Science.gov

Sample records for fractured slab techniques

  1. May eclogite dehydration cause slab fracturation ?

    NASA Astrophysics Data System (ADS)

    Loury, Chloé; Lanari, Pierre; Rolland, Yann; Guillot, Stéphane; Ganino, Clément

    2015-04-01

    prograde path, leading to a complete dehydration at the pressure peak conditions, (25 kbar and 510°C). The amount of water released during this stage is about 20 g/dm3. In this example, no hydration event is recorded during the exhumation, explaining the good preservation of the anhydrous eclogite. This study shows that garnet thermobarometry in eclogite may be used as a proxy for progressive oceanic crust dehydration as suggested by the models of Baxter & Caddick (2014). In contrast to such models, the estimations proposed in the present study are based on the measured composition of local domains in rock-samples and not on average bulk rock compositions. Complete dehydration of eclogites around 75 km corresponds to the maximum depth of most exhumed oceanic eclogites except for a few special cases. Moreover the distribution of seismicity along the slab shows that only few earthquakes do occur in the crust beyond this limit as compared to the seismicity above it. Consequently this example from a natural sample strongly suggests that the eclogite dehydration at this depth can cause slab fracturation and consequently enhance eclogite exhumation. Baxter, E.F. & Caddick, M.J. 2013. Garnet growth as a proxy for progressive subduction zone dehydration. Geology, 41, 643-646 Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E., Grosch, E.G. & Schwartz, S. 2014. XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Computers & Geosciences, 62, 227-240 Loury, C., Rolland, Y., Guillot, S., Mikolaichuk, A., Lanari, P., Bruguier, O. & Bosch, D. in press. Crustal-scale structure of South Tien Shan : implications for subduction polarity and Cenozoic reactivation. Geological Society of London, special publications

  2. Subduction of fracture zones controls mantle melting and geochemical signature above slabs.

    PubMed

    Manea, Vlad C; Leeman, William P; Gerya, Taras; Manea, Marina; Zhu, Guizhi

    2014-01-01

    For some volcanic arcs, the geochemistry of volcanic rocks erupting above subducted oceanic fracture zones is consistent with higher than normal fluid inputs to arc magma sources. Here we use enrichment of boron (B/Zr) in volcanic arc lavas as a proxy to evaluate relative along-strike inputs of slab-derived fluids in the Aleutian, Andean, Cascades and Trans-Mexican arcs. Significant B/Zr spikes coincide with subduction of prominent fracture zones in the relatively cool Aleutian and Andean subduction zones where fracture zone subduction locally enhances fluid introduction beneath volcanic arcs. Geodynamic models of subduction have not previously considered how fracture zones may influence the melt and fluid distribution above slabs. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations of subduction, we show that enhanced production of slab-derived fluids and mantle wedge melts concentrate in areas where fracture zones are subducted, resulting in significant along-arc variability in magma source compositions and processes. PMID:25342158

  3. Subduction of fracture zones controls mantle melting and geochemical signature above slabs

    NASA Astrophysics Data System (ADS)

    Manea, Vlad C.; Leeman, William P.; Gerya, Taras; Manea, Marina; Zhu, Guizhi

    2014-10-01

    For some volcanic arcs, the geochemistry of volcanic rocks erupting above subducted oceanic fracture zones is consistent with higher than normal fluid inputs to arc magma sources. Here we use enrichment of boron (B/Zr) in volcanic arc lavas as a proxy to evaluate relative along-strike inputs of slab-derived fluids in the Aleutian, Andean, Cascades and Trans-Mexican arcs. Significant B/Zr spikes coincide with subduction of prominent fracture zones in the relatively cool Aleutian and Andean subduction zones where fracture zone subduction locally enhances fluid introduction beneath volcanic arcs. Geodynamic models of subduction have not previously considered how fracture zones may influence the melt and fluid distribution above slabs. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations of subduction, we show that enhanced production of slab-derived fluids and mantle wedge melts concentrate in areas where fracture zones are subducted, resulting in significant along-arc variability in magma source compositions and processes.

  4. Frozen-slab technique for mixing zinc phosphate cement for cast restorations.

    PubMed

    Newman, S M

    1980-01-01

    The technique for handling zinc phosphate cement can be altered to achieve enhanced properties of the cement. The compressive strength of the material can be decreased. The film thickness can be maintained within acceptable limits, and the possibility of pulpal damage can be kept low by maintaining temperature changes in the cement similar to those obtained from a room temperature-slab technique. The technique advocated by this report is as follows: 1. Store the aluminum slab with vinyl covering in a freezer at -15 degrees C to -20 degrees C in a plastic bag to prevent ice formation on the surface. 2. Remove the slab when ready to mix. 3. Quickly wipe the slab clean. 4. Dispense twice as much powder and liquid as recommended on the slab. 5. Start timer. 6. Slowly incorporate the powder into the liquid over a large area of the slab for 2 minutes. 7. Allow the mix to remain on the slab. 8. The instrument for placing the cement can be placed under the slab. The casting can be placed on a corner of the slab. 9. At 10 minutes, place the cement into the casting(s) and seat. 10. Remove excess cement. 11. Clean the slab by rinsing in water and gently wiping. 12. Dry the slab, place it in the plastic bag, and return it to the freezer. PMID:6927907

  5. Fracture problem of a nonhomogeneous high temperature superconductor slab based on real fundamental solutions

    NASA Astrophysics Data System (ADS)

    Gao, Zhiwen; Zheng, Zhiye; Li, Xueyi

    2015-12-01

    To analyze the fracture problem of the nonhomogeneous high temperature superconductor (HTS) slab under electromagnetic force, we derive the real fundamental solutions based on eigenvalue and eigenvector analyses. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Lobatto-Chybeshev collocation method. Numerical results of the stress intensity factor (SIF) are obtained. Moreover, the crack opening displacement (COD) can be obtained by numerical integration dislocation density functions. The effects of the thickness ratio, HTS material nonhomogeneous parameters, applied magnetic field and critical current density on SIF and COD are discussed. The present work could theoretically provide quantitative predictions of the fracture mechanism of the nonhomogeneous HTS.

  6. Subduction of Fracture Zones control mantle melting and geochemical signature above slabs

    NASA Astrophysics Data System (ADS)

    Constantin Manea, Vlad; Leeman, William; Gerya, Taras; Manea, Marina; Zhu, Guizhi

    2014-05-01

    The geochemistry of arc volcanics proximal to oceanic fracture zones (FZs) is consistent with higher than normal fluid inputs to arc magma sources. Here, enrichment of boron (B/Zr) in volcanic arc lavas is used to evaluate relative along-strike inputs of slab-derived fluids in the Aleutian, Andean, Cascades, and Trans-Mexican arcs. Significant B/Zr spikes coincide with subduction of prominent FZs in the relatively cool Aleutian and Andean subduction zones, but not in the relatively warm Cascadia and Mexican subduction zones, suggesting that FZ subduction locally enhances fluid introduction beneath volcanic arcs, and retention of fluids to sub-arc depths diminishes with subduction zone thermal gradient. Geodynamic treatments of lateral inhomogeneities in subducting plates have not previously considered how FZs may influence the melt and fluid distribution above the slab. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations of subduction, we show that fluids, including melts and water, concentrate in areas where fracture zones are subducted, resulting in along-arc variability in magma source compositions and processes.

  7. Application techniques for plaster of paris back slab, resting splint, and thumb spica using ridged reinforcement.

    PubMed

    Chow, Jason; Hsu, Shelly; Kwok, Daniel; Reagh, Jessica

    2013-09-01

    Immobilization of fractures with plaster of Paris is a mainstay of management of stable, nondisplaced fractures not requiring fixation. However, application techniques can be variable and are often ineffective after the patient is discharged because of weakness and wear of the plaster. This can lead to displacement of fractures and inadequate analgesia. We describe a simple, inexpensive, effective technique to ensure plaster strength and immobilization. PMID:23657008

  8. Imaging the slab beneath central Chile using the Spectral Elements Method and adjoint techniques

    NASA Astrophysics Data System (ADS)

    Mercerat, E. D.; Nolet, G.; Marot, M.; Deshayes, P.; Monfret, T.

    2010-12-01

    This work focuses on imaging the subducting slab beneath Central Chile using novel inversion techniques based on the adjoint method and accurate wave propagation simulations using the Spectral Elements Method. The study area comprises the flat slab portion of the Nazca plate between 29 S and 34 S subducting beneath South America. We will use a database of regional seismicity consisting of both crustal and deep slab earthquakes with magnitude 3 < Mw < 6 recorded by different temporary and permanent seismological networks. Our main goal is to determine both the kinematics and the geometry of the subducting slab in order to help the geodynamical interpretation of such particular active margin. The Spectral Elements Method (SPECFEM3D code) is used to generate the synthetic seismograms and it will be applied for the iterative minimization based on adjoint techniques. The numerical mesh is 600 km x 600 km in horizontal coordinates and 220 km depth. As a first step, we are faced to well-known issues concerning mesh generation (resolution, quality, absorbing boundary conditions). In particular, we must evaluate the influence of free surface topography, as well as the MOHO and other geological interfaces in the synthetic seismograms. The initial velocity model from a previous travel-time tomography study, is linearly interpolated to the Gauss-Lobatto-Legendre grid. The comparison between the first forward simulations (up to 4 seconds minimum period) validate the initial velocity model of the study area, although many features not reproduced by the initial model have already been identified. Next step will concentrate in the comparison between finite-frequency kernels calculated by travel-time methods with ones based on adjoint methods, in order to highlight advantages and disadvantages in terms of resolution, accuracy, but also computational cost.

  9. Techniques for increasing boron fiber fracture strain

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1977-01-01

    Improvement in the strain-to-failure of CVD boron fibers is shown possible by contracting the tungsten boride core region and its inherent flaws. The results of three methods are presented in which etching and thermal processing techniques were employed to achieve core flaw contraction by internal stresses available in the boron sheath. After commercially and treatment induced surface flaws were removed from 203 micrometers (8 mil) fibers, the core flaw was observed to be essentially the only source of fiber fracture. Thus, fiber strain-to-failure was found to improve by an amount equal to the treatment induced contraction on the core flaw. Commercial feasibility considerations suggest as the most cost effective technique that method in which as-produced fibers are given a rapid heat treatment above 700 C. Preliminary results concerning the contraction kinetics and fracture behavior observed are presented and discussed both for high vacuum and argon gas heat treatment environments.

  10. Analysis of mode scattering from an abruptly ended dielectric slab waveguide by an accelerated iteration technique.

    PubMed

    Tigelis, I G; Manenkov, A B

    2000-12-01

    A new modification of the integral equation method using an iteration technique with "accelerating" parameters is presented to solve the problem of guided-mode scattering from an abruptly ended asymmetrical slab waveguide. The optimal choice of the parameters is shown to be closely connected with the variational principle. The electric-field distribution at the terminal plane, the reflection coefficient of the guided mode, and the far-field radiation pattern are computed. Numerical results are presented for several cases of abruptly ended waveguides, including the systems with constant and variable profiles of the refractive indices. The phenomenon of the radiation pattern rotation is examined in detail. PMID:11140485

  11. Element fracture technique for hypervelocity impact simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-tian; Li, Xiao-gang; Liu, Tao; Jia, Guang-hui

    2015-05-01

    Hypervelocity impact dynamics is the theoretical support of spacecraft shielding against space debris. The numerical simulation has become an important approach for obtaining the ballistic limits of the spacecraft shields. Currently, the most widely used algorithm for hypervelocity impact is the smoothed particle hydrodynamics (SPH). Although the finite element method (FEM) is widely used in fracture mechanics and low-velocity impacts, the standard FEM can hardly simulate the debris cloud generated by hypervelocity impact. This paper presents a successful application of the node-separation technique for hypervelocity impact debris cloud simulation. The node-separation technique assigns individual/coincident nodes for the adjacent elements, and it applies constraints to the coincident node sets in the modeling step. In the explicit iteration, the cracks are generated by releasing the constrained node sets that meet the fracture criterion. Additionally, the distorted elements are identified from two aspects - self-piercing and phase change - and are deleted so that the constitutive computation can continue. FEM with the node-separation technique is used for thin-wall hypervelocity impact simulations. The internal structures of the debris cloud in the simulation output are compared with that in the test X-ray graphs under different material fracture criteria. It shows that the pressure criterion is more appropriate for hypervelocity impact. The internal structures of the debris cloud are also simulated and compared under different thickness-to-diameter ratios (t/D). The simulation outputs show the same spall pattern with the tests. Finally, the triple-plate impact case is simulated with node-separation FEM.

  12. Subcritical measurements of the WINCO slab tank experiment using the source-jerk technique

    SciTech Connect

    Spriggs, G.D.; Hansen, G.E.; Martin, E.R.; Plassmann, E.A.; Pederson, R.A.; Schlesser, J.A.; Krawczyk, T.L.; Tanner, J.E.; Smolen, G.R.; Martin Marietta Energy Systems, Inc., Oak Ridge, TN; Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID; Martin Marietta Energy Systems, Inc., Oak Ridge, TN )

    1989-01-01

    Subcritical measurements of the WINCO slab tank using the source-jerk technique are presented. This technique determines subcriticality by analyzing the transient response produced by the sudden removal of an extraneous neutron source (i.e., a source jerk). We have found that the technique can provide an accurate means of measuring k in configurations that are close to critical (i.e., 0.90 < k < 1.0). As the system becomes more subcritical (i.e., k < 0.90), spatial effects introduce significant biases depending on the source and detector positions. A comparison between the measurements and Monte Carlo code calculations is also presented. 15 refs., 6 figs., 2 tabs.

  13. Sliding interleaved kY (SLINKY) acquisition: a novel 3D MRA technique with suppressed slab boundary artifact.

    PubMed

    Liu, K; Rutt, B K

    1998-01-01

    This work addresses the elimination of the slab boundary artifact (SBA) or venetian blind artifact in three-dimensional multiple overlapped thin slab acquisition (3D MOTSA) for magnetic resonance angiography (MRA). Our method uses a sliding-slab, interleaved kY (SLINKY) data acquisition strategy, equalizing flow-related signal intensity weighting across the entire slab dimension. This technique demodulates signal intensity changes along the slab direction and can essentially eliminate the SBA while retaining the same or better imaging time efficiency than that of conventional MOTSA, providing robustness to complicated flow patterns and thereby resulting in more accurate depiction of vascular morphology. In addition, this technique does not need specialized reconstruction and extra computation. The unique penalty of this technique is the sensitivity to phase inconsistency in the data. Both phantom and in vivo experiments verify the clinical significance of the technique. The new MRA images acquired with this imaging technique show highly reliable mapping of vascular morphology without the SBA and reduction of signal voids in complex/slow flow regions. PMID:9702893

  14. Fracture detection in crystalline rock using ultrasonic reflection techniques: Volume 1

    SciTech Connect

    Palmer, S.P. )

    1982-11-01

    This research was initiated to investigate using ultrasonic seismic reflection techniques to detect fracture discontinuities in a granitic rock. Initial compressional (P) and shear (SH) wave experiments were performed on a 0.9 {times} 0.9 {times} 0.3 meter granite slab in an attempt to detect seismic energy reflected from the opposite face of the slab. It was found that processing techniques such as deconvolution and array synthesis could improve the standout of the reflection event. During the summers of 1979 and 1980 SH reflection experiments were performed at a granite quarry near Knowles, California. The purpose of this study was to use SH reflection methods to detect an in situ fracture located one to three meters behind the quarry face. These SH data were later analyzed using methods similar to those applied in the laboratory. Interpretation of the later-arriving events observed in the SH field data as reflections from a steeply-dipping fracture was inconclusive. 41 refs., 43 figs., 7 tabs.

  15. Microwave Quantitative NDE Technique for Dielectric Slab Thickness Estimation Using the Music Algorithm

    NASA Astrophysics Data System (ADS)

    Abou-Khousa, M. A.; Zoughi, R.

    2007-03-01

    Non-invasive monitoring of dielectric slab thickness is of great interest in various industrial applications. This paper focuses on estimating the thickness of dielectric slabs, and consequently monitoring their variations, utilizing wideband microwave signals and the MUtiple SIgnal Characterization (MUSIC) algorithm. The performance of the proposed approach is assessed by validating simulation results with laboratory experiments. The results clearly indicate the utility of this overall approach for accurate dielectric slab thickness evaluation.

  16. Suture Bridge Fixation Technique for Posterior Cruciate Ligament Avulsion Fracture

    PubMed Central

    Lee, Kwang Won; Lee, Gyu Sang; Choy, Won Sik

    2015-01-01

    We presented a surgical technique including a suture bridge technique with relatively small incision for the reduction and fixation of posterior ligament avulsion fractures. A suture anchor was used to hold the avulsed fragment and a knotless anchor was used to continuously compress the bony fragment into the fracture site, thereby maintaining reduction during healing. PMID:26640635

  17. Improving clinical examination in acute tibial fractures by enhancing visual cues: the case for always 'cutting back' a tibial back-slab and marking the dorsalis pedis pulse.

    PubMed

    Thomas, Alasdair; Kimber, Cheryl; Bramwell, Donald; Jaarsma, Ruurd

    2016-08-01

    Look, feel, move is a simple and widely taught sequence to be followed when undertaking a clinical examination in orthopaedics (Maher et al., 1994; McRae, 1999; Solomon et al., 2010). The splinting of an acute tibial fracture with a posterior back-slab is also common practice; with the most commonly taught design involving covering the dorsum of the foot with bandaging (Charnley, 1950; Maher et al., 1994; McRae, 1989). We investigated the effect of the visual cues provided by exposing the dorsum of the foot and marking the dorsalis pedis pulse. We used a clinical simulation in which we compared the quality of the recorded clinical examination undertaken by 30 nurses. The nurses were randomly assigned to assess a patient with either a traditional back-slab or one in which the dorsal bandaging had been cut back and the dorsalis pedis pulse marked. We found that the quality of the recorded clinical examination was significantly better in the cut-back group. Previous studies have shown that the cut-back would not alter the effectiveness of the back-slab as a splint (Zagorski et al., 1993). We conclude that all tibial back-slabs should have the bandaging on the dorsum of the foot cut back and the location of the dorsalis pedis pulse marked. This simple adaptation will improve the subsequent clinical examinations undertaken and recorded without reducing the back-slab's effectiveness as a splint. PMID:27236718

  18. Use of fractography and sectioning techniques to study fracture mechanisms

    NASA Technical Reports Server (NTRS)

    Van Stone, R. H.; Cox, T. B.

    1976-01-01

    Recent investigations of the effect of microstructure on the fracture mechanisms and fracture toughness of steels, aluminum alloys, and titanium alloys have used standard fractographic techniques and a sectioning technique on specimens plastically deformed to various strains up to fracture. The specimens are prepared metallographically for observation in both optical and electron beam instruments. This permits observations to be made about the fracture mechanism as it occurs in thick sections and helps remove speculation from the interpretation of fractographic features. This technique may be used in conjunction with other standard techniques such as extraction replicas and microprobe analyses. Care must be taken to make sure that the microstructural features which are observed to play a role in the fracture process using the sectioning technique can be identified with fractography.

  19. Feasibility of a borehole VHF radar technique for fracture mapping

    SciTech Connect

    Chang, H.T.

    1984-01-01

    Experiments were conducted to establish the feasibility of a downhole high-frequency electromagnetic technique for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver operated at 30 to 300 MHz was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole VHF radar for use in a single borehole for detection of fractures located away from the borehole.

  20. New technique for fixing rib fracture with bioabsorbable plate.

    PubMed

    Oyamatsu, Hironori; Ohata, Norihisa; Narita, Kunio

    2016-09-01

    Fixation of a bone fracture with a bioabsorbable plate made of poly-L-lactide and hydroxyapatite has received attention. We adopted this technique for a rib fracture by bending the plate into a U-shape and fixing it with suture through the holes in the mesh of the plate and holes that are drilled in the edge of the fractured rib. The suture is also wound around the plate. PMID:27206779

  1. A minimally invasive surgical technique to treat distal clavicle fractures.

    PubMed

    Swanson, Kyle E; Swanson, Britta L

    2009-07-01

    Treatment of distal clavicle fractures ranges from nonoperative to operative approaches. Various surgical procedures have been described in the literature, each with potential complications. For fractures treated operatively, the goal is to maximize stability and functionality while minimizing pain and deformity. This article describes a double-button suture system using a mini-open technique to repair a distal clavicle fracture providing stable fixation with minimal disruption of the surrounding anatomy. PMID:19634845

  2. Modelling fracture orientations in reservoirs with photo-elastic techniques

    SciTech Connect

    Rawnsley, K.; Auzias, V.; Petit, J.P.

    1995-08-01

    Fractures within a reservoir can be divided into two types: faults, which result from shear displacement, and tension fractures which result from opening mode displacement. Tension fractures develop perpendicular to the minimal principal stress and so represent an image of the stress field orientation prevailing during their development. In reservoirs tension fractures are not observed by standard seismic techniques and can only be observed very locally in core or suitable well bore images. Frequently tension fracture orientations vary within and between wells. For this reason the extrapolation of tension fracture orientations between wells can be complicated. We present a method based on photo-elastic techniques that can model complex tension fracture patterns. Photo-elastic techniques permit the modelling of a stress field in a faulted strata and have shown that variations in tension fracture orientation may often be linked to stress field perturbations due to faults. The photo-elastic model consists of a rectangular plate of transparent polymer into which narrow slots with various frictional properties can be engineered to represent faults. The plate is loaded in a compression cell and light is transmitted through the plate via two polarizers and the directions of the stress field trajectories can be determined. Applications of photo-elastic modelling of tension fracture orientations to both outcrop and reservoir data are presented. The reservoir example consists of a horizontal well with continuous fracture data obtained from core and Formation Micro-Scanner logs. It is shown that the stress field at the seismic fault scale can be related to the large scale variations in the fracture pattern in the well. Smaller scale variations in the well fracture orientations are simulated by down scaling the photo-elastic model from seismic scale faults to include mostly sub-seismic faults near the well.

  3. Application of endoscopic techniques in orbital blowout fractures.

    PubMed

    Zhang, Shu; Li, Yinwei; Fan, Xianqun

    2013-09-01

    Minimally invasive surgical techniques, particularly endoscopic techniques, have revolutionized otolaryngeal surgery. Endoscopic techniques have been gradually applied in orbital surgery through the sinus inferomedial to the orbit and the orbital subperiosteal space. Endoscopic techniques help surgeons observe fractures and soft tissue of the posterior orbit to precisely place implants and protect vital structures through accurate, safe, and minimally invasive approaches. We reviewed the development of endoscopic techniques, the composition of endoscopic systems for orbital surgery, and the problems and developmental prospects of endoscopic techniques for simple orbital wall fracture repair. PMID:23794028

  4. Novel venting technique for intramedullary rod fixation of pathologic fractures.

    PubMed

    Wilkens, Kenneth J; Nicolaou, Daemeon A M; Lee, Mark A

    2011-10-01

    This article introduces a novel technique to vent the femur and potentially decrease the embolic load created by reaming during intramedullary rod fixation of impending pathologic femur fractures. We used readily available operating room equipment to create a distal femoral vent hole without interfering with standard intramedullary instrumentation and with minimal increase in surgical time. This technique can be used for the prophylactic intramedullary stabilization of impending pathologic femur fractures from metabolic bone disease, metastatic cancer, and bisphosphonate use. PMID:21956178

  5. A technique for removal of a fractured implant abutment screw.

    PubMed

    Kurt, Murat; Güler, Ahmet Umut; Duran, İbrahim

    2013-12-01

    The aim of this technique report was to present a procedure for removal of a fractured implant abutment screw. Whatever the cause, when an abutment fracture has occurred, the fractured screw segment inside the implant must be removed. The methods used by the clinicians may include the use of an endo-explorer self-made screwdriver and the use of implant repair kit available for some implant systems. The advantage of the presented method is that it may be extended to other implant systems that do not have a special repair kit and also that the technique is simple and does not require special equipment. PMID:21905898

  6. Re-attachment of anterior fractured teeth: fracture strength using different techniques.

    PubMed

    Reis, A; Francci, C; Loguercio, A D; Carrilho, M R; Rodriques Filho, L E

    2001-01-01

    Fracture of anterior teeth by trauma is a common problem in children and teenagers. Complex metal-ceramic crowns with considerable loss of remaining sound structure are no longer necessary due to adhesive techniques, such as composite restorations and re-attachment techniques. This study compared the fracture strength of sound and restored anterior teeth using a resin composite and four re-attachment techniques. A "one bottle" adhesive system (One-Step, BISCO) and a dual cure resin cement (Duo-Link, BISCO) were applied. Thirty-five sound permanent lower central incisors were fractured by an axial load applied to the buccal area and randomly divided into five groups. The teeth were restored as follows: 1) bonded only = just bonding the fragment; 2) chamfer-group = after bonding, a chamfer was prepared on the enamel at the bonding line and filled with composite; 3) overcontour group = after bonding, a thin composite overcontour was applied on the buccal surface around the fracture line; 4) internal dentinal groove = before bonding, an internal groove was made and filled with a resin composite; 5) resin composite group = after a bevel preparation on the enamel edge, the adhesive system was applied and the fractured part of the teeth rebuilt by resin composite. Restored teeth were subjected to the same loading in the same buccal area. Fracture strength after restorative procedure was expressed as a percentage of the original fracture strength and the results analyzed by Kruskal-Wallis statistical analysis. The mean percentages of fracture strength were: Group 1: 37.09%, Group 2: 60.62%, Group 3: 97.2%, Group 4: 90.54% and Group 5: 95.8%. It was concluded that the re-attachment techniques used in Groups 3 and 4, as well as the composite restored group (Group 5), were statistically similar and reached the highest fracture resistance, similar to the fracture resistance of sound teeth. PMID:11357572

  7. The use of augmentation techniques in osteoporotic fracture fixation.

    PubMed

    Kammerlander, Christian; Neuerburg, Carl; Verlaan, Jorrit-Jan; Schmoelz, Werner; Miclau, Theodore; Larsson, Sune

    2016-06-01

    There are an increasing number of fragility fractures, which present a surgical challenge given the reduced bone quality of underlying osteoporosis. Particularly in aged patients, there is a need for early weight bearing and mobilization to avoid further complications such as loss of function or autonomy. As an attempt to improve fracture stability and ultimate healing, the use of biomaterials for augmentation of osseous voids and fracture fixation is a promising treatment option. Augmentation techniques can be applied in various locations, and fractures of the metaphyseal regions such as proximal humerus, femur, tibia and the distal radius remain the most common areas for its use. The current review, based on the available mechanical and biological data, provides an overview of the relevant treatment options and different composites used for augmentation of osteoporotic fractures. PMID:27338226

  8. [Nailing of inter- and subtrochanteric fractures - operative technique].

    PubMed

    Douša, P; Skála-Rosenbaum, J

    2013-10-01

    Intertrochanteric and subtrochanteric fractures are a quite heterogeneous and imprecisely defined group of fractures. These fractures can be essentially divided into two basic groups. The first one belongs to trochanteric fractures. In the AO/ASIF classification; these fractures are called intertrochanteric (31A3). In the second group, the term subtrochanteric fracture is used by most authors for fractures about 5 cm distally from lesser trochanter. In both intertrochanteric and subtrochanteric fractures, the proximal fragment is formed by femoral head, neck and greater trochanter including its base with vastus ridge (tuberculum vastoadductorium or innominate tubercle). On this tubercle, the gluteus medius muscle (proximally) and the origin of the vastus lateralis muscle (distally) are attached. Tension of these muscles may cause dislocation of the proximal fragment. For this reason, reduction of the fracture can be troublesome and it is more difficult than in pertrochanteric fractures It seems that intramedullary nailing will remain the favorite technique of most of the surgeons dealing with intertrochanteric and subtrochanteric fractures. We use short reconstruction nail in intertrochanteric fractures. It is useful to use long reconstruction nail in subtrochanteric fractures. Distal locking of the nail is necessary. Dynamic distal locking is preferred because the two main fragments are compressed along the axis of the nail. The number of complications was largely related to technical errors, such as insufficient reduction or an incorrectly inserted implant. No implant can compensate for errors due to surgery. Serious complications can be reduced by the correct assessment of fracture type, the use of an appropriate operative technique and early treatment of potential complications. The necessity of restoring continuity in the medial cortex of the femoral neck (Adams arch) is the requirement that should be observed. Pseudoarthrosis or varus malalignment in a healed

  9. Tuberoplasty: minimally invasive osteosynthesis technique for tibial plateau fractures.

    PubMed

    Vendeuvre, T; Babusiaux, D; Brèque, C; Khiami, F; Steiger, V; Merienne, J-F; Scepi, M; Gayet, L E

    2013-06-01

    Fractures of the tibial plateau are in constant progression. They affect an elderly population suffering from a number of comorbidities, but also a young population increasingly practicing high-risk sports and using two-wheeled vehicles. The objective of this study was therefore to propose a new technique for the treatment of this type of fracture. There are a variety of classical pitfalls of conservative treatment such as defective reduction resulting in early osteoarthritis and alignment defects. Conventional treatments lead to joint stiffness and amyotrophy of the quadriceps, caused by the open technique and late loading. We propose an osteosynthesis technique for tibial plateau fractures with minimally invasive surgery. A minimally invasive technique would be more appropriate to remedy all of the surgical drawbacks resulting from current practices. The surgical technique that we propose uses a balloon allowing progressive and total reduction, associated with percutaneous screw fixation and filling with polymethylmethacrylate (PMMA) cement. The advantages are optimal reduction, minimal devascularization, soft tissues kept intact, as well as early loading and mobilization. This simple technique seems to be a good alternative to conventional treatment. The most comminuted fractures as well as the most posterior compressions can be treated, while causing the least impairment possible. Arthroscopy can be used to verify fracture reduction and cement leakage. At the same time, it can be used to assess the associated meniscal lesions and to repair them if necessary. PMID:23622864

  10. Technical tips: dualplate fixation technique for comminuted proximal humerus fractures.

    PubMed

    Choi, Sungwook; Kang, Hyunseong; Bang, Hyeongsig

    2014-08-01

    The authors report dualplate fixation technique for providing stable fixation in comminuted proximal humerus fractures. This technique has been used for proximal humerus fractures with metaphyseal comminution and provides excellent anatomical reduction and neck shaft angle (NSA). The recently locking plate is clinically more widely used due to its small size, low rigidity, high elasticity, and biomechanical properties such as fixed initial angle and rotational stability. However, in severely comminuted complex type proximal metaphyseal humerus fractures, the use of locking plate alone does not provide stable fixation, leading to complications such as varus collapse, anterior-posterior angulation, screw cutout, nonunion, malunion, and metal failure. Therefore, a more robust and enhanced fixation method, the dual plating technique using the locking compression plate (Proximal Humeral Internal Locking System and Variable Angle Locking Compression Plate) was developed. PMID:24813097

  11. Plate presetting arthroscopic reduction technique for the distal radius fractures.

    PubMed

    Abe, Yukio; Tsubone, Tetsu; Tominaga, Yasuhiro

    2008-09-01

    Wrist arthroscopy for the distal radius fractures is an effective adjunct to evaluate the reduction of intraarticular fragments and soft tissue injuries. In recent years, volar locking plate fixation has become popular, and arthroscopic procedures for distal radius fracture reduction have become problematic because vertical traction has to be both on and off during surgery. We developed a plate presetting arthroscopic reduction technique to simplify the combination of plating and arthroscopy. The fracture was reduced, and anatomic alignment was regained under an image intensifier, and then the volar locking plate was preset. Wrist arthroscopy was introduced under vertical traction, and the intraarticular condition was assessed. If dislocations of the intraarticular fragments were residual, they were reduced arthroscopically, and soft tissue injuries were treated subsequently. Finally, the traction was removed, and the plate was securely fixed. Since May 2005, the authors have used this technique in more than 50 patients. This article will review the history, indications, contraindications, technique, rehabilitation, and complications for the plate presetting arthroscopic reduction technique for distal radius fractures. PMID:18776773

  12. A Novel Approach in Security Using Gyration Slab with Watermarking Technique

    NASA Astrophysics Data System (ADS)

    Rupa, Ch.

    2015-03-01

    In this paper, a novel security approach is proposed to improve the security and robustness of the data. It uses three levels of security to protect the sensitive data. In the first level, the data is to be protected by Gyration slab encryption algorithm. Result of the first level has to be embedded into an image as original using our earlier paper concept PLSB into a second level of security. The resultant image from the second level is considered as watermark Image. In the third level, the watermark image is embedded into the original image. Here watermark image and original image are similar. The final output of the proposed security approach is a watermarked image which holds the stego image. This method provides more security and robustness than the existing approaches. The main properties of the proposed approach are Gyration slab operations and watermark image and original image are similar. These can reduce the Brute-force attack and improve the confusion and diffusion principles. The main strengths of this paper are cryptanalysis, steganalysis, watermark analysis with reports.

  13. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  14. Fracture resistance of premolar teeth restored with different filling techniques.

    PubMed

    França, Fabiana Mantovani Gomes; Worschech, Claudia Cia; Paulillo, Luis Alexandre Maffei Sartini; Martins, Luis Roberto Marcondes; Lovadino, José Roberto

    2005-08-15

    The aim of this study is to verify the fracture resistance of premolars with large mesiocclusodistal (MOD) preparations with composite resin using different incremental techniques when subjected to an occlusal load. Forty maxillary premolar teeth were randomly divided into four groups (n=10). Class II MOD cavities were prepared in all specimens with parallel walls and no approximal boxes. The resulting isthmus width was 1/3 the distance between the cusp tips and (3/4) the height of the crown. Teeth in group I, the control group, were not restored. Specimens in group II were restored in three incremental vertical layers. Group III specimens were restored in three horizontal layers, and finally, specimens in group IV were restored in oblique layers. With exception of the placement technique, specimens in groups II, III and IV were restored using the Single Bond adhesive system and P60 composite resin following manufacturer's recommendations. A 4 mm diameter steel sphere contacted the buccal and lingual cusps of the tested teeth at a crosshead speed of 0.5 mm/min until fracture occurred. The values obtained in this study were subjected to Analysis of Variance (ANOVA) and a Tukey-Kramer test. Only group I (non-restored) obtained a minor means of fracture resistance. No significant differences among groups II, III, and IV were found. This study shows on large MOD cavities the incremental filling techniques do not influence the fracture resistance of premolar teeth restored with composite resin. PMID:16127473

  15. Scattering of the transverse magnetic modes from an abruptly ended strongly asymmetrical slab waveguide by an accelerated integral equation technique.

    PubMed

    Manenkov, A B; Latsas, G P; Tigelis, L G

    2001-12-01

    We study the problem of the scattering of the first TM guided mode from an abruptly ended strongly asymmetrical slab waveguide by an improved iteration technique, which is based on the integral equation method with "accelerating" parameters. We demonstrate that the values of these parameters are related to the variational principle, and we save approximately 1-2 iterations compared with the case in which these parameters are not employed. The tangential electric-field distribution on the terminal plane, the reflection coefficient of the first TM guided mode, and the far-field radiation pattern are computed. Furthermore, a simple technique based on the Aitken extrapolation procedure is employed for faster computation of the higher-order solutions of the reflection coefficient. Numerical results are presented for several cases of abruptly ended waveguides, including systems with variational profile, while special attention is given to the far-field radiation pattern rotation and its explanation. PMID:11760208

  16. Novel Matricing Technique for Management of Fractured Cusp Conundrum – A Clinician’s Corner

    PubMed Central

    Mittal, Priya Ramesh

    2016-01-01

    Longitudinal tooth fracture can be classified as craze lines, fractured cusp, cracked tooth, split tooth and vertical root fracture based on extent and severity of the fracture line. The most common type of longitudinal tooth fracture is fractured cusp that poses the treatment dilemma. Retention of the fractured cusp segment temporarily with matrix band followed by permanent bonded restoration and finally removal of tooth fragment during crown preparation is a novel technique. This paper throws light on a matricing and holding technique for the management of supra-crestally fractured palatal cusp of maxillary first premolar in a 29-year-old Asian male. PMID:27190970

  17. Determination of dynamic fracture toughness using a new experimental technique

    NASA Astrophysics Data System (ADS)

    Cady, Carl M.; Liu, Cheng; Lovato, Manuel L.

    2015-09-01

    In other studies dynamic fracture toughness has been measured using Charpy impact and modified Hopkinson Bar techniques. In this paper results will be shown for the measurement of fracture toughness using a new test geometry. The crack propagation velocities range from ˜0.15 mm/s to 2.5 m/s. Digital image correlation (DIC) will be the technique used to measure both the strain and the crack growth rates. The boundary of the crack is determined using the correlation coefficient generated during image analysis and with interframe timing the crack growth rate and crack opening can be determined. A comparison of static and dynamic loading experiments will be made for brittle polymeric materials. The analysis technique presented by Sammis et al. [1] is a semi-empirical solution, however, additional Linear Elastic Fracture Mechanics analysis of the strain fields generated as part of the DIC analysis allow for the more commonly used method resembling the crack tip opening displacement (CTOD) experiment. It should be noted that this technique was developed because limited amounts of material were available and crack growth rates were to fast for a standard CTOD method.

  18. Simple reproducible technique in treatment for osteopetrotic fractures.

    PubMed

    Sen, Ramesh K; Gopinathan, Nirmal Raj; Kumar, Rajesh; Saini, Uttam Chand

    2013-08-01

    Osteopetrosis is a rare skeletal condition first described by German radiologist Heinrich Albers-Schonberg. The most important technical difficulty is drilling due to hard bone in patients with osteopetrosis; recommendations have been made to use high-speed electric drill bits. But, the unavailability of this special drill bit in most of the centres makes the job more difficult. The study was conducted from 2009 to 2012; the cases are selected from Outpatients Department of Postgraduate Institute of Medical Education and Research. The patients were in the age group of 10-50 years with a mean age of 26 years. Five cases were included in the study: four patients had subtrochanteric fractures, and one had segmental fracture of the humerus. Open reduction and internal fixation was done in all the fractures using metal-cutting drill bit. The use of metal-cutting drill bit in osteopetrosis not only made our job easy but also prevented thermal necrosis of the bone to a large extent. The union rate was 100 % in our series, and there was no infection in any of our cases. In the treatment for fractures in osteopetrosis, the use of a metal-cutting drill bit along with careful attention to drilling technique can help avoid bit breakage and thermal bone injury that may produce ring sequestrum or destroy the already scant osteogenic cells. PMID:22983737

  19. The development of in situ fracture toughness evaluation techniques in hydrogen environment

    SciTech Connect

    Wang, Jy-An John; Ren, Fei; Tan, Ting; Liu, Ken C

    2014-01-01

    Fracture behavior and fracture toughness are of great interest regarding reliability of hydrogen pipelines and storage tanks, however, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen, in addition to the inherited specimen size effect. Thus it is desired to develop novel in situ fracture toughness evaluation techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, a torsional fixture was developed to utilize an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The in situ testing results indicated that the exposure to H2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using Gleeble, which illustrated the effect of welding on the fracture toughness of this material.

  20. Simple, minimally invasive surgical technique for treatment of type 2 fractures of the distal clavicle.

    PubMed

    Levy, Ofer

    2003-01-01

    Neer type 2 fractures of the distal clavicle have a high rate of nonunion and delayed union. A simple, minimally invasive surgical technique using suture fixation is introduced. In this series 12 patients were treated with suture fixation of this fracture with absorbable suture material, resulting in union of all fractures. There was a rapid return to function and no complications. This technique allows simple, minimally invasive fixation with good fracture healing and early return to work and sports. PMID:12610482

  1. Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs.

    PubMed

    Magath, Thore; Serebryannikov, Andriy E

    2005-11-01

    A fast coupled-integral-equation (CIE) technique is developed to compute the plane-TE-wave scattering by a wide class of periodic 2D inhomogeneous structures with curvilinear boundaries, which includes finite-thickness relief and rod gratings made of homogeneous material as special cases. The CIEs in the spectral domain are derived from the standard volume electric field integral equation. The kernel of the CIEs is of Picard type and offers therefore the possibility of deriving recursions, which allow the computation of the convolution integrals occurring in the CIEs with linear amounts of arithmetic complexity and memory. To utilize this advantage, the CIEs are solved iteratively. We apply the biconjugate gradient stabilized method. To make the iterative solution process faster, an efficient preconditioning operator (PO) is proposed that is based on a formal analytical inversion of the CIEs. The application of the PO also takes only linear complexity and memory. Numerical studies are carried out to demonstrate the potential and flexibility of the CIE technique proposed. Though the best efficiency and accuracy are observed at either low permittivity contrast or high conductivity, the technique can be used in a wide range of variation of material parameters of the structures including when they contain components made of both dielectrics with high permittivity and typical metals. PMID:16302391

  2. Non-union coronal fracture femoral condyle, sandwich technique : A case report.

    PubMed

    Nandy, Kousik; Raman, Rajeev; Vijay, R K; Maini, Lalit

    2015-03-01

    Coronal fractures of the femoral condyle (Hoffa fracture) are rare injuries but can be managed with satisfactory outcome if properly treated. We discuss an unusual case of a young adult male presenting with 9 month old neglected Hoffa fracture with pain, stiffness and limitation of knee movement, managed with sandwich bone grafting technique.(1). PMID:26549953

  3. Non-union coronal fracture femoral condyle, sandwich technique : A case report

    PubMed Central

    Nandy, Kousik; Raman, Rajeev; Vijay, R.K.; Maini, Lalit

    2014-01-01

    Coronal fractures of the femoral condyle (Hoffa fracture) are rare injuries but can be managed with satisfactory outcome if properly treated. We discuss an unusual case of a young adult male presenting with 9 month old neglected Hoffa fracture with pain, stiffness and limitation of knee movement, managed with sandwich bone grafting technique.1 PMID:26549953

  4. Defense technique takes guesswork out of tight reservoir fracturing jobs

    SciTech Connect

    Duey, R.

    1996-05-01

    Enserch exploration and the Los Alamos National Laboratory are using a highly sensitive defense technology to map fractures in an East Texas field. A process known as nuclear test verification, using highly sophisticated detectors can actually map fractures as they occur.

  5. Fracture detection techniques in the Georgetown and Austin Chalk formations

    SciTech Connect

    Julian, P.J.

    1982-09-01

    This study relates the success of detecting and analyzing naturally fractured systems in the Austin Chalk and Georgetown Formations from log evaluations. The Austin Chalk is composed principally of calcareous unicellular algal remains called cocospheres and their disunited, gearshaped, skeletal remains called cocoliths. The Georgetown Formation is a hard, dense, and finely brittle limestone. Both formations contain matrix porosity, but are dependent on open fracture systems for economical hydrocarbon production. Hence, defining and evaluating the developed fracture systems before setting an expensive casing string is important. The Dual Induction Log and the Compensated Neutron-Formation Density Log offers an economical method of evaluating these fracture systems. Case studies in Robertson, Milam, and Burleson Counties, Texas have shown that fracture systems near the wellbore can be detected. Attempts to determine the existence of hydrocarbons in fracture systems using logs were successful in the Austin Chalk and Georgetown Formations. Full core analyses were also successful in determining the existence of these fracture systems. However, obtaining core samples on all wells as a method of determining fracture systems is not recommended due to the high cost of coring.

  6. Evolution of 3-D subduction-induced mantle flow around lateral slab edges in analogue models of free subduction analysed by stereoscopic particle image velocimetry technique

    NASA Astrophysics Data System (ADS)

    Strak, Vincent; Schellart, Wouter P.

    2014-10-01

    We present analogue models of free subduction in which we investigate the three-dimensional (3-D) subduction-induced mantle flow focusing around the slab edges. We use a stereoscopic Particle Image Velocimetry (sPIV) technique to map the 3-D mantle flow on 4 vertical cross-sections for one experiment and on 3 horizontal depth-sections for another experiment. On each section the in-plane components are mapped as well as the out-of-plane component for several experimental times. The results indicate that four types of maximum upwelling are produced by the subduction-induced mantle flow. The first two are associated with the poloidal circulation occurring in the mantle wedge and in the sub-slab domain. A third type is produced by horizontal motion and deformation of the frontal part of the slab lying on the 660 km discontinuity. The fourth type results from quasi-toroidal return flow around the lateral slab edges, which produces a maximum upwelling located slightly laterally away from the sub-slab domain and can have another maximum upwelling located laterally away from the mantle wedge. These upwellings occur during the whole subduction process. In contrast, the poloidal circulation in the mantle wedge produces a zone of upwelling that is vigorous during the free falling phase of the slab sinking but that decreases in intensity when reaching the steady-state phase. The position of the maximum upward component and horizontal components of the mantle flow velocity field has been tracked through time. Their time-evolving magnitude is well correlated to the trench retreat rate. The maximum upwelling velocity located laterally away from the subducting plate is ∼18-24% of the trench retreat rate during the steady-state subduction phase. It is observed in the mid upper mantle but upwellings are produced throughout the whole upper mantle thickness, potentially promoting decompression melting. It could thereby provide a source for intraplate volcanism, such as Mount Etna in

  7. Analysis of compressive fracture in rock using statistical techniques

    SciTech Connect

    Blair, S.C.

    1994-12-01

    Fracture of rock in compression is analyzed using a field-theory model, and the processes of crack coalescence and fracture formation and the effect of grain-scale heterogeneities on macroscopic behavior of rock are studied. The model is based on observations of fracture in laboratory compression tests, and incorporates assumptions developed using fracture mechanics analysis of rock fracture. The model represents grains as discrete sites, and uses superposition of continuum and crack-interaction stresses to create cracks at these sites. The sites are also used to introduce local heterogeneity. Clusters of cracked sites can be analyzed using percolation theory. Stress-strain curves for simulated uniaxial tests were analyzed by studying the location of cracked sites, and partitioning of strain energy for selected intervals. Results show that the model implicitly predicts both development of shear-type fracture surfaces and a strength-vs-size relation that are similar to those observed for real rocks. Results of a parameter-sensitivity analysis indicate that heterogeneity in the local stresses, attributed to the shape and loading of individual grains, has a first-order effect on strength, and that increasing local stress heterogeneity lowers compressive strength following an inverse power law. Peak strength decreased with increasing lattice size and decreasing mean site strength, and was independent of site-strength distribution. A model for rock fracture based on a nearest-neighbor algorithm for stress redistribution is also presented and used to simulate laboratory compression tests, with promising results.

  8. Hydraulic fracturing method employing a fines control technique

    SciTech Connect

    Stowe, L.R.

    1986-11-18

    A method is described for controlling fines or sand in an unconsolidated or loosely consolidated formation or reservoir penetrated by at least one wellbore where hydraulic fracturing is used in combination with control of the critical salinity rate and the critical fluid flow velocity. The method comprises: (a) placing at least one wellbore in the reservoir; (b) hydraulically fracturing the formation via the wellbore with a fracturing fluid which creates at least one fracture; (c) placing a proppant comprising a gravel pack into the fracture; (d) determining the critical salinity rate and the critical fluid flow velocity of the formation or reservoir surrounding the wellbore; (e) injecting a saline solution into the formation or reservoir at a velocity exceeding the critical fluid flow velocity and at a saline concentration sufficient to cause the fines or particles to be transferred and fixed deep wihtin the formation or reservoir without plugging the formation, fracture, or wellbore; and (f) producing a hydrocarbonaceous fluid from the formation or reservoir at a velocity such that the critical flow velocity is not exceeded deep within the formation, fracture, or wellbore.

  9. Computational techniques for the assessment of fracture repair.

    PubMed

    Anderson, Donald D; Thomas, Thaddeus P; Campos Marin, Ana; Elkins, Jacob M; Lack, William D; Lacroix, Damien

    2014-06-01

    The combination of high-resolution three-dimensional medical imaging, increased computing power, and modern computational methods provide unprecedented capabilities for assessing the repair and healing of fractured bone. Fracture healing is a natural process that restores the mechanical integrity of bone and is greatly influenced by the prevailing mechanical environment. Mechanobiological theories have been proposed to provide greater insight into the relationships between mechanics (stress and strain) and biology. Computational approaches for modelling these relationships have evolved from simple tools to analyze fracture healing at a single point in time to current models that capture complex biological events such as angiogenesis, stochasticity in cellular activities, and cell-phenotype specific activities. The predictive capacity of these models has been established using corroborating physical experiments. For clinical application, mechanobiological models accounting for patient-to-patient variability hold the potential to predict fracture healing and thereby help clinicians to customize treatment. Advanced imaging tools permit patient-specific geometries to be used in such models. Refining the models to study the strain fields within a fracture gap and adapting the models for case-specific simulation may provide more accurate examination of the relationship between strain and fracture healing in actual patients. Medical imaging systems have significantly advanced the capability for less invasive visualization of injured musculoskeletal tissues, but all too often the consideration of these rich datasets has stopped at the level of subjective observation. Computational image analysis methods have not yet been applied to study fracture healing, but two comparable challenges which have been addressed in this general area are the evaluation of fracture severity and of fracture-associated soft tissue injury. CT-based methodologies developed to assess and quantify

  10. Arthroscopic management of tibial plateau fractures: special techniques.

    PubMed

    Perez Carro, L

    1997-04-01

    Arthroscopic assessment and treatment of tibial plateau fractures has gained popularity in recent years. This article describes some maneuvers to facilitate the management of these fractures with the arthroscope. We use a 14-mm rounded curved periosteal elevator to manipulate fragments within the joint instead of using a probe. To facilitate visualization of fractures, we describe the use of loop sutures around the meniscus to retract the meniscus when there is a tear in the meniscus. We suggest the use of the arthroscope for directly viewing the interosseous space to be sure that any internal fixation devices remain outside the articular space. The use of these tactics will allow a faster, more accurate reduction with less radiation exposure in patients with displaced tibial plateau fractures. PMID:9127091

  11. The development of in situ fracture toughness evaluation techniques in hydrogen environment

    DOE PAGESBeta

    Wang, John Jy-An; Ren, Fei; Tan, Tin; Liu, Ken

    2014-12-19

    Reliability of hydrogen pipelines and storage tanks is significantly influenced by the mechanical performance of the structural materials exposed in the hydrogen environment. Fracture behavior and fracture toughness are of specific interest since they are relevant to many catastrophic failures. However, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen. Thus it is desired to develop novel in situ techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, special testing apparatus were designed to facilitate in situ fracture testing in H2. A torsional fixture was developed to utilizemore » an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The design concepts will be discussed. Preliminary in situ testing results indicated that the exposure to H2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using Gleeble, which illustrated the effect of welding on the fracture toughness of this material.« less

  12. The development of in situ fracture toughness evaluation techniques in hydrogen environment

    SciTech Connect

    Wang, John Jy-An; Ren, Fei; Tan, Tin; Liu, Ken

    2014-12-19

    Reliability of hydrogen pipelines and storage tanks is significantly influenced by the mechanical performance of the structural materials exposed in the hydrogen environment. Fracture behavior and fracture toughness are of specific interest since they are relevant to many catastrophic failures. However, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen. Thus it is desired to develop novel in situ techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, special testing apparatus were designed to facilitate in situ fracture testing in H2. A torsional fixture was developed to utilize an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The design concepts will be discussed. Preliminary in situ testing results indicated that the exposure to H2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using Gleeble, which illustrated the effect of welding on the fracture toughness of this material.

  13. Slab reformer

    NASA Technical Reports Server (NTRS)

    Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)

    1984-01-01

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  14. Slab reformer

    DOEpatents

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  15. Slab reformer

    DOEpatents

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1985-03-12

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  16. Effectiveness of MIS technique as a treatment modality for open intra-articular calcaneal fractures: A prospective evaluation with matched closed fractures treated by conventional technique.

    PubMed

    Dhillon, Mandeep Singh; Gahlot, Nitesh; Satyaprakash, Sambit; Kanojia, Rajendra Kumar

    2015-09-01

    Twenty-five displaced intra-articular calcaneal fractures in 21 patients, aged 15-55 years were included in this study. Sanders' type I fractures, severe crushing or partial amputation, were excluded from the study. Patients were divided into group 1 (open fractures treated by MIS), and group 2 (closed fractures treated by ORIF). Group 1 had 16 and group 2 had 9 cases. Seven of 25 fractures (28%) developed wound related issues postoperatively. One patient (11.1%) in group 2 had wound margin necrosis, while 6 patients (37.5%) in group 1 developed pin tract and/or wound infection. At 1-year follow-up, the mean MFS for group 1 was 79 and mean MFS for group 2 was 84.4 (66.67% were good). The AOFAS score for group 1 was 77.37 and for group 2 was 86.1. The Bohlers' angle was restored in 81.16% cases in group 1 and 88.8% in group 2, while Gissane angle was restored in 68.75% of group 1 cases and 77.79% of group 2 cases. This study shows that acceptable fracture reduction can be obtained and maintained by MIS technique and it can be used as the primary definitive treatment option in open calcaneal fractures. PMID:26209469

  17. Type 2 fractures of the distal clavicle: a new surgical technique.

    PubMed

    Goldberg, J A; Bruce, W J; Sonnabend, D H; Walsh, W R

    1997-01-01

    Neer type 2 fractures of the distal clavicle have a high rate of nonunion and delayed union. In this series nine cases of coracoclavicular ligament reconstruction with Dacron graft material led to union at the fracture site. All patients had no symptoms and returned to full activity. This technique allows for stable fixation with early mobilization and return to work and sports. PMID:9285878

  18. Lower Extremity Fracture Reduction: Tips, Tricks, and Techniques So That You Leave the Operating Room Satisfied.

    PubMed

    Mir, Hassan R; Boulton, Christina L; Russell, George V; Archdeacon, Michael

    2016-01-01

    It can be challenging for surgeons to obtain proper alignment and to create stable constructs for the maintenance of many lower extremity fractures until union is achieved. Whether lower extremity fractures are treated with plates and screws or intramedullary nails, there are numerous pearls that may help surgeons deal with these difficult injuries. Various intraoperative techniques can be used for lower extremity fracture reduction and stabilization. The use of several reduction tools, tips, and tricks may facilitate the care of lower extremity fractures and, subsequently, improve patient outcomes. PMID:27049180

  19. Femoral neck fracture fixation: rigidity of five techniques compared.

    PubMed Central

    Mackechnie-Jarvis, A C

    1983-01-01

    Artificial cadaveric femoral neck fractures were internally fixed with five different devices and subjected to cyclical loading of 0-1.0 kilonewtons (approximately one body weight) whilst in an anatomical position. Displacement of the proximal fragment was detected by a transducer and charted. Bone strength was assessed by a preliminary control loading phase on the intact bone. Efficiency of each fracture fixator could then be directly compared by the relative movement in each case. Five specimens each were tested with Moore's Pins, Trifin Nail, Garden Screws and a sliding screw-plate (OEC Ltd). By the criteria of the experiment, which put a severe shearing load on the implant, none of these devices reliably bore the representative body weight. An extended barrel-plate, which supported the sliding screw almost up to the fracture line, was then made. This device, employing some of Charnley's concepts, tolerated body weight in four cases out of five. PMID:6887186

  20. An innovative technique for evaluating fracture toughness of graphite materials

    NASA Astrophysics Data System (ADS)

    Wang, Jy-An John; Liu, Ken C.

    2008-10-01

    Spiral notch torsion fracture toughness test (SNTT) was developed recently to measure the intrinsic fracture toughness ( KIC) of structural materials. The SNTT system operates by applying pure torsion to uniform cylindrical specimens with a notch line that spirals around the specimen at a 45° pitch. The KIC values are obtained with the aid of a three-dimensional finite-element computer code, TOR3D-KIC. The SNTT method is uniquely suitable for testing a wide variety of materials used extensively in pressure vessel and piping structural components and weldments, including others such as ceramics, their composites, and concrete.

  1. Impacted and Fractured Biliary Basket: A Second Basket Rescue Technique.

    PubMed

    Benatta, Mohammed Amine; Desjeux, Ariane; Barthet, Marc; Grimaud, Jean Charles; Gasmi, Mohamed

    2016-01-01

    A 59-year-old woman was treated with ERCP, ES, and biliary plastic stent, for large and multiple common bile duct stones. During a second ERCP basket extraction was impacted with a round entrapped stone. The basket handle was cut off; a metal sheath of extraendoscopic lithotriptor was advanced over the basket. The mechanical lithotripsy was complicated with basket traction wires fracturing, without breakage of the stone. A rescue standard basket was pushed until it caught the basket/stone complex. Using this method disengagement of the whole fractured basket/stone complex was achieved without need of surgery. It is the third case reported in the English literature. PMID:27293442

  2. Impacted and Fractured Biliary Basket: A Second Basket Rescue Technique

    PubMed Central

    Benatta, Mohammed Amine; Desjeux, Ariane; Barthet, Marc; Grimaud, Jean Charles; Gasmi, Mohamed

    2016-01-01

    A 59-year-old woman was treated with ERCP, ES, and biliary plastic stent, for large and multiple common bile duct stones. During a second ERCP basket extraction was impacted with a round entrapped stone. The basket handle was cut off; a metal sheath of extraendoscopic lithotriptor was advanced over the basket. The mechanical lithotripsy was complicated with basket traction wires fracturing, without breakage of the stone. A rescue standard basket was pushed until it caught the basket/stone complex. Using this method disengagement of the whole fractured basket/stone complex was achieved without need of surgery. It is the third case reported in the English literature. PMID:27293442

  3. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    SciTech Connect

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  4. Unilateral lag-screw technique for an isolated anterior 1/4 atlas fracture

    PubMed Central

    Keskil, Semih; Göksel, Murat; Yüksel, Ulaş

    2016-01-01

    Study Design: Fractures of the atlas are classified based on the fracture location and associated ligamentous injury. Among patients with atlas fractures treated using external immobilization, nonunion of the fracture could be seen. Objective: Ideally, treatment strategy for an unstable atlas fracture would involve limited fixation to maintain the fracture fragments in a reduced position without restricting the range of motion (ROM) of the atlantoaxial and atlantooccipital joints. Summary of Background Data: Such a result can be established using either transoral limited internal fixation or limited posterior lateral mass fixation. However, due to high infection risk and technical difficulty, posterior approaches are preferred but none of these techniques can fully address anterior 1/4 atlas fractures such as in this case. Materials and Methods: A novel open and direct technique in which a unilateral lag screw was placed to reduce and stabilize a progressively widening isolated right-sided anterior 1/4 single fracture of C1 that was initially treated with a rigid cervical collar is described. Results: Radiological studies made after the surgery showed no implant failure, good cervical alignment, and good reduction with fusion of C1. Conclusions: It is suggested that isolated C1 fractures can be surgically reduced and immobilized using a lateral compression screw to allow union and maintain both C1-0 and C1-2 motions, and in our knowledge this is the first description of the use of a lag screw to achieve reduction of distracted anterior 1/4 fracture fragments of the C1 from a posterior approach. This technique has the potential to become a valuable adjunct to the surgeon's armamentarium, in our opinion, only for fractures with distracted or comminuted fragments whose alignment would not be expected to significantly change with classical lateral mass screw reduction. PMID:27041886

  5. [Periprosthetic humeral fractures: Strategies and techniques of revision arthroplasty].

    PubMed

    Kirchhoff, C; Beirer, M; Brunner, U

    2016-04-01

    The primary aims when performing revision arthroplasty of periprosthetic humeral fractures (PHF) are preservation of bone stock, achieving fracture healing and preserving a stable prosthesis with the focus on regaining the preoperative shoulder-arm function. The indications for revision arthroplasty are given in PHF in combination with loosening of the stem. In addition, further factors must be independently clarified in the case of an anatomical arthroplasty. In this context secondary glenoid erosion as well as rotator cuff insufficiency are potential factors for an extended revision procedure. For the performance of revision surgery modular revision sets including long stems, revision glenoid and metaglene components as well as plate and cerclage systems are obligatory besides the explantation instrumentation. Despite a loosened prosthesis, a transhumeral removal of the stem along with a subpectoral fenestration are often required. Length as well as bracing of revision stems need to bridge the fracture by at least twice the humeral diameter. Moreover, in many cases a combined procedure using an additional distal open reduction and internal fixation (ORIF) plus cable cerclages as well as biological augmentation might be needed. Assuming an adequate preparation, the experienced surgeon is able to achieve a high fracture union rate along with an acceptable or even good shoulder function and to avoid further complications. PMID:26992713

  6. Effect of Different Instrumentation Techniques on Vertical Root Fracture Resistance of Endodontically Treated Teeth

    PubMed Central

    Tavanafar, Saeid; Karimpour, Azadeh; Karimpour, Hamideh; Mohammed Saleh, Abdulrahman; Hamed Saeed, Musab

    2015-01-01

    Statement of the Problem Vertical root fractures are catastrophic events that often result in tooth extraction. Many contributing factor are associated with increasing incidence of vertical root fracture. Root canal preparation is one of the predisposing factors which can increase the root susceptibility to vertical fracture. Purpose The aim of this study was to compare the effects of three different instrumentation techniques on vertical root fracture resistance of endodontically treated teeth. Materials and Methods In this study, 120 freshly extracted mandibular premolar teeth of similar dimensions were decoronated and randomly divided into control (n=30), nickel-titanium hand K-file (HF, n=30), BioRaCe rotary file (BR, n=30), and WaveOne reciprocating single-file (WO, n=30) groups. After cleaning and shaping the root canals, AH26 was used as canal sealer, and obturation was completed using the continuous wave technique. The root canals were embedded vertically in standardised autopolymerising acrylic resin blocks, and subjected to a vertical load to cause vertical root fracture. The forces required to induce fractures were measured using a universal testing machine. ANOVA and Tukey’s post-hoc test were used to analyse the data. Results All experimental groups showed statistically significant reductions in fracture resistance as compared with the control group. There was a statistically significant difference between the HF and BR groups. The WO group did not differ significantly from the HF group or the BR group. Conclusion All three instrumentation techniques caused weakening of the structure of the roots, and rendered them susceptible to fracture under lesser load than unprepared roots. The fracture resistance of roots prepared with the single-file reciprocating technique was similar to that of those prepared with NiTi hand and rotary instrumentation techniques. PMID:26106635

  7. Diverting technique to stage fracturing treatments in horizontal wellbores

    SciTech Connect

    Jennings, A.R. Jr.

    1990-08-28

    This patent describes a method for fracturing a formation containing a horizontal wellbore. It comprises perforating a horizontal wellbore at a desired first interval at a distance farthest from an angle of deviation from vertical of the wellbore thereby causing the wellbore to be in fluid communication with the formation; fracturing hydraulically the formation at the first interval; injecting a solidifiable gel containing a gel breaker into the wellbore witch enters the first interval; displacing with a wiper plug the solidifiable gel so as to force the solidifiable gel into the first interval and contain the gel in the wellbore in an area adjacent to the perforations; allowing the solidifiable gel to remain in the formation and in the wellbore for a time sufficient to form a solid gel in the first interval and a solid gel plug in the wellbore which precludes fluid entry into the wellbore adjacent the first interval; while the solid gel plug remains in the wellbore, perforating another section of the wellbore so as to cause fluid communication between a second interval of the formation and the wellbore; and fracturing hydraulically the formation through perforations so as to cause a second interval to be in fluid communication with the wellbore.

  8. 3D fast spin echo with out-of-slab cancellation: a technique for high-resolution structural imaging of trabecular bone at 7 Tesla.

    PubMed

    Magland, Jeremy F; Rajapakse, Chamith S; Wright, Alexander C; Acciavatti, Raymond; Wehrli, Felix W

    2010-03-01

    Spin-echo-based pulse sequences are desirable for the application of high-resolution imaging of trabecular bone but tend to involve high-power deposition. Increased availability of ultrahigh field scanners has opened new possibilities for imaging with increased signal-to-noise ratio (SNR) efficiency, but many pulse sequences that are standard at 1.5 and 3 T exceed specific absorption rate limits at 7 T. A modified, reduced specific absorption rate, three-dimensional, fast spin-echo pulse sequence optimized specifically for in vivo trabecular bone imaging at 7 T is introduced. The sequence involves a slab-selective excitation pulse, low-power nonselective refocusing pulses, and phase cycling to cancel undesired out-of-slab signal. In vivo images of the distal tibia were acquired using the technique at 1.5, 3, and 7 T field strengths, and SNR was found to increase at least linearly using receive coils of identical geometry. Signal dependence on the choice of refocusing flip angles in the echo train was analyzed experimentally and theoretically by combining the signal from hundreds of coherence pathways, and it is shown that a significant specific absorption rate reduction can be achieved with negligible SNR loss. PMID:20187181

  9. Locking plate fixation of distal femoral fractures is a challenging technique: a retrospective review

    PubMed Central

    Toro, Giuseppe; Calabrò, Giampiero; Toro, Antonio; de Sire, Alessandro; Iolascon, Giovanni

    2015-01-01

    Summary Distal femoral fractures have typically a bimodal occurrence: in young people due to a high-energy trauma and in older people related to a low-energy trauma. These fractures are associated to a very high morbidity and mortality in elderly. Distal femoral fractures might be treated with plates, intramedullary nails, external fixations, and prosthesis. However, difficulties in fracture healing and the rate of complications are important clinical issues. The purpose of this retrospective review was to present our experience in treatment of distal femoral fracture in a sample of older people in order to evaluate the technical pitfalls and strategies used to face up the fractures unsuccessfully treated with locking plates. We included people aged more than 65 years, with a diagnosis of distal femoral fracture, treated with locking plates. We considered ‘unsuccessfully treated’ the cases with healing problems or hardware failures. Of the 12 patients (9 females and 3 males; mean aged 68.75 ± 3.31 years) included, we observed 3 ‘unsuccessfully cases’, 2 due to nonunions and 1 due to an early hardware failure, all treated using a condylar blade plate with a bone graft. One patient obtained a complete fracture healing after 1 year and in the other cases there was a nonunion. We observed as most common technical pitfalls: inadequate plate lengthening, fracture bridging, and number of locking screws. The use of locking plates is an emerging technique to treat these fractures but it seems more challenging than expected. In literature there is a lack of evidences about the surgical management of distal femoral fractures that is still an important challenge for the orthopaedic surgeon that has to be able to use all the fixation devices available. PMID:27134634

  10. Two-Tension-Band Technique in Revision Surgery for Fixation Failure of Patellar Fractures.

    PubMed

    Xue, Zichao; Qin, Hui; Ding, Haoliang; Xu, Haitao; An, Zhiquan

    2016-01-01

    BACKGROUND Failed patellar fracture fixation is rare, and is usually attributed to technical errors. There are no specific details available on how to address this problem. We present our two-tension-band technique for fixing patellar fractures. MATERIAL AND METHODS Between March 2010 and March 2013, 4 men and 2 women with failed fixation patellar fractures were treated in our department. Their average age was 34 years (range 23-49 years). The initial fracture type was C1 in 3, C2 in 1, and C3 in 2, according to the AO classification. The initial fracture patterns included 3 transverse and 3 comminuted fractures. There were no open fractures. All patients underwent internal fixation with a modified anterior tension band (MATB) supplemented with cerclage wiring. All failures were caused by tension bands sliding past the tip of the Kirschner wires. The mean time between the primary and revision operations was 16.2 months (range 2-63 months). We revised the fractures by two-separate-tension-band technique. RESULTS The mean follow-up was 52 months (range 31-67 months). All patients healed radiographically without complications at an average of 14.7 weeks (range 8-20 weeks). The Bostman knee score was excellent in 3 and good in 3. All patients regained full extension and the mean range of flexion was 147.5° (135-155°). CONCLUSIONS Use of this two-tension-band technique can avoid technical errors and provide more secure fixation. We recommend it for both primary and revision surgery of patellar fractures. PMID:27485104

  11. Two-Tension-Band Technique in Revision Surgery for Fixation Failure of Patellar Fractures

    PubMed Central

    Xue, Zichao; Qin, Hui; Ding, Haoliang; Xu, Haitao; An, Zhiquan

    2016-01-01

    Background Failed patellar fracture fixation is rare, and is usually attributed to technical errors. There are no specific details available on how to address this problem. We present our two-tension-band technique for fixing patellar fractures. Material/Methods Between March 2010 and March 2013, 4 men and 2 women with failed fixation patellar fractures were treated in our department. Their average age was 34 years (range 23–49 years). The initial fracture type was C1 in 3, C2 in 1, and C3 in 2, according to the AO classification. The initial fracture patterns included 3 transverse and 3 comminuted fractures. There were no open fractures. All patients underwent internal fixation with a modified anterior tension band (MATB) supplemented with cerclage wiring. All failures were caused by tension bands sliding past the tip of the Kirschner wires. The mean time between the primary and revision operations was 16.2 months (range 2–63 months). We revised the fractures by two-separate-tension-band technique. Results The mean follow-up was 52 months (range 31–67 months). All patients healed radiographically without complications at an average of 14.7 weeks (range 8–20 weeks). The Bostman knee score was excellent in 3 and good in 3. All patients regained full extension and the mean range of flexion was 147.5° (135–155°). Conclusions Use of this two-tension-band technique can avoid technical errors and provide more secure fixation. We recommend it for both primary and revision surgery of patellar fractures. PMID:27485104

  12. Assessment of fracture-sampling techniques for laboratory tests on core

    USGS Publications Warehouse

    Severson, G.R.; Boernge, J.M.

    1991-01-01

    As part of the site characterization work to be done at Yucca Mountain in Nye County, Nevada, a candidate site for the first mined-geologic repository for high-level nuclear waste, laboratory tests are proposed to evaluate fluid flow in single fractures. Laboratory and onsite tests were conducted to develop methods for collecting rock-core samples containing single fractures for the subsequent laboratory tests. Techniques for collecting rock cores with axial (parallel to the core axis) and radial (perpendicular to the core axis) fractures are discussed.

  13. [Periprosthetic humeral fractures: Strategies and techniques for osteosynthesis].

    PubMed

    Kirchhoff, C; Brunner, U; Biberthaler, P

    2016-04-01

    The prevalence of periprosthetic humeral fractures (PHF) is currently low and accounts for 0.6-2.4%. Due to an increase in the rate of primary implantations a quantitative increase of PHF is to be expected in the near future. The majority of PHF occur intraoperatively during implantation with an increased risk for cementless stems and when performing total arthroplasty. Additional risk factors are in particular female gender and the severity of comorbidities. In contrast, postoperative PHF mostly due to low-energy falls, have a prevalence between 0.6% and 0.9% and are significantly less common. The prognosis and functional outcome following revision by open reduction internal fixation (ORIF) essentially depend on a thorough assessment of the indications for revision surgery, the operative treatment and the pretraumatic functional condition of the affected shoulder. In the armamentarium of periprosthetic ORIF of the humerus cerclage systems and locking implants as well as a combination of both play a central role. In comminuted fractures with extensive defect zones, severely thinned cortex or extensive osteolysis a biological augmentation of the ORIF should be considered. In this context when the indications are correctly interpreted, especially in the case of a stable anchored stem, various groups have reported that a high bony union rate can be achieved. As the treatment of PHF is complex it should be performed in dedicated centers in order to adequately address potential comorbidities, especially in the elderly population. PMID:27008215

  14. Rigid Intramedullary Nailing of Femoral Shaft Fractures for Patients Age 12 and Younger: Indications and Technique.

    PubMed

    Martus, Jeffrey E

    2016-06-01

    Femoral shaft fractures are common injuries in the pediatric and adolescent age groups. Rigid intramedullary nailing is an excellent treatment option for older children and adolescents, particularly for length-unstable fractures and larger patients (>49 kg). Appropriate indications, contraindications, and preoperative assessment are described. The rigid nailing surgical technique is detailed including positioning, operative steps, pearls, and pitfalls. Complications and the reported outcomes of lateral trochanteric entry nailing are reviewed from the published series. PMID:27100036

  15. Repair of a fractured implant overdenture gold bar: A clinical and laboratory technique report

    PubMed Central

    Vohra, Fahim; Al Fawaz, Amani

    2013-01-01

    This clinical report explains a convenient, efficient, yet effective alternative for management of fractured substructure cast bars for implant-retained overdentures. The technique allows the fracture to be repaired at low cost and short time without remaking the substructure and the denture and further allowing the patient to keep their denture. The report sketches the clinical and laboratory procedures involved in the repair. PMID:24926222

  16. Long-term results following polydioxanone sling fixation technique in unstable lateral clavicle fracture.

    PubMed

    Teoh, Kar H; Jones, Sian A; Robinson, Juan D; Pritchard, Mark G

    2016-04-01

    Neer type II (Edinburgh type 3B) fractures of the lateral clavicle are unstable fractures. The optimal management of these fractures remains controversial with many surgical techniques described in the literature. Our study reports the long-term results of a modified suture (1.5-mm polydioxanone cord) and sling technique for these fractures to avoid complications associated with current techniques in the literature. Over a 5-year period, 23 patients who were (12 males, 11 females; 14 left, 9 right) with a mean age of 42 years were treated with this technique. At last follow-up, the mean Oxford score was 45.1 (range 36-48); the mean SPADI score was 7.4 (range 0-32.3); and the mean Constant score was 91.5 (range 71-100). There were one non-union and no malunion. All patients in our series, except one, returned to their pre-injury activity level. This modified suture fixation technique is safe, technically simple to perform and cheap. It achieves excellent rates of fracture union without the complications associated with other fixation methods in the literature. PMID:26794324

  17. Progress on slab lasers

    NASA Astrophysics Data System (ADS)

    Albrecht, G. F.; Eggleston, J. M.; Petr, R. A.

    1986-01-01

    After a brief overview of slab geometry work published to date, zig-zag optical path slab laser development toward a 100-Hz slab YAG system ('Centurion') and a 10-Hz dual slab glass system ('Gemini') is described. Some of the major diagnostic work performed and in the process is also described to illustrate the major mechanisms responsible for beam distortion observed in these types of slab lasers.

  18. Subbrow Approach as a Minimally Invasive Reduction Technique in the Management of Frontal Sinus Fractures

    PubMed Central

    Lee, Yewon; Shin, Dong Hyeok; Uhm, Ki Il; Kim, Soon Heum; Kim, Cheol Keun; Jo, Dong In

    2014-01-01

    Background Frontal sinus fractures, particularly anterior sinus fractures, are relatively common facial fractures. Many agree on the general principles of frontal fracture management; however, the optimal methods of reduction are still controversial. In this article, we suggest a simple reduction method using a subbrow incision as a treatment for isolated anterior sinus fractures. Methods Between March 2011 and March 2014, 13 patients with isolated frontal sinus fractures were treated by open reduction and internal fixation through a subbrow incision. The subbrow incision line was designed to be precisely at the lower margin of the brow in order to obtain an inconspicuous scar. A periosteal incision was made at 3 mm above the superior orbital rim. The fracture site of the frontal bone was reduced, and bone fixation was performed using an absorbable plate and screws. Results Contour deformities were completely restored in all patients, and all patients were satisfied with the results. Scars were barely visible in the long-term follow-up. No complications related to the procedure, such as infection, uncontrolled sinus bleeding, hematoma, paresthesia, mucocele, or posterior wall and brain injury were observed. Conclusions The subbrow approach allowed for an accurate reduction and internal fixation of the fractures in the anterior table of the frontal sinus by providing a direct visualization of the fracture. Considering the surgical success of the reduction and the rigid fixation, patient satisfaction, and aesthetic problems, this transcutaneous approach through a subbrow incision is concluded to be superior to the other reduction techniques used in the case of an anterior table frontal sinus fracture. PMID:25396180

  19. Bicondylar tibial plateau fractures managed with the Sheffield Hybrid Fixator. Biomechanical study and operative technique.

    PubMed

    Ali, A M; Yang, L; Hashmi, M; Saleh, M

    2001-12-01

    The two main challenges in the management of bicondylar tibial plateau fractures are: Firstly, the compromised skin and soft tissue envelope which invite a high rate of complications following attempted open reduction and dual plating. Secondly, poor bone quality and comminuted fracture patterns, which create difficulty in achieving stable fixation. Although dual plating is considered to be the best mechanical method of stabilizing these complex fractures, there remains concern regarding the high rate of complications associated with extensive soft tissue dissection, required for the insertion of these plates in an already compromised knee. The Sheffield Hybrid fixator (SHF) technique offers a solution to the two main problems of these difficult fractures by minimizing soft tissue dissection, since bone fragments are reduced and fixed percutaneously, and providing superior cancellous bone purchase with beam loading stabilization for comminuted fractures. Our biomechanical testing showed the SHF with four tensioned wires to be as strong as dual plating and able to provide adequate mechanical stability in the fixation of bicondylar tibial plateau fractures. This was confirmed clinically by a prospective review of the use of the SHF at our centre, for managing complex and high-energy tibial plateau fractures with a good final outcome and no cases of deep infection or septic arthritis. PMID:11812481

  20. Closed-Loop Double Endobutton Technique for Repair of Unstable Distal Clavicle Fractures

    PubMed Central

    Struhl, Steven; Wolfson, Theodore S.

    2016-01-01

    Background: Displaced fractures of the distal clavicle are inherently unstable and lead to nonunion in a high percentage of cases. The optimal surgical management remains controversial. Hypothesis: Indirect osteosynthesis with a closed-loop double endobutton construct would result in reliable fracture union and obviate the need for additional surgery. Study Design: Case series; Level of evidence, 4. Methods: Eight patients with an acute unstable Neer type IIB distal clavicle fracture were treated with a closed-loop double endobutton implant. Mean follow-up averaged 3.4 years (range, 1-9 years). Two patients were lost to follow-up. The remaining 6 patients underwent a detailed functional and radiologic evaluation. Results: Definitive fracture healing was achieved in all patients. There were no complications, and no patients required additional surgery related to the index procedure. The mean Constant score was 97 at final follow-up. Conclusion: The closed-loop double endobutton technique was reliable and effective in achieving fracture union in all patients with unstable Neer type IIB fractures of the distal clavicle. This technique obviates the need for late hardware removal that is often necessary when direct osteosynthesis is used and avoids potential complications associated with coracoclavicular cerclage constructs that require knot fixation. PMID:27504466

  1. Fractures

    PubMed Central

    Hall, Michael C.

    1963-01-01

    Recent studies on the epidemiology and repair of fractures are reviewed. The type and severity of the fracture bears a relation to the age, sex and occupation of the patient. Bone tissue after fracture shows a process of inflammation and repair common to all members of the connective tissue family, but it repairs with specific tissue. Cartilage forms when the oxygen supply is outgrown. After a fracture, the vascular bed enlarges. The major blood supply to healing tissue is from medullary vessels and destruction of them will cause necrosis of the inner two-thirds of the cortex. Callus rapidly mineralizes, but full mineralization is achieved slowly; increased mineral metabolism lasts several years after fracture. PMID:13952119

  2. Biomechanical comparison of four mandibular angle fracture fixation techniques.

    PubMed

    Muñante-Cardenas, Jose Luis; Passeri, Luis Augusto

    2015-06-01

    The aim of this study was to make a comparison of the biomechanical behavior of four different internal fixation systems for mandibular angle fractures. A total of 40 polyurethane mandible replicas were employed with different fixation methods: group 1SP, one 2.0-mm four-hole miniplate; group 2PPL, two 2.0-mm four-hole parallel miniplates; group 3DP, one 3D 2.0-mm four-hole miniplate; and group 3DPP, one 3D 2.0-mm eight-hole miniplate. Each group was subjected to incisal or homolateral molar region loading. The load resistance values were measured at load application causing tip displacement of 1, 3, and 5 mm, and at the time at which the system achieves its maximum strength (MS). Means and standard deviations were compared among groups using analysis of variance and the Tukey test. Group 2PPL showed higher strength for all the displacements. For incisal loading, no statistically significant differences were found between groups 1SP, 3DP, and 3DPP. For molar loading, group 1SP and 3DPP showed statistically significant differences. For MS testing, group 1SP and 2PPL showed statistically significant differences in incisal loading; group 1SP and 3DP showed no statistically significant differences; and group 3DPP showed lower values of strength. Two parallel miniplates provide the most favorable mechanical behavior under the conditions tested. PMID:26000083

  3. Biomechanical Comparison of Four Mandibular Angle Fracture Fixation Techniques

    PubMed Central

    Muñante-Cardenas, Jose Luis; Passeri, Luis Augusto

    2014-01-01

    The aim of this study was to make a comparison of the biomechanical behavior of four different internal fixation systems for mandibular angle fractures. A total of 40 polyurethane mandible replicas were employed with different fixation methods: group 1SP, one 2.0-mm four-hole miniplate; group 2PPL, two 2.0-mm four-hole parallel miniplates; group 3DP, one 3D 2.0-mm four-hole miniplate; and group 3DPP, one 3D 2.0-mm eight-hole miniplate. Each group was subjected to incisal or homolateral molar region loading. The load resistance values were measured at load application causing tip displacement of 1, 3, and 5 mm, and at the time at which the system achieves its maximum strength (MS). Means and standard deviations were compared among groups using analysis of variance and the Tukey test. Group 2PPL showed higher strength for all the displacements. For incisal loading, no statistically significant differences were found between groups 1SP, 3DP, and 3DPP. For molar loading, group 1SP and 3DPP showed statistically significant differences. For MS testing, group 1SP and 2PPL showed statistically significant differences in incisal loading; group 1SP and 3DP showed no statistically significant differences; and group 3DPP showed lower values of strength. Two parallel miniplates provide the most favorable mechanical behavior under the conditions tested. PMID:26000083

  4. Surgical Technique of Anterolateral Approach for Tibial Plateau Fracture.

    PubMed

    Wang, Peng-cheng; Ren, Dong; Zhou, Bing

    2015-11-01

    A 66-year-old woman had sustained crush injury 3 hours prior to her presentation to our hospital. The diagnosis was defined as lateral tibial plateau fracture of the right knee (Schatzker III). Supine position was set up and a pad was put under the affected hip. After sterilization of the surgical field the sterilized sheets were placed beneath the leg in order to be higher than the other side. A rolled sheet was put under the knee joint so that the knee joint was flexed around 30° to 40°. After the surgical field was draped the skin was incised. Iliotibial band was incised by blade (not by electrotomy) and sharp dissection was performed in the Gerdy's tubercle. Capsulotomy was made by cutting the tibial meniscal ligament. Then the meniscus was tagged superiorly and the articular surface was clearly visualized. A window was made in the lateral cortex beneath the plateau, so the impacted fragment was elevated through the window. The metaphyseal void was filled by bone allograft. The placement of the raft-screw plate must be ensured that the raft screws passing the plate could purchase the subchondral bone. After perfect placement of the plate was defined, the femoral distractor was removed and the knee joint was relaxed. It was ensured that the alignment of the lower leg was normal, and then the other screws were inserted. Following placing drainage in the wound the iliotibial band was closed and the subcutaneous soft tissue and skin were closed in layer. PMID:26791810

  5. Effect of different veneering techniques on the fracture strength of metal and zirconia frameworks

    PubMed Central

    Turk, Ayse Gozde; Ulusoy, Mubin; Yuce, Mert

    2015-01-01

    PURPOSE To determine whether the fracture strengths and failure types differed between metal and zirconia frameworks veneered with pressable or layering ceramics. MATERIALS AND METHODS A phantom molar tooth was prepared and duplicated in 40 cobalt-chromium abutments. Twenty metal (IPS d.SIGN 15, Ivoclar, Vivadent, Schaan, Liechtenstein) and 20 zirconia (IPS e.max ZirCAD, Ivoclar) frameworks were fabricated on the abutments. Each framework group was randomly divided into 2 subgroups according to the veneering material: pressable and layering ceramics (n=10). Forty molar crowns were fabricated, cemented onto the corresponding abutments and then thermocycled (5-55℃, 10,000 cycles). A load was applied in a universal testing machine until a fracture occurred on the crowns. In addition, failure types were examined using a stereomicroscope. Fracture load data were analyzed using one-way ANOVA and Tukey HSD post-hoc tests at a significance level of 0.05. RESULTS The highest strength value was seen in metal-pressable (MP) group, whereas zirconia-pressable (ZP) group exhibited the lowest one. Moreover, group MP showed significantly higher fracture loads than group ZP (P=.015) and zirconia-layering (ZL) (P=.038) group. No significant difference in fracture strength was detected between groups MP and ML, and groups ZP and ZL (P>.05). Predominant fracture types were cohesive for metal groups and adhesive for zirconia groups. CONCLUSION Fracture strength of a restoration with a metal or a zirconia framework was independent of the veneering techniques. However, the pressing technique over metal frameworks resisted significantly higher fracture loads than zirconia frameworks. PMID:26816575

  6. Reduction and fixation of the avulsion fracture of the tibial eminence using mini-open technique.

    PubMed

    Lu, Xiong-Wei; Hu, Xiao-Peng; Jin, Chen; Zhu, Tong; Ding, Yong; Dai, Li-Yang

    2010-11-01

    The purpose of this prospective study is to present and evaluate a new technique using suture anchors for the treatment of the avulsion fractures of the tibial eminence. Twenty-three consecutive patients with the displaced avulsion fracture of the tibial attachment of anterior cruciate ligament were treated using mini-open technique with suture anchors between 2005 and 2008. According to the classification of Meyers and McKeever, there were 5 type II, 13 type III, and 5 type IV fractures. The median follow-up period was 18 months (range, 12-32 months). The patient assessment included Lysholm score, Tegner score, IKDC score, and radiographic evaluation. The median Lysholm score improved from 32 (range, 28-48) preoperatively to 98 (range, 85-100) postoperatively. The median preoperative Tegner score was 3 (range, 2-5), and the median postoperative Tegner score was 7 (range, 5-9). The global IKDC objective score was normal (A) in 21 knees and nearly normal (B) in 2 knees. At final follow-up, the Lachman test and anterior drawer test were negative. The results showed that mini-open reduction and fixation of avulsion fracture of the tibial eminence with suture anchors have achieved satisfactory results. We suggest the use of this technique for treating avulsion fractures of the tibial eminence. PMID:20127313

  7. Intramedullary nailing of the tibia without a fracture table: the transfixion pin distractor technique.

    PubMed

    Moed, B R; Watson, J T

    1994-01-01

    A series of 44 fractures of the tibia requiring operative stabilization were treated using an intraoperative external transfixion pin frame to correct angular deformity and maintain length in preparation for intramedullary (IM) nailing, eliminating the need for a fracture table. The technique requires a radiolucent operating room table; the injured extremity is draped free. A transfixion pin is inserted in the os calcis. Rotational deformity is manually corrected. Using fluoroscopic control, a second transfixion pin is inserted at a location just distal and parallel to the proximal tibial articular surface, paralleling the horizontal plane of the first pin. The transfixion pins are connected with carbon fiber rods, creating a rectangular frame. Manual fracture reduction is followed by "fine tuning" with compressor/distractor clamps as needed. Alternatively, for added reduction force, the carbon fiber rod on the concave side of the angular deformity may be replaced with the AO/ASIF universal distractor. IM nailing is then performed in the usual fashion. In this series, an acceptable reduction was obtained in all cases. This technique shortens setup time, provides complete access to the distal part of the tibia, and allows free manipulation of the limb, thereby facilitating nail insertion and placement of distal locking screws. Use of medial and lateral bars prevents the angular deformity often created or exacerbated with the use of the universal distractor alone. This technique is recommended for IM nailing of all fractures of the tibia that would otherwise require use of the fracture table or universal distractor. PMID:8027887

  8. Minifragment screw fixation of oblique metacarpal fractures: a biomechanical analysis of screw types and techniques.

    PubMed

    Liporace, Frank A; Kinchelow, Tosca; Gupta, Salil; Kubiak, Erik N; McDonnell, Matthew

    2008-12-01

    The lag screw technique has historically been a successful and accepted way to treat oblique metacarpal fractures. However, it does take additional time and involve multiple steps that can increase the risk of fracture propagation or comminution in the small hand bones of the hand. An alternate fixation technique uses bicortical interfragmentary screws. Other studies support the clinical effectiveness and ease of this technique. The purpose of this study is to biomechanically assess the strength of the bicortical interfragmentary screw versus that of the traditional lag screw. Using 48 cadaver metacarpals, oblique osteotomies were created and stabilized using one of four methods: 1.5 mm bicortical interfragmentary (IF) screw, 1.5 mm lag technique screw, 2.0 mm bicortical IF screw, or 2.0 mm lag technique screw. Biomechanical testing was performed to measure post cyclic displacement and load to failure. Data was analyzed using one-way analysis of variance (ANOVA). There was no significant difference among the fixation techniques with regard to both displacement and ultimate failure strength. There was a slight trend for a higher load to failure with the 2.0 mm IF screw and 2.0 mm lag screw compared to the 1.5 mm IF and 1.5 mm lag screws, but this was not significant. Our results support previously established clinical data that bicortical interfragmentary screw fixation is an effective treatment option for oblique metacarpal fractures. This technique has clinical importance because it is an option to appropriately stabilize the often small and difficult to control fracture fragments encountered in metacarpal fractures. PMID:18780019

  9. Numerical simulation of dynamic fracture and failure in solids

    SciTech Connect

    Chen, E.P.

    1994-05-01

    Numerical simulation of dynamic fracture and failure processes in solid continua using Lagrangian finite element techniques is the subject of discussion in this investigation. The specific configurations in this study include penetration of steel projectiles into aluminum blocks and concrete slabs. The failure mode in the aluminum block is excessive deformation while the concrete slab fails by hole growth, spallation, and scabbing. The transient dynamic finite element code LS-DYNA2D was used for the numerical analysis. The erosion capability in LS-DYNA2D was exercised to carry out the fracture and failure simulations. Calculated results were compared to the experimental data. Good correlations were obtained.

  10. Combination fracturing/gravel-packing completion technique on the Amberjack, Mississippi Canyon 109 field

    SciTech Connect

    Hannah, R.R.; Park, E.I.; Porter, D.A.; Black, J.W. )

    1994-11-01

    This paper describes a one-step fracturing/gravel-pack (frac-and-pack) completion procedure conducted on the BP Exploration Amberjack platform beginning in early 1992. This platform is 35 miles southwest of Venice, LA. The first four completions on this platform had an average positive skin values of 21. The goal of the frac-and-pack procedure was to reduce these skins to nearly zero. In total, 24 frac-and-pack operations were performed. Details of the fracture design, prefracture testing, fracture design and execution, and production response and a continuing optimization program are discussed. The fractures were performed with the screens in place with the gravel pack after the fracturing operation. The treatments were designed for the tip screenout technique to create wide fractures and to provide proppant loadings exceeding 8 lbm/ft. This paper presents the trend of the declining skin values, along with a discussion of time-dependent skins. The changes in fluids, breakers, and proppants are also presented. The average skin on 14 frac-and-pack completions was 5.3. The average skin on the final eight completions was 0.2.

  11. Fractures

    MedlinePlus

    ... commonly happen because of car accidents, falls, or sports injuries. Other causes are low bone density and osteoporosis, which cause weakening of the bones. Overuse can cause stress fractures, which are very small cracks in the ...

  12. Fractures

    MedlinePlus

    A fracture is a break, usually in a bone. If the broken bone punctures the skin, it is called an open ... falls, or sports injuries. Other causes are low bone density and osteoporosis, which cause weakening of the ...

  13. Percutaneous Arthroscopic Calcaneal Osteosynthesis: A Minimally Invasive Technique for Displaced Intra-Articular Calcaneal Fractures.

    PubMed

    Pastides, Philip S; Milnes, Lydia; Rosenfeld, Peter F

    2015-01-01

    The management of calcaneal fracture remains challenging. Open surgery has been fraught with high infection rates and soft tissue complications. More minimally invasive procedures have reduced this risk, but the patient outcomes after treatment of displaced calcaneal fractures have remained relatively unsatisfactory. We present a method for the management of Sanders grade II and III calcaneal fractures: percutaneous arthroscopic calcaneal osteosynthesis. Thirty-three fractures in 30 patients who had presented to our tertiary foot and ankle trauma center in central London were treated with percutaneous arthroscopic calcaneal osteosynthesis for calcaneal fractures, and the data were prospectively collected. The mean patient age at injury was 39 years. The mean follow-up period was 24 months. Of our patients, 58% were smokers at injury. Of the 33 fractures, 46% were classified as grade II and 54% as grade III. The mean length of stay was 1.92 days. At the final follow-up visit, the mean Böhler angle had increased from 11.10° (range 2° to 24°) to 23.41° (range 15° to 35°). The modified American Orthopaedic Foot and Ankle Society scale score was 72.18 (range 18 to 100), the calcaneal fracture scoring system score was 79.34 (range 42 to 100), and the visual analog scale score was 29.50 (range 0 to 100). We had a single case of a superficial port site infection and 2 cases of prominent screws, which were removed. No cases of deep infection developed, and no conversion to subtalar fusion was required. This technique significantly reduced the incidence of postoperative wound complications. Direct visualization of the fracture site allowed accurate restoration of the articular surface and correction of heel varus. Furthermore, it was associated with a high self-reported functional outcome and a return to preinjury employment levels. Also, the results did not appear to be influenced by tobacco consumption. PMID:25960056

  14. Novel Intramedullary-Fixation Technique for Long Bone Fragility Fractures Using Bioresorbable Materials

    PubMed Central

    Nishizuka, Takanobu; Kurahashi, Toshikazu; Hara, Tatsuya; Hirata, Hitoshi; Kasuga, Toshihiro

    2014-01-01

    Almost all of the currently available fracture fixation devices for metaphyseal fragility fractures are made of hard metals, which carry a high risk of implant-related complications such as implant cutout in severely osteoporotic patients. We developed a novel fracture fixation technique (intramedullary-fixation with biodegradable materials; IM-BM) for severely weakened long bones using three different non-metallic biomaterials, a poly(l-lactide) (PLLA) woven tube, a nonwoven polyhydroxyalkanoates (PHA) fiber mat, and an injectable calcium phosphate cement (CPC). The purpose of this work was to evaluate the feasibility of IM-BM with mechanical testing as well as with an animal experiment. To perform mechanical testing, we fixed two longitudinal acrylic pipes with four different methods, and used them for a three-point bending test (N = 5). The three-point bending test revealed that the average fracture energy for the IM-BM group (PLLA + CPC + PHA) was 3 times greater than that of PLLA + CPC group, and 60 to 200 times greater than that of CPC + PHA group and CPC group. Using an osteoporotic rabbit distal femur incomplete fracture model, sixteen rabbits were randomly allocated into four experimental groups (IM-BM group, PLLA + CPC group, CPC group, Kirschner wire (K-wire) group). No rabbit in the IM-BM group suffered fracture displacement even under full weight bearing. In contrast, two rabbits in the PLLA + CPC group, three rabbits in the CPC group, and three rabbits in the K-wire group suffered fracture displacement within the first postoperative week. The present work demonstrated that IM-BM was strong enough to reinforce and stabilize incomplete fractures with both mechanical testing and an animal experiment even in the distal thigh, where bone is exposed to the highest bending and torsional stresses in the body. IM-BM can be one treatment option for those with severe osteoporosis. PMID:25111138

  15. Development of experimental verification techniques for non-linear deformation and fracture.

    SciTech Connect

    Moody, Neville Reid; Bahr, David F.

    2003-12-01

    This project covers three distinct features of thin film fracture and deformation in which the current experimental technique of nanoindentation demonstrates limitations. The first feature is film fracture, which can be generated either by nanoindentation or bulge testing thin films. Examples of both tests will be shown, in particular oxide films on metallic or semiconductor substrates. Nanoindentations were made into oxide films on aluminum and titanium substrates for two cases; one where the metal was a bulk (effectively single crystal) material and the other where the metal was a 1 pm thick film grown on a silica or silicon substrate. In both cases indentation was used to produce discontinuous loading curves, which indicate film fracture after plastic deformation of the metal. The oxides on bulk metals fractures occurred at reproducible loads, and the tensile stress in the films at fracture were approximately 10 and 15 GPa for the aluminum and titanium oxides respectively. Similarly, bulge tests of piezoelectric oxide films have been carried out and demonstrate film fracture at stresses of only 100's of MPa, suggesting the importance of defects and film thickness in evaluating film strength. The second feature of concern is film adhesion. Several qualitative and quantitative tests exist today that measure the adhesion properties of thin films. A relatively new technique that uses stressed overlayers to measure adhesion has been proposed and extensively studied. Delamination of thin films manifests itself in the form of either telephone cord or straight buckles. The buckles are used to calculate the interfacial fracture toughness of the film-substrate system. Nanoindentation can be utilized if more energy is needed to initiate buckling of the film system. Finally, deformation in metallic systems can lead to non-linear deformation due to 'bursts' of dislocation activity during nanoindentation. An experimental study to examine the structure of dislocations around

  16. Alternative electronic logging technique locates fractures in Austin chalk horizontal well

    SciTech Connect

    Stang, C.W. )

    1989-11-01

    This article describes the search for a technique to locate fractures in a horizontal well. The author focuses on the utilization of a formation microscanner (FMS). The FMS is described and the results and problems associated with its utilization are presented.

  17. [A new locking nail for proximal humerus fractures: the Telegraph nail, technique and preliminary results].

    PubMed

    Cuny, C; Pfeffer, F; Irrazi, M; Chammas, M; Empereur, F; Berrichi, A; Metais, P; Beau, P

    2002-02-01

    We present a new nail, the telegraph nail, designed for the treatment of proximal fractures of the humerus. This nail has a new locking system providing a self-stabilization of the cancelous screws inserted in small fragments. We discuss the surgical technique and present preliminary results. The anterolateral approach and nail insertion through the medial and well vascularized part of the cuff is described for simple fractures. With the cup and ball technique, this nail can also be used for complex fractures of the proximal humerus with three or four fragments and major displacement. With this method, the nail is inserted before reduction and locked in the distal humerus before fixation of the head and tuberosities around the head once the targeting device removed. We report results for the first 64 nails inserted in our unit during the first year (1998-1999). Outcome was assessed at 11 months mean follow-up using the Constant score. Outcome was favorable, including in patients with complex fractures involving 3 or 4 separate displaced fragments. Besides providing an anatomically stable reconstruction, the telegraph nail has the advantage of allowing early mobilization of the shoulder joint. This method is a useful alternative to prosthetic reconstruction for traumatic fractures of the proximal humerus. PMID:11973536

  18. Fracture Resistance of Premolars Restored by Various Types and Placement Techniques of Resin Composites

    PubMed Central

    Moosavi, Horieh; Zeynali, Mahsa; Pour, Zahra Hosseini

    2012-01-01

    To verify the fracture resistance of premolars with mesioocclusodistal preparations restored by different resin composites and placement techniques. Sixty premolars were randomly divided into two groups based on type of composite resin: Filtek P60 or Nulite F, and then each group was separated into three subgroups: bulk, centripetal, and fiber insert according to the type of placement method (n = 10). Single-bond adhesive system was used as composite bonding according to the manufacturer's instructions. Specimens were restored in Groups 1, 2, and 3 with Filtek P60 and in Groups 4, 5, and 6 with Nulite F. After being stored 24 hours at 37°C, a 4 mm diameter steel sphere in a universal testing machine was applied on tooth buccal and lingual cusps at a cross-head speed of 5 mm/min until fracture occurred. Groups 3 and 6 showed higher fracture resistance than Groups 1, 2, 4, and 5. Among the placement techniques, the fiber insert method had a significant effect, but the type of composite was ineffective. The insertion technique in contrast to the type of material had a significant influence on the fracture resistance of premolar teeth. PMID:22666255

  19. The submuscular sliding plate technique for acetabular posterior wall fractures extending to the acetabular roof.

    PubMed

    Kim, J J; Kim, J W; Oh, H K

    2014-12-01

    There is extension of the Kocher-Langenbeck approach using trochanteric osteotomy for posterior wall fracture extending to acetabular roof, but it exposes to complications such as nonunion, breakage, and heterotopic ossification. The current study introduces a submuscular sliding plate technique. We retrospectively analyzed 13 patients treated with this technique. It is based on conventional method for posterior wall fracture. After reduction of roof fragment with direct visualization, a pre-contoured plate was passed through a submuscular tunnel under the gluteus medius and minimus. A small split incision was performed on the muscles, and screws were inserted with a triple trocar complex safely under fluoroscopic imaging. All patients had fracture union without complications. X-rays results showed anatomical reduction in 10 cases and imperfect reduction in 3 cases. Our results were satisfactory, particularly without heterotopic ossifications despite no prophylactic regimen of NSAID was applied and no neurological complications, so we believe that this technique is a good option for posterior wall fractures extending to the acetabular roof. PMID:25453921

  20. Application of a new multiple fracturing technique to enhance gas production in Devonian shale

    SciTech Connect

    Cuderman, J.F.

    1984-01-01

    A new multiple fracturing technology has been applied in stimulating a Devonian shale gas well. In this new technique, propellants are used to obtain controlled pressurization of the wellbore to produce multiple fractures. The pressurization is controlled by suitable choice of propellants having different burn rates. The pressure risetime is the most important parameter governing fracture behavior. Methods are presented for specifying both the risetime and propellants to achieve it for Devonian shales. The Devonian shale stimulation was conducted in a 1040 m deep well in Meigs Co., Ohio. The experimental installation and hardware used are described together with results which include an increase in production from 190 m/sup 3//day to 623 m/sup 3//day. 7 references, 5 figures, 1 table.

  1. Development of experimental verification techniques for non-linear deformation and fracture on the nanometer scale.

    SciTech Connect

    Moody, Neville Reid; Bahr, David F.

    2005-11-01

    This work covers three distinct aspects of deformation and fracture during indentations. In particular, we develop an approach to verification of nanoindentation induced film fracture in hard film/soft substrate systems; we examine the ability to perform these experiments in harsh environments; we investigate the methods by which the resulting deformation from indentation can be quantified and correlated to computational simulations, and we examine the onset of plasticity during indentation testing. First, nanoindentation was utilized to induce fracture of brittle thin oxide films on compliant substrates. During the indentation, a load is applied and the penetration depth is continuously measured. A sudden discontinuity, indicative of film fracture, was observed upon the loading portion of the load-depth curve. The mechanical properties of thermally grown oxide films on various substrates were calculated using two different numerical methods. The first method utilized a plate bending approach by modeling the thin film as an axisymmetric circular plate on a compliant foundation. The second method measured the applied energy for fracture. The crack extension force and applied stress intensity at fracture was then determined from the energy measurements. Secondly, slip steps form on the free surface around indentations in most crystalline materials when dislocations reach the free surface. Analysis of these slip steps provides information about the deformation taking place in the material. Techniques have now been developed to allow for accurate and consistent measurement of slip steps and the effects of crystal orientation and tip geometry are characterized. These techniques will be described and compared to results from dislocation dynamics simulations.

  2. Application of iterative path revision technique for laser cutting with controlled fracture

    NASA Astrophysics Data System (ADS)

    Tsai, Chwan-Huei; Chen, Chien-Jen

    2004-01-01

    Laser cutting using the controlled fracture technique has great potential to be employed for the ceramic substrate machining. The heat produced on the surface of a ceramic substrate by the laser separates the substrate controllably along the moving path of the laser beam. Because the extension of the breaking frontier is lager than the movement of the laser spot, the actual fracture trajectory deviates from the desired trajectory when cutting a curve or cutting an asymmetrical straight line. To eliminate this deviation, the iterative learning control method is introduced to obtain the optimal laser beam movement path. The fracture contour image is grabbed by a CCD camera after laser cutting completion. A new image processing system is proposed to detect the deviation between the desired cutting path and the actual fracture trajectory. The laser-movement path for the next trial can then be determined according to the iterative path revision algorithm. The actual fracture trajectory converging to the desired cutting path is assured after a few path revisions. The experimental materials used in these experiments are alumina ceramics and the laser source is CO 2 laser. The proposed system can achieve a machining precision of about 0.1 mm.

  3. An inverse technique for developing models for fluid flow in fracture systems using simulated annealing

    SciTech Connect

    Mauldon, A.D.; Karasaki, K.; Martel, S.J.; Long, J.C.S.; Landsfield, M.; Mensch, A. ); Vomvoris, S. )

    1993-11-01

    One of the characteristics of flow and transport in fractured rock is that the flow may be largely confined to a poorly connected network of fractures. In order to represent this condition, Lawrence Berkeley Laboratory has been developing a new type of fracture hydrology model called an equivalent discontinuum model. In this model we represent the discontinuous nature of the problem through flow on a partially filled lattice. This is done through a statistical inverse technique called [open quotes]simulated annealing.[close quotes] The fracture network model is [open quotes]annealed[close quotes] by continually modifying a base model, or [open quotes]template,[close quotes] so that with each modification, the model behaves more and more like the observed system. This template is constructed using geological and geophysical data to identify the regions that possibly conduct fluid an the probable orientations of channels that conduct fluid. In order to see how the simulated annealing algorithm works, we have developed a synthetic case. In this case, the geometry of the fracture network is completely known, so that the results of annealing to steady state data can be evaluated absolutely. We also analyze field data from the Migration Experiment at the Grimsel Rock Laboratory in Switzerland. 28 refs., 14 figs., 3 tabs.

  4. Minimally invasive reconstruction of lateral tibial plateau fractures using the jail technique: a biomechanical study

    PubMed Central

    2013-01-01

    Background This study described a novel, minimally invasive reconstruction technique of lateral tibial plateau fractures using a three-screw jail technique and compared it to a conventional two-screw osteosynthesis technique. The benefit of an additional screw implanted in the proximal tibia from the anterior at an angle of 90° below the conventional two-screw reconstruction after lateral tibial plateau fracture was evaluated. This new method was called the jail technique. Methods The two reconstruction techniques were tested using a porcine model (n = 40). Fracture was simulated using a defined osteotomy of the lateral tibial plateau. Load-to-failure and multiple cyclic loading tests were conducted using a material testing machine. Twenty tibias were used for each reconstruction technique, ten of which were loaded in a load-to-failure protocol and ten cyclically loaded (5000 times) between 200 and 1000 N using a ramp protocol. Displacement, stiffness and yield load were determined from the resulting load displacement curve. Failure was macroscopically documented. Results In the load-to-failure testing, the jail technique showed a significantly higher mean maximum load (2275.9 N) in comparison to the conventional reconstruction (1796.5 N, p < 0.001). The trend for better outcomes for the novel technique in terms of stiffness and yield load did not reach statistical significance (p > 0.05). In cyclic testing, the jail technique also showed better trends in displacement that were not statistically significant. Failure modes showed a tendency of screws cutting through the bone (cut-out) in the conventional reconstruction. No cut-out but a bending of the lag screws at the site of the additional third screw was observed in the jail technique. Conclusions The results of this study indicate that the jail and the conventional technique have seemingly similar biomechanical properties. This suggests that the jail technique may be a feasible alternative to

  5. Biomechanical Evaluation of a Mandibular Spanning Plate Technique Compared to Standard Plating Techniques to Treat Mandibular Symphyseal Fractures

    PubMed Central

    Richardson, Matthew; Hayes, Jonathan; Jordan, J. Randall; Puckett, Aaron; Fort, Matthew

    2015-01-01

    Purpose. The purpose of this study is to compare the biomechanical behavior of the spanning reconstruction plate compared to standard plating techniques for mandibular symphyseal fractures. Materials and Methods. Twenty-five human mandible replicas were used. Five unaltered synthetic mandibles were used as controls. Four experimental groups of different reconstruction techniques with five in each group were tested. Each synthetic mandible was subjected to a splaying force applied to the mandibular angle by a mechanical testing unit until the construct failed. Peak load and stiffness were recorded. The peak load and stiffness were analyzed using ANOVA and the Tukey test at a confidence level of 95% (P < 0.05). Results. The two parallel plates' group showed statistically significant lower values for peak load and stiffness compared to all other groups. No statistically significant difference was found for peak load and stiffness between the control (C) group, lag screw (LS) group, and the spanning plate (SP1) group. Conclusions. The spanning reconstruction plate technique for fixation of mandibular symphyseal fractures showed similar mechanical behavior to the lag screw technique when subjected to splaying forces between the mandibular gonial angles and may be considered as an alternative technique when increased reconstructive strength is needed. PMID:26649332

  6. A Novel Technique for Closed Reduction and Fixation of Paediatric Calcaneal Fracture Dislocation Injuries

    PubMed Central

    Faroug, Radwane; Stirling, Paul; Ali, Farhan

    2013-01-01

    Paediatric calcaneal fractures are rare injuries usually managed conservatively or with open reduction and internal fixation (ORIF). Closed reduction was previously thought to be impossible, and very few cases are reported in the literature. We report a new technique for closed reduction using Ilizarov half-rings. We report successful closed reduction and screwless fixation of an extra-articular calcaneal fracture dislocation in a 7-year-old boy. Reduction was achieved using two Ilizarov half-ring frames arranged perpendicular to each other, enabling simultaneous application of longitudinal and rotational traction. Anatomical reduction was achieved with restored angles of Bohler and Gissane. Two K-wires were the definitive fixation. Bony union with good functional outcome and minimal pain was achieved at eight-weeks follow up. ORIF of calcaneal fractures provides good functional outcome but is associated with high rates of malunion and postoperative pain. Preservation of the unique soft tissue envelope surrounding the calcaneus reduces the risk of infection. Closed reduction prevents distortion of these tissues and may lead to faster healing and mobilisation. Closed reduction and screwless fixation of paediatric calcaneal fractures is an achievable management option. Our technique has preserved the soft tissue envelope surrounding the calcaneus, has avoided retained metalwork related complications, and has resulted in a good functional outcome. PMID:23819090

  7. Fracture of distal humerus: MIPO technique with visualization of the radial nerve

    PubMed Central

    Zogbi, Daniel Romano; Terrivel, Alberto Maranon; Mouraria, Guilherme Grisi; Mongon, Maurício Leal Dias; Kikuta, Fernando Kenji; Filho, Américo Zoppi

    2014-01-01

    OBJECTIVES: To evaluate the outcomes in patients treated for humerus distal third fractures with MIPO technique and visualization of the radial nerve by an accessory approach, in those without radial palsy before surgery. METHODS: The patients were treated with MIPO technique. The visualization and isolation of the radial nerve was done by an approach between the brachialis and the brachiorradialis, with an oblique incision, in the lateral side of the arm. MEPS was used to evaluate the elbow function. RESULTS: Seven patients were evaluated with a mean age of 29.8 years old. The average follow up was 29.85 months. The radial neuropraxis after surgery occurred in three patients. The sensorial recovery occurred after 3.16 months on average and also of the motor function, after 5.33 months on average, in all patients. We achieved fracture consolidation in all patients (M=4.22 months). The averages for flexion-extension and prono-supination were 112.85° and 145°, respectively. The MEPS average score was 86.42. There was no case of infection. CONCLUSION: This approach allowed excluding a radial nerve interposition on site of the fracture and/or under the plate, showing a high level of consolidation of the fracture and a good evolution of the range of movement of the elbow. Level of Evidence IV, Case Series PMID:25538474

  8. Stent strut fracture-induced restenosis in a bifurcation lesion treated with the crush stenting technique.

    PubMed

    Surmely, Jean-Francois; Kinoshita, Yoshihisa; Dash, Debabrata; Matsubara, Tetsuo; Terashima, Mitsuyasu; Ehara, Mariko; Ito, Tatsuya; Nasu, Kenya; Takeda, Yoshihiro; Tanaka, Nobuyoshi; Suzuki, Takahiko; Katoh, Osamu

    2006-07-01

    Percutaneous treatment of a bifurcation lesion still shows a significant complication rate, mainly because of restenosis at the ostial site of the side branch vessel. Different techniques, such as V-stenting, culottes-stenting or crush stenting, allow full ostial coverage and may therefore achieve uniform drug distribution within the lesion. The crush technique results in a strong mechanical constraint on the side branch stent. A case of stent strut fracture-induced restenosis in a bifurcation lesion treated with the crush stenting technique is described. PMID:16799252

  9. New Technique for Dorsal Fragment Reduction in Distal Radius Fractures by Using Volar Bone Fenestration

    PubMed Central

    TSUCHIYA, Fumika; NAITO, Kiyohito; MOGAMI, Atsuhiko; OBAYASHI, Osamu

    2013-01-01

    Introduction: For intra-articular distal radius fractures (AO Classification, type B2) with a displaced dorsal fragment, there remains much discussion on the fixation method for the dorsal fragment. To reduce the displaced dorsal fragment, we developed a new technique consisting of fenestration of the volar bone cortex, reduction using an intramedullary procedure, and fixation using a volar plate. This avoids necessity of dorsal approach. Technical Note: We performed this surgical technique in 2 patients and achieved a good reduced position without much injury to the bone cortex at the site of volar plate placement. This surgical technique allows reduction of the dorsal fragment using an intramedullary procedure by only a volar approach, and, therefore, does not affect the dorsal soft tissue (extensor tendon). For intra-articular distal radius fractures, complete reduction of the articular surface is extremely difficult, and, in patients with a remaining gap on the articular surface, a variable angle locking screw system may be useful. In the 2 patients, the angle of the locking screw was adjusted to catch the displaced dorsal fragment, and adequate reduction and fixation could be achieved. Conclusion: This technique using fenestration of the volar bone cortex allows reduction and fixation of the displaced dorsal fragment in distal radius fractures and thus avoids the necessity of a dorsal approach. PMID:27298898

  10. Arthroscopic treatment of avulsed tibial spine fractures using a transosseous sutures technique.

    PubMed

    Wagih, Ahmad M

    2015-03-01

    Severely displaced tibial spine fractures should be treated surgically to restore joint congruity and cruciate integrity with reduction and fixation through an arthrotomy or arthroscopic techniques. Arthroscopy is preferred as it allows for accurate diagnosis and treatment of associated injuries and reduction and fixation of all types of tibial spine fractures while reducing the morbidity associated with open techniques. We report the clinical and radiographical results of 11 cases treated with a technique of arthroscopic internal fixation with non-absorbable sutures, after an average follow-up of 16.3 months (range, 11 to 21 months). The clinical examination using the IKDC system revealed all patients to have a negative Lachman test and no quadriceps weakness except one patient with some laxity (hard end 1+ Lachman test). One patient had a minor extension deficit of approximately 5°. The other patients showed a full range of motion without extension loss. This technique is simple, reproducible and very useful in dealing with these fractures. PMID:26280867

  11. Phosphate laser glass for NIF: production status, slab selection, and recent technical advances

    NASA Astrophysics Data System (ADS)

    Suratwala, Tayyab I.; Campbell, John H.; Miller, Philip E.; Thorsness, Charles B.; Riley, Michael O.; Ehrmann, Paul R.; Steele, Rusty A.

    2004-05-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized high-energy (1.8 megajoule) / high-peak power (500 terawatt) laser system, which will utilize over 3000 meter-size Nd-doped metaphosphate glasses as its gain media. The current production status, the selection criteria of individual slabs for specific beam line locations, and some recent technical advances are reviewed. The glass blanks are manufactured by a novel continuous glass melting process, and the finished slabs are then prepared by epoxy bonding a Cu-doped phosphate glass edge cladding and by advanced finishing techniques. To date, nearly 3400 slab equivalents have been melted, 2600 have been rough-cut to blanks, 1200 have been finished, and 144 have been installed in NIF. A set of selection rules, which are designed to optimize laser performance (e.g., maintain gain balance between beam lines and minimize beam walkoff) and to maximize glass lifetime with respect to Pt damage site growth, have been established for assigning individual slabs to specific beam line locations. Recent technical advances for amplifier slab production, which include: 1) minimizing surface pitting (hazing) after final finishing; 2) minimizing humidity-induced surface degradation (weathering) upon storage and use; and 3) preventing mounting-induced surface fractures upon installation, have contributed in improving the laser glass quality.

  12. Triangular Fixation Technique for Bicolumn Restoration in Treatment of Distal Humerus Intercondylar Fracture

    PubMed Central

    Kang, Seung-Hoon; Jeong, Min; Lim, Hae-Seong

    2016-01-01

    Background Distal humerus intercondylar fractures are intra-articular and comminuted fractures involving soft tissue injury. As distal humerus is triangle-shaped, parallel plating coupled with articular fixation would be suitable for bicolumn restoration in treatment of distal humerus intercondylar fracture. Methods This study included 38 patients (15 males and 23 females) who underwent olecranon osteotomy, open reduction and internal fixation with the triangle-shaped cannulated screw and parallel locking plates (triangular fixation technique). Functional results were assessed with the visual analog scale (VAS) scores, Mayo elbow performance (MEP) scores and Disabilities of the Arm, Shoulder and Hand (DASH) questionnaires. Anteroposterior and lateral elbow radiographs were assessed for reduction, alignment, fracture union, posttraumatic arthrosis, and heterotopic ossification, and computed tomography (CT) scans were used to obtain more accurate measurements of articular discrepancy. Results All fractures healed primarily with no loss of reduction. The mean VAS, MEP, and DASH scores of the affected elbow were not significantly different from those of the unaffected elbow (p = 0.140, p = 0.090, and p = 0.262, respectively). The mean degree of flexion was significantly lower in the affected elbow than in the unaffected elbow, but was still considered as functional (p = 0.001, > 100° in 33 of 38 patients). Two cases of articular step-offs (> 2 mm) were seen on follow-up CT scans, but not significantly higher in the affected elbow than in the unaffected elbow (p = 0.657). Binary logistic regression analysis revealed that only Association for Osteosynthesis (AO) type C3 fractures correlated with good/excellent functional outcome (p = 0.012). Complications occurred in 12 of the 38 patients, and the overall reoperation rate for complications was 10.5% (4 of 38 patients). Conclusions Triangular fixation technique for bicolumn restoration was an effective and reliable

  13. Do Elderly Patients Fare Worse Following Operative Treatment of Distal Femur Fractures Using Modern Techniques?

    PubMed Central

    Shulman, Brandon S.; Patsalos-Fox, Bianka; Lopez, Nicole; Konda, Sanjit R.; Tejwani, Nirmal C.; Egol, Kenneth A.

    2014-01-01

    Background: The purpose of this study was to compare the functional outcomes and quality of life of older and younger patients with similarly treated distal femur fractures. Methods: We conducted an assessment of 57 patients who sustained distal femur fractures (Orthopaedic Trauma Association Type 33B, C) and underwent surgical treatment at our academic medical center. Patients were divided into 2 groups for analysis: an elderly cohort of patients aged 65 or older and a comparison cohort of patients younger than age of 65. A retrospective review of demographics, preoperative ambulatory status, radiographic data, and physical examination data was collected from the medical records. Follow-up functional data were collected via telephone at a mean of 2.5 years (range 6 months-8 years) using a Short Musculoskeletal Functional Assessment (SMFA). All patients underwent standard operative treatment of either nail or plate fixation. Results: There was no statistical difference in gender, fracture type, surgical technique, surgeon, or institution where the surgery was performed. The percentage of patients with healed fractures at 6-months follow-up was not significantly different between the cohorts. The elderly cohort had slightly worse knee range of motion at 3, 6, and 12 months postoperatively but there was not a statistically significant difference between the groups. The SMFA Daily Activity, Functional, and Bother indices were significantly worse in the older cohort (P < .01, P = .01, P = .02, respectively). However, there was no significant difference in the SMFA Emotional or Mobility indices. Conclusion: Despite lower quality of life and functional scores, this study suggests that relatively good clinical outcomes can be achieved with surgical fixation of distal femoral fractures in the elderly patients. Age should not be used as a determinate in deciding against operative treatment of distal femur fractures in the elderly patients. PMID:24660097

  14. Distal humerus shear-fractures: “Built-on” surgical technique

    PubMed Central

    Rapariz, Jose M.; Martin, Silvia; Far-Riera, Aina; Lirola-Palmero, Serafin

    2014-01-01

    When treating a distal humeral shear fracture, comminution of the lateral column may preclude the reconstruction of the lateral articular fragments. In this article a new strategy for the management lateral column comminuted shear-fractures (LCCSF) is presented, called the “built-on” surgical technique. Three goals are obtained by this technique: (1) Restoration of the lateral column bone stock; (2) Provision of a solid scaffold for the repair of the lateral ulnar collateral ligament (LUCL); and (3) Provision of a sable platform for the reconstruction and fixation of the articular fragments. We will obtain these goals through the following surgical steps: 1/ Reconstruction of the lateral trochlea. 2/ Reconstruction of the lateral column 3/ Fixation of the Capitellum 4/ Reconstruction of the LUCL PMID:24926163

  15. Efficacy of minimally invasive techniques for enhancement of fracture healing: evidence today

    PubMed Central

    Pountos, Ippokratis; Georgouli, Theodora; Kontakis, George

    2009-01-01

    The successful treatment of nonunions represents a major challenge for orthopaedic surgeons. Lately, ongoing advances made in the field of molecular medicine and molecular biology have increased our understanding of the pathways and involvement of mediators surrounding the bone healing process. As a result, the surgeon’s armamentarium has been increased in terms of options for intervention. This article aims to provide an overview of minimally invasive techniques applicable in the treatment of nonunions of fractures. PMID:19844709

  16. Lordoplasty: midterm outcome of an alternative augmentation technique for vertebral fractures.

    PubMed

    Hoppe, Sven; Budmiger, Mathias; Bissig, Philipp; Aghayev, Emin; Benneker, Lorin M

    2016-06-01

    OBJECTIVE Vertebroplasty and balloon kyphoplasty are effective treatment options for osteoporotic vertebral compression fractures but are limited in correction of kyphotic deformity. Lordoplasty has been reported as an alternative, cost-effective, minimally invasive, percutaneous cement augmentation technique with good restoration of vertebral body height and alignment. The authors report on its clinical and radiological midterm results. METHODS A retrospective review was conducted of patients treated with lordoplasty from 2002 to 2014. Inclusion criteria were clinical and radiological follow-up evaluations longer than 24 months. Radiographs were accessed regarding initial correction and progressive loss of reduction. Complications and reoperations were recorded. Actual pain level, pain relief immediately after surgery, autonomy, and subjective impression of improvement of posture were assessed by questionnaire. RESULTS Sixty-five patients (46 women, 19 men, age range 38.9-86.2 years old) were treated with lordoplasty for 69 vertebral compression and insufficiency fractures. A significant correction of the vertebral kyphotic angle (mean 13°) and segmental kyphotic angle (mean 11°) over a mean follow-up of 33 months (range 24-108 months) was achieved (p < 0.001). On average, pain was relieved to 90% of the initial pain level. In 24% of the 65 patients a second spinal intervention was necessary: 16 distant (24.6%) and 7 adjacent (10.8%) new osteoporotic fractures, 4 instrumented stabilizations (6.2%), 1 new adjacent traumatic fracture (1.5%), and 1 distant microsurgical decompression (1.5%). Cement leakage occurred in 10.4% but was only symptomatic in 1 case. CONCLUSIONS Lordoplasty appeared safe and effective in midterm pain alleviation and restoration of kyphotic deformity in osteoporotic compression and insufficiency fractures. The outcomes of lordoplasty are consistent with other augmentation techniques. PMID:26895528

  17. Use of 2D and 3D Imaging Techniques to Understand Fracture Growth

    NASA Astrophysics Data System (ADS)

    Lockner, D. A.

    2004-05-01

    The monitoring of acoustic emissions (AE) is a valuable tool for studying the brittle fracture process in rock. With the improved characterization of transducer response, researchers are able to apply a broad spectrum of seismological techniques to AE catalogues collected in the laboratory; i.e., moment tensor analysis, Vp/Vs ratios, attenuation, event clustering statistics, Gutenberg-Richter b-value and aftershock analysis. Since AE occurs spontaneously as a result of unstable microcrack growth during rock deformation experiments, it provides a non-destructive method to observe damage accumulation. I will give examples of visualization techniques that have proven helpful in the analysis of fracture nucleation and growth based on 3D event locations in granite and sandstone samples. These techniques are useful in interpreting the development of complex fracture systems in lab samples. Complementary measurements of wave speed anisotropy and heterogeneity are used to infer both the development of damage zones and the rate of infiltration of water during fluid injection experiments. Finally, spatial clustering of AE events is evaluated in terms of the surface roughness of reactivated faults during triaxial deformation experiments.

  18. Cusp Fracture Resistance of Maxillary Premolars Restored with the Bonded Amalgam Technique Using Various Luting Agents

    PubMed Central

    Marchan, Shivaughn M.; Coldero, Larry; White, Daniel; Smith, William A. J.; Rafeek, Reisha N.

    2009-01-01

    Objective. This in vitro study uses measurements of fracture resistance to compare maxillary premolars restored with the bonded amalgam technique using a new resin luting cement, glass ionomer, and resin-modified glass ionomer as the bonding agents. Materials. Eighty-five sound maxillary premolars were selected and randomly assigned to one of five test groups of 17 teeth each. One group of intact teeth served as the control. The remaining groups were prepared to a standard cavity form relative to the dimensions of the overall tooth and restored with amalgam alone or a bonded amalgam using one of three luting agents: RelyX Arc (a new resin luting cement), RelyX luting (a resin-modified glass ionomer), or Ketac-Cem μ (a glass ionomer) as the bonding agents. Each tooth was then subjected to compressive testing until catastrophic failure occurred. The mean loads at failure of each group were statistically compared using ANOVA with a post hoc Bonferroni test. Results. It was found that regardless of the luting cement used for the amalgam bonding technique, there was little effect on the fracture resistance of teeth. Conclusion. Cusp fracture resistance of premolars prepared with conservative MOD cavity preparations is not improved by using an amalgam-bonding technique compared to similar cavities restored with amalgam alone. PMID:20339450

  19. Inverse measurement of stiffness by the normalization technique for J-integral fracture toughness

    SciTech Connect

    Brown, Eric

    2012-06-07

    The single specimen normalization technique for J-integral fracture toughness has been successfully employed by several researchers to study the strongly non-linear fracture response of ductile semicrystalline polymers. As part of the normalization technique the load and the plastic component of displacement are normalized. The normalized data is then fit with a normalization function that approximates a power law for small displacements that are dominated by blunting and smoothly transitions to a linear relationship for large displacements that are dominated by stable crack extension. Particularly for very ductile polymers the compliance term used to determine the plastic displacement can dominate the solution and small errors in determining the elastic modulus can lead to large errors in the normalization or even make it ill-posed. This can be further complicated for polymers where the elastic modulus is strong strain rate dependent and simply using a 'quasistatic' modulus from a dogbone measurement may not equate to the dominant strain rate in the compact tension specimen. The current work proposes directly measuring the compliance of the compact tension specimen in the solution of J-integral fracture toughness and then solving for the elastic modulus. By comparison with a range of strain rate data the dominant strain rate can then be determined.

  20. Fracture analysis of plastic-bonded explosive by digital image correlation technique

    NASA Astrophysics Data System (ADS)

    Li, M.; Zhang, J.; Xiong, Chun-Yang; Fang, J.; Hao, Y.; Wen, M. P.

    2002-05-01

    Plastic-bonded explosive is a kind of energy material used in military and civil engineering. It serves also as structures or components to sustain external loads. Safety and reliability of the material is of importance to prevent damage and fracture during both manufacturing and usage procedure. Digital image correlation technique was applied to analyze the deformation field of the material near crack tip. The specimen was loaded by uniaxial compression and a slot was preset at the specimen edge with 45 degrees orientation. The speckle images were captured during the load and the surface patterns were matched by correlation computation to obtain the displacement components. The stress intensity factors of the crack tip were evaluated by the deformation in the near region of the crack. By the comparison of the strain field and the surface profile, the damage form of the material can be analyzed that showed brittle behavior with axial splitting fracture.

  1. A revisit to high-rate mode-II fracture characterization of composites with Kolsky bar techniques.

    SciTech Connect

    Lu, Wei-Yang; Song, Bo; Jin, Huiqing

    2010-03-01

    Nowadays composite materials have been extensively utilized in many military and industrial applications. For example, the newest Boeing 787 uses 50% composite (mostly carbon fiber reinforced plastic) in production. However, the weak delamination strength of fiber reinforced composites, when subjected to external impact such as ballistic impact, has been always potential serious threats to the safety of passengers. Dynamic fracture toughness is a critical indicator of the performance from delamination in such impact events. Quasi-static experimental techniques for fracture toughness have been well developed. For example, end notched flexure (ENF) technique, which is illustrated in Fig. 1, has become a typical method to determined mode-II fracture toughness for composites under quasi-static loading conditions. However, dynamic fracture characterization of composites has been challenging. This has resulted in conflictive and confusing conclusions in regard to strain rate effects on fracture toughness of composites.

  2. Building Quakes: Detection of Weld Fractures in Buildings using High-Frequency Seismic Techniques

    NASA Astrophysics Data System (ADS)

    Heckman, V.; Kohler, M. D.; Heaton, T. H.

    2009-12-01

    Catastrophic fracture of welded beam-column connections in buildings was observed in the Northridge and Kobe earthquakes. Despite the structural importance of such connections, it can be difficult to locate damage in structural members underneath superficial building features. We have developed a novel technique to locate fracturing welds in buildings in real time using high-frequency information from seismograms. Numerical and experimental methods were used to investigate an approach for detecting the brittle fracture of welds of beam-column connections in instrumented steel moment-frame buildings through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalogue of Green’s functions for an instrumented building to detect high-frequency failure events in the building during a later earthquake by screening continuous data for the presence of one or more of the events. This was explored experimentally by comparing structural responses of a small-scale laboratory structure under a variety of loading conditions. Experimentation was conducted on a polyvinyl chloride frame model structure with data recorded at a sample rate of 2000 Hz using piezoelectric accelerometers and a 24-bit digitizer. Green’s functions were obtained by applying impulsive force loads at various locations along the structure with a rubber-tipped force transducer hammer. We performed a blind test using cross-correlation techniques to determine if it was possible to use the catalogue of Green’s functions to pinpoint the absolute times and locations of subsequent, induced failure events in the structure. A finite-element method was used to simulate the response of the model structure to various source mechanisms in order to determine the types of elastic waves that were produced as well as to obtain a general understanding of the structural response to localized loading and fracture.

  3. Preliminary stress measurements in central California using the hydraulic fracturing technique

    USGS Publications Warehouse

    Zoback, M.D.; Healy, J.H.; Roller, J.C.

    1977-01-01

    Use of the hydraulic fracturing technique for determining in situ stress is reviewed, and stress measurements in wells near the towns of Livermore, San Ardo, and Menlo Park, California are described in detail. In the Livermore well, four measurements at depths between 110 and 155 m indicate that the least principal compressive stress is horizontal and increases from 1.62 to 2.66 MPa. The apparent direction of maximum compression is N 70?? E (??40??). At the San Ardo site the least principal stress is that due to the overburden weight. At depths of 240.2 and 270.7 m the minimum and maximum horizontal stresses are estimated to be 11.4 and 22.5 MPa, and 12.0 (??1.1) and 15.8 (??3.3) MPa, respectively. From an impression of the fracture at 240.2 m, the direction of maximum compression appears to be about N 15?? E. The rock in the Menlo Park well is too highly fractured to yield a reliable measurement of the horizontal stresses. The data indicate, however, that the least principal stress is vertical (due to the overburden weight) to a depth of 250 m. ?? 1977 Birkha??user Verlag.

  4. Study of fracture mechanisms of short fiber reinforced AS composite by acoustic emission technique

    SciTech Connect

    Kida, Sotoaki; Suzuki, Megumu

    1995-11-01

    The fracture mechanisms of short fiber reinforced AS composites are studied by acoustic emission technique for examining the effects of fiber contents. The loads P{sub b} and P{sub c} which the damage mechanisms change are obtained at the inflection points of the total AE energy curve the energy gradient method. The damages are generated by fiber breaking at the load point of P{sub b} and P{sub c} in B material, and by the fiber breaking and the debonding between resin and fiber at the load points of P{sub b} and P{sub c} in C material.

  5. Mason type 3 radial head fractures: proposal of a synthesis technique using bioabsorbable thread.

    PubMed

    Salvi, Andrea Emilio

    2016-01-01

    Multifragmentary fractures of the radial head (Mason type 3) are challenging for the surgeon. They are usually treated by means of complete removal of the injured head and sometimes by implantation of a metal prosthesis. Indeed, the bone fragments are often too small to allow stabilization through screws or even wires. The Author proposes an alternative technique, tested on a sawbone model, in which bioabsorbable thread is used, introduced in a figure-of-eight fashion. A review of the literature is provided. PMID:27602353

  6. Mason type 3 radial head fractures: proposal of a synthesis technique using bioabsorbable thread

    PubMed Central

    SALVI, ANDREA EMILIO

    2016-01-01

    Multifragmentary fractures of the radial head (Mason type 3) are challenging for the surgeon. They are usually treated by means of complete removal of the injured head and sometimes by implantation of a metal prosthesis. Indeed, the bone fragments are often too small to allow stabilization through screws or even wires. The Author proposes an alternative technique, tested on a sawbone model, in which bioabsorbable thread is used, introduced in a figure-of-eight fashion. A review of the literature is provided. PMID:27602353

  7. Evaluation of occlusal fracture resistance of three different core materials using the Nayyar core technique

    PubMed Central

    Reddy, Satti Narayana; Harika, Kolli; Manjula, Shobha; Chandra, Pavani; Vengi, Lokesh; Koka, Krishna Mohan

    2016-01-01

    Aim: The aim and purpose of this study was to determine the occlusal fracture resistance of three core buildup materials using the Nayyar technique. Materials and Methods: Thirty human extracted maxillary premolars were used for the study. The test samples were decoronated till the cementoenamel junction (CEJ) and proper cleaning and shaping was done with protaper niti files till the F3. Corresponding f3 protaper(Dentysply)gutta pecha cones were selected and obturated. The gutta-percha was removed till the depth of 4 mm from the coronal orifice with Gates Glidden (GG) drills for all the samples; then the samples were randomly divided into three different groups. Group I was restored with universal composite Z350XT, group II was restored with light curable glass ionomer cement (GIC), and group III was restored with miracle mix. The coronal buildup was done using compound supported matrix. The fracture resistance strength of all the specimen groups was tested under a universal testing machine. Results: The data of the study were statistically analyzed by one-way analysis of variance (ANOVA) and Bonferroni's comparison test. Results of the study showed that group I that was restored with the universal composite Z350XT showed much higher fracture resistance strength compared to the other two groups. Statistically significant difference was noted between group I and group II and also between group I and group III. Conclusion: It can be concluded that the core buildup done with composite offered better occlusal fracture resistance strength compared to light curable GIC and miracle mix. PMID:27011931

  8. Tension plate for treatment of olecranon fractures: new surgical technique and case series study

    PubMed Central

    Lukšic, Bruno; Juric, Ivo; Boschi, Vladimir; Pogorelic, Zenon; Bekavac, Josip

    2015-01-01

    Background Our aim was to determine the effectiveness of a new surgical technique for olecranon fractures using a tension plate (TP) designed by the operating surgeon. Methods We included patients with olecranon fractures treated between September 2010 and August 2013 in our study. Treatment involved a new implant and operative technique, which combined the most favourable characteristics of 2 frequently used methods, tension band wiring and plate osteosynthesis, while eliminating their shortcomings. The new method was based on the newly constructed implant. Results Twenty patients participated in our study. We obtained the following functional results with our TP: median flexion 147.5° (interquartile range [IQR] 130°–155°), median extension 135°/deficit 10° (IQR 135°–145°), median pronation 90° (IQR 81.3°–90°), median supination 90° (IQR 80°–90°). Implant-related complications were noted in 1 patient, and implants were removed in 3 patients. The mean functional Mayo elbow performance score was 94.8 (range 65–100). The removal of the implant was considerably less frequent in patients operated using the new method and implant than in patients operated using conventional methods at our institution (p < 0.001). Mean duration of follow-up was 8 months. Conclusion Our TP for the treatment of olecranon fractures is safe and effective. Functional results are very good, with significantly decreased postoperative inconveniences and need to remove the implant. Less osteosynthetic material was used for TP construction, but stability was preserved. PMID:25427338

  9. Risk of injury to vascular-nerve bundle after calcaneal fracture: comparison among three techniques

    PubMed Central

    Labronici, Pedro José; Reder, Vitor Rodrigues; de Araujo Marins Filho, Guilherme Ferreira; Pires, Robinson Esteves Santos; Fernandes, Hélio Jorge Alvachian; Mercadante, Marcelo Tomanik

    2016-01-01

    Objective To ascertain whether the number of screws or pins placed in the calcaneus might increase the risk of injury when three different techniques for treating calcaneal fractures. Method 126 radiographs of patients who suffered displaced calcaneal fractures were retrospectively analyzed. Three surgical techniques were analyzed on an interobserver basis: 31 radiographs of patients treated using plates that were not specific for the calcaneus, 48 using specific plates and 47 using an external fixator. The risk of injury to the anatomical structures in relation to each Kirschner wire or screw was determined using a graded system in accordance with the Licht classification. The total risk of injury to the anatomical structures through placement of more than one wire/screw was quantified using the additive law of probabilities for the product, for independent events. Results All of the models presented high explanatory power for the risk evaluated, since the coefficient of determination values (R2) were greater than 98.6 for all the models. Therefore, the set of variables studied explained more than 98.6% of the variations in the risks of injury to arteries, veins or nerves and can be classified as excellent models for prevention of injuries. Conclusion The risk of injury to arteries, veins or nerves is not defined by the total number of pins/screws. The region and the number of pins/screws in each region define and determine the best distribution of the risk. PMID:27069891

  10. Fracture Detection in Alluvial Fan Deposits Using Near-Surface Seismic Reflection Techniques

    NASA Astrophysics Data System (ADS)

    Black, R. A.; Miller, B.

    2012-12-01

    In this study we document the observation of probable extensive shallow vertical fracture systems in unprocessed 2-D source gathers from near-surface seismic reflection surveys conducted over unconsolidated materials in alluvial fans environments. Mapping of fracture and fault systems within the sedimentary sections at hydrocarbon exploration scales has become common practice. This is due to the advent of post-stack attribute analysis of 3-D seismic images worldwide. However, examples of fracture detection and imaging in the near-surface are currently lacking in the literature. In addition, examples of fracture detection and mapping in the pre-stack domain are also lacking. In this study, unprocessed seismic source gathers from very high-resolution reflection surveys over alluvial fan deposits in tectonically active areas appear to display distinct patterns of amplitude drop off, geometrically similar to patterns expected for vertical fracture systems. The patterns can also be extracted by attribute analysis using techniques such as envelope and coherency analyses. Simple standard processing steps such as trace editing, muting, and bandpass filtering enhance interpretability. The patterns appear to be consistent and spatially fixed in the subsurface from source location to source location. These are observed in areas of obvious recent local large-scale fault movement. Examples are given from two areas, eastern Queen Valley in California and eastern Fish Lake Valley in Nevada. The stratigraphic and sedimentation patterns are quite complicated in both areas, and sediment characteristics vary considerably between sites. The surface sediments in the Queen Valley case are, in general, much coarser with many more boulder-sized clasts in the shallow subsurface. The seismic source consisted of a 30-06 rifle fired downhole at a depth of 0.5m. While the boulders interfered with seismic source operations, the record quality was excellent. The alluvial materials, especially

  11. 3D hybrid tectono-stochastic modeling of naturally fractured reservoir: Application of finite element method and stochastic simulation technique

    NASA Astrophysics Data System (ADS)

    Gholizadeh Doonechaly, N.; Rahman, S. S.

    2012-05-01

    Simulation of naturally fractured reservoirs offers significant challenges due to the lack of a methodology that can utilize field data. To date several methods have been proposed by authors to characterize naturally fractured reservoirs. Among them is the unfolding/folding method which offers some degree of accuracy in estimating the probability of the existence of fractures in a reservoir. Also there are statistical approaches which integrate all levels of field data to simulate the fracture network. This approach, however, is dependent on the availability of data sources, such as seismic attributes, core descriptions, well logs, etc. which often make it difficult to obtain field wide. In this study a hybrid tectono-stochastic simulation is proposed to characterize a naturally fractured reservoir. A finite element based model is used to simulate the tectonic event of folding and unfolding of a geological structure. A nested neuro-stochastic technique is used to develop the inter-relationship between the data and at the same time it utilizes the sequential Gaussian approach to analyze field data along with fracture probability data. This approach has the ability to overcome commonly experienced discontinuity of the data in both horizontal and vertical directions. This hybrid technique is used to generate a discrete fracture network of a specific Australian gas reservoir, Palm Valley in the Northern Territory. Results of this study have significant benefit in accurately describing fluid flow simulation and well placement for maximal hydrocarbon recovery.

  12. Flexible Intramedullary Nailing of Pediatric Humeral Fractures: Indications, Techniques, and Tips.

    PubMed

    Kelly, Derek M

    2016-06-01

    Most proximal and diaphyseal pediatric humeral fractures can be treated successfully by closed means; however, certain patient factors or fracture characteristics may make surgical stabilization with flexible intramedullary nails (FIN) a better choice. Common indications for FIN of pediatric humeral fractures include unstable proximal-third fractures in children nearing skeletal maturity, unstable distal metaphyseal-diaphyseal junction fractures, shaft fractures in polytraumatized patients or patients with ipsilateral both-bone forearm fractures (floating elbow), and prophylactic stabilization of benign diaphyseal bone cysts or surgical stabilization of pathologic fractures. FIN can be safely inserted in an antegrade or retrograde manner depending on the fracture location and configuration. Careful dissection at the location of rod insertion can prevent iatrogenic nerve injuries. Rapid fracture union and return to full function can be expected in most cases. Implant prominence is the most common complication. PMID:27152902

  13. Deepest hypocentral distributions associated with stagnant slabs and penetrated slabs

    NASA Astrophysics Data System (ADS)

    Fukao, Y.; Obayashi, M.

    2013-12-01

    We constructed a new P-wave tomographic model of the mantle, GAP_P4, using more than ten millions of travel time data, including waveform-based differential travel times from ocean bottoms, to all of which the finite frequency kernels were applied in the inversion. Based on this model, we made a systematic survey for subducted slab images around the Circum Pacific. This survey revealed a progressive lateral variation of slab configuration along arc(s), where a subducted slab is in general in one or two of the following four stages: I. slab stagnant above the 660, II. slab penetrating the 660, III. slab trapped in the uppermost lower mantle (660 to ˜1000 km in depth), and IV. slab descending well into the deep lower mantle. The majority of the slab images are either at stage I or III. We interpret I to IV as the successive stages of slab subduction through the transition region with the 660 at the middle. There is a remarkable correlation of the slab configuration with the deepest shock hypocentral distribution. Subhorizontal distributions of deepest shocks are associated with stagnant slabs in the transition zone (slabs at stage I). Their focal depths are limited to shallower than ˜620 km. Steeply dipping deepest shock distributions are associated with penetrating slabs across the 660-km discontinuity or trapped slabs below it (slabs at stages II and III). Their focal depths extend well beyond ˜620 km. There are no cases of association of either a stagnant slab (at stage I) with subvertical distribution of deepest shocks or a trapped slab (at stage II or III) with their subhorizontal distribution. Only steeply dipping slabs appear to penetrate the 660 to be trapped in the uppermost lower mantle. The along-arc variations of stagnant-slab configuration and deepest shock distribution beneath the Bonin arc indicate a process of how the slab begins to penetrate the 660-km discontinuity after the slab stagnation. Those beneath the Java arc and Kermadec arc commonly

  14. Distal humeral plating of an intramedullary nail periprosthetic fracture using a miss-a-nail technique: a case report

    PubMed Central

    Singh, Ravi; Corbett, Steven A

    2009-01-01

    The treatment of distal humeral periprosthetic fractures is not widely described in the literature. We present a difficult clinical scenario of a 72-year-old man who sustained a displaced distal humeral periprosthetic fracture about a Polarus Plus intramedullary nail. In this case, stable fixation was achieved using bicondylar Acumed Mayo congruent Plates using a miss-a-nail technique. Four months following the post operative period, the patient regained satisfactory range of movement with full function and no further complications up to 18 months post fixation. Treatment of such complex periprosthetic fractures is technically achievable and with potentially good results. PMID:19829846

  15. An in situ high voltage electron microscopy technique for the study of deformation and fracture: In multilayered materials

    SciTech Connect

    Wall, M.A.; Barbee, T.W. Jr.; Weihs, T.P.

    1995-04-14

    A novel, in situ, high voltage electron microscopy technique for the direct observation of the micromechanisms of tensile deformation and fracture in nanostructured materials is detailed. This technique is particularly well suited for the dynamic observations of deformation and fracture in multilayered materials. The success of this type of in situ technique is highly dependent upon unique specimen preparation procedures and sample design, the importance thereof will be discussed. The initial observations discussed here are expected to aid in the understanding of the mechanical behavior of this new class of atomically engineered materials.

  16. Biomechanical evaluation of four different posterior screw and rod fixation techniques for the treatment of the odontoid fractures

    PubMed Central

    Li, Lei; Liu, Wen-Fei; Jiang, Hong-Kun; Li, Yun-Peng

    2015-01-01

    Problems that screw cannot be inserted may occur in screw-rod fixation techniques such as Harms technique. We compared the biomechanical stability imparted to the C-2 vertebrae by four designed posterior screw and rod fixation techniques for the management of odontoid fractures. A three-dimensional finite element model of the odontoid fracture was established by subtracting several unit structures from the normal model from a healthy male volunteer. 4 different fixation techniques, shown as follows: ① C-1 lateral mass and C-2 pedicle screw fixation (Harms technique); ② C-1 lateral mass and unilateral C-2 pedicle screw fixation combined with ipsilateral laminar screw fixation; ③ Unilateral C-1lateral mass combined with ipsilateral C-1 posterior arch, and C-2 pedicle screw fixation; and ④ Unilateral C1 lateral mass screw connected with bilateral C2 pedicle screw fixation was performed on the odontoid fracture model. The model was validated for axial rotation, flexion, extension, lateral bending, and tension for 1.5 Nm. Changes in motion in flexion-extension, lateral bending, and axial rotation were calculated. The finite element model of the odontoid fracture was established in this paper. All of the four screw-rod techniques significantly decreased motion in flexion-extension, lateral bending, and axial rotation, as compared with the destabilized odontoid fracture complex (P<0.05). There was no statistically significant difference in stability among the four screw techniques. We concluded that the first three fixation techniques are recommended to be used as surgical intervention for odontoid fracture, while the last can be used as supplementary for the former three methods. PMID:26309508

  17. Biomechanical evaluation of four different posterior screw and rod fixation techniques for the treatment of the odontoid fractures.

    PubMed

    Li, Lei; Liu, Wen-Fei; Jiang, Hong-Kun; Li, Yun-Peng

    2015-01-01

    Problems that screw cannot be inserted may occur in screw-rod fixation techniques such as Harms technique. We compared the biomechanical stability imparted to the C-2 vertebrae by four designed posterior screw and rod fixation techniques for the management of odontoid fractures. A three-dimensional finite element model of the odontoid fracture was established by subtracting several unit structures from the normal model from a healthy male volunteer. 4 different fixation techniques, shown as follows: ① C-1 lateral mass and C-2 pedicle screw fixation (Harms technique); ② C-1 lateral mass and unilateral C-2 pedicle screw fixation combined with ipsilateral laminar screw fixation; ③ Unilateral C-1lateral mass combined with ipsilateral C-1 posterior arch, and C-2 pedicle screw fixation; and ④ Unilateral C1 lateral mass screw connected with bilateral C2 pedicle screw fixation was performed on the odontoid fracture model. The model was validated for axial rotation, flexion, extension, lateral bending, and tension for 1.5 Nm. Changes in motion in flexion-extension, lateral bending, and axial rotation were calculated. The finite element model of the odontoid fracture was established in this paper. All of the four screw-rod techniques significantly decreased motion in flexion-extension, lateral bending, and axial rotation, as compared with the destabilized odontoid fracture complex (P<0.05). There was no statistically significant difference in stability among the four screw techniques. We concluded that the first three fixation techniques are recommended to be used as surgical intervention for odontoid fracture, while the last can be used as supplementary for the former three methods. PMID:26309508

  18. Plating osteosynthesis of mid-distal humeral shaft fractures: minimally invasive versus conventional open reduction technique

    PubMed Central

    Zeng, Bingfang; He, Xiaojian; Chen, Qi; Hu, Shundong

    2009-01-01

    Results of two methods, conventional open reduction–internal plating and minimally invasive plating osteosynthesis (MIPO), in the treatment of mid-distal humeral shaft fractures were compared. Thirty-three patients were retrospectively analysed and divided into two groups. Group A (n = 17) patients were treated by MIPO and group B (n = 16) by conventional plating. The mean operation time in group A was 92.35 ± 57.68 minutes and 103.12 ± 31.08 minutes in group B (P = 0.513). Iatrogenic radial nerve palsy in group A was 0% (0/17) and 31.3% in group B (5/16 (P = 0.012). The mean fracture union time in group A was 15.29 ± 4.01 weeks (range 8–24 weeks), and 21.25 ± 13.67 weeks (range 10–58 weeks) in group B (P = 0.095). The mean UCLA end-result score in group A was 34.76 ± 0.56 points (range 33–35), and 34.38 ± 1.41 points (range 30–35) in group B (P = 0.299). The mean MEPI in group A was 99.41 ± 2.43 points (range 90–100) and 99.69 ± 1.25 points (range 95–100) in group B (P = 0.687). When compared to the conventional plating techniques, MIPO offers advantages in terms of reduced incidence of iatrogenic radial nerve palsies and accelerated fracture union and a similar functional outcome with respect to shoulder and elbow function. PMID:19301000

  19. Closed reduction and K-wiring with the Kapandji technique for completely displaced pediatric distal radial fractures.

    PubMed

    Satish, Bhava R J; Vinodkumar, Muniramaiah; Suresh, Masilamani; Seetharam, Prasad Y; Jaikumar, Krishnaraj

    2014-09-01

    In completely displaced pediatric distal radial fractures, achieving satisfactory reduction with closed manipulation and maintenance of reduction with casting is difficult. Although the Kapandji technique of K-wiring is widely practiced for distal radial fracture fixation in adults, it is rarely used in pediatric acute fractures. Forty-six completely displaced distal radial fractures in children 7 to 14 years old were treated with closed reduction and K-wire fixation. One or 2 intrafocal K-wires were used to lever out and reduce the distal fragment's posterior and radial translation. One or 2 extrafocal K-wires were used to augment intrafocal fixation. Postoperative immobilization was enforced for 3 to 6 weeks (with a short arm plaster of Paris cast for the first half of the time and a removable wrist splint for the second half), after which time the K-wires were removed. Patients were followed for a minimum of 4 months. Mean patient age was 9.5 years. Near-anatomical reduction was achieved easily with the intrafocal leverage technique in all fractures. Mean procedure time for K-wiring was 7 minutes. On follow-up, there was no loss of reduction; remanipulation was not performed in any case. There were no pin-related complications. All fractures healed, and full function of the wrist and forearm was achieved in every case. The Kapandji K-wire technique consistently achieves easy and near-anatomical closed reduction by a leverage reduction method in completely displaced pediatric distal radial fractures. Reduction is maintained throughout the fracture-healing period. The casting duration can be reduced without loss of reduction, and good functional results can be obtained. PMID:25350624

  20. Fracture toughness of the nickel-alumina laminates by digital image-correlation technique

    NASA Astrophysics Data System (ADS)

    Mekky, Waleed

    The purpose of this work is to implement the digital image correlation technique (DIC) in composite laminate fracture testing. The latter involves measuring the crack opening displacement (COD) during stable crack propagation and characterizing the strain development in a constrained nickel layer under applied loading. The major challenge to measure the COD of alternated metal/ceramic layers is the elastic-mismatch effect. This leads to oscillating COD measurement. Smoothing the result with built-in modules of commercial software leads to a loss of data accuracy. A least-squares fitting routine for the data output gave acceptable COD profiles. The behavior of a single Ni ligament sandwiched between two Al2O3 layers was determined for two Ni thicknesses (0.125 and 0.25mm). Modeling of the behavior via a modified Bridgman approach for rectangular cross section samples, proved limited as different mechanisms are operating. Nevertheless, the behavior is however captured to a point, but the model underestimates the results vis a vis experimental ones. The fracture-resistance curves for Nickel/Alumina laminates were developed experimentally and modeled via LEFM using the weight function approach and utilizing single-ligament-, and COD-, data. The crack-tip toughness was found to increase with Ni layer thickness due to crack-tip-shielding. The crack-initiation-toughness was estimated from the stress field and the crack-opening-displacement of the main crack.

  1. A simple new technique for the removal of fractured femoral stems: a case report

    PubMed Central

    2014-01-01

    Introduction The removal of broken femoral stems has become a major issue in revision surgery, and is a technically difficult and time-consuming procedure. Case presentation We present a case of a fracture of a cementless long femoral stem in a 65-year-old, white Caucasian man. The distal part was removed with a special longitudinal osteotomy through the anterior cortex extending distally for 10cm. It was then followed by a transversal osteotomy 2cm below the tip of the femoral stump to allow enough space for two locking pliers. Simultaneously using a lamina spreader on the distal part, the broken stem was extracted while hammering on two locking pliers. Conclusions We developed a simple and easy technique for the removal of a broken femoral stem that can be applied to all kinds of femoral stems and intramedullary nails regardless of their cross section. We used ordinary surgical instruments and spared the remaining bone stock. PMID:24886067

  2. Multiscale organization of joints and faults in a fractured reservoir revealed by geostatistical, multifractal and wavelet techniques

    SciTech Connect

    Castaing, C.; Genter, A.; Ouillon, G.

    1995-08-01

    Datasets of the geometry of fracture systems were analysed at various scales in the western Arabian sedimentary platform by means of geostatistical, multifractal, and anisotropic-wavelet techniques. The investigations covered a wide range of scales, from regional to outcrops in a well-exposed area, and were based on field mapping of fractures, and the interpretation and digitizing of fracture patterns on aerial photographs and satellite images. As a first step, fracture data sets were used to examine the direction, size, spacing and density systematics, and the variability in these quantities with space and scale. Secondly, a multifractal analysis was carried out, which consists in estimating the moments of the spatial distribution of fractures at different resolutions. This global multifractal method was complemented by a local wavelet analysis, using a new anisotropic technique tailored to linear structures. For a map with a given scale of detail, this procedure permits to define integrated fracture patterns and their associated directions at a more regional scale. The main result of this combined approach is that fracturing is not a self-similar process from the centimeter scale up to the one-million-kilometer scale. Spatial distribution of faults appears as being highly controlled by the thickness of the different rheological layers that constitute the crust. A proceeding for upscaling fracture systems in sedimentary reservoirs can be proposed, based on (i) a power law for joint-length distribution, (ii) characteristic joint spacing depending on the critical sedimentary units, and (iii) fractal fault geometry for faults larger than the whole thickness of the sedimentary basin.

  3. Cordilleran slab windows

    SciTech Connect

    Thorkelson, D.J.; Taylor, R.P. )

    1989-09-01

    The geometry and geologic implications of subducted spreading ridges are topics that have bedeviled earth scientists ever since the recognition of plate tectonics. As a consequence of subduction of the Kula-Farallon and East Pacific rises, slab windows formed and migrated beneath the North American Cordillera. The probable shape and extent of these windows, which represent the asthenosphere-filled gaps between two separating, subducting oceanic plates, are depicted from the Late Cretaceous to the present. Possible effects of the existence and migration of slab windows on the Cordillera at various times include cessation of arc volcanism and replacement by rift or plate-edge volcanism; lithospheric uplift, attenuation, and extension; and increased intensity of compressional tectonism. Eocene extensional tectonism and alkaline magmatism in southern British Columbia and the northwestern United States were facilitated by slab-window development.

  4. A Comparison of Open and Percutaneous Techniques in the Operative Fixation of Spinal Fractures Associated with Ankylosing Spinal Disorders

    PubMed Central

    Daffner, Scott D.; Obafemi-Afolabi, Abimbola; Gelb, Daniel; Ludwig, Steven; Emery, Sanford E.; France, John C.

    2016-01-01

    Background The operative care of patients with ankylosing spinal conditions such as ankylosing spondylitis (AS) and diffuse idiopathic skeletal hyperostosis (DISH) after a spine fracture is not well represented in the literature. This work seeks to determine the effect of minimally invasive techniques on patients with spinal fractures and ankylosing spinal conditions through a retrospective case-control analysis. Methods The operative logs from 1996-2013 of seven fellowship-trained spine surgeons from two academic, Level I trauma centers were reviewed for cases of operatively treated thoracic and lumbar spinal fractures in patients with ankylosing spinal disorders. Results A total of 38 patients with an ankylosing spinal condition and a spinal fracture were identified. The minimally invasive group demonstrated a statistically significant decrease in estimated blood loss, operative time, and need for transfusion when compared to either the hybrid or open group. There was no difference between the three subgroups in overall hospital stay or mortality. Conclusions Patients with ankylosing spinal conditions present unique challenges for operative fixation of spinal fractures. Minimally invasive techniques for internal fixation offer less blood loss, operative time, and need for transfusion compared to traditional techniques; however, no difference in hospital stay or mortality was reflected in this series of patients. Level of Evidence: 4. Clinical Relevance Ankylosing spinal disorders are increasingly common in an aging population. PMID:27441181

  5. Buoyancy, bending, and seismic visibility in deep slab stagnation

    NASA Astrophysics Data System (ADS)

    Bina, Craig R.; Kawakatsu, Hitoshi; Suetsugu, D.; Bina, C.; Inoue, T.; Wiens, D.; Jellinek, M.

    2010-11-01

    The petrological consequences of deep subhorizontal deflection ("stagnation") of subducting slabs should affect both apparent seismic velocity structures and slab morphology. We construct kinematic thermal models of stagnant slabs and perform thermodynamic modeling of the consequent perturbation of high-pressure phase transitions in mantle minerals, focusing upon Japan as our study area. We calculate associated thermo-petrological buoyancy forces and bending moments which (along with other factors such as viscosity variations and rollback dynamics) may contribute to slab deformation. We consider effects of variations in depth of stagnation, post-stagnation dip angle, phase transition sharpness, transition triplication due to multiple intersection of geotherms with phase boundaries, and potential persistence of metastable phases due to kinetic hindrance. We also estimate seismic velocity anomalies, as might be imaged by seismic tomography, and corresponding seismic velocity gradients, as might be imaged by receiver-function analysis. We find that buoyant bending moment gradients of petrological origin at the base of the transition zone may contribute to slab stagnation. Such buoyancy forces vary with the depth at which stagnation occurs, so that slabs may seek an equilibrium slab stagnation depth. Metastable phase bending moment gradients further enhance slab stagnation, but they thermally decay after ∱/4600•700 km of horizontal travel, potentially allowing stagnant slabs to descend into the lower mantle. Stagnant slabs superimpose zones of negative velocity gradient onto a depressed 660-km seismic discontinuity, affecting the seismological visibility of such features. Seismologically resolvable details should depend upon both stagnation depth and the nature of the imaging technique (travel-time tomography vs. boundary-interaction phases). While seismic tomography appears to yield images of stagnant slabs, discontinuity topography beneath Japan resolved by

  6. Cardiopulmonary resuscitation (CPR)-related posterior rib fractures in neonates and infants following recommended changes in CPR techniques.

    PubMed

    Franke, I; Pingen, A; Schiffmann, H; Vogel, M; Vlajnic, D; Ganschow, R; Born, M

    2014-07-01

    Posterior rib fractures are highly indicative of non-accidental trauma (NAT) in infants. Since 2000, the "two-thumbs" technique for cardiopulmonary resuscitation (CPR) of newborns and infants has been recommended by the American Heart Association (AHA). This technique is similar to the grip on an infant's thorax while shaking. Is it possible that posterior rib fractures in newborns and infants could be caused by the "two-thumbs" technique? Using computerized databases from three German children's hospitals, we identified all infants less than 12 months old who underwent professional CPR within a 10-year period. We included all infants with anterior-posterior chest radiographs taken after CPR. Exclusion criteria were sternotomy, osteopenia, various other bone diseases and NAT. The radiographs were independently reviewed by the Chief of Pediatric Radiology (MB) and a Senior Pediatrician, Head of the local Child Protection Team (IF). Eighty infants with 546 chest radiographs were identified, and 50 of those infants underwent CPR immediately after birth. Data concerning the length of CPR was available for 41 infants. The mean length of CPR was 11min (range: 1-180min, median: 3min). On average, there were seven radiographs per infant. A total of 39 infants had a follow-up radiograph after at least 10 days. No rib fracture was visible on any chest X-ray. The results of this study suggest rib fracture after the use of the "two-thumbs" CPR technique is uncommon. Thus, there should be careful consideration of abuse when these fractures are identified, regardless of whether CPR was performed and what technique used. The discovery of rib fractures in an infant who has undergone CPR without underlying bone disease or major trauma warrants a full child protection investigation. PMID:24636360

  7. Slab Leaf Bowls

    ERIC Educational Resources Information Center

    Suitor, Cheryl

    2012-01-01

    In science class, fourth graders investigate the structure of plants and leaves from trees and how the process of photosynthesis turns sunlight into sugar proteins. In this article, the author fuses art and science for a creative and successful clay slab project in her elementary art classroom. (Contains 1 online resource.)

  8. Investigation of temperature dependence of fracture toughness in high-dose HT9 steel using small-specimen reuse technique

    NASA Astrophysics Data System (ADS)

    Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, Start A.; Toloczko, Mychailo B.

    2014-01-01

    The temperature dependence of fracture toughness in HT9 steel irradiated to 3-145 dpa at 380-503 °C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm × 3 mm × 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperature than the irradiation dose. At an irradiation temperature <430 °C, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180-200 MPa √{m} at 350-450 °C, and then decreased with the test temperature. At an irradiation temperature ⩾430 °C, the fracture toughness was nearly unchanged up to about 450 °C and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.

  9. Investigation of temperature dependence of fracture toughness in high-dose HT9 steel using small-specimen reuse technique

    SciTech Connect

    Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, S; Toloczko, M

    2014-01-01

    The temperature dependence of fracture toughness in HT9 steel irradiated to 3 145 dpa at 380 503 C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm 3mm 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperature than the irradiation dose. At an irradiation temperature <430 C, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180 200 MPa ffiffiffiffiffi m p at 350 450 C, and then decreased with the test temperature. At an irradiation temperatureP430 C, the fracture toughness was nearly unchanged up to about 450 C and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.

  10. Investigation of temperature dependence of fracture toughness in high-dose HT9 steel using small-specimen reuse technique

    SciTech Connect

    Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, Stuart A.; Toloczko, Mychailo B.

    2014-01-01

    The temperature dependence of fracture toughness in HT9 steel irradiated to 3–145 dpa at 380–503 degrees*C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm *3mm* 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperature than the irradiation dose. At an irradiation temperature <430 *degreesC, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180—200 MPa*m^.5 at 350–450 degrees*C, and then decreased with the test temperature. At an irradiation temperature >430 degrees*C, the fracture toughness was nearly unchanged up to about 450 *degreesC and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.

  11. Fracture density in the deep subsurface: Techniques with application to Point Arguello oil field

    SciTech Connect

    Narr, W. )

    1991-08-01

    Because Monterey Formation reservoirs rely on fractures (joints) for permeability, quantitative information on fracture spacing is important to exploration strategies and for understanding reservoir behavior. Density of joints in cores of four wells from the Point Arguello reservoir has been determined with a new, probability-based method, and these subsurface joint densities are compared with joint densities is the fracture-spacing index, which is the slope of the trend of layer thickness to joint spacing. In core and at outcrop, the only lithologic control on joint density is between nonjointed mudstone and harder (more brittle), jointed rocks. Within each well, the fracture-spacing index is the same for all hard rocks (though it varies between wells). In the reservoir, joint density relates to structural position. At outcrops in various structural settings, the fracture-spacing index is the same (approximately 1.29) in chert, dolostone, and porcelanite and siliceous shale. These rocks may be saturated with joints, so that differences in brittle strain due to local structural variations have been overwhelmed as joints continued to form during unroofing of these strata. Chert looks more fractured than other lithologies because of thin bedding. Fracture-spacing index is used to compute such parameters as fracture porosity and volume of fractures that directly contact the well bore. These parameters may be important when trying to model the behavior of a petroleum reservoir, or when trying to assess the feasibility of strongly deviating wells to improve the performance of a fracture reservoir.

  12. An Effective and Feasible Method, “Hammering Technique,” for Percutaneous Fixation of Anterior Column Acetabular Fracture

    PubMed Central

    Zhang, Lihai; Zhang, Wei; Li, Tongtong; Li, Jiantao; Chen, Hua

    2016-01-01

    Objective. The objective of this study was to evaluate the effectiveness and advantages of percutaneous fixation of anterior column acetabular fracture with “hammering technique.” Materials and Methods. We retrospectively reviewed 16 patients with percutaneous fixation of anterior column acetabular fracture with “hammering technique.” There were 11 males and 5 females with an average age of 38.88 years (range: 24–54 years) in our study. Our study included 7 nondisplaced fractures, 6 mild displaced fractures (<2 mm), and 5 displaced fractures (>2 mm). The mean time from injury to surgery was 4.5 days (range: 2–7 days). Results. The average of operation time was 27.56 minutes (range: 15–45 minutes), and the mean blood loss was 55.28 mL (range: 15–100 mL). The mean fluoroscopic time was 54.78 seconds (range: 40–77 seconds). The first pass of the guide wire was acceptable without cortical perforation or intra-articular perforation in 88.89% (16/18) of the procedures, and the second attempt was in 11.11% (2/18). Conclusion. Our study suggested that percutaneous fixation of anterior column acetabular fracture with “hammering technique” acquired satisfying surgical and clinical outcomes. It may be an alternative satisfying treatment for percutaneous fixation of anterior column acetabular fracture by 2D fluoroscopy using a C-arm with less fluoroscopic time. PMID:27493962

  13. A prospective study of a modified pin-in-plaster technique for treatment of fractures of the distal radius

    PubMed Central

    Mirghasemi, S. A.; Rashidinia, S.; Sadeghi, M. S.; Talebizadeh, M.; Rahimi, N.

    2015-01-01

    Objectives There are various pin-in-plaster methods for treating fractures of the distal radius. The purpose of this study is to introduce a modified technique of ‘pin in plaster’. Methods Fifty-four patients with fractures of the distal radius were followed for one year post-operatively. Patients were excluded if they had type B fractures according to AO classification, multiple injuries or pathological fractures, and were treated more than seven days after injury. Range of movement and functional results were evaluated at three and six months and one and two years post-operatively. Radiographic parameters including radial inclination, tilt, and height, were measured pre- and post-operatively. Results The average radial tilt was 10.6° of volar flexion and radial height was 10.2 mm at the sixth month post-operatively. Three cases of pin tract infection were recorded, all of which were treated successfully with oral antibiotics. There were no cases of pin loosening. A total of 73 patients underwent surgery, and three cases of radial nerve irritation were recorded at the time of cast removal. All radial nerve palsies resolved at the six-month follow-up. There were no cases of median nerve compression or carpal tunnel syndrome, and no cases of tendon injury. Conclusion Our modified technique is effective to restore anatomic congruity and maintain reduction in fractures of the distal radius. Cite this article: Bone Joint Res 2015;4:176–180 PMID:26541833

  14. Alternative techniques in trochanteric hip fracture surgery. Clinical and biomechanical studies on the Medoff sliding plate and the Twin hook.

    PubMed

    Olsson, O

    2000-10-01

    In allowing compression along the femoral shaft (uniaxial dynamization) and optional compression along the femoral neck (biaxial dynamization), the Medoff sliding plate (MSP) represents a new principle in the fixation of trochanteric hip fractures. The Twin hook with 2 apical hooks was designed as an alternative to the lag screw. In 3 prospective consecutive case series and 1 prospective randomized study together comprising 342 trochanteric fractures, these alternative techniques were investigated. 3 postoperative fixation failures occurred in the unstable intertrochanteric fractures treated with biaxial dynamization with the MSP (n = 194), and 5 in those treated with the sliding hip screw (n = 62) (p = 0.04). A mean femoral shortening of 15 mm with the MSP and 11 mm with the sliding hip screw was found (p = 0.03). More medialization of the femoral shaft occurred with the sliding hip screw (26%) than with the MSP (12%) in patients with marked femoral shortening (p = 0.03). 3 postoperative fixation failures occurred in subtrochanteric fractures treated with uniaxial dynamization (n = 29) and 2 in those treated with biaxial dynamization (n = 19). Medialization of the femoral shaft occurred in 9 of the 19 biaxially dynamized fractures. The Twin hook was used in 50 patients and appeared to provide similar fixation stability as the lag screw. Biomechanical tests confirmed improved stress transmission over the fracture area with the MSP compared to the sliding hip screw in intertrochanteric fractures, and similar fixation stability with the MSP and the Intramedullary Hip Screw in subtrochanteric fractures. In axial and torsional loading, the Twin hook demonstrated gradually increasing resistance to migration. With the lag screw, the peak load was higher, but after migration with failure of the support by the threads, the loads were similar. Biaxial dynamization with the MSP appears to control fracture impaction effectively and minimizes the rate of postoperative fixation

  15. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect

    Wiggins, Michael L; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2002-10-08

    During this reporting period, research was continued on characterizing and modeling the behavior of naturally fractured reservoir systems. This report proposed a model to relate the seismic response to production data to determine crack spacing and aperture, provided details of tests of proposed models to obtain fracture properties from conventional well logs with actual field data, and verification of the naturally fractured reservoir simulator developed in this project.

  16. Slab melting versus slab dehydration in subduction-zone magmatism.

    PubMed

    Mibe, Kenji; Kawamoto, Tatsuhiko; Matsukage, Kyoko N; Fei, Yingwei; Ono, Shigeaki

    2011-05-17

    The second critical endpoint in the basalt-H(2)O system was directly determined by a high-pressure and high-temperature X-ray radiography technique. We found that the second critical endpoint occurs at around 3.4 GPa and 770 °C (corresponding to a depth of approximately 100 km in a subducting slab), which is much shallower than the previously estimated conditions. Our results indicate that the melting temperature of the subducting oceanic crust can no longer be defined beyond this critical condition and that the fluid released from subducting oceanic crust at depths greater than 100 km under volcanic arcs is supercritical fluid rather than aqueous fluid and/or hydrous melts. The position of the second critical endpoint explains why there is a limitation to the slab depth at which adakitic magmas are produced, as well as the origin of across-arc geochemical variations of trace elements in volcanic rocks in subduction zones. PMID:21536910

  17. Slab melting versus slab dehydration in subduction-zone magmatism

    PubMed Central

    Mibe, Kenji; Kawamoto, Tatsuhiko; Matsukage, Kyoko N.; Fei, Yingwei; Ono, Shigeaki

    2011-01-01

    The second critical endpoint in the basalt-H2O system was directly determined by a high-pressure and high-temperature X-ray radiography technique. We found that the second critical endpoint occurs at around 3.4 GPa and 770 °C (corresponding to a depth of approximately 100 km in a subducting slab), which is much shallower than the previously estimated conditions. Our results indicate that the melting temperature of the subducting oceanic crust can no longer be defined beyond this critical condition and that the fluid released from subducting oceanic crust at depths greater than 100 km under volcanic arcs is supercritical fluid rather than aqueous fluid and/or hydrous melts. The position of the second critical endpoint explains why there is a limitation to the slab depth at which adakitic magmas are produced, as well as the origin of across-arc geochemical variations of trace elements in volcanic rocks in subduction zones. PMID:21536910

  18. Olecranon Fractures.

    PubMed

    Brolin, Tyler J; Throckmorton, Thomas

    2015-11-01

    Olecranon fractures are common upper extremity injuries, with all but nondisplaced fractures treated surgically. There has been a recent shift in the surgical management of these fractures from tension band wiring to locking plate fixation and intramedullary nailing; however, this comes with increased implant cost. Although most patients can expect good outcomes after these various techniques, there is little information to guide a surgeon's treatment plan. This article reviews the epidemiology, classification, treatment, and outcomes of olecranon fractures. PMID:26498547

  19. Measuring snow properties relevant to slab avalanche release

    NASA Astrophysics Data System (ADS)

    Reuter, Benjamin; Proksch, Martin; Löwe, Henning; van Herwijnen, Alec; Schweizer, Jürg

    2014-05-01

    The release of a slab avalanche is preceded by a sequence of fractures. The main material properties relevant for the fracture processes are the specific fracture energy of the weak layer, as also the elastic modulus and the density of the overlying slab layers. The snow micro-penetrometer (SMP) is the method of choice for snow stratigraphy measurements in the field with high resolution. Recent advances in signal processing allow us to derive the most needed material properties to model the fracture behaviour of snow. On a smaller scale, the three dimensional structure of snow samples is obtained from snow micro-tomography (CT) providing snow density directly. By modelling the mechanical behaviour of the ice matrix the elastic properties of the snow sample can be calculated. At the macro-scale, fracture mechanical field tests with particle tracking velocimetry (PTV) allow observing the in-situ fracture behaviour. Specific fracture energy and slab stiffness are derived from PTV measurement by fitting an analytical beam equation to the observed deformation field. Over the past years we were able to generate two datasets of overlapping SMP and CT as well as SMP and PTV measurements. SMP measurements and micro-tomography of snow samples show that snow density is well reproduced with current SMP signal processing algorithms. Also the specific fracture energy as derived from the SMP signal is in agreement with PTV results. The effective modulus, however, being the most sensitive parameter in fracture covers three orders of magnitude depending on measurement method. The present work discusses observed similarities and differences arising from measurement methods, theoretical assumptions and process scales. Reliable methods to determine the parameters describing the fracture process are key to snow instability modelling based on either snow cover simulations or field measurements. Preliminary modelling results from ongoing spatial variability studies illustrate the

  20. Technique of Open Reduction and Internal Fixation of Comminuted Proximal Humerus Fractures With Allograft Femoral Head Metaphyseal Reconstruction.

    PubMed

    Parada, Stephen A; Makani, Amun; Stadecker, Monica J; Warner, Jon J P

    2015-10-01

    Proximal humerus fractures are common injuries that can require operative treatment. Different operative techniques are available, but the hallmark of fixation for 3- and 4-part fractures is a locking-plate-and-screw construct. Despite advances in this technology, obtaining anatomical reduction and fracture union can be difficult, and complications (eg, need for revision) are not uncommon. These issues can be addressed by augmenting the fixation with an endosteally placed fibular allograft. Although biomechanical and clinical results have been good, the technique can lead to difficulties in future revision to arthroplasty, a common consequence of failed open reduction and internal fixation. The technique described, an alternative to placing a long endosteal bone graft, uses a trapezoidal, individually sized pedestal of allograft femoral head to facilitate the reduction and healing of the humeral head and tuberosity fragments in a displaced 3- or 4-part fracture of the proximal humerus. It can be easily incorporated with any plate-and-screw construct and does not necessitate placing more than 1 cm of bone into the humeral intramedullary canal, limiting the negative effects on any future revision to arthroplasty. PMID:26447409

  1. The chopstick-noodle twist: an easy technique of percutaneous patellar fixation in minimally displaced patellar fractures.

    PubMed

    Muzaffar, Nasir; Ahmad, Nawaz; Ahmad, Aejaz; Ahmad, Nissar

    2012-01-01

    We report six cases of minimally displaced two-part patellar fractures with skin injury over the patella that were treated with percutaneous K wire fixation and compression applied using stainless steel (SS) wire. This technique makes it possible to perform early operative treatment in cases where unhealthy skin is not amenable to conventional tension band wiring. The technique employs two K wires inserted through the two fracture fragments under local or regional anaesthesia. They are then compressed using simple SS wire knots at the two ends - making it look like noodles at the end of two chopsticks. The fixation is subsequently augmented with a cylindrical plaster-of-Paris cast. The technique is simple, cheap and does not cause soft tissue injury. PMID:22290109

  2. Long-bone fracture detection in digital X-ray images based on digital-geometric techniques.

    PubMed

    Bandyopadhyay, Oishila; Biswas, Arindam; Bhattacharya, Bhargab B

    2016-01-01

    Automated fracture detection is an essential part of a computer-aided tele-medicine system. In this paper, we have proposed a unified technique for the detection and evaluation of orthopaedic fractures in long-bone digital X-ray image. We have also developed a software tool that can be conveniently used by paramedics or specialist doctors. The proposed tool first segments the bone region of an input digital X-ray image from its surrounding flesh region and then generates the bone-contour using an adaptive thresholding approach. Next, it performs unsupervised correction of bone-contour discontinuities that might have been generated because of segmentation errors, and finally detects the presence of fracture in the bone. Moreover, the method can also localize the line-of-break for easy visualization of the fracture, identify its orientation, and assess the extent of damage in the bone. Several concepts from digital geometry such as relaxed straightness and concavity index are utilized to correct contour imperfections, and to detect fracture locations and type. Experiments on a database of several long-bone digital X-ray images show satisfactory results. PMID:26477855

  3. Carbon dioxide slab laser

    SciTech Connect

    Tulip, J.

    1988-01-12

    A gas slab laser is described comprising: first and second elongated electrodes each including a planar light reflecting surface disposed so as to form a light guide only in a plane perpendicular to the planar surface and to define a gas discharge gap therebetween; a laser gas disposed in the gap; and means for applying a radio frequency current between the first and second electrodes to establish a laser-exciting discharge in the laser gas.

  4. Visualization of Fluid Flow through in a Rough-Walled Fracture Using micro-PIV Technique

    NASA Astrophysics Data System (ADS)

    Lee, S.; Yeo, I.; Song, H.; Yoo, J.; Lee, K.

    2010-12-01

    Fluid flow in rough-walled rock fractures have been described by the cubic law and the Reynolds equation which are derived from Navier-Stokes equation. They are based on the assumption of a laminar flow, and basically state that fluid flux is proportional to cube of the aperture of the channel, which yields an ideal parabolic velocity profile across the channel. However, it has been reported that even for low Reynolds numbers (Re), there are discrepancies between analytical/numerical works and experiments. It is questioned whether these assumptions are satisfied in real rough-walled fractures even for Re<1. In order to examine those assumptions, micro-PIV (particle image velocimetry) was introduced, which allowed for direct and microscopic observation of fluid flow in rough-walled fractures. Both surfaces of a rough-walled fracture were scanned, and were then duplicated on acrylics using CNC modeling machine, which formed a rough-walled acrylic fracture with and 450 micrometer average aperture. Deionized water, mixed with 2 micrometer size of fluorescent particle, was injected into the rough-walled acrylic fracture at Re = 0.01, 0.025, 0.05, and 0.10. Velocity vectors were calculated by analyzing relative movement of particles between snap shots. Fluid flow features were primarily monitored at the five representative spots of fracture roughness. As a result, it was found that the laminar flow prevails over the fracture. For Re<1, the velocity profile was highly dependent on fracture roughness. The development of dead spots at which flow velocity was almost zero was remarkable in the regions where apertures change rapidly, which significantly reduces the channel that actually contributes to fluid flow: hydraulic aperture. Further quantitative analysis is in progress to examine whether the cubic law-based analytical solutions are effective for the quantification of fluid flow through rough-walled fractures.

  5. Least Possible Fixation Techniques of 4-Part Valgus Impacted Fractures of the Proximal Humerus: A Systematic Review

    PubMed Central

    Panagopoulos, Andreas; Tatani, Irini; Ntourantonis, Dimitrios; Seferlis, Ioannis; Kouzelis, Antonis; Tyllianakis, Minos

    2016-01-01

    The valgus-impacted (VI) 4-part fractures are a subset of fractures of the proximal humerus with a unique anatomic configuration characterized by a relatively lower incidence of avascular necrosis after operative intervention. We systematically reviewed clinical studies assessing the benefits and harms of least possible fixation techniques (LPFT) for this unique fracture type. Such information would be potentially helpful in developing an evidence-based approach in the management of these complex injuries. We performed analytic searches of PubMed, Embase, Web of Science, Google Scholar and the Cochrane Library, restricting it to the years 1991-2014. Included studies had to describe outcomes and complications after primary osteosynthesis with any type of LPFT apart from plate-screws and intramedullary nailing. Eligibility criteria were also included English language, more than 5 cases, minimum follow up of one year and report of clinical outcome using at least one relevant score (Constant, Neer or ASES). Based on 292 database hits we identified 12 eligible studies including 190 four-part valgus impacted fractures in 188 patients. All eligible studies were case series composed of min 8 to max 45 patients per study. The gender distribution was 60% (112) female and 40% (76) male. The average age of the patients at the time of injury was 54.5 years. In 8/12 studies an open reduction was used for fracture fixation using different surgical techniques including KW, cerclage wires, cannulated screws and osteosutures. Closed reduction and percutaneous fixation was used in 4 studies. Mean follow-up time ranged from 24 to 69 months. A good functional outcome (constant score >80) was reported in 9/12 studies. The most common complication was avascular necrosis of the humeral head with an overall incidence of 11% (range, 0-26.3%). Total avascular necrosis (AVN) was found in 15/188 patients (7.9%) and was more common in percutaneous techniques and partial AVN in 6/188 (3

  6. Modified Labial Button Technique for Maintaining Occlusion After Caudal Mandibular Fracture/Temporomandibular Joint Luxation in the Cat.

    PubMed

    Goodman, Alice E; Carmichael, Daniel T

    2016-03-01

    Maxillofacial trauma in cats often results in mandibular symphyseal separation in addition to injuries of the caudal mandible and/or temporomandibular joint (TMJ). Caudal mandibular and TMJ injuries are difficult to access and stabilize using direct fixation techniques, thus indirect fixation is commonly employed. The immediate goals of fixation include stabilization for return to normal occlusion and function with the long-term objective of bony union. Indirect fixation techniques commonly used for stabilization of caudal mandibular and temporomandibular joint fracture/luxation include maxillomandibular fixation (MMF) with acrylic composite, interarcade wiring, tape muzzles, and the bignathic encircling and retaining device (BEARD) technique. This article introduces a modification of the previously described "labial reverse suture through buttons" technique used by Koestlin et al and the "labial locking with buttons" technique by Rocha et al. In cases with minimally displaced subcondylar and pericondylar fractures without joint involvement, the labial button technique can provide sufficient stabilization for healing. Advantages of the modified labial button technique include ease of application, noninvasive nature, and use of readily available materials. The construct can remain in place for a variable of amount of time, depending on its intended purpose. It serves as an alternative to the tape muzzle, which is rarely tolerated by cats. This technique can be easily used in conjunction with other maxillomandibular repairs, such as cerclage wire fixation of mandibular symphyseal separation. The purpose of this article is to demonstrate a modified labial button technique for maintaining occlusion of feline caudal mandibular fractures/TMJ luxations in a step-by-step fashion. PMID:27487655

  7. Preliminary results from osteosynthesis using Ender nails by means of a percutaneous technique, in humeral diaphysis fractures in adults☆

    PubMed Central

    Godinho, Glaydson Gomes; França, Flávio de Oliveira; Freitas, José Márcio Alves; Santos, Flávio Márcio Lago; Correa, Guilherme de Almeida Sellos; Maia, Lucas Russo

    2015-01-01

    Objective To demonstrate the clinical and functional results from treatment of humeral diaphysis fractures using Ender nails. Methods Eighteen patients who underwent osteosynthesis of humeral diaphysis fractures using Ender nails were evaluated. In addition to the clinical and radiographic evaluations, patients with a minimum of one year of follow-up were assessed by means of the Constant, American Shoulder and Elbow Surgeons (ASES), Mayo Clinic and Simple Shoulder Value (SSV) functional scores, and in relation to the degree of satisfaction with the final result. The fixation technique used was by means of an anterograde percutaneous route. Results All the patients achieved fracture consolidation, after a mean of 2.9 months (ranging from 2 to 4 months). The mean Constant score was 85.7 (ranging from 54 to 100) and the mean ASES score was 95.9 (ranging from 76 to 100). All the patients achieved the maximum score on the Mayo Clinic scale. Conclusion Fixation of humeral diaphysis fractures using Ender nails by means of a percutaneous technique was shown to be a method with promising preliminary results. PMID:26417566

  8. Use of a Percutaneous Pointed Reduction Clamp Before Screw Fixation to Prevent Gapping of a Fifth Metatarsal Base Fracture: A Technique Tip.

    PubMed

    Tan, Eric W; Cata, Ezequiel; Schon, Lew C

    2016-01-01

    Intramedullary screw fixation has become widely accepted as the standard of care for operative treatment of Jones fractures, allowing not only accelerated rehabilitation but also reduction of the risk of repeat fracture. The unique anatomy of the fifth metatarsal--mainly its inherent lateral curvature--makes fixation technically challenging. In general, surgical fixation should be performed with the largest screw possible, in both diameter and length, which will provide the strongest possible construct. However, an increased screw length and width have been associated with complications, including lateral gapping and distraction of the fracture site and malreduction of the fracture. The use of a pointed reduction clamp is a simple, yet effective, method of preventing iatrogenic displacement and gapping at the fracture site during placement of an intramedullary screw. Percutaneous reduction and stabilization of the fracture using this technique could help limit the complications associated with large screw fixation of Jones fractures. PMID:26188626

  9. Geomechanical Facies Concept In Fractured Resevoirs and the Application of Hybrid Numerical and Analytical Techniques for the Description of Coupled Transport In Fractured Systems

    NASA Astrophysics Data System (ADS)

    McDermott, C. I.; Wenqing, W.; Kolditz, O.

    2009-04-01

    Exploiting and geo-engineering of fractured rocks in the context of reservoir storage and utilisation is important to applications such as hydrogeology, petroleum geology, geothermal energy, nuclear waste storage and CO2-sequestration. Understanding fluid, mass and energy transport in the three dimensional fracture network is critical to the evaluation planned operating efficiency. Hydraulic, thermal, mechanical and chemical coupled processes under the typical reservoir conditions operate at different scales. Depending on whether the process is continuum dominated (e.g. transfer of stress in the rock body) or discontinuity dominated (e.g. hydraulic transport processes) different methods of numerically investigating and quantifying the system can be applied. A geomechanical facies approach provides the basis for large scale numerical analysis of the coupled processes and prediction of system response. It also provides the basis for a three dimensional holistic understanding of the reservoir systems and the appropriate investigation techniques which could be used to evaluate the capacities of the reservoirs to be investigated as well as appropriate development techniques. Concentrating on the numerical modelling there is often a difficult balance between the numerical stability criteria of the different equation systems which need to be solved to describe the interaction of the dominant processes. The introduction of analytical solutions where possible, functional dependencies and multiple meshes provides on the framework of the geo-mechanical facies concept provides an efficient and stable method for the prediction of the effect of the in situ coupling.

  10. Biomechanical comparison of two intraoperative mobilization techniques for maxillary distraction osteogenesis: Down-fracture versus non-down-fracture

    PubMed Central

    Yang, Lili; Suzuki, Eduardo Yugo; Suzuki, Boonsiva

    2014-01-01

    Purposes: The purpose of this study was to compare the distraction forces and the biomechanical effects between two different intraoperative surgical procedures (down-fracture [DF] and non-DF [NDF]) for maxillary distraction osteogenesis. Materials and Methods: Eight patients were assigned into two groups according to the surgical procedure: DF, n = 6 versus NDF, n = 2. Lateral cephalograms taken preoperatively (T1), immediately after removal of the distraction device (T2), and after at least a 6 months follow-up period (T3) were analyzed. Assessment of distraction forces was performed during the distraction period. The Mann–Whitney U-test was used to compare the difference in the amount of advancement, the maximum distraction force and the amount of relapse. Results: Although a significantly greater amount of maxillary movement was observed in the DF group (median 9.5 mm; minimum-maximum 7.9-14.1 mm) than in the NDF group (median 5.9 mm; minimum-maximum 4.4-7.6 mm), significantly lower maximum distraction forces were observed in the DF (median 16.4 N; minimum-maximum 15.1-24.6 N) than in the NDF (median 32.9 N; minimum-maximum 27.6-38.2 N) group. A significantly greater amount of dental anchorage loss was observed in the NDF group. Moreover, the amount of relapse observed in the NDF group was approximately 3.5 times greater than in the DF group. Conclusions: In this study, it seemed that, the use of the NDF procedure resulted in lower levels of maxillary mobility at the time of the maxillary distraction, consequently requiring greater amounts of force to advance the maxillary bone. Moreover, it also resulted in a reduced amount of maxillary movement, a greater amount of dental anchorage loss and poor treatment stability. PMID:25593865

  11. Sports fractures.

    PubMed Central

    DeCoster, T. A.; Stevens, M. A.; Albright, J. P.

    1994-01-01

    Fractures occur in athletes and dramatically influence performance during competitive and recreational activities. Fractures occur in athletes as the result of repetitive stress, acute sports-related trauma and trauma outside of athletics. The literature provides general guidelines for treatment as well as a variety of statistics on the epidemiology of fractures by sport and level of participation. Athletes are healthy and motivated patients, and have high expectations regarding their level of function. These qualities make them good surgical candidates. Although closed treatment methods are appropriate for most sports fractures, an aggressive approach to more complicated fractures employing current techniques may optimize their subsequent performance. PMID:7719781

  12. Two peg spade plate for distal radius fractures: A novel technique

    PubMed Central

    Hardikar, Sharad M; Prakash, Sreenivas; Hardikar, Madan S; Kumar, Rohit

    2015-01-01

    Background: The management of distal radius fractures raises considerable debate among orthopedic surgeons. The amount of axial shortening of the radius correlates with the functional disability after the fracture. Furthermore, articular incongruity has been correlated with the development of arthritis at the radiocarpal joint. We used two peg volar spade plate to provide a fixed angle subchondral support in comminuted distal radius fractures with early mobilization of the joint. Materials and Methods: Forty patients (26 males and 14 females) from a period between January 2009 and December 2011 were treated with two peg volar spade plate fixation for distal radius fracture after obtaining reduction using a mini external fixator. Patients were evaluated using the demerit point system of Gartland and Werley and Sarmiento modification of Lindstrom criteria at final followup of 24 months. Results: The average age was 43.55 years (range 23-57 years). Excellent to good results were seen in 85% (n = 34) and in all patients when rated according to the demerit point system of Gartland and Werley and Sarmiento modification of Lindstrom criteria, respectively. Complications observed were wrist stiffness in 5% (n = 2) and reflex sympathetic dystrophy in 2.5% (n = 1). Conclusions: The two peg volar spade plate provides a stable subchondral support in comminuted intraarticular fractures and maintains reduction in osteoporotic fractures of the distal radius. Early mobilization with this implant helps in restoring wrist motion and to prevent development of wrist stiffness. PMID:26538760

  13. A modified technique to extract fractured femoral stem in revision total hip arthroplasty: A report of two cases

    PubMed Central

    Akrawi, Hawar; Magra, Merzesh; Shetty, Ajit; Ng, Aaron

    2014-01-01

    INTRODUCTION The removal of well-fixed broken femoral component and cement mantle can be extremely demanding, time consuming and potentially damaging to the host bone. Different methods have been described to extract broken femoral stem yet this remains one of the most challenging prospect to the revision hip surgeon. PRESENTATION OF CASE The authors present two cases underwent a modified sliding cortical window technique utilising a tungsten carbide drill, Charnley pin retractor and an orthopaedic mallet to aid extraction of a fractured cemented femoral stem in revision total hip arthroplasty. DISCUSSION The modified technique offers a simple and controlled method in extracting a well fixed fractured cemented femoral stem. It has the advantage of retaining the cement mantle with subsequent good seal of the femoral cortical window secured with cable ready system. Furthermore, tungsten carbide drill bit and Charnley pin retractor are relatively readily available to aid the extraction of the broken stem. Finally, it yields the option of implanting a standard femoral stem and obviates the need for bypassing the cortical window with long revision femoral component. CONCLUSION Fractured femoral stem is a rare yet a complex and very demanding prospect to both patients and hip surgeons. The sliding cortical window technique utilising tungsten carbide drill and Charnley pin retractor is technically easy and most importantly; preserves host bone stock with cement-in-cement revision hip arthroplasty. We believe this technique can be added to the armamentarium of revision hip surgeon when faced with the challenge of extracting a fractured cemented femoral stem. PMID:24858980

  14. Reasonable Temperature Schedules for Cold or Hot Charging of Continuously Cast Steel Slabs

    NASA Astrophysics Data System (ADS)

    Li, Yang; Chen, Xin; Liu, Ke; Wang, Jing; Wen, Jin; Zhang, Jiaquan

    2013-12-01

    Some continuously cast steel slabs are sensitive to transverse fracture problems during transportation or handling away from their storage state, while some steel slabs are sensitive to surface transverse cracks during the following rolling process in a certain hot charging temperature range. It is revealed that the investigated steel slabs with high fracture tendency under room cooling condition always contain pearlite transformation delayed elements, which lead to the internal brittle bainitic structure formation, while some microalloyed steels exhibit high surface crack susceptibility to hot charging temperatures due to carbonitride precipitation. According to the calculated internal cooling rates and CCT diagrams, the slabs with high fracture tendency during cold charging should be slowly cooled after cutting to length from hot strand or charged to the reheating furnace directly above their bainite formation temperatures. Based on a thermodynamic calculation for carbonitride precipitation in austenite, the sensitive hot charging temperature range of related steels was revealed for the determination of reasonable temperature schedules.

  15. Effect of post type and restorative techniques on the strain and fracture resistance of flared incisor roots.

    PubMed

    Silva, Gisele Rodrigues da; Santos-Filho, Paulo César de Freitas; Simamoto-Júnior, Paulo Cézar; Martins, Luis Roberto Marcondes; Mota, Adérito Soares da; Soares, Carlos José

    2011-01-01

    Restoring flared endodontically treated teeth continues to be a challenge for clinicians. This study evaluated the effect of post types and restorative techniques on the strain, fracture resistance, and fracture mode of incisors with weakened roots. One hundred five endodontically treated bovine incisors roots (15 mm) were divided into 7 groups (n=15). The two control groups were (C) intact roots restored with Cpc (cast posts and core) or Gfp (glass fiber posts). The five experimental groups were (F) flared roots restored with GfpAp (Gfp associated with accessory glass fiber posts), GfpRc (anatomic Gfp, relined with composite resin), and GfpRcAp (anatomized Gfp with resin and accessory glass fiber posts). All teeth were restored with metal crowns. Mechanical fatigue was performed with 3x10(5)/50 N. Specimens were loaded at 45º, and the strain values (μS) were obtained on root buccal and proximal surfaces. Following that, the fracture resistance (N) was measured. One-way ANOVA and Tukey's HSD tests (α=0.05) were applied, and failure mode was checked. No significant difference in strain values among the groups was found. Cpc presented lower fracture resistance and more catastrophic failures in flared roots. Gfp associated with composite resin or accessory glass fiber posts seems to be an effective method to improve the biomechanical behavior of flared roots. PMID:21915521

  16. EVALUATION OF PATIENTS UNDERGOING FIXATION OF DIAPHYSEAL HUMERAL FRACTURES USING THE MINIMALLY INVASIVE BRIDGE-PLATE TECHNIQUE

    PubMed Central

    Superti, Mauro José; Martynetz, Fábio; Falavinha, Ricardo Sprenger; Fávaro, Rodrigo Caldonazzo; Boas, Luis Felipe Villas; Filho, Salim Mussi; Martynetz, Juliano; Ribas, Bruno

    2015-01-01

    Objective: The aim was to describe the experience of our group in treating humeral shaft fractures using the bridge–plate technique via an anterior approach. Methods: Seventeen patients with acute diaphyseal humeral fractures with an indication for surgical treatment who were operated in 2006–2010 were evaluated. The AO and Gustilo & Anderson classifications were used. All the patients were operated using the anterior bridge-plate technique and completed a follow–up period of at least twelve months. Results: Sixteen men and one woman were treated. Their mean age was 31.8 years (18–52). Among the injury mechanisms found were: five motorcycle accidents, four car accidents, three fractures due to firearm projectiles, two falls to the ground and finally, with one case each, assault, crushing and being run over. Eight patients had open fractures: two grade I, one grade II, four grade IIIa and one grade IIIb, according to the Gustilo-Anderson classification. In relation to the AO classification, we found: one 12A1, three 12A2, four 12A3, one 12B1, four 12 B2, three 12B3 and one 12C2. The mean postoperative follow-up was 25 months (12–48). As complications, two patients had pain in the elbow and a ROM deficit and one had deep infection. The mean time taken to achieve consolidation was 17.5 weeks. There was no loss of reduction, pseudarthrosis or malunion in this series of patients. Conclusion: The authors believe that the technique described has low rates of complications and morbidity, with good initial results, although the series is limited by the small sample. PMID:27042639

  17. Use of Ilizarov Fixator for Grade III B Open Olecranon Fracture: a Case Report and Surgical Technique

    PubMed Central

    Sharad Nemade, Pradip; Dash, Kumar Kaushik; Patwardhan, Tanvi Yeshwant; Londhe, Pravin Vasant

    2015-01-01

    Introduction: External fixator application can be difficult for olecranon fractures in presence of large degloving injuries. We describe use of simple Ilizarov ring fixator construct for grade IIIB open olecranon fracture management. Case Report: A 45-year-old female with Grade III B open comminuted olecranon fracture (30*15cm degloving area) and ulnar nerve palsy was treated with a novel ring fixator construct. Two cut-end olive wires were passed from the proximal olecranon across the fracture site in intramedullary fashion exiting dorsally at mid-ulnar level through healthy skin and were attached to an Ilizarov half ring secured by perpendicular wires. The olive wires were tensioned, achieving compression and stability. Range of motion (ROM) exercises could be started quickly as the elbow was not spanned. Wound healed after skin grafting and at one-year follow-up the patient has good functional results (PRE 7, DASH 9.48), elbow ROM 10°-130°, 75° pronation and 85° supination. The patient returned to pre-injury occupational activities and had no pain. At three-year follow-up, the x-ray and CT showed union of olecranon fragment with well-maintained congruency. Conclusion: Internal fixation in most cases may be precluded by the soft tissue trauma and risk of infection. In addition, the small proximal fragment precludes a stable external fixation. In this technique, the hardware is kept away from the open wound allowing better wound inspection and care. The intramedullary olive wires provide compression and stability, and thus allow early ROM. Ilizarov half-ring and olive wire fixation can be an useful option for management of high grade open olecranon fractures because of its advantages, viz. stable fixation, minimal internal hardware, optimal wound care, immediate initiation of range of motion, and good outcome. PMID:27299012

  18. Particle Imaging Velocimetry Technique Development for Laboratory Measurement of Fracture Flow Inside a Pressure Vessel Using Neutron Imaging

    SciTech Connect

    Polsky, Yarom; Bingham, Philip R; Bilheux, Hassina Z; Carmichael, Justin R

    2015-01-01

    This paper will describe recent progress made in developing neutron imaging based particle imaging velocimetry techniques for visualizing and quantifying flow structure through a high pressure flow cell with high temperature capability (up to 350 degrees C). This experimental capability has great potential for improving the understanding of flow through fractured systems in applications such as enhanced geothermal systems (EGS). For example, flow structure measurement can be used to develop and validate single phase flow models used for simulation, experimentally identify critical transition regions and their dependence on fracture features such as surface roughness, and study multiphase fluid behavior within fractured systems. The developed method involves the controlled injection of a high contrast fluid into a water flow stream to produce droplets that can be tracked using neutron radiography. A description of the experimental setup will be provided along with an overview of the algorithms used to automatically track droplets and relate them to the velocity gradient in the flow stream. Experimental results will be reported along with volume of fluids based simulation techniques used to model observed flow.

  19. FIXATION OF FRACTURES OF THE DISTAL EXTREMITY OF THE RADIUS USING THE MODIFIED KAPANDJI TECHNIQUE: EVALUATION OF THE RADIOLOGICAL RESULTS

    PubMed Central

    Neto, Antonio Piva; Lhamby, Fabio Colla

    2015-01-01

    To demonstrate a simple and efficacious option for treating fractures of the distal extremity of the radius using Kirschner wires. Methods: Between September 2008 and April 2009, 48 patients with fractures of the distal extremity of the radius, classified as A3 according to the AO classification, were treated surgically using a modification of the Kapandji technique. Results: Out of the 48 wrists operated, 42 (87.5%) presented postoperative measurements within the acceptable limits. We used the parameters of McQuenn and Caspers who considered that the radial angulation should be wider than 19° and the volar angulation should be narrower than -12°. All the postoperative volar inclination measurements were narrower than -3°. The mean preoperative radial inclination was 13.14° and the mean postoperative value was 21.18°. The mean preoperative volar inclination was 28.75° and the mean postoperative value was 3.31°. The mean preoperative radial height was 5.25 mm and the mean postoperative value was 9.48 mm. Conclusion: The technique described here had excellent stability for treating fractures of the distal extremity of the radius classified as A3. It was easy to implement and minimally invasive, with minimal surgical complications, and it was inexpensive. PMID:27027023

  20. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2003-02-11

    This research was directed toward developing a systematic reservoir characterization methodology which can be used by the petroleum industry to implement infill drilling programs and/or enhanced oil recovery projects in naturally fractured reservoir systems in an environmentally safe and cost effective manner. It was anticipated that the results of this research program will provide geoscientists and engineers with a systematic procedure for properly characterizing a fractured reservoir system and a reservoir/horizontal wellbore simulator model which can be used to select well locations and an effective EOR process to optimize the recovery of the oil and gas reserves from such complex reservoir systems.

  1. SUB-SLAB PROBE INSTALLATION

    EPA Science Inventory

    Sub-slab sampling has become an integral part of vapor intrusion investigations. It is now recommended in guidance documents developed by EPA and most states. A method for sub-slab probe installation was devised in 2002, presented at conferences through 2005, and finally docume...

  2. Influence of immediate dentin sealing techniques on cuspal deflection and fracture resistance of teeth restored with composite resin inlays.

    PubMed

    Oliveira, L; Mota, E G; Borges, G A; Burnett, L H; Spohr, A M

    2014-01-01

    SUMMARY This research evaluated the influence of immediate dentin sealing (IDS) techniques on cuspal deflection and fracture resistance of teeth restored with composite resin inlays. Forty-eight maxillary premolars were divided into four groups: G1, sound teeth (control); G2, without IDS; G3, IDS with Clearfil SE Bond (CSE); and G4, IDS with CSE and Protect Liner F. The teeth from groups 2, 3, and 4 received mesio-distal-occlusal preparations. The impressions were made with vinyl polysiloxane, followed by provisional restoration and storage in water for seven days. The impressions were poured using type IV die stone, and inlays with Filtek Z250 composite resin were built over each cast. The inlays were luted with Panavia F. After storage in water for 72 hours, a 200-N load was applied on the occlusal surface using a metal sphere connected to a universal testing machine, and the cuspal deflection was measured with a micrometer. The specimens were then submitted to an axial load until failure. The following mean cuspal deflection (μm) and mean fracture resistance (N) followed by the same lowercase letter represent no statistical difference by analysis of variance and Tukey (p<0.05): cuspal deflection: G1, 3.1 ± 1.5(a); G2, 10.3 ± 4.6(b); G3, 5.5 ± 1.8(ac); and G4, 7.7 ± 5.1(bc); fracture resistance: G1, 1974 ± 708(a); G2, 1162 ± 474(b); G3, 700 ± 280(b); and G4, 810 ± 343(b). IDS with CSE allowed cuspal deflection comparable with that associated with sound teeth. The application of Protect Liner F did not contribute to a decrease in cuspal deflection. The IDS techniques did not influence the fracture resistance of teeth. PMID:23718211

  3. [Thermoluminescence Slab Dosimeter].

    PubMed

    Shinsho, Kiyomitsu; Koba, Yusuke; Tamatsu, Satoshi; Sakurai, Noboru; Wakabayashi, Genichiro; Fukuda, Kazusige

    2013-01-01

    In 1953 F. Daniels et al. used the property of thermoluminescence in dosimetry for the first time. Since then, numerous TLD have been developed. 2D TLD was investigated for the first time in 1972 by P Broadhead. However, due to excessive fading, difficulties with handling and the time required for measurements, development stalled. At the current time, the majority of TLD are used in small scale, localized dosimetry with a wide dynamic range and personal dosimeters for exposure management. Urushiyama et. al. have taken advantage of the commoditization of CCD cameras in recent years--making large area, high resolution imaging easier--to introduce and develop a 2D TLD. It is expected that these developments will give rise to a new generation of applications for 2D TL dosimetry. This paper introduces the "TL Slab Dosimeter" developed jointly by Urushiyama et. al. and our team, its measurement system and several typical usage scenarios. PMID:24893451

  4. Treatment of Unstable Thoracolumbar Fractures through Short Segment Pedicle Screw Fixation Techniques Using Pedicle Fixation at the Level of the Fracture: A Finite Element Analysis

    PubMed Central

    Li, Changqing; Zhou, Yue; Wang, Hongwei; Liu, Jun; Xiang, Liangbi

    2014-01-01

    Objective To compare the von Mises stresses of the internal fixation devices among different short segment pedicle screw fixation techniques to treat thoracic 12 vertebral fractures, especially the mono-segment pedicle screw fixation and intermediate unilateral pedicle screw fixation techniques. Methods Finite element methods were utilised to investigate the biomechanical comparison of the four posterior short segment pedicle screw fixation techniques (S4+2: traditional short-segment 4 pedicle screw fixation [SPSF]; M4+2: mono-segment pedicle screw fixation; I6+2: intermediate bilateral pedicle screw fixation; and I5+2: intermediate unilateral pedicle screw fixation). Results The range of motion (ROM) in flexion, axial rotation, and lateral bending was the smallest in the I6+2 fixation model, followed by the I5+2 and S4+2 fixation models, but lateral bending was the largest in the M4+2 fixation model. The maximal stress of the upper pedicle screw is larger than the lower pedicle screw in S4+2 and M4+2. The largest maximal von Mises stress was observed in the upper pedicle screw in the S4+2 and M4+2 fixation models and in the lower pedicle screw in the I6+2 and I5+2 fixation models. The values of the largest maximal von Mises stress of the pedicle screws and rods during all states of motion were 263.1 MPa and 304.5 MPa in the S4+2 fixation model, 291.6 MPa and 340.5 MPa in the M4+2 fixation model, 182.9 MPa and 263.2 MPa in the I6+2 fixation model, and 269.3 MPa and 383.7 MPa in the I5+2 fixation model, respectively. Comparing the stress between different spinal loadings, the maximal von Mises stress of the implants were observed in flexion in all implanted models. Conclusion Additional bilateral pedicle screws at the level of the fracture to SPSF may result in a stiffer construct and less von Mises stress for pedicle screws and rods. The largest maximal von Mises stress of the pedicle screws during all states of motion were observed in the mono-segment pedicle

  5. Treatment of tibial eminence fractures with arthroscopic suture fixation technique: a retrospective study

    PubMed Central

    Yuan, Yanhao; Huang, Xiaohan; Zhang, Yanjie; Wang, Zhanchao

    2015-01-01

    Aims: The present study aims to investigate the clinical outcomes of arthroscopic suture fixation in treating tibial eminence fracture with a retrospective study design of two years’ follow-up. Methods: A total of 33 patients with imaging evidence of tibial eminence avulsion fractures who underwent arthroscopic surgery between 2008 and 2012 were included in this study. The inclusion criteria for the study were a displaced tibial eminence avulsion fracture and anterior knee instability of grade II or higher inskeletally mature patients. These patients were treated with arthroscopic suture fixation and followed with a mean period of 24 months. Anteroposterior and lateral radiographs were obtained 3 months postoperatively to assess fracture healing. At 24 months after surgery, all patients were evaluated by an independent orthopaedic professor with clinical examination like anteroposterior laxity (Lachman-Noulis and anterior drawer tests) and Rolimeter knee tester (Aircast, Vista, CA). Knee range of motion was evaluated actively and passively with a goniometer. Knee function was evaluated by the Lysholm and International Knee Documentation Committee (IKDC) scores. Knee radiographs in standing anteroposterior, standing lateral, and Merchant views were examined for alignment, joint space narrowing, and degenerative knee changes. Results: No major complication like infection, deep venous thrombosis, or neurovascular deficit happened peri-operatively. At the final follow-up, there were no symptoms of instability and no clinical signs of ACL deficiency. Radiographs showed that all fractures healed 3 months post-operative, but at the last follow-up, there was one person with degenerative changes like joint space narrowing in radiographs. Anterior translation of the tibia was 0.47 mm on average (0 to 2.5 mm) compared with the uninjured side. Range-of-motion measurement showed a mean extension deficit of 1.5° (0° to 5°) and a mean flexion deficit of 2.7° (0° to 10

  6. Burnei’s “double X" internal fixation technique for supracondylar humerus fractures in children: indications, technique, advantages and alternative interventions

    PubMed Central

    Georgescu, I; Gavriliu, S; Pârvan, A; Martiniuc, A; Japie, E; Ghiță, R; Drăghici, I; Hamei, S; Ţiripa, I; El Nayef, T; Dan, D

    2013-01-01

    Background. The Study and Research Group in Pediatric Orthopedics-2012 initated this retrospective study due to the fact that in Romania and in other countries, the numerous procedures do not ensure the physicians a definite point of view related to the therapeutic criteria in the treatment of supracondylar fractures. That is why the number of complications and their severity brought into notice these existent deficiencies. In order to correct some of these complications, cubitus varus or valgus, Prof. Al. Pesamosca communicated a paper called "Personal procedure in the treatment of posttraumatic cubitus varus" at the County Conference from Bacău, in June 24, 1978. This procedure has next been made popular by Prof. Gh. Burnei and his coworkers by operating patients with cubitus varus or valgus due to supracondylar humeral fractures and by presenting papers related to the subject at the national and international congresses. The latest paper regarding this problem has been presented at the 29th Annual Meeting of the European Pediatric Orthopedic Society in Zagreb, Croatia, April 7-10, 2010, being titled “Distal humeral Z-osteotomy for posttraumatic cubitus varus or valgus", having as authors Gh. Burnei, Ileana Georgescu, Ştefan Gavriliu, Costel Vlad and Daniela Dan. As members of this group, based on the performed studies, we wish to make popular this type of osteosynthesis, which ensures a tight fixation, avoids complications and allows a rapid postoperative activity. Introduction. The acknowledged treatment for these types of fractures is the orthopedic one and it must be accomplished as soon as possible, in the first 6 hours, by reduction and cast immobilization or by closed or open reduction and fixation, using one of the several methods (Judet, Boehler, Kapandji, San Antonio, San Diego, Burnei’s double X technique). The exposed treatment is indicated in irreducible supracondylar humeral fractures, in reducible, but unstable type, in polytraumatized

  7. [Arthroscopically assisted osteosynthesis of dorsally tilted intraarticular distal radius fractures--technique and results].

    PubMed

    Lutz, M; Wieland, T; Deml, C; Erhart, S; Rudisch, A; Klestil, T

    2014-10-01

    The present paper describes the indication and application of an arthroscopically assisted osteosynthesis for distal radius fractures. Visualisation of articular incongruency is emphasised with special regard to articular fracture fragment reduction. In addition to that, classification of soft tissue injuries and treatment options are discussed. The final clinical and radiological results of 17 patients are presented: DASH and PRWE averaged 4.9 and 6.0 respectively. Active range of motion measured 123° for flexion/extension, 51° for radial and ulnar deviation and 163° for pronosupination, which is 87%, 98% and 97%, respectively, compared with the opposite wrist. Radial inclination at final follow-up was 23°, palmar tilt measured 6° and ulnar variance averaged -1.2 mm. The scapholunate gap at follow-up was 1.6 mm, and the scapholunate angle measured 57°. PMID:25290269

  8. Fracture toughness of solid oxide fuel cell anode substrates determined by a double-torsion technique

    NASA Astrophysics Data System (ADS)

    Pećanac, G.; Wei, J.; Malzbender, J.

    2016-09-01

    Planar solid oxide fuel cell anode substrates are exposed to high mechanical loads during assembly, start-up, steady-state operation and thermal cycling. Hence, characterization of mechanical stability of anode substrates under different oxidation states and at relevant temperatures is essential to warrant a reliable operation of solid oxide fuel cells. As a basis for mechanical assessment of brittle supports, two most common anode substrate material variants, NiO-3YSZ and NiO-8YSZ, were analyzed in this study with respect to their fracture toughness at room temperature and at a typical stack operation temperature of 800 °C. The study considered both, oxidized and reduced materials' states, where also an outlook is given on the behavior of the re-oxidized state that might be induced by malfunctions of sealants or other functional components. Aiming at the improvement of material's production, different types of warm pressed and tape cast NiO-8YSZ substrates were characterized in oxidized and reduced states. Overall, the results confirmed superior fracture toughness of 3YSZ compared to 8YSZ based composites in the oxidized state, whereas in the reduced state 3YSZ based composites showed similar fracture toughness at room temperature, but a higher value at 800 °C compared to 8YSZ based composites. Complementary microstructural analysis aided the interpretation of mechanical characterization.

  9. Fracture resistance of premolars with one remaining cavity wall restored using different techniques.

    PubMed

    Kivanç, Bagdagül Helvacioglu; Alaçam, Tayfun; Görgül, Güliz

    2010-05-01

    The aim of the study was to compare the fracture resistance of maxillary premolars with one remaining cavity wall restored using different post systems. Forty-eight maxillary premolars were endodontically treated and randomly assigned to four groups for postcore restoration. The first three test groups were restored with polyethylene woven fiber posts, custom-made glass fiber-reinforced composite posts, and titanium posts respectively. In the control Group 4, standardized cavities (3.5 x 1.5 mm) were prepared in the palatal canal entrance and filled with a resin composite. All the specimens were then restored with a resin composite crown seated on the post. Load was applied with a stainless steel ball (1 mm/min), and the failure modes of all specimens were evaluated. There were no significant differences in fracture resistance and failure mode among the different restorative materials (p>0.05). Within the limitations of this in vitro study, it was concluded that the presence and type of post did not influence the fracture load and failure mode of maxillary premolar teeth with one remaining cavity wall. PMID:20448409

  10. Refinement of digital image correlation technique to investigate the fracture behaviour of refractory materials

    NASA Astrophysics Data System (ADS)

    Belrhiti, Y.; Pop, O.; Germaneau, A.; Doumalin, P.; Dupré, J. C.; Huger, M.; Chotard, T.

    2016-03-01

    Refractory materials exhibit a heterogeneous microstructure consisting in coarse aggregates surrounded by fine grains that form an aggregate/matrix composite. This heterogeneous microstructure often leads to a complex mechanical behaviour during loading. This paper is devoted to the study, thanks to an optical method, Digital Image Correlation (DIC), of the fracture behaviour of two industrial refractory materials in relation with their microstructure resulting from both the chosen constituents and the sintering process. The aim is here, specifically, to highlight and to characterize the evolution of kinematic fields (displacement and strain) observed at the surface of sample during a wedge splitting test typically used to quantify the work of fracture. DIC is indeed a helpful and effective tool, in the topic of experimental mechanics, for the measurement of deformation in a planar sample surface. This non-contact optical method directly provides full-field displacements by comparing the digital images of the sample surface obtained before and during loading. In the present study, DIC has been improved to take into account the occurrence of cracks and performed so as to better identify the early stage of the cracking behaviour. The material transformation, usually assumed homogeneous inside each DIC subset, is thus more complex and a discontinuity of displacement should be taken into account. Then each subset which crosses a crack can be cut in two parts with different kinematics. By this way, it is possible to automatically find the fracture paths and follow the crack geometries (length, opening).

  11. New Packaging for Amplifier Slabs

    SciTech Connect

    Riley, M.; Thorsness, C.; Suratwala, T.; Steele, R.; Rogowski, G.

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  12. Surgical Technique of Corrective Osteotomy for Malunited Distal Radius Fracture Using the Computer-Simulated Patient Matched Instrument.

    PubMed

    Murase, Tsuyoshi

    2016-06-01

    The conventional corrective osteotomy for malunited distal radius fracture that employs dorsal approach and insertion of a trapezoidal bone graft does not always lead to precise correction or result in a satisfactory surgical outcome. Corrective osteotomy using a volar locking plate has recently become an alternative technique. In addition, the use of patient-matched instrument (PMI) via computed tomography simulation has been developed and is expected to simplify surgical procedures and improve surgical precision. The use of PMI makes it possible to accurately position screw holes prior to the osteotomy and simultaneously perform the correction and place the volar locking plate once the osteotomy is completed. The bone graft does not necessarily require a precise block form, and the problem of the extensor tendon contacting the dorsal plate is avoided. Although PMI placement and soft tissue release technique require some degree of specialized skill, they comprise a very useful surgical procedure. On the other hand, because patients with osteoporosis are at risk of peri-implant fracture, tandem ulnar shortening surgery should be considered to avoid excessive lengthening of the radius. PMID:27454626

  13. A Simple Technique for the Positioning of a Patient with an above Knee Amputation for an Ipsilateral Extracapsular Hip Fracture Fixation

    PubMed Central

    Davarinos, N.; Ellanti, P.; McCoy, G.

    2013-01-01

    The positioning of the patient on the fracture table is critical to the successful reduction and operative fixation of hip fractures which are fixed using the dynamic hip screw system (DHS). There is a standard setup which is commonly used with relative ease. Yet the positioning of patients with amputations either above or below knee of the affected side can pose a significant challenge. We describe a novel positioning technique used on a 51-year old patient with a right above knee amputation who sustained an intertrochanteric extracapsular hip fracture. PMID:24416607

  14. Approximate techniques for predicting size effects on cleavage fracture toughness (J{sub c})

    SciTech Connect

    Kirk, M.T.; Dodds, R.H. Jr.

    1993-07-01

    This investigation examines the ability of an elastic T-stress analysis coupled with modified boundary layer (MBL) solution to predict stresses ahead of a crack tip in a variety of planar geometries. The approximate stresses are used as input to estimate the effective driving force for cleavage fracture (J{sub 0}) using the micromechanically based approach introduced by Dodds and Anderson. Finite element analyses for a wide variety of planar cracked geometries are conducted which have elastic biaxiality parameters ({beta}) ranging from {minus}0.99 (very low constraint) to +2.96 (very high constraint). The magnitude and sign of {beta} indicate the rate at which crack-tip constraint changes with increasing applied load. All results pertain to a moderately strain hardening material (strain hardening exponent ({eta}) of 10). These analyses suggest that {beta} is an effective indicator of both the accuracy of T-MBL estimates of J{sub 0} and of applicability limits on evolving fracture analysis methodologies (i.e. T-MBL, J-Q, and J/J{sub 0}). Specifically, when 1{beta}1>0.4 these analyses show that the T-MBL approximation of J{sub 0} is accurate to within 20% of a detailed finite-element analysis. As ``structural type`` configurations, i.e. shallow cracks in tension, generally have 1{beta}1>0.4, it appears that only an elastic analysis may be needed to determine reasonably accurate J{sub 0} values for structural conditions.

  15. Active part of Charlie--Gibbs fracture zone: A study using sonar and other geophysical techniques

    SciTech Connect

    Searle, R.

    1981-01-10

    A short survey with Gloria side-scan sonar and other geophysical instruments has revealed new information about Charlie--Gibbs fracture zone between 29/sup 0/ and 36 /sup 0/W. The traces of two transform faults have been clearly delineated. They fit small circles about the pole of rotation with an rms error of only about 1 km, but they do not always follow the deepest parts of the transform valleys. The transforms are joined by a short spreading center at 31 /sup 0/45 'W. The median transverse ridge appears to have been produced by normal seafloor spreading at this center and bears identifiable Vine-Matthews magnetic anomalies. A transverse ridge along the eastern inactive part of the northern transform may be an intrusive feature. Considerable thickness of sediment appear to have been deposited in the northern transform valley from Norwegian Sea overflow water passing through the fracture zone, but transverse ridges have prevented the sediment reaching the southern valley.

  16. Topical report on subsurface fracture mapping from geothermal wellbores. Phase I. Pulsed radar techniques. Phase II. Conventional logging methods. Phase III. Magnetic borehole ranging

    SciTech Connect

    Hartenbaum, B.A.; Rawson, G.

    1980-09-01

    To advance the state-of-the-art in Hot Dry Rock technology, an evaluation is made of (i) the use of radar to map far-field fractures, (ii) the use of more than twenty different conventional well logging tools to map borehole-fracture intercepts, and (iii) the use of magnetic dipole ranging to determine the relative positions of the injection well and the production well within the fractured zone. It is found that according to calculations, VHF backscatter radar has the potential for mapping fractures within a distance of 50 +- 20 meters from the wellbore. A new technique for improving fracture identification is presented. Analyses of extant data indicate that when used synergistically the (1) caliper, (2) resistivity dipmeter, (3) televiewer, (4) television, (5) impression packer, and (6) acoustic transmission are useful for mapping borehole-fracture intercepts. Improvements in both data interpretation techniques and high temperature operation are required. The surveying of one borehole from another appears feasible at ranges of up to 200 to 500 meters by using a low frequency magnetic field generated by a moderately strong dipole source (a solenoid) located in one borehole, a sensitive B field detector that traverses part of the second borehole, narrow band filtering, and special data inversion techniques.

  17. Trans-Endplate Pedicle Pillar System in Unstable Spinal Burst Fractures: Design, Technique, and Mechanical Evaluation

    PubMed Central

    Zhao, Chunfeng; Hongo, Michio; Ilharreborde, Brice; Zhao, Kristin D.; Currier, Bradford L.; An, Kai-Nan

    2015-01-01

    Background Short-segment pedicle screw instrumentation (SSPI) is used for unstable burst fractures to correct deformity and stabilize the spine for fusion. However, pedicle screw loosening, pullout, or breakage often occurs due to the large moment applied during spine motion, leading to poor outcomes. The purpose of this study was to test the ability of a newly designed device, the Trans-Endplate Pedicle Pillar System (TEPPS), to enhance SSPI rigidity and decrease the screw bending moment with a simple posterior approach. Methods Six human cadaveric spines (T11-L3) were harvested. A burst fracture was created at L1, and the SSPI (Moss Miami System) was used for SSPI fixation. Strain gauge sensors were mounted on upper pedicle screws to measure screw load bearing. Segmental motion (T12-L2) was measured under pure moment of 7.5 Nm. The spine was tested sequentially under 4 conditions: intact; first SSPI alone (SSPI-1); SSPI+TEPPS; and second SSPI alone (SSPI-2). Results SSPI+TEPPS increased fixation rigidity by 41% in flexion/extension, 28% in lateral bending, and 37% in axial rotation compared with SSPI-1 (P<0.001), and it performed even better compared to SSPI-2 (P<0.001 for all). Importantly, the bending moment on the pedicle screws for SSPI+TEPPS was significantly decreased 63% during spine flexion and 47% in lateral bending (p<0.001). Conclusion TEPPS provided strong anterior support, enhanced SSPI fixation rigidity, and dramatically decreased the load on the pedicle screws. Its biomechanical benefits could potentially improve fusion rates and decrease SSPI instrumentation failure. PMID:26502352

  18. Nose fracture

    MedlinePlus

    Fracture of the nose; Broken nose; Nasal fracture; Nasal bone fracture; Nasal septal fracture ... A fractured nose is the most common fracture of the face. It ... with other fractures of the face. Sometimes a blunt injury can ...

  19. A new technique for lag screw placement in the dynamic hip screw fixation of intertrochanteric fractures: decreasing radiation time dramatically

    PubMed Central

    Sheng, Wei-Chao; Li, Jia-Zhen; Chen, Sheng-Hua

    2008-01-01

    The goal of this study was to confirm the decrease in radiation time required for a new technique to place dynamic hip screws (DHS) in intertrochanteric fractures. Seventy-six patients were treated with DHS by either the new technique (NT) or the conventional technique (CT). The width of femoral shaft, the length of the hip screw to be implanted into the injured side, and the distance between the tip of the greater trochanter and the entry point of the guide wire were measured at the uninjured side on the anteroposterior pelvic radiograph preoperatively, and the actual width of the injured femoral shaft was measured intra-operatively. Finally, the entry point and the length of hip screw were obtained through an equation. Mean radiation time of the NT patients (24.57 ± 7.80 s) was significantly shorter than the CT patients (54.2 ± 18.26 s) (P  < 0.001). The new technique decreased radiation time dramatically in DHS fixation. PMID:18265981

  20. Slab coupled optical fiber sensor calibration

    NASA Astrophysics Data System (ADS)

    Whitaker, B.; Noren, J.; Chadderdon, S.; Wang, W.; Forber, R.; Selfridge, R.; Schultz, S.

    2013-02-01

    This paper presents a method for calibrating slab coupled optical fiber sensors (SCOS). An automated system is presented for selecting the optimal laser wavelength for use in SCOS interrogation. The wavelength calibration technique uses a computer sound card for both the creation of the applied electric field and the signal detection. The method used to determine the ratio between the measured SCOS signal and the applied electric field is also described along with a demonstration of the calibrated SCOS involving measuring the dielectric breakdown of air.

  1. Slab fluid release: localized in space and time

    NASA Astrophysics Data System (ADS)

    John, T.; Gussone, N. C.; Podladchikov, Y. Y.

    2012-12-01

    the amount of precipitated carbonate during flow. This indicates that some fraction of the slab fluid was liberated by sub-crustal dehydration, then transported over up to km scales within the overlying oceanic crust. Lithium chronometry is currently the tool of choice to obtain information on the duration of fluid flow and fluid-rock interaction. In a structure like our reaction selvage, the advective component of the element transport is focused into fracture-related porosity, e.g., into the vein. Consequently, for such a fluid-dominated system, element transport within unfractured rock adjacent to a fluid conduit is dominantly diffusive and can be treated as having resulted from bulk diffusion. Element transport occurs exclusively within the fluid-filled interconnected porosity and exchange with minerals occurs through dissolution-precipitation reactions. While the Ca isotopes indicate that intra slab fluid flow is highly channelized and that the released fluids travel through slabs along major conduits, Li-diffusion modeling shows that this fluid flow occurs in a pulse-like manner of less than ~200 years duration. This implies that even though the overall slab dehydration is a continuous process, dehydrating slabs release their fluid by short-lived, channelized fluid-flow events. Such pulses could feed arc magma sources with aqueous fluids, with these fluids traversing the slab-wedge interface in transient hydraulic fractures.

  2. Electromagnetic and ultrasonic investigations on a roman marble slab

    NASA Astrophysics Data System (ADS)

    Capizzi, Patrizia; Cosentino, Pietro L.

    2010-05-01

    The archaeological Museum of Rome (Museo delle Terme di Diocleziano) asked our group about the physical consistency of a marble slab (II - III century AD) that has recently fallen down during the transportation for an exhibition. In fact, due to insurance conflict, it was necessary to control the new fractures due to the recent accident and distinguish them from the ancient ones. The sculptured slab (today's size is 1280 x 70 x 9 cm), cut at the ends for a re-use as an inscription in the rear face, was restored (assemblage of different broken parts and cleaning) in contemporary times. We used different methodologies to investigate the slab: namely a pacometer (Protovale Elcometer) to individuate internal coupling pins, GPR (2000 MHz) and Ultrasonic (55 kHz) tomographic high-density surveys to investigate the internal extension of all the visible fractures and to search for the unknown internal ones. For every methodology used the quality of the acquired data was relatively high. They have been processed and compared to give a set of information useful for the bureaucratic problems of the Museum. Later on, the data have been processed in depth, for studying how to improve the data processing and for extracting all the information contained in the whole set of experimental data. Finally, the results of such a study in depth are exposed in detail.

  3. A wrinkly phononic crystal slab

    NASA Astrophysics Data System (ADS)

    Bayat, Alireza; Gordaninejad, Faramarz

    2015-03-01

    The buckling induced surface instability is employed to propose a tunable phononic crystal slab composed of a stiff thin film bonded on a soft elastomer. Wrinkles formation is used to generate one-dimensional periodic scatterers at the surface of a finitely thick slab. Wrinkles' pattern change and corresponding stress is employed to control wave propagation triggered by a compressive strain. Simulation results show that the periodic wrinkly structure can be used as a transformative phononic crystal which can switch band diagram of the structure in a reversible behavior. Results of this study provide opportunities for the smart design of tunable switch and elastic wave filters at ultrasonic and hypersonic frequency ranges.

  4. Phase conjugated slab laser designator

    SciTech Connect

    Chandra, S.; Paul, J.L.

    1989-06-06

    A laser designator is described comprising a laser pump means; a high power phase conjugated slab laser amplifier formed of GSGG:Cr:Nd as a lasing material on one side of the pump means; a low power rod shaped laser oscillator on the opposite side of the pump means; and a first plurality of optical reflecting and refracting means for directing and shaping a laser beam which surrounds the pump means and passes through the rod and slab; and a telescope means coupled to the beam to direct it to a distant target.

  5. OSTEOSYNTHESIS OF PROXIMAL HUMERAL END FRACTURES WITH FIXED-ANGLE PLATE AND LOCKING SCREWS: TECHNIQUE AND RESULTS

    PubMed Central

    Cohen, Marcio; Amaral, Marcus Vinicius; Monteiro, Martim; Brandão, Bruno Lobo; Motta Filho, Geraldo Rocha

    2015-01-01

    Describe the results of proximal humeral fractures surgically treated with the Philos locking plate system. Method: Between March 2003 and October 2004 we prospectively reviewed 24 of 26 patients with proximal humerus fractures treated with a Philos plate. The mean follow-up time was 12 months and the mean age of patients was 57 years. Six patients had four-part proximal humerus fractures, 11 patients had three-part proximal humerus fractures, and nine patients had two-part proximal humerus fractures. Clinical evaluation was performed using the University of California at Los Angeles (UCLA) criteria. Results: The mean UCLA score was 30 points (17-34). All fractures showed union. Three patients showed fracture union at varus position. The mean UCLA score for these patients was 27 points. Conclusion: Osteosynthesis with Philos plate provides a stable fixation method with good functional outcome. PMID:26998460

  6. Maxus challenges fracture techniques, brings in the best wells in 20 years

    SciTech Connect

    Lyle, D.

    1995-10-01

    Combining a look at old ideas and new techniques gave Maxus a string of better Texas Panhandle wells. This report describes the results of an analysis performed utilizing the program FRACPRO which has real time analysis capabilities. The analysis indicated poor proppant placement.

  7. WHAT ABOUT WHEN SUB-SLAB DEPRESSURIZATION DOESN'T WORK WELL?

    EPA Science Inventory

    The paper discusses the mitigation of radon levels in basementhouses when sub-slab depressurization (SSD), a widely usedmitigation technique, is not a viable option. or example, in somehouses the slab is poured directly on the soil, resulting inpoor-to-nonexistent communication u...

  8. How mantle slabs drive plate tectonics.

    PubMed

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-01

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction. PMID:12364804

  9. Biomechanical study in polyurethane mandibles of different metal plates and internal fixation techniques, employed in mandibular angle fractures.

    PubMed

    Semeghini Guastaldi, Fernando Pozzi; Hochuli-Vieira, Eduardo; Guastaldi, Antonio Carlos

    2014-11-01

    The aim of this study was to perform a physicochemical and morphological characterization and compare the mechanical behavior of an experimental Ti-Mo alloy to the analogous metallic Ti-based fixation system, for mandibular angle fractures. Twenty-eight polyurethane mandibles were uniformly sectioned on the left angle. These were divided into 4 groups: group Eng 1P, one 2.0-mm plate and 4 screws 6 mm long; group Eng 2P, two 2.0-mm plates, the first fixed with 4 screws 6 mm long and the second with 4 screws 12 mm long. The same groups were created for the Ti-15Mo alloy. Each group was subjected to linear vertical loading at the first molar on the plated side in a mechanical testing unit. Means and standard deviations were compared with respect to statistical significance using ANOVA. The chemical composition of the Ti-15Mo alloy was close to the nominal value. The mapping of Mo and Ti showed a homogeneous distribution. SEM of the screw revealed machining debris. For the plates, only the cpTi plate undergoes a surface treatment. The metallographic analysis reveals granular microstructure, from the thermomechanical trials. A statistically significant difference was found (P < 0.05) when the comparison between both internal fixation techniques was performed. The 2P technique showed better mechanical behavior than 1P. PMID:25340696

  10. Nose fracture

    MedlinePlus

    Fracture of the nose; Broken nose; Nasal fracture; Nasal bone fracture; Nasal septal fracture ... A fractured nose is the most common fracture of the face. It usually occurs after an injury and often occurs with ...

  11. Reattachment of a fractured fragment with relined fiber post using indirect technique: a case report

    PubMed Central

    Kim, Eun-Soo; Min, Kyung-San; Yu, Mi-Kyung

    2014-01-01

    Although fiber-reinforced posts have been widely used, they sometimes fail to obtain sufficient retention because of an extremely large canal space. To address this, several techniques have been introduced including relining of the fiber-reinforced posts. Here, we used a relined glass-fiber post to increase retention and fitness to the root canal in a crown reattachment case. The relining procedure was performed by using an indirect method on the working cast. This case also highlights the esthetic concerns regarding dehydration of the attached crown fragment. PMID:25383353

  12. Elbow hemiarthroplasty for the management of distal humeral fractures: current technique, indications and results.

    PubMed

    Phadnis, Joideep; Watts, Adam C; Bain, Gregory I

    2016-07-01

    There has been a growing recent interest in the use of elbow hemiarthroplasty for the treatment of distal humeral trauma in select patients. However, the current available evidence regarding outcome after elbow hemiarthroplasty is limited to case series and biomechanical data. Consequently, the procedure remains unfamiliar to many surgeons. The aim of the present review is to outline the evidence regarding elbow hemiarthroplasty and to use this, along with the author's experience, to better describe the indications, surgical technique and outcomes after this procedure. PMID:27583016

  13. Elbow hemiarthroplasty for the management of distal humeral fractures: current technique, indications and results

    PubMed Central

    Watts, Adam C; Bain, Gregory I

    2016-01-01

    There has been a growing recent interest in the use of elbow hemiarthroplasty for the treatment of distal humeral trauma in select patients. However, the current available evidence regarding outcome after elbow hemiarthroplasty is limited to case series and biomechanical data. Consequently, the procedure remains unfamiliar to many surgeons. The aim of the present review is to outline the evidence regarding elbow hemiarthroplasty and to use this, along with the author’s experience, to better describe the indications, surgical technique and outcomes after this procedure.

  14. Effects of triggering mechanism on snow avalanche slope angles and slab depths from field data

    NASA Astrophysics Data System (ADS)

    McClung, David M.

    2013-04-01

    Field data from snow avalanche fracture lines for slope angle and slab depth (measured perpendicular to the weak layer) were analyzed for different triggering mechanisms. For slope angle, the results showed that the same probability density function (pdf) (of log-logistic type) and range (25 - 55 degrees) apply independent of triggering mechanism. For slab depth, the same pdf (generalized extreme value) applies independent of triggering mechanism. For both slope angle and slab depth, the data skewness differentiated between triggering mechanism and increased with applied triggering load. For slope angle, skewness is lowest for natural triggering by snow loads and highest for triggering from human intervention. For slab depth, the skewness is lowest for natural triggering and highest for a mix of triggers including explosive control with skier triggering being intermediate. The results reveal the effects of triggering mechanism which are important for risk analyses and to guide avalanche forecasting.

  15. Optical distortions in end-pumped zigzag slab lasers.

    PubMed

    Tang, Bing; Zhou, Tangjian; Wang, Dan; Li, Mi

    2015-04-01

    Ray tracing is performed to investigate the optical distortions in the end-pumped, zigzag slab. Optical path differences caused by temperature, slab deformation, and stress birefringence are calculated under uniform pumping; the results show a steep edge in the width dimension and a thermal lens with an effective focal length as short as several meters in the thickness dimension. Dependence of depolarization on total internal reflection phase retardance as well as the slab's cut angle is studied by the Jones matrix technique; results show that although at the pumping power of 10 kW, the mean depolarization of the 2.5  mm×30  mm×150.2  mm Nd:YAG slab is generally below 3%, and it increases rapidly with pumping power. Besides, for the 0°- or 60°-cut slab, an optimal phase retardance range of 5° to 13° exists, in which the depolarization loss can be lower than 0.5%. Finally, experiments on temperature and depolarization measurements verify the numerical results. PMID:25967178

  16. Skull fracture

    MedlinePlus

    Basilar skull fracture; Depressed skull fracture; Linear skull fracture ... Skull fractures may occur with head injuries . The skull provides good protection for the brain. However, a severe impact ...

  17. Search for deep slabs in the Northwest Pacific mantle.

    PubMed

    Zhou, H W; Anderson, D L

    1989-11-01

    A residual sphere is formed by projecting seismic ray travel-time anomalies, relative to a reference Earth model, onto an imaginary sphere around an earthquake. Any dominant slab-like fast band can be determined with spherical harmonic expansion. The technique is useful in detecting trends associated with high-velocity slabs beneath deep earthquakes after deep-mantle and near-receiver effects are removed. Two types of corrections are used. The first uses a tomographic global mantle model; the second uses teleseismic station averages of residuals from many events over a large area centered on the events of interest. Under the Mariana, Izu-Bonin, and Japan trenches, the dominant fast bands are generally consistent with seismicity trends. The results are unstable and differ from the seismicity trend for Kurile events. The predominant fast band for most deep earthquakes under Japan is subhorizontal rather than near vertical. We find little support for the deep slab penetration hypothesis. PMID:16594080

  18. Seismicity and structure in central Mexico: Evidence for a possible slab tear in the South Cocos plate

    NASA Astrophysics Data System (ADS)

    Dougherty, Sara L.; Clayton, Robert W.

    2014-04-01

    The morphology of the transition from flat to normal subduction in eastern central Mexico is explored using intraslab earthquakes recorded by temporary and permanent regional seismic arrays. Observations of a sharp transition in slab dip near the abrupt end of the Trans-Mexican Volcanic Belt (TMVB) suggest a possible slab tear located within the subducted South Cocos plate. The eastern lateral extent of a thin ultra-slow velocity layer (USL) imaged atop the Cocos slab in recent studies along the Meso America Subduction Experiment array is examined here using additional data. We find an end to this USL which is coincident with the western boundary of a zone of decreased seismicity and the end of the TMVB near the sharp transition in slab dip. Waveform modeling of the 2-D structure in this region using a finite difference algorithm provides constraints on the velocity and geometry of the slab's seismic structure and confirms the location of the USL. Analysis of intraslab seismicity patterns reveals clustering, sudden increase in depth, variable focal mechanism orientations and faulting types, and alignment of source mechanisms along the sharp transition in slab dip. The seismicity and structural evidence suggests a possible tear in the South Cocos slab. This potential tear, together with the tear along the Orozco Fracture Zone to the northwest, indicates a slab rollback mechanism in which separate slab segments move independently, allowing for mantle flow between the segments.

  19. COMBINING A NEW 3-D SEISMIC S-WAVE PROPAGATION ANALYSIS FOR REMOTE FRACTURE DETECTION WITH A ROBUST SUBSURFACE MICROFRACTURE-BASED VERIFICATION TECHNIQUE

    SciTech Connect

    Bob Hardage; M.M. Backus; M.V. DeAngelo; R.J. Graebner; S.E. Laubach; Paul Murray

    2004-02-01

    Fractures within the producing reservoirs at McElroy Field could not be studied with the industry-provided 3C3D seismic data used as a cost-sharing contribution in this study. The signal-to-noise character of the converted-SV data across the targeted reservoirs in these contributed data was not adequate for interpreting azimuth-dependent data effects. After illustrating the low signal quality of the converted-SV data at McElroy Field, the seismic portion of this report abandons the McElroy study site and defers to 3C3D seismic data acquired across a different fractured carbonate reservoir system to illustrate how 3C3D seismic data can provide useful information about fracture systems. Using these latter data, we illustrate how fast-S and slow-S data effects can be analyzed in the prestack domain to recognize fracture azimuth, and then demonstrate how fast-S and slow-S data volumes can be analyzed in the poststack domain to estimate fracture intensity. In the geologic portion of the report, we analyze published regional stress data near McElroy Field and numerous formation multi-imager (FMI) logs acquired across McElroy to develop possible fracture models for the McElroy system. Regional stress data imply a fracture orientation different from the orientations observed in most of the FMI logs. This report culminates Phase 2 of the study, ''Combining a New 3-D Seismic S-Wave Propagation Analysis for Remote Fracture Detection with a Robust Subsurface Microfracture-Based Verification Technique''. Phase 3 will not be initiated because wells were to be drilled in Phase 3 of the project to verify the validity of fracture-orientation maps and fracture-intensity maps produced in Phase 2. Such maps cannot be made across McElroy Field because of the limitations of the available 3C3D seismic data at the depth level of the reservoir target.

  20. Dermal Fenestration With Negative Pressure Wound Therapy: A Technique for Managing Soft Tissue Injuries Associated With High-Energy Complex Foot Fractures.

    PubMed

    Poon, Henrietta; Le Cocq, Heather; Mountain, Alistair J; Sargeant, Ian D

    2016-01-01

    Military casualties can sustain complex foot fractures from blast incidents. This frequently involves the calcaneum and is commonly associated with mid-foot fracture dislocations. The foot is at risk of both compartment syndrome and the development of fracture blisters after such injuries. The amount of energy transfer and the environment in which the injury was sustained also predispose patients to potential skin necrosis and deep infection. Decompression of the compartments is a part of accepted practice in civilian trauma to reduce the risk of complications associated with significant soft tissue swelling. The traditional methods of foot fasciotomy, however, are not without significant complications. We report a simple technique of dermal fenestration combined with the use of negative pressure wound therapy, which aims to preserve the skin integrity of the foot without resorting to formal fasciotomy. PMID:26443232

  1. DESIGN AND TESTING OF SUB-SLAB DEPRESSURIZATION FOR RADON MITIGATION IN NORTH FLORIDA HOUSES - PART I. PERFORMANCE AND DURABILITY - VOLUME 2. DATA APPENDICES

    EPA Science Inventory

    The report gives results of a demonstration/research project to evaluate sub-slab depressurization (SSD) techniques for radon mitigation in North Florida where the housing stock is primarily slab-on-grade and the sub-slab medium typically consists of native soil and sand. Objecti...

  2. DESIGN AND TESTING OF SUB-SLAB DEPRESSURIZATION FOR RADON MITIGATION IN NORTH FLORIDA HOUSES - PART I. PERFORMANCE AND DURABILITY - VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a demonstration/research project to evaluate sub-slab depressurization (SSD) techniques for radon mitigation in North Florida where the housing stock is primarily slab-on-grade and the sub-slab medium typically consists of native soil and sand. Objecti...

  3. Vibration characteristics of floating slab track

    NASA Astrophysics Data System (ADS)

    Kuo, Chen-Ming; Huang, Cheng-Hao; Chen, Yi-Yi

    2008-11-01

    Coupled equilibrium equations of suspended wheels and floating slab track system were solved with the fourth-order Runge-Kutta method to obtain the deflections, vibration velocities, and wheel-rail contact forces. The program was validated through several aspects. Cases with various vehicle speed, slab mass, and stiffness of slab bearing were analyzed to reveal the effects of slab bearing on track responses. The correlation between wheel-rail resonance and train speed was also discussed. It was found that rail deflections increase significantly as train speed increases. Although large slab mass may lower tuning frequency, it could also result in higher wheel-rail contact force and rail deflections. The floating slab track is effective in isolating loading above 10 Hz, which might present in some railway sections with irregularities. Adopting floating slab track for vibration control for environment along the railway may cause concerns about ride quality and track damages.

  4. Treatment of close-range, low-velocity gunshot fractures of tibia and femur diaphysis with consecutive compression-distraction technique: a report of 11 cases.

    PubMed

    Ateşalp, A Sabri; Kömürcü, Mahmut; Demiralp, Bahtiyar; Bek, Dogan; Oğuz, Erbil; Yanmiş, Ibrahim

    2004-01-01

    Lower extremity injuries secondary to close-range, low-velocity gunshot wounds are frequently seen in both civilian and military populations. A close-range, low-velocity injury produces high energy and often results in comminuted and complicated fractures with significant morbidity. In this study, four femoral, four tibial, and three combined tibia and fibular comminuted diaphyseal fractures secondary to close-range, low-velocity gunshot wounds in 11 military personnel were treated with debridement followed by compression-distraction lengthening using a circular external fixator frame. Fracture union was obtained in all without significant major complications. Fracture consolidation occurred at a mean of 3.5 months. At follow-up of 46.8 months, there were no delayed unions, nonunions, or malunions. Minor complications included four pin-tract infections and knee flexion limitation in two femur fractures. Osteomyelitis and deep soft tissue infection were not observed. This technique provided an alternative to casting, open reduction internal fixation, or intermedullary fixation with an acceptable complication rate. PMID:15281409

  5. Seismic-reflection technique used to verify shallow rebound fracture zones in the Pierre Shale of South Dakota ( USA).

    USGS Publications Warehouse

    Nichols, T.C., Jr.; King, K.W.; Collins, D.S.; Williams, R.A.

    1988-01-01

    Shallow seismic-reflection data are presented to demonstrate their usefulness for locating and showing the continuity and lateral extent of rebound fracture zones in the Pierre Shale. Rebound fracture zones, identified in boreholes near Hayes, South Dakota, have variable depth, thickness, and character, thus making questionable the correlation of these zones between holes. Thus, the subsequent determination of dip and of continuity of the zones is somewhat tenuous, especially if the fracture characteristics change significantly between holes. Once rebound fracture zones have been identified and located by borehole geotechnical and geologic data, seismic profiles can reveal the extent and geometry of fractures in these zones, thus providing valuable preconstruction information without the cost of additional drilling.-Authors

  6. The effect of amount of lost tooth structure and restorative technique on fracture resistance of endodontically treated premolars

    PubMed Central

    Bassir, Mahshid Mohammadi; Labibzadeh, Akram; Mollaverdi, Fatemeh

    2013-01-01

    Aim: Endodontic treatment generally reduces the fracture resistance of teeth. The purpose of this study was to evaluate the fracture resistance and the mode of fracture of endodontically treated human premolars with different amounts of remaining tooth structure. Materials and Methods: Seventy non-carious human premolars were randomly assigned into 7 groups. Group 1 (ST) did not receive any preparation. The teeth in groups 2-7 received root canal treatment and different preparations. Group 2 (MO-NF): Mesio-occlusal preparation without filling; Group 3 (MOD-NF): Mesio-occluso-distal preparation without filling; Group 4 (MO-F): Mesio-occlusal preparation with direct composite restoration (Z250); Group 5 (MOD-F): Mesio-occluso-distal preparation with direct composite restoration (Z250); Group 6 (CC-D): Mesio-occluso-distal preparation with cusp reduction and direct composite restoration (Z250); Group 7 (CC-InD): Mesio-occluso-distal preparation with cusp reduction and indirect composite restoration (Gradia GC). The fracture resistance (N) was assessed under compressive load in a universal testing machine (Zwick) perpendicular to the occlusal surface at a cross-head speed of 1 mm/min, and the mode of fracture was assessed under stereomicroscope. Statistical analysis: Data was analyzed by Kruskal – Wallis and Mann – Whitney tests and the mode of fracture was analyzed by Chi-square test (P < 0.05). Results: Statistical analysis showed that MO and MOD cavity preparations significantly reduced the fracture resistance of sound teeth. Direct composite restorations can improve the fracture resistance, and Groups 7 and 6 presented the highest fracture resistance values. Conclusions: Teeth with adhesive restorations showed significantly higher fracture resistance values as compared with the non-restored ones. PMID:24082569

  7. Surgical Fixation of Sternal Fractures: Preoperative Planning and a Safe Surgical Technique Using Locked Titanium Plates and Depth Limited Drilling

    PubMed Central

    Schulz-Drost, Stefan; Oppel, Pascal; Grupp, Sina; Schmitt, Sonja; Carbon, Roman Th.; Mauerer, Andreas; Hennig, Friedrich F.; Buder, Thomas

    2015-01-01

    Different ways to stabilize a sternal fracture are described in literature. Respecting different mechanisms of trauma such as the direct impact to the anterior chest wall or the flexion-compression injury of the trunk, there is a need to retain each sternal fragment in the correct position while neutralizing shearing forces to the sternum. Anterior sternal plating provides the best stability and is therefore increasingly used in most cases. However, many surgeons are reluctant to perform sternal osteosynthesis due to possible complications such as difficulties in preoperative planning, severe injuries to mediastinal organs, or failure of the performed method. This manuscript describes one possible safe way to stabilize different types of sternal fractures in a step by step guidance for anterior sternal plating using low profile locking titanium plates. Before surgical treatment, a detailed survey of the patient and a three dimensional reconstructed computed tomography is taken out to get detailed information of the fracture’s morphology. The surgical approach is usually a midline incision. Its position can be described by measuring the distance from upper sternal edge to the fracture and its length can be approximated by the summation of 60 mm for the basis incision, the thickness of presternal soft tissue and the greatest distance between the fragments in case of multiple fractures. Performing subperiosteal dissection along the sternum while reducing the fracture, using depth limited drilling, and fixing the plates prevents injuries to mediastinal organs and vessels. Transverse fractures and oblique fractures at the corpus sterni are plated longitudinally, whereas oblique fractures of manubrium, sternocostal separation and any longitudinally fracture needs to be stabilized by a transverse plate from rib to sternum to rib. Usually the high convenience of a patient is seen during follow up as well as a precise reconstruction of the sternal morphology. PMID

  8. Mantle flow and dynamic topography associated with slab window opening: Insights from laboratory models

    NASA Astrophysics Data System (ADS)

    Guillaume, Benjamin; Moroni, Monica; Funiciello, Francesca; Martinod, Joseph; Faccenna, Claudio

    2010-12-01

    We present dynamically self-consistent mantle-scale laboratory models that have been conducted to improve our understanding of the influence of slab window opening on subduction dynamics, mantle flow and associated dynamic topography over geological time scales. The adopted setup consists of a two-layer linearly viscous system simulating the subduction of a fixed plate of silicone (lithosphere) under negative buoyancy in a viscous layer of glucose syrup (mantle). Our experimental setting is also characterized by a constant-width rectangular window located at the center of a laterally confined slab, modeling the case of the interaction of a trench-parallel spreading ridge with a wide subduction zone. We found that the opening of a slab window does not produce consistent changes of the geometry and the kinematics of the slab. On the contrary, slab-induced mantle circulation, quantified both in the vertical and horizontal sections using the Feature Tracking image analysis technique, is strongly modified. In particular, rollback subduction and the opening of the slab window generate a complex mantle circulation pattern characterized by the presence of poloidal and toroidal components, with the importance of each evolving according to kinematic stages. Mantle coming from the oceanic domain floods through the slab window, indenting the supra-slab mantle zone and producing its deformation without any mixing between mantle portions. The opening of the slab window and the upwelling of sub-slab mantle produce a regional-scale non-isostatic topographic uplift of the overriding plate that would correspond to values ranging between ca. 1 and 5 km in nature. Assuming that our modeling results can be representative of the natural behavior of subduction zones, we compared them to the tectonics and volcanism of the Patagonian subduction zone. We found that the anomalous backarc volcanism that has been developing since the middle Miocene could result from the lateral flow of sub-slab

  9. Wet or dry bandages for plaster back-slabs?

    PubMed

    Baliga, Santosh; Finlayson, D

    2012-12-01

    Cotton crêpe and stretch bandages are commonly used in back-slabs and casts in orthopaedic practice. In theory they allow swelling to occur after injury while splinting the fracture. The application of a wet bandage prevents the Plaster-of-Paris (POP) setting too rapidly, giving time to apply a mould or attain correct limb position. However, we hypothesised that a wet bandage contracts upon drying and may cause constriction of the splint. This study aimed at determining whether there was any significant change in length of commonly used bandages when wet as well as any further change when left to dry again. Two types of bandage were evaluated. 250 mm strips of bandage were dipped into water, gently squeezed and laid flat on a bench. The bandage was then immediately measured in length. The strips were then left to dry and re-measured. This experimental study shows that both cotton crepe and cling significantly shrink by around 7% when wet. This phenomenon has the potential to significantly increase the pressure exerted on the limb by a back-slab. We speculate that the application of wet bandages is why some back-slabs may need released. It is therefore recommended that bandages should be applied only in the dry form. PMID:22079697

  10. Preface: Deep Slab and Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Suetsugu, Daisuke; Bina, Craig R.; Inoue, Toru; Wiens, Douglas A.

    2010-11-01

    We are pleased to publish this special issue of the journal Physics of the Earth and Planetary Interiors entitled "Deep Slab and Mantle Dynamics". This issue is an outgrowth of the international symposium "Deep Slab and Mantle Dynamics", which was held on February 25-27, 2009, in Kyoto, Japan. This symposium was organized by the "Stagnant Slab Project" (SSP) research group to present the results of the 5-year project and to facilitate intensive discussion with well-known international researchers in related fields. The SSP and the symposium were supported by a Grant-in-Aid for Scientific Research (16075101) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. In the symposium, key issues discussed by participants included: transportation of water into the deep mantle and its role in slab-related dynamics; observational and experimental constraints on deep slab properties and the slab environment; modeling of slab stagnation to constrain its mechanisms in comparison with observational and experimental data; observational, experimental and modeling constraints on the fate of stagnant slabs; eventual accumulation of stagnant slabs on the core-mantle boundary and its geodynamic implications. This special issue is a collection of papers presented in the symposium and other papers related to the subject of the symposium. The collected papers provide an overview of the wide range of multidisciplinary studies of mantle dynamics, particularly in the context of subduction, stagnation, and the fate of deep slabs.

  11. Age-dependent fracture risk in hip revisions with radial impaction grafting technique: a 5-10 year medium-term follow-up study.

    PubMed

    Chomrikh, Laila; Gebuhr, Peter; Bierling, Roelf; Lind, Ulla; Zwart, Hendrik J J

    2014-02-01

    Radial impaction grafting (RIG) potentially improves the durability and reliability of cementing the femoral components in revision total hip arthroplasty (THA). In this multicenter, prospective study, 88 revision THAs (87 patients) with RIG technique were performed. The average follow-up time was 7.0 years (range, 5.0-10.2). There were 14 femur fractures: 2 intraoperative, 5 within 3 months after surgery, and 7 later in the postoperative stage (range, 5-84 months). Sixteen patients were lost to follow-up and 20 died without stem re-revision. None of the patients have been re-revised for any reason during follow-up. Age was observed to be a significant factor for determining fracture risk. In conclusion, RIG can be considered a reliable surgical technique, especially for younger patients. PMID:23891061

  12. Infraorbital nerve transpositioning into orbital floor: a modified technique to minimize nerve injury following zygomaticomaxillary complex fractures

    PubMed Central

    Kotrashetti, Sharadindu Mahadevappa; Kale, Tejraj Pundalik; Bhandage, Supriya

    2015-01-01

    Objectives Transpositioning of the inferior alveolar nerve to prevent injury in lower jaw has been advocated for orthognathic, pre-prosthetic and for implant placement procedures. However, the concept of infra-orbital nerve repositioning in cases of mid-face fractures remains unexplored. The infraorbital nerve may be involved in trauma to the zygomatic complex which often results in sensory disturbance of the area innervated by it. Ten patients with infraorbital nerve entrapment were treated in similar way at our maxillofacial surgery centre. Materials and Methods In this article we are reporting three cases of zygomatico-maxillary complex fracture in which intra-operative repositioning of infra-orbital nerve into the orbital floor was done. This was done to release the nerve from fractured segments and to reduce the postoperative neural complications, to gain better access to fracture site and ease in plate fixation. This procedure also decompresses the nerve which releases it off the soft tissue entrapment caused due to trauma and the organized clot at the fractured site. Results There was no evidence of sensory disturbance during their three month follow-up in any of the patient. Conclusion Infraorbital nerve transposition is very effective in preventing paresthesia in patients which fracture line involving the infraorbital nerve. PMID:25922818

  13. Stabilization of Volar Ulnar Rim Fractures of the Distal Radius: Current Techniques and Review of the Literature.

    PubMed

    O'Shaughnessy, Maureen A; Shin, Alexander Y; Kakar, Sanjeev

    2016-05-01

    Background Distal radius fractures involving the lunate facet can be challenging to manage. Reports have shown the volar carpal subluxation/dislocation that can occur if the facet is not appropriately stabilized. Literature Review Recent emphasis in the literature has underscored the difficulty in managing this fracture fragment, suggesting standard volar plates may not be able to adequately stabilize the fragment. This article reviews the current literature with a special emphasis on fixation with a specifically designed fragment-specific hook plate to secure the lunate facet. Case Description An extended flexor carpi radialis volar approach was made which allows access to the distal volar ulnar fracture fragment. Once provisionally stabilized with Kirschner wire fixation, a volar hook plate was applied to capture this fragment. Additional fracture stabilization was used as deemed necessary to stabilize the remaining distal radius fracture. Clinical Relevance The volar marginal rim fragment remains a challenge in distal radius fracture management. Use of a hook plate to address the volar ulnar corner allows for stable fixation without loss of reduction at intermediate-term follow-up. PMID:27104076

  14. Numerical Models of Subduction and Slab Detachment: Placing a Lower Bound on the Strength of Slabs

    NASA Astrophysics Data System (ADS)

    Billen, M. I.; Andrews, E.

    2007-12-01

    Subduction provides the main driving force for the motion of tectonic plates at the Earth's surface through slab- pull and sinking-induced flow in the surrounding mantle. The ability of the slab to directly transmit slab-pull forces to the tectonic plate at the surface depends on the minimum strength and rheology (e.g., viscous, plastic) of the slab. Previous models have shown that observations including the state of stress in slabs, dynamic topography and the geoid above slabs, the evolution of slab and the kinematic history of subduction can be well-matched by a variety of models with either low viscosity (i.e., 100-1,000 times more viscous than the surrounding mantle) or high viscosity slabs (i.e., more than 10,000 times more viscous than the surrounding mantle). However, in many of the models in which a good match to observations is found for low viscosity slabs, the maximum slab viscosity is imposed as a cut-off value, which forces the entire slab to have a more or less uniform viscosity independent of strain-rate or stress magnitude, rather than a plastic yielding-type rheology. We present numerical models demonstrating that when the non-Newtonian viscosity of the upper mantle and plastic yielding behavior of slabs are taken into account, the minimum yield strength that allows for continuous subduction is approximately 300- 500 MPa, which leads to high viscosity slabs with some localized lower viscosity regions. A yield stress of 10-100 MPa is required to form uniformly low viscosity slabs, but these slabs detach from the subducting plate, due to localized weakening, when the slab reaches a length of 200-300 km, even when subduction is facilitated by a low viscosity shear zone and kinematically-imposed surface velocities. In contrast, detachment of higher strength slabs in fully-dynamic models only occurs when the shear zone is removed and prevents further subduction.

  15. Comparative Evaluation of Fracture Resistance of Endodontically Treated Teeth Obturated with Resin Based Adhesive Sealers with Conventional Obturation Technique: An In vitro Study

    PubMed Central

    Langalia, Akshay K; Dave, Bela; Patel, Neeta; Thakkar, Viral; Sheth, Sona; Parekh, Vaishali

    2015-01-01

    Background: To compare fracture resistance of endodontically treated teeth obturated with different resin-based adhesive sealers with a conventional obturation technique. Materials and Methods: A total of 60 Single canaled teeth were divided into five groups. The first group was taken as a negative control. The rest of the groups were shaped using ProFile rotary files (Dentsply Maillefer, Ballaigues, Switzerland). The second group was obturated with gutta-percha and a ZOE-based sealer Endoflas FS (Sanlor Dental Products, USA). The third group was obturated with gutta-percha and an epoxy-based sealer AH Plus (Dentsply, DeTrey, Germany). The fourth group was obturated with Resilon (Pentron Clinical Technologies, Wallingford, CT) and RealSeal sealer (Pentron Clinical Technologies). The fifth group was obturated with EndoREZ points and EndoREZ sealer (both from Ultradent, South Jordan, UT). Roots were then embedded into acrylic blocks and were then fixed into a material testing system and loaded with a stainless steel pin with a crosshead speed of 5 mm/min until fracture. The load at which the specimen fractured was recorded in Newtons. Results: It was found that forces at fracture were statistically significant for the newer resin systems, Resilon, and EndoREZ. Conclusion: It was concluded that roots obturated with newer resin systems (Resilon and EndoREZ) enhanced the root strength almost up to the level of the intact roots. PMID:25859099

  16. Retrograde Intramedullary Nailing with a Blocking Pin Technique for Reduction of Periprosthetic Supracondylar Femoral Fracture after Total Knee Arthroplasty: Technical Note with a Compatibility Chart of the Nail to Femoral Component

    PubMed Central

    Hamada, Daisuke; Takasago, Tomoya; Tsutsui, Takahiko; Suzue, Naoto; Sairyo, Koichi

    2014-01-01

    Periprosthetic fractures after total knee arthroplasty (TKA) present a clear management challenge, and retrograde intramedullary nails have recently gained widespread acceptance in treatment of these fractures. In two cases, we found a blocking screw technique, first reported by Krettek et al., was useful in the reduction of the fractures. Both patients attained preinjury mobility after intramedullary nailing. Moreover, we present a chart summarizing the notch designs of various femoral components because some prosthetic knee designs are not amenable to retrograde nailing. We hope this will be helpful in determining indications for retrograde nailing in periprosthetic fractures after TKA. PMID:25574411

  17. Dynamic uplift during slab flattening

    NASA Astrophysics Data System (ADS)

    Dávila, Federico M.; Lithgow-Bertelloni, Carolina

    2015-09-01

    Subduction exerts a strong control on surface topography and is the main cause of large vertical motions in continents, including past events of large-scale marine flooding and tilting. The mechanism is dynamic deflection: the sinking of dense subducted lithosphere gives rise to stresses that directly pull down the surface. Here we show that subduction does not always lead to downward deflections of the Earth's surface. Subduction of young lithosphere at shallow angles (flat subduction) leaves it neutrally or even positively buoyant with respect to underlying mantle because the lithosphere is relatively warm compared with older lithosphere, and because the thickened and hence drier oceanic crust does not undergo the transformation of basalt to denser eclogite. Accounting for neutrally buoyant flat segments along with large variations in slab morphology in the South American subduction zone explains along-strike and temporal changes in dynamic topography observed in the geologic record since the beginning of the Cenozoic. Our results show that the transition from normal subduction to slab flattening generates dynamic uplift, preventing back-arc marine flooding.

  18. Evaluation of proximal femoral locking plate in unstable extracapsular proximal femoral fractures: Surgical technique & mid term follow up results☆

    PubMed Central

    Kumar, Nishikant; Kataria, Himanshu; Yadav, Chandrashekhar; Gadagoli, Bharath S.; Raj, Rishi

    2014-01-01

    Background Stable trochanteric femur fractures can be treated successfully with conventional implants such as sliding hip screw, cephalomedullary nails, angular blade plates. However comminuted and unstable inter or subtrochanteric fractures with or without osteoporosis are challenging & prone to complications. The PF-LCP is a new implant that allows angular stability by creating fixed angle block for treatment of complex, comminuted proximal femoral fractures. Method We reviewed 30 patients with unstable inter or subtrochanteric fractures, which were stabilized with PF-LCP. Mean age of patient was 65 years, and average operative time was 80 min. Patients were followed up for a period of 3 years (June 2010–June 2013). Patients were examined regularly at 3 weekly interval for signs of union (radiological & clinical), varus collapse (neck-shaft angle), limb shortening, and hardware failure. Result All patients showed signs of union at an average of 9 weeks (8–10 weeks), with minimum varus collapse (<10°), & no limb shortening and hardware failure. Results were analysed using IOWA (Larson) hip scoring. Average IOWA hip score was 77.5. Conclusion PF-LCP represents a feasible alternative for treatment of unstable inter- or subtrochanteric fractures. PMID:25983487

  19. Subducting Slabs: Jellyfishes in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, C.; Braun, J.; Husson, L.; Le Carlier de Veslud, C.; Thieulot, C.; Yamato, P.; Grujic, D.

    2010-12-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  20. Subducting slabs: Jellyfishes in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, Christelle; Braun, Jean; Husson, Laurent; Le Carlier de Veslud, Christian; Thieulot, Cedric; Yamato, Philippe; Grujic, Djordje

    2010-08-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  1. The effectiveness of the antegrade reamed technique: the experience and complications from 415 traumatic femoral shaft fractures

    PubMed Central

    Papadimitriou, George; Theodoratos, Gerasimos; Papanikolaou, Anastasios; Maris, John

    2009-01-01

    This retrospective study presents the experience gained through use of reamed femoral nails and reports results and respective complications. This study included 415 femur fractures (312 men and 101 women with a mean age of 27.8 years) that were treated from 1993 to 2004. The fractures were classified according to AO, and 74 open fractures were included and typed according to the Gustilo classification. Dynamic nailing was performed for nearly all type A fractures and static nailing for types B and C. After a mean follow-up of 1.5 years, union rate was 97.8%. The complications were: 9 non-unions, 14 delayed-unions, 4 torsional malunions, 6 limb length discrepancies (shortening) and 30 nerve pareses due to traction. Deep venous thrombosis (DVT) occurred below the knee in 4 patients, while there were recorded 3 pulmonary and 2 fat embolisms, 1 superficial and 1 deep infection. There were 28 broken screws identified postoperatively. Logistic regression analysis revealed that type B and C were associated with increased risk of complications, with respective odds ratios of 3.1 (95% CI = 1.3–7.2, P = 0.011) and 4.3 (95% CI = 1.8–10.3, P = 0.001) when compared to type A patterns. All patients returned to their activities in a mean time of 10 months. Intramedullary nailing is still the treatment of choice for femoral shaft fractures, but knowledge of potential complications and their association with certain fracture patterns is needed. PMID:19936887

  2. Outcomes After Fixation of Proximal Humerus (OTA Type 11) Fractures in the Elderly Patients Using Modern Techniques

    PubMed Central

    Shulman, Brandon S.; Ong, Crispin C.; Lee, James H.; Karia, Raj; Zuckerman, Joseph D.; Egol, Kenneth A.

    2013-01-01

    Purpose To investigate the effects of age on the clinical, functional, and radiographic outcomes of patients with proximal humerus fractures treated operatively with locking plates. Methods Between February 2003 and July 2012, all patients who sustained a proximal humerus fracture who presented to our institution were enrolled into a database. Patients were followed up at 1, 6, 12, 26, and 52 weeks postoperatively with physical examination and radiographs. Validated functional outcomes scores were collected at 6 and 12 months. Complications were recorded as they occurred. Statistical analysis was conducted to assess for functional, physical, or radiographic differences between patients age younger than 65 and patients age 65 or older. Results Of the 147 consecutive patients treated operatively for a proximal humerus fracture, 115 (78%) patients with an average follow-up of 16 months met the inclusion criteria for this study. The young cohort (patients < 65) included 70 patients with an average age of 53, whereas the elderly cohort (patients ≥ 65) included 45 patients with an average age of 73. The older cohort had significantly more women (P = .04), but there was no statistical difference in fracture type between the age groups. There were no differences in the radiographic measures of screw penetration, humeral head height, and neck-shaft angle between the age groups. There were no differences in physical examination scores between the age groups. There were no significant differences in functional outcomes or complication rates between the age groups. Conclusion Treating proximal humerus fractures operatively with locked plates can overcome the challenges of poor bone quality that often occur with increasing age. Age should not play a significant role in the decision-making process for treating proximal humerus fractures that would otherwise be indicated for surgical fixation. PMID:23936736

  3. Combined Orbital Floor and Medial Wall Fractures Involving the Inferomedial Strut: Repair Technique and Case Series Using Preshaped Porous Polyethylene/Titanium Implants

    PubMed Central

    Cho, Raymond I.; Davies, Brett W.

    2013-01-01

    Background Combined orbital floor and medial wall fractures can be technically challenging to repair, particularly when the inferomedial strut is involved. A surgical repair technique is described utilizing a single preshaped porous polyethylene/titanium implant to span both defects. Methods Retrospective interventional case series. Results Fracture repair was performed on 17 orbits (16 patients) between October 2009 and February 2012. Subsequent surgical revision was required in three cases (18%). Visual acuity was stable or improved in all cases. Of 7 patients with preoperative diplopia, 5 improved and 2 remained stable postoperatively, and there were no cases of new or worsened diplopia following surgery. Postoperative asymmetry in Hertel exophthalmometry averaged 1.0 mm (range 0 to 2 mm). Preoperatively, average orbital volume was 122.7% compared with control (range 109 to 147%, standard deviation [SD] 9.6), which improved to 100.3% postoperatively (range 92 to 110%, SD 5.7). The average decrease in orbital volume was 22.5% (range 10 to 54%, SD 11.4, p < 0.001). Conclusions With careful preoperative planning and meticulous surgical technique, combined orbital floor and medial wall fractures involving the inferomedial strut can be successfully repaired with a preshaped porous polyethylene/titanium implant through a transconjunctival/transcaruncular approach with inferior oblique disinsertion. PMID:24436754

  4. Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques, Part 1. [environmental tests of aluminum alloys, stainless steels, and titanium alloys

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.; Shumaker, M. B.; Walsh, J. D.; Coursen, J. W.

    1973-01-01

    Stress corrosion cracking (SSC) tests were performed on 13 aluminum alloys, 13 precipitation hardening stainless steels, and two titanium 6Al-4V alloy forgings to compare fracture mechanics techniques with the conventional smooth specimen procedures. Commercially fabricated plate and rolled or forged bars 2 to 2.5-in. thick were tested. Exposures were conducted outdoors in a seacoast atmosphere and in an inland industrial atmosphere to relate the accelerated tests with service type environments. With the fracture mechanics technique tests were made chiefly on bolt loaded fatigue precracked compact tension specimens of the type used for plane-strain fracture toughness tests. Additional tests of the aluminum alloy were performed on ring loaded compact tension specimens and on bolt loaded double cantilever beams. For the smooth specimen procedure 0.125-in. dia. tensile specimens were loaded axially in constant deformation type frames. For both aluminum and steel alloys comparative SCC growth rates obtained from tests of precracked specimens provide an additional useful characterization of the SCC behavior of an alloy.

  5. Finite-Element Analysis of a New Designed Miniplate which is Used via Intraoral Approach to the Mandible Angle Fracture: Comparison of the Different Fixation Techniques.

    PubMed

    Coskunses, Fatih Mehmet; Kocyigit, Ismail Doruk; Atil, Fethi; Tekin, Umut; Suer, Berkay Tolga; Tuz, Hakan Hifzi; Ozgul, Ozkan; Yagiz, Ayberk

    2015-07-01

    The mandible is the largest facial bone as well as the most commonly fractured bone in the maxillofacial region. Despite numerous studies conducted to identify optimal treatment modalities and plates configurations for intraoral and transoral approaches, no definitive conclusion has been reached. This study used finite element analysis (FEA) to assess 4 scenarios for treatment of an angle fracture (6-hole noncompression miniplate; 6-hole single plate/Champy's technique, 3D strut plate; 2 parallel 4-hole noncompression miniplates). Analysis included segmental displacement and Von Mises Stress evaluations of a 3D reconstruction of a human mandible. Von Mises Stress values for plates did not vary significantly among treatment groups. Moreover, no significant differences were observed in cumulative displacement of segments subjected to vertical and horizontal loads, with all treatment configurations demonstrating clinical acceptability. PMID:26091053

  6. Experimental trial on surgical treatment for transverse fractures of the proximal phalanx: technique using intramedullary conical compression screw versus lateral compression plate☆

    PubMed Central

    Ibanez, Daniel Schneider; Rodrigues, Fabio Lucas; Salviani, Rafael Salmeron; Roberto, Fernando Augusto Reginatto; Pengo Junior, Jose Roberto; Aita, Marcio Aurelio

    2015-01-01

    Objective To compare the mechanical parameters between two methods for stabilization through compression: 1.5 mm axial compression plate versus conical compression screw used as an intramedullary tutor. Methods Polyurethane models (Sawbone®) that simulated transverse fractures of the proximal phalanx were used. The models were divided into three groups: lateral plate, conical screw and no implant. Results Greater force was needed to result in fatigue in the synthesis using an intramedullary plate. Thus, this model was proven to be mechanically superior to the model with the lateral plate. Conclusion Stabilization using the Acutrak® screw for treating fractures in the model used in this trial presents mechanical results that are statistically significantly superior to those from the axial compression technique using the lateral plate (Aptus Hand®). PMID:26535195

  7. Talus fractures: surgical principles.

    PubMed

    Rush, Shannon M; Jennings, Meagan; Hamilton, Graham A

    2009-01-01

    Surgical treatment of talus fractures can challenge even the most skilled foot and ankle surgeon. Complicated fracture patterns combined with joint dislocation of variable degrees require accurate assessment, sound understanding of principles of fracture care, and broad command of internal fixation techniques needed for successful surgical care. Elimination of unnecessary soft tissue dissection, a low threshold for surgical reduction, liberal use of malleolar osteotomy to expose body fracture, and detailed attention to fracture reduction and joint alignment are critical to the success of treatment. Even with the best surgical care complications are common and seem to correlate with injury severity and open injuries. PMID:19121756

  8. The slab geometry laser. I - Theory

    NASA Technical Reports Server (NTRS)

    Eggleston, J. M.; Kane, T. J.; Kuhn, K.; Byer, R. L.; Unternahrer, J.

    1984-01-01

    Slab geometry solid-state lasers offer significant performance improvements over conventional rod-geometry lasers. A detailed theoretical description of the thermal, stress, and beam-propagation characteristics of a slab laser is presented. The analysis includes consideration of the effects of the zig-zag optical path, which eliminates thermal and stress focusing and reduces residual birefringence.

  9. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers

    PubMed Central

    Mahmood, Deyar Jallal Hadi; Linderoth, Ewa H; Wennerberg, Ann; Vult Von Steyern, Per

    2016-01-01

    Aim To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) fixed dental prostheses (FDPs) with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. Materials and methods A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1–7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8–11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. Results There was a significant difference (P<0.05) between the core designs, but not between the different types of Y-TZP materials. The split-file designs with VITABLOCS® (1,806±165 N) and e.max® ZirPress (1,854±115 N) and the state-of-the-art design with VITA VM® 9 (1,849±150 N) demonstrated the highest mean fracture values. Conclusion The shape of a split-file designed all-ceramic reconstruction calls for a different dimension protocol, compared to traditionally shaped ones, as the split-file design leads to sharp approximal indentations acting as fractural impressions, thus decreasing the overall strength. The design of a framework is a crucial factor for the load bearing capacity of an all-ceramic FDP. The state-of-the-art design is preferable since the split-file designed cores call for a cross-sectional connector area at least 42% larger, to have the same load bearing capacity as the state-of-the-art designed cores. All veneering materials and techniques tested in the study, split-file, over-press, built-up porcelains, and glass–ceramics are, with a great safety margin, sufficient for clinical use

  10. Residual Strain and Fracture Response of Al2O3 Coatings Deposited via APS and HVOF Techniques

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Faisal, N. H.; Paradowska, A. M.; Fitzpatrick, M. E.

    2012-01-01

    The aim of this investigation was to nondestructively evaluate the residual stress profile in two commercially available alumina/substrate coating systems and relate residual stress changes with the fracture response. Neutron diffraction, due to its high penetration depth, was used to measure residual strain in conventional air plasma-sprayed (APS) and finer powder high velocity oxy-fuel (HVOF (θ-gun))-sprayed Al2O3 coating/substrate systems. The purpose of this comparison was to ascertain if finer powder Al2O3 coatings deposited via θ-gun can provide improved residual stress and fracture response in comparison to conventional APS coatings. To obtain a through thickness residual strain profile with high resolution, a partially submerged beam was used for measurements near the coating surface, and a beam submerged in the coating and substrate materials near the coating-substrate interface. By using the fast vertical scanning method, with careful leveling of the specimen using theodolites, the coating surface and the coating/substrate interface were located with an accuracy of about 50 μm. The results show that the through thickness residual strain in the APS coating was mainly tensile, whereas the HVOF coating had both compressive and tensile residual strains. Further analysis interlinking Vickers indentation fracture behavior using acoustic emission (AE) was conducted. The microstructural differences along with the nature and magnitude of the residual strain fields had a direct effect on the fracture response of the two coatings during the indentation process.

  11. Looking east inside of the 44" slab mill building at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east inside of the 44" slab mill building at the red hot slabs being conveyed to the hot beds. - U.S. Steel Edgar Thomson Works, 44" Slab Mill, Along Monongahela River, Braddock, Allegheny County, PA

  12. A cryogenic slab CO laser

    SciTech Connect

    Ionin, Andrei A; Kozlov, A Yu; Seleznev, L V; Sinitsyn, D V

    2009-03-31

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 {yields} V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 {mu}m. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of {approx}12 W was obtained for this laser operating on fundamental bands and its efficiency achieved {approx}14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at {approx} 100 laser lines in the spectral region from 5.0 to 6.5 {mu}m with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 {yields} V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 {mu}m. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than {+-}10 %) was stable for more than an hour. (lasers)

  13. Slab stagnation and detachment under northeast China

    NASA Astrophysics Data System (ADS)

    Honda, Satoru

    2016-03-01

    Results of tomography models around the Japanese Islands show the existence of a gap between the horizontally lying (stagnant) slab extending under northeastern China and the fast seismic velocity anomaly in the lower mantle. A simple conversion from the fast velocity anomaly to the low-temperature anomaly shows a similar feature. This feature appears to be inconsistent with the results of numerical simulations on the interaction between the slab and phase transitions with temperature-dependent viscosity. Such numerical models predict a continuous slab throughout the mantle. I extend previous analyses of the tomography model and model calculations to infer the origins of the gap beneath northeastern China. Results of numerical simulations that take the geologic history of the subduction zone into account suggest two possible origins for the gap: (1) the opening of the Japan Sea led to a breaking off of the otherwise continuous subducting slab, or (2) the western edge of the stagnant slab is the previous subducted ridge, which was the plate boundary between the extinct Izanagi and the Pacific plates. Origin (2) suggesting the present horizontally lying slab has accumulated since the ridge subduction, is preferable for explaining the present length of the horizontally lying slab in the upper mantle. Numerical models of origin (1) predict a stagnant slab in the upper mantle that is too short, and a narrow or non-existent gap. Preferred models require rather stronger flow resistance of the 660-km phase change than expected from current estimates of the phase transition property. Future detailed estimates of the amount of the subducted Izanagi plate and the present stagnant slab would be useful to constrain models. A systematic along-arc variation of the slab morphology from the northeast Japan to Kurile arcs is also recognized, and its understanding may constrain the 3D mantle flow there.

  14. On the Viability of Slab Melting

    NASA Astrophysics Data System (ADS)

    Van Hunen, J.; Bouilhol, P.; Magni, V.; Maunder, B. L.

    2014-12-01

    Melting subducted mafic crust is commonly assumed to be the main process leading to silicic melts with an adakitic signature, which may form Archaean granitoids and generate early continental crust. Alternatively, melting of the overriding lower mafic crust and near-Moho depth fractional crystallisation of mantle melts can form differentiated magmas with an adakitic signature. Previous work shows how only very young slabs melt through dehydration melting, or depict melting of dry eclogites via water addition from deeper slab dehydration. Alternatively, underplated subducted material via delamination and diapirism may be important in the generation of felsic continental crust. We quantify subduction dehydration and melting reactions in a warm subduction system using a thermo-mechanical subduction model with a thermodynamic database. We find that even young (hot) slabs dehydrate before reaching their solidus, which suppresses any slab dehydration melting and creates significant amounts of mantle wedge melting irrespective of slab age. Significant slab crust melting is only achieved in young slabs via water present melting if metamorphic fluids from the subducted mantle flux through the dry eclogites. These slab melts, however, interfere with massive mantle wedge melting and unlikely to participate in the overriding plate felsic magmatism, unlike the shallower, primitive mantle wedge melts. We also explore the conditions for delaminating the mafic subducted crust. For a wide range of ages, the uppermost part of the subducted slab might delaminate to form compositionally buoyant plumes that rise through the mantle wedge. Thick crust on young slabs (as perhaps representative for a hotter, early Earth) may delaminate entirely and reside in the mantle wedge. Under such conditions, this ponded crust might melts subsequently, forming "adakitic" felsic melts contributing to a significant amount of the overriding plate crustal volumes.

  15. Investigation of the influence of mallet and chisel techniques on the lingual fracture line and comparison with the use of splitter and separators during sagittal split osteotomy in cadaveric pig mandibles.

    PubMed

    Verweij, Jop P; Mensink, Gertjan; Houppermans, Pascal N W J; Frank, Michael D; van Merkesteyn, J P Richard

    2015-04-01

    In bilateral sagittal split osteotomy the proximal and distal segments of the mandible are traditionally separated using chisels. Modern modifications include prying and spreading the segments with splitters. This study investigates the lingual fracture patterns and status of the nerve after sagittal split osteotomy (SSO) using the traditional chisel technique and compares these results with earlier studies using the splitter technique. Lingual fractures after SSO in cadaveric pig mandibles were analysed using a lingual split scale and split scoring system. Iatrogenic damage to the inferior alveolar nerve was assessed. Fractures started through the caudal cortex more frequently in the chisel group. This group showed more posterior lingual fractures, although this difference was not statistically significant. Nerve damage was present in three cases in the chisel group, but was not observed in the splitter group. A trend was apparent, that SSO using the chisel technique instead of the splitter technique resulted in more posterior lingual fracture lines, although this difference was not statistically significant. Both techniques resulted in reliable lingual fracture patterns. Splitting without chisels could prevent nerve damage, therefore we propose a spreading and prying technique with splitter and separators. However, caution should be exercised when extrapolating these results to the clinic. PMID:25697050

  16. Cretaceous Arctic magmatism: Slab vs. plume? Or slab and plume?

    NASA Astrophysics Data System (ADS)

    Gottlieb, E. S.; Miller, E. L.; Andronikov, A. V.; Brumley, K.; Mayer, L. A.; Mukasa, S. B.

    2010-12-01

    Tectonic models for the Cretaceous paleogeographic evolution of the Arctic Ocean and its adjacent landmasses propose that rifting in the Amerasia Basin (AB) began in Jura-Cretaceous time, accompanied by the development of the High Arctic Large Igneous Province (HALIP). During the same timespan, deformation and slab-related magmatism, followed by intra-arc rifting, took place along the Pacific side of what was to become the Arctic Ocean. A compilation and comparison of the ages, characteristics and space-time variation of circum-Arctic magmatism allows for a better understanding of the role of Pacific margin versus Arctic-Atlantic plate tectonics and the role of plume-related magmatism in the origin of the Arctic Ocean. In Jura-Cretaceous time, an arc built upon older terranes overthrust the Arctic continental margins of North America and Eurasia, shedding debris into foreland basins in the Brooks Range, Alaska, across Chukotka, Russia, to the Lena Delta and New Siberian Islands region of the Russian Arctic. These syn-tectonic sediments have some common sources (e.g., ~250-300 Ma magmatic rocks) as determined by U-Pb detrital zircon geochronology. They are as young as Valanginian-Berriasian (~136 Ma, Gradstein et al., 2004) and place a lower limit on the age of formation of the AB. Subsequent intrusions of granitoid plutons, inferred to be ultimately slab-retreat related, form a belt along the far eastern Russian Arctic continental margin onto Seward Peninsula and have yielded a continuous succession of zircon U-Pb ages from ~137-95 Ma (n=28) and a younger suite ~91-82 Ma (n=16). All plutons dated were intruded in an extensional tectonic setting based on their relations to wall-rock deformation. Regional distribution of ages shows a southward migration of the locus of magmatism during Cretaceous time. Basaltic lavas as old as 130 Ma and as young as 80 Ma (40Ar/39Ar)) erupted across the Canadian Arctic Islands, Svalbard and Franz Josef Land and are associated with

  17. Magnetoelectric sensor excitations in hexaferrite slabs

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-06-01

    We developed techniques for H- and E-field sensors utilizing single phase magnetoelectric (ME) hexaferrite slabs in the frequency range of 100 Hz to 10 MHz. Novel circuit designs incorporating both spiral and solenoid coils and single and multi-capacitor banks were developed to probe the physics and properties of ME hexaferrites and explore ME effects for sensor detections. Fundamental measurements of the anisotropic tensor elements of the magneto-electric coupling parameter were performed using these novel techniques. In addition, for H-field sensing experiments we measured sensitivity of about 3000 Vm-1/G using solenoid coils and 8000 Vm-1/G using spiral coils. For E-field, sensing the sensitivity was 10-4 G/Vm-1 and using single capacitor detector. Sensitivity for multi-capacitor detectors was measured to be in the order of 10-3 G/Vm-1 and frequency dependent exhibiting a maximum value at ˜1 MHz. Tunability of 0.1%-90% was achieved for tunable inductor applications using both single and multi-capacitors excitation. We believe that significant (˜106) improvements in sensitivity and tunability are feasible with simple modifications of the fabrication process.

  18. Comparison of Surgical Outcomes Between Short-Segment Open and Percutaneous Pedicle Screw Fixation Techniques for Thoracolumbar Fractures.

    PubMed

    Fu, Zhiguo; Zhang, Xi; Shi, Yaohua; Dong, Qirong

    2016-01-01

    BACKGROUND This study aimed to compare the surgical outcomes between open pedicle screw fixation (OPSF) and percutaneous pedicle screw fixation (PPSF) for the treatment of thoracolumbar fractures, which has received scant research attention to date. MATERIAL AND METHODS Eight-four patients with acute and subacute thoracolumbar fractures who were treated with SSPSF from January 2013 to June 2014 at the Changzhou Hospital of Traditional Chinese Medicine (Changzhou, China) were retrospectively reviewed. The patients were divided into 4 groups: the OPSF with 4 basic screws (OPSF-4) group, the OPSF with 4 basic and 2 additional screws (OPSF-6) group, the PPSF with 4 basic screws (PPSF-4) group, and the PPSF with 4 basic and 2 additional screws (PPSF-6) group. The intraoperative, immediate postoperative, and over 1-year follow-up outcomes were evaluated and compared among these groups. RESULTS Blood loss in the PPSF-4 group and the PPSF-6 group was significantly less than in the OPSF-4 group and the OPSF-6 group (P<0.05). The OPSF-6 group exhibited significantly higher immediate postoperative correction percentage of anterior column height of fractured vertebra than the other 3 groups (P<0.05), and higher correction of sagittal regional Cobb angle and kyphotic angle of injured vertebra than in the PPSF-4 and -6 groups (P<0.05). In addition, there was no significant difference in the correction loss of percentage of anterior column height, and loss of sagittal Cobb angle and kyphotic angle of fractured vertebrae at final follow-up among the 4 groups (P>0.05). CONCLUSIONS OPSF with 6 screws had an advantage in the correction of injured vertebral height and kyphosis, and PPSF reduced the intraoperative blood loss of patients. PMID:27602557

  19. Seismic monitoring of hydraulic fracturing: techniques for determining fluid flow paths and state of stress away from a wellbore

    SciTech Connect

    Fehler, M.; House, L.; Kaieda, H.

    1986-01-01

    Hydraulic fracturing has gained in popularity in recent years as a way to determine the orientations and magnitudes of tectonic stresses. By augmenting conventional hydraulic fracturing measurements with detection and mapping of the microearthquakes induced by fracturing, we can supplement and idependently confirm information obtained from conventional analysis. Important information obtained from seismic monitoring includes: the state of stress of the rock, orientation and spacing of the major joint sets, and measurements of rock elastic parameters at locations distant from the wellbore. While conventional well logging operations can provide information about several of these parameters, the zone of interrogation is usually limited to the immediate proximity of the borehole. The seismic waveforms of the microearthquakes contain a wealth of information about the rock in regions that are otherwise inaccessible for study. By reliably locating the hypocenters of many microearthquakes, we have inferred the joint patterns in the rock. We observed that microearthquake locations do not define a simple, thin, planar distribution, that the fault plane solutions are consistent with shear slippage, and that spectral analysis indicates that the source dimensions and slip along the faults are small. Hence we believe that the microearthquakes result from slip along preexisting joints, and not from tensile extension at the tip of the fracture. Orientations of the principal stresses can be estimated by using fault plane solutions of the larger microearthquakes. By using a joint earthquake location scheme, and/or calibrations with downhole detonators, rock velocities and heterogeneities thereof can be investigated in rock volumes that are far enough from the borehole to be representative of intrincis rock properties.

  20. Strength analysis of clavicle fracture fixation devices and fixation techniques using finite element analysis with musculoskeletal force input.

    PubMed

    Marie, Cronskär

    2015-08-01

    In the cases, when clavicle fractures are treated with a fixation plate, opinions are divided about the best position of the plate, type of plate and type of screw units. Results from biomechanical studies of clavicle fixation devices are contradictory, probably partly because of simplified and varying load cases used in different studies. The anatomy of the shoulder region is complex, which makes it difficult and expensive to perform realistic experimental tests; hence, reliable simulation is an important complement to experimental tests. In this study, a method for finite element simulations of stresses in the clavicle plate and bone is used, in which muscle and ligament force data are imported from a multibody musculoskeletal model. The stress distribution in two different commercial plates, superior and anterior plating position and fixation including using a lag screw in the fracture gap or not, was compared. Looking at the clavicle fixation from a mechanical point of view, the results indicate that it is a major benefit to use a lag screw to fixate the fracture. The anterior plating position resulted in lower stresses in the plate, and the anatomically shaped plate is more stress resistant and stable than a regular reconstruction plate. PMID:25850983

  1. Determination of fracture toughness of calcium phosphate coatings deposited onto Ti6Al4V substrate by using indentation technique

    NASA Astrophysics Data System (ADS)

    Aydin, Ibrahim; Cetinel, Hakan; Pasinli, Ahmet

    2012-09-01

    In this study, fracture toughness values of calcium phosphate (CaP) coatings deposited onto Ti6Al4V substrate were determined by using Vickers indentation method. In this new patent holding method, the activation processes were performed with NaOH and NaOH+H2O2 on the Ti6Al4V material surface. Thicknesses of CaP coatings were measured from cross-sections of the samples by using optical microscopy. Vickers indentation tests were performed by using microhardness tester. Young's modulus values of the coatings were determined by using ultra microhardness tester. As a result, fracture toughness (K1C) values of the CaP coatings produced by using two different activation processes, were calculated by using experimental study results. These were found to be 0.43 MPa m1/2 and 0.39 MPa m1/2, respectively. It was determined that the CaP coating on Ti6Al4V activated by NaOH+H2O2 had higher fracture toughness than the CaP coating on Ti6Al4V activated by NaOH.

  2. Sausage oscillations of coronal plasma slabs

    NASA Astrophysics Data System (ADS)

    Hornsey, C.; Nakariakov, V. M.; Fludra, A.

    2014-07-01

    Context. Sausage oscillations are observed in plasma non-uniformities of the solar corona as axisymmetric perturbations of the non-uniformity. Often, these non-uniformities can be modelled as field-aligned slabs of the density enhancement. Aims: We perform parametric studies of sausage oscillations of plasma slabs, aiming to determine the dependence of the oscillation period on its parameters, and the onset of leaky and trapped regimes of the oscillations. Methods: Slabs with smooth transverse profiles of the density of a zero-beta plasma are perturbed by an impulsive localised perturbation of the sausage symmetry. In particular, the slab can contain an infinitely thin current sheet in its centre. The initial value problem is then solved numerically. The numerical results are subject to spectral analysis. The results are compared with analytical solutions for a slab with a step-function profile and also with sausage oscillations of a plasma cylinder. Results: We established that sausage oscillations in slabs generally have the same properties as in plasma cylinders. In the trapped regime, the sausage oscillation period increases with the increase in the longitudinal wavelength. In the leaky regime, the dependence of the period on the wavelength experiences saturation, and the period becomes independent of the wavelength in the long-wavelength limit. In the leaky regime the period is always longer than in the trapped regime. The sausage oscillation period in a slab is always longer than in a cylinder with the same transverse profile. In slabs with steeper transverse profiles, sausage oscillations have longer periods. The leaky regime occurs at shorter wavelengths in slabs with smoother profiles.

  3. Detecting slab structure beneath the Mediterranean

    NASA Astrophysics Data System (ADS)

    Miller, Meghan S.; Sun, Daoyuan; Piana Agostinetti, Nicola

    2013-04-01

    The presence of subducted slabs in the Mediterranean has been well documented with seismic tomography, however, these images, which are produced by smoothed, damped inversions, underestimate the sharpness of the structures. The position and extent of the slabs and the presence possible tears or gaps in the subducted lithosphere are still debated, yet the shape and location these structures are important for kinematic reconstructions and evolution of the entire subduction zone system. Extensive distribution of broadband seismic instrumentation in the Mediterranean (Italian National Seismic Network in Italy and the NSF-PICASSO project in Spain and Morocco) has allowed us to use alternative methodologies to detect the position of the slabs and slab tears beneath the Central and Western Mediterranean. Using S receiver functions we are able to identify S-to-p conversions from the bottom of the subducted slab and a lack of these signals where there are gaps or tears in the slab. We also analyze broadband waveforms for changes in P wave coda from deep (> 300 km depth) local earthquakes. The waveform records for stations in southern Italy and around the Betic-Rif show large amplitude, high frequency (f > 5 Hz) late arrivals with long coda after relatively low-frequency onset. High frequency arrivals are the strongest from events whose raypaths travel within the slab to the stations where they are recorded allowing for mapping of where the subducted material is located within the upper mantle. These two methods, along with inferring the slab position from fast P-wave velocity perturbations in tomography and intermediate depth seismicity, provide additional geophysical evidence to aid in interpretation of the complex, segmented slab structure beneath the Mediterranean.

  4. Andean flat subduction maintained by slab tunneling

    NASA Astrophysics Data System (ADS)

    Schepers, Gerben; van Hinsbergen, Douwe; Kosters, Martha; Boschman, Lydian; McQuarrie, Nadine; Spakman, Wim

    2016-04-01

    In two segments below the Andean mountain belt, the Nazca Plate is currently subducting sub-horizontally below South America over a distance of 200-300 km before the plate bends into the mantle. Such flat slab segments have pronounced effects on orogenesis and magmatism and are widely believed to be caused by the downgoing plate resisting subduction due to its local positive buoyancy. In contrast, here we show that flat slabs primarily result from a local resistance against rollback rather than against subduction. From a kinematic reconstruction of the Andean fold-thrust belt we determine up to ~390 km of shortening since ~50 Ma. During this time the South American Plate moved ~1400 km westward relative to the mantle, thus forcing ~1000 km of trench retreat. Importantly, since the 11-12 Ma onset of flat slab formation, ~1000 km of Nazca Plate subduction occurred, much more than the flat slab lengths, which leads to our main finding that the flat slabs, while being initiated by arrival of buoyant material at the trench, are primarily maintained by locally impeded rollback. We suggest that dynamic support of flat subduction comes from the formation of slab tunnels below segments with the most buoyant material. These tunnels trap mantle material until tearing of the tunnel wall provides an escape route. Fast subduction of this tear is followed by a continuous slab and the process can recur during ongoing rollback of the 7000 km wide Nazca slab at segments with the most buoyant subducting material, explaining the regional and transient character of flat slabs. Our study highlights the importance of studying subduction dynamics in absolute plate motion context.

  5. Constraints of subducted slab geometries on trench migration and subduction velocities: flat slabs and slab curtains in the mantle under Asia

    NASA Astrophysics Data System (ADS)

    Wu, J. E.; Suppe, J.; Renqi, L.; Lin, C.; Kanda, R. V.

    2013-12-01

    The past locations, shapes and polarity of subduction trenches provide first-order constraints for plate tectonic reconstructions. Analogue and numerical models of subduction zones suggest that relative subducting (Vs) and overriding (Vor) plate velocities may strongly influence final subducted slab geometries. Here we have mapped the 3D geometries of subducted slabs in the upper and lower mantle of Asia from global seismic tomography. We have incorporated these slabs into plate tectonic models, which allows us to infer the subducting and overriding plate velocities. We describe two distinct slab geometry styles, ';flat slabs' and ';slab curtains', and show their implications for paleo-trench positions and subduction geometries in plate tectonic reconstructions. When compared to analogue and numerical models, the mapped slab styles show similarities to modeled slabs that occupy very different locations within Vs:Vor parameter space. ';Flat slabs' include large swaths of sub-horizontal slabs in the lower mantle that underlie the well-known northward paths of India and Australia from Eastern Gondwana, viewed in a moving hotspot reference. At India the flat slabs account for a significant proportion of the predicted lost Ceno-Tethys Ocean since ~100 Ma, whereas at Australia they record the existence of a major 8000km by 2500-3000km ocean that existed at ~43 Ma between East Asia, the Pacific and Australia. Plate reconstructions incorporating the slab constraints imply these flat slab geometries were generated when continent overran oceanic lithosphere to produce rapid trench retreat, or in other words, when subducting and overriding velocities were equal (i.e. Vs ~ Vor). ';Slab curtains' include subvertical Pacific slabs near the Izu-Bonin and Marianas trenches that extend from the surface down to 1500 km in the lower mantle and are 400 to 500 km thick. Reconstructed slab lengths were assessed from tomographic volumes calculated at serial cross-sections. The ';slab

  6. Photocatalytic, highly hydrophilic porcelain stoneware slabs

    NASA Astrophysics Data System (ADS)

    Raimondo, M.; Guarini, G.; Zanelli, C.; Marani, F.; Fossa, L.; Dondi, M.

    2011-10-01

    Photocatalytic, highly hydrophilic industrial porcelain stoneware large slabs were realized by deposition of nanostructured TiO2 coatings. Different surface finishing and experimental conditions were considered in order to assess the industrial feasibility. Photocatalytic and wetting behaviour of functionalized slabs mainly depends on surface phase composition in terms of anatase/rutile ratio, this involving - as a key issue - the deposition of TiO2 on industrially sintered products with an additional annealing step to strengthen coatings' performances and durability.

  7. Epithelialization Over a Scaffold of Antibiotic-Impregnated PMMA Beads: A Salvage Technique for Open Tibial Fractures with Bone and Soft Tissue Loss When all Else Fails

    PubMed Central

    Masrouha, Karim Z.; El-Bitar, Youssef; Najjar, Marc; Saghieh, Said

    2016-01-01

    The management of soft tissue defects in tibial fractures is essential for limb preservation. Current techniques are not without complications and may lead to poor functional outcomes. A salvage method is described using three illustrative cases whereby a combination of flaps and antibiotic-impregnated polymethylmethacrylate beads are employed to fill the bony defect, fight the infection, and provide a surface for epithelial regeneration and secondary wound closure. This was performed after the partial failure of all other options. All patients were fully ambulatory with no clinical, radiographic or laboratory sign of infection at their most recent follow-up. Although our findings are encouraging, this is the first report of epithelialization of the skin on a polymethylmethacrylate scaffold. Further studies investigating the use of this technique are warranted. PMID:27517073

  8. Epithelialization Over a Scaffold of Antibiotic-Impregnated PMMA Beads: A Salvage Technique for Open Tibial Fractures with Bone and Soft Tissue Loss When all Else Fails.

    PubMed

    Masrouha, Karim Z; El-Bitar, Youssef; Najjar, Marc; Saghieh, Said

    2016-06-01

    The management of soft tissue defects in tibial fractures is essential for limb preservation. Current techniques are not without complications and may lead to poor functional outcomes. A salvage method is described using three illustrative cases whereby a combination of flaps and antibiotic-impregnated polymethylmethacrylate beads are employed to fill the bony defect, fight the infection, and provide a surface for epithelial regeneration and secondary wound closure. This was performed after the partial failure of all other options. All patients were fully ambulatory with no clinical, radiographic or laboratory sign of infection at their most recent follow-up. Although our findings are encouraging, this is the first report of epithelialization of the skin on a polymethylmethacrylate scaffold. Further studies investigating the use of this technique are warranted. PMID:27517073

  9. The load separation technique in the elastic-plastic fracture analysis of two- and three-dimensional geometries

    NASA Technical Reports Server (NTRS)

    Sharobeam, Monir H.

    1994-01-01

    Load separation is the representation of the load in the test records of geometries containing cracks as a multiplication of two separate functions: a crack geometry function and a material deformation function. Load separation is demonstrated in the test records of several two-dimensional geometries such as compact tension geometry, single edge notched bend geometry, and center cracked tension geometry and three-dimensional geometries such as semi-elliptical surface crack. The role of load separation in the evaluation of the fracture parameter J-integral and the associated factor eta for two-dimensional geometries is discussed. The paper also discusses the theoretical basis and the procedure for using load separation as a simplified yet accurate approach for plastic J evaluation in semi-elliptical surface crack which is a three-dimensional geometry. The experimental evaluation of J, and particularly J(sub pl), for three-dimensional geometries is very challenging. A few approaches have been developed in this regard and they are either complex or very approximate. The paper also presents the load separation as a mean to identify the blunting and crack growth regions in the experimental test records of precracked specimens. Finally, load separation as a methodology in elastic-plastic fracture mechanics is presented.

  10. Field Study and Numerical Simulation of Sub Slab Ventilation Systems

    SciTech Connect

    Bonnefous, Y.C.; Gadgil, A.J.; Fisk, W.J.; Prill, R.J.; Nematollahi, A.R.

    1992-05-01

    The effectiveness of the technique of subslab ventilation (SSV) for limiting radon entry into basements was investigated through complementary experimentation and numerical modeling. Subslab pressure fields resulting from SSV were measured in six well-characterized basements, each with a different combination of soil and aggregate permeability. The relationship between air velocity and pressure gradient was measured in the laboratory for the three types of aggregate installed beneath the basement slabs. A new numerical model of SSV was developed and verified with the field data. This model simulates non-Darcy flow in the aggregate. We demonstrate that non-Darcy effects significantly impact SSV performance. Field data and numerical simulations indicate that increasing the aggregate permeability within the investigated range of 2 x 10{sup -8} m{sup 2} to 3 x 10{sup -7} m{sup 2} substantially improves the extension of the subslab pressure field due to SSV operation. Sealing of cracks in the slab and excavation of a small pit where the SSV pipe penetrates the slab also dramatically improve this pressure field extension. Our findings are consistent with the results of prior field studies; however, the studies reported here have improved our understanding of factors affecting SSV performance. The dependence of SSV performance on the relevant parameters are currently under investigation with the model.

  11. Monitoring fatigue life in concrete bridge deck slabs

    NASA Astrophysics Data System (ADS)

    Newhook, J.; Limaye, V.

    2007-04-01

    Concrete bridge deck slabs are the most common form of bridge deck construction in short and medium span bridge structures in North America. Understanding and monitoring the condition of these bridge decks is an important component of a bridge management strategy. Progressive deterioration due to fatigue occurs in concrete decks due to the large number of cycles of heavy wheels loads and normally manifests itself as the progressive growth of cracks in the top and underside of the deck slab. While some laboratory fatigue testing programs have been reported in the literature, there is very little information on proposed techniques to monitor this phenomenon. This paper discusses the issue of how fatigue monitoring may be included as part of a structural health monitoring system for bridges. The paper draws upon previously published experimental results to identify the main characteristics of fatigue damage and structural response for concrete bridge deck slabs. Several means of monitoring this response are then evaluated and monitoring methods are proposed. A specific field structure monitoring program is used to illustrate the application of the concept. The cases study examines several sensor systems and discusses the various limitations and needs in this area. The results are of interest to both the general area of structural health monitoring as well as fatigue monitoring specifically.

  12. Three-dimensional necking during viscous slab detachment

    NASA Astrophysics Data System (ADS)

    Tscharner, M.; Schmalholz, S. M.; Duretz, T.

    2014-06-01

    We study the three-dimensional (3-D) deformation during detachment of a lithospheric slab with simple numerical models using the finite element method. An initially vertical layer of power law viscous fluid mimics the slab and is surrounded by a linear or power law viscous fluid representing asthenospheric mantle. We quantify the impact of slab size and shape (symmetric/asymmetric) on slab detachment and identify two processes that control the lateral (i.e., along-trench) slab deformation: (1) the horizontal deflection of the lateral, vertical slab sides (> 100 km with velocities up to 16 mm/yr) and (2) the propagation of localized thinning (necking) inside the slab (with velocities >9 cm/yr). The lateral propagation velocity is approximately constant during slab detachment. Larger slabs (here wider than approximately 300 km) detach with rates similar to those predicted by 2-D models, whereas smaller slabs detach slower. Implications for geodynamic processes and interpretations of seismic tomography are discussed.

  13. Was there a Laramide "flat slab"?

    NASA Astrophysics Data System (ADS)

    Jones, C. H.

    2014-12-01

    Slab-continent interactions drive most non-collisional orogenies; this has led us to usually anticipate that temporal changes or spatial variations in orogenic style are related to changes in the slab, most especially in the slab's dip. This is most dramatically evident for orogenies in the foreland, well away from the trench, such as the Laramide orogeny. However, the physical means of connecting slab geometry to crustal deformation remain obscure. Dickinson and Snyder (1978) and Bird (1984) laid out a conceptually elegant means of creating foreland deformation from shear between a slab and overriding continental lithosphere, but such strong shear removed all of the continental lithosphere in the western U.S. when included in a numerical simulation of flat slab subduction (Bird, 1988), a removal in conflict with observations of volcanic rocks and xenoliths in many locations. Relying on an increase in edge normal stresses results, for the Laramide, in requiring the little-deformed Colorado Plateau to either be unusually strong or to have risen rapidly enough and high enough to balance edge stresses with body forces. Early deformation in the Plateau rules out unusual strength, and the accumulation and preservation of Late Cretaceous near-sea level sedimentary rocks makes profound uplift unlikely (though not impossible). Relying on comparisons with the Sierras Pampeanas is also fraught with problems: the Sierras are not separated from the Andean fold-and-thrust belt by several hundred kilometers of little-deformed crust, nor were they buried under kilometers of marine muds as were large parts of the Laramide foreland. We have instead suggested that some unusual interactions of an obliquely subducting plate with a thick Archean continental root might provide a better explanation than a truly flat slab (Jones et al., 2011). From this, and given that several flat-slab segments today are not associated with foreland orogenesis and noting that direct evidence for truly

  14. TESTING OF INDOOR RADON REDUCTION TECHNIQUES IN CENTRAL OHIO HOUSES: PHASE 2 (WINTER 1988-1989)

    EPA Science Inventory

    The report gives results of tests of developmental indoor radon reduction techniques in nine slab-on-grade and four crawl-space houses near Dayton. Ohio. he slab-on-grade tests indicated that, when there is a good layer of aggregate under the slab, the sub-slab ventilation (SSV) ...

  15. Tomographically-imaged subducted slabs and magmatic history of Caribbean and Pacific subduction beneath Colombia

    NASA Astrophysics Data System (ADS)

    Bernal-Olaya, R.; Mann, P.; Vargas, C. A.; Koulakov, I.

    2013-12-01

    We define the length and geometry of eastward and southeastward-subducting slabs beneath northwestern South America in Colombia using ~100,000 earthquake events recorded by the Colombian National Seismic Network from 1993 to 2012. Methods include: hypocenter relocation, compilation of focal mechanisms, and P and S wave tomographic calculations performed using LOTOS and Seisan. The margins of Colombia include four distinct subduction zones based on slab dip: 1) in northern Colombia, 12-16-km-thick oceanic crust subducts at a modern GPS rate of 20 mm/yr in a direction of 110 degrees at a shallow angle of 8 degrees; as a result of its low dip, Pliocene-Pleistocene volcanic rocks are present 400 km from the frontal thrust; magmatic arc migration to the east records 800 km of subduction since 58 Ma ago (Paleocene) with shallow subduction of the Caribbean oceanic plateau starting ~24-33 Ma (Miocene); at depths of 90-150 km, the slab exhibits a negative velocity anomaly we associate with pervasive fracturing; 2) in the central Colombia-Panama area, we define an area of 30-km-thick crust of the Panama arc colliding/subducting at a modern 30/mm in a direction of 95 degrees; the length of this slab shows subduction/collision initiated after 20 Ma (Middle Miocene); we call this feature the Panama indenter since it has produced a V-shaped indentation of the Colombian margin and responsible for widespread crustal deformation and topographic uplift in Colombia; an incipient subduction area is forming near the Panama border with intermediate earthquakes at an eastward dip of 70 degrees to depths of ~150 km; this zone is not visible on tomographic images; 3) a 250-km-wide zone of Miocene oceanic crust of the Nazca plate flanking the Panama indenter subducts at a rate of 25 mm/yr in a direction of 55 degrees and at a normal dip of 40 degrees; the length of this slab suggests subduction began at ~5 Ma; 4) the Caldas tear defines a major dip change to the south where a 35 degrees

  16. Water in the Slab: a Trilogy

    NASA Astrophysics Data System (ADS)

    Faccenda, M.; Burlini, L.; Gerya, T.; Mancktelow, N.

    2012-12-01

    In this presentation we summarize the results of a project started in 2007 from a brilliant intuition of Luigi Burlini that suggested an additional anisotropy source for the interpretation of seismic anisotropy patterns observed at subduction zones. Such an anisotropic body located in the upper part of the slab would result from the hydration of the oceanic plate at the trench outer-rise. The natural continuation of the project was to understand the mechanical processes behind slab hydration and the fluid flow patterns established during slab dehydration. In both cases, we found that tectonic pressure gradients due to the bending and unbending of the subducting oceanic plate are fundamental in driving fluid flow. This last part of the project led to the other two chapters of the final trilogy about the long route of water in the slab. This trilogy is here described in detail and a chronologically ordered series of events presented below. The first episode is related to slab hydration occurring during bending at the trench-outer rise. Here, fluids are driven downward along active normal faults by bending-related, sub-hydrostatic pressure gradients. Water can percolate down to 15-20 km below the seafloor, triggering hydrothermal reactions and the formation of hydrous minerals. This results in an elongated pattern of mostly trench-dipping hydrated faults with a strike parallel to the trench and whose orientation below the forearc becomes sub-vertical. The second episode is related to the geophysical implications of a hydrated slab below the forearc. Indeed, both the subvertical layering of closely spaced hydrated and dry levels (SPO) and the syn-deformational, fault-parallel alignment of highly anisotropic minerals (CPO) such as serpentine and talc may contribute to the SKS splitting patterns observed in the forearc. We suggest that the upper part of the slab may have a strong seismic anisotropy that can be approximated by a transverse isotropic body with a sub

  17. Contribution of Elasticity in Slab Bending

    NASA Astrophysics Data System (ADS)

    Fourel, L.; Goes, S. D. B.; Morra, G.

    2014-12-01

    Previous studies have shown that plate rheology exerts a dominant control on the shape and velocity of subducting plates. Here, we perform a systematic investigation of the, often disregarded, role of elasticity in slab bending at the trench, using simple, yet fully dynamic, set of 2.5D models where an elastic, visco-elastic or visco-elasto-plastic plate subducts freely into a purely viscous mantle. We derive a scaling relationship between the bending radius of visco-elastic slabs and the Deborah number, De, which is the ratio of Maxwell time over deformation time. We show that De controls the ratio of elastically stored energy over viscously dissipated energy and find that at De exceeding 10-2, it requires substantially less energy to bend a visco-elastic slab to the same shape as a purely viscous slab with the same viscosity (90% less for De=0.1). Elastically stored energy at higher De facilitates slab unbending and hence favours retreating modes of subduction, while trench advance only occurs for some cases with De<10-2. We use our scaling relation to estimate apparent Deborah numbers, Deapp, from a global compilation of subduction-zone parameters. Values range from 10-3 to >1, where most zones have low Deapp<10-2, but a few young plates have Deapp>0.1. Slabs with Deapp ≤ 10-2 either have very low viscosities, ≤10 times mantle viscosity, or they may be yielding, in which case our apparent Deborah number may underestimate actual De by up to an order of magnitude. If a significant portion of the low Deapp slabs yield, then elastically stored energy may actually be important in quite a large number of subduction zones. Interestingly, increasing Deapp correlates with increasing proportion of larger seismic events (b-value) in both instrumental and historic catalogues, indicating that increased contribution of elasticity may facilitate rupture in larger, less frequent earthquakes.

  18. Cracking behavior of structural slab bridge decks

    NASA Astrophysics Data System (ADS)

    Baah, Prince

    Bridge deck cracking is a common problem throughout the United States, and it affects the durability and service life of concrete bridges. Several departments of transportation (DOTs) in the United States prefer using continuous three-span solid structural slab bridges without stringers over typical four-lane highways. Recent inspections of such bridges in Ohio revealed cracks as wide as 0.125 in. These measured crack widths are more than ten times the maximum limit recommended in ACI 224R-01 for bridge decks exposed to de-icing salts. Measurements using digital image correlation revealed that the cracks widened under truck loading, and in some cases, the cracks did not fully close after unloading. This dissertation includes details of an experimental investigation of the cracking behavior of structural concrete. Prism tests revealed that the concrete with epoxy-coated bars (ECB) develops the first crack at smaller loads, and develops larger crack widths compared to the corresponding specimens with uncoated (black) bars. Slab tests revealed that the slabs with longitudinal ECB developed first crack at smaller loads, exhibited wider cracks and a larger number of cracks, and failed at smaller ultimate loads compared to the corresponding test slabs with black bars. To develop a preventive measure, slabs with basalt and polypropylene fiber reinforced concrete were also included in the test program. These test slabs exhibited higher cracking loads, smaller crack widths, and higher ultimate loads at failure compared to the corresponding slab specimens without fibers. Merely satisfying the reinforcement spacing requirements given in AASHTO or ACI 318-11 is not adequate to limit cracking below the ACI 224R-01 recommended maximum limit, even though all the relevant design requirements are otherwise met. Addition of fiber to concrete without changing any steel reinforcing details is expected to reduce the severity and extent of cracking in reinforced concrete bridge decks.

  19. History vs. snapshot: how slab morphology relates to slab age evolution

    NASA Astrophysics Data System (ADS)

    Garel, Fanny; Goes, Saskia; Davies, Rhodri; Davies, Huw; Lallemand, Serge; Kramer, Stephan; Wilson, Cian

    2016-04-01

    The age of the subducting plate at the trench ("slab age") spans a wide range, from less than 10 Myr in Central and South America to 150 Myr in the Marianas. The morphology of subducting slab in the upper mantle is also very variable, from slabs stagnating at the top of the lower mantle to slabs penetrating well beyond 1000 km depth. People have looked rather unsucessfully for correlations between slab morphology and subduction parameters, including age at the trench, on the basic assumption that old (thick) plates are likely to generate a large slab pull force that would influence slab dip. Thermo-mechanical models reveal complex feedbacks between temperature, strain rate and rheology, and are able to reproduce the evolution of plate ages as a function of time, subducting plate velocity and trench velocity. In particular, we show how initially young subducting plates can rapidly age at the surface because of a slow sinking velocity. As a consequence, different slab morphologies can exhibit similar ages at the trench provided that subduction history is different. We illustrate how models provide insights into Earth subduction zones for which we have to consider their history (evolution of trench velocity, relative plate ages at time of initiation) in order to unravel their present-day geometry.

  20. Apparent capitellar fractures.

    PubMed

    Ring, David

    2007-11-01

    Isolated capitellar fractures are rare but are identified as such, even when they are more complex, because the displaced capitellar fracture is usually the most obvious and identifiable radiographic finding and because teaching has traditionally underemphasized the involvement of the trochlea in such fractures. The author prefers the term 'apparent capitellar fractures' and draws on his experience to explain why he favors three-dimensional CT for depicting fracture detail. This article discusses treatment options, emphasizing open reduction and internal fixation to restore the native elbow. Operative techniques, including extensile lateral exposure and olecranon osteotomy; fixation techniques; and elbow arthroplasty, are described. Complications, such as ulnar neuropathy and infection, are also covered. PMID:18054674

  1. Semi-analytical solutions for flow to a well in an unconfined-fractured aquifer system

    NASA Astrophysics Data System (ADS)

    Sedghi, Mohammad M.; Samani, Nozar

    2015-09-01

    Semi-analytical solutions of flow to a well in an unconfined single porosity aquifer underlain by a fractured double porosity aquifer, both of infinite radial extent, are obtained. The upper aquifer is pumped at a constant rate from a pumping well of infinitesimal radius. The solutions are obtained via Laplace and Hankel transforms and are then numerically inverted to time domain solutions using the de Hoog et al. algorithm and Gaussian quadrature. The results are presented in the form of dimensionless type curves. The solution takes into account the effects of pumping well partial penetration, water table with instantaneous drainage, leakage with storage in the lower aquifer into the upper aquifer, and storativity and hydraulic conductivity of both fractures and matrix blocks. Both spheres and slab-shaped matrix blocks are considered. The effects of the underlying fractured aquifer hydraulic parameters on the dimensionless drawdown produced by the pumping well in the overlying unconfined aquifer are examined. The presented solution can be used to estimate hydraulic parameters of the unconfined and the underlying fractured aquifer by type curve matching techniques or with automated optimization algorithms. Errors arising from ignoring the underlying fractured aquifer in the drawdown distribution in the unconfined aquifer are also investigated.

  2. Accidents due to falls from roof slabs.

    PubMed

    Rudelli, Bruno Alves; Silva, Marcelo Valerio Alabarce da; Akkari, Miguel; Santili, Claudio

    2013-01-01

    CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%). Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%), and flying a kite was the most prevalent game (37.9%). In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places. PMID:23903263

  3. Sensors and Monitoring Techniques for the Deep Unsaturated Zone: Reducing Uncertainty Related to Seepage and Transport in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Dinwiddie, C. L.; Or, D.; Stothoff, S. A.; Fedors, R. W.; Pohle, J. A.; Tuller, M.

    2007-12-01

    Planning for performance confirmation of hydrologic properties and processes in a potential geologic repository for high-level radioactive waste at Yucca Mountain is a requirement stated in Subpart F of 10 CFR Part 63. An important goal of performance confirmation is to acquire information indicating whether natural and engineered barriers are functioning as intended, and whether the conditions encountered are within the limits assumed during a licensing review. Long-term monitoring of hydrologic properties and processes and in situ confirmation of design assumptions will play a key role in the safe operation of the potential geologic radioactive waste repository and in the decision to close the repository. Despite remarkable advances in cyberinfrastructure for linking sensors into spatially distributed environmental networks, the extended time horizon (decades to hundreds of years) for long-term monitoring activities, the harsh thermal and radiative conditions in the near-field environment, the deep fractured unsaturated rock environment at Yucca Mountain, the potential scope of observations, and restricted access to observation ports for maintenance and upgrades each present unprecedented challenges to the design of hydro-environmental monitoring networks. Activities for performance confirmation could include the use of pore water samplers and sensors for measuring water content, matric potential, temperature, relative humidity, and water and gas fluxes. Current sensor technology for deep fractured rock systems (i) lags behind environmental observatory network solutions for surface and near-surface processes, (ii) lags behind analogous technology for unconsolidated porous media, (iii) cannot be reliably deployed without ongoing maintenance or replacement at relatively frequent intervals, and (iv) is not designed to withstand harsh thermal and radiative conditions. Long-term monitoring could require special design considerations, such as measurement redundancy

  4. Modeling Recharge in a Fractured Bedrock Aquifer to Evaluate the Potential Effects of Climate Change on Groundwater Availability: new techniques

    NASA Astrophysics Data System (ADS)

    Wittman, Jack; Kelson, Vic; Lax, Samanta

    2010-05-01

    This paper describes how we modified a soil-water-budget model initially developed by the United States Geological Survey (USGS) to include fracture recharge through mapped fault zones and then to use this model to better understand the effects of a warming climate on the sustainability of an important groundwater supply. In extended drought conditions, the normally perennial streams in parts of the Western United States stop flowing and, for the City of Laramie, Wyoming, the Casper Aquifer becomes the only source of water to the local water utility. This community, situated in a high desert valley approximately 150 km North of Denver, Colorado, normally uses a combination of surface water from a local stream and groundwater wells. In this arid landscape groundwater is a critical component of the water supply but little is known about how much water enters the exposed recharge area along a mountain front East of town. Groundwater level measurements and geochemistry suggest that the aquifer system has a fast and slow component. Some runoff water becomes recharge where ephemeral streams intersect fractures at the surface and another component of slower recharge occurs as slower percolation through very thin soils. Based on monitoring data, recharge occurs primarily in late winter and early spring during snowmelt. In the past several decades the City Utility has seen annual groundwater levels dropping in municipal wells as the amount of water withdrawn exceeds annual inflows. However, in 1983 water levels in the Casper Aquifer rose significantly following a winter of higher than average snowfall. The analysis presented in this paper outlines how we adapted the general soil-water-budget model to calculate the various components of recharge and then how we considered the effects of warming winter conditions on the sustainability of the bedrock aquifer in this arid region of the country. Or analysis suggests that warming winter conditions could limit snowpack and nearly

  5. Detecting lower mantle slabs beneath Asia and the Aleutians

    NASA Astrophysics Data System (ADS)

    Schumacher, L.; Thomas, C.

    2016-03-01

    To investigate the descend of subducted slabs we search for and analyse seismic arrivals that reflected off the surface of the slab. In order to distinguish between such arrivals and other seismic phases, we search for waves that reach a seismic array with a backazimuth deviating from the theoretical backazimuth of the earthquake. Source-receiver combinations are chosen in a way that their great circle paths do not intersect the slab region, hence the direct arrivals can serve as reference. We focus on the North and Northwest Pacific region by using earthquakes from Japan, the Philippines and the Hindu Kush area recorded at North American networks (e.g. USArray, Alaska and Canada). Using seismic array techniques for analysing the data and record information on slowness, backazimuth and travel time of the observed out-of-plane arrivals we use these measurements to trace the wave back through a 1D velocity model to its scattering/reflection location. We find a number of out-of-plane reflections. Assuming only single scattering, most out-of-plane signals have to travel as P-to-P phases and only a few as S-to-P phases, due to the length of the seismograms we processed. The located reflection points present a view of the 3D structures within the mantle. In the upper mantle and the transition zone they correlate well with the edges of fast velocity regions in tomographic images. We also find reflection points in the mid- and lower mantle and their locations generally agree with fast velocities mapped by seismic tomography models suggesting that in the subduction regions we map, slabs enter the lower mantle. To validate our approach, we calculate and process synthetic seismograms for 3D wave field propagation through a model containing a slab-like heterogeneity. We show, that depending on the source-receiver geometry relative to the reflection plane, it is indeed possible to observe and back-trace out-of-plane signals.

  6. Detecting lower-mantle slabs beneath Asia and the Aleutians

    NASA Astrophysics Data System (ADS)

    Schumacher, L.; Thomas, C.

    2016-06-01

    To investigate the descend of subducted slabs we search for and analyse seismic arrivals that reflected off the surface of the slab. In order to distinguish between such arrivals and other seismic phases, we search for waves that reach a seismic array with a backazimuth deviating from the theoretical backazimuth of the earthquake. Source-receiver combinations are chosen in a way that their great circle paths do not intersect the slab region, hence the direct arrivals can serve as reference. We focus on the North and Northwest Pacific region by using earthquakes from Japan, the Philippines and the Hindu Kush area recorded at North American networks (e.g. USArray, Alaska and Canada). Using seismic array techniques for analysing the data and record information on slowness, backazimuth and traveltime of the observed out-of-plane arrivals we use these measurements to trace the wave back through a 1-D velocity model to its scattering/reflection location. We find a number of out-of-plane reflections. Assuming only single scattering, most out-of-plane signals have to travel as P-to-P phases and only a few as S-to-P phases, due to the length of the seismograms we processed. The located reflection points present a view of the 3-D structures within the mantle. In the upper mantle and the transition zone they correlate well with the edges of fast velocity regions in tomographic images. We also find reflection points in the mid- and lower mantle and their locations generally agree with fast velocities mapped by seismic tomography models suggesting that in the subduction regions we map, slabs enter the lower mantle. To validate our approach, we calculate and process synthetic seismograms for 3-D wave field propagation through a model containing a slab-like heterogeneity. We show, that depending on the source-receiver geometry relative to the reflection plane, it is indeed possible to observe and back-trace out-of-plane signals.

  7. A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production.

    PubMed

    Torres, Luisa; Yadav, Om Prakash; Khan, Eakalak

    2016-01-01

    The objective of this paper is to review different risk assessment techniques applicable to onshore unconventional oil and gas production to determine the risks to water quantity and quality associated with hydraulic fracturing and produced water management. Water resources could be at risk without proper management of water, chemicals, and produced water. Previous risk assessments in the oil and gas industry were performed from an engineering perspective leaving aside important social factors. Different risk assessment methods and techniques are reviewed and summarized to select the most appropriate one to perform a holistic and integrated analysis of risks at every stage of the water life cycle. Constraints to performing risk assessment are identified including gaps in databases, which require more advanced techniques such as modeling. Discussions on each risk associated with water and produced water management, mitigation strategies, and future research direction are presented. Further research on risks in onshore unconventional oil and gas will benefit not only the U.S. but also other countries with shale oil and gas resources. PMID:26386446

  8. Fluorescence losses from Yb:YAG slab lasers.

    PubMed

    Chen, Ying; Rapaport, Alexandra; Chung, Te-yuan; Chen, Bin; Bass, Michael

    2003-12-20

    We report on the distribution of fluorescence that can be emitted through the surfaces of a ytterbium-doped yttrium aluminum garnet (Yb:YAG) slab-shaped high-power solid-state laser. Slab shapes considered include parallel or antiparallel Brewster endfaced slabs and rectangular parallelepiped slabs. We treat cases in which all the faces of these slabs are in air, or with water or another coating on the largest faces. The fraction of the fluorescence emitted through each face, its distribution over that face, and the directions in which it travels are shown to be important to the design of high-power slab lasers. PMID:14717292

  9. Fatigue of concrete beams and slabs

    NASA Astrophysics Data System (ADS)

    Roesler, Jeffrey Raphael

    Traditionally, simply supported concrete beam (SSB) fatigue results have been used to characterize the fatigue resistance of fully supported concrete slabs (FSS). SSB concrete fatigue tests have been assumed to be equivalent to the fatigue resistance of concrete slabs in the field. The effect specimen size, boundary conditions, and loading configurations have on the fatigue of concrete beams and slabs have not been considered in the design of concrete pavements against fatigue. A laboratory study was undertaken to determine if the fatigue behavior of FSS and SSB were similar. A fully supported beam (FSB) was also tested under repeated loading, since it represented an intermediate specimen size and testing configuration between SSB and FSS. The best way to present fatigue results for all specimens was a stress ratio (S) to number of cycles to failure (N) curve (S-N curve). SSB fatigue behavior was similar to results obtained from the literature. FSB had similar fatigue behavior to SSB. The fatigue curve derived from repeated loading of FSS was 30 percent higher than the SSB fatigue curve. This suggested for a given number of cycles to failure, FSS could take a 30 percent higher bending stress as compared to SSB and FSB. The concrete modulus of rupture from a FSS test configuration was 30 percent greater than the concrete modulus of rupture from a SSB test setup. If the concrete modulus of rupture from a FSS test configuration was used in the slab's stress ratio, the slab's fatigue curve was the same as the SSB and FSB. This meant concrete behaved the same under fatigue loading, irrespective of specimen size and test configuration, as long as the correct concrete modulus of rupture was used in the stress ratio. Strain gages, attached to all specimens tested, indicated cracking in concrete occurred in a narrow band. Regions of high plastic strain were found in the plane of cracking, while adjacent areas experienced decreases in strain levels with cracking. Strain

  10. [Trochanteric femoral fractures].

    PubMed

    Douša, P; Čech, O; Weissinger, M; Džupa, V

    2013-01-01

    femoral nail; a short nail was used in 1260 and a long nail in 134 of them. A dynamic hip screw (DHS) was employed to treat 947 fractures. Distinguishing between pertrochanteric (21-A1, 31-A2) and intertrochanteric (31-A3) fractures is considered an important approach because of their different behaviour at reduction. Pertrochanteric fractures occurred more frequently (81.5%); the patients' age was higher (80 years on the average) and women outnumbered men at a ratio of 3:1. Intertrochanteric fractures were found in significantly younger patients (average, 72 years), with a women-to-men ratio of 1.3:1. Stable pertrochanteric fractures (31-A1) were preferably indicated for DHS surgery. Unstable pertrochanteric (31-A2) and intertrochanteric (31- A3) fractures were treated with a nail. The patients underwent surgery on the day of injury or the next day. In the case of contraindications to an urgent intervention, surgery was performed after the patient's medical condition had stabilised. The number of complications was largely related to technical errors, such as insufficient reduction or an incorrectly inserted implant. Intertrochanteric fractures were associated with a higher occurrence of complications. No implant can compensate for errors due to surgery. Serious complications can be reduced by the correct assessment of fracture type, the use of an appropriate operative technique and early treatment of potential complications. The necessity of restoring continuity in the medial cortex of the femoral neck (Adams' arch) is the requirement that should be observed. Pseudoarthrosis or varus malalignment in a healed hip should be managed by valgus osteotomy. When the femoral head or the acetabulum is damaged, total hip arthroplasty is indicated. A prerequisite for successful surgical outcome is urgently and correctly performed osteosynthesis allowing for early rehabilitation and mobilisation of the patient. PMID:23452417

  11. Dynamic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Kobayashi, A. S.; Ramulu, M.

    1985-01-01

    Dynamic fracture and crack propagation concepts for ductile materials are reviewed. The equations for calculating dynamic stress integrity and the dynamic energy release rate in order to study dynamic crack propagation are provided. The stress intensity factor versus crack velocity relation is investigated. The uses of optical experimental techniques and finite element methods for fracture analyses are described. The fracture criteria for a rapidly propagating crack under mixed mode conditions are discussed; crack extension and fracture criteria under combined tension and shear loading are based on maximum circumferential stress or energy criteria such as strain energy density. The development and use of a Dugdale model and finite element models to represent crack and fracture dynamics are examined.

  12. Transphyseal Distal Humerus Fracture.

    PubMed

    Abzug, Joshua; Ho, Christine Ann; Ritzman, Todd F; Brighton, Brian

    2016-01-01

    Transphyseal distal humerus fractures typically occur in children younger than 3 years secondary to birth trauma, nonaccidental trauma, or a fall from a small height. Prompt and accurate diagnosis of a transphyseal distal humerus fracture is crucial for a successful outcome. Recognizing that the forearm is not aligned with the humerus on plain radiographs may aid in the diagnosis of a transphyseal distal humerus fracture. Surgical management is most commonly performed with the aid of an arthrogram. Closed reduction and percutaneous pinning techniques similar to those used for supracondylar humerus fractures are employed. Cubitus varus caused by a malunion, osteonecrosis of the medial condyle, or growth arrest is the most common complication encountered in the treatment of transphyseal distal humerus fractures. A corrective lateral closing wedge osteotomy can be performed to restore a nearly normal carrying angle. PMID:27049206

  13. The feeder system of the Toba supervolcano from the slab to the shallow reservoir

    NASA Astrophysics Data System (ADS)

    Koulakov, Ivan; Kasatkina, Ekaterina; Shapiro, Nikolai M.; Jaupart, Claude; Vasilevsky, Alexander; El Khrepy, Sami; Al-Arifi, Nassir; Smirnov, Sergey

    2016-07-01

    The Toba Caldera has been the site of several large explosive eruptions in the recent geological past, including the world's largest Pleistocene eruption 74,000 years ago. The major cause of this particular behaviour may be the subduction of the fluid-rich Investigator Fracture Zone directly beneath the continental crust of Sumatra and possible tear of the slab. Here we show a new seismic tomography model, which clearly reveals a complex multilevel plumbing system beneath Toba. Large amounts of volatiles originate in the subducting slab at a depth of ~150 km, migrate upward and cause active melting in the mantle wedge. The volatile-rich basic magmas accumulate at the base of the crust in a ~50,000 km3 reservoir. The overheated volatiles continue ascending through the crust and cause melting of the upper crust rocks. This leads to the formation of a shallow crustal reservoir that is directly responsible for the supereruptions.

  14. The thermal effect of fluid circulation in the subducting crust on slab melting in the Chile subduction zone

    NASA Astrophysics Data System (ADS)

    Spinelli, Glenn A.; Wada, Ikuko; He, Jiangheng; Perry, Matthew

    2016-01-01

    Fluids released from subducting slabs affect geochemical recycling and melt generation in the mantle wedge. The distribution of slab dehydration and the potential for slab melting are controlled by the composition/hydration of the slab entering a subduction zone and the pressure-temperature path that the slab follows. We examine the potential for along-strike changes in temperatures, fluid release, and slab melting for the subduction zone beneath the southern portion of the Southern Volcanic Zone (SVZ) in south central Chile. Because the age of the Nazca Plate entering the subduction zone decreases from ∼14 Ma north of the Guafo Fracture Zone to ∼6 Ma to the south, a southward warming of the subduction zone has been hypothesized. However, both north and south of Guafo Fracture Zone the geochemical signatures of southern SVZ arc lavas are similar, indicating 3-5 wt.% sediment melt and little to no contribution from melt of subducted basalt or aqueous fluids from subducted crust. We model temperatures in the system, use results of the thermal models and the thermodynamic calculation code Perple_X to estimate the pattern of dehydration-derived fluid release, and examine the potential locations for the onset of melting of the subducting slab. Surface heat flux observations in the region are most consistent with fluid circulation in the high permeability upper oceanic crust redistributing heat. This hydrothermal circulation preferentially cools the hottest parts of the system (i.e. those with the youngest subducting lithosphere). Models including the thermal effects of fluid circulation in the oceanic crust predict melting of the subducting sediment but not the basalt, consistent with the geochemical observations. In contrast, models that do not account for fluid circulation predict melting of both subducting sediment and basalt below the volcanic arc south of Guafo Fracture Zone. In our simulations with the effects of fluid circulation, the onset of sediment

  15. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  16. Oceanic slab melting and mantle metasomatism.

    PubMed

    Scaillet, B; Prouteau, G

    2001-01-01

    Modern plate tectonic brings down oceanic crust along subduction zones where it either dehydrates or melts. Those hydrous fluids or melts migrate into the overlying mantle wedge trigerring its melting which produces arc magmas and thus additional continental crust. Nowadays, melting seems to be restricted to cases of young (< 50 Ma) subducted plates. Slab melts are silicic and strongly sodic (trondhjemitic). They are produced at low temperatures (< 1000 degrees C) and under water excess conditions. Their interaction with mantle peridotite produces hydrous metasomatic phases such as amphibole and phlogopite that can be more or less sodium rich. Upon interaction the slab melt becomes less silicic (dacitic to andesitic), and Mg, Ni and Cr richer. Virtually all exposed slab melts display geochemical evidence of ingestion of mantle material. Modern slab melts are thus unlike Archean Trondhjemite-Tonalite-Granodiorite rocks (TTG), which suggests that both types of magmas were generated via different petrogenetic pathways which may imply an Archean tectonic model of crust production different from that of the present-day, subduction-related, one. PMID:11838241

  17. Fabrication of fracture-free nanoglassified substrates by layer-by-layer deposition with a paint gun technique for real-time monitoring of protein-lipid interactions.

    PubMed

    Linman, Matthew J; Culver, Sean P; Cheng, Quan

    2009-03-01

    New sensing materials that are robust, biocompatible, and amenable to array fabrication are vital to the development of novel bioassays. Herein we report the fabrication of ultrathin (ca. 5-8 nm) glass (silicate) layers on top of a gold surface for surface plasmon resonance (SPR) biosensing applications. The nanoglass layers are fabricated by layer-by-layer (LbL) deposition of poly(allylamine) hydrochloride (PAH) and sodium silicate (SiO(x)), followed by calcination at high temperature. To deposit these layers in a uniform and reproducible manner, we employed a high-volume, low-pressure (HVLP) paint gun technique that offers high precision and better control through pressurized nitrogen gas. The new substrates are stable in solution for a long period of time, and scanning electron microscopy (SEM) images confirm that these films are nearly fracture-free. In addition, atomic force microscopy (AFM) indicates that the surface roughness of the silicate layers is low (rms = 2 to 3 nm), similar to that of bare glass slides. By tuning the experimental parameters such as HVLP gun pressure and layers deposited, different surface morphology could be obtained as revealed by fluorescence microscopy and SEM images. To demonstrate the utility of these ultrathin, fracture-free substrates, lipid bilayer membranes composed of phosphorylated derivatives of phosphoinositides (PIs) were deposited on the new substrates for biosensing applications. Fluorescence recovery after photobleaching (FRAP) data indicated that these lipid components in the membranes were highly mobile. Furthermore, interactions of PtdIns(4,5)P2 and PtdIns(4)P lipids with their respective binding proteins were detected with high sensitivity by using SPR spectroscopy. This method of glass deposition can be combined with already well-developed surface chemistry for a range of planar glass assay applications, and the process is amenable to automation for mass production of nanometer thick silicate chips in a highly

  18. Arthroscopic fixation of an avulsion fracture of the tibia involving the posterior cruciate ligament: a modified technique in a series of 22 cases.

    PubMed

    Chen, L B; Wang, H; Tie, K; Mohammed, A; Qi, Y J

    2015-09-01

    A total of 22 patients with a tibial avulsion fracture involving the insertion of the posterior cruciate ligament (PCL) with grade II or III posterior laxity were reduced and fixed arthroscopically using routine anterior and double posteromedial portals. A double-strand Ethibond suture was inserted into the joint and wrapped around the PCL from anterior to posterior to secure the ligament above the avulsed bony fragment. Two tibial bone tunnels were created using the PCL reconstruction guide, aiming at the medial and lateral borders of the tibial bed. The ends of the suture were pulled out through the bone tunnels and tied over the tibial cortex between the openings of the tunnels to reduce and secure the bony fragment. Satisfactory reduction of the fracture was checked arthroscopically and radiographically. The patients were followed-up for a mean of 24.5 months (19 to 28). Bone union occurred six weeks post-operatively. At final follow-up, all patients had a negative posterior drawer test and a full range of movement. KT-1000 arthrometer examination showed that the mean post-operative side-to-side difference improved from 10.9 mm (standard deviation (sd) 0.7) pre-operatively to 1.5 mm (sd 0.6) (p = 0.001). The mean Tegner and the International Knee Documentation Committee scores improved significantly (p = 0.001). The mean Lysholm score at final follow-up was 92.0 (85 to 96). We conclude that this technique is convenient, reliable and minimally invasive and successfully restores the stability and function of the knee. PMID:26330588

  19. INTERIOR VIEW, LOOKING NORTHEAST, WITH OVENS AND SLAB BEING PROCESSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, LOOKING NORTHEAST, WITH OVENS AND SLAB BEING PROCESSED THROUGH PRESS/STECKLER (RIGHT). HEATED SLABS MAKE SEVERAL PASSES THROUGH THE STECKLER WITH THICKNESS OF THE SLAB DECREASED UNTIL REQUIRED GAGE IS REACHED. - Central Iron Foundry, Hot Strip Mill Building, 1700 Holt Road, Holt, Tuscaloosa County, AL

  20. Necessity of the Ridge for the Flat Slab Subduction: Insights from the Peruvian Flat Slab

    NASA Astrophysics Data System (ADS)

    Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Long, M. D.; Zandt, G.; Tavera, H.

    2014-12-01

    Flattening of the subducting plate has been linked to the formation of various geological features, including basement-cored uplifts, the cessation of arc volcanism, ignimbrite flare-ups, and the formation of high plateaus and ore deposits [Humphreys et al., 2003; Gutscher et al., 2000; Rosenbaum et al., 2005]. However, the mechanism responsible for the slab flattening is still poorly understood. Here we focus on the Peruvian flat slab, where the Nazca plate starts to bend at ~80 km depth and travels horizontally for several hundred kilometers, at which point steep subduction resumes. Based on a 1500 km long volcanic gap and intermediate depth seismicity patterns, the Peruvian flat slab appears to have the greatest along-strike extent and, therefore, has been suggested as a modern analogue to the putative flat slab during the Laramide orogeny in the western United States (~80-55 Ma). Combining 3D shear wave velocity structure and Rayleigh wave phase anisotropy between ~10° and 18° S, we find that the subducting Nazca plate is not uniformly flat along the entire region, but fails to the north of the subducting Nazca Ridge. Our results show that, in combination with trench retreat, rapid overriding plate motion, and/or presence of a thick cratonic root, the subduction of buoyant overthickened oceanic crust, such as the Nazca Ridge, is necessary for the formation and sustainability of flat slabs. This finding has important implications for the formation of flat slabs both past and present.

  1. Elbow Fractures

    MedlinePlus

    ... and held together with pins and wires or plates and screws. Fractures of the distal humerus (see ... doctor. These fractures usually require surgical repair with plates and/or screw, unless they are stable. SIGNS ...

  2. Mantle Response to a Slab Gap and Three-dimensional Slab Interaction in Central America

    NASA Astrophysics Data System (ADS)

    Jadamec, M. A.; Fischer, K. M.

    2013-12-01

    Seismically constrained global slab geometries suggest the Middle America-South American subduction system contains a gap on the order of 500 km separating the east-dipping Cocos and Nazca slabs at depth (Gudmundsson and Sambridge, 1998; Syracuse and Abers, 2006; Hayes et al., 2012). The location of the gap correlates with tectonic features impinging on the Pacific side of the Middle America trench, in particular the incoming young buoyant oceanic lithosphere and oceanic ridges associated with the Galapagos hotspot and Cocos-Nazca spreading center (Protti et al., 1994; Mann et al., 2007; Muller et al., 2008). Moreover, geochemical studies focusing on the arc chemistry in the Central American volcanic front argue for a slab window of some kind in this region (Johnston and Thorkelson, 1997; Abratis and Worner, 2001; Hoernle et al., 2008). We use high-resolution, three-dimensional (3D) geodynamic modeling of the Middle America-South American subduction system to investigate the role of the incoming young oceanic lithosphere and a gap between the Cocos and Nazca slabs in controlling mantle flow velocity and geochemical signatures beneath Central America. The geodynamic models are geographically referenced with the geometry and thermal structure for the overriding and subducting plates based on geological and geophysical observables and constructed with the multi-plate subduction generator code, SlabGenerator (Jadamec and Billen, 2010; Jadamec et al., 2012; Jadamec and Billen, 2012). The viscous flow simulations are solved using the mantle convection finite-element code, CitcomCU (Zhong, 2006), modified by Jadamec and Billen (2010) to take into account the experimentally derived flow law for olivine and allow for variable 3D plate interface geometries and magnitudes of inter-plate coupling. The 3D numerical models indicate the gap between the Cocos and Nazca slabs serves as a conduit for Pacific-Cocos mantle to pass into the Caribbean, with toroidal flow around the

  3. Fracture toughness testing of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    1992-01-01

    The experimental techniques and associated data analysis methods used to measure the resistance to interlaminar fracture, or 'fracture toughness', of polymer matrix composite materials are described. A review in the use of energy techniques to characterize fracture behavior in elastic solids is given. An overview is presented of the types of approaches employed in the design of delamination-resistant composite materials.

  4. Increasing Metal Fracture Toughness

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Wood, W. H.; Sandefur, P. G. J.

    1982-01-01

    In technique developed at Langley Research Center several thin sheets of metal are diffusion-brazed together in vacuum furnace to create thick piece of metal that retains much of fracture toughness of its thin components. Technique is expected to make many of high-strength stainless steels, not currently suitable, usable at cryogenic temperatures.

  5. Monte Carlo Simulation of Alloy Design Techniques: Fracture and Welding Studied Using the BFS Method for Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Good, Brian; Noebe, Ronald D.; Honecy, Frank; Abel, Phillip

    1999-01-01

    Large-scale simulations of dynamic processes at the atomic level have developed into one of the main areas of work in computational materials science. Until recently, severe computational restrictions, as well as the lack of accurate methods for calculating the energetics, resulted in slower growth in the area than that required by current alloy design programs. The Computational Materials Group at the NASA Lewis Research Center is devoted to the development of powerful, accurate, economical tools to aid in alloy design. These include the BFS (Bozzolo, Ferrante, and Smith) method for alloys (ref. 1) and the development of dedicated software for large-scale simulations based on Monte Carlo- Metropolis numerical techniques, as well as state-of-the-art visualization methods. Our previous effort linking theoretical and computational modeling resulted in the successful prediction of the microstructure of a five-element intermetallic alloy, in excellent agreement with experimental results (refs. 2 and 3). This effort also produced a complete description of the role of alloying additions in intermetallic binary, ternary, and higher order alloys (ref. 4).

  6. Use of nanoindentation technique for a better understanding of the fracture toughness of Strombus gigas conch shell

    SciTech Connect

    Romana, L.; Thomas, P.; Bilas, P.; Mansot, J.L.; Merrifiels, M.; Bercion, Y.; Aranda, D. Aldana

    2013-02-15

    In this work the nanochemical properties of the composite organomineral biomaterial constituting Strombus gigas conch shell are studied by means of dynamic mechanical analyses associated to nanoidentation technique. The measurements are performed on shell samples presenting different surface orientations relative to the growth axis of the conch shell. The influence of the organic component of the biomaterial on its nanomechanical properties is also investigated by studying fresh and dried S. gigas conch shells. Monocrystalline aragonite is used as a reference. For the understanding of nanochemical behaviour, special attention is paid to the pop in events observed on the load/displacement curves which results from nanofractures' initiation and propagation occuring during the load process. In order to better understand the mechanical properties systematic studies of the structure and morphology are performed using scanning electron microscopy, atomic force microscopy and X-ray diffractometry. The hardness and Young's modulus values measured on bio aragonite samples are close to those of the aragonite mineral standard. This surprising result shows that, H and E values are not related to the bio composition and lamellar structure of the bio aragonite. However, it was found that the organic layer and the micro architecture strongly influence the nanofracture initiation and propagation processes in the samples. Statistic study of the pop-in events can help to predict the macroscopic mechanical behaviour of the material. - Highlights: ► Nanomechanical properties of Strombus gigas conch shell ► Low influence of the crossed lamellar structure on H and E values at the nano scale ► Strong influence of the crossed lamellar on nanocracks initiation ► Correlation between mechanical behaviors at the macro and nano scales.

  7. Slab photonic crystals with dimer colloid bases

    SciTech Connect

    Riley, Erin K.; Liddell Watson, Chekesha M.

    2014-06-14

    The photonic band gap properties for centered rectangular monolayers of asymmetric dimers are reported. Colloids in suspension have been organized into the phase under confinement. The theoretical model is inspired by the range of asymmetric dimers synthesized via seeded emulsion polymerization and explores, in particular, the band structures as a function of degree of lobe symmetry and degree of lobe fusion. These parameters are varied incrementally from spheres to lobe-tangent dimers over morphologies yielding physically realizable particles. The work addresses the relative scarcity of theoretical studies on photonic crystal slabs with vertical variation that is consistent with colloidal self-assembly. Odd, even and polarization independent gaps in the guided modes are determined for direct slab structures. A wide range of lobe symmetry and degree of lobe fusion combinations having Brillouin zones with moderate to high isotropy support gaps between odd mode band indices 3-4 and even mode band indices 1-2 and 2-3.

  8. Subduction zone earthquakes and stress in slabs

    NASA Technical Reports Server (NTRS)

    Vassiliou, M. S.; Hager, B. H.

    1988-01-01

    Simple viscous fluid models of subducting slabs are used to explain observations of the distribution of earthquakes as a function of depth and the orientation of stress axes of deep (greater than 300 km) and intermediate (70-300 km) earthquakes. Results suggest the following features in the distribution of earthquakes with depth: (1) an exponential decrease from shallow depths down to 250 to 300 km, (2) a minimum near 250 to 300 km, and (3) a deep peak below 300 km. Many shallow subducting slabs show only the first characteristic, while deeper extending regions tend to show all three features, with the deep peak varying in position and intensity. These data, combined with the results on the stress orientations of various-depth earthquakes, are consistent with the existence of a barrier of some sort at 670-km depth and a uniform viscosity mantle above this barrier.

  9. Effects of Thermodynamic Properties on Slab Evolution

    NASA Astrophysics Data System (ADS)

    Wada, I.; King, S. D.; Caddick, M. J.; Ross, N.

    2012-12-01

    We perform a series of numerical experiments to investigate the effects of thermodynamic properties on the geometrical evolution of subducting slabs. We calculate density (ρ), thermal expansivity (α), and heat capacity (cp) of mantle mineral assemblages of a harzburgite composition over a range of pressure and temperature conditions applicable to the Earth's mantle, using the thermodynamic database of Stixrude and Lithgow-Bertelloni [2011] and the thermodynamic calculation code Perple_X [Connolly, 2009]. Following Nakagawa et al. [2009], we assume that thermal diffusivity (κ) follows a power-law relationship with density (κ=κ0(ρ/ρ0)3, where κ0 and ρ0 are reference diffusivity and density, respectively). The calculations show that ρ, α, and κ change significantly along mantle geotherms; the ranges of their values are 3300-5100 km/m3, 1.5-3.5 10-5/K, and 3-17 W/m K, respectively. The change in cp is small (< 5%). We incorporate the pressure and temperature (PT) dependence of these thermodynamic properties into a 2-D finite element code with compressible convection formulations under the truncated anelastic liquid approximation [Lee and King, 2009] and develop a dynamic subduction model with kinematic boundary conditions. In the model, we use a composite mantle rheology that accounts for both diffusion and dislocation creep with flow law parameterization of wet olivine [Hirth and Kohlstedt, 2003]. Following Billen and Hirth [2007] and Lee and King [2011], we adjust the flow law parameter values for the lower mantle to test the effects of viscosity contrast between the upper and lower mantle on slab evolution. We use a reference model with a constant ρ, κ α, and cp, which is equivalent to using the incompressible extended Bousisnesq approximation. Preliminary results show that incorporating PT-dependent ρ enhances the vigor of the buoyancy driven flow compared to the reference model. Further, lithostatic pressure at a given depth is higher than in the

  10. The effect of metastable pyroxene on the slab dynamics

    NASA Astrophysics Data System (ADS)

    Agrusta, Roberto; Hunen, Jeroen; Goes, Saskia

    2014-12-01

    Seismic studies show that some subducting slabs penetrate straight into the lower mantle, whereas others seem to flatten near the base of the mantle transition zone. Slab stagnation is often attributed to an increase in viscosity and phase transformations in the olivine system. However, recent mineral physics studies showed that due to extremely low transformational diffusion rates, low-density metastable pyroxene may persist into the transition zone in cool slabs. Here we use a dynamically fully self-consistent subduction model to investigate the influence of metastable pyroxene on the dynamics of subducting oceanic lithosphere. Our results show that metastable pyroxene affects slab buoyancy at least as much as olivine metastability. However, unlike metastable olivine, which can inhibit slab penetration in the lower mantle only for cold, old, and fast slabs, metastable pyroxene is likely to also affect sinking of relatively young and slow slabs.

  11. The Effect of Subducting Slabs in Global Shear Wave Tomography

    NASA Astrophysics Data System (ADS)

    Lu, Chang; Grand, Stephen P.

    2016-03-01

    Subducting slabs create strong short wavelength seismic anomalies in the upper mantle where much of Earth's seismicity is located. As such, they have the potential to bias longer wavelength seismic tomography models. To evaluate the effect of subducting slabs in global tomography, we performed a series of inversions using a global synthetic shear wave travel time dataset for a theoretical slab model based on predicted thermal anomalies within slabs. The spectral element method was applied to predict the travel time anomalies produced by the 3D slab model for paths corresponding to our current data used in actual tomography models. Inversion tests have been conducted first using the raw travel time anomalies to check how well the slabs can be imaged in global tomography without the effect of earthquake mislocation. Our results indicate that most of the slabs can be identified in the inversion result but with smoothed and reduced amplitude. The recovery of the total mass anomaly in slab regions is about 88%. We then performed another inversion test to investigate the effect of mislocation caused by subducting slabs. We found that source mislocation largely removes slab signal and significantly degrades the imaging of subducting slabs - potentially reducing the recovery of mass anomalies in slab regions to only 41%. We tested two source relocation procedures - an iterative relocation inversion and joint relocation inversion. Both methods partially recover the true source locations and improve the inversion results, but the joint inversion method worked significantly better than the iterative method. In all of our inversion tests, the amplitude of artifact structures in the lower mantle caused by the incorrect imaging of slabs (up to ˜0.5% S velocity anomalies) are comparable to some large scale lower mantle heterogeneities seen in global tomography studies. Based on our inversion tests, we suggest including a-priori subducting slabs in the starting models in global

  12. The effect of subducting slabs in global shear wave tomography

    NASA Astrophysics Data System (ADS)

    Lu, Chang; Grand, Stephen P.

    2016-05-01

    Subducting slabs create strong short wavelength seismic anomalies in the upper mantle where much of Earth's seismicity is located. As such, they have the potential to bias longer wavelength seismic tomography models. To evaluate the effect of subducting slabs in global tomography, we performed a series of inversions using a global synthetic shear wave traveltime data set for a theoretical slab model based on predicted thermal anomalies within slabs. The spectral element method was applied to predict the traveltime anomalies produced by the 3-D slab model for paths corresponding to our current data used in actual tomography models. Inversion tests have been conducted first using the raw traveltime anomalies to check how well the slabs can be imaged in global tomography without the effect of earthquake mislocation. Our results indicate that most of the slabs can be identified in the inversion result but with smoothed and reduced amplitude. The recovery of the total mass anomaly in slab regions is about 88 per cent. We then performed another inversion test to investigate the effect of mislocation caused by subducting slabs. We found that source mislocation largely removes slab signal and significantly degrades the imaging of subducting slabs-potentially reducing the recovery of mass anomalies in slab regions to only 41 per cent. We tested two source relocation procedures-an iterative relocation inversion and joint relocation inversion. Both methods partially recover the true source locations and improve the inversion results, but the joint inversion method worked significantly better than the iterative method. In all of our inversion tests, the amplitudes of artefact structures in the lower mantle caused by the incorrect imaging of slabs (up to ˜0.5 per cent S velocity anomalies) are comparable to some large-scale lower-mantle heterogeneities seen in global tomography studies. Based on our inversion tests, we suggest including a-priori subducting slabs in the

  13. Fast Waves in Smooth Coronal Slab

    NASA Astrophysics Data System (ADS)

    Lopin, I.; Nagorny, I.

    2015-03-01

    This work investigates the effect of transverse density structuring in coronal slab-like waveguides on the properties of fast waves. We generalized previous results obtained for the exponential and Epstein profiles to the case of an arbitrary transverse density distribution. The criteria are given to determine the possible (trapped or leaky) wave regime, depending on the type of density profile function. In particular, there are plasma slabs with transverse density structuring that support pure trapped fast waves for all wavelengths. Their phase speed is nearly equal to the external Alfvén speed for the typical parameters of coronal loops. Our findings are obtained on the basis of Kneser’s oscillation theorem. To confirm the results, we analytically solved the wave equation evaluated at the cutoff point and the original wave equation for particular cases of transverse density distribution. We also used the WKB method and obtained approximate solutions of the wave equation at the cutoff point for an arbitrary transverse density profile. The analytic results were supplemented by numerical solutions of the obtained dispersion relations. The observed high-quality quasi-periodic pulsations of flaring loops are interpreted in terms of the trapped fundamental fast-sausage mode in a slab-like coronal waveguide.

  14. Implementing slab solar water heating system

    NASA Astrophysics Data System (ADS)

    Raveendran, S. K.; Shen, C. Q.

    2015-08-01

    Water heating contributes a significant part of energy consumption in typical household. One of the most employed technologies today that helps in reducing the energy consumption of water heating would be conventional solar water heating system. However, this system is expensive and less affordable by most family. The main objective of this project is to design and implement an alternative type of solar water heating system that utilize only passive solar energy which is known as slab solar water heating system. Slab solar water heating system is a system that heat up cold water using the solar radiance from the sun. The unique part of this system is that it does not require any form of electricity in order to operate. Solar radiance is converted into heat energy through convection method and cold water will be heated up by using conduction method [1]. The design of this system is governed by the criteria of low implementation cost and energy saving. Selection of material in the construction of a slab solar water heating system is important as it will directly affect the efficiency and performance of the system. A prototype has been built to realize the idea and it had been proven that this system was able to provide sufficient hot water supply for typical household usage at any given time.

  15. Convection in Slab and Spheroidal Geometries

    NASA Technical Reports Server (NTRS)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  16. Suspensions in hydraulic fracturing

    SciTech Connect

    Shah, S.N.

    1996-12-31

    Suspensions or slurries are widely used in well stimulation and hydraulic fracturing processes to enhance the production of oil and gas from the underground hydrocarbon-bearing formation. The success of these processes depends significantly upon having a thorough understanding of the behavior of suspensions used. Therefore, the characterization of suspensions under realistic conditions, for their rheological and hydraulic properties, is very important. This chapter deals with the state-of-the-art hydraulic fracturing suspension technology. Specifically it deals with various types of suspensions used in well stimulation and fracturing processes, their rheological characterization and hydraulic properties, behavior of suspensions in horizontal wells, review of proppant settling velocity and proppant transport in the fracture, and presently available measurement techniques for suspensions and their merits. Future industry needs for better understanding of the complex behavior of suspensions are also addressed. 74 refs., 21 figs., 1 tab.

  17. Viscous Dissipation and Criticality of Subducting Slabs

    NASA Astrophysics Data System (ADS)

    Riedel, Mike; Karato, Shun; Yuen, Dave

    2016-04-01

    Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ ‑h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota

  18. Combustion of solid fuel slabs with gaseous oxygen in a hybrid motor analog

    NASA Technical Reports Server (NTRS)

    Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.

    1995-01-01

    Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with gaseous oxygen (GOX) under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from plus or minus 20% of the localized mean pressure to an acceptable range of plus or minus 1.5%. Embedded fine--wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse echo techniques were used to determine the instantaneous web thicknesses and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented. Several tests were conducted using, simultaneously, one translucent fuel slab and one fuel slab processed with carbon black powder. The addition of carbon black did not affect the measured regression rates or

  19. Combustion of solid fuel slabs with gaseous oxygen in a hybrid motor analog

    NASA Technical Reports Server (NTRS)

    Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.

    1995-01-01

    Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated- Polybutadiene) fuel cross linked with diisocyanate was burned with GOX under various operating conditions. Large amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed line system and combustion chamber, the pressure oscillations were drastically reduced from +/- 20% of the localized mean pressure to an acceptable range of +/- 1.5%. Embedded fine-wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading-edge region, the subsurface thermal wave profiles in the upstream locations arc thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real time X-ray radiography and ultrasonic pulse-echo techniques were used to determine the instantaneous web thicknesses and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented. Several tests were conducted using, simultaneously, one translucent fuel slab and one fuel slab processed with carbon black powder. The addition of carbon black did not affect the measured regression rates or surface temperatures in comparison

  20. Investigation of Subducting Slab beneath Northeastern Taiwan from Sp Converted Phases

    NASA Astrophysics Data System (ADS)

    Wu, W.

    2004-12-01

    The converted waves from upper plate boundary of the subducting slab denoted as Sp phase recorded by the Central Weather Bureau Seismographic Network (CWBSN) for events in northern Taiwan provide us an advantageous opportunity to construct the geometry of upper boundary of descending Philippine Sea Plate (PSP). The events were chosen for the region with latitude of 24.4 degree N - 25.2 degree N, longitude of 121.5 degree E - 122.2 degree E, depth from 50 -300 km, and time period of January 1991 to Mary 2003 for magnitude greater than 4.0. We apply the polarization filter analysis, particle motion diagram and theoretical travel time to the digital 3-compoent short period seismograms to identify the conceivable Sp converted phases. The initial velocity model with subducting slab was used for theoretical travel time calculation based on the recent tomographic results. The model is constructed firstly by considering a fixed velocity contrasts among the discontinuities. The dip angle and latitude location of slab are allowed to change to obtain the best travel time to the data. Several tests had been made for the inversion. Considering variance reduction of the all observed data to the constructed models by grid searching technique, variance reduction is not in satisfactory. Further studies by grouping the events in north-south and northwestern-southeastern trend were examined. Although the geometry of subducting slab might be difficult to model due to disadvantage in tectonic setting of northeastern Taiwan, which is located to northern subducting slab, the most possible image of the slab from the clear identified converted phases is sketched.

  1. A Numerical Method for Obtaining Monoenergetic Neutron Flux Distributions and Transmissions in Multiple-Region Slabs

    NASA Technical Reports Server (NTRS)

    Schneider, Harold

    1959-01-01

    This method is investigated for semi-infinite multiple-slab configurations of arbitrary width, composition, and source distribution. Isotropic scattering in the laboratory system is assumed. Isotropic scattering implies that the fraction of neutrons scattered in the i(sup th) volume element or subregion that will make their next collision in the j(sup th) volume element or subregion is the same for all collisions. These so-called "transfer probabilities" between subregions are calculated and used to obtain successive-collision densities from which the flux and transmission probabilities directly follow. For a thick slab with little or no absorption, a successive-collisions technique proves impractical because an unreasonably large number of collisions must be followed in order to obtain the flux. Here the appropriate integral equation is converted into a set of linear simultaneous algebraic equations that are solved for the average total flux in each subregion. When ordinary diffusion theory applies with satisfactory precision in a portion of the multiple-slab configuration, the problem is solved by ordinary diffusion theory, but the flux is plotted only in the region of validity. The angular distribution of neutrons entering the remaining portion is determined from the known diffusion flux and the remaining region is solved by higher order theory. Several procedures for applying the numerical method are presented and discussed. To illustrate the calculational procedure, a symmetrical slab ia vacuum is worked by the numerical, Monte Carlo, and P(sub 3) spherical harmonics methods. In addition, an unsymmetrical double-slab problem is solved by the numerical and Monte Carlo methods. The numerical approach proved faster and more accurate in these examples. Adaptation of the method to anisotropic scattering in slabs is indicated, although no example is included in this paper.

  2. Along-strike Translation of a Fossil Slab Beneath California (Invited)

    NASA Astrophysics Data System (ADS)

    Forsyth, D. W.

    2013-12-01

    There are three places where subduction ceased before a spreading ridge was consumed at a trench, leaving behind remnant microplates that were incorporated into the non-subducting oceanic plate. In the cases of the Phoenix plate off the Antarctic peninsula and the Guadalupe and Magdalena microplates off Baja California, fossil slabs still attached to the microplates have been traced into the asthenosphere using seismological techniques. Apparently deep subducting plates can tear off from the surface plate leaving behind fossil pieces of young oceanic lithosphere extending 100 km or more into the asthenosphere. The young slab fragments may be close to neutral buoyancy with their asthenospheric surroundings. In the case of the Monterey microplate off central California, now part of the Pacific plate, oceanic crust has been traced beneath the continental margin using active source seismology. Nicholson et al. (1994) suggested that the translation of the Monterey microplate under North America dragged bits of the overriding plate with it, causing the rotation of the Transverse Ranges in southern California. They also suggested that the San Andreas initiated as a low angle fault between the overriding North American plate and the subducted Monterey plate. There is a gap in coastal, post-subduction volcanic activity opposite the microplate, perhaps because a slab window never formed. A steeply dipping seismic anomaly, the Isabella anomaly, also lies opposite the microplate, probably indicating the continuation of the Monterey slab deep into the asthenosphere. Between the Isabella anomaly and the surface remnants of the Monterey microplate lies the aseismic, creeping section of the San Andreas fault, which we speculate may be caused by the migration of fluids from the subducted plate. The Monterey case differs from the Phoenix and Guadalupe cases in that the hypothesized fossil slab lies beneath the North American plate, which is translating relative to the Pacific

  3. Fractures of the neck of the fifth metacarpal bone, treated by percutaneous intramedullary nailing: surgical technique, radiological and clinical results study (28 cases).

    PubMed

    Boussakri, Hassan; Elidrissi, Mohamad; Azarkane, Mohamad; Bensaad, Soufiane; Bachiri, Mohammed; Shimi, Mohamed; Elibrahimi, Abdelhalim; Elmrini, Abdelmajid

    2014-01-01

    This study report the results in 28 patients affected by closed fractures of the neck of the fifth metacarpal bone (boxer's fracture), treated with percutaneous elastic intramedullary nailing using a single wire, to verify the effectiveness of this surgical treatment. We reviewed the results of 28 patients treated with A single Kirschner wire (K-wire) pre-bent in a lazy-S fashion with a mild bend at approximately 5 millimeters, The K-wire is inserted blunt end first in an antegrade manner and the fracture reduced as the wire is passed across the fracture site The wire is usually removed with pliers post-operatively at four weeks in the fracture clinic. The follow-up period averaged of 20,75 months. The parameters evaluated included angulation, rotational alignment, postoperative metacarpophalangeal (MCP) range of motion, and time to union. We opted for this treatment in all cases, regardless volar angulation of the metacarpal head, malrotation of the fifth finger and associated or/no with a severe swelling of the hand. All the patients were reviewed clinically and radiologically at an average of 20,75 months after surgery. At the final follow-up, no patient reported residual pain and All fractures proceeded to bony union but we have one fracture had to be revised for failed fixation and three superficial wound infections needed antibiotic treatment. We recommend that this minimally invasive: percutaneous intramedullary nailing using a single k-wire in all metacarpal neck fracture (boxers' fractures), especially when severe swelling of the hand is present, with good functional results and low morbidity. PMID:25419314

  4. Hip fracture - discharge

    MedlinePlus

    Inter-trochanteric fracture repair - discharge; Subtrochanteric fracture repair - discharge; Femoral neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge

  5. Dynamic buckling of subducting slabs reconciles geological and geophysical observations

    NASA Astrophysics Data System (ADS)

    Lee, Changyeol; King, Scott D.

    2011-12-01

    Ever since the early days of the development of plate tectonic theory, subduction zones have been engrained in geological thinking as the place where steady, linear slabs descend into the mantle at a constant, uniform dip angle beneath volcanic arcs. However, growing evidence from geological and geophysical observations as well as analog and numerical modeling indicates that subducting slabs buckle in a time-dependent manner, in contrast to the steady-state, linear cartoons that dominate the literature. To evaluate the implication of time-dependent slab buckling of geological events, we conduct a series of 2-D numerical dynamic/kinematic subduction experiments by varying the viscosity increase across the 660 km discontinuity and the strength of the subducting slab. Our results show that slab buckling is a universal figure in all the experiments when rate of the trench migration ( Vtrench) is relatively slow ( Vtrench| < 2 cm/a) and viscosity increases across the 660 km discontinuity are greater than a factor of 30. Slab buckling is expressed as alternate shallowing and steepening dip of the subducting slab (from ~ 40 to ~ 100°) which is correlated with increasing and decreasing convergent rate of the incoming oceanic plate toward the trench. Further, the slab buckling in our experiments is consistent with the previously developed scaling laws for slab buckling; using reasonable parameters from subducted slabs the buckling amplitude and period are ~ 400 km and ~ 25 Myr, respectively. The slab buckling behavior in our experiments explains a variety of puzzling geological and geophysical observations. First, the period of slab buckling is consistent with short periodic variations (~ 25 Myr) in the motions of the oceanic plates that are anchored by subduction zones. Second, the scattered distributions of slab dips (from ~ 20 to ~ 90°) in the upper mantle are snapshots of time-dependent slab dip. Third, the current compressional and extensional stress environments in

  6. Along-strike translation of a fossil slab

    NASA Astrophysics Data System (ADS)

    Pikser, Jacob E.; Forsyth, Donald W.; Hirth, Greg

    2012-05-01

    The Isabella anomaly is a high seismic velocity anomaly beneath the southern Central Valley of California that has previously been interpreted to represent a lithospheric drip or delaminated Sierra Nevada root. However, recent work suggests that the anomaly is a remnant slab, left over from Cenozoic subduction, attached to the Pacific plate underneath the edge of the North American plate. This hypothesis requires the slab to translate hundreds of kilometers along-strike while remaining intact and attached to the Pacific plate despite drag from the surrounding asthenosphere and overriding lithosphere. We use 3-D finite element models to simulate this scenario, and calculate the viscosity ratio between the slab and the surrounding asthenosphere required for the slab to translate undeformed. The required viscosity ratio increases with increasing downdip extent of the slab, and decreases with increasing slab dip; for geometries approximating that of our proposed slab, the required ratio ranges from 102 to 104. Given the thermal and petrologic history of the slab, mantle flow laws predict viscosity contrasts greater than or equal to these requirements. As such, we conclude that along-strike translation of a remnant slab is feasible, and serves as a possible explanation of the Isabella anomaly. The significance of this finding extends beyond our general understanding of subduction dynamics, in that the presence of such a slab could have implications for the water budget of the San Andreas Fault and its role in aseismic slip.

  7. Evolution and diversity of subduction zones controlled by slab width.

    PubMed

    Schellart, W P; Freeman, J; Stegman, D R; Moresi, L; May, D

    2007-03-15

    Subducting slabs provide the main driving force for plate motion and flow in the Earth's mantle, and geodynamic, seismic and geochemical studies offer insight into slab dynamics and subduction-induced flow. Most previous geodynamic studies treat subduction zones as either infinite in trench-parallel extent (that is, two-dimensional) or finite in width but fixed in space. Subduction zones and their associated slabs are, however, limited in lateral extent (250-7,400 km) and their three-dimensional geometry evolves over time. Here we show that slab width controls two first-order features of plate tectonics-the curvature of subduction zones and their tendency to retreat backwards with time. Using three-dimensional numerical simulations of free subduction, we show that trench migration rate is inversely related to slab width and depends on proximity to a lateral slab edge. These results are consistent with retreat velocities observed globally, with maximum velocities (6-16 cm yr(-1)) only observed close to slab edges (<1,200 km), whereas far from edges (>2,000 km) retreat velocities are always slow (<2.0 cm yr(-1)). Models with narrow slabs (< or =1,500 km) retreat fast and develop a curved geometry, concave towards the mantle wedge side. Models with slabs intermediate in width ( approximately 2,000-3,000 km) are sublinear and retreat more slowly. Models with wide slabs (> or =4,000 km) are nearly stationary in the centre and develop a convex geometry, whereas trench retreat increases towards concave-shaped edges. Additionally, we identify periods (5-10 Myr) of slow trench advance at the centre of wide slabs. Such wide-slab behaviour may explain mountain building in the central Andes, as being a consequence of its tectonic setting, far from slab edges. PMID:17361181

  8. Tectonic controls on earthquake size distribution and seismicity rate: slab buoyancy and slab bending

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2014-12-01

    There are clear variations in maximum earthquake magnitude among Earth's subduction zones. These variations have been studied extensively and attributed to differences in tectonic properties in subduction zones, such as relative plate velocity and subducting plate age [Ruff and Kanamori, 1980]. In addition to maximum earthquake magnitude, the seismicity of medium to large earthquakes also differs among subduction zones, such as the b-value (i.e., the slope of the earthquake size distribution) and the frequency of seismic events. However, the casual relationship between the seismicity of medium to large earthquakes and subduction zone tectonics has been unclear. Here we divide Earth's subduction zones into over 100 study regions following Ide [2013] and estimate b-values and the background seismicity rate—the frequency of seismic events excluding aftershocks—for subduction zones worldwide using the maximum likelihood method [Utsu, 1965; Aki, 1965] and the epidemic type aftershock sequence (ETAS) model [Ogata, 1988]. We demonstrate that the b-value varies as a function of subducting plate age and trench depth, and that the background seismicity rate is related to the degree of slab bending at the trench. Large earthquakes tend to occur relatively frequently (lower b-values) in shallower subduction zones with younger slabs, and more earthquakes occur in subduction zones with deeper trench and steeper dip angle. These results suggest that slab buoyancy, which depends on subducting plate age, controls the earthquake size distribution, and that intra-slab faults due to slab bending, which increase with the steepness of the slab dip angle, have influence on the frequency of seismic events, because they produce heterogeneity in plate coupling and efficiently inject fluid to elevate pore fluid pressure on the plate interface. This study reveals tectonic factors that control earthquake size distribution and seismicity rate, and these relationships between seismicity and

  9. Technique de Blount dans le traitement des fractures supra condyliennes du coude chez l'enfant: à propos de 68 cas

    PubMed Central

    Chagou, Aniss; Rhanim, Abdelkarim; Zanati, Rachid; Kharmaz, Mohammed; Lamrani, Moulay Omar; Berrada, Mohammed Saleh; El Yaacoubi, Moradh; Ettaybi, Fouad

    2014-01-01

    La fracture de la palette humérale est la plus fréquente des fractures du coude de l'enfant. La méthode de BLOUNT, constitue une perspective thérapeutique longtemps connue. Elle consiste en une réduction sous contrôle scopique de la fracture et une contention en hyper flexion du coude. Notre série a porté sur l’étude de 68 cas de fractures supra condyliennes chez des enfants traités dans le service des urgences chirurgicales pédiatriques de l'hôpital d'enfant de Rabat entre janvier 2009 et janvier 2012. Nous comparons nos résultats avec les données de la littérature. PMID:25667714

  10. Correlating Volcanism in Coastal California with Slab Windows predicted from Pacific Plate Isochrons

    NASA Astrophysics Data System (ADS)

    Wilson, D. S.; McCrory, P. A.; Stanley, R. G.

    2006-12-01

    The geologic record of coastal California includes evidence of numerous volcanic centers younger than 30 Ma that do not appear to have erupted in an arc setting. By correlating these volcanic centers with specific slab windows predicted from analysis of magnetic anomalies on the Pacific plate, we add new constraints to tectonic reconstructions since 30 Ma. Our correlations -- such as erupting the Morro Rock-Islay Hill complex south of the Pioneer fracture zone and the Iversen Basalt south of the Mendocino fracture zone -- require larger displacements within western North America than advocated by most previous authors. Specifically, we infer at least 315 km of motion between the Sierra Nevada and rigid North America at an azimuth of about N60W, and at least 515 km between Baja California and rigid North America in a similar direction. Alternatively, smaller displacements would require revision of the Pacific-North America global plate circuit. A consequence of inferring a large displacement of Baja California is that the Pacific-North American plate boundary must have developed most of its current form prior to 10 Ma. We interpret a slab window developing between Cocos and Monterey plates after 19 Ma that reconstructs under nearly all of the southern California volcanic centers dated at 18-14 Ma. Reconstructing North American microplates using spherical plate tectonics allows us to animate kinematic models for interaction between oceanic and continental plates.

  11. Numerical quadrature for slab geometry transport algorithms

    SciTech Connect

    Hennart, J.P.; Valle, E. del

    1995-12-31

    In recent papers, a generalized nodal finite element formalism has been presented for virtually all known linear finite difference approximations to the discrete ordinates equations in slab geometry. For a particular angular directions {mu}, the neutron flux {Phi} is approximated by a piecewise function Oh, which over each space interval can be polynomial or quasipolynomial. Here we shall restrict ourselves to the polynomial case. Over each space interval, {Phi} is a polynomial of degree k, interpolating parameters given by in the continuous and discontinuous cases, respectively. The angular flux at the left and right ends and the k`th Legendre moment of {Phi} over the cell considered are represented as.

  12. Photonic crystal slab quantum cascade detector

    SciTech Connect

    Reininger, Peter Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  13. Automated inspection of hot steel slabs

    DOEpatents

    Martin, Ronald J.

    1985-01-01

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes.

  14. Automated inspection of hot steel slabs

    DOEpatents

    Martin, R.J.

    1985-12-24

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes. 5 figs.

  15. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  16. Numerical Simulation of 3D Hydraulic Fracturing Based on an Improved Flow-Stress-Damage Model and a Parallel FEM Technique

    NASA Astrophysics Data System (ADS)

    Li, L. C.; Tang, C. A.; Li, G.; Wang, S. Y.; Liang, Z. Z.; Zhang, Y. B.

    2012-09-01

    The failure mechanism of hydraulic fractures in heterogeneous geological materials is an important topic in mining and petroleum engineering. A three-dimensional (3D) finite element model that considers the coupled effects of seepage, damage, and the stress field is introduced. This model is based on a previously developed two-dimensional (2D) version of the model (RFPA2D-Rock Failure Process Analysis). The RFPA3D-Parallel model is developed using a parallel finite element method with a message-passing interface library. The constitutive law of this model considers strength and stiffness degradation, stress-dependent permeability for the pre-peak stage, and deformation-dependent permeability for the post-peak stage. Using this model, 3D modelling of progressive failure and associated fluid flow in rock are conducted and used to investigate the hydro-mechanical response of rock samples at laboratory scale. The responses investigated are the axial stress-axial strain together with permeability evolution and fracture patterns at various stages of loading. Then, the hydraulic fracturing process inside a rock specimen is numerically simulated. Three coupled processes are considered: (1) mechanical deformation of the solid medium induced by the fluid pressure acting on the fracture surfaces and the rock skeleton, (2) fluid flow within the fracture, and (3) propagation of the fracture. The numerically simulated results show that the fractures from a vertical wellbore propagate in the maximum principal stress direction without branching, turning, and twisting in the case of a large difference in the magnitude of the far-field stresses. Otherwise, the fracture initiates in a non-preferred direction and plane then turns and twists during propagation to become aligned with the preferred direction and plane. This pattern of fracturing is common when the rock formation contains multiple layers with different material properties. In addition, local heterogeneity of the rock

  17. Observation of the Early Transition from Slab to mixed Slab-Toroidal ETG Turbulence

    NASA Astrophysics Data System (ADS)

    Balbaky, Abed; Sokolov, Vladimir; Sen, Amiya K.

    2014-10-01

    Parametric studies of the transition between the slab branch of electron temperature gradient (ETG) mode and the mixed slab-toroidal branch of the ETG mode in CLM are reported. CLM was operated in a mirror machine configuration with a cell length of 50--100 cm, and a mirror ratio of 1--2. For typical CLM parameters and a mode localized at r = 2 cm this provides a range for inverse radius of curvature Rc - 1 between 0 and .006 cm-1. Under normal conditions theory predicts transition between slab and toroidal modes would occur when the parameter k| |Rc / 2k⊥ ρ ~ 1. Recent experiments have obtained an experimental scaling of mode amplitude and frequency as a function of Rc - 1. They indicate that even for much more modest levels of k| |Rc / 2k⊥ ρ ~ . 1 , there are substantial increases in saturated mode, up to 5 times larger than the pure slab mode. Changes in real frequency in the mode are generally small, on the order of <5%. This research was supported by the Department of Electrical Engineering of Columbia University.

  18. Thermally induced birefringence in Nd:YAG slab lasers

    SciTech Connect

    Ostermeyer, Martin; Mudge, Damien; Veitch, Peter J.; Munch, Jesper

    2006-07-20

    We study thermally induced birefringence in crystalline Nd:YAG zigzag slab lasers and the associated depolarization losses. The optimum crystallographic orientation of the zigzag slab within the Nd:YAG boule and photoelastic effects in crystalline Nd:YAG slabs are briefly discussed. The depolarization is evaluated using the temperature and stress distributions, calculated using a finite element model, for realistically pumped and cooled slabs of finite dimensions. Jones matrices are then used to calculate the depolarization of the zigzag laser mode. We compare the predictions with measurements of depolarization, and suggest useful criteria for the design of the gain media for such lasers.

  19. MULTIPLE SETS OF TWIN SLABS ON THE RUN OUT. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MULTIPLE SETS OF TWIN SLABS ON THE RUN OUT. THE RUN OUT INCLUDES THE TRAVELING TORCH WHICH CUTS SLABS TO DESIRED LENGTH, AN IDENTIFICATION SYSTEM TO INDICATE HEAT NUMBER AND TRACE IDENTITY OF EVERY SLAB, AND A DEBURRING DEVICE TO SMOOTH SLABS. AT LEFT OF ROLLS IS THE DUMMY BAR. DUMMY BAR IS INSERTED UP THROUGH CONTAINMENT SECTION INTO MOLD PRIOR TO START OF CAST. WHEN STEEL IS INTRODUCED INTO MOLD IT CONNECTS WITH BAR AS CAST BEGINS, AT RUN OUT DUMMY BAR DISCONNECTS AND IS STORED - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL

  20. MULTIPLE SETS OF TWIN SLABS ON THE RUN OUT. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MULTIPLE SETS OF TWIN SLABS ON THE RUN OUT. THE RUN OUT INCLUDES THE TRAVELING TORCH WHICH CUTS SLABS TO DESIRED LENGTH, AN IDENTIFICATION SYSTEM TO INDICATE HEAT NUMBER AND TRACE IDENTITY OF EVERY SLAB, AND A DEBURRING DEVICE TO SMOOTH SLABS. AT LEFT OF ROLLS IS THE DUMMY BAR. DUMMY BAR IS INSERTED UP THROUGH CONTAINMENT SECTION INTO MOLD PRIOR TO START OF CAST. WHEN STEEL IS INTRODUCED INTO MOLD IT CONNECTS WITH BAR AS CAST BEGINS, AT RUN OUT DUMMY BAR DISCONNECTS AND IS STORED. - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL

  1. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-01

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process. PMID:27070765

  2. Geothermal well stimulated using High Energy Gas Fracturing

    SciTech Connect

    Chu, T.Y.; Jacobson, R.D.; Warpinski, N.; Mohaupt, H.

    1987-01-01

    This paper reports the result of an experimental study of the High Energy Gas Fracturing (HEGF) technique for geothermal well stimulation. These experiments demonstrated that multiple fractures could be created to link a water-filled borehole with other fractures. The resulting fracture network and fracture interconnections were characterized by flow tests as well as mine back. Commercial oil field fracturing tools were used successfully in these experiments.

  3. Geothermal Well Stimulated Using High Energy Gas Fracturing

    SciTech Connect

    Chu, T.Y.; Jacobson, R.D.; Warpinski, N.; Mohaupt, Henry

    1987-01-20

    This paper reports the result of an experimental study of the High Energy Gas Fracturing (HEGF) technique for geothermal well stimulation. These experiments demonstrated that multiple fractures could be created to link a water-filled borehole with other fractures. The resulting fracture network and fracture interconnections were characterized by flow tests as well as mine back. Commercial oil field fracturing tools were used successfully in these experiments. 5 refs., 2 tabs., 5 figs.

  4. Relative permeability through fractures

    SciTech Connect

    Diomampo, Gracel, P.

    2001-08-01

    The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

  5. Plate deformation at depth under northern California: Slab gap or stretched slab?

    USGS Publications Warehouse

    ten Brink, U.S.; Shimizu, N.; Molzer, P.C.

    1999-01-01

    Plate kinematic interpretations for northern California predict a gap in the underlying subducted slab caused by the northward migration of the Pacific-North America-Juan de Fuca triple junction. However, large-scale decompression melting and asthenospheric upwelling to the base of the overlying plate within the postulated gap are not supported by geophysical and geochemical observations. We suggest a model for the interaction between the three plates which is compatible with the observations. In this 'slab stretch' model the Juan de Fuca plate under coastal northern California deforms by stretching and thinning to fill the geometrical gap formed in the wake of the northward migrating Mendocino triple junction. The stretching is in response to boundary forces acting on the plate. The thinning results in an elevated geothermal gradient, which may be roughly equivalent to a 4 Ma oceanic lithosphere, still much cooler than that inferred by the slab gap model. We show that reequilibration of this geothermal gradient under 20-30 km thick overlying plate can explain the minor Neogene volcanic activity, its chemical composition, and the heat flow. In contrast to northern California, geochemical and geophysical consequences of a 'true' slab gap can be observed in the California Inner Continental Borderland offshore Los Angeles, where local asthenospheric upwelling probably took place during the Miocene as a result of horizontal extension and rotation of the overlying plate. The elevated heat flow in central California can be explained by thermal reequilibration of the stalled Monterey microplate under the Coast Ranges, rather than by a slab gap or viscous shear heating in the mantle.

  6. Factors Controlling Slab Retreat and the Formation of Back-Arcs: Insights from Numerical Models

    NASA Astrophysics Data System (ADS)

    Huismans, R. S.; Grool, A.

    2014-12-01

    Although subduction is a first order plate tectonic process, the factors controlling the dynamics of slab roll-back and back-arc formation are still not very well understood. We present self-consistent thermo-mechanical models to study oceanic subduction, slab retreat, and back arc formation. We focus on two aspects of the subduction process: 1) factors that control retreat of the subduction zone, and 2) those that control the opening of the back arc. The model evolution is calculated using 2D plane strain thermo-mechanical finite element techniques for the finite element solution of incompressible viscous-plastic creeping flows (Fullsack, 1995). The models extend from the surface to 660 km depth. The upper surface of the model is free to move. We investigate interaction of the subducting slab with the overlying plate and focus on factors that may control the opening of a back-arc basin. The down going plate is driven by a kinematic boundary condition, far from the subduction zone. After an initial stage of far-field driven contraction, negative buoyant down welling of the oceanic lithosphere may drive continued subduction zone leading to mature subduction and the formation of an extensional back arc. The models suggest that two primary factors are required for slab retreat and the formation of an extensional back-arc system: 1) Convective destabilization and weakening of the overlying continental back arc region, and 2) sufficient negative buoyancy of the subducting plate.

  7. Radiative transfer model for contaminated rough slabs.

    PubMed

    Andrieu, François; Douté, Sylvain; Schmidt, Frédéric; Schmitt, Bernard

    2015-11-01

    We present a semi-analytical model to simulate the bidirectional reflectance distribution function (BRDF) of a rough slab layer containing impurities. This model has been optimized for fast computation in order to analyze massive hyperspectral data by a Bayesian approach. We designed it for planetary surface ice studies but it could be used for other purposes. It estimates the bidirectional reflectance of a rough slab of material containing inclusions, overlaying an optically thick media (semi-infinite media or stratified media, for instance granular material). The inclusions are assumed to be close to spherical and constituted of any type of material other than the ice matrix. It can be any other type of ice, mineral, or even bubbles defined by their optical constants. We assume a low roughness and we consider the geometrical optics conditions. This model is thus applicable for inclusions larger than the considered wavelength. The scattering on the inclusions is assumed to be isotropic. This model has a fast computation implementation and thus is suitable for high-resolution hyperspectral data analysis. PMID:26560577

  8. The Equivalent Slab Thickness of Mars' Ionosphere

    NASA Astrophysics Data System (ADS)

    Mendillo, M.; Lawler, G.; Narvaez, C.; Kofman, W.; Mouginot, J.; Morgan, D.; Gurnett, D.

    2014-04-01

    The integral with height of an electron density profile, called the ionospheric total electron content (TEC), is dominated by plasma near the height of maximum electron density (Nmax). The ratio τ = TEC/Nmax has a unit of distance, representing the thickness of a slab of plasma of uniform density (Nmax) with the same TEC. At Earth, the parameter τ has been found to vary far less than either Nmax or TEC, and thus models of τ can be used to generate values of TEC or Nmax when only one is observed. For an ionospheric layer dominated by photo-chemical processes, τ has also been related to the scale height of the neutral gas (H = kT/mg) that is ionized by sunlight. The MARSIS radio science package on the Mars Express satellite has produced large independent data sets of TEC and Nmax. We have used them to form slab thickness patterns versus phase of the solar cycle and solar zenith angle. The overall sample average for daytime (SZA < 90o) conditions is < τ >day = 71 ± 21 km, and for SZA between 90o - 100o, < τ >terminator = 55 ± 25 km. We will report on the possible use of τ patterns to infer characteristics of the martian ionosphere and thermosphere.

  9. Bone fractures: assessment and management.

    PubMed

    Lim, L; Sirichai, P

    2016-03-01

    Severe dental traumatic injuries often involve the supporting bone and soft tissues. This article outlines the current concepts in the management of dentoalveolar fractures for the general dental practitioner with case reports to illustrate management principles and techniques. PMID:26923449

  10. Slab Profile Encoding (PEN) for Minimizing Slab Boundary Artifact in 3D Diffusion-Weighted Multislab Acquisition*

    PubMed Central

    Van, Anh T; Aksoy, Murat; Holdsworth, Samantha J; Kopeinigg, Daniel; Vos, Sjoerd B; Bammer, Roland

    2014-01-01

    Purpose To propose a method for mitigating slab boundary artifacts in 3D multislab diffusion imaging with no or minimal increases in scan time. Methods The multislab acquisition was treated as parallel imaging acquisition where the slab profiles acted as the traditional receiver sensitivity profiles. All the slabs were then reconstructed simultaneously along the slab direction using Cartesian-based sensitivity encoding (SENSE) reconstruction. The slab profile estimation was performed using either a Bloch simulation or a calibration scan. Results Both phantom and in vivo results showed negligible slab boundary artifacts after reconstruction using the proposed method. The performance of the proposed method is comparable to the state-of-the-art slab combination method without the scan time penalty that depends on the number of acquired volumes. The obtained g-factor map of the SENSE reconstruction problem showed a maximum g-factor of 1.7 in the region of interest. Conclusion We proposed a novel method for mitigating slab boundary artifacts in 3D diffusion imaging by treating the multislab acquisition as a parallel imaging acquisition and reconstructing all slabs simultaneously using Cartesian SENSE. Unlike existing methods, the scan time increase, if any, does not scale with the number of image volumes acquired. PMID:24691843

  11. Fracture of distal end clavicle: A review

    PubMed Central

    Sambandam, Balaji; Gupta, Rajat; Kumar, Santosh; Maini, Lalit

    2014-01-01

    Management of fracture distal end clavicle has always puzzled the orthopaedic surgeons. Now-a-days with a relatively active lifestyle, patients want better results both cosmetically and functionally. Despite so much literature available for the management of this common fracture, there is no consensus regarding the gold standard treatment for this fracture. In this article, we reviewed the literature on various techniques of management for this fracture, both conservative as well as surgical, and their merits and demerits. PMID:25983473

  12. Laboratory Visualization of Hydraulic Fracture Propagation and Interaction with a Network of Preexisting Fractures

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Kneafsey, T. J.; Borglin, S. E.

    2015-12-01

    We present optical visualization experiments of hydraulic fracture propagation within transparent rock-analogue samples containing a network of preexisting fractures. Natural fractures and heterogeneities in rock have a great impact on hydraulic fracture propagation and resulting improvements in reservoir permeability. In recent years, many sophisticated numerical simulations on hydraulic fracturing have been conducted. Laboratory experiments on hydraulic fracturing are often performed with acoustic emission (Micro Earthquake) monitoring, which allows detection and location of fracturing and fracture propagation. However, the detected fractures are not necessarily hydraulically produced fractures which provide permeable pathways connected to the injection (and production) well. The primary objectives of our visualization experiments are (1) to obtain quantitative visual information of hydraulic fracture propagation affected by pre-existing fractures and (2) to distinguish fractures activated by the perturbed stress field away from the injected fluid and hydraulically produced fractures. The obtained data are also used to develop and validate a new numerical modeling technique (TOUGH-RBSN [Rigid-Body-Spring-Network] model) for hydraulic fracturing simulations, which is presented in a companion paper. The experiments are conducted using transparent soda-lime glass cubes (10 cm × 10 cm × 10 cm) containing either (1) 3D laser-engraved artificial fractures and fracture networks or (2) a random network of fractures produced by rapid thermal quenching. The strength (and also the permeability for the latter) of the fractures can be altered to examine their impact on hydraulic fracturing. The cubes are subjected to true-triaxial stress within a polyaxial loading frame, and hydraulic fractures are produced by injecting fluids with a range of viscosity into an analogue borehole drilled in the sample. The visual images of developing fractures are obtained both through a port

  13. FRACTURE OF THE CENTRAL TARSAL BONE IN NONRACEHORSES: FOUR CASES.

    PubMed

    Knuchell, Jeannie A; Spriet, Mathieu; Galuppo, Larry D; Katzman, Scott A

    2016-07-01

    Fractures of the central tarsal bone are a rarely recognized cause of acute severe hind limb lameness in nonracehorses. Diagnosis of these fractures can be challenging and little is known about their configuration or outcome. The objectives of this retrospective case series study were to describe the clinical features, imaging findings, and outcomes of fractures of the central tarsal bone in a sample of nonracehorses. Medical records from 2001 to 2014 were searched for cases of central tarsal bone fractures in nonracehorses. All available imaging findings including radiography, ultrasound, computed tomography (CT), and/or nuclear scintigraphy were reviewed. History, clinical presentation, and outcome were collected from the records. Four horses met the inclusion criteria. All had a similar configuration as a simple nondisplaced slab fracture in a dorsomedial to plantarolateral orientation. Initial radiographs failed to reveal the fracture in three of four cases. When additional plantarolateral-dorsomedial oblique radiographic views were obtained, the fracture could be identified in all cases. Fractures of the central tarsal bone seemed to occur in a consistent dorsomedial to plantarolateral orientation in this sample of nonracehorses, which is different from the configuration previously reported in racehorses. While CT can be used for detection and assessment of these fractures, authors propose that radiography can also identify these fractures with the appropriate view. Authors recommend the use of several plantarolateral to dorsomedial radiographic projections at varying degrees of obliquity for horses with a suspected central tarsal bone fracture. PMID:26929208

  14. Fluid flow behavior through rock-slab micromodels in relation to other micromodels

    SciTech Connect

    Mahmood, S.M.

    1990-06-01

    A new technique was developed to visualize fluid movement and rock/fluid interaction in the pores of reservoir rocks. It consists of fabricating micromodels containing rock slabs of 3 millimeter thickness and using sensitive image acquisition, recording, and enhancement systems to perform time-and-motion analyses of high-speed events. Displacement experiments were performed using these rock-slab micromodels and two other types of micromodels: an etched-glass network model (HEG) and a chemically consolidated grain-packed (cryolite) model. The tests included several cycles of imbibition and drainage. Comprehensive steady-state tests were also performed in the two simplified (HEG and cryolite) models, which included two-phase and three-phase flows with gas/water, oil/water, and gas/oil/water systems. The results were compared to understand the scope and limitations of these micromodel techniques. 24 refs., 8 figs.

  15. The importance of fracturing in the Pimenta Bueno-Ro Basin structure: A study of the morphostructural elements of the rupture-ductile character through remote sensing techniques and products

    NASA Astrophysics Data System (ADS)

    Desouzapontes, Clayton

    1989-08-01

    The Pimenta Bueno sedimentary basin was studied with remote sensing techniques and images. A structural analysis was performed by statistical treatment over linear element of relief and drainage obtained from LANDSAT/TM images and radar mosaic in the scale of 1:250,000. Interpretation of the anisotropy drainage curves and interpretation of the magnetic lineaments in the whole area was also done. The main structural trends of fractures found in this area are: N85E-S80E, N10E-N10W, and N40-50E. The fractures in the range N85E-S80E were responsible for the control of paleozoic sedimentation in this basin. The drainage anisotropy analysis over the cretaceous sedimentation gave strong coherence with the most important regional lineaments, making the identification of highs and lows of the basement easy.

  16. 42. PRESSING A SLAB OF CLAY ONTO A MOSAIC MOLD. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. PRESSING A SLAB OF CLAY ONTO A MOSAIC MOLD. THE MOLD, WHICH HAS A RAISED DESIGN, LEAVES AND OUTLINE IN THE SLAB, THE PIECES THUS DEFINED, ARE THEN CUT APART TO BE FIRED SEPARATELY AND REASSEMBLED. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  17. Scattering of electromagnetic waves from a turbulent plasma slab.

    NASA Technical Reports Server (NTRS)

    Liu, C. H.

    1972-01-01

    Scattering of electromagnetic waves from a turbulent plasma slab is studied. Part of the effects of the multiple scattering is taken into account. The reflection coefficient is found to be increased and its variation with respect to the slab thickness is smoothed out by the random scattering.

  18. Avoiding occlusal derangement in facial fractures: An evidence based approach.

    PubMed

    Mendonca, Derick; Kenkere, Deepika

    2013-05-01

    Facial fractures with occlusal derangement describe any fracture which directly or indirectly affects the occlusal relationship. Such fractures include dento-alveolar fractures in the maxilla and mandible, midface fractures - Le fort I, II, III and mandible fractures of the symphysis, parasymphysis, body, angle, and condyle. In some of these fractures, the fracture line runs through the dento-alveolar component whereas in others the fracture line is remote from the occlusal plane nevertheless altering the occlusion. The complications that could ensue from the management of maxillofacial fractures are predominantly iatrogenic, and therefore can be avoided if adequate care is exercised by the operating surgeon. This paper does not emphasize on complications arising from any particular technique in the management of maxillofacial fractures but rather discusses complications in general, irrespective of the technique used. PMID:24501457

  19. Fracture Management

    MedlinePlus

    ... to hold the fracture in the correct position. • Fiberglass casting is lighter and stronger and the exterior ... with your physician if this occurs. • When a fiberglass cast is used in conjunction with a GORE- ...

  20. Flat slab deformation caused by interplate suction force

    NASA Astrophysics Data System (ADS)

    Ma, Yiran; Clayton, Robert W.

    2015-09-01

    We image the structure at the southern end of the Peruvian flat subduction zone, using receiver function and surface wave methods. The Nazca slab subducts to ~100 km depth and then remains flat for ~300 km distance before it resumes the dipping subduction. The flat slab closely follows the topography of the continental Moho above, indicating a strong suction force between the slab and the overriding plate. A high-velocity mantle wedge exists above the initial half of the flat slab, and the velocity resumes to normal values before the slab steepens again, indicating the resumption of dehydration and ecologitization. Two prominent midcrust structures are revealed in the 70 km thick crust under the Central Andes: molten rocks beneath the Western Cordillera and the underthrusting Brazilian Shield beneath the Eastern Cordillera.

  1. The gravitational field of an infinite flat slab

    NASA Astrophysics Data System (ADS)

    Fulling, S. A.; Bouas, J. D.; Carter, H. B.

    2015-08-01

    We study Einstein's equations with a localized plane-symmetric source, with close attention to gauge freedom/fixing and to listing all physically distinct solutions. In the vacuum regions there are only two qualitatively different solutions, one curved and one flat; in addition, on each of the two sides there is a free parameter describing how the slab is embedded into the vacuum region. Surprisingly, for a generic slab source the solution must be curved on one side and flat on the other. We treat infinitely thin slabs in full detail and indicate how thick slabs can increase the variety of external geometry pairs. Positive energy density seems to force external geometries with curvature singularities at some distance from the slab; we speculate that such singularities occur in regions where the solution cannot be physically relevant anyway.

  2. Nonlinear Shear Instabilities in an Infinite Slab

    NASA Astrophysics Data System (ADS)

    Nepveu, M.

    1982-08-01

    The dynamical evolution of an infinite slab moving in denser and noisy (turbulent) surroundings is investigated with a 2D hydrodynamic code. The applicability of the results to astrophysical jets is discussed. Inviscid beams show internal shocks at regular intervals of a few beamwidths. Kinks are not obvious. In viscous beams shocks are less outspoken, but turbulence is triggered with maximum scales of a few beamwidths. These viscous beams broaden. Linear stability analysis may hold up to a few e-folding times, although the seed disturbance field is not infinitesimal. The computations suggest that viscous astrophysical beams may become blurred quite suddenly and may give rise to sudden change in radiation patterns (NGC 1265).

  3. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  4. Laser applications in machining slab materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping

    1990-10-01

    Since the invention of the laser back in 1960, laser technology has been extensively applied in many fields of science and technology. These has been a history of nearly two decades of using lasers as an energy source in machining materials, such as cutting, welding, ruling and boring, among other operations. With the development of flexible automation in production, the advantages of laser machining have has grown more and more obvious. The combination of laser technology and computer science further promotes the enhancement and upgrading of laser machining and related equipment. At present, many countries are building high quality laser equipment for machining slab materials, such as the Coherent and Spectra Physics corporations in the United States, the Trumpf Corporation in West Germany, the Amada Corporation in Japan, and the Bystronic Corporation in Switzerland, among other companies.

  5. The Role of Subducting Ridges in the Formation of Flat Slabs: Insights from the Peruvian Flat Slab

    NASA Astrophysics Data System (ADS)

    Knezevic Antonijevic, Sanja; Wagner, Lara; Kumar, Abhash; Beck, Susan; Long, Maureen; Zandt, George; Eakin, Caroline M.

    2015-04-01

    Flattening of the subducting plate is often used to explain various geological features removed far from the subducting margins, including basement-cored uplifts, the cessation of arc volcanism, ignimbrite flare-ups, and the formation of high plateaus and ore deposits [Humphreys et al., 2003; Gutscher et al., 2000; Rosenbaum et al., 2005, Kay and Mpodozis, 2001]. Today, flat slab subduction is observed in central Chile and Peru, representing the modern analogues to the immense paleo-flat slab that subducted beneath the North American continent during the Laramide orogeny (80-55 Ma) [English et al., 2003]. However, how flat slabs form and what controls their inboard and along-strike extent is still poorly understood. To better understand modern and paleo-flat slabs, we focus on the Peruvian flat slab, where the Nazca plate starts to bend at ~90 km depth and travels horizontally for several hundred kilometers beneath the South American plate. Earlier studies propose a correlation between the flat slab and the subducting Nazca Ridge that has been migrating to the south over the past 11 ~Ma [Hampel et al., 2004, Gutscher et al., 2003]. Combining 3D shear wave velocity structure and Rayleigh wave phase anisotropy between ~10° and 18° S, we find that the flat slab has the greatest inboard extent along the track of the subducting Nazca Ridge. North of the ridge track, where the flat slab was initially formed, the flat slab starts to sag, tear and re-initiate steep slab subduction, allowing inflow of warm asthenosphere. Based on our new constraints on the geometry of the subducted plate, we find that the subduction of buoyant oceanic features with overthickened oceanic crust plays a vital role in the formation of flat slabs. We further develop a model of temporal evolution of the Peruvian flab slab that forms as a result of the combined effects of the subducting ridge, trench retreat, and suction forces. Once the buoyant ridge subducts to ~90 km depth, it will fail to

  6. Slab anisotropy from subduction zone guided waves in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, K. H.; Tseng, Y. L.; Hu, J. C.

    2014-12-01

    Frozen-in anisotropic structure in the oceanic lithosphere and faulting/hydration in the upper layer of the slab are expected to play an important role in anisotropic signature of the subducted slab. Over the past several decades, despite the advances in characterizing anisotropy using shear wave splitting method and its developments, the character of slab anisotropy remains poorly understood. In this study we investigate the slab anisotropy using subduction zone guided waves characterized by long path length in the slab. In the southernmost Ryukyu subduction zone, seismic waves from events deeper than 100 km offshore northern Taiwan reveal wave guide behavior: (1) a low-frequency (< 1 Hz) first arrival recognized on vertical and radial components but not transverse component (2) large, sustained high-frequency (3-10 Hz) signal in P and S wave trains. The depth dependent high-frequency content (3-10Hz) confirms the association with a waveguide effect in the subducting slab rather than localized site amplification effects. Using the selected subduction zone guided wave events, we further analyzed the shear wave splitting for intermediate-depth earthquakes in different frequency bands, to provide the statistically meaningful shear wave splitting parameters. We determine shear wave splitting parameters from the 34 PSP guided events that are deeper than 100 km with ray path traveling along the subducted slab. From shear wave splitting analysis, the slab and crust effects reveal consistent polarization pattern of fast directions of EN-WS and delay time of 0.13 - 0.27 sec. This implies that slab anisotropy is stronger than the crust effect (<0.1 s) but weaker than the mantle wedge and sub-slab mantle effect (0.3-1.3 s) in Taiwan.

  7. Along-strike translation of a fossil slab

    NASA Astrophysics Data System (ADS)

    Eichenbaum-Pikser, J. M.; Forsyth, D. W.; Hirth, G.

    2011-12-01

    The Isabella anomaly is a high seismic velocity anomaly beneath the southern Central Valley of California. Breaking from previous interpretations of the anomaly as a lithospheric drip (Zandt and Carrigan, 1993) or delaminated Sierra Nevada root (Zandt et al., 2004), Forsyth et al. (2011) propose that it is a remnant slab, left over from Cenozoic subduction, attached to the Monterey microplate and translating along-strike with the Pacific plate underneath the edge of the North American plate. This hypothesis requires the slab to translate hundreds of kilometers along strike while remaining intact and attached to the Pacific plate despite drag from the surrounding asthenosphere and overriding lithosphere. Using COMSOL Multiphysics, we design 3-D finite element fluid flow models to simulate this scenario, and calculate the viscosity ratio required between the slab and the surrounding asthenosphere in order for the slab to translate undeformed. The ratio needed increases with downdip extent of the slab, and decreases with slab dip; for geometries approximating that of our proposed slab, it ranges from 10^2 to 10^4. Given the thermal and hydrological history of the slab, mantle flow laws predict viscosity contrasts greater than or equal to these requirements. As such, we conclude that along-strike translation of a remnant slab is entirely feasible, and serves as possible explanation of the Isabella anomaly. The significance of this finding extends beyond our general understanding of subduction dynamics, in that the presence of such a slab could have interesting implications for the water budget of the San Andreas Fault and its role in aseismic slip.

  8. Lithosphere-Mantle Interactions Associated with Flat-Slab Subduction

    NASA Astrophysics Data System (ADS)

    Gerault, M.; Becker, T. W.; Husson, L.; Humphreys, E.

    2014-12-01

    Episodes of flat-slab subduction along the western margin of the Americas may have lead to the formation of intra-continental basins and seas, as well as mountain belts and continental plateaux. Here, we explore some of the consequences of a flat slab morphology, linking dynamic topography and stress patterns in continents to slab and mantle dynamics. Using a 2-D cylindrical code, we develop general models and apply them to the North and South America plates. The results are primarily controlled by the coupling along the slab-continent interface (due to geometry and viscosity), the viscosity of the mantle wedge, and the buoyancy of the subducted lithosphere. All models predict broad subsidence, large deviatoric stresses, and horizontal compression above the tip of the flat slab and the deep slab hinge. In models where the slab lays horizontally for hundreds of kilometers, overriding plate compression focuses on both ends of the flat segment, where normal-dip subduction exerts a direct downward pull. In between, a broad low-stress region gets uplifted proportionally to the amount of coupling between the slab and the continent. Anomalously buoyant seafloor enhances this effect but is not required. The downward bending of the flat slab extremities causes its upper part to undergo extension and the lower part to compress. These results have potential for explaining the existence of relatively undeformed, uplifted regions surrounded by mountain belts, such as in the western U.S. and parts of the Andes. Adequately modeling topography and stress in the unusual setting of southwestern Mexico requires a low-viscosity subduction interface and mantle wedge. Our results are only partially controlled by the buoyancy of the subducting plate, suggesting that the viscosity and the morphology of the slab are important, and that the often-used low resolution and "Stokeslet" models may be missing substantial effects.

  9. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism

    PubMed Central

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Ono, Shigeaki

    2012-01-01

    Subduction-zone magmatism is triggered by the addition of H2O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry. PMID:23112158

  10. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism.

    PubMed

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Matsukage, Kyoko N; Ono, Shigeaki

    2012-11-13

    Subduction-zone magmatism is triggered by the addition of H(2)O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry. PMID:23112158

  11. Application of a Hybrid 3D-2D Laser Scanning System to the Characterization of Slate Slabs

    PubMed Central

    López, Marcos; Martínez, Javier; Matías, José María; Vilán, José Antonio; Taboada, Javier

    2010-01-01

    Dimensional control based on 3D laser scanning techniques is widely used in practice. We describe the application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs with structural defects that are difficult for the human eye to characterize objectively. Our study is based on automating the process using a 3D laser scanner and a 2D camera. Our results demonstrate that the application of this hybrid system optimally characterizes slate slabs in terms of the defects described by the Spanish UNE-EN 12326-1 standard. PMID:22219696

  12. Melting features along the western Ryukyu slab edge (northeast Taiwan) and Ryukyu slab tear (southernmost Okinawa Trough): Seismic evidence

    NASA Astrophysics Data System (ADS)

    Lin, J.; Hsu, S.; Sibuet, J.

    2003-12-01

    Behind the sedimentary Ryukyu arc lies the Okinawa Trough whose termination is located at the tip of the Ilan plain (northern Taiwan), just above the Ryukyu slab edge. The present-day active volcanic front, located 80-100 km above the Ryukyu slab, extends from Japan to Kueishantao Island, an islet situated 10-km offshore the Ilan plain. 3370 earthquakes recorded in northern Taiwan by 65 seismic land stations between December 1990 and May 1999 were used to determine the 3-D Vp and Vs velocity structures and Vp/Vs ratios. A low Vp, low Vs and high Vp/Vs sausage like body, about 20 km in diameter, lies within the Eurasian mantle wedge, on top of the western Ryukyu slab extremity, from depths ranging between 20 km and 100 km. We suggest that the friction of the Ryukyu slab edge against the Eurasian lithosphere and/or the upwelling of the underlying Philippine Sea plate lithospheric mantle around the slab edge would cause an abnormal heating resulting in the formation of partial melt. Part of this melt feeds obliquely the Kueishantao andesitic Island. An abnormal amount of volcanism occurs within the Okinawa Trough, east of a slab tear located 140 km from the Ryukyu slab edge. The power spectrum analysis of magnetic data shows the presence of a thick crust located above the slab tear, suggesting that a similar pattern to the one identified above of the Ryukyu slab edge might exist in the slab tear region, feeding obliquely this area of abnormal volcanism.

  13. Tips and Tricks in Mallet Fracture Fixation.

    PubMed

    Chin, Yuin Cheng; Foo, Tun-Lin

    2016-10-01

    We describe three steps to aid fracture assessment and fixation in the extensor block pin technique for mallet fractures. The first step is the use of fluoroscopy in the initial assessment to determine indication for fixation. Next is the use of supplementary extension block pin to control larger dorsal fragments. The third technique described details the steps of open reduction of nascently malunited fractures. PMID:27595969

  14. Management of atrophic mandible fractures.

    PubMed

    Madsen, Matthew J; Haug, Richard H; Christensen, Bryan S; Aldridge, Eron

    2009-05-01

    Traumatic facial fractures that were once rarely encountered now present with increasing frequency in the elderly population. Included in this group of fractures are those of the atrophic edentulous mandible. As patients age and become edentulous, atrophy of the mandibular alveolar ridges and adjacent basal bone reduces bony surface area, bone density, and blood supply, making the mandible more brittle and increasing the likelihood of mandibular fracture during a traumatic event. Surgical treatment of these fractures has become more predictable and less morbid. However, because these fractures present so infrequently, many surgeons lack the relevant experience in handling them, and thus find the reduction and fixation of such injuries difficult. A number of techniques have been employed to treat this injury. This article reviews the more common modalities and presents updates on accepted surgical treatments. PMID:19348982

  15. High-efficiency high-power QCW diode-side-pumped zigzag Nd:YAG ceramic slab laser

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Liu, W.; Bo, Y.; Jiang, B.; Xu, J.; Li, J.; Xu, Y.; Pan, Y.; Xu, J. L.; Feng, X.; Guo, Y.; Shen, Y.; Yang, F.; Yuan, L.; Yuan, H.; Peng, Q.; Cui, D.; Xu, Z.

    2013-04-01

    A high-efficiency high-power diode-side-pumped quasi-continuous wave (QCW) Nd:YAG ceramic slab laser using zigzag optical path was demonstrated. With an integrating sphere technique, the scattering and absorption coefficient of the ceramic slab were measured to be 0.0024 and 0.0016 cm-1 at 1,064 nm, respectively. Under a pump power of 6.69 kW, an average output power of 2.44 kW at 1,064 nm with a repetition rate of 400 Hz was achieved, corresponding to an optical-to-optical efficiency of 36.5 %. As far as we know, this is the highest conversion efficiency reported for QCW side-pumped single slab Nd:YAG ceramic laser.

  16. A dipping, thick Farallon slab below central United States

    NASA Astrophysics Data System (ADS)

    Sun, D.; Gurnis, M.; Saleeby, J.; Helmberger, D. V.

    2015-12-01

    It has been hypothesized that much of the Laramide orogeny was caused by dynamic effects induced by an extensive flat slab during a period of plateau subduction. A particularly thick block containing the Shatsky Rise conjugate, now in the mid-mantle, left a distinctive deformation footprint from southern California to Denver, Colorado. Thus mid-mantle, relic slabs can provide fundamental information about past subduction and the history of plate tectonics if properly imaged. Here we find clear evidence for a northeastward dipping (35° dip), slab-like, but fat (up to 400-500 km thick) seismic anomaly within the top of the lower mantle below the central United States. Using a deep focus earthquake below Spain with direct seismic paths that propagate along the top and bottom of the anomaly, we find that the observed, stacked seismic waveforms recorded with the dense USArray show multi-pathing indicative of sharp top and bottom surfaces. Plate tectonic reconstructions in which the slab is migrated back in time suggest strong coupling of the slab to North America. In combination with the reconstructions, we interpret the structure as arising from eastward dipping Farallon subduction at the western margin of North America during the Cretaceous, in contrast with recent interpretations. The slab could have been fattened through a combination of pure shear thickening during flat-slab subduction and a folding instability during penetration into the lower mantle.

  17. Impact Resistance Behaviour of Banana Fiber Reinforced Slabs

    NASA Astrophysics Data System (ADS)

    Che Muda, Zakaria; Syamsir, Agusril; Nasharuddin Mustapha, Kamal; Rifdy Samsudin, Muhamad; Thiruchelvam, Sivadass; Usman, Fathoni; Beddu, Salmia; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the performance of banana fibre reinforced slabs 300mm × 300mm size with varied thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.25 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the BF contents and slab thickness. A linear relationship has been established between first and ultimate crack resistance against BF contents and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the BF contents for a constant spacing for various banana fibre reinforced slab thickness. The increment in BF content has more effect on the first crack resistance than the ultimate crack resistance. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the various slab thickness. Overall 1.5% BF content with slab thickness of 40 mm exhibit better first and ultimate crack resistance up to 16 times and up to 17 times respectively against control slab (without BF)

  18. Magnetoacoustic waves propagating along a dense slab and Harris current sheet and their wavelet spectra

    SciTech Connect

    Mészárosová, Hana; Karlický, Marian; Jelínek, Petr; Rybák, Ján

    2014-06-10

    Currently, there is a common endeavor to detect magnetoacoustic waves in solar flares. This paper contributes to this topic using an approach of numerical simulations. We studied a spatial and temporal evolution of impulsively generated fast and slow magnetoacoustic waves propagating along the dense slab and Harris current sheet using two-dimensional magnetohydrodynamic numerical models. Wave signals computed in numerical models were used for computations of the temporal and spatial wavelet spectra for their possible comparison with those obtained from observations. It is shown that these wavelet spectra allow us to estimate basic parameters of waveguides and perturbations. It was found that the wavelet spectra of waves in the dense slab and current sheet differ in additional wavelet components that appear in association with the main tadpole structure. These additional components are new details in the wavelet spectrum of the signal. While in the dense slab this additional component is always delayed after the tadpole head, in the current sheet this component always precedes the tadpole head. It could help distinguish a type of the waveguide in observed data. We present a technique based on wavelets that separates wave structures according to their spatial scales. This technique shows not only how to separate the magnetoacoustic waves and waveguide structure in observed data, where the waveguide structure is not known, but also how propagating magnetoacoustic waves would appear in observations with limited spatial resolutions. The possibilities detecting these waves in observed data are mentioned.

  19. Evaluation and Management of Vertebral Compression Fractures

    PubMed Central

    Alexandru, Daniela; So, William

    2012-01-01

    Compression fractures affect many individuals worldwide. An estimated 1.5 million vertebral compression fractures occur every year in the US. They are common in elderly populations, and 25% of postmenopausal women are affected by a compression fracture during their lifetime. Although these fractures rarely require hospital admission, they have the potential to cause significant disability and morbidity, often causing incapacitating back pain for many months. This review provides information on the pathogenesis and pathophysiology of compression fractures, as well as clinical manifestations and treatment options. Among the available treatment options, kyphoplasty and percutaneous vertebroplasty are two minimally invasive techniques to alleviate pain and correct the sagittal imbalance of the spine. PMID:23251117

  20. Intrafocal pin plate fixation of distal ulna fractures associated with distal radius fractures.

    PubMed

    Foster, Brian J; Bindra, Randy R

    2012-02-01

    Subcapital ulnar fractures in association with distal radius fractures in elderly patients increase instability and pose a treatment challenge. Fixation of the ulnar fracture with traditional implants is difficult due to the subcutaneous location, comminution, and osteoporosis. We describe an intrafocal pin plate that provides fixation by a locking plate on the distal ulna and intramedullary fixation within the shaft. The low profile and percutaneous technique make this device a useful alternative for treatment of subcapital ulna fractures in the elderly. PMID:22192166

  1. Modelling Gravitational Instabilities: Slab Break-off and Rayleigh-Taylor Diapirism

    NASA Astrophysics Data System (ADS)

    Zlotnik, Sergio; Fernández, Manel; Díez, Pedro; Vergés, Jaume

    2008-08-01

    A non-standard new code to solve multiphase viscous thermo-mechanical problems applied to geophysics is presented. Two numerical methodologies employed in the code are described: A level set technique to track the position of the materials and an enrichment of the solution to allow the strain rate to be discontinuous across the interface. These techniques have low computational cost and can be used in standard desktop PCs. Examples of phase tracking with level set are presented in two and three dimensions to study slab detachment in subduction processes and Rayleigh-Taylor instabilities, respectively. The modelling of slab detachment processes includes realistic rheology with viscosity depending on temperature, pressure and strain rate; shear and adiabatic heating mechanisms; density including mineral phase changes and varying thermal conductivity. Detachment models show a first prolonged period of thermal diffusion until a fast necking of the subducting slab results in the break-off. The influence of several numerical and physical parameters on the detachment process is analyzed: The shear heating exerts a major influence accelerating the detachment process, reducing the onset time to one half and lubricating the sinking of the detached slab. The adiabatic heating term acts as a thermal stabilizer. If the mantle temperature follows an adiabatic gradient, neglecting this heating term must be included, otherwise all temperature contrasts are overestimated. As expected, the phase change at 410 km depth (olivine-spinel transition) facilitates the detachment process due to the increase in negative buoyancy. Finally, simple plume simulations are used to show how the presented numerical methodologies can be extended to three dimensions.

  2. Pediatric Thighbone (Femur) Fracture

    MedlinePlus

    ... fractures in infants under 1 year old is child abuse. Child abuse is also a leading cause of thighbone fracture ... contact sports • Being in a motor vehicle accident • Child abuse Types of Femur Fractures (Classification) Femur fractures vary ...

  3. Hydraulic fracturing-1

    SciTech Connect

    Not Available

    1990-01-01

    This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

  4. Pelvic and acetabular fractures

    SciTech Connect

    Mears, D.C.; Rubash, H.E.

    1986-01-01

    This treatise focuses primarily on the clinical aspects of diagnosis and treatments of pelvic and acetabular fractures. However, considerable attention is also paid to the radiographic diagnosis of trauma and postoperative effects. The book begins with a succinct review of pelvic and acetabular anatomy and pelvic biomechanics. It continues with a radiographic classification of pelvic injury, which will represent the major source of the book's interest for radiologists. The remainder of the book is concerned with clinical management of pelvic and acetabular trauma, including preoperative planning, surgical approaches, techniques of reduction, internal fixation, eternal fixation, post-operative care, and late problems. Even throughout this later portion of the book there are extensive illustrations, including plain radiographs, computed tomographic (CT) scans, reconstructed three-dimensional CT scans, and schematic diagrams of diverse pelvic and acetabular fractures and the elementary surgical techniques for their repair.

  5. Gravity-Driven Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2014-12-01

    -dominated head to obtain a complete closed-form solution. We then analyze the gravity fracture propagation in conditions of either continuous injection or finite volume release for sets of parameters representative of dense waste injection technique and low viscosity magma diking.

  6. Contemporary management of subtrochanteric fractures.

    PubMed

    Joglekar, Siddharth B; Lindvall, Eric M; Martirosian, Armen

    2015-01-01

    Cephalomedullary interlocking nails that allow for trochanteric entry and minimally invasive fixation have revolutionized the contemporary management of subtrochanteric fractures with improved union rates and decreased incidence of fixation failure. The most successful alternative to intramedullary fixation remains the angled blade plate. Despite biomechanical superiority of contemporary intramedullary implants to previous intramedullary devices, the importance of achieving and maintaining satisfactory fracture reduction prior to and during hardware insertion cannot be overemphasized. In comminuted and more challenging fractures, additional techniques, such as limited open reduction with clamps and/or cables, can allow for canal restoration and more anatomic reductions prior to and/or during nail insertion. PMID:25435032

  7. Pulse-like channelled long-distance fluid flow in subducting slabs (Invited)

    NASA Astrophysics Data System (ADS)

    John, T.; Gussone, N. C.; Beinlich, A.; Halama, R.; Bebout, G. E.; Podladchikov, Y. Y.; Magna, T.

    2010-12-01

    ratio of 0.70566 is consistent with both altered oceanic crust and altered mantle, the relatively high δ44/40Ca (>1.3‰) of the infiltrating fluid is suggestive of partially hydrated slab mantle as the fluid source. This indicates that some fraction of the slab fluid was liberated by sub-crustal dehydration, then transported over km scales within overlying oceanic crust. Lithium, as one of the fastest diffusing elements, can provide information regarding how long such fluid pathways are active, i.e. the duration of fluid-rock interaction in the reaction selvage. Diffusive fluid-mediated transport modeling of Li concentrations and isotopes indicates that the fluid flow structure was open for less than 100 years, implying that channelized fluid flow in slabs is very fast and that rates of fluid release are similar to magma transport rates beneath arcs. Such fluid pulses could feed arc magma sources with aqueous fluids, with these fluids traversing the slab-wedge interface in transient hydraulic fractures. [1] Beinlich et al. (2010), GCA 74, 1892-1922.

  8. Rotational flow in tapered slab rocket motors

    NASA Astrophysics Data System (ADS)

    Saad, Tony; Sams, Oliver C.; Majdalani, Joseph

    2006-10-01

    Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.

  9. Hybrid Heat Capacity - Moving Slab Laser Concept

    SciTech Connect

    Stappaerts, E A

    2002-04-01

    A hybrid configuration of a heat capacity laser (HCL) and a moving slab laser (MSL) has been studied. Multiple volumes of solid-state laser material are sequentially diode-pumped and their energy extracted. When a volume reaches a maximum temperature after a ''sub-magazine depth'', it is moved out of the pumping region into a cooling region, and a new volume is introduced. The total magazine depth equals the submagazine depth times the number of volumes. The design parameters are chosen to provide high duty factor operation, resulting in effective use of the diode arrays. The concept significantly reduces diode array cost over conventional heat capacity lasers, and it is considered enabling for many potential applications. A conceptual design study of the hybrid configuration has been carried out. Three concepts were evaluated using CAD tools. The concepts are described and their relative merits discussed. Because of reduced disk size and diode cost, the hybrid concept may allow scaling to average powers on the order of 0.5 MW/module.

  10. Tunable one-dimensional photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Beccherelli, R.; Bellini, B.; Zografopoulos, D.; Kriezis, E.

    2007-05-01

    A 1D photonic crystal slab based on preferential etching of commercially available silicon-on-insulator wafers is presented. Compared to dry etching, anisotropic wet etching is more tolerant to errors as it is self-stopping on crystallographic {111} planes and it produces a more precise geometry with symmetries and homothetic properties, with surface roughness close to 1 nm. The resulting grooves are infiltrated by low viscosity liquid crystal having large positive optical anisotropy. The use of slanted grooves provides advantages: first of all the complete filling of slanted grooves is simplified when compared to vertical walls structures. Furthermore alignment is significantly facilitated. Indeed the liquid crystal molecules tend to align with their long axis along the submicron grooves. Therefore by forcing reorientation out of a rest position, the liquid crystal presents a choice of refractive indices to the propagating optical field. The liquid crystal behavior is simulated by a finite element method, and coupled to a finite difference time domain method. We investigate different photonic crystal configurations. Large tunability of bandgap edge for TE polarization is demonstrated when switching the liquid crystal with an applied voltage. We have also studied the use of the same device geometry as a very compact microfluidic refractometric sensor.

  11. The feeder system of the Toba supervolcano from the slab to the shallow reservoir

    PubMed Central

    Koulakov, Ivan; Kasatkina, Ekaterina; Shapiro, Nikolai M.; Jaupart, Claude; Vasilevsky, Alexander; El Khrepy, Sami; Al-Arifi, Nassir; Smirnov, Sergey

    2016-01-01

    The Toba Caldera has been the site of several large explosive eruptions in the recent geological past, including the world's largest Pleistocene eruption 74,000 years ago. The major cause of this particular behaviour may be the subduction of the fluid-rich Investigator Fracture Zone directly beneath the continental crust of Sumatra and possible tear of the slab. Here we show a new seismic tomography model, which clearly reveals a complex multilevel plumbing system beneath Toba. Large amounts of volatiles originate in the subducting slab at a depth of ∼150 km, migrate upward and cause active melting in the mantle wedge. The volatile-rich basic magmas accumulate at the base of the crust in a ∼50,000 km3 reservoir. The overheated volatiles continue ascending through the crust and cause melting of the upper crust rocks. This leads to the formation of a shallow crustal reservoir that is directly responsible for the supereruptions. PMID:27433784

  12. The feeder system of the Toba supervolcano from the slab to the shallow reservoir.

    PubMed

    Koulakov, Ivan; Kasatkina, Ekaterina; Shapiro, Nikolai M; Jaupart, Claude; Vasilevsky, Alexander; El Khrepy, Sami; Al-Arifi, Nassir; Smirnov, Sergey

    2016-01-01

    The Toba Caldera has been the site of several large explosive eruptions in the recent geological past, including the world's largest Pleistocene eruption 74,000 years ago. The major cause of this particular behaviour may be the subduction of the fluid-rich Investigator Fracture Zone directly beneath the continental crust of Sumatra and possible tear of the slab. Here we show a new seismic tomography model, which clearly reveals a complex multilevel plumbing system beneath Toba. Large amounts of volatiles originate in the subducting slab at a depth of ∼150 km, migrate upward and cause active melting in the mantle wedge. The volatile-rich basic magmas accumulate at the base of the crust in a ∼50,000 km(3) reservoir. The overheated volatiles continue ascending through the crust and cause melting of the upper crust rocks. This leads to the formation of a shallow crustal reservoir that is directly responsible for the supereruptions. PMID:27433784

  13. Decarbonation of subducting slabs: insight from thermomechanical-petrological numerical modelling

    NASA Astrophysics Data System (ADS)

    Gonzalez, Christopher M.; Gorczyk, Weronika; Gerya, Taras

    2015-04-01

    This work extends a numerical geodynamic modelling code (I2VIS) to simulate subduction of carbonated lithologies (altered basalts and carbonated sediments) into the mantle. Code modifications now consider devolatilisation of H2O-CO2 fluids, a CO2-melt solubility parameterisation for molten sediments, and allows for carbonation of mantle peridotites. The purpose is to better understand slab generated CO2 fluxes and consequent subduction of carbonates into the deep mantle via numerical simulation. Specifically, we vary two key model parameters: 1) slab convergence rate (1,2,3,4,5 cm y-1) and 2) converging oceanic slab age (20,40,60,80 Ma) based on a half-space cooling model. The aim is to elucidate the role subduction dynamics has (i.e., spontaneous sedimentary diapirism, slab roll-back, and shear heating) with respect to slab decarbonation trends not entirely captured in previous experimental and thermodynamic investigations. This is accomplished within a fully coupled petrological-thermomechanical modelling framework utilising a characteristics-based marker-in-cell technique capable of solving visco-plastic rheologies. The thermodynamic database is modified from its original state to reflect the addition of carbonate as CO2 added to the rock's overall bulk composition. Modifications to original lithological units and volatile bulk compositions are as follows: GLOSS average sediments (H2O: 7.29 wt% & CO2: 3.01 wt%), altered basalts (H2O: 2.63 wt% & CO2: 2.90 wt%), and metasomatised peridotite (H2O: 1.98 wt% & CO2: 1.5 wt%). We resolve stable mineralogy and extract rock properties via PerpleX at a resolution of 5K and 25 MPa. Devolatilisation/consumption and stability of H2O-CO2 fluid is determined by accessing the thermodynamic database. When fluid is released due to unstable conditions, it is tracked via markers that freely advect within the velocity field until consumed. 56 numerical models were completed and our results show excellent agreement in dynamics with

  14. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2006-06-30

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were

  15. Phase Field Fracture Mechanics.

    SciTech Connect

    Robertson, Brett Anthony

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  16. Diode-pumped efficient slab laser with two Nd:YLF crystals and second-harmonic generation by slab LBO.

    PubMed

    Li, Daijun; Ma, Zhe; Haas, Rüdiger; Schell, Alexander; Simon, Janosch; Diart, Robert; Shi, Peng; Hu, Peixin; Loosen, Peter; Du, Keming

    2007-05-15

    We demonstrate a diode-pumped electro-optical Q-switched slab laser with a high optical efficiency, high pulse energy, and short pulse width with two Nd:YLF crystals inside one resonator. The single compact slab resonator can generate a 1D top-hat beam at both the far field and the near field. With a slab-geometry-design lithium triborate (LBO) crystal, efficient critical phase-matching second-harmonic generation for a 1D top-hat beam with multiple transverse modes is achieved. PMID:17440558

  17. Development of common conversion point stacking of receiver functions for detecting subducted slabs

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Ohkura, T.; Hirahara, K.; Shibutani, T.

    2010-12-01

    In subduction zones, the subducting slabs are thought to convey fluid into the mantle wedge to cause arc volcanism (Hasegawa et al., 2008. Iwamori, 2007). Kawakatsu & Watada (2007) examined the Pacific slab subducting beneath northeast Japan with receiver function (RF) analysis, and revealed where the hydrated oceanic crust and the serpentinized mantle wedge exist. In the other subduction zones, it is also essential to examine subducting slabs for better understanding of water transportation and volcanic activities. In this study, we develop a new method to migrate RFs in order to examine subducting slabs with high dip angle (Abe et al., submitted to GJI) and apply this method to examination of the Philippine Sea slab (PHS). The RF technique is one of the useful methods to obtain seismic velocity discontinuities. Ps phases converted at discontinuities in a teleseismic coda can be detected by RF analysis. RFs are usually converted to depth domain assuming a 1-d velocity structure, and the geometry of discontinuities is obtained (e.g. Yamauchi et al., 2003). In subduction zones, however, subducting slabs usually dip, and we should take into account the refraction of seismic waves at dipping interfaces. Therefore, we use the multi-stage fast marching method (FMM, de Kool et al., 2006) to convert RFs into depth domain. We stack transverse RFs, since polarity of them does not change depending on their dip angles and they are better at detecting phases converted at dipping interfaces than radial RFs. We have confirmed that this method works properly with synthetic test. We apply our method to waveform data observed in Kyushu, Japan, where PHS is subducting toward WNW and the Wadati-Benioff zone dips at 30° at depths up to 80 km, and dips at 70° at depths between 80 km and 170 km. We obtain a vertical section, on which RF amplitude is projected, across central part of Kyushu perpendicular to the depth contour of the Wadati-Benioff zone. On the section, positive peaks of

  18. High-resolution Waveform Tomography of Mantle Transition Zone and Slab Structure beneath Northeast China

    NASA Astrophysics Data System (ADS)

    TAO, K.; Grand, S.; Niu, F.; Chen, M.; Zhu, H.

    2015-12-01

    Northeast China has undergone widespread extension and magmatism since Late Cretaceous. There are many Cenozoic volcanoes in this region and a few of them are still active today, such as Changbaishan and Wudalianchi. Previous tomography models show stagnant slabs within the transition zone beneath NE China, and suggest deep slab control on the regional tectonics and volcanism. Proposed mechanisms for the magmatism include: 1) a mantle plume, 2) hot upwelling above the stagnant slab by deep dehydration and 3) upwelling induced by deep slab segmentation and detachment. To date, NE China seismic images still contain enough uncertainty to allow for multiple models. Using the dense seismic data coverage in NE China and adjacent regions our goal is to make high-resolution image of the transition zone and slab structure to test the origins of intraplate volcanism. Recently Chen et al. (2015) developed a 3D model for P and S velocity structure beneath East Asia using adjoint tomography using the SPECFEM3D synthetic technique and cross-correlation time shifts as the objective function. We use their model as a starting model and further improve the resolution by fitting waveforms to a shorter period (from ~12s to ~5s) using the correlation coefficient as the objective function. The new objective function is closely related to the L2 waveform misfit but is insensitive to a constant amplitude ratio between the synthetic and data within each time window used. This feature is desirable because the absolute amplitude can be hard to model as it can be affected by many factors difficult to incorporate in simulations, such as site effects, source magnitude and mechanism error or even poor calibration of instruments. During inversion we focus specifically on the transition zone and the structure of slabs with the goal of fitting triplicated and multipath body waves. We have performed a waveform inversion experiment using data from a single deep earthquake. Excellent fits of the

  19. Subduction Zone Science - Examples of Seismic Images of the Central Andes and Subducting Nazca Slab

    NASA Astrophysics Data System (ADS)

    Beck, S. L.; Zandt, G.; Scire, A. C.; Ward, K. M.; Portner, D. E.; Bishop, B.; Ryan, J. C.; Wagner, L. S.; Long, M. D.

    2015-12-01

    Subduction has shaped large regions of the Earth and constitute over 55,000 km of convergent plate margin today. The subducting slabs descend from the surface into the lower mantle and impacts earthquake occurrence, surface uplift, arc volcanism and mantle convection as well as many other processes. The subduction of the Nazca plate beneath the South America plate is one example and constitutes the largest present day ocean-continent convergent margin system and has built the Andes, one of the largest actively growing mountain ranges on Earth. This active margin is characterized by along-strike variations in arc magmatism, upper crustal shortening, crustal thickness, and slab geometry that make it an ideal region to study the relationship between the subducting slab, the mantle wedge, and the overriding plate. After 20 years of portable seismic deployments in the Central Andes seismologists have combined data sets and used multiple techniques to generate seismic images spanning ~3000 km of the South American subduction zone to ~800 km depth with unprecedented resolution. For example, using teleseismic P- waves we have imaged the Nazca slab penetrating through the mantle transition zone (MTZ) and into the uppermost lower mantle. Our tomographic images show that there is significant along-strike variation in the morphology of the Nazca slab in the upper mantle, MTZ, and the lower mantle, including possible tears, folding, and internal deformation. Receiver function studies and surface wave tomography have revealed major changes in lithospheric properties in the Andes. Improved seismic images allow us to more completely evaluate tectonic processes in the formation and uplift of the Andes including: (1) overthickened continental crust driven by crustal shortening, (2) changes in slab dip and coupling with the overlying plate (3) localized lithospheric foundering, and (4) large-scale mantle and crustal melting leading to magmatic addition and/or crustal flow. Although

  20. Transition Zone Anisotropy Beneath Deep Slabs and the Transport of Water into the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Nowacki, A.; Kendall, J. M.; Wookey, J. M.; Pemberton, A.

    2014-12-01

    To first order, the Earth exhibits seismic anisotropy (the variation of wave speed with direction) only in the uppermost and lowermost mantle, as well as the inner core. However, a growing body of evidence suggests that it is also present in the transition zone (TZ) and uppermost lower mantle (LM). We use the method of 'source-side' shear wave splitting to observe anisotropy in the regions of deep earthquakes distributed globally. This technique removes the effects of anisotropy near well-characterised receiver stations to infer the splitting at the source, allowing us to probe the midmantle where slabs appear to be impinging on the LM. Over 130 observations, mainly beneath South America, Tonga and Japan, are made for earthquakes 200-650 km deep. They show shear wave splitting with mean delay time 1.0 s, but there is no trend of decreasing—or increasing—δt with depth. Because of the distribution of circum-Pacific deep earthquakes, our data are only sensitive to anisotropy in the sub-slab region and the slab itself. Our observations reveal a consistent pattern: the data are best fit with a style of anisotropy which has a rotational symmetry axis pointing upwards along the slab. This pattern of anisotropy is typical of approximately uniaxial flattening of material which develops a lattice preferred orientation (LPO) by dislocation creep. This is consistent with the expected mechanics of slab sinking and supported by the P-axes of moment tensor solutions for the events we analyse. Because the amount of anisotropy does not appear to be related to the depth, we can confine the source region to either the slab itself, or the top of the LM. The amount of anisotropy makes it unlikely that MgSiO3-perovskite in the LM is the source, as it would require a high-strain layer over 1500~km thick. Dense hydrous magnesium silicate (DHMS) phases which are known to become stable at the base of the TZ (the so-called 'alphabet' phases; such as D and superhydrous B), do however

  1. 34. VAL, DETAIL OF STAIRS ON COUNTERWEIGHT SLAB WITH COUNTERWEIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VAL, DETAIL OF STAIRS ON COUNTERWEIGHT SLAB WITH COUNTERWEIGHT CAR RAILS ON RIGHT AND PERSONNEL CAR RAILS ON LEFT. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  2. 14. LOOKING NORTHWEST THROUGH WOODS TOWARD THE SLAB AND BUTTRESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. LOOKING NORTHWEST THROUGH WOODS TOWARD THE SLAB AND BUTTRESS SECTION. NEW DAM MODIFICATIONS WILL IMPACT THIS AREA. - Pit 4 Diversion Dam, Pit River west of State Highway 89, Big Bend, Shasta County, CA

  3. Waveform effects of a metastable olivine tongue in subducting slabs

    NASA Technical Reports Server (NTRS)

    Vidale, John E.; Williams, Quentin; Houston, Heidi

    1991-01-01

    Velocity models of subducting slabs with a kinetically-depressed olivine to beta- and gamma-spinel transition are constructed, and the effect that such structures would have on teleseismic P waveforms are examined using a full-wave finite-difference method. These 2D calculations yielded waveforms at a range of distances in the downdip direction. The slab models included a wedge-shaped, low-velocity metastable olivine tongue (MOTO) to a depth of 670 km, as well as a plausible thermal anomaly; one model further included a 10-km-thick fast layer on the surface of the slab. The principal effect of MOTO is to produce grazing reflections at wide angles off the phase boundary, generating a secondary arrival 0 to 4 seconds after the initial arrival depending on the take-off angle. The amplitude and timing of this feature vary with the lateral location of the seismic source within the slab cross-section.

  4. 9. FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  5. 2. FLAME DEFLECTOR FROM THE REINFORCED CONCRETE SLAB ROOF, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. FLAME DEFLECTOR FROM THE REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  6. 7. NO. 2 CONTINUOUS SLAB REHEATING FURNACE OF THE 160' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. NO. 2 CONTINUOUS SLAB REHEATING FURNACE OF THE 160' PLATE MILL. INTERIOR REFRACTORY LINING VISIBLE BECAUSE OF DEMOLITION. - U.S. Steel Homestead Works, 160" Plate Mill, Along Monongahela River, Homestead, Allegheny County, PA

  7. PERSPECTIVE OF UNDERSIDE SHOWING ARCHED GIRDER AND SLAB CONSTRUCTION. NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PERSPECTIVE OF UNDERSIDE SHOWING ARCHED GIRDER AND SLAB CONSTRUCTION. NOTE TWISTED BAR STOCK REINFORCING CAN BE SEEN. - Keggereis Ford Bridge, Spanning West Branch Conococheague Creek at State Route 4006, Willow Hill, Franklin County, PA

  8. 27. VAL, DETAIL OF LAUNCHER SLAB AND LAUNCHER RAIL WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VAL, DETAIL OF LAUNCHER SLAB AND LAUNCHER RAIL WITH 7 INCH DIAMETER HOLE FOR SUPPORT CARRIAGE LOCKING PIN. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  9. 5. VAL LAUNCHER BRIDGE OVER LAUNCHER SLAB TAKEN FROM RESERVOIR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VAL LAUNCHER BRIDGE OVER LAUNCHER SLAB TAKEN FROM RESERVOIR LOOKING NORTH. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  10. DETAIL OF NORTH GUARDRAIL AND EXPANSION JOINT IN CONCRETE SLAB, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF NORTH GUARDRAIL AND EXPANSION JOINT IN CONCRETE SLAB, SHOWING DAMAGED SECTION OF GUARDRAIL AND ALUMINUM REPLACEMENT. VIEW TO NORTHWEST. - Hassayampa Bridge, Spanning Hassayampa River at old U.S. Highway 80, Arlington, Maricopa County, AZ

  11. 31. VIEW OF CONCRETE SLAB AT WEST ENTRANCE OF WALKWAY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF CONCRETE SLAB AT WEST ENTRANCE OF WALKWAY. '1944 JOE LANDETA' SCRATCHED INTO FRESH CONCRETE. March 1987 - Verde River Sheep Bridge, Spanning Verde River (Tonto National Forest), Cave Creek, Maricopa County, AZ

  12. OVERVIEW LOOKING SOUTH OF CONTAINMENT SYSTEM (TOP), SLAB CASTING MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW LOOKING SOUTH OF CONTAINMENT SYSTEM (TOP), SLAB CASTING MACHINE AND RUN OUT WITH TRAVELING TORCH. MACHINE IS CASTING IN TWIN MOLD. - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL

  13. INTERIOR VIEW, LOOKING NORTHEAST, WITH OVENS AND STEEL SLAB EXITING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, LOOKING NORTHEAST, WITH OVENS AND STEEL SLAB EXITING (LEFT) AND EDGING MACHINE/PRESS (RIGHT). - Central Iron Foundry, Hot Strip Mill Building, 1700 Holt Road, Holt, Tuscaloosa County, AL

  14. INTERIOR VIEW, LOOKING NORTHEAST, WITH OVENS AND STEEL SLAB HAVING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, LOOKING NORTHEAST, WITH OVENS AND STEEL SLAB HAVING EXITED (LEFT) AND PROCEEDING TO EDGER (RIGHT). - Central Iron Foundry, Hot Strip Mill Building, 1700 Holt Road, Holt, Tuscaloosa County, AL

  15. INTERIOR VIEW, LOOKING NORTHEAST, WITH OVENS (LEFT) AND SLAB BEING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, LOOKING NORTHEAST, WITH OVENS (LEFT) AND SLAB BEING PROCESSED THROUGH PRESS/STECKLER (RIGHT). - Central Iron Foundry, Hot Strip Mill Building, 1700 Holt Road, Holt, Tuscaloosa County, AL

  16. EXTERIOR VIEW, LOOKING NORTHEAST, WITH SLAB YARD. AT RIGHT IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, LOOKING NORTHEAST, WITH SLAB YARD. AT RIGHT IS HOT STRIP MILL BUILDING AND FURNACE. VIEW AT LEFT IS TOWARD CUT TO LENGTH BUILDING. - Central Iron Foundry Site, 1700 Holt Road, Holt, Tuscaloosa County, AL

  17. Estimation of dielectric slab permittivity using a flared coaxial line

    NASA Astrophysics Data System (ADS)

    Shin, Dong H.; Eom, Hyo J.

    2003-04-01

    Estimation of dielectric slab permittivity is considered by using a flared coaxial line. A problem of reflection from a flared coaxial line that radiates into a dielectric slab with a flange is solved. A flared coaxial line is modeled with multiply stepped coaxial lines with different inner and outer conductors. A set of simultaneous equations for the modal coefficients is constituted based on the boundary conditions. Computations are performed to illustrate the reflection behavior in terms of the coaxial line geometry, frequency, and permittivity of a dielectric slab. Nomograms are developed to estimate the permittivity from the measured reflection coefficients. The utility of a flared coaxial line for the determination of slab permittivity is discussed.

  18. 10. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEASTERN EDGE, ACCESS RAMPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEASTERN EDGE, ACCESS RAMPS AT LEFT AND RIGHT, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  19. 11. REINFORCED CONCRETE SLAB ROOF FROM THE SOUTHERN EDGE, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. REINFORCED CONCRETE SLAB ROOF FROM THE SOUTHERN EDGE, VIEW TOWARDS NORTH. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  20. 12. REINFORCED CONCRETE SLAB ROOF FROM NORTHEASTERN EDGE, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. REINFORCED CONCRETE SLAB ROOF FROM NORTHEASTERN EDGE, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  1. 7. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, FLAME DEFLECTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, FLAME DEFLECTOR AT RIGHT, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, CaptiveTest Stand D-3, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  2. 13. REINFORCED CONCRETE SLAB ROOF FROM SOUTHWESTERN EDGE, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. REINFORCED CONCRETE SLAB ROOF FROM SOUTHWESTERN EDGE, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  3. 13. REINFORCED CONCRETE SLAB ROOF FROM THE NORTHERN EDGE, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. REINFORCED CONCRETE SLAB ROOF FROM THE NORTHERN EDGE, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  4. 9. REINFORCED CONCRETE SLAB ROOF FROM NORTHEAST EDGE, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. REINFORCED CONCRETE SLAB ROOF FROM NORTHEAST EDGE, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  5. 11. REINFORCED CONCRETE SLAB ROOF, FLAME DEFLECTOR AT RIGHT, CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. REINFORCED CONCRETE SLAB ROOF, FLAME DEFLECTOR AT RIGHT, CONTROL BUILDING B AT FAR CENTER RIGHT. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  6. 10. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEAST EDGE, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEAST EDGE, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  7. 12. REINFORCED CONCRETE SLAB ROOF FROM THE NORTHERN EDGE, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. REINFORCED CONCRETE SLAB ROOF FROM THE NORTHERN EDGE, VIEW TOWARDS SOUTH. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  8. 8. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, ACCESS RAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, ACCESS RAMP IN FOREGROUND, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, CaptiveTest Stand D-3, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  9. 11. REINFORCED CONCRETE SLAB ROOF, GUARD RAIL AT CENTER, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. REINFORCED CONCRETE SLAB ROOF, GUARD RAIL AT CENTER, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  10. A VIEW OF FOUNDATION (SLAB ON GRADE) WITH SCALE POLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A VIEW OF FOUNDATION (SLAB ON GRADE) WITH SCALE POLE LOOKING INTO SPRINKLER BOX ON EAST SIDE OF BUILDING (01/03/2008) - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  11. 9. STONE SLAB CULVERT UNDER CARRIAGE ROAD AT HORSESHOE CURVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. STONE SLAB CULVERT UNDER CARRIAGE ROAD AT HORSESHOE CURVE NEAR GIANT SLIDE TRAIL MARKER ON AROUND-THE-MOUNTAIN LOOP. - Rockefeller Carriage Roads, Mount Desert Island, Bar Harbor, Hancock County, ME

  12. High frequency seismic waves and slab structures beneath Italy

    NASA Astrophysics Data System (ADS)

    Sun, Daoyuan; Miller, Meghan S.; Piana Agostinetti, Nicola; Asimow, Paul D.; Li, Dunzhu

    2014-04-01

    Tomographic images indicate a complicated subducted slab structure beneath the central Mediterranean where gaps in fast velocity anomalies in the upper mantle are interpreted as slab tears. The detailed shape and location of these tears are important for kinematic reconstructions and understanding the evolution of the subduction system. However, tomographic images, which are produced by smoothed, damped inversions, will underestimate the sharpness of the structures. Here, we use the records from the Italian National Seismic Network (IV) to study the detailed slab structure. The waveform records for stations in Calabria show large amplitude, high frequency (f>5 Hz) late arrivals with long coda after a relatively low-frequency onset for both P and S waves. In contrast, the stations in the southern and central Apennines lack such high frequency arrivals, which correlate spatially with the central Apennines slab window inferred from tomography and receiver function studies. Thus, studying the high frequency arrivals provides an effective way to investigate the structure of slab and detect possible slab tears. The observed high frequency arrivals in the southern Italy are the strongest for events from 300 km depth and greater whose hypocenters are located within the slab inferred from fast P-wave velocity perturbations. This characteristic behavior agrees with previous studies from other tectonic regions, suggesting the high frequency energy is generated by small scale heterogeneities within the slab which act as scatterers. Furthermore, using a 2-D finite difference (FD) code, we calculate synthetic seismograms to search for the scale, shape and velocity perturbations of the heterogeneities that may explain features observed in the data. Our preferred model of the slab heterogeneities beneath the Tyrrhenian Sea has laminar structure parallel to the slab dip and can be described by a von Kármán function with a down-dip correlation length of 10 km and 0.5 km in

  13. Hexapod External Fixation of Tibia Fractures in Children.

    PubMed

    Iobst, Christopher A

    2016-06-01

    Most tibia fractures in children can be treated nonoperatively. For fractures that do require surgery, however, the most common methods of management include plating or flexible nail insertion. Some fracture patterns, such as periphyseal fractures, fractures with bone and/or soft tissue loss, or fractures with delayed presentation, are not easily amenable to these techniques. Hexapod external fixators are especially helpful in these difficult cases. The purpose of this review is to discuss the principles of performing hexapod circular external fixation applied to pediatric tibia fractures. Some of the additional capabilities of the hexapod external fixator will also be highlighted. PMID:27078228

  14. Fracturing rigid materials.

    PubMed

    Bao, Zhaosheng; Hong, Jeong-Mo; Teran, Joseph; Fedkiw, Ronald

    2007-01-01

    We propose a novel approach to fracturing (and denting) brittle materials. To avoid the computational burden imposed by the stringent time step restrictions of explicit methods or with solving nonlinear systems of equations for implicit methods, we treat the material as a fully rigid body in the limit of infinite stiffness. In addition to a triangulated surface mesh and level set volume for collisions, each rigid body is outfitted with a tetrahedral mesh upon which finite element analysis can be carried out to provide a stress map for fracture criteria. We demonstrate that the commonly used stress criteria can lead to arbitrary fracture (especially for stiff materials) and instead propose the notion of a time averaged stress directly into the FEM analysis. When objects fracture, the virtual node algorithm provides new triangle and tetrahedral meshes in a straightforward and robust fashion. Although each new rigid body can be rasterized to obtain a new level set, small shards can be difficult to accurately resolve. Therefore, we propose a novel collision handling technique for treating both rigid bodies and rigid body thin shells represented by only a triangle mesh. PMID:17218752

  15. Double seismic zone and dehydration embrittlement of the subducting slab

    NASA Astrophysics Data System (ADS)

    Yamasaki, Tadashi; Seno, Tetsuzo

    2003-04-01

    Dehydration embrittlement of metamorphosed oceanic crust and mantle in the subducting slab may be responsible for the occurrence of intermediate-depth earthquakes. We explore the possibility that this hypothesis can explain the morphology of the double seismic zones observed in northeast Japan, southwest Japan, northeast Taiwan, northern Chile, Cape Mendocino, and eastern Aleutians. We calculate transient temperature structures of slabs based on geologically estimated subduction histories of these regions. We then determine dehydration loci of metamorphosed oceanic crust and serpentinized mantle using experimentally derived phase diagrams. The depth range of the dehydration loci of metamorphosed oceanic crust and serpentine is dependent on slab age. The dehydration loci of serpentine produce a double-layered structure. Because the upper dehydration loci of serpentine are mostly located in the wedge mantle above the slab, we regard the upper plane seismicity representing dehydration embrittlement in the oceanic crust, and we fix the slab geometry so that the upper plane seismicity is just below the upper surface of the slab. We find that the lower plane seismicity is located at the lower dehydration loci of serpentine, which indicates that the morphology of the double seismic zones is consistent with the dehydration embrittlement.

  16. Carrier transport in Bi2Se3 topological insulator slab

    NASA Astrophysics Data System (ADS)

    Gupta, Gaurav; Lin, Hsin; Bansil, Arun; Jalil, Mansoor Bin Abdul; Liang, Gengchiau

    2015-11-01

    Electron transport in Bi2Se3 topological insulator slabs is investigated in the thermal activation regime (>50 K) both in the absence (ballistic) and presence of weak and strong acoustic phonon scattering using the non-equilibrium Green function approach. Resistance of the slab is simulated as a function of temperature for a range of slab thicknesses and effective doping in order to gain a handle on how various factors interact and compete to determine the overall resistance of the slab. If the Bi2Se3 slab is biased at the Dirac point, resistance is found to display an insulating trend even for strong electron-phonon coupling strength. However, when the Fermi-level lies close to the bulk conduction band (heavy electron doping), phonon scattering can dominate and result in a metallic behavior, although the insulating trend is retained in the limit of ballistic transport. Depending on values of the operating parameters, the temperature dependence of the slab is found to exhibit a remarkably complex behavior, which ranges from insulating to metallic, and includes cases where the resistance exhibits a local maximum, much like the contradictory behaviors seen experimentally in various experiments.

  17. Tomographic evidence of slab detachment beneath eastern Turkey and the Caucasus

    NASA Astrophysics Data System (ADS)

    Zor, Ekrem

    2008-12-01

    Teleseismic phase readings from the Eastern Turkey Seismic Experiment (ETSE) have been inverted using teleseismic tomography in order to create a 3-D image of the underlying mantle beneath Eastern Turkey. The aim was to investigate the existence of an upper mantle negative velocity anomaly that is used to explain the uplift of Eastern Anatolian plateau and the potential pieces of detached oceanic slabs related to Neo-Tethyan subduction suggested by previous studies. Using teleseismic waveforms from the 29 stations of the Eastern Turkey Seismic Experiment, 2926 direct P phases from 146 events were picked by using adaptive stacking techniques. In order to increase the station coverage and resolve the surrounding area, the phase readings from the International Seismological Center (ISC) Bulletin have also been added. The data set consists of 9571 P and PKP phase readings of 79 stations from 503 teleseismic events. This study develops the first high-resolution 3-D upper mantle P-wave tomographic model for this region. The tomographic results show the existence of an upper mantle negative velocity anomaly to a depth of ~200 km beneath the eastern Anatolian accreationary complex (EAAC) as commonly observed in the previous studies that suggest a shallow partially molten asthenosphere. The slab-like high velocity anomalies beneath the EAAC, Pontides and Caucasus are interpreted as the detached southern and northern Neo-Tethys slabs.

  18. Scaling of Electron Thermal Conductivity during the Transition between Slab and Mixed Slab-Toroidal ETG Mode

    NASA Astrophysics Data System (ADS)

    Sokolov, Vladimir; Balbaky, Abed; Sen, Amiya K.

    2015-11-01

    Transition from the slab to the toroidal branch of the electron temperature gradient (ETG) mode has been successfully achieved in a basic experiment in Columbia Linear Machine CLM. We found a modest increase in saturated ETG potential fluctuations (~ 2 ×) and a substantial increase in the power density of individual mode peaks (~ 4 - 5 ×) with increased levels of curvature. We have obtained a set of experimental scalings for electron thermal conductivity χ⊥e as a function of the inverse radius of curvature Rc-1 for different fluctuation levels of the initial slab ETG mode. We found that thermal conductivity for pure slab modes is larger than it is for mixed slab-toroidal ETG modes with the same level of mode fluctuation. This effective reduction in diffusive transport can be partly explained by the flute nature of the toroidal ETG mode. This research was supported by the Department of Electrical Engineering of Columbia University.

  19. Characterizing Seismic Anisotropy across the Peruvian Flat-Slab Subduction Zone: Implications for the Dynamics of Flat-Slabs

    NASA Astrophysics Data System (ADS)

    Eakin, Caroline; Long, Maureen; Beck, Susan; Wagner, Lara; Tavera, Hernando

    2014-05-01

    Although 10% of subduction zones worldwide today exhibit shallow or flat subduction, we are yet to fully understand how and why these slabs go flat. An excellent study location for such a problem is in Peru, where the largest region of flat-subduction currently exists, extending ~1500 km in length (from 3 °S to 15 °S) and ~300 km in width. Across this region we investigate the pattern of seismic anisotropy, an indicator for past and/or ongoing deformation in the upper mantle. To achieve this we conduct shear wave splitting analyzes at 40 broadband stations from the PULSE project (PerU Lithosphere and Slab Experiment). These stations were deployed for 2+ years across the southern half of the Peruvian flat-slab region. We present detailed shear wave splitting results for both teleseismic events (such as SKS, SKKS, PKS, sSKS) that sample the upper mantle column beneath the stations as well as direct S from local events that constrain anisotropy in the upper portion of the subduction zone. We analyze the variability of our results with respect to initial polarizations, ray paths, and frequency content as well as spatial variability between stations as the underlying slab morphology changes. Teleseismic results show predominately NW-SE fast polarizations (trench oblique to sub-parallel) over the flat-slab region east of Lima. These results are consistent with observations of more complex multi-layered anisotropy beneath a nearby permanent station (NNA) that suggests a trench-perpendicular fast direction in the lowest layer in the sub-slab mantle. Further south, towards the transition to steeper subduction, the splitting pattern becomes increasingly dominated by null measurements. Over to the east however, beyond Cuzco, where the mantle wedge might begin to play a role, we record fast polarizations quasi-parallel to the local slab contours. Local S results indicate the presence of weak (delay times typically less than 0.5 seconds) and heterogeneous supra-slab

  20. Delineation of the fractured-rock and unconsolidated overburden ground-water flow systems on the southern part of Manhattan, New York, through use of advanced borehole-geophysical techniques

    NASA Astrophysics Data System (ADS)

    Stumm, Frederick

    2005-11-01

    Advanced borehole-geophysical techniques were used to assess the geohydrology of crystalline bedrock in 31 of 64 boreholes on the southern part of Manhattan Island, N.Y. Ten wells were screened in the unconsolidated overburden (glacial aquifer) to determine water-table elevation, transmissivity, and chloride concentration. The borehole-logging techniques included natural gamma, single-point resistance, short-normal resistivity, mechanical and acoustic caliper, magnetic susceptibility, borehole-fluid temperature and resistivity, borehole-fluid specific conductance, dissolved oxygen, pH, redox, heat-pulse flowmeter (at selected boreholes), borehole deviation, acoustic and optical televiewer, and borehole radar (at selected boreholes). The boreholes penetrated gneiss, schist, and other crystalline bedrock that has an overall southwest to northwest-dipping foliation. Most of the fractures penetrated are nearly horizontal or have moderate- to high-angle northwest or eastward dip azimuths. Heat-pulse flowmeter logs obtained under pumping and nonpumping (ambient) conditions, together with other geophysical logs, indicate transmissive fracture zones in each borehole. The 60-megahertz directional borehole-radar logs delineated the location and orientation of several radar reflectors that did not intersect the projection of the borehole. Fifty-three faults had mean orientation populations of N12°W, 66°W or N11°W, 70°E. Seventy-seven transmissive fractures delineated using the heat-pulse flowmeter had mean orientations of N11°E, 14°SE (majority) and N23°E, 57°NW (minority). The first potentiometric-surface and water-table maps were completed for southern Manhattan of the bedrock and glacial aquifer, respectively. Bedrock transmissivity ranged from 0.7 to 871 feet squared per day. Glacial aquifer transmissivity ranged from 2 to 93,000 feet squared per day. Chloride concentrations ranged from 25 to 17,800 milligrams per liter in the bedrock, and 28 to 15,250 milligrams

  1. Arthroscopic Treatment of Talar Body Fractures

    PubMed Central

    Jorgensen, Nicholas B.; Lutz, Michael

    2014-01-01

    Talar fractures can be severe injuries with complications leading to functional disability. Open reduction–internal fixation remains the treatment of choice for displaced talar fractures. Arthroscopic evaluation of the fracture and articular surfaces can play an important role in the treatment of these fractures. Arthroscopic reduction–internal fixation (ARIF) is increasingly used for certain intra-articular fracture types through the body. The minimally invasive nature of ARIF and high accuracy are enviable attributes of an evolving technique. This technical note describes arthroscopic evaluation of 2 intra-articular talar head fractures, using posterior portals, with ARIF performed in 1 case and excision of the fracture fragments in the other case. PMID:24904775

  2. Development of Bimodal Grain Structures in Nb-Containing High-Strength Low-Alloy Steels during Slab Reheating

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Debalay; Davis, Claire; Strangwood, Martin

    2008-08-01

    Bimodal (mixed coarse and fine) grain structures, which have been observed in some Nb-containing thermomechanically-controlled rolled steel plates, adversely affect their mechanical properties by causing scatter in cleavage fracture stress values. It is known that bimodal grain structures can develop during reheating prior to rolling; however, no quantitative predictions of the level of bimodality or the critical reheat temperatures for formation have been reported. In this article, three high-strength low-alloy (HSLA) steel slabs with varying microalloying additions (Ti, Nb, and V) have been characterized in the as-continuously cast and reheated (to various temperatures in the range 1050 °C to 1225 °C) conditions to determine the link between their grain size distribution (and any bimodality observed) and the microalloy precipitate type, size, and distribution. The as-cast slabs showed inhomogeneous microalloying precipitate distributions with the separation between precipitate-rich and precipitate-poor regions being consistent with interdendritic segregation and hence, the secondary dendrite arm spacing (SDAS). The susceptibility of the slabs to the formation of bimodality, based on the steel chemical compositions and critical reheat temperature ranges has been identified, both experimentally and theoretically using ThermoCalc (Thermo-Calc Software, Stockholm, Sweden) modeling of precipitate stability in the solute-rich and the solute-depleted regions formed during casting.

  3. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-09-29

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were

  4. USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-02-01

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper

  5. Risk analysis for dry snow slab avalanche release by skier triggering

    NASA Astrophysics Data System (ADS)

    McClung, David

    2013-04-01

    Risk analysis is of primary importance for skier triggering of avalanches since human triggering is responsible for about 90% of deaths from slab avalanches in Europe and North America. Two key measureable quantities about dry slab avalanche release prior to initiation are the depth to the weak layer and the slope angle. Both are important in risk analysis. As the slope angle increases, the probability of avalanche release increases dramatically. As the slab depth increases, the consequences increase if an avalanche releases. Among the simplest risk definitions is (Vick, 2002): Risk = (Probability of failure) x (Consequences of failure). Here, these two components of risk are the probability or chance of avalanche release and the consequences given avalanche release. In this paper, for the first time, skier triggered avalanches were analyzed from probability theory and its relation to risk for both the D and . The data consisted of two quantities : (,D) taken from avalanche fracture line profiles after an avalanche has taken place. Two data sets from accidentally skier triggered avalanches were considered: (1) 718 for and (2) a set of 1242 values of D which represent average values along the fracture line. The values of D were both estimated (about 2/3) and measured (about 1/3) by ski guides from Canadian Mountain Holidays CMH). I also analyzed 1231 accidentally skier triggered avalanches reported by CMH ski guides for avalanche size (representing destructive potential) on the Canadian scale. The size analysis provided a second analysis of consequences to verify that using D. The results showed that there is an intermediate range of both D and with highest risk. ForD, the risk (product of consequences and probability of occurrence) is highest for D in the approximate range 0.6 m - 1.0 m. The consequences are low for lower values of D and the chance of release is low for higher values of D. Thus, the highest product is in the intermediate range. For slope angles

  6. When do fractured media become seismically anisotropic? Some implications on quantifying fracture properties

    NASA Astrophysics Data System (ADS)

    Yousef, B. M.; Angus, D. A.

    2016-06-01

    Fractures are pervasive features within the Earth's crust and they have a significant influence on the multi-physical response of the subsurface. The presence of coherent fracture sets often leads to observable seismic anisotropy enabling seismic techniques to remotely locate and characterise fracture systems. In this study, we confirm the general scale-dependence of seismic anisotropy and provide new results specific to shear-wave splitting (SWS). We find that SWS develops under conditions when the ratio of wavelength to fracture size (λS / d) is greater than 3, where Rayleigh scattering from coherent fractures leads to an effective anisotropy such that effective medium model (EMM) theory is qualitatively valid. When 1 <λS / d < 3 there is a transition from Rayleigh to Mie scattering, where no effective anisotropy develops and hence the SWS measurements are unstable. When λS / d < 1 we observe geometric scattering and begin to see behaviour similar to transverse isotropy. We find that seismic anisotropy is more sensitive to fracture density than fracture compliance ratio. More importantly, we observe that the transition from scattering to an effective anisotropic regime occurs over a propagation distance between 1 and 2 wavelengths depending on the fracture density and compliance ratio. The existence of a transition zone means that inversion of seismic anisotropy parameters based on EMM will be fundamentally biased. More importantly, we observe that linear slip EMM commonly used in inverting fracture properties is inconsistent with our results and leads to errors of approximately 400% in fracture spacing (equivalent to fracture density) and 60% in fracture compliance. Although EMM representations can yield reliable estimates of fracture orientation and spatial location, our results show that EMM representations will systematically fail in providing quantitatively accurate estimates of other physical fracture properties, such as fracture density and compliance

  7. Application of geophysical methods for fracture characterization

    SciTech Connect

    Lee, K.H.; Majer, E.L.; McEvilly, T.V. |; Morrison, H.F. |

    1990-01-01

    One of the most crucial needs in the design and implementation of an underground waste isolation facility is a reliable method for the detection and characterization of fractures in zones away from boreholes or subsurface workings. Geophysical methods may represent a solution to this problem. If fractures represent anomalies in the elastic properties or conductive properties of the rocks, then the seismic and electrical techniques may be useful in detecting and characterizing fracture properties. 7 refs., 3 figs.

  8. Can slabs melt beneath forearcs in hot subduction zones?

    NASA Astrophysics Data System (ADS)

    Ribeiro, J.; Maury, R.; Gregoire, M.

    2015-12-01

    At subduction zones, thermal modeling predict that the shallow part of the downgoing oceanic crust (< 80 - 100 km depth to the slab) is usually too cold to cross the water-rich solidus and melts beneath the forearc. Yet, the occasional occurrence of adakites, commonly considered as slab melts, in the forearc region challenges our understanding of the shallow subduction processes. Adakites are unusual felsic rocks commonly associated with asthenospheric slab window opening or fast subduction of young (< 25 Ma) oceanic plate that enable slab melting at shallow depths; but their genesis has remained controversial. Here, we present a new approach that provides new constraints on adakite petrogenesis in hot subduction zones (the Philippines) and above an asthenospheric window (Baja California, Mexico). We use amphibole compositions to estimate the magma storage depths and the composition of the parental melts to test the hypothesis that adakites are pristine slab melts. We find that adakites from Baja California and Philippines formed by two distinct petrogenetic scenarios. In Baja California, hydrous mantle melts mixed/mingled with high-pressure (HP) adakite-type, slab melts within a lower crustal (~30 km depth) magma storage region before stalling into the upper arc crust (~7-15 km depth). In contrast, in the Philippines, primitive mantle melts stalled and crystallized within lower and upper crustal magma storage regions to produce silica-rich melts with an adakitic signature. Thereby, slab melting is not required to produce an adakitic geochemical fingerprint in hot subduction zones. However, our results also suggest that the downgoing crust potentially melted beneath Baja California.

  9. Aegean tectonics: Strain localisation, slab tearing and trench retreat

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent; Faccenna, Claudio; Huet, Benjamin; Labrousse, Loïc; Le Pourhiet, Laetitia; Lacombe, Olivier; Lecomte, Emmanuel; Burov, Evguenii; Denèle, Yoann; Brun, Jean-Pierre; Philippon, Mélody; Paul, Anne; Salaün, Gwenaëlle; Karabulut, Hayrullah; Piromallo, Claudia; Monié, Patrick; Gueydan, Frédéric; Okay, Aral I.; Oberhänsli, Roland; Pourteau, Amaury; Augier, Romain; Gadenne, Leslie; Driussi, Olivier

    2013-06-01

    We review the geodynamic evolution of the Aegean-Anatolia region and discuss strain localisation there over geological times. From Late Eocene to Present, crustal deformation in the Aegean backarc has localised progressively during slab retreat. Extension started with the formation of the Rhodope Metamorphic Core Complex (Eocene) and migrated to the Cyclades and the northern Menderes Massif (Oligocene and Miocene), accommodated by crustal-scale detachments and a first series of core complexes (MCCs). Extension then localised in Western Turkey, the Corinth Rift and the external Hellenic arc after Messinian times, while the North Anatolian Fault penetrated the Aegean Sea. Through time the direction and style of extension have not changed significantly except in terms of localisation. The contributions of progressive slab retreat and tearing, basal drag, extrusion tectonics and tectonic inheritance are discussed and we favour a model (1) where slab retreat is the main driving engine, (2) successive slab tearing episodes are the main causes of this stepwise strain localisation and (3) the inherited heterogeneity of the crust is a major factor for localising detachments. The continental crust has an inherited strong heterogeneity and crustal-scale contacts such as major thrust planes act as weak zones or as zones of contrast of resistance and viscosity that can localise later deformation. The dynamics of slabs at depth and the asthenospheric flow due to slab retreat also have influence strain localisation in the upper plate. Successive slab ruptures from the Middle Miocene to the Late Miocene have isolated a narrow strip of lithosphere, still attached to the African lithosphere below Crete. The formation of the North Anatolian Fault is partly a consequence of this evolution. The extrusion of Anatolia and the Aegean extension are partly driven from below (asthenospheric flow) and from above (extrusion of a lid of rigid crust).

  10. Modeling the surface photovoltage of silicon slabs with varying thickness.

    PubMed

    Vazhappilly, Tijo; Kilin, Dmitri S; Micha, David A

    2015-04-10

    The variation with thickness of the energy band gap and photovoltage at the surface of a thin semiconductor film are of great interest in connection with their surface electronic structure and optical properties. In this work, the change of a surface photovoltage (SPV) with the number of layers of a crystalline silicon slab is extracted from models based on their atomic structure. Electronic properties of photoexcited slabs are investigated using generalized gradient and hybrid density functionals, and plane wave basis sets. Si(1 1 1) surfaces have been terminated by hydrogen atoms to compensate for dangling bonds and have been described by large supercells with periodic boundary conditions. Calculations of the SPV of the Si slabs have been done in terms of the reduced density matrix of the photoactive electrons including dissipative effects due to their interaction with medium phonons and excitons. Surface photovoltages have been calculated for model Si slabs with 4-12, and 16 layers, to determine convergence trends versus slab thickness. Band gaps and the inverse of the SPVs have been found to scale nearly linearly with the inverse thickness of the slab, while the electronic density of states increases quadratically with thickness. Our calculations show the same trends as experimental values indicating band gap reduction and absorption enhancement for Si films of increasing thickness. Simple arguments on confined electronic structures have been used to explain the main effects of changes with slab thickness. A procedure involving shifted electron excitation energies is described to improve results from generalized gradient functionals so they can be in better agreement with the more accurate but also more computer intensive values from screened exchange hybrid functionals. PMID:25767101

  11. Modeling the surface photovoltage of silicon slabs with varying thickness

    NASA Astrophysics Data System (ADS)

    Vazhappilly, Tijo; Kilin, Dmitri S.; Micha, David A.

    2015-04-01

    The variation with thickness of the energy band gap and photovoltage at the surface of a thin semiconductor film are of great interest in connection with their surface electronic structure and optical properties. In this work, the change of a surface photovoltage (SPV) with the number of layers of a crystalline silicon slab is extracted from models based on their atomic structure. Electronic properties of photoexcited slabs are investigated using generalized gradient and hybrid density functionals, and plane wave basis sets. Si(1 1 1) surfaces have been terminated by hydrogen atoms to compensate for dangling bonds and have been described by large supercells with periodic boundary conditions. Calculations of the SPV of the Si slabs have been done in terms of the reduced density matrix of the photoactive electrons including dissipative effects due to their interaction with medium phonons and excitons. Surface photovoltages have been calculated for model Si slabs with 4-12, and 16 layers, to determine convergence trends versus slab thickness. Band gaps and the inverse of the SPVs have been found to scale nearly linearly with the inverse thickness of the slab, while the electronic density of states increases quadratically with thickness. Our calculations show the same trends as experimental values indicating band gap reduction and absorption enhancement for Si films of increasing thickness. Simple arguments on confined electronic structures have been used to explain the main effects of changes with slab thickness. A procedure involving shifted electron excitation energies is described to improve results from generalized gradient functionals so they can be in better agreement with the more accurate but also more computer intensive values from screened exchange hybrid functionals.

  12. Receiver Function Study of the Peruvian Flat-Slab Region: Initial Results from PULSE

    NASA Astrophysics Data System (ADS)

    Bishop, B.; Beck, S. L.; Zandt, G.; Kumar, A.; Wagner, L. S.; Long, M. D.; Tavera, H.

    2013-12-01

    The largest segment of flat slab subduction in the world occurs beneath Peru where the distribution of slab earthquakes indicates the Nazca plate subducts nearly horizontally below the Andes. The presumably buoyant Nazca Ridge subducts at the southern end of this shallow subduction segment which has been linked to the cessation of active arc volcanism within the segment of the Andes between 3°S and 15°S. We deployed 40 broadband seismic stations as part of the PerU Lithosphere and Slab Experiment (PULSE) to investigate the flat slab subduction processes beneath the Peruvian Andes between 10.5°S and 15°S. As one component of a multi-technique seismological study, we have calculated Receiver Functions from PULSE seismic data to create Common Conversion Point stacks utilizing a 1-D velocity structure with Vp of 6.2 km/s to 60 km depth, 8.1 km/s from 60 to 200 km depth, and a Vp/Vs ratio of 1.8 to provide preliminary constraints on crustal-scale structures near the subducting Nazca Ridge. Forward modeling of results from individual stations was carried out to provide additional constraints on more localized crustal variations. These results provide estimates for the thickness of the continental crust of the overriding South American Plate as well as the first regional images of a discontinuous oceanic Moho of the subducted Nazca Plate. Receiver function results show a strong P-to-S conversion from the continental Moho indicating the presence of significantly thickened crust within the central Peruvian Andes, reaching thicknesses of 50 to more than 60 kilometers and extending eastward into the Subandean region. A significant change in crustal thickness is present in the Eastern Cordillera northeast of Cuzco, stepping from approximately 62 km to 55 km, which matches prior crustal models based on gravity data. A number of high amplitude arrivals indicate the top of a low velocity layer at approximately 12-15 km depth throughout the PULSE study region, roughly

  13. Pediatric facial fractures: evolving patterns of treatment.

    PubMed

    Posnick, J C; Wells, M; Pron, G E

    1993-08-01

    This study reviews the treatment of facial trauma between October 1986 and December 1990 at a major pediatric referral center. The mechanism of injury, location and pattern of facial fractures, pattern of facial injury, soft tissue injuries, and any associated injuries to other organ systems were recorded, and fracture management and perioperative complications reviewed. The study population consisted of 137 patients who sustained 318 facial fractures. Eighty-one patients (171 fractures) were seen in the acute stage, and 56 patients (147 fractures) were seen for reconstruction of a secondary deformity. Injuries in boys were more prevalent than in girls (63% versus 37%), and the 6- to 12-year cohort made up the largest group (42%). Most fractures resulted from traffic-related accidents (50%), falls (23%), or sports-related injuries (15%). Mandibular (34%) and orbital fractures (23%) predominated; fewer midfacial fractures (7%) were sustained than would be expected in a similar adult population. Three quarters of the patients with acute fractures required operative intervention. Closed reduction techniques with maxillomandibular fixation were frequently chosen for mandibular condyle fractures and open reduction techniques (35%) for other regions of the facial skeleton. When open reduction was indicated, plate-and-screw fixation was the preferred method of stabilization (65%). The long-term effects of the injuries and the treatment given on facial growth remain undetermined. Perioperative complication rates directly related to the surgery were low. PMID:8336220

  14. Periprosthetic Fractures Following Total Knee Arthroplasty

    PubMed Central

    Kim, Nam Ki

    2015-01-01

    Periprosthetic fractures after total knee arthroplasty may occur in any part of the femur, tibia and patella, and the most common pattern involves the supracondylar area of the distal femur. Supracondylar periprosthetic fractures frequently occur above a well-fixed prosthesis, and risk factors include anterior femoral cortical notching and use of the rotational constrained implant. Periprosthetic tibial fractures are frequently associated with loose components and malalignment or malposition of implants. Fractures of the patella are much less common and associated with rheumatoid arthritis, use of steroid, osteonecrosis and malalignment of implants. Most patients with periprosthetic fractures around the knee are the elderly with poor bone quality. There are many difficulties and increased risk of nonunion after treatment because reduction and internal fixation is interfered with by preexisting prosthesis and bone cement. Additionally, previous soft tissue injury is another disadvantageous condition for bone healing. Many authors reported good clinical outcomes after non-operative treatment of undisplaced or minimally displaced periprosthetic fractures; however, open reduction or revision arthroplasty was required in displaced fractures or fractures with unstable prosthesis. Periprosthetic fractures around the knee should be prevented by appropriate technique during total knee arthroplasty. Nevertheless, if a periprosthetic fracture occurs, an appropriate treatment method should be selected considering the stability of the prosthesis, displacement of fracture and bone quality. PMID:25750888

  15. HUMERAL SHAFT FRACTURES

    PubMed Central

    Benegas, Eduardo; Ferreira Neto, Arnaldo Amado; Neto, Raul Bolliger; Santis Prada, Flavia de; Malavolta, Eduardo Angeli; Marchitto, Gustavo Oliveira

    2015-01-01

    Humeral shaft fractures (HSFs) represent 3% of the fractures of the locomotor apparatus, and the middle third of the shaft is the section most affected. In the majority of cases, it is treated using nonsurgical methods, but surgical indications in HSF cases are increasingly being adopted. The diversity of opinions makes it difficult to reach a consensus regarding the types of osteosynthesis, surgical technique and quantity and quality of synthesis materials that should be used. It would appear that specialists are far from reaching a consensus regarding the best method for surgical treatment of HSFs. We believe that less invasive methods, which favor relative stability, are the most appropriate methods, since the most feared complications are less frequent. PMID:27019833

  16. Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs

    SciTech Connect

    Dauben, D.L.

    1991-07-15

    The study has two principal objectives: (1) To evaluate the effects of fracture closure on the recovery of oil and gas reserves from naturally fractured petroleum or natural gas reservoirs. (2) To evaluate procedures for improving the recovery of these reserves using innovative fluid injection techniques to maintain reservoir pressure and mitigate the impact of fracture closure. The total scope of the study has been subdivided into three main tasks: (1) Baseline studies (non-pressure sensitive fractures); (2)studies with pressure sensitive fractures; and (3) innovative approaches for improving oil recovery.

  17. Digital Image Processing Techniques for Enhancement and Classification of MR1 Side Scan Sonar Imagery and Preliminary Results of Manganese Nodule Occurrence between the Clarion and Clipperton Fracture Zones, NE Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Kim, H.; Park, C.; Park, J.; Kim, K.

    2004-12-01

    The recent growth in the production rate of digital side scan sonar images, coupled with the rapid expansion of systematic seafloor exploration programs, has created a need for fast and quantitative means of processing seafloor imagery. A number of numerical techniques used to enhance and classify imagery produced by long range side scan sonar (MR1) in the Clarion and Clippertion Fracture Zones, NE equatorial Pacific. Side scan sonar imagery is traditionally interpreted visually and qualitatively by experts. Textural Analysis enables a more objective approach, supplementing the interpreter with reliable quantitative results. Grey-level co-occurrence matrices describe numerically textual information and detect subtle details invisible to the human eyes. The area between the Clarion and Clipperton fracture zones (NE equatorial Pacific) is one of the highest manganese nodule abundance in the world oceans. A detailed analysis of MR1 sonar images and ground truth - free-fall grab (FFG) data in the area, reveals a close relationship between sonar characters of seafloor and manganese nodule occurrence. The close relationship between distribution of sonar imagery and manganese nodule abundance implies that seafloor topography and sediment thickness are important controlling factors for occurrence of manganese nodules.

  18. Tomographic imaging of the effects of Peruvian flat slab subduction on the Nazca slab and surrounding mantle under central and southern Peru

    NASA Astrophysics Data System (ADS)

    Scire, A. C.; Zandt, G.; Beck, S. L.; Bishop, B.; Biryol, C. B.; Wagner, L. S.; Long, M. D.; Minaya, E.; Tavera, H.

    2014-12-01

    The modern central Peruvian Andes are dominated by a laterally extensive region of flat slab subduction. The Peruvian flat slab extends for ~1500 km along the strike of the Andes, correlating with the subduction of the Nazca Ridge in the south and the theorized Inca Plateau in the north. We have used data from the CAUGHT and PULSE experiments for finite frequency teleseismic P- and S-wave tomography to image the Nazca slab in the upper mantle below 95 km depth under central Peru between 10°S and 18°S as well as the surrounding mantle. Since the slab inboard of the subducting Nazca Ridge is mostly aseismic, our results provide important constraints on the geometry of the subducting Nazca slab in this region. Our images of the Nazca slab suggest that steepening of the slab inboard of the subducting Nazca Ridge locally occurs ~100 km further inland than was indicated in previous studies. The region where we have imaged the steepening of the Nazca slab inboard of the Nazca Ridge correlates with the location of the Fitzcarrald Arch, a long wavelength upper plate topographic feature which has been suggested to be a consequence of ridge subduction. When the slab steepens inboard of the flat slab region, it does so at a very steep (~70°) angle. The transition from the Peruvian flat slab to the more normally dipping slab south of 16°S below Bolivia is characterized by an abrupt bending of the slab anomaly in the mantle in response to the shift from flat to normal subduction. The slab anomaly appears to be intact south of the Nazca Ridge with no evidence for tearing of the slab in response to the abrupt change in slab dip. A potential tear in the slab is inferred from an observed offset in the slab anomaly north of the Nazca Ridge extending subparallel to the ridge axis between 130 and 300 km depth. A high amplitude (-5-6%) slow S-wave velocity anomaly is observed below the projection of the Nazca Ridge. This anomaly appears to be laterally confined to the mantle

  19. Influence of Rock Fabric on Hydraulic Fracture Propagation: Laboratory Study

    NASA Astrophysics Data System (ADS)

    Stanchits, S. A.; Desroches, J.; Burghardt, J.; Surdi, A.; Whitney, N.

    2014-12-01

    Massive hydraulic fracturing is required for commercial gas production from unconventional reservoirs. These reservoirs are often highly fractured and heterogeneous, which may cause significant fracture complexity and also arrest propagation of hydraulic fractures, leading to production decrease. One of the goals of our study was to investigate the influence of rock fabric features on near-wellbore fracture geometry and complexity. We performed a series of laboratory tests on Niobrara outcrop shale blocks with dimensions of 30 x 30 x 36 inches in a true-triaxial loading frame. Acoustic Emission (AE) technique was applied to monitor hydraulic fracture initiation and dynamics of fracture propagation. After the tests, the shape of the created hydraulic fracture was mapped by goniometry technique. To estimate fracture aperture, particles of different sizes were injected with fracturing fluid. In all tests, AE analysis indicated hydraulic fracture initiation prior to breakdown or the maximum of wellbore pressure. In most tests, AE analysis revealed asymmetrical hydraulic fracture shapes. Post-test analysis demonstrated good correspondence of AE results with the actual 3D shape of the fracture surface map. AE analysis confirmed that in some of these tests, the hydraulic fracture approached one face of the block before the maximum wellbore pressure had been reached. We have found that in such cases the propagation of hydraulic fracture in the opposite direction was arrested by the presence of mineralized interfaces. Mapping the distribution of injected particles confirmed the creation of a narrow-width aperture in the vicinity of pre-existing interfaces, restricting fracture conductivity. Based on the results of our study, we concluded that the presence of planes of weakness, such as mineralized natural fractures, can result in the arrest of hydraulic fracture propagation, or in poor fracture geometries with limited aperture, that in turn could lead to high net pressure

  20. Fluid Production Induced Stress Analysis Surrounding an Elliptic Fracture

    NASA Astrophysics Data System (ADS)

    Pandit, Harshad Rajendra

    Hydraulic fracturing is an effective technique used in well stimulation to increase petroleum well production. A combination of multi-stage hydraulic fracturing and horizontal drilling has led to the recent boom in shale gas production which has changed the energy landscape of North America. During the fracking process, highly pressurized mixture of water and proppants (sand and chemicals) is injected into to a crack, which fractures the surrounding rock structure and proppants help in keeping the fracture open. Over a longer period, however, these fractures tend to close due to the difference between the compressive stress exerted by the reservoir on the fracture and the fluid pressure inside the fracture. During production, fluid pressure inside the fracture is reduced further which can accelerate the closure of a fracture. In this thesis, we study the stress distribution around a hydraulic fracture caused by fluid production. It is shown that fluid flow can induce a very high hoop stress near the fracture tip. As the pressure gradient increases stress concentration increases. If a fracture is very thin, the flow induced stress along the fracture decreases, but the stress concentration at the fracture tip increases and become unbounded for an infinitely thin fracture. The result from the present study can be used for studying the fracture closure problem, and ultimately this in turn can lead to the development of better proppants so that prolific well production can be sustained for a long period of time.

  1. Fossil slabs attached to unsubducted fragments of the Farallon plate.

    PubMed

    Wang, Yun; Forsyth, Donald W; Rau, Christina J; Carriero, Nina; Schmandt, Brandon; Gaherty, James B; Savage, Brian

    2013-04-01

    As the Pacific-Farallon spreading center approached North America, the Farallon plate fragmented into a number of small plates. Some of the microplate fragments ceased subducting before the spreading center reached the trench. Most tectonic models have assumed that the subducting oceanic slab detached from these microplates close to the trench, but recent seismic tomography studies have revealed a high-velocity anomaly beneath Baja California that appears to be a fossil slab still attached to the Guadalupe and Magdalena microplates. Here, using surface wave tomography, we establish the lateral extent of this fossil slab and show that it is correlated with the distribution of high-Mg andesites thought to derive from partial melting of the subducted oceanic crust. We also reinterpret the high seismic velocity anomaly beneath the southern central valley of California as another fossil slab extending to a depth of 200 km or more that is attached to the former Monterey microplate. The existence of these fossil slabs may force a reexamination of models of the tectonic evolution of western North America over the last 30 My. PMID:23509274

  2. Fossil slabs attached to unsubducted fragments of the Farallon plate

    PubMed Central

    Wang, Yun; Forsyth, Donald W.; Rau, Christina J.; Carriero, Nina; Schmandt, Brandon; Gaherty, James B.; Savage, Brian

    2013-01-01

    As the Pacific–Farallon spreading center approached North America, the Farallon plate fragmented into a number of small plates. Some of the microplate fragments ceased subducting before the spreading center reached the trench. Most tectonic models have assumed that the subducting oceanic slab detached from these microplates close to the trench, but recent seismic tomography studies have revealed a high-velocity anomaly beneath Baja California that appears to be a fossil slab still attached to the Guadalupe and Magdalena microplates. Here, using surface wave tomography, we establish the lateral extent of this fossil slab and show that it is correlated with the distribution of high-Mg andesites thought to derive from partial melting of the subducted oceanic crust. We also reinterpret the high seismic velocity anomaly beneath the southern central valley of California as another fossil slab extending to a depth of 200 km or more that is attached to the former Monterey microplate. The existence of these fossil slabs may force a reexamination of models of the tectonic evolution of western North America over the last 30 My. PMID:23509274

  3. Slab laser development at MSNW - The Gemini and Centurion systems

    NASA Astrophysics Data System (ADS)

    Eggleston, J. M.; Albrecht, G. F.

    Two, zig-zag-optical-path, slab-geometry, solid-state lasers, referred to as Gemini and Centurion, are described. The Nd:glass laser (Gemini) uses a pump geometry in which the flash lamps are located between two slabs in the same laser head. The dimensions and functions of the glass slabs are studied and the single-sided pumping of the Nd:glass laser is examined. The system is verified using the Nd:YAG laser system (Centurion). The Centurion system uses four flash lamps to pump a single 6 mm x 2 cm x 15.5 cm Nd:YAG slab; the reflector structure of the system is analyzed. The thermal-optical model for the Nd:glass laser and the Trace 3D, a three-dimensional flashlamp-slab coupling code, are evaluated. The oscillation performance and defocusing of a single-pass beam are measured; it is observed that the single-sided pump output is 30 percent more efficient than the standard configuration and no major defocusing effect is detected. The use of the Trace 3D code to design a reflector system for Gemini is discussed.

  4. The effect of metastable pyroxene on the slab dynamics

    NASA Astrophysics Data System (ADS)

    Agrusta, R.; Van Hunen, J.; Goes, S. D. B.

    2014-12-01

    Global seismic studies show variations near the base of mantle transition zone, where some slabs penetrate straight into the lower mantle, whereas others seem to flatten. The dynamics of cold subducting slabs are mainly controlled by negative thermal buoyancy forces and by buoyancy anomalies due to density contrasts of the different mineralogical phases. Recent experiments show that pyroxene dissolves into the denser garnet, forming the majorite-garnet, at very slow rates, and pyroxene can remain metastable to temperatures as high as 1400 °C.Because metastable pyroxene may potentially persist in subduction zones over large volumes and to great depths, a self-consistent subduction model has been used to investigate the influence of metastable phase on the dynamics of subducting oceanic lithosphere. The phase boundary of pyroxene to garnet (300 km equilibrium depth) is considered together with the phase transition of olivine to wadsleyite (410 km equilibrium), and ringwoodite to perovskite-magnesiowustite (670 km equilibrium). The kinetics of the phase transition for ol-wd and in px-gt are treated considering a temperature-dependent diffusion rate. To quantify the buoyant contributions of the metastable phase on the subduction dynamics, an extensive parameter sensitivity study has been performed.Results from this study illustrate that metastable pyroxene affects slab buoyancy at least as much as olivine metastability. Slab age and phase change kinetics are the most dominant parameters, and buoyancy effects are stronger for old subducting lithosphere and for low diffusion rates, favouring slab stagnation in the transition zone.

  5. Systematic variation in the depths of slabs beneath arc volcanoes

    USGS Publications Warehouse

    England, P.; Engdahl, R.; Thatcher, W.

    2004-01-01

    The depths to the tops of the zones of intermediate-depth seismicity beneath arc volcanoes are determined using the hypocentral locations of Engdahl et al. These depths are constant, to within a few kilometres, within individual arc segments, but differ by tens of kilometres from one arc segment to another. The range in depths is from 65 km to 130 km, inconsistent with the common belief that the volcanoes directly overlie the places where the slabs reach a critical depth that is roughly constant for all arcs. The depth to the top of the intermediate-depth seismicity beneath volcanoes correlates neither with age of the descending ocean floor nor with the thermal parameter of the slab. This depth does, however, exhibit an inverse correlation with the descent speed of the subducting plate, which is the controlling factor both for the thermal structure of the wedge of mantle above the slab and for the temperature at the top of the slab. We interpret this result as indicating that the location of arc volcanoes is controlled by a process that depends critically upon the temperature at the top of the slab, or in the wedge of mantle, immediately below the volcanic arc.

  6. Hydraulic Fracturing in Saturated Cohesionless Materials

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Hurt, R. S.; Huang, H.

    2007-12-01

    Based on the developed experimental techniques, hydraulic fracturing in particulate materials has been directly observed in the laboratory. As a result, we suggested several mechanisms of hydraulic fracturing in particulate materials and determined relevant scaling relationships (e.g., the interplay between elastic and plastic processes). While the ongoing work is likely to change at least some conclusions, it is important that the results reported in this work appear to form the framework for modeling and, perhaps, even for (qualitative) interpretation of field data. The observed fracture geometry and the measured pressure injection curves suggest that hydraulic fracturing occurs in soft sediments in the following sequence: (i) cavity expansion, (ii) fracture front initiation, and (iii) propagation of the developed fracture. Our experiments show that liquid can indeed propagate as a crack-like feature when injected into cohesionless saturated materials. Laboratory observations suggest that at the initial stage, the cavity expansion process ends with fracture initiation. Sometimes, the growing fracture resembles penetration of one movable material into another less movable material, which may be a manifestation of the Taylor-like instability. An important conclusion of our work is that all parts of the cohesionless particulate material (including the tip zone of hydraulic fracture) are likely to be in compression. The compressive stress state is an important characteristic of hydraulic fracturing in particulate materials with low, or no, cohesion (such as were used in our experiments). At present, two kinematic mechanisms of fracture propagation, consistent with the compressive stress regime, can be offered. The first mechanism is based on shear bands propagating ahead of the tip of an open fracture. The second is based on the tensile strain ahead of the fracture tip and reduction of the effective stresses to zero within the leak-off zone. Additionally, an

  7. The carbon-bearing phases in the subducted slabs under the lower mantle condition

    NASA Astrophysics Data System (ADS)

    Maeda, F.; Ohtani, E.; Kamada, S.; Sakamaki, T.; Ohishi, Y.; Hirao, N.

    2014-12-01

    Carbon, which is one of the most important volatile elements in the solar system, is suggested to be stored in the deep part of the Earth. The evidence for the deep carbon is found in super-deep diamonds or estimations of carbon fluxes between the surface and interior of the Earth. The candidates of a carbon-source into the mantle are subducting slabs. Therefore, it is important for the studying of Deep Carbon Cycle to reveal the reactions related to carbon-bearing phases in the slabs descending into the lower mantle. The MgCO3-SiO2 system is considered to constrain the carbon-bearing phases in the slabs since following reactions can occur under the lower mantle conditions: MgCO3 (magnesite) + SiO2 (stishovite) → MgSiO3 (perovskite) + CO2CO2 → C (diamond) + O2The phase boundary in the MgCO3-SiO2 system has ambiguity because of the contradiction between the previous studies. We aimed to reconcile this contradiction and determine the potential carbon-bearing phases in the deep subducting slabs. We have investigated the reaction between MgCO3 and SiO2 up to about 100 GPa and 3000 K using the double sided laser heated diamond anvil cell combined with the in-situ synchrotron XRD technique and Raman spectroscopy. The starting material was a powered 1:1 (in mole fraction) mixture of natural magnesite (Brazil, Bahia) and reagent α-quartz. XRD patterns of high P-T samples and recovered samples were acquired at BL10XU, SPring-8. We measured the Raman spectra of the samples at high-P and room temperature and those recovered at an ambient condition. Diamond and MgSiO3 perovskite were observed at 70 GPa and temperatures above 1750 K. The high P-T XRD patterns showed the appearance of MgSiO3 perovskite at 50-60 GPa and around 2000 K. Our study revealed that magnesite could decarbonate to form diamond in cold slabs at the depths greater than 1800- km depth due to the above reactions in the MgCO3-SiO2 system.

  8. Permeability enhancement using high energy gas fracturing

    SciTech Connect

    Chu, T.Y.; Cuderman, J.F.; Jung, J.; Jacobson, R.D.

    1986-01-01

    This paper reports the results of a preliminary study of using High Energy Gas Fracturing (HEGF) techniques for geothermal well stimulation. Experiments conducted in the G-tunnel complex at the Nevada Test Site (NTS) showed that multiple fractures could be created in water-filled boreholes using HEGF. Therefore, the method is potentially useful for geothermal well stimulation. 4 refs., 11 figs.

  9. Investigation of fracture-matrix interaction: Preliminary experiments in a simple system

    SciTech Connect

    Foltz, S.D.; Tidwell, V.C.; Glass, R.J.; Sobolik, S.R.

    1992-12-31

    Paramount to the modeling of unsaturated flow and transport through fractured porous media is a clear understanding of the processes controlling fracture-matrix interaction. As a first step toward such an understanding, two preliminary experiments have been performed to investigate the influence of matrix imbibition on water percolation through unsaturated fractures in the plane normal to the fracture. Test systems consisted of thin slabs of either tuff or an analog material cut by a single vertical fracture into which a constant fluid flux was introduced. Transient moisture content and solute concentration fields were imaged by means of x-ray absorption. Flow fields associated with the two different media were significantly different owing to differences in material properties relative to the imposed flux. Richards` equation was found to be a valid means of modeling the imbibition of water into the tuff matrix from a saturated fracture for the current experiment.

  10. The Tonga-Vanuatu Subduction Complex -- a Self-Optimized 3D Slab-Slab-Mantle Heat Pump

    NASA Astrophysics Data System (ADS)

    McCreary, J. A.

    2008-12-01

    Recently published geophysical and geochemical data and increasingly actualistic free subduction models prompted a fresh look at 2 classics hinting, in combination, that a coupled 3D slab-slab-upper mantle interaction (Scholz and Campos, 1995; full citations at URL below) might power the prodigious surface heat dissipation (Lagabrielle et al., 1997) characterizing one of Earth's most remarkable tectonomagmatic systems, the Tonga-Vanuatu Subduction Complex (TVSC). The 3D TVSC includes (1) the kinematically, magmatically, and bathymetrically distinct North Tonga (NT, 14-26° S) and South Vanuatu (SV, 16-23° S) trenches and slabs, (2) the shared NT-SV backarc, and (3) entrained mobile upper mantle (MUM). That Earth's greatest convergence, rollback, and spreading rates; most disseminated spreading (the North Fiji Basin (NFB) ridge swarm); and greatest concentration of aggregate active ridge length coincide in a 1,500 km TVSC can't be accidental. To the north and south, the respective active NT and SV trenches swing abruptly 90° counterclockwise into continuity with the Vitiaz and Hunter fossil trenches, both active in the Late Miocene but now sinistral strike-slip loci standing over long exposed PA and AU slab edges. These 2 active-fossil trench pairs bracket a hot, shallow and geophysically and geochemically exceptional TVSC interior consisting of 2 rapidly spreading backarcs set back-to-back in free sublithospheric communication: The Lau-Havre NT backarc on the east and the ridge-infested SV backarc (NFB) on the west. The NFB and adjacent North Fiji Plateau make up the unplatelike New Hebrides-Fiji Orogen (Bird, 2003). As in the western Aleutians, the NT-Vitiaz and SV-Hunter subduction-to-strike-slip transitions (SSSTs) stand above toroidal fluxes of hot, dry PA and AU MUM driven along-trench and around the free NT and SV slab edges from subslab to supraslab regions by dynamic pressure gradients powered by slab free-fall and induced viscous couplings. These edge

  11. Spatial Variability of Snowpack Fracture Propagation Propensity at the Slope Scale

    NASA Astrophysics Data System (ADS)

    Hoyer, I.; Hendrikx, J.; Birkeland, K.; Irvine, K. M.

    2013-12-01

    Understanding the spatial variability of fracture propagation is very important for avalanche forecasting, assessing the representativeness of point stability tests, and for working towards a fuller understanding of avalanche processes. There has been a significant amount of prior research examining the spatial variability of snow stability at the slope scale. However, most earlier research focused on measurements associated with fracture initiation. As both fracture initiation and propagation are necessary ingredients for an avalanche, an investigation of the spatial variability of fracture propagation is important to an understanding of spatial snow stability. The small body of previous work examining the spatial variability of fracture propagation has shown inconsistent results, with early studies related to testing the Extended Column Test (ECT) showing very homogenous results, while later studies showed more heterogeneous results. The ECT is used in this study to measure the fracture propagation potential of the snowpack for a range of weak layer types. On each slope we conducted 28 ECTs in a structured grid with a 30m by 30m extent. The slopes sampled were wind sheltered clearings, below treeline, with uniform slope and aspect, across southwest Montana. We tested slopes with a variety of weak layers (surface hoar, depth hoar, new snow, and near surface facets), a variety of slab characteristics (slab harness, slab depth), and varying levels of forecasted stability. Our data shows that on many slopes there is considerable spatial variability in fracture propagation potential. There was often significant variability in fracture propagation even without substantial variation in snowpack structure. Weak layer type was found not to be a controlling factor in the level of spatial variability; for any given weak layer type some slopes had very variable fracture propagation while others had quite homogenous results.

  12. The nature of fracturing and stress distribution in quartzite around the 1128-M (3700-FT) level of the crescent mine, Coeur d'Alene mining district, Idaho

    USGS Publications Warehouse

    Miller, C.H.; Skinner, E.H.

    1980-01-01

    Silver and copper are the principal ores mined from the quartzite at the Crescent mine. Both the main ore-bearing veins and foliation in the quartzite are parallel to the nearly vertical formational contacts. Anisotropy of the quartzite is indicated by both dynamic and static tests. Disking and breakage of core from holes perpendicular to the foliation are about twice what they are in core from holes parallel to foliation. Natural cleavage as well as slabbing and blasting fractures around the tunnels are also controlled by the foliation. Extensive overcore deformation measurements indicate that most of the influence of the tunnels on the "free" stress field is between the rib and a depth of 2.7 m (1 tunnel diameter). The maximum principal stress axis in the free field is nearly horizontal; its magnitude is not much greater than the vertical component and calculations indicate a nearly hydrostatic free stress field. Stress considerably greater than the free field was measured between about 0.3-2.7 m behind the rib and is caused by a transfer of load from above the tunnel opening. Peak stress is in the vertical direction and about 1.7 m behind the rib. An air-injection survey shows that high permeabilities are confined to the highly fractured annulus around a tunnel to a depth of at least 0.6 m. Air-injection measurements could be taken in the interval of about 0.6-1.8 m, but more fractures with high permeabilities may also be present in the annulus from about 0.6-1.2 m. Permeabilities measured deeper than about 1.8 m by the air-injection technique are either very low or nonexistent. The absence of open and noncontinuous fractures beyond about 1.8 m is also indicated by very low porosities and permeabilities of core, very high stresses (which presumably would close fractures), the lack of stains or secondary fillings in disking fractures, a conspicuous lack of ground water in the tunnels, and the fact that fractures encountered in an experimental 0.9-m tunnel did not

  13. Abrupt tectonics and rapid slab detachment with grain damage.

    PubMed

    Bercovici, David; Schubert, Gerald; Ricard, Yanick

    2015-02-01

    A simple model for necking and detachment of subducting slabs is developed to include the coupling between grain-sensitive rheology and grain-size evolution with damage. Necking is triggered by thickened buoyant crust entrained into a subduction zone, in which case grain damage accelerates necking and allows for relatively rapid slab detachment, i.e., within 1 My, depending on the size of the crustal plug. Thick continental crustal plugs can cause rapid necking while smaller plugs characteristic of ocean plateaux cause slower necking; oceanic lithosphere with normal or slightly thickened crust subducts without necking. The model potentially explains how large plateaux or continental crust drawn into subduction zones can cause slab loss and rapid changes in plate motion and/or induce abrupt continental rebound. PMID:25605890

  14. Controlling of optical bistability and multistability in a defect slab

    NASA Astrophysics Data System (ADS)

    Jabbari, Masoud

    2016-02-01

    Optical bistability (OB) and optical multistability (OM) due to wide applications in all-optical switching and transistors is studied in this paper. Here, we study the OB and OM properties of incident light in a defect slab doped by a GaAs quantum well (QW) nanostructure. It is shown that OB and OM features can be manipulated by spin coherence created by circular polarized laser fields in GaAs QWs. The impacts of laser field features, such as intensity, frequency detuning, and relative phase, on OB and OM are simulated. Moreover, the dependence of OB and OM features of a probe light on the thickness of the slab, then, are analyzed. It is found that the thickness of the slab can provide a new way to optimize the intensity threshold of OB and OM. We hope that our proposed model may be useful for developing all-optical devices on nanoscales.

  15. Role of Hydrogen in stagnant slabs and big mantle wedge

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Zhao, D.

    2008-12-01

    Recent seismic tomography data imply that subducting slabs are stagnant at some regions such as beneath Japan and Northeast China [1, 2]. The stagnant slab can have an important effect on the overlying transition zone and upper mantle. A big mantle wedge (BMW) model has been proposed by Zhao [2], in which the stagnant slab in the transition zone could play an essential role in the intra-plate volcanic activities overlying the slab. Water released by the stagnant slab could be important for such igneous activities, such as Mt. Changbai in Northeast China. In cold subducting slabs, several hydrous minerals together with nominally anhydrous minerals accommodate OH and transport water into the transition zone [3]. The effect of dehydration of the stagnant slab has been analyzed by Richard et al. [4]. They argued that warming of the stagnant slab due to heat conduction could play an important role for the slab dehydration, and local oversaturation could be achieved due to decrease of the water solubility in minerals with temperature, and fluid can be formed in the overlying transition zone. We determined the hydrogen diffusion in wadsleyite and ringwoodite under the transition zone conditions in order to clarify the deep processes of the stagnant slabs, and found that diffusion rates of hydrogen are comparable with that of olivine [5]. We also determined the dihedral angle of aqueous fluid between wadsleyite grains and majorite grains under the transition zone conditions. The dihedral angles are very small, around 20-40 degrees, indicating that the oversaturated fluids can move rapidly by the percolation mechanism in the transition zone. The fluids moved to the top of the 410 km discontinuity can generate heavy hydrous melts due to a larger depression of the wet solidus at the base of the upper mantle [6]. Gravitationally stable hydrous melts can be formed at the base of the upper mantle, which is consistent with seismological observations of the low velocity beneath

  16. Abrupt tectonics and rapid slab detachment with grain damage

    PubMed Central

    Bercovici, David; Schubert, Gerald; Ricard, Yanick

    2015-01-01

    A simple model for necking and detachment of subducting slabs is developed to include the coupling between grain-sensitive rheology and grain-size evolution with damage. Necking is triggered by thickened buoyant crust entrained into a subduction zone, in which case grain damage accelerates necking and allows for relatively rapid slab detachment, i.e., within 1 My, depending on the size of the crustal plug. Thick continental crustal plugs can cause rapid necking while smaller plugs characteristic of ocean plateaux cause slower necking; oceanic lithosphere with normal or slightly thickened crust subducts without necking. The model potentially explains how large plateaux or continental crust drawn into subduction zones can cause slab loss and rapid changes in plate motion and/or induce abrupt continental rebound. PMID:25605890

  17. Use of traction screw to aid in fracture reduction in bilateral parasymphysis fracture of mandible.

    PubMed

    Jaisani, Mehul R; Pradhan, Leeza; Dongol, Ashok; Acharaya, Pradeep; Sagtani, Alok

    2016-06-01

    Treatment of bilateral parasymphysis fracture often requires special attention due to airway considerations and difficulty in achieving precise anatomic reduction. The central fracture fragment is often displaced posteriorly and inferiorly due to muscle pull, and this adds to difficulty in reduction and stabilization of the central fracture fragment during plate fixation. With this article, we advocate a technique using stainless steel screw and self-holding screwdriver to manipulate the central fragment and achieve an anatomic reduction. We have used this technique in 12 patients with bilateral parasymphysis fracture without any complications and have found it very effective. PMID:26404945

  18. [Condylar fracture and temporomandibular joint ankylosis].

    PubMed

    Zhang, Yi

    2016-03-01

    This article summarized the advances in treatment and research of temporomandibular joint surgery in the last 5 years which was presented in "The 2nd Condyle Fracture and Temporomandibular Joint Ankylosis Symposium". The content includes 5 parts: non-surgical treatment of children condyle fracture and long-term follow-up, the improvement of operative approach for condyle fracture and key techniques, the importance and the method for the simultanesous reduction of disc in condylar fracture treatment, the development of traumatic temporomandibular joint ankylosis similar to hypertrophic non-union and the improved safety and accuracy by applying digital surgery in joint surgery. PMID:26980648

  19. Surgical treatment of orbital floor fractures.

    PubMed

    Rankow, R M; Mignogna, F V

    1975-01-01

    Ninety patients with orbital floor fractures were treated by the Otolaryngology Service of the Columbia-Presbyterian Medical Center. Of these 90 patients, 58 were classified as coexisting and 32 as isolated. All fractures with clinical symptoms and demonstrable x-ray evidence should be explored. Despite negative findings by routine techniques, laminography may confirm fractures in all clinically suspicious cases. In this series, 100% of the patients explored had definitive fractures. A direct infraorbital approach adequately exposes the floor of the orbit. An effective and cosmetic subtarsal incision was utilized. Implants were employed when the floor could not be anatomically reapproximated or the periorbita was destroyed. PMID:1119982

  20. Radial head fracture - aftercare

    MedlinePlus

    Elbow fracture - radial head - aftercare ... the radius bone, just below your elbow. A fracture is a break in your bone. The most common cause of a radial head fracture is falling with an outstretched arm.

  1. Hand fracture - aftercare

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000552.htm Hand fracture - aftercare To use the sharing features on ... need to be repaired with surgery. Types of hand fractures Your fracture may be in one of ...

  2. Distal femoral fractures: current concepts.

    PubMed

    Gwathmey, F Winston; Jones-Quaidoo, Sean M; Kahler, David; Hurwitz, Shepard; Cui, Quanjun

    2010-10-01

    The diversity of surgical options for the management of distal femoral fractures reflects the challenges inherent in these injuries. These fractures are frequently comminuted and intra-articular, and they often involve osteoporotic bone, which makes it difficult to reduce and hold them while maintaining joint function and overall limb alignment. Surgery has become the standard of care for displaced fractures and for patients who must obtain rapid return of knee function. The goal of surgical management is to promote early knee motion while restoring the articular surface, maintaining limb length and alignment, and preserving the soft-tissue envelope with a durable fixation that allows functional recovery during bone healing. A variety of surgical exposures, techniques, and implants has been developed to meet these objectives, including intramedullary nailing, screw fixation, and periarticular locked plating, possibly augmented with bone fillers. Recognition of the indications and applications of the principles of modern implants and techniques is fundamental in achieving optimal outcomes. PMID:20889949

  3. Waveform modeling the deep slab beneath northernmost Nevada

    NASA Astrophysics Data System (ADS)

    Helmberger, D. V.; Sun, D.

    2011-12-01

    The interactions between subducted slab and transition zone are crucial issues in dynamic modeling. Previous mantle convection studies have shown that various viscosity structures can result in various slab shape, width, and edge sharpness. Recent tomographic images based on USArray data reveals strong multi-scale heterogeneous upper mantle beneath western US. Among those features, a slab-like fast anomaly extends from 300 to 600 km depth below Nevada and western Utah, which was suggested as a segmented chunk of the Farallon slab. But we still missing key information about the details of this structure and whether this structure flatten outs in the transition zone, where various tomographic models display inconsistent images. The study of multipathing and waveform broadening around sharp features have been proved a efficient way to study such features. Here, we use both P and S waveform data from High Lava Plains seismic experiments and USArray to produce a detailed image. If we amplify the Schmandt and Humphreys [2010] 's S-wave tomography model by 1.5, we can produce excellent travel-time fits. But the waveform distortions are not as strong as those observed in data for events coming from the southeast, which suggest a much sharper anomaly. The waveform broadening features are not observed for events arriving from northwestern. By fitting the SH waveform data, we suggest that this slab-like structure dips ~35° to the southeast, extending to a depth near 660 km with a velocity increase of about 5 per cent. To generate corresponding P model, we adapt the SH wave model and scale the model using a suite of R (=dlnVs/dlnVp) values. We find that synthetics from the model with R ≈ 2 can fit the observed data, which confirms the segmented slab interpretation of this high velocity anomaly.

  4. Slab Ice and Snow Flurries in the Martian Polar Night

    NASA Astrophysics Data System (ADS)

    Titus, T.; Kieffer, H.; Mullins, K.; Christensen, P.

    1999-11-01

    In the 1970s, spacecraft observations of the polar regions of Mars revealed polar brightness temperatures that were significantly below the expected kinetic temperatures for CO_2 sublimation. For the past few decades, we have speculated as to the nature of these Martian polar cold spots. Are the cold spots surface or atmospheric effects? Do the cold spots behave as blackbodies, or do they have emissivities less than unity? Two developments allow us to begin to answer these questions: the measurement of the optical constants of CO_2 by Gary Hansen and direct thermal spectroscopy by the Thermal Infrared Spectrometer (TES). TES thermal data has identified numerous cold spots at the Martian north pole. These areas of the polar cap have a strong absorption feature at 25 microns that is indicative of fine-grained CO_2. Brightness temperatures at 18 microns and 15 microns constrain most of these cold spots to the surface. Cold spot formation is strongly dependent on topography, forming preferentially near craters and on polar slopes. While most cold spots are surface effects, the formation of the fine-grained CO_2 is not restricted to formation on the surface. TES data, combined with MOLA cloud data, atmospheric condensates form a few of the observed cold spots. TES observations seem to indicate that another major component of the north polar cap's composition is slab CO2 ice. Slab ice has near unity spectral emissivity and appears to have a low albedo. Two explanations for the low albedo are that the slab ice is intrinsically dark or the slab ice is transparent and TES is seeing through to the underlying substrate. Regions of the cap where [T_18-T_25] < 5 degrees indicates deposits of slab ice. Slab ice is the dominant endmember of the polar cap at latitudes south of the polar night.

  5. Stress Distribution in the Subducted Slab in the Transition Zone

    NASA Astrophysics Data System (ADS)

    Běhounková, M.; Běhounková, M.; Čížková, H.; Matyska, C.; Špičák, A.

    2006-12-01

    We present the results of numerical modelling of subduction process in a 2-D cartesian box. Our numerical code is based on the method of Gerya and Yuen 2003. We concentrate on the deformation and stress distribution within the slab in the transition zone. Our composite rheological model includes diffusion creep, dislocation creep and power-law stress limiter. The effects of phase transitions at the depths 410 km and 660 km are taken into account. The model is applied to the Tonga subduction region, where the currently subducting plate might face the remnants of the high viscosity subducted material in the transition zone. This material might possibly originate either from a previous episode of the subduction (Chen and Brudzinski, 2001) or from the buoyant detached slab broken off from the active subducting slab (Green, 2001). We prescribe the cold and relatively high viscosity piece of old slab lying above the 660 km interface. The stress distribution in the new subducting place is then investigated as the plate approaches these remnants of old slab. Stress directions and amplitudes are compared to the data available from the analyses of the earthquake mechanisms in Tonga region. Chen W.-P., Brudzinski R, 2001. Evidence for a Large-Scale Remnant of Subducted Lithosphere Beneath Fiji, Science 292, 2475--2479. Gerya T.V., Yuen D.A., 2003. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modelling geological flows with strongly variable transport properties, Phys. Earth Planet. Int. 140, 293--318. Green, H.W., 2001. A graveyard for buoyant slabs?, Science 292, 2445-2446.

  6. High-Temperature Mechanical Behavior and Fracture Analysis of a Low-Carbon Steel Related to Cracking

    NASA Astrophysics Data System (ADS)

    Santillana, Begoña; Boom, Rob; Eskin, Dmitry; Mizukami, Hideo; Hanao, Masahito; Kawamoto, Masayuki

    2012-12-01

    Cracking in continuously cast steel slabs has been one of the main problems in casting for decades. In recent years, the use of computational models has led to a significant improvement in caster performance and product quality. However, these models require accurate thermomechanical properties as input data, which are either unreliable or nonexistent for many alloys of commercial interest. A major reason for this lack of reliable data is that high-temperature mechanical properties are difficult to measure. Several methods have been developed to assess the material strength during solidification, especially for light alloys. The tensile strength during solidification of a low carbon aluminum-killed (LCAK; obtained from Tata Steel Mainland Europe cast at the DSP plant in IJmuiden, the Netherlands) has been studied by a technique for high-temperature tensile testing, which was developed at Sumitomo Metal Industries in Japan. The experimental technique enables a sample to melt and solidify without a crucible, making possible the accurate measurement of load over a small solidification temperature range. In the current study, the tensile test results are analyzed and the characteristic zero-ductility and zero-strength temperatures are determined for this particular LCAK steel grade. The fracture surfaces are investigated following tensile testing, which provides an invaluable insight into the fracture mechanism and a better understanding with respect to the behavior of the steel during solidification. The role of minor alloying elements, like sulfur, in hot cracking susceptibility is also discussed.

  7. Middle Miocene near trench volcanism in northern Colombia: A record of slab tearing due to the simultaneous subduction of the Caribbean Plate under South and Central America?

    NASA Astrophysics Data System (ADS)

    Lara, M.; Cardona, A.; Monsalve, G.; Yarce, J.; Montes, C.; Valencia, V.; Weber, M.; De La Parra, F.; Espitia, D.; López-Martínez, M.

    2013-08-01

    Field, geochemical, geochronological, biostratigraphical and sedimentary provenance results of basaltic and associated sediments northern Colombia reveal the existence of Middle Miocene (13-14 Ma) mafic volcanism within a continental margin setting usually considered as amagmatic. This basaltic volcanism is characterized by relatively high Al2O3 and Na2O values (>15%), a High-K calc-alkaline affinity, large ion lithophile enrichment and associated Nb, Ta and Ti negative anomalies which resemble High Al basalts formed by low degree of asthenospheric melting at shallow depths mixed with some additional slab input. The presence of pre-Cretaceous detrital zircons, tourmaline and rutile as well as biostratigraphic results suggest that the host sedimentary rocks were deposited in a platform setting within the South American margin. New results of P-wave residuals from northern Colombia reinforce the view of a Caribbean slab subducting under the South American margin. The absence of a mantle wedge, the upper plate setting, and proximity of this magmatism to the trench, together with geodynamic constraints suggest that the subducted Caribbean oceanic plate was fractured and a slab tear was formed within the oceanic plate. Oceanic plate fracturing is related to the splitting of the subducting Caribbean Plate due to simultaneous subduction under the Panama-Choco block and northwestern South America, and the fast overthrusting of the later onto the Caribbean oceanic plate.

  8. Fractured Surface

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03084 Fractured Surface

    These fractures and graben are part of Gordii Fossae, a large region that has undergone stresses which have cracked the surface.

    Image information: VIS instrument. Latitude 16.6S, Longitude 234.3E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy

    SciTech Connect

    Dilley, Lorie M.; Norman, David; Owens, Lara

    2008-06-30

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.

  10. Slab Driven Mantle Deformation and Plate-Mantle Decoupling

    NASA Astrophysics Data System (ADS)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2015-12-01

    Observations of shear wave splitting derived from local sources in subduction zones suggest viscous flow in the mantle wedge is commonly non-parallel to both the subducting plate velocity vector and the motion of the overriding plate. However, far from the subduction zone trench, observations indicate the fast axis of shear wave splitting tends to align with the velocity vector of the surface plates. Similarly, previous 3D geodynamic models show the slab can drive local decoupling of the mantle and surface plates, in both direction and speed. This suggests that there is some distance from the trench over which there is significant decoupling of the mantle flow from surface plate motion, and that this decoupling zone then decays with continued distance from the trench, resulting in far-field plate-mantle coupling. Here we present results from geodynamic models of subduction coupled with calculations of olivine fabric deformation and synthetic splitting to 1) examine the influence of slab strength, slab dip, and non-Newtonian viscosity on the deformation fabric in the mantle wedge and subslab mantle and 2) quantify the spatial extent and intensity of this slab driven decoupling zone. We compare the deformation fabric in a 2D corner flow solution with varying dip to that of a 2D free subduction model with varying initial dip and slab strength. The results show that using an experimentally derived flow law to define viscosity (both diffusion creep and dislocation creep deformation mechanisms) has a first order effect on the viscosity structure and flow velocity in the upper mantle. The free subduction models using the composite viscosity formulation produce a zone of subduction induced mantle weakening that results in reduced viscous support of the slab and lateral variability in coupling of the mantle to the base of the surface plates. The maximum yield stress, which places an upper bound on the slab strength, can also have a significant impact on the viscosity

  11. Subduction and slab detachment in the Mediterranean-Carpathian region.

    PubMed

    Wortel, M J; Spakman, W

    2000-12-01

    Seismic tomography models of the three-dimensional upper mantle velocity structure of the Mediterranean-Carpathian region provide a better understanding of the lithospheric processes governing its geodynamical evolution. Slab detachment, in particular lateral migration of this process along the plate boundary, is a key element in the lithospheric dynamics of the region during the last 20 to 30 million years. It strongly affects arc and trench migration, and causes along-strike variations in vertical motions, stress fields, and magmatism. In a terminal-stage subduction zone, involving collision and suturing, slab detachment is the natural last stage in the gravitational settling of subducted lithosphere. PMID:11110653

  12. Seismic Behaviour of Masonry Vault-Slab Structures

    SciTech Connect

    Chesi, Claudio; Butti, Ferdinando; Ferrari, Marco

    2008-07-08

    Spandrel walls typically play a structural role in masonry buildings, transferring load from a slab to the supporting vault. Some indications are given in the literature on the behaviour of spandrels under the effect of vertical loads, but little attention is given to the effect coming from lateral forces acting on the building. An opportunity to investigate this problem has come from the need of analyzing a monumental building which was damaged by the Nov. 24, 2004 Val Sabbia earthquake in the north of Italy. The finite element model set up for the analysis of the vault-spandrel-slab system is presented and the structural role resulting for the spandrels is discussed.

  13. Investigating the Farallon Slab with Probabilistic Traveltime Tomography

    NASA Astrophysics Data System (ADS)

    Burdick, S.; Lekic, V.

    2015-12-01

    Subduction of the Farallon Plate beneath North America played a key role in its tectonic development. Seismic constraints on the subducted remnants of the Farallon slab provide evidence needed to better understand the polarity and timing of subduction, the structure of the plate, and its relation to tectonic events like the uplift of the Rocky Mountains. Over the course of its deployment, the USArray Transportable Array (TA) has offered ideal data coverage for investigating the Farallon and related slabs in the upper mantle using seismic tomography and converted wave imaging. With its arrival in the east, data from the TA provides the crossing paths necessary to image the upper reaches of the oldest parts of the plate at mid-mantle depths. We perform a global tomographic inversion using the latest P-wave traveltime picks from TA combined with global catalogue data. While the new velocity model resolves upper mantle slab structure at unprecedented detail in the east, a quantitative grasp of model uncertainty is needed to reliably relate velocity variations to the thermal and mechanical properties of the slabs. In order to quantify the uncertainty of our tomographic model, we employ Transdimensional Hierarchical Bayesian (THB) inversion. THB tomography uses Markov chain Monte Carlo to create an ensemble of velocity models that can be analyzed to statistically infer the best-fit velocities, their uncertainties, and tradeoffs. We present and discuss various representations of uncertainty quantified by THB tomography—error bars, model covariance, multimodal distributions of velocity values—and demonstrate its importance for furthering our understanding of the slab fragments beneath North America. We illustrate how we are able to distinguish between spurious slab fragments from those required by the data. By examining bimodal velocity distributions, we put error bars on the spatial extent of the slabs that can then be analyzed using thermal diffusion modeling. By

  14. Expansion of a cold non-neutral plasma slab

    SciTech Connect

    Karimov, A. R.; Yu, M. Y.; Stenflo, L.

    2014-12-15

    Expansion of the ion and electron fronts of a cold non-neutral plasma slab with a quasi-neutral core bounded by layers containing only ions is investigated analytically and exact solutions are obtained. It is found that on average, the plasma expansion time scales linearly with the initial inverse ion plasma frequency as well as the degree of charge imbalance, and no expansion occurs if the cold plasma slab is stationary and overall neutral. However, in both cases, there can exist prominent oscillations on the electron front.

  15. Novel power switch using oblique incidence to a nonlinear slab

    NASA Astrophysics Data System (ADS)

    Liu, Hwei-Yuan; Wang, Way-Seen

    1995-05-01

    A simple 1 x n optical power switch employing oblique incidence to a nonlinear slab was recommended. When the input power was within the range of interest, the number n can be augmented by increasing the slab thickness, although the optimum input powers must be recomputed. This rendered the proposed switch extremely flexible and was potentially applicable to all-optical signal processing. In addition, it was determined that the nonlinear dispersion relation was usually applied for the analysis of the wave-guide modes in a specific nonlinear wave guide. However, it was not very precise in the analysis of soliton switching unless the effective index was substituted by an average one.

  16. Seismic Behaviour of Masonry Vault-Slab Structures

    NASA Astrophysics Data System (ADS)

    Chesi, Claudio; Butti, Ferdinando; Ferrari, Marco

    2008-07-01

    Spandrel walls typically play a structural role in masonry buildings, transferring load from a slab to the supporting vault. Some indications are given in the literature on the behaviour of spandrels under the effect of vertical loads, but little attention is given to the effect coming from lateral forces acting on the building. An opportunity to investigate this problem has come from the need of analyzing a monumental building which was damaged by the Nov. 24, 2004 Val Sabbia earthquake in the north of Italy. The finite element model set up for the analysis of the vault-spandrel-slab system is presented and the structural role resulting for the spandrels is discussed.

  17. Optical modes in slab waveguides with magnetoelectric effect

    NASA Astrophysics Data System (ADS)

    Talebi, Nahid

    2016-05-01

    Optical modes in anisotropic slab waveguides with topological and chiral magnetoelectric effects are investigated analytically, by deriving the closed-form characteristic equations of the modes and hence computing the dispersion-diagrams. In order to compute the characteristic equations, a vector-potential approach is introduced by incorporating a generalized Lorentz gauge, and the Helmholtz equations are derived correspondingly. It will be shown that the formation of the complex modes and hybridization of the optical modes in such slab waveguides is inevitable. Moreover, when the tensorial form of the permittivity in the waveguide allows for a hyperbolic dispersion, complex transition from the photonic kinds of modes to the plasmonic modes is expected.

  18. Diffractive properties of imaginary-part photonic crystal slab

    PubMed Central

    2012-01-01

    The diffraction spectra of imaginary-part photonic crystal (IPPC) slabs are analyzed using the scattering-matrix method. By investigating the thickness dependence of the diffraction, we find a remarkable red shift of central wavelength of the diffraction spectrum, which obviously distinguishes from the phenomenon of spectral hole. We observe that diffraction efficiency can be enhanced more than 20-fold by optimizing the geometry parameters. These imply that the diffraction spectra of the IPPC slab can be controlled at will and used to guide the design to achieve useful nanoscale devices. PMID:22720871

  19. Links between fluid circulation, temperature, and metamorphism in subducting slabs

    USGS Publications Warehouse

    Spinelli, G.A.; Wang, K.

    2009-01-01

    The location and timing of metamorphic reactions in subducting lithosph??re are influenced by thermal effects of fluid circulation in the ocean crust aquifer. Fluid circulation in subducting crust extracts heat from the Nankai subduction zone, causing the crust to pass through cooler metamorphic faci??s than if no fluid circulation occurs. This fluid circulation shifts the basalt-to-eclogite transition and the associated slab dehydration 14 km deeper (35 km farther landward) than would be predicted with no fluid flow. For most subduction zones, hydrothermal cooling of the subducting slab will delay eclogitization relative to estimates made without considering fluid circulation. Copyright 2009 by the American Geophysical Union.

  20. Seismic and micromechanical studies of rock fracture

    NASA Astrophysics Data System (ADS)

    Young, R. Paul; Hazzard, James F.; Pettitt, Will S.

    2000-06-01

    “Earthquakes” occur as the result of stress redistribution on major fractures in the earth's crust and are also observed as scaled phenomena along grain boundaries and microcracks. Earthquake seismology has significantly contributed to our knowledge of fault processes, but our fundamental understanding of how micro-fractures progressively weaken rocks and how this contributes to macro-deformation processes is far from understood. Recent advances in particulate mechanics now mean fracture processes can be modelled dynamically to study the micromechanics of fracturing in rock. In addition, advances in recording and analysing very high frequency acoustic emissions (AE) allow for detailed examination of micro-cracking. The paper describes how particle models and AE monitoring techniques can be used in conjunction to test specific hypotheses about natural and induced rock fracture processes at the grain scale. Intermediate scale processes (between laboratory and field studies) are also studied by examining rock fracture in an underground research laboratory.