase liquid chromatography increased identification coverage for peptides (e.g., by 1.8-fold) and proteins (e.g., by 1.6-fold) in shotgun proteomics analyses of a digested human protein sample. Additional advantages of concatenated high pH RPLC include improved protein sequence coverage, simplified sample processing, and reduced sample losses, making this an attractive first dimension separation strategy for two-dimensional proteomics analyses.

  1. Spatial data analysis for exploration of regional scale geothermal resources

    NASA Astrophysics Data System (ADS)

    Moghaddam, Majid Kiavarz; Noorollahi, Younes; Samadzadegan, Farhad; Sharifi, Mohammad Ali; Itoi, Ryuichi

    2013-10-01

    Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100 °C/km and heat flow over 100 mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.

  2. Secondary Analysis of Large-Scale Assessment Data: An Alternative to Variable-Centred Analysis

    ERIC Educational Resources Information Center

    Chow, Kui Foon; Kennedy, Kerry John

    2014-01-01

    International large-scale assessments are now part of the educational landscape in many countries and often feed into major policy decisions. Yet, such assessments also provide data sets for secondary analysis that can address key issues of concern to educators and policymakers alike. Traditionally, such secondary analyses have been based on a…

  3. Correlation of instrumental voice evaluation with perceptual voice analysis using a modified visual analog scale.

    PubMed

    Yu, Ping; Revis, Joana; Wuyts, Floris L; Zanaret, Michel; Giovanni, Antoine

    2002-01-01

    Various rating scales have been used for perceptual voice analysis including ordinal (ORD) scales and visual analog (VA) scales. The purpose of this study was to determine the most suitable scale for studies using perceptual voice analysis as a gold standard for validation of objective analysis protocols. The study was carried out on 74 female voice samples from 68 dysphonic patients and 6 controls. A panel of 4 raters with experience in perceptual analysis was asked to score voices according to the G component (overall quality) of the GRBAS system. Two rating scales were used. The first was a conventional 4-point ORD scale. The second was a modified VA (mVA) scale obtained by transforming the VA scale into an ORD scale using a weighted conversion scheme. Objective voice evaluation was performed using the EVA workstation. Objective measurements included acoustic, aerodynamic, and physiologic parameters as well as parameters based on nonlinear mathematics (e.g., Lyapunov coefficient). Instrumental measurements were compared with results of perceptual analysis using either the conventional ORD scale or mVA scale. Results demonstrate that correlation between perceptual and objective voice judgments is better using a mVA scale than a conventional ORD scale (concordance, 88 vs. 64%). Data also indicate that the mVA scale described herein improves the correlation between objective and perceptual voice analysis. PMID:12417797

  4. A Unifying Review of Bioassay-Guided Fractionation, Effect-Directed Analysis and Related Techniques

    PubMed Central

    Weller, Michael G.

    2012-01-01

    The success of modern methods in analytical chemistry sometimes obscures the problem that the ever increasing amount of analytical data does not necessarily give more insight of practical relevance. As alternative approaches, toxicity- and bioactivity-based assays can deliver valuable information about biological effects of complex materials in humans, other species or even ecosystems. However, the observed effects often cannot be clearly assigned to specific chemical compounds. In these cases, the establishment of an unambiguous cause-effect relationship is not possible. Effect-directed analysis tries to interconnect instrumental analytical techniques with a biological/biochemical entity, which identifies or isolates substances of biological relevance. Successful application has been demonstrated in many fields, either as proof-of-principle studies or even for complex samples. This review discusses the different approaches, advantages and limitations and finally shows some practical examples. The broad emergence of effect-directed analytical concepts might lead to a true paradigm shift in analytical chemistry, away from ever growing lists of chemical compounds. The connection of biological effects with the identification and quantification of molecular entities leads to relevant answers to many real life questions. PMID:23012539

  5. Comparative Analysis of the Volatile Fraction of Fruit Juice from Different Citrus Species

    PubMed Central

    Alamar, M. Carmen; Gutiérrez, Abelardo; Granell, Antonio

    2011-01-01

    The volatile composition of fruit from four Citrus varieties (Powell Navel orange, Clemenules mandarine, and Fortune mandarine and Chandler pummelo) covering four different species has been studied. Over one hundred compounds were profiled after HS-SPME-GC-MS analysis, including 27 esters, 23 aldehydes, 21 alcohols, 13 monoterpene hydrocarbons, 10 ketones, 5 sesquiterpene hydrocarbons, 4 monoterpene cyclic ethers, 4 furans, and 2 aromatic hydrocarbons, which were all confirmed with standards. The differences in the volatile profile among juices of these varieties were essentially quantitative and only a few compounds were found exclusively in a single variety, mainly in Chandler. The volatile profile however was able to differentiate all four varieties and revealed complex interactions between them including the participation in the same biosynthetic pathway. Some compounds (6 esters, 2 ketones, 1 furan and 2 aromatic hydrocarbons) had never been reported earlier in Citrus juices. This volatile profiling platform for Citrus juice by HS-SPME-GC-MS and the interrelationship detected among the volatiles can be used as a roadmap for future breeding or biotechnological applications. PMID:21818287

  6. Proteomic analysis of podocyte exosome-enriched fraction from normal human urine.

    PubMed

    Prunotto, Marco; Farina, Annarita; Lane, Lydie; Pernin, Agnès; Schifferli, Jürg; Hochstrasser, Denis F; Lescuyer, Pierre; Moll, Solange

    2013-04-26

    Urine results from a coordinated activity of glomerular and tubular compartments of the kidney. As a footprint of these cellular functional processes, urinary exosomes, and 40-80 nm membrane vesicles released after fusion with the plasma membrane into the extracellular environment by renal epithelial cells, are a source for identification of proteins and investigation of their role in the kidney. The aim of the present study was the identification of podocyte exosome proteins based on urine immunoabsorption using podocyte-specific CR1-immunocoated beads followed by proteomic analysis using LC MS/MS techniques. This methodology allowed the identification of 1195 proteins. By using a bioinformatic approach, 27 brain-expressed proteins were identified, in which 14 out of them were newly demonstrated to be expressed in the kidney at a mRNA level, and, one of them, the COMT protein, was demonstrated to be expressed in podocytes at a protein level. These results, attesting the reliability of the methodology to identify podocyte proteins, need now to be completed by further experiments to analyze more precisely their biological function(s) in the podocytes. PMID:23376485

  7. Large-scale reconstruction and phylogenetic analysis of metabolic environments

    PubMed Central

    Borenstein, Elhanan; Kupiec, Martin; Feldman, Marcus W.; Ruppin, Eytan

    2008-01-01

    The topology of metabolic networks may provide important insights not only into the metabolic capacity of species, but also into the habitats in which they evolved. Here we introduce the concept of a metabolic network's “seed set”—the set of compounds that, based on the network topology, are exogenously acquired—and provide a methodological framework to computationally infer the seed set of a given network. Such seed sets form ecological “interfaces” between metabolic networks and their surroundings, approximating the effective biochemical environment of each species. Analyzing the metabolic networks of 478 species and identifying the seed set of each species, we present a comprehensive large-scale reconstruction of such predicted metabolic environments. The seed sets' composition significantly correlates with several basic properties characterizing the species' environments and agrees with biological observations concerning major adaptations. Species whose environments are highly predictable (e.g., obligate parasites) tend to have smaller seed sets than species living in variable environments. Phylogenetic analysis of the seed sets reveals the complex dynamics governing gain and loss of seeds across the phylogenetic tree and the process of transition between seed and non-seed compounds. Our findings suggest that the seed state is transient and that seeds tend either to be dropped completely from the network or to become non-seed compounds relatively fast. The seed sets also permit a successful reconstruction of a phylogenetic tree of life. The “reverse ecology” approach presented lays the foundations for studying the evolutionary interplay between organisms and their habitats on a large scale. PMID:18787117

  8. Age Differences on Alcoholic MMPI Scales: A Discriminant Analysis Approach.

    ERIC Educational Resources Information Center

    Faulstich, Michael E.; And Others

    1985-01-01

    Administered the Minnesota Multiphasic Personality Inventory to 91 male alcoholics after detoxification. Results indicated that the Psychopathic Deviant and Paranoia scales declined with age, while the Responsibility scale increased with age. (JAC)

  9. Sensitivity analysis and scale issues in landslide susceptibility mapping

    NASA Astrophysics Data System (ADS)

    Catani, Filippo; Lagomarsino, Daniela; Segoni, Samuele; Tofani, Veronica

    2013-04-01

    random forest enables to estimate the relative importance of the single input parameters and to select the optimal configuration of the regression model. The model was initially applied using the complete set of input parameters, then with progressively smaller subsamples of the parameter space. Considering the best set of parameters we also studied the impact of scale and accuracy of input variables and the influence of the RF model random component on the susceptibility results. We apply the model statistics to a test area in central Italy, the hydrographic basin of the Arno river (ca. 9000 km2), we present the obtained results and discuss them. We also use the outcomes of the parameter sensitivity analysis to investigate the different role of environmental factors in the test area.

  10. Large-scale dimension densities for heart rate variability analysis

    NASA Astrophysics Data System (ADS)

    Raab, Corinna; Wessel, Niels; Schirdewan, Alexander; Kurths, Jürgen

    2006-04-01

    In this work, we reanalyze the heart rate variability (HRV) data from the 2002 Computers in Cardiology (CiC) Challenge using the concept of large-scale dimension densities and additionally apply this technique to data of healthy persons and of patients with cardiac diseases. The large-scale dimension density (LASDID) is estimated from the time series using a normalized Grassberger-Procaccia algorithm, which leads to a suitable correction of systematic errors produced by boundary effects in the rather large scales of a system. This way, it is possible to analyze rather short, nonstationary, and unfiltered data, such as HRV. Moreover, this method allows us to analyze short parts of the data and to look for differences between day and night. The circadian changes in the dimension density enable us to distinguish almost completely between real data and computer-generated data from the CiC 2002 challenge using only one parameter. In the second part we analyzed the data of 15 patients with atrial fibrillation (AF), 15 patients with congestive heart failure (CHF), 15 elderly healthy subjects (EH), as well as 18 young and healthy persons (YH). With our method we are able to separate completely the AF (ρlsμ=0.97±0.02) group from the others and, especially during daytime, the CHF patients show significant differences from the young and elderly healthy volunteers (CHF, 0.65±0.13 ; EH, 0.54±0.05 ; YH, 0.57±0.05 ; p<0.05 for both comparisons). Moreover, for the CHF patients we find no circadian changes in ρlsμ (day, 0.65±0.13 ; night, 0.66±0.12 ; n.s.) in contrast to healthy controls (day, 0.54±0.05 ; night, 0.61±0.05 ; p=0.002 ). Correlation analysis showed no statistical significant relation between standard HRV and circadian LASDID, demonstrating a possibly independent application of our method for clinical risk stratification.

  11. Large-scale dimension densities for heart rate variability analysis.

    PubMed

    Raab, Corinna; Wessel, Niels; Schirdewan, Alexander; Kurths, Jürgen

    2006-04-01

    In this work, we reanalyze the heart rate variability (HRV) data from the 2002 Computers in Cardiology (CiC) Challenge using the concept of large-scale dimension densities and additionally apply this technique to data of healthy persons and of patients with cardiac diseases. The large-scale dimension density (LASDID) is estimated from the time series using a normalized Grassberger-Procaccia algorithm, which leads to a suitable correction of systematic errors produced by boundary effects in the rather large scales of a system. This way, it is possible to analyze rather short, nonstationary, and unfiltered data, such as HRV. Moreover, this method allows us to analyze short parts of the data and to look for differences between day and night. The circadian changes in the dimension density enable us to distinguish almost completely between real data and computer-generated data from the CiC 2002 challenge using only one parameter. In the second part we analyzed the data of 15 patients with atrial fibrillation (AF), 15 patients with congestive heart failure (CHF), 15 elderly healthy subjects (EH), as well as 18 young and healthy persons (YH). With our method we are able to separate completely the AF (rho (mu/ls) = 0.97 +/- 0.02) group from the others and, especially during daytime, the CHF patients show significant differences from the young and elderly healthy volunteers (CHF, 0.65 +/- 0.13; EH, 0.54 +/- 0.05; YH, 0.57 +/- 0.05; p < 0.05 for both comparisons). Moreover, for the CHF patients we find no circadian changes in rho (mu/ls) (day, 0.65 +/- 0.13; night, 0.66 +/- 0.12; n.s.) in contrast to healthy controls (day, 0.54 +/- 0.05; night, 0.61 +/- 0.05; p=0.002). Correlation analysis showed no statistical significant relation between standard HRV and circadian LASDID, demonstrating a possibly independent application of our method for clinical risk stratification. PMID:16711836

  12. Solid/solution Cu fractionations/speciation of a Cu contaminated soil after pilot-scale electrokinetic remediation and their relationships with soil microbial and enzyme activities.

    PubMed

    Wang, Quan-Ying; Zhou, Dong-Mei; Cang, Long; Li, Lian-Zhen; Wang, Peng

    2009-01-01

    The aim of this study was to investigate the detailed metal speciation/fractionations of a Cu contaminated soil before and after electrokinetic remediation as well as their relationships with the soil microbial and enzyme activities. Significant changes in the exchangeable and adsorbed-Cu fractionations occurred after electrokinetic treatment, while labile soil Cu in the solution had a tendency to decrease from the anode to the cathode, and the soil free Cu(2+) ions were mainly accumulated in the sections close to the cathode. The results of regression analyses revealed that both the soil Cu speciation in solution phase and the Cu fractionations in solid phase could play important roles in the changes of the soil microbial and enzyme activities. Our findings suggest that the bioavailability of soil heavy metals and their ecotoxicological effects on the soil biota before and after electroremediation can be better understood in terms of their chemical speciation and fractionations. PMID:19427727

  13. Translatome profiling: methods for genome-scale analysis of mRNA translation.

    PubMed

    King, Helen A; Gerber, André P

    2016-01-01

    During the past decade, there has been a rapidly increased appreciation of the role of translation as a key regulatory node in gene expression. Thereby, the development of methods to infer the translatome, which refers to the entirety of mRNAs associated with ribosomes for protein synthesis, has facilitated the discovery of new principles and mechanisms of translation and expanded our view of the underlying logic of protein synthesis. Here, we review the three main methodologies for translatome analysis, and we highlight some of the recent discoveries made using each technique. We first discuss polysomal profiling, a classical technique that involves the separation of mRNAs depending on the number of bound ribosomes using a sucrose gradient, and which has been combined with global analysis tools such as DNA microarrays or high-throughput RNA sequencing to identify the RNAs in polysomal fractions. We then introduce ribosomal profiling, a recently established technique that enables the mapping of ribosomes along mRNAs at near-nucleotide resolution on a global scale. We finally refer to ribosome affinity purification techniques that are based on the cell-type-specific expression of tagged ribosomal proteins, allowing the capture of translatomes from specialized cells in organisms. We discuss the advantages and disadvantages of these three main techniques in the pursuit of defining the translatome, and we speculate about future developments. PMID:25380596

  14. Thermophilic two-phase anaerobic digestion of source-sorted organic fraction of municipal solid waste for bio-hythane production: effect of recirculation sludge on process stability and microbiology over a long-term pilot-scale experience.

    PubMed

    Giuliano, A; Zanetti, L; Micolucci, F; Cavinato, C

    2014-01-01

    A two-stage thermophilic anaerobic digestion process for the concurrent production of hydrogen and methane through the treatment of the source-sorted organic fraction of municipal solid waste was carried out over a long-term pilot scale experience. Two continuously stirred tank reactors were operated for about 1 year. The results showed that stable production of bio-hythane without inoculum treatment could be obtained. The pH of the dark fermentation reactor was maintained in the optimal range for hydrogen-producing bacteria activity through sludge recirculation from a methanogenic reactor. An average specific bio-hythane production of 0.65 m(3) per kg of volatile solids fed was achieved when the recirculation flow was controlled through an evaporation unit in order to avoid inhibition problems for both microbial communities. Microbial analysis indicated that dominant bacterial species in the dark fermentation reactor are related to the Lactobacillus family, while the population of the methanogenic reactor was mainly composed of Defluviitoga tunisiensis. The archaeal community of the methanogenic reactor shifted, moving from Methanothermobacter-like to Methanobacteriales and Methanosarcinales, the latter found also in the dark fermentation reactor when a considerable methane production was detected. PMID:24901613

  15. The theory of maximally and minimally even sets, the one- dimensional antiferromagnetic Ising model, and the continued fraction compromise of musical scales

    NASA Astrophysics Data System (ADS)

    Douthett, Elwood (Jack) Moser, Jr.

    1999-10-01

    Cyclic configurations of white and black sites, together with convex (concave) functions used to weight path length, are investigated. The weights of the white set and black set are the sums of the weights of the paths connecting the white sites and black sites, respectively, and the weight between sets is the sum of the weights of the paths that connect sites opposite in color. It is shown that when the weights of all configurations of a fixed number of white and a fixed number of black sites are compared, minimum (maximum) weight of a white set, minimum (maximum) weight of the a black set, and maximum (minimum) weight between sets occur simultaneously. Such configurations are called maximally even configurations. Similarly, the configurations whose weights are the opposite extremes occur simultaneously and are called minimally even configurations. Algorithms that generate these configurations are constructed and applied to the one- dimensional antiferromagnetic spin-1/2 Ising model. Next the goodness of continued fractions as applied to musical intervals (frequency ratios and their base 2 logarithms) is explored. It is shown that, for the intermediate convergents between two consecutive principal convergents of an irrational number, the first half of the intermediate convergents are poorer approximations than the preceding principal convergent while the second half are better approximations; the goodness of a middle intermediate convergent can only be determined by calculation. These convergents are used to determine what equal-tempered systems have intervals that most closely approximate the musical fifth (pn/ qn = log2(3/2)). The goodness of exponentiated convergents ( 2pn/qn~3/2 ) is also investigated. It is shown that, with the exception of a middle convergent, the goodness of the exponential form agrees with that of its logarithmic Counterpart As in the case of the logarithmic form, the goodness of a middle intermediate convergent in the exponential form can

  16. The nonlinear relationship between albedo and cloud fraction on near-global, monthly mean scale in observations and in the CMIP5 model ensemble

    NASA Astrophysics Data System (ADS)

    Engström, A.; Bender, F. A.-M.; Charlson, R. J.; Wood, R.

    2015-11-01

    We study the relation between monthly mean albedo and cloud fraction over ocean, 60°S-60°N. Satellite observations indicate that these clouds all fall on the same near-exponential curve, with a monotonic distribution over the ranges of cloud fractions and albedo. Using these observational data as a reference, we examine the degree to which 26 climate models capture this feature of the near-global marine cloud population. Models show a general increase in albedo with increasing cloud fraction, but none of them display a relation that is as well defined as that characterizing the observations. Models typically display larger albedo variability at a given cloud fraction, larger sensitivity in albedo to changes in cloud fraction, and lower cloud fractions. Several models also show branched distributions, contrasting with the smooth observational relation. In the models the present-day cloud scenes are more reflective than the preindustrial, demonstrating the simulated impact of anthropogenic aerosols on planetary albedo.

  17. Comparative analysis of prolamin and glutelin fractions from wheat, rye, and barley with five sandwich ELISA test kits.

    PubMed

    Lexhaller, Barbara; Tompos, Christine; Scherf, Katharina Anne

    2016-09-01

    The safety of gluten-free foods is essential for celiac disease (CD) patients to prevent serious complications. Enzyme-linked immunosorbent assays (ELISAs) are recommended for gluten analysis to monitor the compliance of gluten-free products to the Codex threshold of 20 mg gluten/kg. However, due to the specific features of each gluten ELISA test kit, the results often deviate systematically and largely depend on the characteristics of the antibody. This comprehensive study assessed the specificities and sensitivities of three monoclonal (R5, G12, and Skerritt) and two polyclonal antibodies to the alcohol-soluble prolamin and alcohol-insoluble glutelin fractions of gluten from wheat, rye, and barley, all of which harbor CD-active epitopes. Reversed-phase high-performance liquid chromatography served as independent reference method to quantify gluten protein concentrations and allow comparisons of different gluten fractions within one kit and between kits. Wheat prolamins were detected quite accurately by all antibodies, but high variability between antibody specificities and sensitivities was observed for rye and barley prolamins and rye glutelins, and the largest discrepancies were found for wheat and barley glutelins. The gluten content (sum of prolamins and glutelins) was either overestimated up to six times (rye) or underestimated up to seven times (barley). Overestimation of gluten contents may unnecessarily limit the availability of gluten-free products, but underestimation represents a serious health risk for CD patients. It is important to consider these differences between antibodies used in kits and consider what each kit is capable of measuring, especially with samples where the source of gluten is unknown. PMID:27342795

  18. The Effect of Data Scaling on Dual Prices and Sensitivity Analysis in Linear Programs

    ERIC Educational Resources Information Center

    Adlakha, V. G.; Vemuganti, R. R.

    2007-01-01

    In many practical situations scaling the data is necessary to solve linear programs. This note explores the relationships in translating the sensitivity analysis between the original and the scaled problems.

  19. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1982-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine.

  20. MIXREGLS: A Program for Mixed-Effects Location Scale Analysis.

    PubMed

    Hedeker, Donald; Nordgren, Rachel

    2013-03-01

    MIXREGLS is a program which provides estimates for a mixed-effects location scale model assuming a (conditionally) normally-distributed dependent variable. This model can be used for analysis of data in which subjects may be measured at many observations and interest is in modeling the mean and variance structure. In terms of the variance structure, covariates can by specified to have effects on both the between-subject and within-subject variances. Another use is for clustered data in which subjects are nested within clusters (e.g., clinics, hospitals, schools, etc.) and interest is in modeling the between-cluster and within-cluster variances in terms of covariates. MIXREGLS was written in Fortran and uses maximum likelihood estimation, utilizing both the EM algorithm and a Newton-Raphson solution. Estimation of the random effects is accomplished using empirical Bayes methods. Examples illustrating stand-alone usage and features of MIXREGLS are provided, as well as use via the SAS and R software packages. PMID:23761062

  1. Heterogeneous reactions over fractal surfaces: A multifractal scaling analysis

    SciTech Connect

    Lee, Shyi-Long; Lee, Chung-Kung

    1996-12-31

    Monte Carlo simulations of modified Eley-Rideal mechanisms possessing decay-type and enhance-type sticking probabilities as well as a three-step catalytic reaction over fractal surfaces were performed to examine the morphological effect on the above-mentioned surface reactions. Effects of decay and enhancing profiles on reaction probability distribution for Eley-Rideal reactions as well as effects of varying probability of reaction steps and cluster sizes on the normalized selectivity distribution for the three-step reaction were then analyzed by multifractal scaling techniques. For the Eley-Rideal mechanism, it is found that reaction probability distribution tends to be spatially uniform at fast decay and rather concentrated at faster enhancing rate. For the three-step reaction, increase of cluster size is found to lower the position sensitivity of normalized selectivity distribution. Large dimerization to isomerization ratio increases position distinction among active sites as the adsorption probability equals to 1. At small adsorption probability, the dimerization/isomerization ratio causes no effect on the normalized selectivity distribution. Heterogeneity of surfaces as reflected in the multifractal analysis will also be discussed.

  2. Full-scale testing and analysis of fuselage structure

    NASA Technical Reports Server (NTRS)

    Miller, M.; Gruber, M. L.; Wilkins, K. E.; Worden, R. E.

    1994-01-01

    This paper presents recent results from a program in the Boeing Commercial Airplane Group to study the behavior of cracks in fuselage structures. The goal of this program is to improve methods for analyzing crack growth and residual strength in pressurized fuselages, thus improving new airplane designs and optimizing the required structural inspections for current models. The program consists of full-scale experimental testing of pressurized fuselage panels in both wide-body and narrow-body fixtures and finite element analyses to predict the results. The finite element analyses are geometrically nonlinear with material and fastener nonlinearity included on a case-by-case basis. The analysis results are compared with the strain gage, crack growth, and residual strength data from the experimental program. Most of the studies reported in this paper concern the behavior of single or multiple cracks in the lap joints of narrow-body airplanes (such as 727 and 737 commercial jets). The phenomenon where the crack trajectory is curved creating a 'flap' and resulting in a controlled decompression is discussed.

  3. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1983-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine. Previously announced in STAR as N83-21896

  4. Full-scale testing and analysis of fuselage structure

    NASA Astrophysics Data System (ADS)

    Miller, M.; Gruber, M. L.; Wilkins, K. E.; Worden, R. E.

    1994-09-01

    This paper presents recent results from a program in the Boeing Commercial Airplane Group to study the behavior of cracks in fuselage structures. The goal of this program is to improve methods for analyzing crack growth and residual strength in pressurized fuselages, thus improving new airplane designs and optimizing the required structural inspections for current models. The program consists of full-scale experimental testing of pressurized fuselage panels in both wide-body and narrow-body fixtures and finite element analyses to predict the results. The finite element analyses are geometrically nonlinear with material and fastener nonlinearity included on a case-by-case basis. The analysis results are compared with the strain gage, crack growth, and residual strength data from the experimental program. Most of the studies reported in this paper concern the behavior of single or multiple cracks in the lap joints of narrow-body airplanes (such as 727 and 737 commercial jets). The phenomenon where the crack trajectory is curved creating a 'flap' and resulting in a controlled decompression is discussed.

  5. MIXREGLS: A Program for Mixed-Effects Location Scale Analysis

    PubMed Central

    Hedeker, Donald; Nordgren, Rachel

    2013-01-01

    MIXREGLS is a program which provides estimates for a mixed-effects location scale model assuming a (conditionally) normally-distributed dependent variable. This model can be used for analysis of data in which subjects may be measured at many observations and interest is in modeling the mean and variance structure. In terms of the variance structure, covariates can by specified to have effects on both the between-subject and within-subject variances. Another use is for clustered data in which subjects are nested within clusters (e.g., clinics, hospitals, schools, etc.) and interest is in modeling the between-cluster and within-cluster variances in terms of covariates. MIXREGLS was written in Fortran and uses maximum likelihood estimation, utilizing both the EM algorithm and a Newton-Raphson solution. Estimation of the random effects is accomplished using empirical Bayes methods. Examples illustrating stand-alone usage and features of MIXREGLS are provided, as well as use via the SAS and R software packages. PMID:23761062

  6. MicroScale Thermophoresis: Interaction analysis and beyond

    NASA Astrophysics Data System (ADS)

    Jerabek-Willemsen, Moran; André, Timon; Wanner, Randy; Roth, Heide Marie; Duhr, Stefan; Baaske, Philipp; Breitsprecher, Dennis

    2014-12-01

    MicroScale Thermophoresis (MST) is a powerful technique to quantify biomolecular interactions. It is based on thermophoresis, the directed movement of molecules in a temperature gradient, which strongly depends on a variety of molecular properties such as size, charge, hydration shell or conformation. Thus, this technique is highly sensitive to virtually any change in molecular properties, allowing for a precise quantification of molecular events independent of the size or nature of the investigated specimen. During a MST experiment, a temperature gradient is induced by an infrared laser. The directed movement of molecules through the temperature gradient is detected and quantified using either covalently attached or intrinsic fluorophores. By combining the precision of fluorescence detection with the variability and sensitivity of thermophoresis, MST provides a flexible, robust and fast way to dissect molecular interactions. In this review, we present recent progress and developments in MST technology and focus on MST applications beyond standard biomolecular interaction studies. By using different model systems, we introduce alternative MST applications - such as determination of binding stoichiometries and binding modes, analysis of protein unfolding, thermodynamics and enzyme kinetics. In addition, wedemonstrate the capability of MST to quantify high-affinity interactions with dissociation constants (Kds) in the low picomolar (pM) range as well as protein-protein interactions in pure mammalian cell lysates.

  7. Scaling analysis of baseline dual-axis cervical accelerometry signals.

    PubMed

    Sejdić, Ervin; Steele, Catriona M; Chau, Tom

    2011-09-01

    Dual-axis cervical accelerometry is an emerging approach for the assessment of swallowing difficulties. However, the baseline signals, i.e., vibration signals with only quiet breathing or apnea but without swallowing, are not well understood. In particular, to comprehend the contaminant effects of head motion on cervical accelerometry, we need to study the scaling behavior of these baseline signals. Dual-axis accelerometry data were collected from 50 healthy adult participants under conditions of quiet breathing, apnea and selected head motions, all in the absence of swallowing. The denoised cervical vibrations were subjected to detrended fluctuation analysis with empirically determined first-order detrending. Strong persistence was identified in cervical vibration signals in both anterior-posterior (A-P) and superior-inferior (S-I) directions, under all the above experimental conditions. Vibrations in the A-P axes exhibited stronger correlations than those in the S-I axes, possibly as a result of axis-specific effects of vasomotion. In both axes, stronger correlations were found in the presence of head motion than without, suggesting that head movement significantly impacts baseline cervical accelerometry. No gender or age effects were found on statistical persistence of either vibration axes. Future developments of cervical accelerometry-based medical devices should actively mitigate the effects of head movement. PMID:20708292

  8. Numerical Simulation and Scaling Analysis of Cell Printing

    NASA Astrophysics Data System (ADS)

    Qiao, Rui; He, Ping

    2011-11-01

    Cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use inkjet printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation. Although the feasibility of cell printing has been demonstrated recently, the printing resolution and cell viability remain to be improved. Here we investigate a unit operation in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids. The droplet and cell dynamics are quantified using both direct numerical simulation and scaling analysis. These studies indicate that although cell experienced significant stress during droplet impact, the duration of such stress is very short, which helps explain why many cells can survive the cell printing process. These studies also revealed that cell membrane can be temporarily ruptured during cell printing, which is supported by indirect experimental evidence.

  9. α-Glucosidase inhibition and antioxidant activity of an oenological commercial tannin. Extraction, fractionation and analysis by HPLC/ESI-MS/MS and (1)H NMR.

    PubMed

    Muccilli, Vera; Cardullo, Nunzio; Spatafora, Carmela; Cunsolo, Vincenzo; Tringali, Corrado

    2017-01-15

    Two batches of the oenological tannin Tan'Activ R, (toasted oak wood - Quercus robur), were extracted with ethanol. A fractionation on XAD-16 afforded four fractions for each extract. Extracts and fractions were evaluated for antioxidant activity (DPPH), polyphenol content (GAE) and yeast α-glucosidase inhibitory activity. Comparable results were obtained for both columns, fractions X1B and X2B showing the highest antioxidant activity. Fractions X1C and X2C notably inhibited α-glucosidase, with IC50=9.89 and 8.05μg/mL, respectively. Fractions were subjected to HPLC/ESI-MS/MS and (1)H NMR analysis. The main phenolic constituents of both X1B and X2B were a monogalloylglucose isomer (1), a HHDP-glucose isomer (2), castalin (3) gallic acid (4), vescalagin (5), and grandinin (or its isomer roburin E, 6). X1C and X2C showed a complex composition, including non-phenolic constituents. Fractionation of X2C gave a subfraction, with enhanced α-glucosidase inhibitory activity (IC50=6.15μg/mL), with castalagin (7) as the main constituent. PMID:27542449

  10. Solvent-enhanced headspace sorptive extraction in the analysis of the volatile fraction of matrices of vegetable origin.

    PubMed

    Sgorbini, Barbara; Budziak, Dilma; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia; Sandra, Pat; Bicchi, Carlo

    2010-07-01

    The solvent-enhanced headspace sorptive extraction technique aims at modifying PDMS polarity using a solvent to increase its concentration capability. In solvent-enhanced headspace sorptive extraction, a PDMS tubing closed at both ends by small glass stoppers and filled with an organic solvent is suspended in the sample headspace for a fixed time. After sampling, the sampled analytes are recovered from the PDMS tubing by thermal desorption and online transferred to a GC-flame ionization detector or GC-MS system for analysis. Cyclohexane, iso-octane, ethyl acetate, acetone, acetonitrile and methanol were tested as PDMS modifiers to sample the volatile fractions of sage (Salvia lavandulifolia Vahl.), thyme (Thymus vulgaris L.) and roasted coffee. Ethyl acetate was found to be the most effective PDMS modifier for all matrices investigated; although to a lesser extent, cyclohexane also increased component recoveries with sage and thyme. Acetone, acetonitrile and methanol did not increase PDMS recovery, while isooctane was excluded because of its interaction with the polymer. The results show that solvent-modified PDMS extends the range of sampled headspace components with different polarities, increases the recovery of many of them, improves sensitivity in trace analysis, speeds up recovery and gives repeatability comparable with that of unmodified PDMS. PMID:20549665

  11. Dynamic analysis with a fractional-order chaotic system for estimation of peripheral arterial disease in diabetic foot

    NASA Astrophysics Data System (ADS)

    Li, Chien-Ming; Du, Yi-Chun; Wu, Jian-Xing; Lin, Chia-Hung; Ho, Yueh-Ren; Chen, Tainsong

    2013-08-01

    Lower-extremity peripheral arterial disease (PAD) is caused by narrowing or occlusion of vessels in patients like type 2 diabetes mellitus, the elderly and smokers. Patients with PAD are mostly asymptomatic; typical early symptoms of this limb-threatening disorder are intermittent claudication and leg pain, suggesting the necessity for accurate diagnosis by invasive angiography and ankle-brachial pressure index. This index acts as a gold standard reference for PAD diagnosis and categorizes its severity into normal, low-grade and high-grade, with respective cut-off points of ≥0.9, 0.9-0.5 and <0.5. PAD can be assessed using photoplethysmography as a diagnostic screening tool, displaying changes in pulse transit time and shape, and dissimilarities of these changes between lower limbs. The present report proposed photoplethysmogram with fractional-order chaotic system to assess PAD in 14 diabetics and 11 healthy adults, with analysis of dynamic errors based on various butterfly motion patterns, and color relational analysis as classifier for pattern recognition. The results show that the classification of PAD severity among these testees was achieved with high accuracy and efficiency. This noninvasive methodology potentially provides timing and accessible feedback to patients with asymptomatic PAD and their physicians for further invasive diagnosis or strict management of risk factors to intervene in the disease progression.

  12. Distribution of Lipids in the Grain of Wheat (cv. Hereward) Determined by Lipidomic Analysis of Milling and Pearling Fractions.

    PubMed

    González-Thuillier, Irene; Salt, Louise; Chope, Gemma; Penson, Simon; Skeggs, Peter; Tosi, Paola; Powers, Stephen J; Ward, Jane L; Wilde, Peter; Shewry, Peter R; Haslam, Richard P

    2015-12-16

    Lipidomic analyses of milling and pearling fractions from wheat grain were carried out to determine differences in composition that could relate to the spatial distribution of lipids in the grain. Free fatty acids and triacylglycerols were major components in all fractions, but the relative contents of polar lipids varied, particularly those of lysophosphatidylcholine and digalactosyldiglyceride, which were enriched in flour fractions. By contrast, minor phospholipids were enriched in bran and offal fractions. The most abundant fatty acids in the analyzed acyl lipids were C16:0 and C18:2 and their combinations, including C36:4 and C34:2. Phospholipids and galactolipids have been reported to have beneficial properties for breadmaking, whereas free fatty acids and triacylglycerols are considered detrimental. The subtle differences in the compositions of fractions determined in the present study could therefore underpin the production of flour fractions with optimized compositions for different end uses. PMID:26582143

  13. Differentiation of roasted and soluble coffees through physical fractionation of selected essential and nonessential metals in their brews and exploratory data analysis.

    PubMed

    Pohl, Pawel; Szymczycha-Madeja, Anna; Stelmach, Ewelina; Welna, Maja

    2016-11-01

    An analytical scheme for physical fractionation of Al, Ba, Ca, Co, Fe, K, Mg, Mn, Na, Ni, Sr and Zn in ground roasted and soluble coffees brews was proposed. It was based on ultrafiltration through five ultrafiltration membranes having molecular weight cut-offs of 5, 10, 30, 50 and 100kDa. The highest ">100kDa" and the lowest "<5kDa" molecular weight fractions were established to differentiate the studied coffees brews the most. Al, Cu, Fe and Ni were mostly associated with the ">100kDa" fraction, while Co, K, Mg and Na - with the "<5kDa" fraction. For Ba, Ca, Mn, Sr and Zn, ">100kDa" and "<5kDa" fractions contributions were equally accounted. The physical fractionation pattern of selected metals was convenient for discovering important features of brews of both coffee types and differences between them by principal component analysis and then classifying them by linear discriminant analysis. PMID:27591664

  14. Quantitative analysis and reduction of the eco-toxicity risk of heavy metals for the fine fraction of automobile shredder residue (ASR) using H2O2.

    PubMed

    Singh, Jiwan; Yang, Jae-Kyu; Chang, Yoon-Young

    2016-02-01

    Automobile shredder residue (ASR) fraction (size <0.25mm) can be considered as hazardous due to presence of high concentrations of heavy metals. Hydrogen peroxide combined with nitric acid has been used for the recovery of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd and Cr) from the fine fraction of ASR. A sequential extraction procedure has also been used to determine the heavy metal speciation in the fine fraction of ASR before and after treatment. A risk analysis of the fine fraction of ASR before and after treatment was conducted to assess the bioavailability and eco-toxicity of heavy metals. These results showed that the recovery of heavy metals from ASR increased with an increase in the hydrogen peroxide concentration. A high concentration of heavy metals was found to be present in Cbio fractions (the sum of the exchangeable and carbonate fractions) in the fine fraction of ASR, indicating high toxicity risk. The Cbio rate of all selected heavy metals was found to range from 8.6% to 33.4% of the total metal content in the fine fraction of ASR. After treatment, Cbio was reduced to 0.3-3.3% of total metal upon a treatment with 2.0% hydrogen peroxide. On the basis of the risk assessment code (RAC), the environmental risk values for heavy metals in the fine fraction of ASR reflect high risk/medium risk. However, after treatment, the heavy metals would be categorized as low risk/no risk. The present study concludes that hydrogen peroxide combined with nitric acid is a promising treatment for the recovery and reduction of the eco-toxicity risk of heavy metals in ASR. PMID:26482807

  15. Scale

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2009-01-01

    The common approach to scaling, according to Christopher Dede, a professor of learning technologies at the Harvard Graduate School of Education, is to jump in and say, "Let's go out and find more money, recruit more participants, hire more people. Let's just keep doing the same thing, bigger and bigger." That, he observes, "tends to fail, and fail…

  16. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions

    PubMed Central

    Renosh, P. R.; Schmitt, Francois G.; Loisel, Hubert

    2015-01-01

    Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics. PMID:26017551

  17. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions.

    PubMed

    Renosh, P R; Schmitt, Francois G; Loisel, Hubert

    2015-01-01

    Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics. PMID:26017551

  18. Waste Receiving and Processing (WRAP) Facility Weight Scale Analysis Fairbanks Weight Scale Evaluation Results

    SciTech Connect

    JOHNSON, M.D.

    2000-03-13

    Fairbanks Weight Scales are used at the Waste Receiving and Processing (WRAP) facility to determine the weight of waste drums as they are received, processed, and shipped. Due to recent problems, discovered during calibration, the WRAP Engineering Department has completed this document which outlines both the investigation of the infeed conveyor scale failure in September of 1999 and recommendations for calibration procedure modifications designed to correct deficiencies in the current procedures.

  19. Conventional and enantioselective gas chromatography with microfabricated planar columns for analysis of real-world samples of plant volatile fraction.

    PubMed

    Cagliero, C; Galli, S; Galli, M; Elmi, I; Belluce, M; Zampolli, S; Sgorbini, B; Rubiolo, P; Bicchi, C

    2016-01-15

    Within a project exploring the application of lab-on-chip GC to in-field analysis of the plant volatile fraction, this study evaluated the performance of a set of planar columns (also known as microchannels, MEMS columns, or microfabricated columns) of different dimensions installed in a conventional GC unit. Circular double-spiral-shaped-channel planar columns with different square/rectangular sections up to 2m long were applied to the analysis of both essential oils and headspace samples of a group of medicinal and aromatic plants (chamomile, peppermint, sage, rosemary, lavender and bergamot) and of standard mixtures of related compounds; the results were compared to those obtained with reference narrow-bore columns (l:5m, dc:0.1mm, df:0.1 μm). The above essential oils and headspaces were first analyzed quali-and quantitatively with planar columns statically coated with conventional stationary phases (5%-phenyl-polymethylsiloxane and auto-bondable nitroterephthalic-acid-modified polyethylene glycol), and then submitted to chiral recognition of their diagnostic markers, by enantioselective GC with a planar columns coated with a cyclodextrin derivative (30% 6(I-VII)-O-TBDMS-3(I-VII)-O-ethyl-2(I-VII)-O-ethyl-β-cyclodextrin in PS-086). Column characteristics and analysis conditions were first optimized to obtain suitable retention and efficiency for the samples investigated. The planar columns tested showed performances close to the reference conventional narrow-bore columns, with theoretical plate numbers per meter (N/m) ranging from 6100 to 7200 for those coated with the conventional stationary phases, and above 5600 for those with the chiral selector. PMID:26733393

  20. Spectral transfer function analysis of respiratory hemodynamic fluctuations predicts end-diastolic stiffness in preserved ejection fraction heart failure.

    PubMed

    Abdellatif, Mahmoud; Leite, Sara; Alaa, Mohamed; Oliveira-Pinto, José; Tavares-Silva, Marta; Fontoura, Dulce; Falcão-Pires, Inês; Leite-Moreira, Adelino F; Lourenço, André P

    2016-01-01

    Preserved ejection fraction heart failure (HFpEF) diagnosis remains controversial, and invasive left ventricular (LV) hemodynamic evaluation and/or exercise testing is advocated by many. The stiffer HFpEF myocardium may show impaired stroke volume (SV) variation induced by fluctuating LV filling pressure during ventilation. Our aim was to investigate spectral transfer function (STF) gain from end-diastolic pressure (EDP) to indexed SV (SVi) in experimental HFpEF. Eighteen-week-old Wistar-Kyoto (WKY) and ZSF1 lean (ZSF1 Ln) and obese rats (ZSF1 Ob) randomly underwent LV open-chest (OC, n = 8 each group) or closed-chest hemodynamic evaluation (CC, n = 6 each group) under halogenate anesthesia and positive-pressure ventilation at constant inspiratory pressure. Beat-to-beat fluctuations in hemodynamic parameters during ventilation were assessed by STF. End-diastolic stiffness (βi) and end-systolic elastance (Eesi) for indexed volumes were obtained by inferior vena cava occlusion in OC (multibeat) or single-beat method estimates in CC. ZSF1 Ob showed higher EDP spectrum (P < 0.001), higher STF gain between end-diastolic volume and EDP, and impaired STF gain between EDP and SVi compared with both hypertensive ZSF1 Ln and normotensive WKY controls (P < 0.001). Likewise βi was only higher in ZSF1 Ob while Eesi was raised in both ZSF1 groups. On multivariate analysis βi and not Eesi correlated with impaired STF gain from EDP to SVi (P < 0.001), and receiver-operating characteristics analysis showed an area under curve of 0.89 for higher βi prediction (P < 0.001). Results support further clinical testing of STF analysis from right heart catheterization-derived EDP surrogates to noninvasively determined SV as screening/diagnostic tool to assess myocardial stiffness in HFpEF. PMID:26475584

  1. Development of achiral and chiral 2D HPLC methods for analysis of albendazole metabolites in microsomal fractions using multivariate analysis for the in vitro metabolism.

    PubMed

    Belaz, Kátia Roberta A; Pereira-Filho, Edenir Rodrigues; Oliveira, Regina V

    2013-08-01

    In this work, the development of two multidimensional liquid chromatography methods coupled to a fluorescence detector is described for direct analysis of microsomal fractions obtained from rat livers. The chiral multidimensional method was then applied for the optimization of the in vitro metabolism of albendazole by experimental design. Albendazole was selected as a model drug because of its anthelmintics properties and recent potential for cancer treatment. The development of two fully automated achiral-chiral and chiral-chiral high performance liquid chromatography (HPLC) methods for the determination of albendazole (ABZ) and its metabolites albendazole sulphoxide (ABZ-SO), albendazole sulphone (ABZ-SO2) and albendazole 2-aminosulphone (ABZ-SO2NH2) in microsomal fractions are described. These methods involve the use of a phenyl (RAM-phenyl-BSA) or octyl (RAM-C8-BSA) restricted access media bovine serum albumin column for the sample clean-up, followed by an achiral phenyl column (15.0×0.46cmI.D.) or a chiral amylose tris(3,5-dimethylphenylcarbamate) column (15.0×0.46cmI.D.). The chiral 2D HPLC method was applied to the development of a compromise condition for the in vitro metabolism of ABZ by means of experimental design involving multivariate analysis. PMID:23831523

  2. Confirmatory Factor Analysis of the Geriatric Depression Scale

    ERIC Educational Resources Information Center

    Adams, Kathryn Betts; Matto, Holly C.; Sanders, Sara

    2004-01-01

    Purpose: The Geriatric Depression Scale (GDS) is widely used in clinical and research settings to screen older adults for depressive symptoms. Although several exploratory factor analytic structures have been proposed for the scale, no independent confirmation has been made available that would enable investigators to confidently identify scores…

  3. Reliability and Validity Analysis of the Multiple Intelligence Perception Scale

    ERIC Educational Resources Information Center

    Yesil, Rustu; Korkmaz, Ozgen

    2010-01-01

    This study mainly aims to develop a scale to determine individual intelligence profiles based on self-perceptions. The study group consists of 925 students studying in various departments of the Faculty of Education at Ahi Evran University. A logical and statistical approach was adopted in scale development. Expert opinion was obtained for the…

  4. Analysis, scale modeling, and full-scale test of a railcar and spent-nuclear-fuel shipping cask in a high-velocity impact against a rigid barrier

    SciTech Connect

    Huerta, M.

    1981-06-01

    This report describes the mathematical analysis, the physical scale modeling, and a full-scale crash test of a railcar spent-nuclear-fuel shipping system. The mathematical analysis utilized a lumped-parameter model to predict the structural response of the railcar and the shipping cask. The physical scale modeling analysis consisted of two crash tests that used 1/8-scale models to assess railcar and shipping cask damage. The full-scale crash test, conducted with retired railcar equipment, was carefully monitored with onboard instrumentation and high-speed photography. Results of the mathematical and scale modeling analyses are compared with the full-scale test. 29 figures.

  5. GAS MIXING ANALYSIS IN A LARGE-SCALED SALTSTONE FACILITY

    SciTech Connect

    Lee, S

    2008-05-28

    Computational fluid dynamics (CFD) methods have been used to estimate the flow patterns mainly driven by temperature gradients inside vapor space in a large-scaled Saltstone vault facility at Savannah River site (SRS). The purpose of this work is to examine the gas motions inside the vapor space under the current vault configurations by taking a three-dimensional transient momentum-energy coupled approach for the vapor space domain of the vault. The modeling calculations were based on prototypic vault geometry and expected normal operating conditions as defined by Waste Solidification Engineering. The modeling analysis was focused on the air flow patterns near the ventilated corner zones of the vapor space inside the Saltstone vault. The turbulence behavior and natural convection mechanism used in the present model were benchmarked against the literature information and theoretical results. The verified model was applied to the Saltstone vault geometry for the transient assessment of the air flow patterns inside the vapor space of the vault region using the potential operating conditions. The baseline model considered two cases for the estimations of the flow patterns within the vapor space. One is the reference nominal case. The other is for the negative temperature gradient between the roof inner and top grout surface temperatures intended for the potential bounding condition. The flow patterns of the vapor space calculated by the CFD model demonstrate that the ambient air comes into the vapor space of the vault through the lower-end ventilation hole, and it gets heated up by the Benard-cell type circulation before leaving the vault via the higher-end ventilation hole. The calculated results are consistent with the literature information. Detailed results and the cases considered in the calculations will be discussed here.

  6. A theoretical analysis of basin-scale groundwater temperature distribution

    NASA Astrophysics Data System (ADS)

    An, Ran; Jiang, Xiao-Wei; Wang, Jun-Zhi; Wan, Li; Wang, Xu-Sheng; Li, Hailong

    2015-03-01

    The theory of regional groundwater flow is critical for explaining heat transport by moving groundwater in basins. Domenico and Palciauskas's (1973) pioneering study on convective heat transport in a simple basin assumed that convection has a small influence on redistributing groundwater temperature. Moreover, there has been no research focused on the temperature distribution around stagnation zones among flow systems. In this paper, the temperature distribution in the simple basin is reexamined and that in a complex basin with nested flow systems is explored. In both basins, compared to the temperature distribution due to conduction, convection leads to a lower temperature in most parts of the basin except for a small part near the discharge area. There is a high-temperature anomaly around the basin-bottom stagnation point where two flow systems converge due to a low degree of convection and a long travel distance, but there is no anomaly around the basin-bottom stagnation point where two flow systems diverge. In the complex basin, there are also high-temperature anomalies around internal stagnation points. Temperature around internal stagnation points could be very high when they are close to the basin bottom, for example, due to the small permeability anisotropy ratio. The temperature distribution revealed in this study could be valuable when using heat as a tracer to identify the pattern of groundwater flow in large-scale basins. Domenico PA, Palciauskas VV (1973) Theoretical analysis of forced convective heat transfer in regional groundwater flow. Geological Society of America Bulletin 84:3803-3814

  7. Regional Scale Analysis of Extremes in an SRM Geoengineering Simulation

    NASA Astrophysics Data System (ADS)

    Muthyala, R.; Bala, G.

    2014-12-01

    Only a few studies in the past have investigated the statistics of extreme events under geoengineering. In this study, a global climate model is used to investigate the impact of solar radiation management on extreme precipitation events on regional scale. Solar constant was reduced by 2.25% to counteract the global mean surface temperature change caused by a doubling of CO2 (2XCO2) from its preindustrial control value. Using daily precipitation rates, extreme events are defined as those which exceed 99.9th percentile precipitation threshold. Extremes are substantially reduced in geoengineering simulation: the magnitude of change is much smaller than those that occur in a simulation with doubled CO2. Regional analysis over 22 Giorgi land regions is also performed. Doubling of CO2 leads to an increase in intensity of extreme (99.9th percentile) precipitation by 17.7% on global-mean basis with maximum increase in intensity over South Asian region by 37%. In the geoengineering simulation, there is a global-mean reduction in intensity of 3.8%, with a maximum reduction over Tropical Ocean by 8.9%. Further, we find that the doubled CO2 simulation shows an increase in the frequency of extremes (>50 mm/day) by 50-200% with a global mean increase of 80%. In contrast, in geo-engineering climate there is a decrease in frequency of extreme events by 20% globally with a larger decrease over Tropical Ocean by 30%. In both the climate states (2XCO2 and geo-engineering) change in "extremes" is always greater than change in "means" over large domains. We conclude that changes in precipitation extremes are larger in 2XCO2 scenario compared to preindustrial climate while extremes decline slightly in the geoengineered climate. We are also investigating the changes in extreme statistics for daily maximum and minimum temperature, evapotranspiration and vegetation productivity. Results will be presented at the meeting.

  8. Fraction Reduction through Continued Fractions

    ERIC Educational Resources Information Center

    Carley, Holly

    2011-01-01

    This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.

  9. Impact and fracture analysis of fish scales from Arapaima gigas.

    PubMed

    Torres, F G; Malásquez, M; Troncoso, O P

    2015-06-01

    Fish scales from the Amazonian fish Arapaima gigas have been characterised to study their impact and fracture behaviour at three different environmental conditions. Scales were cut in two different directions to analyse the influence of the orientation of collagen layers. The energy absorbed during impact tests was measured for each sample and SEM images were taken after each test in order to analyse the failure mechanisms. The results showed that scales tested at cryogenic temperatures display fragile behaviour, while scales tested at room temperature did not fracture. Different failure mechanisms have been identified, analysed and compared with the failure modes that occur in bone. The impact energy obtained for fish scales was two to three times higher than the values reported for bone in the literature. PMID:25842120

  10. A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems - II: Statistical Methods

    SciTech Connect

    Cacuci, Dan G.; Ionescu-Bujor, Mihaela

    2004-07-15

    Part II of this review paper highlights the salient features of the most popular statistical methods currently used for local and global sensitivity and uncertainty analysis of both large-scale computational models and indirect experimental measurements. These statistical procedures represent sampling-based methods (random sampling, stratified importance sampling, and Latin Hypercube sampling), first- and second-order reliability algorithms (FORM and SORM, respectively), variance-based methods (correlation ratio-based methods, the Fourier Amplitude Sensitivity Test, and the Sobol Method), and screening design methods (classical one-at-a-time experiments, global one-at-a-time design methods, systematic fractional replicate designs, and sequential bifurcation designs). It is emphasized that all statistical uncertainty and sensitivity analysis procedures first commence with the 'uncertainty analysis' stage and only subsequently proceed to the 'sensitivity analysis' stage; this path is the exact reverse of the conceptual path underlying the methods of deterministic sensitivity and uncertainty analysis where the sensitivities are determined prior to using them for uncertainty analysis. By comparison to deterministic methods, statistical methods for uncertainty and sensitivity analysis are relatively easier to develop and use but cannot yield exact values of the local sensitivities. Furthermore, current statistical methods have two major inherent drawbacks as follows: 1. Since many thousands of simulations are needed to obtain reliable results, statistical methods are at best expensive (for small systems) or, at worst, impracticable (e.g., for large time-dependent systems).2. Since the response sensitivities and parameter uncertainties are inherently and inseparably amalgamated in the results produced by these methods, improvements in parameter uncertainties cannot be directly propagated to improve response uncertainties; rather, the entire set of simulations and

  11. Fractional (Chern and topological) insulators

    NASA Astrophysics Data System (ADS)

    Neupert, Titus; Chamon, Claudio; Iadecola, Thomas; Santos, Luiz H.; Mudry, Christopher

    2015-12-01

    We review various features of interacting Abelian topological phases of matter in two spatial dimensions, placing particular emphasis on fractional Chern insulators (FCIs) and fractional topological insulators (FTIs). We highlight aspects of these systems that challenge the intuition developed from quantum Hall physics—for instance, FCIs are stable in the limit where the interaction energy scale is much larger than the band gap, and FTIs can possess fractionalized excitations in the bulk despite the absence of gapless edge modes.

  12. Estimating Cognitive Profiles Using Profile Analysis via Multidimensional Scaling (PAMS)

    ERIC Educational Resources Information Center

    Kim, Se-Kang; Frisby, Craig L.; Davison, Mark L.

    2004-01-01

    Two of the most popular methods of profile analysis, cluster analysis and modal profile analysis, have limitations. First, neither technique is adequate when the sample size is large. Second, neither method will necessarily provide profile information in terms of both level and pattern. A new method of profile analysis, called Profile Analysis via…

  13. Subcellular fractionation of human liver reveals limits in global proteomic quantification from isolated fractions.

    PubMed

    Wiśniewski, Jacek R; Wegler, Christine; Artursson, Per

    2016-09-15

    The liver plays an important role in metabolism and elimination of xenobiotics, including drugs. Determination of concentrations of proteins involved in uptake, distribution, metabolism, and excretion of xenobiotics is required to understand and predict elimination mechanisms in this tissue. In this work, we have fractionated homogenates of snap-frozen human liver by differential centrifugation and performed quantitative mass spectrometry-based proteomic analysis of each fraction. Concentrations of proteins were calculated by the "total protein approach". A total of 4586 proteins were identified by at least five peptides and were quantified in all fractions. We found that the xenobiotics transporters of the canalicular and basolateral membranes were differentially enriched in the subcellular fractions and that phase I and II metabolizing enzymes, the cytochrome P450s and the UDP-glucuronyl transferases, have complex subcellular distributions. These findings show that there is no simple way to scale the data from measurements in arbitrarily selected membrane fractions using a single scaling factor for all the proteins of interest. This study also provides the first absolute quantitative subcellular catalog of human liver proteins obtained from frozen tissue specimens. Our data provide quantitative insights into the subcellular distribution of proteins and can be used as a guide for development of fractionation procedures. PMID:27311553

  14. Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics

    PubMed Central

    Craiem, Damian; Magin, Richard L

    2011-01-01

    New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such ‘spring-pots’ exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress–strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues. PMID:20090192

  15. Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer

    NASA Astrophysics Data System (ADS)

    Schnieders, Jana; Garbe, Christoph

    2014-05-01

    The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale

  16. Remote sensing of boreal forest terrain: Sub-pixel scale mixture analysis of land cover and biophysical parameters at forest stand and regional scales

    NASA Astrophysics Data System (ADS)

    Peddle, Derek Roland

    Increasing concentrations of atmospheric carbon dioxide and other greenhouse gases have focused attention on the global carbon cycle. Predicted climate change scenarios indicate the release of large stores of organic carbon in boreal forest regions could have profound ecological, cultural and economic impacts on agricultural, boreal and Arctic tundra zones. Remote sensing provides the only comprehensive information to monitor such large tracts of land, however, conventional NDVI vegetation index approaches have been shown to be unreliable for extracting required biophysical parameters such as biomass, leaf area index and productivity. In this research. spectral mixture analysis (SMA) and geometric- optical reflectance models provide sub-pixel scale forest information such as sunlit canopy, background and shadow fractions which yield improved biophysical estimates when compared to NDVI. This was validated first for individual forest stands using the NASA C scOVER data set from the Superior National Forest, Minnesota USA. Best results were obtained from shadow function using a spheroid based reflectance model with corrections for mutual shadowing and solar zenith angle variations. Following this, a regional scale methodology was implemented in the Boreal Ecosystem Atmosphere Study (B scOREAS) which coupled canopy reflectance models, spectral mixture analysis, and a powerful evidential reasoning classifier into an integrated, physically based land cover and biophysical algorithm (the M⊕P software package). Field spectrometer data processed to end-member reflectance and stand level tree geometry were input to canopy optical models to produce spectral trajectories of reflectance and forest scene components over a full range of stand densities. These trajectories were input to the new M⊕P software to produce land cover and sub-pixel scale outputs for predicting biophysical parameters. Improved classification accuracies and biophysical estimates were obtained compared

  17. Source identification of different size fraction of PM10 using factor analysis at residential cum commercial area of Nagpur city.

    PubMed

    Pipalatkar, P P; Gajghate, D G; Khaparde, V V

    2012-02-01

    Particulate size distribution of PM(10) and associated trace metal concentrations has been carried out in residential cum commercial area of Mahal at Nagpur city. Sampling for size fraction of particulate matter was performed during winter season using eight-stage cascade impactor with a pre-separator and toxic metals were analyzed using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The average concentration of PM(10) and fine particulate matter (effective cut of aerodynamic diameter ≤2.2 μm) was found to be 300 and 136.7 μg/m(3), respectively which was exceeding limit of Central Pollution Control Board. Maximum mass concentration of 41 μg/m(3) in size range of 9.0-10.0 μm and minimum mass concentration of 19 μg/m(3) in size range 2.2-3.3 μm was observed. Metals (Sr, Ni and Zn) were found to large proportions in below 0.7 μm particle size and could therefore pass directly into the alveoli region of human respiratory system. Factor analysis results indicated combustion and vehicular emission as the dominant source in fine mode and resuspended dust was dominant in medium mode while crustal along with vehicular source was major in coarse mode of particulate matter. PMID:22033656

  18. Fast and easy phosphopeptide fractionation by combinatorial ERLIC-SCX solid-phase extraction for in-depth phosphoproteome analysis.

    PubMed

    Zarei, Mostafa; Sprenger, Adrian; Rackiewicz, Michal; Dengjel, Joern

    2016-01-01

    Mass spectrometry-based phosphoproteomic analysis is a powerful method for gaining a global, unbiased understanding of cellular signaling. Its accuracy and comprehensiveness stands or falls with the quality and choice of the applied phosphopeptide prefractionation strategy. This protocol covers a powerful but simple and rapid strategy for phosphopeptide prefractionation. The combinatorial use of two distinct chromatographic techniques that address the inverse physicochemical properties of peptides allows for superior fractionation efficiency of multiple phosphorylated peptides. In the first step, multiphosphorylated peptides are separated according to the number of negatively charged phosphosites by electrostatic repulsion-hydrophilic interaction chromatography (ERLIC). A subsequent strong cation exchange (SCX) step separates mostly singly phosphorylated peptides in the ERLIC flow-through according to their positive charge. The presented strategy is inexpensive and adaptable to large and small amounts of starting material, and it allows highly multiplexed sample preparation. Because of its implementation as solid-phase extraction, the entire workflow takes only 2 h to complete. PMID:26633130

  19. Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides.

    PubMed

    Lv, Jitao; Zhang, Shuzhen; Wang, Songshan; Luo, Lei; Cao, Dong; Christie, Peter

    2016-03-01

    Adsorption by minerals is a common geochemical process of dissolved organic matter (DOM) which may induce fractionation of DOM at the mineral-water interface. Here, we examine the molecular fractionation of DOM induced by adsorption onto three common iron oxyhydroxides using electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). Ferrihydrite exhibited higher affinity to DOM and induced more pronounced molecular fractionation of DOM than did goethite or lepidocrocite. High molecular weight (>500 Da) compounds and compounds high in unsaturation or rich in oxygen including polycyclic aromatics, polyphenols and carboxylic compounds had higher affinity to iron oxyhydroxides and especially to ferrihydrite. Low molecular weight compounds and compounds low in unsaturation or containing few oxygenated groups (mainly alcohols and ethers) were preferentially maintained in solution. This study confirms that the double bond equivalence and the number of oxygen atoms are valuable parameters indicating the selective fractionation of DOM at mineral and water interfaces. The results of this study provide important information for further understanding the behavior of DOM in the natural environment. PMID:26815589

  20. Scaling parameters for PFBC cyclone separator system analysis

    SciTech Connect

    Gil, A.; Romeo, L.M.; Cortes, C.

    1999-07-01

    Laboratory-scale cold flow models have been used extensively to study the behavior of many installations. In particular, fluidized bed cold flow models have allowed developing the knowledge of fluidized bed hydrodynamics. In order for the results of the research to be relevant to commercial power plants, cold flow models must be properly scaled. Many efforts have been made to understand the performance of fluidized beds, but up to now no attention has been paid in developing the knowledge of cyclone separator systems. CIRCE has worked on the development of scaling parameters to enable laboratory-scale equipment operating at room temperature to simulate the performance of cyclone separator systems. This paper presents the simplified scaling parameters and experimental comparison of a cyclone separator system and a cold flow model constructed and based on those parameters. The cold flow model has been used to establish the validity of the scaling laws for cyclone separator systems and permits detailed room temperature studies (determining the filtration effects of varying operating parameters and cyclone design) to be performed in a rapid and cost effective manner. This valuable and reliable design tool will contribute to a more rapid and concise understanding of hot gas filtration systems based on cyclones. The study of the behavior of the cold flow model, including observation and measurements of flow patterns in cyclones and diplegs will allow characterizing the performance of the full-scale ash removal system, establishing safe limits of operation and testing design improvements.

  1. Differential rotation and cloud texture: Analysis using generalized scale invariance

    SciTech Connect

    Pflug, K.; Lovejoy, S. ); Schertzer, D. )

    1993-02-14

    The standard picture of atmospheric dynamics is that of an isotropic two-dimensional large scale and an isotropic three-dimensional small scale, the two separated by a dimensional transition called the [open quotes]mesoscale gap.[close quotes] Evidence now suggests that, on the contrary, atmospheric fields, while strongly anisotropic, are nonetheless scale invariant right through the mesoscale. Using visible and infrared satellite cloud images and the formalism of generalized scale invariance (GSI), the authors attempt to quantify the anisotropy for cloud radiance fields in the range 1-1000 km. To do this, the statistical translational invariance of the fields is exploited by studying the anisotropic scaling of lines of constant Fourier amplitude. This allows the investigation of the change in shape and orientation of average structures with scale. For the three texturally-and meteorologically-very different images analyzed, three different generators of anisotropy are found that generally reproduce well the Fourier space anisotropy. Although three cases are a small number from which to infer ensemble-averaged properties, the authors conclude that while cloud radiances are not isotropic (self-similar), they are nonetheless scaling. Since elsewhere (with the help of simulations) it is shown that the generator of the anisotropy is related to the texture, it is argued here that GSI could potentially provide a quantitative basis for cloud classification and modeling. 59 refs., 21 figs., 2 tabs.

  2. A Critical Analysis of the Concept of Scale Dependent Macrodispersivity

    NASA Astrophysics Data System (ADS)

    Zech, Alraune; Attinger, Sabine; Cvetkovic, Vladimir; Dagan, Gedeon; Dietrich, Peter; Fiori, Aldo; Rubin, Yoram; Teutsch, Georg

    2015-04-01

    Transport by groundwater occurs over the different scales encountered by moving solute plumes. Spreading of plumes is often quantified by the longitudinal macrodispersivity αL (half the rate of change of the second spatial moment divided by the mean velocity). It was found that generally αL is scale dependent, increasing with the travel distance L of the plume centroid, stabilizing eventually at a constant value (Fickian regime). It was surmised in the literature that αL scales up with travel distance L following a universal scaling law. Attempts to define the scaling law were sursued by several authors (Arya et al, 1988, Neuman, 1990, Xu and Eckstein, 1995, Schulze-Makuch, 2005), by fitting a regression line in the log-log representation of results from an ensemble of field experiment, primarily those experiments included by the compendium of experiments summarized by Gelhar et al, 1992. Despite concerns raised about universality of scaling laws (e.g., Gelhar, 1992, Anderson, 1991), such relationships are being employed by practitioners for modeling multiscale transport (e.g., Fetter, 1999), because they, presumably, offer a convenient prediction tool, with no need for detailed site characterization. Several attempts were made to provide theoretical justifications for the existence of a universal scaling law (e.g. Neuman, 1990 and 2010, Hunt et al, 2011). Our study revisited the concept of universal scaling through detailed analyses of field data (including the most recent tracer tests reported in the literature), coupled with a thorough re-evaluation of the reliability of the reported αL values. Our investigation concludes that transport, and particularly αL, is formation-specific, and that modeling of transport cannot be relegated to a universal scaling law. Instead, transport requires characterization of aquifer properties, e.g. spatial distribution of hydraulic conductivity, and the use of adequate models.

  3. Remote sensing of seasonal variability of fractional vegetation cover and its object-based spatial pattern analysis over mountain areas

    NASA Astrophysics Data System (ADS)

    Yang, Guijun; Pu, Ruiliang; Zhang, Jixian; Zhao, Chunjiang; Feng, Haikuan; Wang, Jihua

    2013-03-01

    Fractional vegetation cover (FVC) is an important indicator of mountain ecosystem status. A study on the seasonal changes of FVC can be beneficial for regional eco-environmental security, which contributes to the assessment of mountain ecosystem recovery and supports mountain forest planning and landscape reconstruction around megacities, for example, Beijing, China. Remote sensing has been demonstrated to be one of the most powerful and feasible tools for the investigation of mountain vegetation. However, topographic and atmospheric effects can produce enormous errors in the quantitative retrieval of FVC data from satellite images of mountainous areas. Moreover, the most commonly used analysis approach for assessing FVC seasonal fluctuations is based on per-pixel analysis regardless of the spatial context, which results in pixel-based FVC values that are feasible for landscape and ecosystem applications. To solve these problems, we proposed a new method that incorporates the use of a revised physically based (RPB) model to correct both atmospheric and terrain-caused illumination effects on Landsat images, an improved vegetation index (VI)-based technique for estimating the FVC, and an adaptive mean shift approach for object-based FVC segmentation. An array of metrics for segmented FVC analyses, including a variety of area metrics, patch metrics, shape metrics and diversity metrics, was generated. On the basis of the individual segmented FVC values and landscape metrics from multiple images of different dates, remote sensing of the seasonal variability of FVC was conducted over the mountainous area of Beijing, China. The experimental results indicate that (a) the mean value of the RPB-NDVI in all seasons was increased by approximately 10% compared with that of the atmospheric correction-NDVI; (b) a strong consistency was demonstrated between ground-based FVC observations and FVC estimated through remote sensing technology (R2 = 0.8527, RMSE = 0.0851); and (c

  4. Scales

    ScienceCinema

    Murray Gibson

    2010-01-08

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain ? a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  5. Scales

    SciTech Connect

    Murray Gibson

    2007-04-27

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  6. An item response theory analysis of the Olweus Bullying scale.

    PubMed

    Breivik, Kyrre; Olweus, Dan

    2014-12-01

    In the present article, we used IRT (graded response) modeling as a useful technology for a detailed and refined study of the psychometric properties of the various items of the Olweus Bullying scale and the scale itself. The sample consisted of a very large number of Norwegian 4th-10th grade students (n = 48 926). The IRT analyses revealed that the scale was essentially unidimensional and had excellent reliability in the upper ranges of the latent bullying tendency trait, as intended and desired. Gender DIF effects were identified with regard to girls' use of indirect bullying by social exclusion and boys' use of physical bullying by hitting and kicking but these effects were small and worked in opposite directions, having negligible effects at the scale level. Also scale scores adjusted for DIF effects differed very little from non-adjusted scores. In conclusion, the empirical data were well characterized by the chosen IRT model and the Olweus Bullying scale was considered well suited for the conduct of fair and reliable comparisons involving different gender-age groups. Information Aggr. Behav. 9999:XX-XX, 2014. © 2014 Wiley Periodicals, Inc. PMID:25460720

  7. Rating Scale Analysis and Psychometric Properties of the Caregiver Self-Efficacy Scale for Transfers

    ERIC Educational Resources Information Center

    Cipriani, Daniel J.; Hensen, Francine E.; McPeck, Danielle L.; Kubec, Gina L. D.; Thomas, Julie J.

    2012-01-01

    Parents and caregivers faced with the challenges of transferring children with disability are at risk of musculoskeletal injuries and/or emotional stress. The Caregiver Self-Efficacy Scale for Transfers (CSEST) is a 14-item questionnaire that measures self-efficacy for transferring under common conditions. The CSEST yields reliable data and valid…

  8. Confirmatory Factor Analysis of the Scales for Diagnosing Attention Deficit Hyperactivity Disorder (SCALES)

    ERIC Educational Resources Information Center

    Ryser, Gail R.; Campbell, Hilary L.; Miller, Brian K.

    2010-01-01

    The diagnostic criteria for attention deficit hyperactivity disorder have evolved over time with current versions of the "Diagnostic and Statistical Manual", (4th edition), text revision, ("DSM-IV-TR") suggesting that two constellations of symptoms may be present alone or in combination. The SCALES instrument for diagnosing attention deficit…

  9. Refining a self-assessment of informatics competency scale using Mokken scaling analysis.

    PubMed

    Yoon, Sunmoo; Shaffer, Jonathan A; Bakken, Suzanne

    2015-01-01

    Healthcare environments are increasingly implementing health information technology (HIT) and those from various professions must be competent to use HIT in meaningful ways. In addition, HIT has been shown to enable interprofessional approaches to health care. The purpose of this article is to describe the refinement of the Self-Assessment of Nursing Informatics Competencies Scale (SANICS) using analytic techniques based upon item response theory (IRT) and discuss its relevance to interprofessional education and practice. In a sample of 604 nursing students, the 93-item version of SANICS was examined using non-parametric IRT. The iterative modeling procedure included 31 steps comprising: (1) assessing scalability, (2) assessing monotonicity, (3) assessing invariant item ordering, and (4) expert input. SANICS was reduced to an 18-item hierarchical scale with excellent reliability. Fundamental skills for team functioning and shared decision making among team members (e.g. "using monitoring systems appropriately," "describing general systems to support clinical care") had the highest level of difficulty, and "demonstrating basic technology skills" had the lowest difficulty level. Most items reflect informatics competencies relevant to all health professionals. Further, the approaches can be applied to construct a new hierarchical scale or refine an existing scale related to informatics attitudes or competencies for various health professions. PMID:26652630

  10. TMFA: A FORTRAN Program for Three-Mode Factor Analysis and Individual Differences Multidimensional Scaling.

    ERIC Educational Resources Information Center

    Redfield, Joel

    1978-01-01

    TMFA, a FORTRAN program for three-mode factor analysis and individual-differences multidimensional scaling, is described. Program features include a variety of input options, extensive preprocessing of input data, and several alternative methods of analysis. (Author)

  11. Three-dimensional analysis of scale morphology in bluegill sunfish, Lepomis macrochirus.

    PubMed

    Wainwright, Dylan K; Lauder, George V

    2016-06-01

    Fish scales are morphologically diverse among species, within species, and on individuals. Scales of bony fishes are often categorized into three main types: cycloid scales have smooth edges; spinoid scales have spines protruding from the body of the scale; ctenoid scales have interdigitating spines protruding from the posterior margin of the scale. For this study, we used two- and three-dimensional (2D and 3D) visualization techniques to investigate scale morphology of bluegill sunfish (Lepomis macrochirus) on different regions of the body. Micro-CT scanning was used to visualize individual scales taken from different regions, and a new technique called GelSight was used to rapidly measure the 3D surface structure and elevation profiles of in situ scale patches from different regions. We used these data to compare the surface morphology of scales from different regions, using morphological measurements and surface metrology metrics to develop a set of shape variables. We performed a discriminant function analysis to show that bluegill scales differ across the body - scales are cycloid on the opercle but ctenoid on the rest of the body, and the proportion of ctenii coverage increases ventrally on the fish. Scales on the opercle and just below the anterior spinous dorsal fin were smaller in height, length, and thickness than scales elsewhere on the body. Surface roughness did not appear to differ over the body of the fish, although scales at the start of the caudal peduncle had higher skew values than other scales, indicating they have a surface that contains more peaks than valleys. Scale shape also differs along the body, with scales near the base of the tail having a more elongated shape. This study adds to our knowledge of scale structure and diversity in fishes, and the 3D measurement of scale surface structure provides the basis for future testing of functional hypotheses relating scale morphology to locomotor performance. PMID:27062451

  12. Fractional telegrapher's equation from fractional persistent random walks

    NASA Astrophysics Data System (ADS)

    Masoliver, Jaume

    2016-05-01

    We generalize the telegrapher's equation to allow for anomalous transport. We derive the space-time fractional telegrapher's equation using the formalism of the persistent random walk in continuous time. We also obtain the characteristic function of the space-time fractional process and study some particular cases and asymptotic approximations. Similarly to the ordinary telegrapher's equation, the time-fractional equation also presents distinct behaviors for different time scales. Specifically, transitions between different subdiffusive regimes or from superdiffusion to subdiffusion are shown by the fractional equation as time progresses.

  13. Fractional telegrapher's equation from fractional persistent random walks.

    PubMed

    Masoliver, Jaume

    2016-05-01

    We generalize the telegrapher's equation to allow for anomalous transport. We derive the space-time fractional telegrapher's equation using the formalism of the persistent random walk in continuous time. We also obtain the characteristic function of the space-time fractional process and study some particular cases and asymptotic approximations. Similarly to the ordinary telegrapher's equation, the time-fractional equation also presents distinct behaviors for different time scales. Specifically, transitions between different subdiffusive regimes or from superdiffusion to subdiffusion are shown by the fractional equation as time progresses. PMID:27300830

  14. Schinus terebinthifolius scale-up countercurrent chromatography (Part I): High performance countercurrent chromatography fractionation of triterpene acids with off-line detection using atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Vieira, Mariana Neves; Costa, Fernanda das Neves; Leitão, Gilda Guimarães; Garrard, Ian; Hewitson, Peter; Ignatova, Svetlana; Winterhalter, Peter; Jerz, Gerold

    2015-04-10

    'Countercurrent chromatography' (CCC) is an ideal technique for the recovery, purification and isolation of bioactive natural products, due to the liquid nature of the stationary phase, process predictability and the possibility of scale-up from analytical to preparative scale. In this work, a method developed for the fractionation of Schinus terebinthifolius Raddi berries dichloromethane extract was thoroughly optimized to achieve maximal throughput with minimal solvent and time consumption per gram of processed crude extract, using analytical, semi-preparative and preparative 'high performance countercurrent chromatography' (HPCCC) instruments. The method using the biphasic solvent system composed of n-heptane-ethyl acetate-methanol-water (6:1:6:1, v/v/v/v) was volumetrically scaled up to increase sample throughput up to 120 times, while maintaining separation efficiency and time. As a fast and specific detection alternative, the fractions collected from the CCC-separations were injected to an 'atmospheric pressure chemical ionization mass-spectrometer' (APCI-MS/MS) and reconstituted molecular weight MS-chromatograms of the APCI-ionizable compounds from S. terebinthifolius were obtained. This procedure led to the direct isolation of tirucallane type triterpenes such as masticadienonic and 3β-masticadienolic acids. Also oleanonic and moronic acids have been identified for the first time in the species. In summary, this approach can be used for other CCC scale-up processes, enabling MS-target-guided isolation procedures. PMID:25757818

  15. Characteristic Analysis and DSP Realization of Fractional-Order Simplified Lorenz System Based on Adomian Decomposition Method

    NASA Astrophysics Data System (ADS)

    Wang, Huihai; Sun, Kehui; He, Shaobo

    2015-06-01

    By adopting Adomian decomposition method, the fractional-order simplified Lorenz system is solved and implemented on a digital signal processor (DSP). The Lyapunov exponent (LE) spectra of the system is calculated based on QR-factorization, and it accords well with the corresponding bifurcation diagrams. We analyze the influence of the parameter and the fractional derivative order on the system characteristics by color maximum LE (LEmax) and chaos diagrams. It is found that the smaller the order is, the larger the LEmax is. The iteration step size also affects the lowest order at which the chaos exists. Further, we implement the fractional-order simplified Lorenz system on a DSP platform. The phase portraits generated on DSP are consistent with the results that were obtained by computer simulations. It lays a good foundation for applications of the fractional-order chaotic systems.

  16. Fractionation analysis of manganese in Turkish hazelnuts (Corylus avellana L.) by inductively coupled plasma-mass spectrometry.

    PubMed

    Erdemir, Umran Seven; Gucer, Seref

    2014-11-01

    In this study, an analytical fractionation scheme based on water, diethyl ether, n-hexane, and methanol extractions has been developed to identify manganese-bound fractions. Additionally, in vitro simulated gastric and intestinal digestion, n-octanol extraction, and activated carbon adsorption were used to interpret the manganese-bound structures in hazelnuts in terms of bioaccessibility. The total content of manganese in the samples was determined by inductively coupled plasma-mass spectrometry after microwave-assisted digestion, and additional validation was performed using atomic absorption spectroscopy. Water fractions were further evaluated by high-performance liquid chromatography hyphenated to inductively coupled plasma-mass spectrometry for the identification of water-soluble manganese fractions in hazelnut samples. The limits of detection and quantification were 3.6 and 12.0 μg L(-1), respectively, based on peak height. PMID:25310841

  17. Guttman Facet Design and Analysis: A Technique for Attitude Scale Construction.

    ERIC Educational Resources Information Center

    Hamersma, Richard J.

    The main import of the present paper is to discuss what Guttman facet design and analysis is and then to show how this technique can be used in attitude scale construction. Since Guttman is best known for his contribution to scaling theory known as scalogram analysis, a brief historical background is given to indicate how Guttman moved from a…

  18. 'Scaling' analysis of the ice accretion process on aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.; Tabrizi, A. H.; Missimer, J. R.

    1982-01-01

    A comprehensive set of scaling parameters is developed for the ice accretion process by analyzing the energy equations of the dynamic freezing zone and the already frozen ice layer, the continuity equation associated with supercooled liquid droplets entering into and impacting within the dynamic freezing zone, and energy equation of the ice layer. No initial arbitrary judgments are made regarding the relative magnitudes of each of the terms. The method of intrinsic reference variables in employed in order to develop the appropriate scaling parameters and their relative significance in rime icing conditions in an orderly process, rather than utilizing empiricism. The significance of these parameters is examined and the parameters are combined with scaling criteria related to droplet trajectory similitude.

  19. Scale analysis of equatorial plasma irregularities derived from Swarm constellation

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Stolle, Claudia; Lühr, Hermann; Park, Jaeheung; Fejer, Bela G.; Kervalishvili, Guram N.

    2016-07-01

    In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4°, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT).

  20. Fractionation analysis of manganese and zinc in beers by means of two sorbent column system and flame atomic absorption spectrometry.

    PubMed

    Pohl, Pawel; Prusisz, Bartlomiej

    2007-03-15

    In the present article, a method of operational fractionation of Mn and Zn in beer using flame atomic absorption spectrometry was developed. The proposed fractionation scheme was based on use of a hydrophobic adsorbing resin Amberlite XAD7 (first column, 2g resin bed) connected in a series with a strong cation exchanger Dowex 50Wx4 (second column, 1g resin bed). After passing the samples of beers through the columns, distinct groupings of Mn and Zn species retained on the sorbents, i.e., hydrophobic fraction of polyphenols bound metal species and cationic metal species fraction, respectively, were determined in respective eluates obtained after complete recovery of Mn and Zn species with 10ml of 2.0moll(-1) HNO(3) (first column) and 10ml of 4.0moll(-1) HCl (second column). In addition, the effluents collected were analyzed prior to the evaluation of the third, residual fraction, presumably attributed to any hydrophilic anionic and inert metal species. The established fractionation patterns for Mn and Zn were discussed in reference to likely associations of metals with endogenous food bioligands and possible availability of the distinguished metal species classes. The quality of the results was proved by the recovery experiments. PMID:19071499

  1. Fractional Galilean symmetries

    NASA Astrophysics Data System (ADS)

    Hosseiny, Ali; Rouhani, Shahin

    2016-09-01

    We generalize the differential representation of the operators of the Galilean algebras to include fractional derivatives. As a result a whole new class of scale invariant Galilean algebras are obtained. The first member of this class has dynamical index z = 2 similar to the Schrödinger algebra. The second member of the class has dynamical index z = 3 / 2, which happens to be the dynamical index Kardar-Parisi-Zhang equation.

  2. Analysis and testing of similarity and scale effects in hybrid rocket motors

    NASA Astrophysics Data System (ADS)

    Dayal Swami, Rajeshwar; Gany, Alon

    2003-04-01

    In order to derive proper scaling rules in hybrid rocket motors, a theoretical similarity analysis is presented. By taking account of the main phenomena and effects, the similarity analysis defines the following three main conditions for testing a laboratory-scale hybrid rocket motor that can simulate a full-scale motor: (1) geometric similarity, (2) same fuel and oxidizer combination, and (3) scaling mass flow rate of oxidizer in proportion to the motor port diameter. To verify the analysis, tests are conducted on different-size polymethylmethacrylate/gaseous oxygen hybrid rocket motors. These motors are scaled as per the similarity analysis and tested under similarity conditions. A fairly good agreement between the test-results and theoretical prediction verifies the similarity model. This also points out that the main processes and effects associated with hybrid rocket combustion have been considered adequately in the analysis.

  3. Cost-Effectiveness Analysis of Single Fraction of Stereotactic Body Radiation Therapy Compared With Single Fraction of External Beam Radiation Therapy for Palliation of Vertebral Bone Metastases

    SciTech Connect

    Kim, Hayeon; Rajagopalan, Malolan S.; Beriwal, Sushil; Huq, M. Saiful; Smith, Kenneth J.

    2015-03-01

    Purpose: Stereotactic body radiation therapy (SBRT) has been proposed for the palliation of painful vertebral bone metastases because higher radiation doses may result in superior and more durable pain control. A phase III clinical trial (Radiation Therapy Oncology Group 0631) comparing single fraction SBRT with single fraction external beam radiation therapy (EBRT) in palliative treatment of painful vertebral bone metastases is now ongoing. We performed a cost-effectiveness analysis to compare these strategies. Methods and Materials: A Markov model, using a 1-month cycle over a lifetime horizon, was developed to compare the cost-effectiveness of SBRT (16 or 18 Gy in 1 fraction) with that of 8 Gy in 1 fraction of EBRT. Transition probabilities, quality of life utilities, and costs associated with SBRT and EBRT were captured in the model. Costs were based on Medicare reimbursement in 2014. Strategies were compared using the incremental cost-effectiveness ratio (ICER), and effectiveness was measured in quality-adjusted life years (QALYs). To account for uncertainty, 1-way, 2-way and probabilistic sensitivity analyses were performed. Strategies were evaluated with a willingness-to-pay (WTP) threshold of $100,000 per QALY gained. Results: Base case pain relief after the treatment was assumed as 20% higher in SBRT. Base case treatment costs for SBRT and EBRT were $9000 and $1087, respectively. In the base case analysis, SBRT resulted in an ICER of $124,552 per QALY gained. In 1-way sensitivity analyses, results were most sensitive to variation of the utility of unrelieved pain; the utility of relieved pain after initial treatment and median survival were also sensitive to variation. If median survival is ≥11 months, SBRT cost <$100,000 per QALY gained. Conclusion: SBRT for palliation of vertebral bone metastases is not cost-effective compared with EBRT at a $100,000 per QALY gained WTP threshold. However, if median survival is ≥11 months, SBRT costs ≤$100

  4. Clustering analysis and large-scale environments of galaxies out to z~3 in SPLASH

    NASA Astrophysics Data System (ADS)

    Lin, Lihwai; Capak, Peter; Laigle, Clotilde; Ilbert, Olivier

    2015-08-01

    We use SPLASH (Spitzer Large Area Survey with Hyper-Suprime-Cam) catalog in the COSMOS field to study the environmental effect using two methods: galaxy density and clustering. Over the redshift range 0.3 < z < 3, the clustering strength of quiescent galaxies exceeds that of star-forming galaxies, implying that quiescent galaxies are preferentially located in more massive halos. When using local density measurement, we found a clear positive quiescent fraction - density relation at z < 1, consistent with earlier results. At intermediate redshift, 1 < z < 1.5, we found the quiescent fraction - density relation to be scale dependent, being positive on small scales but reversed on larger scales, partly explaining the inconsistency found in the literature. Finally at 1.5 < z < 3, the quiescent fraction depends weakly on the local density, even though clustering shows that quiescent galaxies are in more massive halos. Our results thus suggest that in the high-redshift Universe, halo mass may be the key in quenching the star formation in galaxies, rather than the conventionally measured galaxy density.

  5. Fractionate analysis of the phytochemical composition and antioxidant activities in advanced breeding lines of high-lycopene tomatoes.

    PubMed

    Ilahy, Riadh; Piro, Gabriella; Tlili, Imen; Riahi, Anissa; Sihem, Rabaoui; Ouerghi, Imen; Hdider, Chafik; Lenucci, Marcello Salvatore

    2016-01-01

    This study investigates the antioxidant components [lycopene, total phenolics, total flavonoids, ascorbic acid (AsA) and dehydroascorbic acid (DHA)] as well as antioxidant activities of the hydrophilic and lipophilic fractions (AAHF and AALF) of peel, pulp and seed fractions isolated from red-ripe berries of the ordinary tomato cultivar Rio Grande and the two high-lycopene tomato breeding lines HLT-F61 and HLT-F62 simultaneously grown in an open-field of Northern Tunisia. Significant differences (p < 0.05) were found among cultivars for each trait studied. All fractions isolated from the red-ripe berries of HLT lines showed higher lycopene, total phenolics and total flavonoid contents, as well as higher AAHF and AALF, than those isolated from Rio Grande. Regardless of the fraction, HLT-F61 had the highest lycopene content (893.0 mg per kg fw, 280.0 mg per kg fw, and 47.5 mg per kg fw in peel, pulp and seed fractions, respectively) and total phenolics at least 2-fold and 3-fold higher than HLT-F62 and Rio Grande, respectively. Peel and seed fractions from HLT-F61 red-ripe tomato berries had the highest AsA content (345 mg per kg fw and 115 mg per kg fw, respectively), while no significant difference was found in the seed fraction between HLT-F62 and Rio Grande. The HLT-F62 pulp fraction showed the highest content of AsA (186 mg per kg fw) and DHA (151 mg per kg fw) among all the assayed cultivars. Except for the peel fraction, where HLT-F61 had similar AAHF values to HLT-F62, the high-lycopene line HLT-F61 showed higher AAHF values than HLT-F62 and Rio Grande. Regardless of the fraction, the highest AALF values were recorded in HLT-F61 berries. Thus, both HLT tomato lines are promising for the introduction, as advanced hybrids, in either fresh market or processing industry. PMID:26462607

  6. Comparison of ejection fraction and Goldman risk factor analysis to dipyridamole-thallium 201 studies in the evaluation of cardiac morbidity after aortic aneurysm surgery

    SciTech Connect

    McEnroe, C.S.; O'Donnell, T.F. Jr.; Yeager, A.; Konstam, M.; Mackey, W.C. )

    1990-04-01

    Associated coronary artery disease is the critical factor that influences early and late mortality after abdominal aortic aneurysm surgery. Dipyridamole-thallium 201 scintigraphy, left ventricular ejection fraction, and Goldman risk factor analysis have been suggested as preoperative noninvasive screening methods to detect significant coronary artery disease. In this series of 95 elective abdominal aortic aneurysm repairs dipyridamole-thallium 201 scintigraphy was highly predictive of the absence of perioperative cardiac morbidity (96% specificity, 44/46 normal scans, no cardiac morbidity), whereas ejection fraction (73% specificity, 31/42 normal ejection fraction, no cardiac morbidity) and Goldman risk factor analysis (84% specificity, 44/51 class I, no cardiac morbidity) were less. Furthermore, thallium redistribution on dipyridamole-thallium 201 scintigraphy leading to coronary angiography identified a significant number of patients with occult coronary artery disease who required preoperative coronary revascularization (8%, 8/95) and might have remained undetected on the basis of left ventricular ejection fraction or Goldman risk factor analysis. Finally, fixed thallium deficit, which some investigators have interpreted as a low probability finding for cardiac morbidity, was associated with a higher than expected incidence of cardiac complications. Forty-six percent (7/15) of all postoperative cardiac complications (three myocardial infarctions, three ischemic events, one death) occurred in patients with abdominal aortic aneurysms with fixed deficits. This suggests that patients with fixed deficits on dipyridamole-thallium 201 scintigraphy should be considered for later delayed (4 hours) thallium images or coronary angiography or both.

  7. THE USEFULNESS OF SCALE ANALYSIS: EXAMPLES FROM EASTERN MASSACHUSETTS

    EPA Science Inventory

    Many water system managers and operators are curious about the value of analyzing the scales of drinking water pipes. Approximately 20 sections of lead service lines were removed in 2002 from various locations throughout the greater Boston distribution system, and were sent to ...

  8. An Exploratory Factor Analysis of the Differential Ability Scales.

    ERIC Educational Resources Information Center

    Dunham, Mardis D.; McIntosh, David E.

    The primary goal of this study was to investigate the underlying structure of the Differential Ability Scales (DAS) using Exploratory Principal Axis Factoring (PAF) with 62 nonclinical preschoolers. While previous factor analyses of the DAS Core subtests revealed the derivation of two distinct factors, the current results revealed only one factor,…

  9. A Factor Analysis of the Research Self-Efficacy Scale.

    ERIC Educational Resources Information Center

    Bieschke, Kathleen J.; And Others

    Counseling professionals' and counseling psychology students' interest in performing research seems to be waning. Identifying the impediments to graduate students' interest and participation in research is important if systematic efforts to engage them in research are to succeed. The Research Self-Efficacy Scale (RSES) was designed to measure…

  10. Mental Models of Text and Film: A Multidimensional Scaling Analysis.

    ERIC Educational Resources Information Center

    Rowell, Jack A.; Moss, Peter D.

    1986-01-01

    Reports results of experiment to determine whether mental models are constructed of interrelationships and cross-relationships of character attributions drawn in themes of novels and films. The study used "Animal Farm" in print and cartoon forms. Results demonstrated validity of multidimensional scaling for representing both media. Proposes use of…

  11. A Rasch Analysis of the Teachers Music Confidence Scale

    ERIC Educational Resources Information Center

    Yim, Hoi Yin Bonnie; Abd-El-Fattah, Sabry; Lee, Lai Wan Maria

    2007-01-01

    This article presents a new measure of teachers' confidence to conduct musical activities with young children; Teachers Music Confidence Scale (TMCS). The TMCS was developed using a sample of 284 in-service and pre-service early childhood teachers in Hong Kong Special Administrative Region (HKSAR). The TMCS consisted of 10 musical activities.…

  12. Analysis of the time scales in time periodic Darcy flows

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Waluga, C.; Wohlmuth, B.; Manhart, M.

    2014-12-01

    We investigate unsteady flow in a porous medium under time - periodic (sinusoidal) pressure gradient. DNS were performed to benchmark the analytical solution of the unsteady Darcy equation with two different expressions of the time scale : one given by a consistent volume averaging of the Navier - Stokes equation [1] with a steady state closure for the flow resistance term, another given by volume averaging of the kinetic energy equation [2] with a closure for the dissipation rate . For small and medium frequencies, the analytical solutions with the time scale obtained by the energy approach compare well with the DNS results in terms of amplitude and phase lag. For large frequencies (f > 100 [Hz]) we observe a slightly smaller damping of the amplitude. This study supports the use of the unsteady form of Darcy's equation with constant coefficients to solve time - periodic Darcy flows at low and medium frequencies. Our DNS simulations, however, indicate that the time scale predicted by the VANS approach together with a steady - state closure for the flow resistance term is too small. The one obtained by the energy approach matches the DNS results well. At large frequencies, the amplitudes deviate slightly from the analytical solution of the unsteady Darcy equation. Note that at those high frequencies, the flow amplitudes remain below 1% of those of steady state flow. This result indicates that unsteady porous media flow can approximately be described by the unsteady Darcy equation with constant coefficients for a large range of frequencies, provided, the proper time scale has been found.

  13. The Analysis of Dichotomous Test Data Using Nonmetric Multidimensional Scaling.

    ERIC Educational Resources Information Center

    Koch, William R.

    The technique of nonmetric multidimensional scaling (MDS) was applied to real item response data obtained from a multiple-choice achievement test of unknown dimensionality. The goal was to classify the 50 items into the various subtests from which they were drawn originally, the latter being unknown to the investigator. Issues addressed in the…

  14. Psychometric Analysis of Computer Science Help-Seeking Scales

    ERIC Educational Resources Information Center

    Pajares, Frank; Cheong, Yuk Fai; Oberman, Paul

    2004-01-01

    The purpose of this study was to develop scales to assess instrumental help seeking, executive help seeking, perceived benefits of help seeking, and avoidance of help seeking and to examine their psychometric properties by conducting factor and reliability analyses. As this is the first attempt to examine the latent structures underlying the…

  15. Bile Salt Micelles and Phospholipid Vesicles Present in Simulated and Human Intestinal Fluids: Structural Analysis by Flow Field-Flow Fractionation/Multiangle Laser Light Scattering.

    PubMed

    Elvang, Philipp A; Hinna, Askell H; Brouwers, Joachim; Hens, Bart; Augustijns, Patrick; Brandl, Martin

    2016-09-01

    Knowledge about colloidal assemblies present in human intestinal fluids (HIFs), such as bile salt micelles and phospholipid vesicles, is regarded of importance for a better understanding of the in vivo dissolution and absorption behavior of poorly soluble drugs (Biopharmaceutics Classification System class II/IV drugs) because of their drug-solubilizing ability. The characterization of these potential drug-solubilizing compartments is a prerequisite for further studies of the mechanistic interplays between drug molecules and colloidal structures within HIFs. The aim of the present study was to apply asymmetrical flow field-flow fractionation (AF4) in combination with multiangle laser light scattering in an attempt to reveal coexistence of colloidal particles in both artificial and aspirated HIFs and to determine their sizes. Asymmetrical flow field-flow fractionation/multiangle laser light scattering analysis of the colloidal phase of intestinal fluids allowed for a detailed insight into the whole spectrum of submicron- to micrometer-sized particles. With respect to the simulated intestinal fluids mimicking fasted and fed state (FaSSIF-V1 and FeSSIF-V1, respectively), FaSSIF contained one distinct size fraction of colloidal assemblies, whereas FeSSIF contained 2 fractions of colloidal species with significantly different sizes. These size fractions likely represent (1) mixed taurocholate-phospholipid-micelles, as indicated by a size range up to 70 nm (in diameter) and a strong UV absorption and (2) small phospholipid vesicles of 90-210 nm diameter. In contrast, within the colloidal phase of the fasted state aspirate of a human volunteer, 4 different size fractions were separated from each other in a consistent and reproducible manner. The 2 fractions containing large particles showed mean sizes of approximately 50 and 200 nm, respectively (intensity-weighted mean diameter, Dz), likely representing mixed cholate/phospholipid micelles and phospholipid vesicles

  16. Bohr model and dimensional scaling analysis of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Svidzinsky, Anatoly; Chen, Goong; Chin, Siu; Kim, Moochan; Ma, Dongxia; Murawski, Robert; Sergeev, Alexei; Scully, Marlan; Herschbach, Dudley

    It is generally believed that the old quantum theory, as presented by Niels Bohr in 1913, fails when applied to few electron systems, such as the H2 molecule. Here we review recent developments of the Bohr model that connect it with dimensional scaling procedures adapted from quantum chromodynamics. This approach treats electrons as point particles whose positions are determined by optimizing an algebraic energy function derived from the large-dimension limit of the Schrödinger equation. The calculations required are simple yet yield useful accuracy for molecular potential curves and bring out appealing heuristic aspects. We first examine the ground electronic states of H2, HeH, He2, LiH, BeH and Li2. Even a rudimentary Bohr model, employing interpolation between large and small internuclear distances, gives good agreement with potential curves obtained from conventional quantum mechanics. An amended Bohr version, augmented by constraints derived from Heitler-London or Hund-Mulliken results, dispenses with interpolation and gives substantial improvement for H2 and H3. The relation to D-scaling is emphasized. A key factor is the angular dependence of the Jacobian volume element, which competes with interelectron repulsion. Another version, incorporating principal quantum numbers in the D-scaling transformation, extends the Bohr model to excited S states of multielectron atoms. We also discuss kindred Bohr-style applications of D-scaling to the H atom subjected to superstrong magnetic fields or to atomic anions subjected to high frequency, superintense laser fields. In conclusion, we note correspondences to the prequantum bonding models of Lewis and Langmuir and to the later resonance theory of Pauling, and discuss prospects for joining D-scaling with other methods to extend its utility and scope.

  17. Insights into soil carbon dynamics across climatic and geologic gradients from time-series and fraction-specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    van der Voort, Tessa Sophia; Hagedorn, Frank; Zell, Claudia; McIntyre, Cameron; Eglinton, Tim

    2016-04-01

    Understanding the interaction between soil organic matter (SOM) and climatic, geologic and ecological factors is essential for the understanding of potential susceptibility and vulnerability to climate and land use change. Radiocarbon constitutes a powerful tool for unraveling SOM dynamics and is increasingly used in studies of carbon turnover. The complex and inherently heterogeneous nature of SOM renders it challenging to assess the processes that govern SOM stability by solely looking at the bulk signature on a plot-scale level. This project combines bulk radiocarbon measurements on a regional-scale spanning wide climatic and geologic gradients with a more in-depth approach for a subset of locations. For this subset, time-series and carbon pool-specific radiocarbon data has been acquired for both topsoil and deeper soils. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Statistical analysis was performed to examine relationships of radiocarbon signatures with variables such as temperature, precipitation and elevation. Bomb-curve modeling was applied determine carbon turnover using time-series data. Results indicate that (1) there is no significant correlation between Δ14C signature and environmental conditions except a weak positive correlation with mean annual temperature, (2) vertical gradients in Δ14C signatures in surface and deeper soils are highly similar despite covering disparate soil-types and climatic systems, and (3) radiocarbon signatures vary significantly between time-series samples and carbon pools. Overall, this study provides a uniquely comprehensive dataset that allows for a better understanding of links between carbon dynamics and environmental settings, as well as for pool-specific and long-term trends in carbon (de)stabilization.

  18. Scale Issues in Remote Sensing: A Review on Analysis, Processing and Modeling

    PubMed Central

    Wu, Hua; Li, Zhao-Liang

    2009-01-01

    With the development of quantitative remote sensing, scale issues have attracted more and more the attention of scientists. Research is now suffering from a severe scale discrepancy between data sources and the models used. Consequently, both data interpretation and model application become difficult due to these scale issues. Therefore, effectively scaling remotely sensed information at different scales has already become one of the most important research focuses of remote sensing. The aim of this paper is to demonstrate scale issues from the points of view of analysis, processing and modeling and to provide technical assistance when facing scale issues in remote sensing. The definition of scale and relevant terminologies are given in the first part of this paper. Then, the main causes of scale effects and the scaling effects on measurements, retrieval models and products are reviewed and discussed. Ways to describe the scale threshold and scale domain are briefly discussed. Finally, the general scaling methods, in particular up-scaling methods, are compared and summarized in detail. PMID:22573986

  19. Large-scale computations in analysis of structures

    SciTech Connect

    McCallen, D.B.; Goudreau, G.L.

    1993-09-01

    Computer hardware and numerical analysis algorithms have progressed to a point where many engineering organizations and universities can perform nonlinear analyses on a routine basis. Through much remains to be done in terms of advancement of nonlinear analysis techniques and characterization on nonlinear material constitutive behavior, the technology exists today to perform useful nonlinear analysis for many structural systems. In the current paper, a survey on nonlinear analysis technologies developed and employed for many years on programmatic defense work at the Lawrence Livermore National Laboratory is provided, and ongoing nonlinear numerical simulation projects relevant to the civil engineering field are described.

  20. Metabolomic analysis of polar metabolites in lipoprotein fractions identifies lipoprotein-specific metabolic profiles and their association with insulin resistance.

    PubMed

    Hyötyläinen, Tuulia; Mattila, Ismo; Wiedmer, Susanne K; Koivuniemi, Artturi; Taskinen, Marja-Riitta; Yki-Järvinen, Hannele; Orešič, Matej

    2012-10-01

    While the molecular lipid composition of lipoproteins has been investigated in detail, little is known about associations of small polar metabolites with specific lipoproteins. The aim of the present study was to investigate the profiles of polar metabolites in different lipoprotein fractions, i.e., very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and two sub-fractions of the high-density lipoprotein (HDL). The VLDL, IDL, LDL, HDL(2), and HDL(3) fractions were isolated from serum of sixteen individuals having a broad range of insulin sensitivity and characterized using comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS). The lipoprotein fractions had clearly different metabolite profiles, which correlated with the particle size and surface charge. Lipoprotein-specific associations of individual metabolites with insulin resistance were identified, particularly in VLDL and IDL fractions, even in the absence of such associations in serum. The results indicate that the polar molecules are strongly attached to the surface of the lipoproteins. Furthermore, strong lipoprotein-specific associations of metabolites with insulin resistance, as compared to their serum profiles, indicate that lipoproteins may be a rich source of tissue-specific metabolic biomarkers. PMID:22722885

  1. High-resolution droplet-based fractionation of nano-LC separations onto microarrays for MALDI-MS analysis.

    PubMed

    Küster, Simon K; Pabst, Martin; Jefimovs, Konstantins; Zenobi, Renato; Dittrich, Petra S

    2014-05-20

    We present a robust droplet-based device, which enables the fractionation of ultralow flow rate nanoflow liquid chromatography (nano-LC) eluate streams at high frequencies and high peak resolution. This is achieved by directly interfacing the separation column to a micro T-junction, where the eluate stream is compartmentalized into picoliter droplets. This immediate compartmentalization prevents peak dispersion during eluate transport and conserves the chromatographic performance. Subsequently, nanoliter eluate fractions are collected at a rate of one fraction per second on a high-density microarray to retain the separation with high temporal resolution. Chromatographic separations of up to 45 min runtime can thus be archived on a single microarray possessing 2700 sample spots. The performance of this device is demonstrated by fractionating the separation of a tryptic digest of a known protein mixture onto the microarray chip and subsequently analyzing the sample archive using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Resulting peak widths are found to be significantly reduced compared to standard continuous flow spotting technologies as well as in comparison to a conventional nano-LC-electrospray ionization-mass spectrometry interface. Moreover, we demonstrate the advantage of our high-definition nanofractionation device by applying two different MALDI matrices to all collected fractions in an alternating fashion. Since the information that is obtained from a MALDI-MS measurement depends on the choice of MALDI matrix, we can extract complementary information from neighboring spots containing almost identical composition but different matrices. PMID:24725135

  2. Frequently Used Coping Scales: A Meta-Analysis.

    PubMed

    Kato, Tsukasa

    2015-10-01

    This article reports the frequency of the use of coping scales in academic journals published from 1998 to 2010. Two thousand empirical journal articles were selected from the EBSCO database. The COPE, Ways of Coping Questionnaire, Coping Strategies Questionnaire, Coping Inventory for Stressful Situations, Religious-COPE and Coping Response Inventory were frequently mentioned. In particular, the COPE (20.2%) and Ways of Coping Questionnaire (13.6%) were used the most frequently. In this literature reviewed, coping scales were most often used to assess coping with health issues (e.g. illness, pain and medical diagnoses) over other types of stressors, and patients were the most frequent participants. Further, alpha coefficients were estimated for the COPE subscales, and correlations between the COPE subscales and coping outcomes were calculated, including depressive symptoms, anxiety, negative affect, psychological distress, physical symptoms and well-being. PMID:24338955

  3. Crater ejecta scaling laws - Fundamental forms based on dimensional analysis

    NASA Technical Reports Server (NTRS)

    Housen, K. R.; Schmidt, R. M.; Holsapple, K. A.

    1983-01-01

    Self-consistent scaling laws are developed for meteoroid impact crater ejecta. Attention is given to the ejection velocity of material as a function of the impact point, the volume of ejecta with a threshold velocity, and the thickness of ejecta deposit in terms of the distance from the impact. Use is made of recently developed equations for energy and momentum coupling in cratering events. Consideration is given to scaling of laboratory trials up to real-world events and formulations are developed for calculating the ejection velocities and ejecta blanket profiles in the gravity and strength regimes of crater formation. It is concluded that, in the gravity regime, the thickness of an ejecta blanket is the same in all directions if the thickness and range are expressed in terms of the crater radius. In the strength regime, however, the ejecta velocities are independent of crater size, thereby allowing for asymmetric ejecta blankets. Controlled experiments are recommended for the gravity/strength transition.

  4. Analysis plan for 1985 large-scale tests. Technical report

    SciTech Connect

    McMullan, F.W.

    1983-01-01

    The purpose of this effort is to assist DNA in planning for large-scale (upwards of 5000 tons) detonations of conventional explosives in the 1985 and beyond time frame. Primary research objectives were to investigate potential means to increase blast duration and peak pressures. This report identifies and analyzes several candidate explosives. It examines several charge designs and identifies advantages and disadvantages of each. Other factors including terrain and multiburst techniques are addressed as are test site considerations.

  5. Wavelet multiscale analysis for Hedge Funds: Scaling and strategies

    NASA Astrophysics Data System (ADS)

    Conlon, T.; Crane, M.; Ruskin, H. J.

    2008-09-01

    The wide acceptance of Hedge Funds by Institutional Investors and Pension Funds has led to an explosive growth in assets under management. These investors are drawn to Hedge Funds due to the seemingly low correlation with traditional investments and the attractive returns. The correlations and market risk (the Beta in the Capital Asset Pricing Model) of Hedge Funds are generally calculated using monthly returns data, which may produce misleading results as Hedge Funds often hold illiquid exchange-traded securities or difficult to price over-the-counter securities. In this paper, the Maximum Overlap Discrete Wavelet Transform (MODWT) is applied to measure the scaling properties of Hedge Fund correlation and market risk with respect to the S&P 500. It is found that the level of correlation and market risk varies greatly according to the strategy studied and the time scale examined. Finally, the effects of scaling properties on the risk profile of a portfolio made up of Hedge Funds is studied using correlation matrices calculated over different time horizons.

  6. Modeling of biomass fractionation in a lab-scale biorefinery: Solubilization of hemicellulose and cellulose from holm oak wood using subcritical water.

    PubMed

    Cabeza, A; Piqueras, C M; Sobrón, F; García-Serna, J

    2016-01-01

    Lignocellulose fractionation is a key biorefinery process that need to be understood. In this work, a comprehensive study on hydrothermal-fractionation of holm oak in a semi-continuous system was conducted. The aim was to develop a physicochemical model in order to reproduce the role of temperature and water flow over the products composition. The experiments involved two sets: at constant flow (6mL/min) and two different ranges of temperature (140-180 and 240-280°C) and at a constant temperature range (180-260°C) and different flows: 11.0, 15.0 and 27.9mL/min. From the results, temperature has main influence and flow effect was observed only if soluble compounds were produced. The kinetic model was validated against experimental data, reproducing the total organic carbon profile (e.g. deviation of 33%) and the physicochemical phenomena observed in the process. In the model, it was also considered the variations of molecular weight of each biopolymer, successfully reproducing the biomass cleaving. PMID:26476169

  7. Numerical analysis of an end-pumped Yb:YAG thin disk laser with variation of a fractional thermal load.

    PubMed

    Zhu, Guangzhi; Zhu, Xiao; Huang, Yan; Wang, Hailin; Zhu, Changhong

    2014-07-01

    An analytical model is developed to describe the dynamic behavior of an end-pumped Yb:YAG thin disk laser. Within the model, the rate equations, including the nonradiative relaxation process, are calculated taking into account the dependence of the fractional thermal load on the temperature of the thin disk crystal and intracavity laser intensity. The fractional thermal load is analyzed, or can be evaluated clearly, under lasing or nonlasing conditions. The stable temperature and fractional thermal load in a thin disk crystal for different radiative quantum efficiencies are obtained using the numerical iterative method. Furthermore, the dependence of the laser output intensity on variables such as pumping intensity, coupler reflectivity, radiative quantum efficiency, and the temperature of thin disk crystal is discussed. PMID:25090000

  8. Two scale analysis applied to low permeability sandstones

    NASA Astrophysics Data System (ADS)

    Davy, Catherine; Song, Yang; Nguyen Kim, Thang; Adler, Pierre

    2015-04-01

    Low permeability materials are often composed of several pore structures of various scales, which are superposed one to another. It is often impossible to measure and to determine the macroscopic properties in one step. In the low permeability sandstones that we consider, the pore space is essentially made of micro-cracks between grains. These fissures are two dimensional structures, which aperture is roughly on the order of one micron. On the grain scale, i.e., on the scale of 1 mm, the fissures form a network. These two structures can be measured by using two different tools [1]. The density of the fissure networks is estimated by trace measurements on the two dimensional images provided by classical 2D Scanning Electron Microscopy (SEM) with a pixel size of 2.2 micron. The three dimensional geometry of the fissures is measured by X-Ray micro-tomography (micro-CT) in the laboratory, with a voxel size of 0.6x0.6x0.6microns3. The macroscopic permeability is calculated in two steps. On the small scale, the fracture transmissivity is calculated by solving the Stokes equation on several portions of the measured fissures by micro-CT. On the large scale, the density of the fissures is estimated by three different means based on the number of intersections with scanlines, on the surface density of fissures and on the intersections between fissures per unit surface. These three means show that the network is relatively isotropic and they provide very close estimations of the density. Then, a general formula derived from systematic numerical computations [2] is used to derive the macroscopic dimensionless permeability which is proportional to the fracture transmissivity. The combination of the two previous results yields the dimensional macroscopic permeability which is found to be in acceptable agreement with the experimental measurements. Some extensions of these preliminary works will be presented as a tentative conclusion. References [1] Z. Duan, C. A. Davy, F

  9. Analysis of free drug fractions by ultrafast affinity extraction: interactions of sulfonylurea drugs with normal or glycated human serum albumin.

    PubMed

    Zheng, Xiwei; Matsuda, Ryan; Hage, David S

    2014-12-01

    Ultrafast affinity extraction and a multi-dimensional affinity system were developed for measuring free drug fractions at therapeutic levels. This approach was used to compare the free fractions and global affinity constants of several sulfonylurea drugs in the presence of normal human serum albumin (HSA) or glycated forms of this protein, as are produced during diabetes. Affinity microcolumns containing immobilized HSA were first used to extract the free drug fractions in injected drug/protein mixtures. As the retained drug eluted from the HSA microcolumn, it was passed through a second HSA column for further separation and measurement. Items that were considered during the optimization of this approach included the column sizes and flow rates that were used, and the time at which the second column was placed on-line with the HSA microcolumn. This method required only 1.0 μL of a sample per injection and was able to measure free drug fractions as small as 0.09-2.58% with an absolute precision of ±0.02-0.5%. The results that were obtained indicated that glycation can affect the free fractions of sulfonylurea drugs at typical therapeutic levels and that the size of this effect varies with the level of HSA glycation. Global affinity constants that were estimated from these free drug fractions gave good agreement with those predicted from previous binding studies or determined through a reference method. The same approach could be utilized with other drugs and proteins or modified binding agents of clinical or pharmaceutical interest. PMID:25456590

  10. Dimensionality of the Hospital Anxiety and Depression Scale (HADS) in Cardiac Patients: Comparison of Mokken Scale Analysis and Factor Analysis

    ERIC Educational Resources Information Center

    Emons, Wilco H. M.; Sijtsma, Klaas; Pedersen, Susanne S.

    2012-01-01

    The Hospital Anxiety and Depression Scale (HADS) measures anxiety and depressive symptoms and is widely used in clinical and nonclinical populations. However, there is some debate about the number of dimensions represented by the HADS. In a sample of 534 Dutch cardiac patients, this study examined (a) the dimensionality of the HADS using Mokken…

  11. A quality assessment of 3D video analysis for full scale rockfall experiments

    NASA Astrophysics Data System (ADS)

    Volkwein, A.; Glover, J.; Bourrier, F.; Gerber, W.

    2012-04-01

    Main goal of full scale rockfall experiments is to retrieve a 3D trajectory of a boulder along the slope. Such trajectories then can be used to calibrate rockfall simulation models. This contribution presents the application of video analysis techniques capturing rock fall velocity of some free fall full scale rockfall experiments along a rock face with an inclination of about 50 degrees. Different scaling methodologies have been evaluated. They mainly differ in the way the scaling factors between the movie frames and the reality and are determined. For this purpose some scale bars and targets with known dimensions have been distributed in advance along the slope. The single scaling approaches are briefly described as follows: (i) Image raster is scaled to the distant fixed scale bar then recalibrated to the plane of the passing rock boulder by taking the measured position of the nearest impact as the distance to the camera. The distance between the camera, scale bar, and passing boulder are surveyed. (ii) The image raster was scaled using the four nearest targets (identified using frontal video) from the trajectory to be analyzed. The average of the scaling factors was finally taken as scaling factor. (iii) The image raster was scaled using the four nearest targets from the trajectory to be analyzed. The scaling factor for one trajectory was calculated by balancing the mean scaling factors associated with the two nearest and the two farthest targets in relation to their mean distance to the analyzed trajectory. (iv) Same as previous method but with varying scaling factors during along the trajectory. It has shown that a direct measure of the scaling target and nearest impact zone is the most accurate. If constant plane is assumed it doesn't account for the lateral deviations of the rock boulder from the fall line consequently adding error into the analysis. Thus a combination of scaling methods (i) and (iv) are considered to give the best results. For best results

  12. Fractional-calculus diffusion equation

    PubMed Central

    2010-01-01

    Background Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. Results The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved. Conclusions The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis. PMID:20492677

  13. Large-scale analysis of phosphorylated proteins in maize leaf.

    PubMed

    Bi, Ying-Dong; Wang, Hong-Xia; Lu, Tian-Cong; Li, Xiao-Hui; Shen, Zhuo; Chen, Yi-Bo; Wang, Bai-Chen

    2011-02-01

    Phosphorylation is an ubiquitous regulatory mechanism governing the activity, subcellular localization, and intermolecular interactions of proteins. To identify a broad range of phosphoproteins from Zea mays, we enriched phosphopeptides from Zea mays leaves using titanium dioxide microcolumns and then extensively fractionated and identified the phosphopeptides by mass spectrometry. A total of 165 unique phosphorylation sites with a putative role in biological processes were identified in 125 phosphoproteins. Most of these proteins are involved in metabolism, including carbohydrate and protein metabolism. We identified novel phosphorylation sites on translation initiation factors, splicing factors, nucleolar RNA helicases, and chromatin-remodeling proteins such as histone deacetylases. Intriguingly, we also identified phosphorylation sites on several proteins associated with photosynthesis, and we speculate that these sites may be involved in carbohydrate metabolism or electron transport. Among these phosphoproteins, phosphoenolpyruvate carboxylase and NADH: nitrate reductase (NR) which catalyzes the rate-limiting and regulated step in the pathway of inorganic nitrogen assimilation were identified. A conserved phosphorylation site was found in the cytochrome b5 heme-binding domain of NADH: nitrate reductase, suggesting that NADH: nitrate reductase is phosphorylated by the same protein kinase or highly related kinases. These data demonstrate that the pathways that regulate diverse processes in plants are major targets of phosphorylation. PMID:21053013

  14. Large-scale zebrafish embryonic heart dissection for transcriptional analysis.

    PubMed

    Lombardo, Verónica A; Otten, Cécile; Abdelilah-Seyfried, Salim

    2015-01-01

    The zebrafish embryonic heart is composed of only a few hundred cells, representing only a small fraction of the entire embryo. Therefore, to prevent the cardiac transcriptome from being masked by the global embryonic transcriptome, it is necessary to collect sufficient numbers of hearts for further analyses. Furthermore, as zebrafish cardiac development proceeds rapidly, heart collection and RNA extraction methods need to be quick in order to ensure homogeneity of the samples. Here, we present a rapid manual dissection protocol for collecting functional/beating hearts from zebrafish embryos. This is an essential prerequisite for subsequent cardiac-specific RNA extraction to determine cardiac-specific gene expression levels by transcriptome analyses, such as quantitative real-time polymerase chain reaction (RT-qPCR). The method is based on differential adhesive properties of the zebrafish embryonic heart compared with other tissues; this allows for the rapid physical separation of cardiac from extracardiac tissue by a combination of fluidic shear force disruption, stepwise filtration and manual collection of transgenic fluorescently labeled hearts. PMID:25651299

  15. Heterogeneity and scaling in soil-vegetation atmosphere systems: implications for pattern analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Pachepsky, Y. A.

    2009-12-01

    Advances in sensor physics and technology create opportunities for explicit consideration of patterns in soil-vegetation-atmosphere systems (SVAS). The purpose of this talk is to provoke discussion on the current status of pattern analysis and interpretation in SVAS. The explicit consideration of patterns requires observations and analysis at scales that are both coarser and finer than the scale of interest. Within-scale scaling relationships are often observed in SVAS components. However, direct scaling relationships have not been discovered between scales, possibly because the different scales provide different types of information about the SVAS, use different variables to characterize SVAS, and exhibit different variability of the system. To transcend the scales, models are needed that explicitly treat the fine-scale heterogeneity and rare occurrences that control processes at the coarser scale. As patterns are generated from simulations and or/or observations, methods are needed for pattern characterization and comparison. One promising direction here is the symbolic representation of patterns which leads to the exploitation of methods developed in the bioinformatics community. Examples drawn from soil hydrology and micrometeorology will be used in illustrations to make the argument that observation and analysis of patterns is the important part of understanding and quantifying relationships between structure, functioning and self-organization in SVAS and their components.

  16. Lipidomic analysis of plasma, erythrocytes and lipoprotein fractions of cardiovascular disease patients using UHPLC/MS, MALDI-MS and multivariate data analysis.

    PubMed

    Holčapek, Michal; Červená, Blanka; Cífková, Eva; Lísa, Miroslav; Chagovets, Vitaliy; Vostálová, Jitka; Bancířová, Martina; Galuszka, Jan; Hill, Martin

    2015-05-15

    Differences among lipidomic profiles of healthy volunteers, obese people and three groups of cardiovascular disease (CVD) patients are investigated with the goal to differentiate individual groups based on the multivariate data analysis (MDA) of lipidomic data from plasma, erythrocytes and lipoprotein fractions of more than 50 subjects. Hydrophilic interaction liquid chromatography on ultrahigh-performance liquid chromatography (HILIC-UHPLC) column coupled with electrospray ionization mass spectrometry (ESI-MS) is used for the quantitation of four classes of polar lipids (phosphatidylethanolamines, phosphatidylcholines, sphingomyelins and lysophosphatidylcholines), normal-phase UHPLC-atmospheric pressure chemical ionization MS (NP-UHPLC/APCI-MS) is applied for the quantitation of five classes of nonpolar lipids (cholesteryl esters, triacylglycerols, sterols, 1,3-diacylglycerols and 1,2-diacylglycerols) and the potential of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is tested for the fast screening of all lipids without a chromatographic separation. Obtained results are processed by unsupervised (principal component analysis) and supervised (orthogonal partial least squares) MDA approaches to highlight the largest differences among individual groups and to identify lipid molecules with the highest impact on the group differentiation. PMID:25855318

  17. Stochastic analysis of a field-scale unsaturated transport experiment

    NASA Astrophysics Data System (ADS)

    Severino, G.; Comegna, A.; Coppola, A.; Sommella, A.; Santini, A.

    2010-10-01

    Modelling of field-scale transport of chemicals is of deep interest to public as well as private sectors, and it represents an area of active theoretical research in many environmentally-based disciplines. However, the experimental data needed to validate field-scale transport models are very limited due to the numerous logistic difficulties that one faces out. In the present paper, the migration of a tracer (Cl -) was monitored during its movement in the unsaturated zone beneath the surface of 8 m × 50 m sandy soil. Under flux-controlled, steady-state water flow ( Jw = 10 mm/day) was achieved by bidaily sprinkler irrigation. A pulse of 105 g/m 2 KCl was applied uniformly to the surface, and subsequently leached downward by the same (chloride-free) flux Jw over the successive two months. Chloride concentration monitoring was carried out in seven measurement campaigns (each one corresponding to a given time) along seven (parallel) transects. The mass recovery was near 100%, therefore underlining the very good-quality of the concentration data-set. The chloride concentrations are used to test two field-scale models of unsaturated transport: (i) the Advection-Dispersion Equation (ADE), which models transport far from the zone of solute entry, and (ii) the Stochastic- Convective Log- normal (CLT) transfer function model, which instead accounts for transport near the release zone. Both the models provided an excellent representation of the solute spreading at z > 0.45 m (being z = 0.45 m the calibration depth). As a consequence, by the depth z ≈ 50 cm one can regard transport as Fickian. The ADE model dramatically underestimates solute spreading at shallow depths. This is due to the boundary effects which are not captured by the ADE. The CLT model appears to be a more robust tool to mimic transport at every depth.

  18. Analysis of world economic variables using multidimensional scaling.

    PubMed

    Machado, J A Tenreiro; Mata, Maria Eugénia

    2015-01-01

    Waves of globalization reflect the historical technical progress and modern economic growth. The dynamics of this process are here approached using the multidimensional scaling (MDS) methodology to analyze the evolution of GDP per capita, international trade openness, life expectancy, and education tertiary enrollment in 14 countries. MDS provides the appropriate theoretical concepts and the exact mathematical tools to describe the joint evolution of these indicators of economic growth, globalization, welfare and human development of the world economy from 1977 up to 2012. The polarization dance of countries enlightens the convergence paths, potential warfare and present-day rivalries in the global geopolitical scene. PMID:25811177

  19. Wavelet analysis and scaling properties of time series

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.

  20. On the analysis of large-scale genomic structures.

    PubMed

    Oiwa, Nestor Norio; Goldman, Carla

    2005-01-01

    We apply methods from statistical physics (histograms, correlation functions, fractal dimensions, and singularity spectra) to characterize large-scale structure of the distribution of nucleotides along genomic sequences. We discuss the role of the extension of noncoding segments ("junk DNA") for the genomic organization, and the connection between the coding segment distribution and the high-eukaryotic chromatin condensation. The following sequences taken from GenBank were analyzed: complete genome of Xanthomonas campestri, complete genome of yeast, chromosome V of Caenorhabditis elegans, and human chromosome XVII around gene BRCA1. The results are compared with the random and periodic sequences and those generated by simple and generalized fractal Cantor sets. PMID:15858230

  1. Analysis of World Economic Variables Using Multidimensional Scaling

    PubMed Central

    Machado, J.A. Tenreiro; Mata, Maria Eugénia

    2015-01-01

    Waves of globalization reflect the historical technical progress and modern economic growth. The dynamics of this process are here approached using the multidimensional scaling (MDS) methodology to analyze the evolution of GDP per capita, international trade openness, life expectancy, and education tertiary enrollment in 14 countries. MDS provides the appropriate theoretical concepts and the exact mathematical tools to describe the joint evolution of these indicators of economic growth, globalization, welfare and human development of the world economy from 1977 up to 2012. The polarization dance of countries enlightens the convergence paths, potential warfare and present-day rivalries in the global geopolitical scene. PMID:25811177

  2. Wavelet analysis and scaling properties of time series.

    PubMed

    Manimaran, P; Panigrahi, Prasanta K; Parikh, Jitendra C

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior. PMID:16383481

  3. Enabling Large-Scale Biomedical Analysis in the Cloud

    PubMed Central

    Lin, Ying-Chih; Yu, Chin-Sheng; Lin, Yen-Jen

    2013-01-01

    Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable. PMID:24288665

  4. Magnetohydrodynamic generator scaling analysis for baseload commercial powerplants

    NASA Astrophysics Data System (ADS)

    Swallom, D. W.; Pian, C. C. P.

    1983-08-01

    MHD generator channel scaling analyses have been performed to definitize the effect of generator size and oxygen enrichment on channel performance. These studies have shown that MHD generator channels can be designed to operate efficiently over the range of 250 to 2135 thermal megawatts. The optimum design conditions for each of the thermal inputs were established by investigating various combinations of electrical load parameters, pressure ratios, magnetic field profiles, and channel lengths. These results provide design flexibility for the baseload combined cycle MHD/steam power plant.

  5. Enabling large-scale biomedical analysis in the cloud.

    PubMed

    Lin, Ying-Chih; Yu, Chin-Sheng; Lin, Yen-Jen

    2013-01-01

    Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable. PMID:24288665

  6. Massive-Scale RNA-Seq Analysis of Non Ribosomal Transcriptome in Human Trisomy 21

    PubMed Central

    Costa, Valerio; Angelini, Claudia; D'Apice, Luciana; Mutarelli, Margherita; Casamassimi, Amelia; Sommese, Linda; Gallo, Maria Assunta; Aprile, Marianna; Esposito, Roberta; Leone, Luigi; Donizetti, Aldo; Crispi, Stefania; Rienzo, Monica; Sarubbi, Berardo; Calabrò, Raffaele; Picardi, Marco; Salvatore, Paola; Infante, Teresa; De Berardinis, Piergiuseppe; Napoli, Claudio; Ciccodicola, Alfredo

    2011-01-01

    Hybridization- and tag-based technologies have been successfully used in Down syndrome to identify genes involved in various aspects of the pathogenesis. However, these technologies suffer from several limits and drawbacks and, to date, information about rare, even though relevant, RNA species such as long and small non-coding RNAs, is completely missing. Indeed, none of published works has still described the whole transcriptional landscape of Down syndrome. Although the recent advances in high-throughput RNA sequencing have revealed the complexity of transcriptomes, most of them rely on polyA enrichment protocols, able to detect only a small fraction of total RNA content. On the opposite end, massive-scale RNA sequencing on rRNA-depleted samples allows the survey of the complete set of coding and non-coding RNA species, now emerging as novel contributors to pathogenic mechanisms. Hence, in this work we analysed for the first time the complete transcriptome of human trisomic endothelial progenitor cells to an unprecedented level of resolution and sensitivity by RNA-sequencing. Our analysis allowed us to detect differential expression of even low expressed genes crucial for the pathogenesis, to disclose novel regions of active transcription outside yet annotated loci, and to investigate a plethora of non-polyadenilated long as well as short non coding RNAs. Novel splice isoforms for a large subset of crucial genes, and novel extended untranslated regions for known genes—possibly novel miRNA targets or regulatory sites for gene transcription—were also identified in this study. Coupling the rRNA depletion of samples, followed by high-throughput RNA-sequencing, to the easy availability of these cells renders this approach very feasible for transcriptome studies, offering the possibility of investigating in-depth blood-related pathological features of Down syndrome, as well as other genetic disorders. PMID:21533138

  7. Scaling and long-range dependence in option pricing I: Pricing European option with transaction costs under the fractional Black-Scholes model

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Tian

    2010-02-01

    This paper deals with the problem of discrete time option pricing by the fractional Black-Scholes model with transaction costs. By a mean self-financing delta-hedging argument in a discrete time setting, a European call option pricing formula is obtained. The minimal price C(t,St) of an option under transaction costs is obtained as timestep δt=((, which can be used as the actual price of an option. In fact, C(t,St) is an adjustment to the volatility in the Black-Scholes formula by using the modified volatility σ√{2}(( to replace the volatility σ, where {k}/{σ}<(, H>{1}/{2} is the Hurst exponent, and k is a proportional transaction cost parameter. In addition, we also show that timestep and long-range dependence have a significant impact on option pricing.

  8. Proteomic Analysis of Lonicera japonica Thunb. Immature Flower Buds Using Combinatorial Peptide Ligand Libraries and Polyethylene Glycol Fractionation.

    PubMed

    Zhu, Wei; Xu, Xiaobao; Tian, Jingkui; Zhang, Lin; Komatsu, Setsuko

    2016-01-01

    Lonicera japonica Thunb. flower is a well-known medicinal plant that has been widely used for the treatment of human disease. To explore the molecular mechanisms underlying the biological activities of L. japonica immature flower buds, a gel-free/label-free proteomic technique was used in combination with combinatorial peptide ligand libraries (CPLL) and polyethylene glycol (PEG) fractionation for the enrichment of low-abundance proteins and removal of high-abundance proteins, respectively. A total of 177, 614, and 529 proteins were identified in crude protein extraction, CPLL fractions, and PEG fractions, respectively. Among the identified proteins, 283 and 239 proteins were specifically identified by the CPLL and PEG methods, respectively. In particular, proteins related to the oxidative pentose phosphate pathway, signaling, hormone metabolism, and transport were highly enriched by CPLL and PEG fractionation compared to crude protein extraction. A total of 28 secondary metabolism-related proteins and 25 metabolites were identified in L. japonica immature flower buds. To determine the specificity of the identified proteins and metabolites for L. japonica immature flower buds, Cerasus flower buds were used, which resulted in the abundance of hydroxymethylbutenyl 4-diphosphate synthase in L. japonica immature flower buds being 10-fold higher than that in Cerasus flower buds. These results suggest that proteins related to secondary metabolism might be responsible for the biological activities of L. japonica immature flower buds. PMID:26573373

  9. Teaching a New Method of Partial Fraction Decomposition to Senior Secondary Students: Results and Analysis from a Pilot Study

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong; Leung, Allen

    2012-01-01

    In this paper, we introduce a new approach to compute the partial fraction decompositions of rational functions and describe the results of its trials at three secondary schools in Hong Kong. The data were collected via quizzes, questionnaire and interviews. In general, according to the responses from the teachers and students concerned, this new…

  10. Analysis of Free Fractions for Chiral Drugs Using Ultrafast Extraction and Multi-Dimensional High-Performance Affinity Chromatography†

    PubMed Central

    Zheng, Xiwei; Yoo, Michelle J.; Hage, David S.

    2013-01-01

    A multi-dimensional chromatographic approach was developed to measure the free fractions of drug enantiomers in samples that also contained a binding protein or serum. This method, which combined ultrafast affinity extraction with a chiral stationary phase, was demonstrated using the drug warfarin and the protein human serum albumin. PMID:23979112

  11. FT-IR and C-13 NMR analysis of soil humic fractions from a long term cropping systems study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased knowledge of humic fractions is important due to its involvement in many soil ecosystem processes. Soil humic acid (HA) and fulvic acid (FA) from a nine-year agroecosystem study with different tillage, cropping system, and N source treatments were characterized using FT-IR andsolid-state ...

  12. Combining Flux Balance and Energy Balance Analysis for Large-Scale Metabolic Network: Biochemical Circuit Theory for Analysis of Large-Scale Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.

  13. Small-Scale Smart Grid Construction and Analysis

    NASA Astrophysics Data System (ADS)

    Surface, Nicholas James

    The smart grid (SG) is a commonly used catch-phrase in the energy industry yet there is no universally accepted definition. The objectives and most useful concepts have been investigated extensively in economic, environmental and engineering research by applying statistical knowledge and established theories to develop simulations without constructing physical models. In this study, a small-scale version (SSSG) is constructed to physically represent these ideas so they can be evaluated. Results of construction show data acquisition three times more expensive than the grid itself although mainly due to the incapability to downsize 70% of data acquisition costs to small-scale. Experimentation on the fully assembled grid exposes the limitations of low cost modified sine wave power, significant enough to recommend pure sine wave investment in future SSSG iterations. Findings can be projected to full-size SG at a ratio of 1:10, based on the appliance representing average US household peak daily load. However this exposes disproportionalities in the SSSG compared with previous SG investigations and recommended changes for future iterations are established to remedy this issue. Also discussed are other ideas investigated in the literature and their suitability for SSSG incorporation. It is highly recommended to develop a user-friendly bidirectional charger to more accurately represent vehicle-to-grid (V2G) infrastructure. Smart homes, BEV swap stations and pumped hydroelectric storage can also be researched on future iterations of the SSSG.

  14. Genome-scale thermodynamic analysis of Escherichia coli metabolism.

    PubMed

    Henry, Christopher S; Jankowski, Matthew D; Broadbelt, Linda J; Hatzimanikatis, Vassily

    2006-02-15

    Genome-scale metabolic models are an invaluable tool for analyzing metabolic systems as they provide a more complete picture of the processes of metabolism. We have constructed a genome-scale metabolic model of Escherichia coli based on the iJR904 model developed by the Palsson Laboratory at the University of California at San Diego. Group contribution methods were utilized to estimate the standard Gibbs free energy change of every reaction in the constructed model. Reactions in the model were classified based on the activity of the reactions during optimal growth on glucose in aerobic media. The most thermodynamically unfavorable reactions involved in the production of biomass in E. coli were identified as ATP phosphoribosyltransferase, ATP synthase, methylene-tetra-hydrofolate dehydrogenase, and tryptophanase. The effect of a knockout of these reactions on the production of biomass and the production of individual biomass precursors was analyzed. Changes in the distribution of fluxes in the cell after knockout of these unfavorable reactions were also studied. The methodologies and results discussed can be used to facilitate the refinement of the feasible ranges for cellular parameters such as species concentrations and reaction rate constants. PMID:16299075

  15. Bench-scale Analysis of Surrogates for Anaerobic Digestion Processes.

    PubMed

    Carroll, Zachary S; Long, Sharon C

    2016-05-01

    Frequent monitoring of anaerobic digestion processes for pathogen destruction is both cost and time prohibitive. The use of surrogates to supplement regulatory monitoring may be one solution. To evaluate surrogates, a semi-batch bench-scale anaerobic digester design was tested. Bench-scale reactors were operated under mesophilic (36 °C) and thermophilic (53-55 °C) conditions, with a 15 day solids retention time. Biosolids from different facilities and during different seasons were examined. USEPA regulated pathogens and surrogate organisms were enumerated at different times throughout each experiment. The surrogate organisms included fecal coliforms, E. coli, enterococci, male-specific and somatic coliphages, Clostridium perfringens, and bacterial spores. Male-specific coliphages tested well as a potential surrogate organism for virus inactivation. None of the tested surrogate organisms correlated well with helminth inactivation under the conditions studied. There were statistically significant differences in the inactivation rates between the facilities in this study, but not between seasons. PMID:27131309

  16. Economic analysis of small-scale fuel alcohol plants

    SciTech Connect

    Schafer, J.J. Jr.

    1980-01-01

    To plan Department of Energy support programs, it is essential to understand the fundamental economics of both the large industrial size plants and the small on-farm size alcohol plants. EG and G Idaho, Inc., has designed a 25 gallon per hour anhydrous ethanol plant for the Department of Energy's Alcohol Fuels Office. This is a state-of-the-art reference plant, which will demonstrate the cost and performance of currently available equipment. The objective of this report is to examine the economics of the EG and G small-scale alcohol plant design and to determine the conditions under which a farm plant is a financially sound investment. The reference EG and G Small-Scale Plant is estimated to cost $400,000. Given the baseline conditions defined in this report, it is calculated that this plant will provide an annual after-tax of return on equity of 15%, with alcohol selling at $1.62 per gallon. It is concluded that this plant is an excellent investment in today's market, where 200 proof ethanol sells for between $1.80 and $2.00 per gallon. The baseline conditions which have a significant effect on the economics include plant design parameters, cost estimates, financial assumptions and economic forecasts. Uncertainty associated with operational variables will be eliminated when EG and G's reference plant begins operation in the fall of 1980. Plant operation will verify alcohol yield per bushel of corn, labor costs, maintenance costs, plant availability and by-product value.

  17. Analysis of free drug fractions in human serum by ultrafast affinity extraction and two-dimensional affinity chromatography.

    PubMed

    Zheng, Xiwei; Podariu, Maria; Matsuda, Ryan; Hage, David S

    2016-01-01

    Ultrafast affinity extraction and a two-dimensional high performance affinity chromatographic system were used to measure the free fractions for various drugs in serum and at typical therapeutic concentrations. Pooled samples of normal serum or serum from diabetic patients were utilized in this work. Several drug models (i.e., quinidine, diazepam, gliclazide, tolbutamide, and acetohexamide) were examined that represented a relatively wide range of therapeutic concentrations and affinities for human serum albumin (HSA). The two-dimensional system consisted of an HSA microcolumn for the extraction of a free drug fraction, followed by a larger HSA analytical column for the further separation and measurement of this fraction. Factors that were optimized in this method included the flow rates, column sizes, and column switching times that were employed. The final extraction times used for isolating the free drug fractions were 333-665 ms or less. The dissociation rate constants for several of the drugs with soluble HSA were measured during system optimization, giving results that agreed with reference values. In the final system, free drug fractions in the range of 0.7-9.5% were measured and gave good agreement with values that were determined by ultrafiltration. Association equilibrium constants or global affinities were also estimated by this approach for the drugs with soluble HSA. The results for the two-dimensional system were obtained in 5-10 min or less and required only 1-5 μL of serum per injection. The same approach could be adapted for work with other drugs and proteins in clinical samples or for biomedical research. PMID:26462924

  18. Analysis and Management of Large-Scale Activities Based on Interface

    NASA Astrophysics Data System (ADS)

    Yang, Shaofan; Ji, Jingwei; Lu, Ligang; Wang, Zhiyi

    Based on the concepts of system safety engineering, life-cycle and interface that comes from American system safety standard MIL-STD-882E, and apply them to the process of risk analysis and management of large-scale activities. Identify the involved personnel, departments, funds and other contents throughout the life cycle of large-scale activities. Recognize and classify the ultimate risk sources of people, objects and environment of large-scale activities from the perspective of interface. Put forward the accident cause analysis model according to the previous large-scale activities' accidents and combine with the analysis of the risk source interface. Analyze the risks of each interface and summary various types of risks the large-scale activities faced. Come up with the risk management consciousness, policies and regulations, risk control and supervision departments improvement ideas.

  19. A two-scale finite element formulation for the dynamic analysis of heterogeneous materials

    SciTech Connect

    Ionita, Axin