Reference-frame-independent quantum key distribution
Laing, Anthony; Rarity, John G.; O'Brien, Jeremy L.; Scarani, Valerio
2010-07-15
We describe a quantum key distribution protocol based on pairs of entangled qubits that generates a secure key between two partners in an environment of unknown and slowly varying reference frame. A direction of particle delivery is required, but the phases between the computational basis states need not be known or fixed. The protocol can simplify the operation of existing setups and has immediate applications to emerging scenarios such as earth-to-satellite links and the use of integrated photonic waveguides. We compute the asymptotic secret key rate for a two-qubit source, which coincides with the rate of the six-state protocol for white noise. We give the generalization of the protocol to higher-dimensional systems and detail a scheme for physical implementation in the three-dimensional qutrit case.
Reference-frame-independent quantum key distribution with source flaws
NASA Astrophysics Data System (ADS)
Wang, Can; Sun, Shi-Hai; Ma, Xiang-Chun; Tang, Guang-Zhao; Liang, Lin-Mei
2015-10-01
Compared with the traditional protocols of quantum key distribution (QKD), the reference-frame-independent (RFI)-QKD protocol has been generally proved to be very useful and practical, since its experimental implementation can be simplified without the alignment of a reference frame. In most RFI-QKD systems, the encoding states are always taken to be perfect, which, however, is not practical in realizations. In this paper, we consider the security of RFI QKD with source flaws based on the loss-tolerant method proposed by Tamaki et al. [Phys. Rev. A 90, 052314 (2014), 10.1103/PhysRevA.90.052314]. As the six-state protocol can be realized with four states, we show that the RFI-QKD protocol can also be performed with only four encoding states instead of six encoding states in its standard version. Furthermore, the numerical simulation results show that the source flaws in the key-generation basis (Z basis) will reduce the key rate but are loss tolerant, while the ones in X and Y bases almost have no effect and the key rate remains almost the same even when they are very large. Hence, our method and results will have important significance in practical experiments, especially in earth-to-satellite or chip-to-chip quantum communications.
Quantum image coding with a reference-frame-independent scheme
NASA Astrophysics Data System (ADS)
Chapeau-Blondeau, François; Belin, Etienne
2016-07-01
For binary images, or bit planes of non-binary images, we investigate the possibility of a quantum coding decodable by a receiver in the absence of reference frames shared with the emitter. Direct image coding with one qubit per pixel and non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two controlled entangled states. With just one common axis shared between the emitter and receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective measurements operating separately on each qubit of the pair. With strictly no alignment information between the emitter and receiver, exact decoding can be obtained by means of a two-outcome projective measurement operating jointly on the qubit pair. In addition, the frame-invariant coding is shown much more resistant to quantum bit-flip noise compared to the direct non-invariant coding. For a cost per pixel of two (entangled) qubits instead of one, complete frame-invariant image coding and enhanced noise resistance are thus obtained.
Quantum image coding with a reference-frame-independent scheme
NASA Astrophysics Data System (ADS)
Chapeau-Blondeau, François; Belin, Etienne
2016-04-01
For binary images, or bit planes of non-binary images, we investigate the possibility of a quantum coding decodable by a receiver in the absence of reference frames shared with the emitter. Direct image coding with one qubit per pixel and non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two controlled entangled states. With just one common axis shared between the emitter and receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective measurements operating separately on each qubit of the pair. With strictly no alignment information between the emitter and receiver, exact decoding can be obtained by means of a two-outcome projective measurement operating jointly on the qubit pair. In addition, the frame-invariant coding is shown much more resistant to quantum bit-flip noise compared to the direct non-invariant coding. For a cost per pixel of two (entangled) qubits instead of one, complete frame-invariant image coding and enhanced noise resistance are thus obtained.
NASA Astrophysics Data System (ADS)
Brown, Matthew J.
2014-02-01
The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.
Liang, Wen-Ye; Wang, Shuang; Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Yao, Yao; Huang, Jing-Zheng; Guo, Guang-Can; Han, Zheng-Fu
2014-01-01
We have demonstrated a proof-of-principle experiment of reference-frame-independent phase coding quantum key distribution (RFI-QKD) over an 80-km optical fiber. After considering the finite-key bound, we still achieve a distance of 50 km. In this scenario, the phases of the basis states are related by a slowly time-varying transformation. Furthermore, we developed and realized a new decoy state method for RFI-QKD systems with weak coherent sources to counteract the photon-number-splitting attack. With the help of a reference-frame-independent protocol and a Michelson interferometer with Faraday rotator mirrors, our system is rendered immune to the slow phase changes of the interferometer and the polarization disturbances of the channel, making the procedure very robust. PMID:24402550
Demonstration of free-space reference frame independent quantum key distribution
NASA Astrophysics Data System (ADS)
Wabnig, J.; Bitauld, D.; Li, H. W.; Laing, A.; O'Brien, J. L.; Niskanen, A. O.
2013-07-01
Quantum key distribution (QKD) is moving from research laboratories towards applications. As computing becomes more mobile, cashless as well as cardless payment solutions are introduced. A possible route to increase the security of wireless communications is to incorporate QKD in a mobile device. Handheld devices present a particular challenge as the orientation and the phase of a qubit will depend on device motion. This problem is addressed by the reference frame independent (RFI) QKD scheme. The scheme tolerates an unknown phase between logical states that vary slowly compared to the rate of particle repetition. Here we experimentally demonstrate the feasibility of RFI QKD over a free-space link in a prepare and measure scheme using polarization encoding. We extend the security analysis of the RFI QKD scheme to be able to deal with uncalibrated devices and a finite number of measurements. Together these advances are an important step towards mass production of handheld QKD devices.
Frame independent cosmological perturbations
Prokopec, Tomislav; Weenink, Jan E-mail: j.g.weenink@uu.nl
2013-09-01
We compute the third order gauge invariant action for scalar-graviton interactions in the Jordan frame. We demonstrate that the gauge invariant action for scalar and tensor perturbations on one physical hypersurface only differs from that on another physical hypersurface via terms proportional to the equation of motion and boundary terms, such that the evolution of non-Gaussianity may be called unique. Moreover, we demonstrate that the gauge invariant curvature perturbation and graviton on uniform field hypersurfaces in the Jordan frame are equal to their counterparts in the Einstein frame. These frame independent perturbations are therefore particularly useful in relating results in different frames at the perturbative level. On the other hand, the field perturbation and graviton on uniform curvature hypersurfaces in the Jordan and Einstein frame are non-linearly related, as are their corresponding actions and n-point functions.
Zhang, P; Aungskunsiri, K; Martín-López, E; Wabnig, J; Lobino, M; Nock, R W; Munns, J; Bonneau, D; Jiang, P; Li, H W; Laing, A; Rarity, J G; Niskanen, A O; Thompson, M G; O'Brien, J L
2014-04-01
We demonstrate a client-server quantum key distribution (QKD) scheme. Large resources such as laser and detectors are situated at the server side, which is accessible via telecom fiber to a client requiring only an on-chip polarization rotator, which may be integrated into a handheld device. The detrimental effects of unstable fiber birefringence are overcome by employing the reference-frame-independent QKD protocol for polarization qubits in polarization maintaining fiber, where standard QKD protocols fail, as we show for comparison. This opens the way for quantum enhanced secure communications between companies and members of the general public equipped with handheld mobile devices, via telecom-fiber tethering. PMID:24745397
Quantum decoherence in noninertial frames
NASA Astrophysics Data System (ADS)
Wang, Jieci; Jing, Jiliang
2010-09-01
Quantum decoherence, which appears when a system interacts with its environment in an irreversible way, plays a fundamental role in the description of quantum-to-classical transitions and has been successfully applied in some important experiments. Here, we study the decoherence in noninertial frames. It is shown that the decoherence and loss of the entanglement generated by the Unruh effect will influence each other remarkably. It is interesting to note that, in the case of the total system under decoherence, the sudden death of entanglement may appear for any acceleration. However, in the case of only Rob’s qubit undergoing decoherence, sudden death may only occur when the acceleration parameter is greater than a “critical point.”
Quantum decoherence in noninertial frames
Wang Jieci; Jing Jiliang
2010-09-15
Quantum decoherence, which appears when a system interacts with its environment in an irreversible way, plays a fundamental role in the description of quantum-to-classical transitions and has been successfully applied in some important experiments. Here, we study the decoherence in noninertial frames. It is shown that the decoherence and loss of the entanglement generated by the Unruh effect will influence each other remarkably. It is interesting to note that, in the case of the total system under decoherence, the sudden death of entanglement may appear for any acceleration. However, in the case of only Rob's qubit undergoing decoherence, sudden death may only occur when the acceleration parameter is greater than a 'critical point'.
Independent Study Unit on Accelerated Reference Frames
ERIC Educational Resources Information Center
Poultney, S. K.
1973-01-01
Presents a list of topics, research areas, references, and laboratory equipment which is prepared to facilitate general-science students' understanding of physics aspects in accelerated reference frames after their study of circular motion and Galilean relativity in mechanics. (CC)
Time reversibility in the quantum frame
Masot-Conde, Fátima
2014-12-04
Classic Mechanics and Electromagnetism, conventionally taken as time-reversible, share the same concept of motion (either of mass or charge) as the basis of the time reversibility in their own fields. This paper focuses on the relationship between mobile geometry and motion reversibility. The goal is to extrapolate the conclusions to the quantum frame, where matter and radiation behave just as elementary mobiles. The possibility that the asymmetry of Time (Time’s arrow) is an effect of a fundamental quantum asymmetry of elementary particles, turns out to be a consequence of the discussion.
Relativistic quantum games in noninertial frames
NASA Astrophysics Data System (ADS)
Khan, Salman; Khalid Khan, M.
2011-09-01
We study the influence of the Unruh effect on quantum non-zero sum games. In particular, we investigate the quantum Prisoners’ Dilemma both for entangled and unentangled initial states and show that the acceleration of the noninertial frames disturbs the symmetry of the game. It is shown that for the maximally entangled initial state, the classical strategy \\hat{C} (cooperation) becomes the dominant strategy. Our investigation shows that any quantum strategy does no better for any player against the classical strategies. The miracle move of Eisert et al (1999 Phys. Rev. Lett.83 3077) is no more a superior move. We show that the dilemma-like situation is resolved in favor of one player or the other.
Reciprocal relativity of noninertial frames: quantum mechanics
NASA Astrophysics Data System (ADS)
Low, Stephen G.
2007-04-01
Noninertial transformations on time-position-momentum-energy space {t, q, p, e} with invariant Born-Green metric ds^{2}=-d t^{2}+\\frac{1}{c^{2}}\\,d q^{2}+\\frac{1}{b^{2}} \\big(d p^{2}-\\frac{1}{c^{2}}\\,d e^{2}\\big) and the symplectic metric -de ∧ dt + dp ∧ dq are studied. This {\\cal U}1,3) group of transformations contains the Lorentz group as the inertial special case and, in the limit of small forces and velocities, reduces to the expected Hamilton transformations leaving invariant the symplectic metric and the nonrelativistic line element ds2 = -dt2. The {\\cal U}( 1,3) transformations bound relative velocities by c and relative forces by b. Spacetime is no longer an invariant subspace but is relative to noninertial observer frames. In the limit of b → ∞, spacetime is invariant. Born was lead to the metric by a concept of reciprocity between position and momentum degrees of freedom and for this reason we call this reciprocal relativity. For large b, such effects will almost certainly only manifest in a quantum regime. Wigner showed that special relativistic quantum mechanics follows from the projective representations of the inhomogeneous Lorentz group. Projective representations of a Lie group are equivalent to the unitary representations of its central extension. The same method of projective representations for the inhomogeneous {\\cal U}( 1,3) group is used to define the quantum theory in the noninertial case. The central extension of the inhomogeneous {\\cal U}( 1,3) group is the cover of the quaplectic group {\\cal Q}( 1,3) ={\\cal U}( 1,3) \\otimes _{s}{\\cal H}(4) . {\\cal H}( 4) is the Weyl-Heisenberg group. The {\\cal H}( 4) group, and the associated Heisenberg commutation relations central to quantum mechanics, results directly from requiring projective representations. A set of second-order wave equations result from the representations of the Casimir operators.
Noisy relativistic quantum games in noninertial frames
NASA Astrophysics Data System (ADS)
Khan, Salman; Khan, M. Khalid
2013-02-01
The influence of noise and of Unruh effect on quantum Prisoners' dilemma is investigated both for entangled and unentangled initial states. The noise is incorporated through amplitude damping channel. For unentangled initial state, the decoherence compensates for the adverse effect of acceleration of the frame and the effect of acceleration becomes irrelevant provided the game is fully decohered. It is shown that the inertial player always out scores the noninertial player by choosing defection. For maximally entangled initially state, we show that for fully decohered case every strategy profile results in either of the two possible equilibrium outcomes. Two of the four possible strategy profiles become Pareto optimal and Nash equilibrium and no dilemma is leftover. It is shown that other equilibrium points emerge for different region of values of decoherence parameter that are either Pareto optimal or Pareto inefficient in the quantum strategic spaces. It is shown that the Eisert et al. (Phys Rev Lett 83:3077, 1999) miracle move is a special move that leads always to distinguishable results compare to other moves. We show that the dilemma like situation is resolved in favor of one player or the other.
Harsij, Zeynab Mirza, Behrouz
2014-12-15
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.
Measurement-device-independent quantum key distribution.
Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing
2012-03-30
How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors. PMID:22540686
Mesoscopic mechanical resonators as quantum noninertial reference frames
NASA Astrophysics Data System (ADS)
Katz, B. N.; Blencowe, M. P.; Schwab, K. C.
2015-10-01
An atom attached to a micrometer-scale wire that is vibrating at a frequency ˜100 MHz and with displacement amplitude ˜1 nm experiences an acceleration magnitude ˜109ms -2 , approaching the surface gravity of a neutron star. As one application of such extreme noninertial forces in a mesoscopic setting, we consider a model two-path atom interferometer with one path consisting of the 100 MHz vibrating wire atom guide. The vibrating wire guide serves as a noninertial reference frame and induces an in principle measurable phase shift in the wave function of an atom traversing the wire frame. We furthermore consider the effect on the two-path atom wave interference when the vibrating wire is modeled as a quantum object, hence functioning as a quantum noninertial reference frame. We outline a possible realization of the vibrating wire, atom interferometer using a superfluid helium quantum interference setup.
Quantum Fisher information in noninertial frames
NASA Astrophysics Data System (ADS)
Yao, Yao; Xiao, Xing; Ge, Li; Wang, Xiao-guang; Sun, Chang-pu
2014-04-01
We investigate the performance of quantum Fisher information (QFI) under the Unruh-Hawking effect, where one of the observers (e.g., Rob) is uniformly accelerated with respect to other partners. In the context of relativistic quantum information theory, we demonstrate that quantum Fisher information, as an important measure of the information content of quantum states, has a rich and subtle physical structure compared with entanglement or Bell nonlocality. In this work, we mainly focus on the parametrized (and arbitrary) pure two-qubit states, where the weight parameter θ and phase parameter ϕ are naturally introduced. Intriguingly, we prove that QFI with respect to θ (Fθ) remains unchanged for both scalar and Dirac fields. Meanwhile, we observe that QFI with respect to ϕ (Fϕ) decreases with the increase of acceleration r but remains finite in the limit of infinite acceleration. More importantly, our results show that the symmetry of Fϕ (with respect to θ =π/4) has been broken by the influence of the Unruh effect for both cases.
Device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Hänggi, Esther
2010-12-01
In this thesis, we study two approaches to achieve device-independent quantum key distribution: in the first approach, the adversary can distribute any system to the honest parties that cannot be used to communicate between the three of them, i.e., it must be non-signalling. In the second approach, we limit the adversary to strategies which can be implemented using quantum physics. For both approaches, we show how device-independent quantum key distribution can be achieved when imposing an additional condition. In the non-signalling case this additional requirement is that communication is impossible between all pairwise subsystems of the honest parties, while, in the quantum case, we demand that measurements on different subsystems must commute. We give a generic security proof for device-independent quantum key distribution in these cases and apply it to an existing quantum key distribution protocol, thus proving its security even in this setting. We also show that, without any additional such restriction there always exists a successful joint attack by a non-signalling adversary.
Kinematics and dynamics in noninertial quantum frames of reference
NASA Astrophysics Data System (ADS)
Angelo, R. M.; Ribeiro, A. D.
2012-11-01
From the principle that there is no absolute description of a physical state, we advance the approach according to which one should be able to describe the physics from the perspective of a quantum particle. The kinematics seen from this frame of reference is shown to be rather unconventional. In particular, we discuss several subtleties emerging in the relative formulation of central notions, such as vector states, the classical limit, entanglement, uncertainty relations and the complementary principle. A Hamiltonian formulation is also derived which correctly encapsulates effects of fictitious forces associated with the accelerated motion of the frame. Our approach shows, therefore, how to formulate nonrelativistic quantum mechanics within noninertial reference frames which can be consistently described by the theory, with no appeal to classical elements.
Fully device-independent quantum key distribution.
Vazirani, Umesh; Vidick, Thomas
2014-10-01
Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol. PMID:25325625
Quantum key distribution based on quantum dimension and independent devices
NASA Astrophysics Data System (ADS)
Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Wang, Shuang; Guo, Guang-Can; Han, Zheng-Fu
2014-03-01
In this paper, we propose a quantum key distribution (QKD) protocol based on only a two-dimensional Hilbert space encoding a quantum system and independent devices between the equipment for state preparation and measurement. Our protocol is inspired by the fully device-independent quantum key distribution (FDI-QKD) protocol and the measurement-device-independent quantum key distribution (MDI-QKD) protocol. Our protocol only requires the state to be prepared in the two-dimensional Hilbert space, which weakens the state preparation assumption in the original MDI-QKD protocol. More interestingly, our protocol can overcome the detection loophole problem in the FDI-QKD protocol, which greatly limits the application of FDI-QKD. Hence our protocol can be implemented with practical optical components.
Asynchronous reference frame agreement in a quantum network
NASA Astrophysics Data System (ADS)
Islam, Tanvirul; Wehner, Stephanie
2016-03-01
An efficient implementation of many multiparty protocols for quantum networks requires that all the nodes in the network share a common reference frame. Establishing such a reference frame from scratch is especially challenging in an asynchronous network where network links might have arbitrary delays and the nodes do not share synchronised clocks. In this work, we study the problem of establishing a common reference frame in an asynchronous network of n nodes of which at most t are affected by arbitrary unknown error, and the identities of the faulty nodes are not known. We present a protocol that allows all the correctly functioning nodes to agree on a common reference frame as long as the network graph is complete and not more than t\\lt n/4 nodes are faulty. As the protocol is asynchronous, it can be used with some assumptions to synchronise clocks over a network. Also, the protocol has the appealing property that it allows any existing two-node asynchronous protocol for reference frame agreement to be lifted to a robust protocol for an asynchronous quantum network.
Galilei covariance and Einstein's equivalence principle in quantum reference frames
NASA Astrophysics Data System (ADS)
Pereira, S. T.; Angelo, R. M.
2015-02-01
The covariance of the Schrödinger equation under Galilei boosts and the compatibility of nonrelativistic quantum mechanics with Einstein's equivalence principle have been constrained for so long to the existence of a superselection rule which would prevent a quantum particle from being found in superposition states of different masses. In an effort to avoid this expedient, and thus allow nonrelativistic quantum mechanics to account for unstable particles, recent works have suggested that the usual Galilean transformations are inconsistent with the nonrelativistic limit implied by the Lorentz transformation. Here we approach the issue in a fundamentally different way. Using a formalism of unitary transformations and employing quantum reference frames rather than immaterial coordinate systems, we show that the Schrödinger equation, although form variant, is fully compatible with the aforementioned principles of relativity.
Conformal-frame (in)dependence of cosmological observations in scalar-tensor theory
Chiba, Takeshi; Yamaguchi, Masahide E-mail: gucci@phys.titech.ac.jp
2013-10-01
We provide the correspondence between the variables in the Jordan frame and those in the Einstein frame in scalar-tensor gravity and consider the frame-(in)dependence of the cosmological observables. In particular, we show that the cosmological observables/relations (redshift, luminosity distance, temperature anisotropies) are frame-independent. We also study the frame-dependence of curvature perturbations and find that the curvature perturbations are conformal invariant if the perturbation is adiabatic and the entropy perturbation between matter and the Brans-Dicke scalar is vanishing. The relation among various definitions of curvature perturbations in the both frames is also discussed, and the condition for the equivalence is clarified.
Source-Independent Quantum Random Number Generation
NASA Astrophysics Data System (ADS)
Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng
2016-01-01
Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .
Measurement-device-independent quantum cryptography
Xu, Feihu; Curty, Marcos; Qi, Bing; Lo, Hoi-Kwong
2014-12-18
In theory, quantum key distribution (QKD) provides information-theoretic security based on the laws of physics. Owing to the imperfections of real-life implementations, however, there is a big gap between the theory and practice of QKD, which has been recently exploited by several quantum hacking activities. To fill this gap, a novel approach, called measurement-device-independent QKD (mdiQKD), has been proposed. In addition, it can remove all side-channels from the measurement unit, arguably the most vulnerable part in QKD systems, thus offering a clear avenue toward secure QKD realisations. In this study, we review the latest developments in the framework of mdiQKD,more » together with its assumptions, strengths, and weaknesses.« less
Measurement-device-independent quantum cryptography
Xu, Feihu; Curty, Marcos; Qi, Bing; Lo, Hoi-Kwong
2014-12-18
In theory, quantum key distribution (QKD) provides information-theoretic security based on the laws of physics. Owing to the imperfections of real-life implementations, however, there is a big gap between the theory and practice of QKD, which has been recently exploited by several quantum hacking activities. To fill this gap, a novel approach, called measurement-device-independent QKD (mdiQKD), has been proposed. In addition, it can remove all side-channels from the measurement unit, arguably the most vulnerable part in QKD systems, thus offering a clear avenue toward secure QKD realisations. In this study, we review the latest developments in the framework of mdiQKD, together with its assumptions, strengths, and weaknesses.
Detector-device-independent quantum key distribution
Lim, Charles Ci Wen; Korzh, Boris; Martin, Anthony; Bussières, Félix; Thew, Rob; Zbinden, Hugo
2014-12-01
Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all measurement side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity is challenging for practical systems. For instance, it requires interference between two widely separated independent single-photon sources, and the secret key rates are dependent on detecting two photons—one from each source. Here, we demonstrate a proof-of-principle experiment of a QKD scheme that removes the need for a two-photon system and instead uses the idea of a two-qubit single-photon to significantly simplify the implementation and improve the efficiency of mdiQKD in several aspects.
Measurement-device-independent quantum coin tossing
NASA Astrophysics Data System (ADS)
Zhao, Liangyuan; Yin, Zhenqiang; Wang, Shuang; Chen, Wei; Chen, Hua; Guo, Guangcan; Han, Zhengfu
2015-12-01
Quantum coin tossing (QCT) is an important primitive of quantum cryptography and has received continuous interest. However, in practical QCT, Bob's detectors can be subjected to detector-side channel attacks launched by dishonest Alice, which will possibly make the protocol completely insecure. Here, we report a simple strategy of a detector-blinding attack based on a recent experiment. To remove all the detector side channels, we present a solution of measurement-device-independent QCT (MDI-QCT). This method is similar to the idea of MDI quantum key distribution (QKD). MDI-QCT is loss tolerant with single-photon sources and has the same bias as the original loss-tolerant QCT under a coherent attack. Moreover, it provides the potential advantage of doubling the secure distance for some special cases. Finally, MDI-QCT can also be modified to fit the weak coherent-state sources. Thus, based on the rapid development of practical MDI-QKD, our proposal can be implemented easily.
Implementations for device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Máttar, Alejandro; Acín, Antonio
2016-04-01
Device-independent quantum key distribution (DIQKD) generates a secret key among two parties in a provably secure way without making assumptions about the internal working of the devices used in the protocol. The main challenge for a DIQKD physical implementation is that the data observed among the two parties must violate a Bell inequality without fair-sampling, since otherwise the observed correlations can be faked with classical resources and security can no longer be guaranteed. In spite of the advances recently made to achieve higher detection efficiencies in Bell experiments, DIQKD remains experimentally difficult at long distances due to the exponential increase of loss in the channel separating the two parties. Here we describe and analyze plausible solutions to overcome the crucial problem of channel loss in the frame of DIQKD physical implementations.
Completely device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Aguilar, Edgar A.; Ramanathan, Ravishankar; Kofler, Johannes; Pawłowski, Marcin
2016-08-01
Quantum key distribution (QKD) is a provably secure way for two distant parties to establish a common secret key, which then can be used in a classical cryptographic scheme. Using quantum entanglement, one can reduce the necessary assumptions that the parties have to make about their devices, giving rise to device-independent QKD (DIQKD). However, in all existing protocols to date the parties need to have an initial (at least partially) random seed as a resource. In this work, we show that this requirement can be dropped. Using recent advances in the fields of randomness amplification and randomness expansion, we demonstrate that it is sufficient for the message the parties want to communicate to be (partially) unknown to the adversaries—an assumption without which any type of cryptography would be pointless to begin with. One party can use her secret message to locally generate a secret sequence of bits, which can then be openly used by herself and the other party in a DIQKD protocol. Hence our work reduces the requirements needed to perform secure DIQKD and establish safe communication.
Reference-free-independent quantum key distribution immune to detector side channel attacks
NASA Astrophysics Data System (ADS)
Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Li, Hong-Wei; Guo, Guang-Can; Han, Zheng-Fu
2014-05-01
Usually, a shared reference frame is indispensable for practical quantum key distribution (QKD) systems. As a result, most QKD systems need active alignment of reference frame due to the unknown and slowly variances of reference frame introduced by environment. Quite interestingly, reference-free-independent (RFI) QKD can generate secret-key bits without alignment of reference frame. However, RFI QKD may be still vulnerable to detector side channel attacks. Here, we propose a new RFI QKD protocol, in which all detector side channels are removed. Furthermore, our protocol can still tolerate unknown and slow variance of reference frame without active alignment. And a numerical simulation shows that long security distance is probable in this protocol.
NASA Astrophysics Data System (ADS)
Wang, Zhao; Zhang, Chao; Huang, Yun-Feng; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can
2016-03-01
Multipartite quantum nonlocality is an important diagnostic tool and resource for both researches in fundamental quantum mechanics and applications in quantum information protocols. Shared reference frames among all parties are usually required for experimentally observing quantum nonlocality, which is not possible in many circumstances. Previous results have shown violations of bipartite Bell inequalities with approaching unit probability, without shared reference frames. Here we experimentally demonstrate genuine multipartite quantum nonlocality without shared reference frames, using the Svetlichny inequality. A significant violation probability of 0.58 is observed with a high-fidelity three-photon Greenberger-Horne-Zeilinger state. Furthermore, when there is one shared axis among all the parties, which is the usual case in fiber-optic or earth-satellite links, the experimental results demonstrate the genuine three-partite nonlocality with certainty. Our experiment will be helpful for applications in multipartite quantum communication protocols.
Performance of device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Cao, Zhu; Zhao, Qi; Ma, Xiongfeng
2016-07-01
Quantum key distribution provides information-theoretically-secure communication. In practice, device imperfections may jeopardise the system security. Device-independent quantum key distribution solves this problem by providing secure keys even when the quantum devices are untrusted and uncharacterized. Following a recent security proof of the device-independent quantum key distribution, we improve the key rate by tightening the parameter choice in the security proof. In practice where the system is lossy, we further improve the key rate by taking into account the loss position information. From our numerical simulation, our method can outperform existing results. Meanwhile, we outline clear experimental requirements for implementing device-independent quantum key distribution. The maximal tolerable error rate is 1.6%, the minimal required transmittance is 97.3%, and the minimal required visibility is 96.8 % .
Quantum interference of independently generated telecom-band single photons
Patel, Monika; Altepeter, Joseph B.; Huang, Yu-Ping; Oza, Neal N.; Kumar, Prem
2014-12-04
We report on high-visibility quantum interference of independently generated telecom O-band (1310 nm) single photons using standard single-mode fibers. The experimental data are shown to agree well with the results of simulations using a comprehensive quantum multimode theory without the need for any fitting parameter.
Eavesdropping of quantum communication from a noninertial frame
Bradler, K.
2007-02-15
We introduce a relativistic version of the quantum encryption protocol by considering two inertial observers who wish to securely transmit quantum information encoded in a free scalar quantum field state forming Minkowski particles. In a nonrelativistic setting a certain amount of shared classical resources is necessary to perfectly encrypt the state. We show that in the case of a uniformly accelerated eavesdropper the communicating parties need to share (asymptotically in the limit of infinite acceleration) just half of the classical resources.
State-independent purity and fidelity of quantum operations
NASA Astrophysics Data System (ADS)
Kong, Fan-Zhen; Zong, Xiao-Lan; Yang, Ming; Cao, Zhuo-Liang
2016-04-01
The purity and fidelity of quantum operations are of great importance in characterizing the quality of quantum operations. The currently available definitions of the purity and fidelity of quantum operations are based on the average over all possible input pure quantum states, i.e. they are state-dependent (SD). In this paper, without resorting to quantum states, we define the state-independent (SI) purity and fidelity of a general quantum operation (evolution) in virtue of a new density matrix formalism for quantum operations, which is extended from the quantum state level to quantum operation level. The SI purity and fidelity gain more intrinsic physical properties of quantum operations than state-dependent ones, such as the purity of a one-qubit amplitude damping channel (with damping rate 1) is 1/2, which is in line with the fact that the channel is still a nonunitary operation described by two Kraus operators rather than a unitary one. But the state-dependent Haar average purity is 1 in this case. So the SI purity and fidelity proposed here can help the experimentalists to exactly quantify the implementation quality of an operation. As a byproduct, a new measure of the operator entanglement is proposed for a quantum evolution (unitary or nonunitary) in terms of the linear entropy of its density matrix on the orthonormal operator bases (OOBs) in Hilbert-Schmidt space.
Framing Anomaly in the Effective Theory of Fractional Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Gromov, Andrey; Abanov, Alexander; Cho, Gil Young; You, Yizhi; Fradkin, Eduardo
2015-03-01
While the classical Chern-Simons theory is topological, it's quantum version is not as it depends on the metric of the base manifold through the path integral measure. This phenomenon is known as the framing anomaly. It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions of fractional quantum Hall systems (FQH). In the lowest order in gradients the effective action includes Chern-Simons, Wen-Zee and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and generates a ``finite size correction'' to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses of non-Abelian FQH states.
Optimal Device Independent Quantum Key Distribution
Kamaruddin, S.; Shaari, J. S.
2016-01-01
We consider an optimal quantum key distribution setup based on minimal number of measurement bases with binary yields used by parties against an eavesdropper limited only by the no-signaling principle. We note that in general, the maximal key rate can be achieved by determining the optimal tradeoff between measurements that attain the maximal Bell violation and those that maximise the bit correlation between the parties. We show that higher correlation between shared raw keys at the expense of maximal Bell violation provide for better key rates for low channel disturbance. PMID:27485160
Optimal Device Independent Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Kamaruddin, S.; Shaari, J. S.
2016-08-01
We consider an optimal quantum key distribution setup based on minimal number of measurement bases with binary yields used by parties against an eavesdropper limited only by the no-signaling principle. We note that in general, the maximal key rate can be achieved by determining the optimal tradeoff between measurements that attain the maximal Bell violation and those that maximise the bit correlation between the parties. We show that higher correlation between shared raw keys at the expense of maximal Bell violation provide for better key rates for low channel disturbance.
Optimal Device Independent Quantum Key Distribution.
Kamaruddin, S; Shaari, J S
2016-01-01
We consider an optimal quantum key distribution setup based on minimal number of measurement bases with binary yields used by parties against an eavesdropper limited only by the no-signaling principle. We note that in general, the maximal key rate can be achieved by determining the optimal tradeoff between measurements that attain the maximal Bell violation and those that maximise the bit correlation between the parties. We show that higher correlation between shared raw keys at the expense of maximal Bell violation provide for better key rates for low channel disturbance. PMID:27485160
Continuous-variable measurement-device-independent multipartite quantum communication
NASA Astrophysics Data System (ADS)
Wu, Yadong; Zhou, Jian; Gong, Xinbao; Guo, Ying; Zhang, Zhi-Ming; He, Guangqiang
2016-02-01
A continuous-variable measurement-device-independent multiparty quantum communication protocol is investigated in this paper. Utilizing the distributed continuous-variable Greenberger-Horne-Zeilinger state, this protocol can implement both quantum cryptographic conference and quantum secret sharing. We analyze the security of the protocol against both the entangling cloner attack and the coherent attack. The entangling cloner attack is a practical individual attack, and the coherent attack is the optimal attack Eve can implement. Simulation results show that the coherent attack can greatly reduce the secret key rate. Different kinds of entangled attacks are compared and we finally discuss the optimal coherent attacks.
The optimization of measurement device independent quantum key distribution
NASA Astrophysics Data System (ADS)
Gao, Feng; Ma, Hai-Qiang; Jiao, Rong-Zhen
2016-04-01
Measurement device independent quantum key distribution (MDI-QKD) is a promising method for realistic quantum communication which could remove all the side-channel attacks from the imperfections of the devices. Here in this study, we theoretically analyzed the performance of the MDI-QKD system. The asymptotic case rate with the increment of the transmission distance at different polarization misalignment, background count rate and intensity is calculated respectively. The result may provide important parameters for practical application of quantum communications.
Quantum Holonomies from Spectral Networks and Framed BPS States
NASA Astrophysics Data System (ADS)
Gabella, Maxime
2016-08-01
We propose a method for determining the spins of BPS states supported on line defects in 4d {{N}=2} theories of class S. Via the 2d-4d correspondence, this translates to the construction of quantum holonomies on a punctured Riemann surface {{C}} . Our approach combines the technology of spectral networks, which decomposes flat {GL(K,{C})} -connections on {{C}} in terms of flat abelian connections on a K-fold cover of {{C}} , and the skein algebra in the 3-manifold {{C} × [0,1]} , which expresses the representation theory of the quantum group U q (gl K ). With any path on {{C}} , the quantum holonomy associates a positive Laurent polynomial in the quantized Fock-Goncharov coordinates of higher Teichmüller space. This confirms various positivity conjectures in physics and mathematics.
Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces
NASA Astrophysics Data System (ADS)
Klink, W. H.; Wickramasekara, S.
2016-06-01
One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner-Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated in quantum theory.
Measurement-device-independent entanglement-based quantum key distribution
NASA Astrophysics Data System (ADS)
Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan
2016-05-01
We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.
Device-independent quantum cryptography for continuous variables
NASA Astrophysics Data System (ADS)
Marshall, Kevin; Weedbrook, Christian
2014-10-01
We present a device-independent quantum cryptography protocol for continuous variables. Our scheme is based on the Gottesman-Kitaev-Preskill encoding scheme whereby a qubit is embedded in the infinite-dimensional space of a quantum harmonic oscillator. The application of discrete-variable device-independent quantum key distribution to this encoding enables a continuous-variable analog. Since the security of this protocol is based on discrete variables we inherit by default security against collective attacks and, under certain memoryless assumptions, coherent attacks. We find that our protocol is valid over the same distances as its discrete-variable counterpart, except that we are able to take advantage of high efficiency commercially available detectors where, for the most part, only homodyne detection is required. This offers the prospect of closing the loopholes associated with Bell inequalities.
Long-distance measurement-device-independent multiparty quantum communication.
Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing
2015-03-01
The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication. PMID:25793788
Zanzi, Andrea
2010-08-15
The chameleonic behavior of the string theory dilaton is suggested. Some of the possible consequences of the chameleonic string dilaton are analyzed in detail. In particular, (1) we suggest a new stringy solution to the cosmological constant problem and (2) we point out the nonequivalence of different conformal frames at the quantum level. In order to obtain these results, we start taking into account the (strong coupling) string loop expansion in the string frame (S-frame), therefore the so-called form factors are present in the effective action. The correct dark energy scale is recovered in the Einstein frame (E-frame) without unnatural fine-tunings and this result is robust against all quantum corrections, granted that we assume a proper structure of the S-frame form factors in the strong coupling regime. At this stage, the possibility still exists that a certain amount of fine-tuning may be required to satisfy some phenomenological constraints. Moreover in the E-frame, in our proposal, all the interactions are switched off on cosmological length scales (i.e., the theory is IR-free), while higher derivative gravitational terms might be present locally (on short distances) and it remains to be seen whether these facts clash with phenomenology. A detailed phenomenological analysis is definitely necessary to clarify these points.
Wiestler, Tobias; Waters-Metenier, Sheena
2014-01-01
Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere. PMID:24695723
Conditional independence in quantum many-body systems
NASA Astrophysics Data System (ADS)
Kim, Isaac Hyun
In this thesis, I will discuss how information-theoretic arguments can be used to produce sharp bounds in the studies of quantum many-body systems. The main advantage of this approach, as opposed to the conventional field-theoretic argument, is that it depends very little on the precise form of the Hamiltonian. The main idea behind this thesis lies on a number of results concerning the structure of quantum states that are conditionally independent. Depending on the application, some of these statements are generalized to quantum states that are approximately conditionally independent. These structures can be readily used in the studies of gapped quantum many-body systems, especially for the ones in two spatial dimensions. A number of rigorous results are derived, including (i) a universal upper bound for a maximal number of topologically protected states that is expressed in terms of the topological entanglement entropy, (ii) a first-order perturbation bound for the topological entanglement entropy that decays superpolynomially with the size of the subsystem, and (iii) a correlation bound between an arbitrary local operator and a topological operator constructed from a set of local reduced density matrices. I also introduce exactly solvable models supported on a three-dimensional lattice that can be used as a reliable quantum memory.
Quantum mechanics in non-inertial reference frames: Time-dependent rotations and loop prolongations
NASA Astrophysics Data System (ADS)
Klink, W. H.; Wickramasekara, S.
2013-09-01
This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle as well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics.
Framing Anomaly in the Effective Theory of the Fractional Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G.; Fradkin, Eduardo
2015-01-01
We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states.
Framing anomaly in the effective theory of the fractional quantum Hall effect.
Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G; Fradkin, Eduardo
2015-01-01
We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states. PMID:25615495
Frame independence of the inhomogeneous mixmaster chaos via Misner-Chitre-like variables
Benini, Riccardo; Montani, Giovanni
2004-11-15
We outline the covariant nature, with respect to the choice of a reference frame, of the chaos characterizing the generic cosmological solution near the initial singularity, i.e., the so-called inhomogeneous mixmaster model. Our analysis is based on a gauge independent Arnowitt-Deser-Misner reduction of the dynamics to the physical degrees of freedom. The resulting picture shows how the inhomogeneous mixmaster model is isomorphic point by point in space to a billiard on a Lobachevsky plane. Indeed, the existence of an asymptotic (energylike) constant of the motion allows one to construct the Jacobi metric associated with the geodesic flow and to calculate a nonzero Lyapunov exponent in each space point. The chaos covariance emerges from the independence of our scheme with respect to the form of the lapse function and the shift vector; the origin of this result relies on the dynamical decoupling of the space points which takes place near the singularity, due to the asymptotic approach of the potential term to infinite walls. At the ground of the obtained dynamical scheme is the choice of Misner-Chitre-like variables which allows one to fix the billiard potential walls.
Quantum mechanics in non-inertial reference frames: Time-dependent rotations and loop prolongations
Klink, W.H.; Wickramasekara, S.
2013-09-15
This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle as well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is presented. •The Galilei group is generalized to infinite dimensional Galilean line group. •Loop prolongations of Galilean line group contain central extensions of Galilei group. •Unitary representations of the loops are constructed. •These representations lead to terms in the Hamiltonian corresponding to fictitious forces, including centrifugal and Coriolis
Local thermodynamical equilibrium and the frame for a quantum relativistic fluid
NASA Astrophysics Data System (ADS)
Becattini, Francesco; Bucciantini, Leda; Grossi, Eduardo; Tinti, Leonardo
2015-05-01
We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector , which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of the stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the frame and Landau frame and present an instance where they differ.
Temperature independent quantum well FET with delta channel doping
NASA Technical Reports Server (NTRS)
Young, P. G.; Mena, R. A.; Alterovitz, S. A.; Schacham, S. E.; Haugland, E. J.
1992-01-01
A temperature independent device is presented which uses a quantum well structure and delta doping within the channel. The device requires a high delta doping concentration within the channel to achieve a constant Hall mobility and carrier concentration across the temperature range 300-1.4 K. Transistors were RF tested using on-wafer probing and a constant G sub max and F sub max were measured over the temperature range 300-70 K.
Temperature independent infrared responsivity of a quantum dot quantum cascade photodetector
NASA Astrophysics Data System (ADS)
Wang, Feng-Jiao; Zhuo, Ning; Liu, Shu-Man; Ren, Fei; Ning, Zhen-Dong; Ye, Xiao-Ling; Liu, Jun-Qi; Zhai, Shen-Qiang; Liu, Feng-Qi; Wang, Zhan-Guo
2016-06-01
We demonstrate a quantum dot quantum cascade photodetector with a hybrid active region of InAs quantum dots and an InGaAs quantum well, which exhibited a temperature independent response at 4.5 μm. The normal incident responsivity reached 10.3 mA/W at 120 K and maintained a value of 9 mA/W up to 260 K. It exhibited a specific detectivity above 1011 cm Hz1/2 W-1 at 77 K, which remained at 108 cm Hz1/2 W-1 at 260 K. We ascribe the device's good thermal stability of infrared response to the three-dimensional quantum confinement of the InAs quantum dots incorporated in the active region.
Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution.
Wang, Chao; Song, Xiao-Tian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu
2015-10-16
Measurement-device-independent quantum key distribution (MDI QKD) is a substantial step toward practical information-theoretic security for key sharing between remote legitimate users (Alice and Bob). As with other standard device-dependent quantum key distribution protocols, such as BB84, MDI QKD assumes that the reference frames have been shared between Alice and Bob. In practice, a nontrivial alignment procedure is often necessary, which requires system resources and may significantly reduce the secure key generation rate. Here, we propose a phase-coding reference-frame-independent MDI QKD scheme that requires no phase alignment between the interferometers of two distant legitimate parties. As a demonstration, a proof-of-principle experiment using Faraday-Michelson interferometers is presented. The experimental system worked at 1 MHz, and an average secure key rate of 8.309 bps was obtained at a fiber length of 20 km between Alice and Bob. The system can maintain a positive key generation rate without phase compensation under normal conditions. The results exhibit the feasibility of our system for use in mature MDI QKD devices and its value for network scenarios. PMID:26550855
Single Motional Quantum Exchange between Independently Trapped Ions
NASA Astrophysics Data System (ADS)
Brown, K. R.; Ospelkaus, C.; Colombe, Y.; Wilson, A. C.; Leibfried, D.; Wineland, D. J.
2011-05-01
The Coulomb coupling of ions in separate potential wells is a key feature of proposals to implement quantum simulation and could enable logic operations to be performed in a multi-zone quantum information processor without the requirement of bringing the ion qubits into the same trapping potential. It might also extend the capabilities of quantum logic spectroscopy to ions that cannot be trapped in the same potential well as the measurement ion, such as oppositely charged ions or even antimatter particles. We report recent results demonstrating tunable coupling of two 9Be+ ions held in trapping potentials separated by 40 μm. The ions are trapped 40 μm above the surface of a microfabricated planar trap with independently tunable axial frequencies of ~4 MHz. The trap is cooled to 4.2 K with a helium bath cryostat to suppress anomalous heating and to extend the lifetime of ions from minutes to days. By preparing approximate motional number states with n=0 and n=1 in the respective wells, and tuning the confining wells into resonance, a single quantum of motion is exchanged between the ions in ~200 μs. Work supported by IARPA, DARPA, ONR, and the NIST Quantum Information Program.
Benioff, Paul
2009-01-01
Tmore » his work is based on the field of reference frames based on quantum representations of real and complex numbers described in other work. Here frame domains are expanded to include space and time lattices. Strings of qukits are described as hybrid systems as they are both mathematical and physical systems. As mathematical systems they represent numbers. As physical systems in each frame the strings have a discrete Schrodinger dynamics on the lattices.he frame field has an iterative structure such that the contents of a stage j frame have images in a stage j - 1 (parent) frame. A discussion of parent frame images includes the proposal that points of stage j frame lattices have images as hybrid systems in parent frames.he resulting association of energy with images of lattice point locations, as hybrid systems states, is discussed. Representations and images of other physical systems in the different frames are also described.« less
Memory Attacks on Device-Independent Quantum Cryptography
NASA Astrophysics Data System (ADS)
Barrett, Jonathan; Colbeck, Roger; Kent, Adrian
2013-01-01
Device-independent quantum cryptographic schemes aim to guarantee security to users based only on the output statistics of any components used, and without the need to verify their internal functionality. Since this would protect users against untrustworthy or incompetent manufacturers, sabotage, or device degradation, this idea has excited much interest, and many device-independent schemes have been proposed. Here we identify a critical weakness of device-independent protocols that rely on public communication between secure laboratories. Untrusted devices may record their inputs and outputs and reveal information about them via publicly discussed outputs during later runs. Reusing devices thus compromises the security of a protocol and risks leaking secret data. Possible defenses include securely destroying or isolating used devices. However, these are costly and often impractical. We propose other more practical partial defenses as well as a new protocol structure for device-independent quantum key distribution that aims to achieve composable security in the case of two parties using a small number of devices to repeatedly share keys with each other (and no other party).
Memory attacks on device-independent quantum cryptography.
Barrett, Jonathan; Colbeck, Roger; Kent, Adrian
2013-01-01
Device-independent quantum cryptographic schemes aim to guarantee security to users based only on the output statistics of any components used, and without the need to verify their internal functionality. Since this would protect users against untrustworthy or incompetent manufacturers, sabotage, or device degradation, this idea has excited much interest, and many device-independent schemes have been proposed. Here we identify a critical weakness of device-independent protocols that rely on public communication between secure laboratories. Untrusted devices may record their inputs and outputs and reveal information about them via publicly discussed outputs during later runs. Reusing devices thus compromises the security of a protocol and risks leaking secret data. Possible defenses include securely destroying or isolating used devices. However, these are costly and often impractical. We propose other more practical partial defenses as well as a new protocol structure for device-independent quantum key distribution that aims to achieve composable security in the case of two parties using a small number of devices to repeatedly share keys with each other (and no other party). PMID:23383767
NASA Astrophysics Data System (ADS)
Smith, Alexander R. H.; Piani, Marco; Mann, Robert B.
2016-07-01
Quantum communication without a shared reference frame or the construction of a relational quantum theory requires the notion of a quantum reference frame. We analyze aspects of quantum reference frames associated with noncompact groups, specifically, the group of spatial translations and Galilean boosts. We begin by demonstrating how the usually employed group average, used to dispense of the notion of an external reference frame, leads to unphysical states when applied to reference frames associated with noncompact groups. However, we show that this average does lead naturally to a reduced state on the relative degrees of freedom of a system, which was previously considered by Angelo et al. [J. Phys. A: Math. Theor. 44, 145304 (2011), 10.1088/1751-8113/44/14/145304]. We then study in detail the informational properties of this reduced state for systems of two and three particles in Gaussian states.
ERIC Educational Resources Information Center
Roddy, Troy Paul
2010-01-01
This study examined the self-perceived leadership orientations of headmasters of independent schools. This research expanded the current body of work that supports Bolman and Deal's (2003) multi-frame explanation that leaders use different orientations (frames) to understand their roles, clarify organizational situations, and make decisions. Using…
Relativeness in quantum gravity: limitations and frame dependence of semiclassical descriptions
NASA Astrophysics Data System (ADS)
Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J.
2015-04-01
Consistency between quantum mechanical and general relativistic views of the world is a longstanding problem, which becomes particularly prominent in black hole physics. We develop a coherent picture addressing this issue by studying the quantum mechanics of an evolving black hole. After interpreting the Bekenstein-Hawking entropy as the entropy representing the degrees of freedom that are coarse-grained to obtain a semiclassical description from the microscopic theory of quantum gravity, we discuss the properties these degrees of freedom exhibit when viewed from the semiclassical standpoint. We are led to the conclusion that they show features which we call extreme relativeness and spacetime-matter duality — a nontrivial reference frame dependence of their spacetime distribution and the dual roles they play as the "constituents" of spacetime and as thermal radiation. We describe black hole formation and evaporation processes in distant and infalling reference frames, showing that these two properties allow us to avoid the arguments for firewalls and to make the existence of the black hole interior consistent with unitary evolution in the sense of complementarity. Our analysis provides a concrete answer to how information can be preserved at the quantum level throughout the evolution of a black hole, and gives a basic picture of how general coordinate transformations may work at the level of full quantum gravity beyond the approximation of semiclassical theory.
TOPICAL REVIEW: Background independent quantum gravity: a status report
NASA Astrophysics Data System (ADS)
Ashtekar, Abhay; Lewandowski, Jerzy
2004-08-01
The goal of this review is to present an introduction to loop quantum gravity—a background-independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry. Our presentation is pedagogical. Thus, in addition to providing a bird's eye view of the present status of the subject, the review should also serve as a vehicle to enter the field and explore it in detail. To aid non-experts, very little is assumed beyond elements of general relativity, gauge theories and quantum field theory. While the review is essentially self-contained, the emphasis is on communicating the underlying ideas and the significance of results rather than on presenting systematic derivations and detailed proofs. (These can be found in the listed references.) The subject can be approached in different ways. We have chosen one which is deeply rooted in well-established physics and also has sufficient mathematical precision to ensure that there are no hidden infinities. In order to keep the review to a reasonable size, and to avoid overwhelming non-experts, we have had to leave out several interesting topics, results and viewpoints; this is meant to be an introduction to the subject rather than an exhaustive review of it.
Experimental measurement-device-independent verification of quantum steering
NASA Astrophysics Data System (ADS)
Kocsis, Sacha; Hall, Michael J. W.; Bennet, Adam J.; Saunders, Dylan J.; Pryde, Geoff J.
2015-01-01
Bell non-locality between distant quantum systems—that is, joint correlations which violate a Bell inequality—can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.
High-rate measurement-device-independent quantum cryptography
NASA Astrophysics Data System (ADS)
Pirandola, Stefano; Ottaviani, Carlo; Spedalieri, Gaetana; Weedbrook, Christian; Braunstein, Samuel L.; Lloyd, Seth; Gehring, Tobias; Jacobsen, Christian S.; Andersen, Ulrik L.
2015-06-01
Quantum cryptography achieves a formidable task—the remote distribution of secret keys by exploiting the fundamental laws of physics. Quantum cryptography is now headed towards solving the practical problem of constructing scalable and secure quantum networks. A significant step in this direction has been the introduction of measurement-device independence, where the secret key between two parties is established by the measurement of an untrusted relay. Unfortunately, although qubit-implemented protocols can reach long distances, their key rates are typically very low, unsuitable for the demands of a metropolitan network. Here we show, theoretically and experimentally, that a solution can come from the use of continuous-variable systems. We design a coherent-state network protocol able to achieve remarkably high key rates at metropolitan distances, in fact three orders of magnitude higher than those currently achieved. Our protocol could be employed to build high-rate quantum networks where devices securely connect to nearby access points or proxy servers.
Experimental Measurement-Device-Independent Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei
2013-09-01
Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.
Experimental measurement-device-independent quantum key distribution.
Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei
2013-09-27
Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices. PMID:24116758
PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity
NASA Astrophysics Data System (ADS)
Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier
2012-05-01
Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not
Existence of an independent phonon bath in a quantum device
NASA Astrophysics Data System (ADS)
Pascal, L. M. A.; Fay, A.; Winkelmann, C. B.; Courtois, H.
2013-09-01
At low temperatures, the thermal wavelength of acoustic phonons in a metallic thin film on a substrate can widely exceed the film thickness. It is thus generally believed that a mesoscopic device operating at low temperature does not carry an individual phonon population. In this work, we provide direct experimental evidence for the thermal decoupling of phonons in a mesoscopic quantum device from its substrate phonon heat bath at a sub-Kelvin temperature. A simple heat balance model assuming an independent phonon bath following the usual electron-phonon and Kapitza coupling laws can account for all experimental observations.
Instructions, Independence and Uncertainty: Student Framing in Self-Regulated Project Work
ERIC Educational Resources Information Center
Eklof, Anders; Nilsson, Lars-Erik; Ottosson, Torgny
2014-01-01
This study presents an approach to student interaction in self-regulated project work. By combining frame analysis and socio-cultural risk theory, the authors explore the importance of students' framing activities as a basis for their understanding of tasks. The increase in self-regulated work in Swedish schools can be seen as being in line…
NASA Astrophysics Data System (ADS)
McKeown, Martin J.; Gadala, Marwa; Abu-Gharbieh, Rafeef
2005-04-01
Independent Component Analysis (ICA) has proved a powerful exploratory analysis method for fMRI. In the ICA model, the fMRI data at a given time point are modeled as the linear superposition of spatially independent (and spatially stationary) component maps. The ICA model has been recently applied to positron emission tomography (PET) data with some success (Human Brain Mapping 18:284-295(2003), IEEE Trans. BME, Naganawa et al, in press). However, in PET imaging each frame is, in fact, activity integrated over a relatively long period of time, making the assumption that the underlying component maps are spatially stationary (and hence no head movement has taken place during the frame collection) very tenuous. Here we extend the application of the ICA model to 11C-methylphenidate PET data by assuming that each frame is actually composed of the superposition of rigidly transformed underlying spatial components. We first determine the "noisy" initial spatially independent components of a data set under the erroneous assumption of no intra or inter-frame motion. Aspects of the initial components that reliably track spatial perturbations of the data are then determined to produce the motion-compensated components. Initial components included ring-like spatial distributions, indicating that movement corrupts the statistical properties of the data. The final intra-frame motion-compensated components included more plausible symmetric and robust activity in the striatum as would be expected compared to the raw data and the initial components. We conclude that 1) intra-frame motion is a serious confound in PET imaging which affects the statistical properties of the data and 2) our proposed procedure ameliorates such motion effects.
NASA Astrophysics Data System (ADS)
Ji, Yi-Ming; Li, Yun-Xia; Shi, Lei; Meng, Wen; Cui, Shu-Min; Xu, Zhen-Yu
2015-10-01
Quantum access network can't guarantee the absolute security of multi-user detector and eavesdropper can get access to key information through time-shift attack and other ways. Measurement-device-independent quantum key distribution is immune from all the detection attacks, and accomplishes the safe sharing of quantum key. In this paper, that Measurement-device-independent quantum key distribution is used in the application of multi-user quantum access to the network is on the research. By adopting time-division multiplexing technology to achieve the sharing of multiuser detector, the system structure is simplified and the security of quantum key sharing is acquired.
Padmanabhan, Hamsa; Padmanabhan, T.
2011-10-15
We discuss the nonrelativistic limit of quantum field theory in an inertial frame, in the Rindler frame and in the presence of a weak gravitational field, and attempt to highlight and clarify several subtleties. In particular, we study the following issues: (a) While the action for a relativistic free particle is invariant under the Lorentz transformation, the corresponding action for a nonrelativistic free particle is not invariant under the Galilean transformation, but picks up extra contributions at the end points. This leads to an extra phase in the nonrelativistic wave function under a Galilean transformation, which can be related to the rest energy of the particle even in the nonrelativistic limit. We show that this is closely related to the peculiar fact that the relativistic action for a free particle remains invariant even if we restrict ourselves to O(1/c{sup 2}) in implementing the Lorentz transformation. (b) We provide a brief critique of the principle of equivalence in the quantum mechanical context. In particular, we show how solutions to the generally covariant Klein-Gordon equation in a noninertial frame, which has a time-dependent acceleration, reduce to the nonrelativistic wave function in the presence of an appropriate (time-dependent) gravitational field in the c{yields}{infinity} limit, and relate this fact to the validity of the principle of equivalence in a quantum mechanical context. We also show that the extra phase acquired by the nonrelativistic wave function in an accelerated frame, actually arises from the gravitational time dilation and survives in the nonrelativistic limit. (c) While the solution of the Schroedinger equation can be given an interpretation as being the probability amplitude for a single particle, such an interpretation fails in quantum field theory. We show how, in spite of this, one can explicitly evaluate the path integral using the (nonquadratic) action for a relativistic particle (involving a square root) and
Quantum many-body dynamics in a Lagrangian frame: I. Equations of motion and conservation laws
NASA Astrophysics Data System (ADS)
Tokatly, I. V.
2005-04-01
We formulate equations of motion and conservation laws for a quantum many-body system in a co-moving Lagrangian reference frame. It is shown that generalized inertia forces in the co-moving frame are described by Green’s deformation tensor gμν(ξ,t) and a skew-symmetric vorticity tensor Ftilde μν(ξ,t) , where ξ in the Lagrangian coordinate. Equations of motion are equivalent to those for a quantum many-body system in a space with time-dependent metric gμν(ξ,t) in the presence of an effective magnetic field Ftilde μν(ξ,t) . To illustrate the general formalism we apply it to the proof of the harmonic potential theorem. As another example of application we consider a fast long wavelength dynamics of a Fermi system in the dynamic Hartree approximation. In this case the kinetic equation in the Lagrangian frame can be solved explicitly. This allows us to formulate the description of a Fermi gas in terms of an effective nonlinear elasticity theory. We also discuss a relation of our results to time-dependent density functional theory.
PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity
NASA Astrophysics Data System (ADS)
Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier
2012-05-01
Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not
Quantum-optical Space-time Wave Frames: When light coordinates itself coherently
NASA Astrophysics Data System (ADS)
Harter, William; Mitchell, Justin
2006-05-01
Careful re-examination of details of quantum and classical optical wave interference leads to a more precise and elegant logic for two of the foundations of modern physics, special relativity and quantum theory. This provides a transparent unified development of both subjects together in a few simple logical steps with improved intuition and fewer ``mysteries.'' The first step is an Occam razor reduction of Einstein's axiom to a spectral form based on linear dispersion or, ``All colors go c.'' Then wave nodal planes of interfering CW beams or optical cavity modes provide their own space-time coordinate frames with a reciprocal per-space-time lattice.[1] These clearly display Lorentz-Poincare symmetry and hyperbolic dispersion characteristic of quantum matter with very simple Compton recoil analyses. Accelerated coordinate frames made by cavity chirping are used to relate Compton effects to the relativistic shifts and horizons that are present in an Einstein elevator and shows them to be an elegant result of wave interference. [1] W. G. Harter, J. Mol. Spect. 210, 166 (2001)
Alba, David; Crater, Horace W.; Lusanna, Luca
2011-06-15
A new formulation of relativistic quantum mechanics is proposed in the framework of the rest-frame instant form of dynamics, where the world-lines of the particles are parametrized in terms of the Fokker-Pryce center of inertia and of Wigner-covariant relative 3-coordinates inside the instantaneous Wigner 3-spaces, and where there is a decoupled (non-covariant and non-local) canonical relativistic center of mass. This approach: (a) allows us to make a consistent quantization in every inertial frame; (b) leads to a description of both bound and scattering states; (c) offers new insights on the relativistic localization problem; (d) leads to a non-relativistic limit with a Hamilton-Jacobi treatment of the Newton center of mass; (e) clarifies non-local aspects (spatial non-separability) of relativistic entanglement connected with Lorentz signature and not present in its non-relativistic treatment.
Geometric measure of quantum discord for entanglement of Dirac fields in noninertial frames
NASA Astrophysics Data System (ADS)
Qiang, Wen-Chao; Zhang, Lei
2015-03-01
We investigate the geometric measure of quantum discord of all possible bipartite divisions of a tripartite system of Dirac fields in noninertial frames. As a comparison, we calculate the geometric measure of entanglement. We discuss the properties of geometric measure of quantum discord and geometric measure of entanglement for three qubit-qubit subsystems with acceleration parameter and the parameter describing the degree of entanglement the system in detail. We have found a conservative relationship involving two of three geometric discords in some condition and another conservative relationship involving three geometric discords for initially maximally entangled states. By the way, we also report some conservative relationships of concurrence, mutual information and geometric measure of entanglement for two bipartite subsystems.
Device-independent quantum key distribution based on measurement inputs
NASA Astrophysics Data System (ADS)
Rahaman, Ramij; Parker, Matthew G.; Mironowicz, Piotr; Pawłowski, Marcin
2015-12-01
We provide an analysis of a family of device-independent quantum key distribution (QKD) protocols that has the following features. (a) The bits used for the secret key do not come from the results of the measurements on an entangled state but from the choices of settings. (b) Instead of a single security parameter (a violation of some Bell inequality) a set of them is used to estimate the level of trust in the secrecy of the key. The main advantage of these protocols is a smaller vulnerability to imperfect random number generators made possible by feature (a). We prove the security and the robustness of such protocols. We show that using our method it is possible to construct a QKD protocol which retains its security even if the source of randomness used by communicating parties is strongly biased. As a proof of principle, an explicit example of a protocol based on the Hardy's paradox is presented. Moreover, in the noiseless case, the protocol is secure in a natural way against any type of memory attack, and thus allows one to reuse the device in subsequent rounds. We also analyze the robustness of the protocol using semidefinite programming methods. Finally, we present a postprocessing method, and observe a paradoxical property that rejecting some random part of the private data can increase the key rate of the protocol.
Time-independent quantum circuits with local interactions
NASA Astrophysics Data System (ADS)
Seifnashri, Sahand; Kianvash, Farzad; Nobakht, Jahangir; Karimipour, Vahid
2016-06-01
Heisenberg spin chains can act as quantum wires transferring quantum states either perfectly or with high fidelity. Gaussian packets of excitations passing through dual rails can encode the two states of a logical qubit, depending on which rail is empty and which rail is carrying the packet. With extra interactions in one or between different chains, one can introduce interaction zones in arrays of such chains, where specific one- or two-qubit gates act on any qubit which passes through these interaction zones. Therefore, universal quantum computation is made possible in a static way where no external control is needed. This scheme will then pave the way for a scalable way of quantum computation where specific hardware can be connected to make large quantum circuits. Our scheme is an improvement of a recent scheme where we borrowed an idea from quantum electrodynamics to replace nonlocal interactions between spin chains with local interactions mediated by an ancillary chain.
Tommaso, Anne di; Hagen, Jussara; Tompkins, Van; Muniz, Viviane; Dudakovic, Amel; Kitzis, Alain; Ladeveze, Veronique; Quelle, Dawn E.
2009-04-15
The Alternative Reading Frame (ARF) protein suppresses tumorigenesis through p53-dependent and p53-independent pathways. Most of ARF's anti-proliferative activity is conferred by sequences in its first exon. Previous work showed specific amino acid changes occurred in that region during primate evolution, so we programmed those changes into human p14ARF to assay their functional impact. Two human p14ARF residues (Ala{sup 14} and Thr{sup 31}) were found to destabilize the protein while two others (Val{sup 24} and Ala{sup 41}) promoted more efficient p53 stabilization and activation. Despite those effects, all modified p14ARF forms displayed robust p53-dependent anti-proliferative activity demonstrating there are no significant biological differences in p53-mediated growth suppression associated with simian versus human p14ARF residues. In contrast, p53-independent p14ARF function was considerably altered by several residue changes. Val{sup 24} was required for p53-independent growth suppression whereas multiple residues (Val{sup 24}, Thr{sup 31}, Ala{sup 41} and His{sup 60}) enabled p14ARF to block or reverse the inherent chromosomal instability of p53-null MEFs. Together, these data pinpoint specific residues outside of established p14ARF functional domains that influence its expression and signaling activities. Most intriguingly, this work reveals a novel and direct role for p14ARF in the p53-independent maintenance of genomic stability.
Time independent universal computing with spin chains: quantum plinko machine
NASA Astrophysics Data System (ADS)
Thompson, K. F.; Gokler, C.; Lloyd, S.; Shor, P. W.
2016-07-01
We present a scheme for universal quantum computing using XY Heisenberg spin chains. Information is encoded into packets propagating down these chains, and they interact with each other to perform universal quantum computation. A circuit using g gate blocks on m qubits can be encoded into chains of length O({g}3+δ {m}3+δ ) for all δ \\gt 0 with vanishingly small error.
Bell nonlocality: a resource for device-independent quantum information protocols
NASA Astrophysics Data System (ADS)
Acin, Antonio
2015-05-01
Bell nonlocality is not only one of the most fundamental properties of quantum physics, but has also recently acquired the status of an information resource for device-independent quantum information protocols. In the device-independent approach, protocols are designed so that their performance is independent of the internal working of the devices used in the implementation. We discuss all these ideas and argue that device-independent protocols are especially relevant or cryptographic applications, as they are insensitive to hacking attacks exploiting imperfections on the modelling of the devices.
Device-independent tomography of multipartite quantum states
NASA Astrophysics Data System (ADS)
Pál, Károly F.; Vértesi, Tamás; Navascués, Miguel
2014-10-01
In the usual tomography of multipartite entangled quantum states one assumes that the measurement devices used in the laboratory are under perfect control of the experimenter. In this paper, using the so-called swap concept introduced recently, we show how one can remove this assumption in realistic experimental conditions and nevertheless be able to characterize the produced multipartite state based only on observed statistics. Such a black-box tomography of quantum states is termed self-testing. As a function of the magnitude of the Bell violation, we are able to self-test emblematic multipartite quantum states such as the three-qubit W state, the three- and four-qubit Greenberger-Horne-Zeilinger states, and the four-qubit linear cluster state.
NASA Astrophysics Data System (ADS)
Li, Fang-Yi; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Wang, Shuang; Wen, Hao; Zhao, Yi-Bo; Han, Zheng-Fu
2014-07-01
Although some ideal quantum key distribution protocols have been proved to be secure, there have been some demonstrations that practical quantum key distribution implementations were hacked due to some real-life imperfections. Among these attacks, detector side channel attacks may be the most serious. Recently, a measurement device independent quantum key distribution protocol [Phys. Rev. Lett. 108 (2012) 130503] was proposed and all detector side channel attacks are removed in this scheme. Here a new security proof based on quantum information theory is given. The eavesdropper's information of the sifted key bits is bounded. Then with this bound, the final secure key bit rate can be obtained.
Gaussian-modulated coherent-state measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Ma, Xiang-Chun; Sun, Shi-Hai; Jiang, Mu-Sheng; Gui, Ming; Liang, Lin-Mei
2014-04-01
Measurement-device-independent quantum key distribution (MDI-QKD), leaving the detection procedure to the third partner and thus being immune to all detector side-channel attacks, is very promising for the construction of high-security quantum information networks. We propose a scheme to implement MDI-QKD, but with continuous variables instead of discrete ones, i.e., with the source of Gaussian-modulated coherent states, based on the principle of continuous-variable entanglement swapping. This protocol not only can be implemented with current telecom components but also has high key rates compared to its discrete counterpart; thus it will be highly compatible with quantum networks.
NASA Astrophysics Data System (ADS)
Chen, Shin-Liang; Budroni, Costantino; Liang, Yeong-Cherng; Chen, Yueh-Nan
2016-06-01
We introduce the concept of assemblage moment matrices, i.e., a collection of matrices of expectation values, each associated with a conditional quantum state obtained in a steering experiment. We demonstrate how it can be used for quantum states and measurements characterization in a device-independent manner, i.e., without invoking any assumption about the measurement or the preparation device. Specifically, we show how the method can be used to lower bound the steerability of an underlying quantum state directly from the observed correlation between measurement outcomes. Combining such device-independent quantifications with earlier results established by Piani and Watrous [Phys. Rev. Lett. 114, 060404 (2015)], our approach immediately provides a device-independent lower bound on the generalized robustness of entanglement, as well as the usefulness of the underlying quantum state for a type of subchannel discrimination problem. In addition, by proving a quantitative relationship between steering robustness and the recently introduced incompatibility robustness, our approach also allows for a device-independent quantification of the incompatibility between various measurements performed in a Bell-type experiment. Explicit examples where such bounds provide a kind of self-testing of the performed measurements are provided.
Chen, Shin-Liang; Budroni, Costantino; Liang, Yeong-Cherng; Chen, Yueh-Nan
2016-06-17
We introduce the concept of assemblage moment matrices, i.e., a collection of matrices of expectation values, each associated with a conditional quantum state obtained in a steering experiment. We demonstrate how it can be used for quantum states and measurements characterization in a device-independent manner, i.e., without invoking any assumption about the measurement or the preparation device. Specifically, we show how the method can be used to lower bound the steerability of an underlying quantum state directly from the observed correlation between measurement outcomes. Combining such device-independent quantifications with earlier results established by Piani and Watrous [Phys. Rev. Lett. 114, 060404 (2015)], our approach immediately provides a device-independent lower bound on the generalized robustness of entanglement, as well as the usefulness of the underlying quantum state for a type of subchannel discrimination problem. In addition, by proving a quantitative relationship between steering robustness and the recently introduced incompatibility robustness, our approach also allows for a device-independent quantification of the incompatibility between various measurements performed in a Bell-type experiment. Explicit examples where such bounds provide a kind of self-testing of the performed measurements are provided. PMID:27367365
NASA Astrophysics Data System (ADS)
Jihyun Park, Annie; McKay, Emma; Lu, Dawei; Laflamme, Raymond
2016-04-01
Anyons, quasiparticles living in two-dimensional spaces with exotic exchange statistics, can serve as the fundamental units for fault-tolerant quantum computation. However, experimentally demonstrating anyonic statistics is a challenge due to the technical limitations of current experimental platforms. Here, we take a state perpetration approach to mimic anyons in the toric code using a seven-qubit nuclear magnetic resonance quantum simulator. Anyons are created by dynamically preparing the ground and excited states of a seven-qubit planar version of the toric code, and are subsequently braided along two distinct, but topologically equivalent paths. We observe that the phase acquired by the anyons is independent of the path, and coincides with the ideal theoretical predictions when decoherence and implementation errors are taken into account. As the first demonstration of the topological path independence of anyons, our experiment helps to study and exploit the anyonic properties towards the goal of building a topological quantum computer.
Yeh, Te-Fu; Huang, Wei-Lun; Chung, Chung-Jen; Chiang, I-Ting; Chen, Liang-Che; Chang, Hsin-Yu; Su, Wu-Chou; Cheng, Ching; Chen, Shean-Jen; Teng, Hsisheng
2016-06-01
Investigating quantum confinement in graphene under ambient conditions remains a challenge. In this study, we present graphene oxide quantum dots (GOQDs) that show excitation-wavelength-independent photoluminescence. The luminescence color varies from orange-red to blue as the GOQD size is reduced from 8 to 1 nm. The photoluminescence of each GOQD specimen is associated with electron transitions from the antibonding π (π*) to oxygen nonbonding (n-state) orbitals. The observed quantum confinement is ascribed to a size change in the sp(2) domains, which leads to a change in the π*-π gap; the n-state levels remain unaffected by the size change. The electronic properties and mechanisms involved in quantum-confined photoluminescence can serve as the foundation for the application of oxygenated graphene in electronics, photonics, and biology. PMID:27192445
Plug-and-play measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Choi, Yujun; Kwon, Osung; Woo, Minki; Oh, Kyunghwan; Han, Sang-Wook; Kim, Yong-Su; Moon, Sung
2016-03-01
Quantum key distribution (QKD) guarantees unconditional communication security based on the laws of quantum physics. However, practical QKD suffers from a number of quantum hackings due to the device imperfections. From the security standpoint, measurement-device-independent quantum key distribution (MDI-QKD) is in the limelight since it eliminates all the possible loopholes in detection. Due to active control units for mode matching between the photons from remote parties, however, the implementation of MDI-QKD is highly impractical. In this paper, we propose a method to resolve the mode matching problem while minimizing the use of active control units. By introducing the plug-and-play (P&P) concept into MDI-QKD, the indistinguishability in spectral and polarization modes between photons can naturally be guaranteed. We show the feasibility of P&P MDI-QKD with a proof-of-principle experiment.
W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Zhu, Changhua; Xu, Feihu; Pei, Changxing
2015-12-01
W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-QKD. Moreover, we derived a complete security proof of the four-party MDI-QKD, and performed a numerical simulation to study its performance. The results show that four-party MDI-QKD is feasible over 150 km standard telecom fiber with off-the-shelf single photon detectors. This work takes an important step towards multi-party quantum communication and a quantum network.
W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution.
Zhu, Changhua; Xu, Feihu; Pei, Changxing
2015-01-01
W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-QKD. Moreover, we derived a complete security proof of the four-party MDI-QKD, and performed a numerical simulation to study its performance. The results show that four-party MDI-QKD is feasible over 150 km standard telecom fiber with off-the-shelf single photon detectors. This work takes an important step towards multi-party quantum communication and a quantum network. PMID:26644289
W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution
Zhu, Changhua; Xu, Feihu; Pei, Changxing
2015-01-01
W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-QKD. Moreover, we derived a complete security proof of the four-party MDI-QKD, and performed a numerical simulation to study its performance. The results show that four-party MDI-QKD is feasible over 150 km standard telecom fiber with off-the-shelf single photon detectors. This work takes an important step towards multi-party quantum communication and a quantum network. PMID:26644289
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Ragy, Sammy; Girolami, Davide
2012-11-01
We review a recently introduced unified approach to the analytical quantification of correlations in Gaussian states of bosonic scalar fields by means of Rényi-2 entropy. This allows us to obtain handy formulae for classical, quantum, total correlations, as well as bipartite and multipartite entanglement. We apply our techniques to the study of correlations between two modes of a scalar field as described by observers in different states of motion. When one or both observers are in uniform acceleration, the quantum and classical correlations are degraded differently by the Unruh effect, depending on which mode is detected. Residual quantum correlations, in the form of quantum discord without entanglement, may survive in the limit of an infinitely accelerated observer Rob, provided they are revealed in a measurement performed by the inertial Alice.
NASA Astrophysics Data System (ADS)
Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo
2016-07-01
We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing.
Semi-device-independent security of one-way quantum key distribution
Pawlowski, Marcin; Brunner, Nicolas
2011-07-15
By testing nonlocality, the security of entanglement-based quantum key distribution (QKD) can be enhanced to being ''device-independent.'' Here we ask whether such a strong form of security could also be established for one-way (prepare and measure) QKD. While fully device-independent security is impossible, we show that security can be guaranteed against individual attacks in a semi-device-independent scenario. In the latter, the devices used by the trusted parties are noncharacterized, but the dimensionality of the quantum systems used in the protocol is assumed to be bounded. Our security proof relies on the analogies between one-way QKD, dimension witnesses, and random-access codes.
NASA Astrophysics Data System (ADS)
Alba, David
The nonrelativistic version of the multitemporal quantization scheme of relativistic particles in a family of noninertial frames (see Ref. 1) is defined. At the classical level the description of a family of nonrigid noninertial frames, containing the standard rigidly linear accelerated and rotating ones, is given in the framework of parametrized Galilei theories. Then the multitemporal quantization, in which the gauge variables, describing the noninertial effects, are not quantized but considered as c-number generalized times, is applied to nonrelativistic particles. It is shown that with a suitable ordering there is unitary evolution in all times and that, after the separation of the center-of-mass, it is still possible to identify the inertial bound states. The few existing results of quantization in rigid noninertial frames are recovered as special cases.
Finite-key analysis for measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Song, Ting-Ting; Wen, Qiao-Yan; Guo, Fen-Zhuo; Tan, Xiao-Qing
2012-08-01
The length of signal pulses is finite in practical quantum key distribution. The finite-key analysis of an unconditional quantum key distribution is a burning problem, and the efficient quantum key distribution protocol suitable for practical implementation, measurement-device-independent quantum key distribution (MDI QKD), was proposed very recently. We give the finite-key analysis of MDI QKD, which removes all detector side channels and generates many orders of key rate higher than that of full-device-independent quantum key distribution. The secure bound of the ultimate key rate is obtained under the statistical fluctuations of relative frequency, which can be applied directly to practical threshold detectors with low detection efficiency and highly lossy channels. The bound is evaluated for reasonable values of the observed parameters. The simulation shows that the secure distance is around 10 km when the number of sifted data is 1010. Moreover the secure distance would be much longer in practice because of some simplified treatments used in our paper.
NASA Astrophysics Data System (ADS)
Novotny, M. A.
2014-10-01
In nanostructures with no appreciable scattering, electrons propagate ballistically, and hence have energy-independent total quantum transmission. For an incoming electron of energy E, the probability T (E) of transmission is obtained from the solution of the time-independent Schrödinger equation. Ballistic transport hence corresponds to T (E)=1. We show that there is a wide class of nanostructures with correlated disorder that have T (E)=1 for all propagating modes, even though they can have strong scattering. We call these nanostructures quantum dragons. An exact mathematical mapping for quantum transmission valid for a large class of atomic arrangements is presented within the single-band tight-binding model. Quantum transmission through a nanostructure is exactly mapped onto quantum transmission through a one-dimensional chain. The mapping is applied to carbon nanotubes in the armchair and zigzag configurations, Bethe lattices, conjoined Bethe lattices, Bethe lattices with hopping within each ring, and tubes formed from rectangular and orthorhombic lattices. The mapping shows that tuning tight-binding parameters to particular correlated values gives T (E)=1 for all the systems studied. A quantum dragon has the same electrical conductivity as a ballistic nanodevice, namely, in a four-terminal measurement the electrical resistance is zero, while in a two-terminal measurement for the single-channel case, the electrical conductivity is equal to the conductance quantum G0=2e2/h, where h is Planck's constant and e the electron charge. We find T (E)=1 is ubiquitous but occurs only on particular surfaces in the tight-binding parameter space.
Heralded-qubit amplifiers for practical device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Curty, Marcos; Moroder, Tobias
2011-07-01
Device-independent quantum key distribution does not need a precise quantum mechanical model of employed devices to guarantee security. Despite its beauty, it is still a very challenging experimental task. We compare a recent proposal by Gisin [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.070501 105, 070501 (2010)] to close the detection loophole problem with that of a simpler quantum relay based on entanglement swapping with linear optics. Our full-mode analysis for both schemes confirms that, in contrast to recent beliefs, the second scheme can indeed provide a positive key rate which is even considerably higher than that of the first alternative. The resulting key rates and required detection efficiencies of approximately 95% for both schemes, however, strongly depend on the underlying security proof.
NASA Astrophysics Data System (ADS)
Murta, Gláucia; Ramanathan, Ravishankar; Móller, Natália; Terra Cunha, Marcelo
2016-02-01
Here we study multiplayer linear games, a natural generalization of xor games to multiple outcomes. We generalize a recently proposed efficiently computable bound, in terms of the norm of a game matrix, on the quantum value of two-player games to linear games with n players. As an example, we bound the quantum value of a generalization of the well-known CHSH game to n players and d outcomes. We also apply the bound to show in a simple manner that any nontrivial functional box, that could lead to trivialization of communication complexity in a multiparty scenario, cannot be realized in quantum mechanics. We then present a systematic method to derive device-independent witnesses of genuine tripartite entanglement.
Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B
2014-09-15
Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case. PMID:26466295
Measurement device-independent quantum key distribution with heralded pair coherent state
NASA Astrophysics Data System (ADS)
Chen, Dong; Shang-Hong, Zhao; Lei, Shi
2016-07-01
The original measurement device-independent quantum key distribution is reviewed, and a modified protocol using heralded pair coherent state (HPCS) is proposed to overcome the quantum bit error rate associated with the dark count rate of the detectors in long-distance quantum key distribution. Our simulation indicates that the secure transmission distance can be improved evidently with HPCS owing to the lower probability of vacuum events when compared with weak coherent source scenario, while the secure key rate can be increased with HPCS due to the higher probability of single-photon events when compared with heralded single-photon source scenario. Furthermore, we apply the finite key analysis to the decoy state MDI-QKD with HPCS and obtain a practical key rate.
Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network
NASA Astrophysics Data System (ADS)
Tang, Yan-Lin; Yin, Hua-Lei; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Huang, Ming-Qi; Zhang, Wei-Jun; Chen, Si-Jing; Zhang, Lu; You, Li-Xing; Wang, Zhen; Liu, Yang; Lu, Chao-Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Chen, Teng-Yun; Pan, Jian-Wei
2016-01-01
Quantum cryptography holds the promise to establish an information-theoretically secure global network. All field tests of metropolitan-scale quantum networks to date are based on trusted relays. The security critically relies on the accountability of the trusted relays, which will break down if the relay is dishonest or compromised. Here, we construct a measurement-device-independent quantum key distribution (MDIQKD) network in a star topology over a 200-square-kilometer metropolitan area, which is secure against untrustful relays and against all detection attacks. In the field test, our system continuously runs through one week with a secure key rate 10 times larger than previous results. Our results demonstrate that the MDIQKD network, combining the best of both worlds—security and practicality, constitutes an appealing solution to secure metropolitan communications.
Heralded-qubit amplifiers for practical device-independent quantum key distribution
Curty, Marcos; Moroder, Tobias
2011-07-15
Device-independent quantum key distribution does not need a precise quantum mechanical model of employed devices to guarantee security. Despite its beauty, it is still a very challenging experimental task. We compare a recent proposal by Gisin et al.[Phys. Rev. Lett. 105, 070501 (2010)] to close the detection loophole problem with that of a simpler quantum relay based on entanglement swapping with linear optics. Our full-mode analysis for both schemes confirms that, in contrast to recent beliefs, the second scheme can indeed provide a positive key rate which is even considerably higher than that of the first alternative. The resulting key rates and required detection efficiencies of approximately 95% for both schemes, however, strongly depend on the underlying security proof.
The enhanced measurement-device-independent quantum key distribution with two-intensity decoy states
NASA Astrophysics Data System (ADS)
Zhu, Jian-Rong; Zhu, Feng; Zhou, Xing-Yu; Wang, Qin
2016-06-01
We put forward a new scheme for implementing the measurement-device-independent quantum key distribution (QKD) with weak coherent source, while using only two different intensities. In the new scheme, we insert a beam splitter and a local detector at both Alice's and Bob's side, and then all the triggering and non-triggering signals could be employed to process parameter estimations, resulting in very precise estimations for the two-single-photon contributions. Besides, we compare its behavior with two other often used methods, i.e., the conventional standard three-intensity decoy-state measurement-device-independent QKD and the passive measurement-device-independent QKD. Through numerical simulations, we demonstrate that our new approach can exhibit outstanding characteristics not only in the secure transmission distance, but also in the final key generation rate.
NASA Astrophysics Data System (ADS)
Seshavatharam, U. V. S.; Lakshminarayana, S.
If one is willing to consider the current cosmic microwave back ground temperature as a quantum gravitational effect of the evolving primordial cosmic black hole (universe that constitutes dynamic space-time and exhibits quantum behavior) automatically general theory of relativity and quantum mechanics can be combined into a `scale independent' true unified model of quantum gravity. By considering the `Planck mass' as the initial mass of the baby Hubble volume, past and current physical and thermal parameters of the cosmic black hole can be understood. Current rate of cosmic black hole expansion is being stopped by the microscopic quantum mechanical lengths. In this new direction authors observed 5 important quantum mechanical methods for understanding the current cosmic deceleration. To understand the ground reality of current cosmic rate of expansion, sensitivity and accuracy of current methods of estimating the magnitudes of current CMBR temperature and current Hubble constant must be improved and alternative methods must be developed. If it is true that galaxy constitutes so many stars, each star constitutes so many hydrogen atoms and light is coming from the excited electron of galactic hydrogen atom, then considering redshift as an index of `whole galaxy' receding may not be reasonable. During cosmic evolution, at any time in the past, in hydrogen atom emitted photon energy was always inversely proportional to the CMBR temperature. Thus past light emitted from older galaxy's excited hydrogen atom will show redshift with reference to the current laboratory data. As cosmic time passes, in future, the absolute rate of cosmic expansion can be understood by observing the rate of increase in the magnitude of photon energy emitted from laboratory hydrogen atom. Aged super novae dimming may be due to the effect of high cosmic back ground temperature. Need of new mathematical methods & techniques, computer simulations, advanced engineering skills seem to be essential
Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo
2016-01-01
We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing. PMID:27452275
Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo
2016-01-01
We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing. PMID:27452275
Chen, RuiKe; Bao, WanSu; Zhou, Chun; Li, Hongwei; Wang, Yang; Bao, HaiZe
2016-03-21
In recent years, a large quantity of work have been done to narrow the gap between theory and practice in quantum key distribution (QKD). However, most of them are focus on two-party protocols. Very recently, Yao Fu et al proposed a measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol and proved its security in the limit of infinitely long keys. As a step towards practical application for MDI-QCC, we design a biased decoy-state measurement-device-independent quantum cryptographic conferencing protocol and analyze the performance of the protocol in both the finite-key and infinite-key regime. From numerical simulations, we show that our decoy-state analysis is tighter than Yao Fu et al. That is, we can achieve the nonzero asymptotic secret key rate in long distance with approximate to 200km and we also demonstrate that with a finite size of data (say 10^{11} to 10^{13} signals) it is possible to perform secure MDI-QCC over reasonable distances. PMID:27136849
NASA Astrophysics Data System (ADS)
Qian, Peng; Gu, Zhenjie; Cao, Rong; Wen, Rong; Ou, Z. Y.; Chen, J. F.; Zhang, Weiping
2016-07-01
The temporal purity of single photons is crucial to the indistinguishability of independent photon sources for the fundamental study of the quantum nature of light and the development of photonic technologies. Currently, the technique for single photons heralded from time-frequency entangled biphotons created in nonlinear crystals does not guarantee the temporal-quantum purity, except using spectral filtering. Nevertheless, an entirely different situation is anticipated for narrow-band biphotons with a coherence time far longer than the time resolution of a single-photon detector. Here we demonstrate temporally pure single photons with a coherence time of 100 ns, directly heralded from the time-frequency entangled biphotons generated by spontaneous four-wave mixing in cold atomic ensembles, without any supplemented filters or cavities. A near-perfect purity and indistinguishability are both verified through Hong-Ou-Mandel quantum interference using single photons from two independent cold atomic ensembles. The time-frequency entanglement provides a route to manipulate the pure temporal state of the single-photon source.
Qian, Peng; Gu, Zhenjie; Cao, Rong; Wen, Rong; Ou, Z Y; Chen, J F; Zhang, Weiping
2016-07-01
The temporal purity of single photons is crucial to the indistinguishability of independent photon sources for the fundamental study of the quantum nature of light and the development of photonic technologies. Currently, the technique for single photons heralded from time-frequency entangled biphotons created in nonlinear crystals does not guarantee the temporal-quantum purity, except using spectral filtering. Nevertheless, an entirely different situation is anticipated for narrow-band biphotons with a coherence time far longer than the time resolution of a single-photon detector. Here we demonstrate temporally pure single photons with a coherence time of 100 ns, directly heralded from the time-frequency entangled biphotons generated by spontaneous four-wave mixing in cold atomic ensembles, without any supplemented filters or cavities. A near-perfect purity and indistinguishability are both verified through Hong-Ou-Mandel quantum interference using single photons from two independent cold atomic ensembles. The time-frequency entanglement provides a route to manipulate the pure temporal state of the single-photon source. PMID:27419568
Measurement-device-independent quantum key distribution with pairs of vector vortex beams
NASA Astrophysics Data System (ADS)
Chen, Dong; Zhao, Shang-Hong; Shi, Lei; Liu, Yun
2016-03-01
The vector vortex (VV) beam, originally introduced to exhibit a form of single-particle quantum entanglement between different degrees of freedom, has specific applications for quantum-information protocols. In this paper, by combining measurement-device-independent quantum key distribution (MDIQKD) with a spontaneous parametric-downconversion source (SPDCS), we present a modified MDIQKD scheme with pairs of VV beams, which shows a structure of hybrid entangled entanglement corresponding to intrasystem entanglement and intersystem entanglement. The former entanglement, which is entangled between polarization and orbit angular momentum within each VV beam, is adopted to overcome the polarization misalignment associated with random rotations in quantum key distribution. The latter entanglement, which is entangled between the two VV beams, is used to perform the MDIQKD protocol with SPDCS to inherit the merit of the heralded process. The numerical simulations show that our modified scheme has apparent advances both in transmission distance and key-generation rate compared to the original MDIQKD. Furthermore, our modified protocol only needs to insert q plates in a practical experiment.
NASA Astrophysics Data System (ADS)
Kwon, Osung; Lee, Min-Soo; Woo, Min Ki; Park, Byung Kwon; Kim, Il Young; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung
2015-12-01
We characterized a polarization-independent phase modulation method, called double phase modulation, for a practical plug and play quantum key distribution (QKD) system. Following investigation of theoretical backgrounds, we applied the method to the practical QKD system and characterized the performance through comparing single phase modulation (SPM) and double phase modulation. Consequently, we obtained repeatable and accurate phase modulation confirmed by high visibility single photon interference even for input signals with arbitrary polarization. Further, the results show that only 80% of the bias voltage required in the case of single phase modulation is needed to obtain the target amount of phase modulation.
An enhanced proposal on decoy-state measurement device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Wang, Qin; Zhang, Chun-Hui; Luo, Shunlong; Guo, Guang-Can
2016-06-01
By employing pulses involving three-intensity, we propose a scheme for the measurement device-independent quantum key distribution with heralded single-photon sources. We make a comparative study of this scheme with the standard three-intensity decoy-state scheme using weak coherent sources or heralded single-photon sources. The advantage of this scheme is illustrated through numerical simulations: It can approach very closely the asymptotic case of using an infinite number of decoy-states and exhibits excellent behavior in both the secure transmission distance and the final key generation rate.
Making the decoy-state measurement-device-independent quantum key distribution practically useful
NASA Astrophysics Data System (ADS)
Zhou, Yi-Heng; Yu, Zong-Wen; Wang, Xiang-Bin
2016-04-01
The relatively low key rate seems to be the major barrier to its practical use for the decoy-state measurement-device-independent quantum key distribution (MDI-QKD). We present a four-intensity protocol for the decoy-state MDI-QKD that hugely raises the key rate, especially in the case in which the total data size is not large. Also, calculations show that our method makes it possible for secure private communication with fresh keys generated from MDI-QKD with a delay time of only a few seconds.
Pitkanen, David; Ma Xiongfeng; Luetkenhaus, Norbert; Wickert, Ricardo; Loock, Peter van
2011-08-15
We present an efficient way of heralding photonic qubit signals using linear optics devices. First, we show that one can obtain asymptotically perfect heralding and unit success probability with growing resources. Second, we show that even using finite resources, we can improve qualitatively and quantitatively over earlier heralding results. In the latter scenario, we can obtain perfect heralded photonic qubits while maintaining a finite success probability. We demonstrate the advantage of our heralding scheme by predicting key rates for device-independent quantum key distribution, taking imperfections of sources and detectors into account.
Getting something out of nothing in the measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Tan, Yong-Gang; Cai, Qing-Yu; Yang, Hai-Feng; Hu, Yao-Hua
2015-11-01
Because of the monogamy of entanglement, the measurement-device-independent quantum key distribution is immune to the side-information leaking of the measurement devices. When the correlated measurement outcomes are generated from the dark counts, no entanglement is actually obtained. However, secure key bits can still be proven to be generated from these measurement outcomes. Especially, we will give numerical studies on the contributions of dark counts to the key generation rate in practical decoy state MDI-QKD where a signal source, a weaker decoy source and a vacuum decoy source are used by either legitimate key distributer.
Loss-tolerant measurement-device-independent quantum random number generation
NASA Astrophysics Data System (ADS)
Cao, Zhu; Zhou, Hongyi; Ma, Xiongfeng
2015-12-01
Quantum random number generators (QRNGs) output genuine random numbers based upon the uncertainty principle. A QRNG contains two parts in general—a randomness source and a readout detector. How to remove detector imperfections has been one of the most important questions in practical randomness generation. We propose a simple solution, measurement-device-independent QRNG, which not only removes all detector side channels but is robust against losses. In contrast to previous fully device-independent QRNGs, our scheme does not require high detector efficiency or nonlocality tests. Simulations show that our protocol can be implemented efficiently with a practical coherent state laser and other standard optical components. The security analysis of our QRNG consists mainly of two parts: measurement tomography and randomness quantification, where several new techniques are developed to characterize the randomness associated with a positive-operator valued measure.
NASA Astrophysics Data System (ADS)
Ferreira da Silva, T.; Vitoreti, D.; Xavier, G. B.; do Amaral, G. C.; Temporão, G. P.; von der Weid, J. P.
2013-11-01
We perform a proof-of-principle demonstration of the measurement-device-independent quantum key distribution protocol using weak coherent states and polarization-encoded qubits over two optical fiber links of 8.5 km each. Each link was independently stabilized against polarization drifts using a full-polarization control system employing two wavelength-multiplexed control channels. A linear-optics-based polarization Bell-state analyzer was built into the intermediate station, Charlie, which is connected to both Alice and Bob via the optical fiber links. Using decoy states, a lower bound for the secret-key generation rate of 1.04×10-6 bits/pulse is computed.
A monogamy-of-entanglement game with applications to device-independent quantum cryptography
NASA Astrophysics Data System (ADS)
Tomamichel, Marco; Fehr, Serge; Kaniewski, Jędrzej; Wehner, Stephanie
2013-10-01
We consider a game in which two separate laboratories collaborate to prepare a quantum system and are then asked to guess the outcome of a measurement performed by a third party in a random basis on that system. Intuitively, by the uncertainty principle and the monogamy of entanglement, the probability that both players simultaneously succeed in guessing the outcome correctly is bounded. We are interested in the question of how the success probability scales when many such games are performed in parallel. We show that any strategy that maximizes the probability to win every game individually is also optimal for the parallel repetition of the game. Our result implies that the optimal guessing probability can be achieved without the use of entanglement. We explore several applications of this result. Firstly, we show that it implies security for standard BB84 quantum key distribution when the receiving party uses fully untrusted measurement devices, i.e. we show that BB84 is one-sided device independent. Secondly, we show how our result can be used to prove security of a one-round position-verification scheme. Finally, we generalize a well-known uncertainty relation for the guessing probability to quantum side information.
Long distance measurement-device-independent quantum key distribution with entangled photon sources
Xu, Feihu; Qi, Bing; Liao, Zhongfa; Lo, Hoi-Kwong
2013-08-05
We present a feasible method that can make quantum key distribution (QKD), both ultra-long-distance and immune, to all attacks in the detection system. This method is called measurement-device-independent QKD (MDI-QKD) with entangled photon sources in the middle. By proposing a model and simulating a QKD experiment, we find that MDI-QKD with one entangled photon source can tolerate 77 dB loss (367 km standard fiber) in the asymptotic limit and 60 dB loss (286 km standard fiber) in the finite-key case with state-of-the-art detectors. Our general model can also be applied to other non-QKD experiments involving entanglement and Bell state measurements.
Note: A pure-sampling quantum Monte Carlo algorithm with independent Metropolis
NASA Astrophysics Data System (ADS)
Vrbik, Jan; Ospadov, Egor; Rothstein, Stuart M.
2016-07-01
Recently, Ospadov and Rothstein published a pure-sampling quantum Monte Carlo algorithm (PSQMC) that features an auxiliary Path Z that connects the midpoints of the current and proposed Paths X and Y, respectively. When sufficiently long, Path Z provides statistical independence of Paths X and Y. Under those conditions, the Metropolis decision used in PSQMC is done without any approximation, i.e., not requiring microscopic reversibility and without having to introduce any G(x → x'; τ) factors into its decision function. This is a unique feature that contrasts with all competing reptation algorithms in the literature. An example illustrates that dependence of Paths X and Y has adverse consequences for pure sampling.
Measurement-device-independent quantum key distribution with a passive decoy-state method
NASA Astrophysics Data System (ADS)
Shan, Yu-Zhu; Sun, Shi-Hai; Ma, Xiang-Chun; Jiang, Mu-Sheng; Zhou, Yan-Li; Liang, Lin-Mei
2014-10-01
Measurement-device-independent quantum key distribution (MDI-QKD) can remove all detector loopholes. When it is combined with the decoy-state method, the final key is unconditionally secure, even if Alice and Bob do not have strict single-photon sources. However, active modulation of source intensity, which is used to generate the decoy state, may leave side channels and leak additional information to Eve. In this paper, we consider the MDI-QKD with a passive decoy state, in which both Alice and Bob send pulses to an untrusted third party, Charlie. Then, in order to estimate the key generation rate, we derive two tight formulas to estimate the lower bound of the yield and the upper bound of the error rate that both Alice and Bob send a single-photon pulse to Charlie. Furthermore, the statistical fluctuation due to the finite length of data is also taken into account based on the standard statistical analysis.
NASA Astrophysics Data System (ADS)
Nagamatsu, Yuichi; Mizutani, Akihiro; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki; Tamaki, Kiyoshi
2016-04-01
Although quantum key distribution (QKD) is theoretically secure, there is a gap between the theory and practice. In fact, real-life QKD may not be secure because component devices in QKD systems may deviate from the theoretical models assumed in security proofs. To solve this problem, it is necessary to construct the security proof under realistic assumptions on the source and measurement unit. In this paper, we prove the security of a QKD protocol under practical assumptions on the source that accommodate fluctuation of the phase and intensity modulations. As long as our assumptions hold, it does not matter at all how the phase and intensity distribute or whether or not their distributions over different pulses are independently and identically distributed. Our work shows that practical sources can be safely employed in QKD experiments.
NASA Astrophysics Data System (ADS)
Tamaki, Kiyoshi; Lo, Hoi-Kwong; Fung, Chi-Hang Fred; Qi, Bing
2012-04-01
In this paper, we study the unconditional security of the so-called measurement-device-independent quantum key distribution (MDIQKD) with the basis-dependent flaw in the context of phase encoding schemes. We propose two schemes for the phase encoding: The first one employs a phase locking technique with the use of non-phase-randomized coherent pulses, and the second one uses conversion of standard Bennett-Brassard 1984 (BB84) phase encoding pulses into polarization modes. We prove the unconditional security of these schemes and we also simulate the key generation rate based on simple device models that accommodate imperfections. Our simulation results show the feasibility of these schemes with current technologies and highlight the importance of the state preparation with good fidelity between the density matrices in the two bases. Since the basis-dependent flaw is a problem not only for MDIQKD but also for standard quantum key distribution (QKD), our work highlights the importance of an accurate signal source in practical QKD systems.
Experimental measurement-device-independent quantum key distribution with imperfect sources
NASA Astrophysics Data System (ADS)
Tang, Zhiyuan; Wei, Kejin; Bedroya, Olinka; Qian, Li; Lo, Hoi-Kwong
2016-04-01
Measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks, is the most promising solution to the security issues in practical quantum key distribution systems. Although several experimental demonstrations of MDI-QKD have been reported, they all make one crucial but not yet verified assumption, that is, there are no flaws in state preparation. Such an assumption is unrealistic and security loopholes remain in the source. Here we present a MDI-QKD experiment with the modulation error taken into consideration. By applying the loss-tolerant security proof by Tamaki et al. [Phys. Rev. A 90, 052314 (2014)], 10.1103/PhysRevA.90.052314, we distribute secure keys over fiber links up to 40 km with imperfect sources, which would not have been possible under previous security proofs. By simultaneously closing loopholes at the detectors and a critical loophole—modulation error in the source, our work shows the feasibility of secure QKD with practical imperfect devices.
Guta, Madalin; Bowles, Peter; Adesso, Gerardo
2010-10-15
A successful state-transfer (or teleportation) experiment must perform better than the benchmark set by the 'best' measure and prepare procedure. We consider the benchmark problem for the following families of states: (i) displaced thermal equilibrium states of a given temperature; (ii) independent identically prepared qubits with a completely unknown state. For the first family we show that the optimal procedure is heterodyne measurement followed by the preparation of a coherent state. This procedure was known to be optimal for coherent states and for squeezed states with the 'overlap fidelity' as the figure of merit. Here, we prove its optimality with respect to the trace norm distance and supremum risk. For the second problem we consider n independent and identically distributed (i.i.d.) spin-(1/2) systems in an arbitrary unknown state {rho} and look for the measurement-preparation pair (M{sub n},P{sub n}) for which the reconstructed state {omega}{sub n}:=P{sub n} circle M{sub n}({rho}{sup xn}) is as close as possible to the input state (i.e., parallel {omega}{sub n}-{rho}{sup xn} parallel {sub 1} is small). The figure of merit is based on the trace norm distance between the input and output states. We show that asymptotically with n this problem is equivalent to the first one. The proof and construction of (M{sub n},P{sub n}) uses the theory of local asymptotic normality developed for state estimation which shows that i.i.d. quantum models can be approximated in a strong sense by quantum Gaussian models. The measurement part is identical to 'optimal estimation', showing that 'benchmarking' and estimation are closely related problems in the asymptotic set up.
Detector-device-independent quantum key distribution: Security analysis and fast implementation
NASA Astrophysics Data System (ADS)
Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; Boso, Gianluca; Lim, Charles Ci Wen; Martin, Anthony; Zbinden, Hugo
2016-08-01
One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant "time-reversal" QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. However, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) has been proposed to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. Here, we analyze the security of DDI-QKD and elucidate its security assumptions. We find that DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman
2015-01-01
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman
2015-01-01
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280
NASA Astrophysics Data System (ADS)
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman
2015-10-01
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.
Wu, Feng; Ren, Yinghui; Bian, Wensheng
2016-08-21
The accurate time-independent quantum dynamics calculations on the ground-state tunneling splitting of malonaldehyde in full dimensionality are reported for the first time. This is achieved with an efficient method developed by us. In our method, the basis functions are customized for the hydrogen transfer process which has the effect of greatly reducing the size of the final Hamiltonian matrix, and the Lanczos method and parallel strategy are used to further overcome the memory and central processing unit time bottlenecks. The obtained ground-state tunneling splitting of 24.5 cm(-1) is in excellent agreement with the benchmark value of 23.8 cm(-1) computed with the full-dimensional, multi-configurational time-dependent Hartree approach on the same potential energy surface, and we estimate that our reported value has an uncertainty of less than 0.5 cm(-1). Moreover, the role of various vibrational modes strongly coupled to the hydrogen transfer process is revealed. PMID:27544107
Practical decoy-state measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Sun, Shi-Hai; Gao, Ming; Li, Chun-Yan; Liang, Lin-Mei
2013-05-01
Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all the detection attacks; thus when it is combined with the decoy-state method, the final key is unconditionally secure, even if a practical weak coherent source is used by Alice and Bob. However, until now, the analysis of decoy-state MDI-QKD with a weak coherent source is incomplete. In this paper, we derive, with only vacuum+weak decoy state, some tight formulas to estimate the lower bound of yield and the upper bound of error rate for the fraction of signals in which both Alice and Bob send a single-photon pulse to the untrusted third party Charlie. The numerical simulations show that our method with only vacuum+weak decoy state can asymptotically approach the theoretical limit of the infinite number of decoy states. Furthermore, the statistical fluctuation due to the finite length of date is also considered based on the standard statistical analysis.
Measurement-device-independent quantum key distribution with heralded pair coherent state
NASA Astrophysics Data System (ADS)
Wang, Xiang; Wang, Yang; Chen, Rui-Ke; Zhou, Chun; Li, Hong-Wei; Bao, Wan-Su
2016-06-01
Measurement-device-independent QKD (MDI-QKD) can solve security loophole problems brought by imperfections of detectors and provide enhanced practical security compared to traditional QKD. We propose an active-passive-combined decoy state MDI-QKD protocol with heralded pair coherent state (HPCS) source. By calculating the lower bound of the single-photon counting rate and the upper bound of the single-photon error rate, we present formulas of the secure key rate in our protocol. Based on the linear lossy channel model, we present calculation methods of estimating the overall gain and quantum bit error rate for HPCS source with full phase randomization. We numerically compare secure key rates for different decoy MDI-QKD protocol with different sources. The result shows that the active-passive-combined decoy state MDI-QKD protocol with HPCS source has certain superiority in the secure key rate. It can provide an important theoretical reference for practical implementations of MDI-QKD.
NASA Astrophysics Data System (ADS)
Wang, Le; Zhao, Sheng-Mei; Gong, Long-Yan; Cheng, Wei-Wen
2015-12-01
In this paper, we propose a measurement-device-independent quantum-key-distribution (MDI-QKD) protocol using orbital angular momentum (OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol, the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie’s successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover, the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence (AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), the Natural Science Research Foundation for Universities of Jiangsu Province of China (Grant No. 11KJA510002), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), and the
NASA Astrophysics Data System (ADS)
Zhou, Xing-Yu; Zhang, Chun-Hui; Guo, Guang-Can; Wang, Qin
2016-06-01
In this paper, we carry out statistical fluctuation analysis for the new proposed measurement-device-independent quantum key distribution with heralded single-photon sources and further compare its performance with the mostly often used light sources, i.e., the weak coherent source. Due to a significantly lower probability for events with two photons present on the same side of the beam splitter in former than in latter, it gives drastically reduced quantum bit error rate in the X basis and can thus show splendid behavior in real-life implementations even when taking statistical fluctuations into account.
Bowles, Joseph; Quintino, Marco Túlio; Brunner, Nicolas
2014-04-11
We consider the problem of testing the dimension of uncharacterized classical and quantum systems in a prepare-and-measure setup. Here we assume the preparation and measurement devices to be independent, thereby making the problem nonconvex. We present a simple method for generating nonlinear dimension witnesses for systems of arbitrary dimension. The simplest of our witnesses is highly robust to technical imperfections, and can certify the use of qubits in the presence of arbitrary noise and arbitrarily low detection efficiency. Finally, we show that this witness can be used to certify the presence of randomness, suggesting applications in quantum information processing. PMID:24765929
Quantum-Classical Nonadiabatic Dynamics: Coupled- vs Independent-Trajectory Methods.
Agostini, Federica; Min, Seung Kyu; Abedi, Ali; Gross, E K U
2016-05-10
Trajectory-based mixed quantum-classical approaches to coupled electron-nuclear dynamics suffer from well-studied problems such as the lack of (or incorrect account for) decoherence in the trajectory surface hopping method and the inability of reproducing the spatial splitting of a nuclear wave packet in Ehrenfest-like dynamics. In the context of electronic nonadiabatic processes, these problems can result in wrong predictions for quantum populations and in unphysical outcomes for the nuclear dynamics. In this paper, we propose a solution to these issues by approximating the coupled electronic and nuclear equations within the framework of the exact factorization of the electron-nuclear wave function. We present a simple quantum-classical scheme based on coupled classical trajectories and test it against the full quantum mechanical solution from wave packet dynamics for some model situations which represent particularly challenging problems for the above-mentioned traditional methods. PMID:27030209
Ge, Shuaipeng; Zhang, Lisheng; Wang, Peijie; Fang, Yan
2016-01-01
Nanoscale phosphorene quantum dots (PQDs) with few-layer structures were fabricated by pulsed laser ablation of a bulk black phosphorus target in diethyl ether. An intense and stable photoluminescence (PL) emission of the PQDs in the blue-violet wavelength region is clearly observed for the first time, which is attributed to electronic transitions from the lowest unoccupied molecular orbital (LUMO) to the highest occupied molecular orbital (HOMO) and occupied molecular orbitals below the HOMO (H-1, H-2), respectively. Surprisingly, the PL emission peak positions of the PQDs are not red-shifted with progressively longer excitation wavelengths, which is in contrast to the cases of graphene and molybdenum disulphide quantum dots. This excitation wavelength-independence is derived from the saturated passivation on the periphery and surfaces of the PQDs by large numbers of electron-donating functional groups which cause the electron density on the PQDs to be dramatically increased and the band gap to be insensitive to the quantum size effect in the PQDs. This work suggests that PQDs with intense, stable and excitation wavelength-independent PL emission in the blue-violet region have a potential application as semiconductor-based blue-violet light irradiation sources. PMID:27265198
Ge, Shuaipeng; Zhang, Lisheng; Wang, Peijie; Fang, Yan
2016-01-01
Nanoscale phosphorene quantum dots (PQDs) with few-layer structures were fabricated by pulsed laser ablation of a bulk black phosphorus target in diethyl ether. An intense and stable photoluminescence (PL) emission of the PQDs in the blue-violet wavelength region is clearly observed for the first time, which is attributed to electronic transitions from the lowest unoccupied molecular orbital (LUMO) to the highest occupied molecular orbital (HOMO) and occupied molecular orbitals below the HOMO (H-1, H-2), respectively. Surprisingly, the PL emission peak positions of the PQDs are not red-shifted with progressively longer excitation wavelengths, which is in contrast to the cases of graphene and molybdenum disulphide quantum dots. This excitation wavelength-independence is derived from the saturated passivation on the periphery and surfaces of the PQDs by large numbers of electron-donating functional groups which cause the electron density on the PQDs to be dramatically increased and the band gap to be insensitive to the quantum size effect in the PQDs. This work suggests that PQDs with intense, stable and excitation wavelength-independent PL emission in the blue-violet region have a potential application as semiconductor-based blue-violet light irradiation sources. PMID:27265198
NASA Astrophysics Data System (ADS)
Ge, Shuaipeng; Zhang, Lisheng; Wang, Peijie; Fang, Yan
2016-06-01
Nanoscale phosphorene quantum dots (PQDs) with few-layer structures were fabricated by pulsed laser ablation of a bulk black phosphorus target in diethyl ether. An intense and stable photoluminescence (PL) emission of the PQDs in the blue-violet wavelength region is clearly observed for the first time, which is attributed to electronic transitions from the lowest unoccupied molecular orbital (LUMO) to the highest occupied molecular orbital (HOMO) and occupied molecular orbitals below the HOMO (H-1, H-2), respectively. Surprisingly, the PL emission peak positions of the PQDs are not red-shifted with progressively longer excitation wavelengths, which is in contrast to the cases of graphene and molybdenum disulphide quantum dots. This excitation wavelength-independence is derived from the saturated passivation on the periphery and surfaces of the PQDs by large numbers of electron-donating functional groups which cause the electron density on the PQDs to be dramatically increased and the band gap to be insensitive to the quantum size effect in the PQDs. This work suggests that PQDs with intense, stable and excitation wavelength-independent PL emission in the blue-violet region have a potential application as semiconductor-based blue-violet light irradiation sources.
Wang, Dong; Li, Mo; Guo, Guang-Can; Wang, Qin
2015-01-01
Quantum key distribution involving decoy-states is a significant application of quantum information. By using three-intensity decoy-states of single-photon-added coherent sources, we propose a practically realizable scheme on quantum key distribution which approaches very closely the ideal asymptotic case of an infinite number of decoy-states. We make a comparative study between this scheme and two other existing ones, i.e., two-intensity decoy-states with single-photon-added coherent sources, and three-intensity decoy-states with weak coherent sources. Through numerical analysis, we demonstrate the advantages of our scheme in secure transmission distance and the final key generation rate. PMID:26463580
An improved scheme on decoy-state method for measurement-device-independent quantum key distribution
Wang, Dong; Li, Mo; Guo, Guang-Can; Wang, Qin
2015-01-01
Quantum key distribution involving decoy-states is a significant application of quantum information. By using three-intensity decoy-states of single-photon-added coherent sources, we propose a practically realizable scheme on quantum key distribution which approaches very closely the ideal asymptotic case of an infinite number of decoy-states. We make a comparative study between this scheme and two other existing ones, i.e., two-intensity decoy-states with single-photon-added coherent sources, and three-intensity decoy-states with weak coherent sources. Through numerical analysis, we demonstrate the advantages of our scheme in secure transmission distance and the final key generation rate. PMID:26463580
Zhu, Qiangzhong; Zheng, Shupei; Lin, Shijie; Liu, Tian-Ran; Jin, Chongjun
2014-07-01
We have fabricated gold (Au) elliptical nanodisc (ND) arrays via three-beam interference lithography and electron beam deposition of gold. The enhanced photoluminescence intensity and emission rate of quantum dots (QDs) near to the Au elliptical NDs have been studied by tuning the nearest distance between quantum dots and Au elliptical NDs. We found that the photoluminescence intensity is polarization-dependent with the degree of polarization being equal to that of the light extinction of the Au elliptical NDs, while the emission rate is polarization-independent. This is resulted from the plasmon-coupled emission via the coupling between the QD dipole and the plasmon nano-antenna. Our experiments fully confirm the evidence of the plasmophore concept proposed recently in the interaction of the QDs with metal nanoparticles. PMID:24898688
Liu, Shihao; Liu, Wenbo; Ji, Wenyu; Yu, Jing; Zhang, Wei; Zhang, Letian; Xie, Wenfa
2016-01-01
Recent breakthroughs in quantum dot light-emitting devices (QD-LEDs) show their promise in the development of next-generation displays. However, the QD-LED with conventional ITO-based bottom emission structure is difficult to realize the high aperture ratio, electricfield-independent emission and flexible full-color displays. Hence, we demonstrate top-emitting QD-LEDs with dry microcontact printing quantum dot films. The top-emitting structure is proved to be able to accelerate the excitons radiative transition rate, then contributing to stable electroluminescent efficiency with a very low roll-off, and preventing spectra from shifting and broadening with the electric field increases. The results suggest potential routes towards creating high aperture ratio, wide color gamut, color-stable and flexible QD-LED displays. PMID:26932521
NASA Astrophysics Data System (ADS)
Liu, Shihao; Liu, Wenbo; Ji, Wenyu; Yu, Jing; Zhang, Wei; Zhang, Letian; Xie, Wenfa
2016-03-01
Recent breakthroughs in quantum dot light-emitting devices (QD-LEDs) show their promise in the development of next-generation displays. However, the QD-LED with conventional ITO-based bottom emission structure is difficult to realize the high aperture ratio, electricfield-independent emission and flexible full-color displays. Hence, we demonstrate top-emitting QD-LEDs with dry microcontact printing quantum dot films. The top-emitting structure is proved to be able to accelerate the excitons radiative transition rate, then contributing to stable electroluminescent efficiency with a very low roll-off, and preventing spectra from shifting and broadening with the electric field increases. The results suggest potential routes towards creating high aperture ratio, wide color gamut, color-stable and flexible QD-LED displays.
Liu, Shihao; Liu, Wenbo; Ji, Wenyu; Yu, Jing; Zhang, Wei; Zhang, Letian; Xie, Wenfa
2016-01-01
Recent breakthroughs in quantum dot light-emitting devices (QD-LEDs) show their promise in the development of next-generation displays. However, the QD-LED with conventional ITO-based bottom emission structure is difficult to realize the high aperture ratio, electricfield-independent emission and flexible full-color displays. Hence, we demonstrate top-emitting QD-LEDs with dry microcontact printing quantum dot films. The top-emitting structure is proved to be able to accelerate the excitons radiative transition rate, then contributing to stable electroluminescent efficiency with a very low roll-off, and preventing spectra from shifting and broadening with the electric field increases. The results suggest potential routes towards creating high aperture ratio, wide color gamut, color-stable and flexible QD-LED displays. PMID:26932521
NASA Astrophysics Data System (ADS)
Oriti, Daniele
2009-03-01
Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and
Bouchard, A.M.
1994-07-27
This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices.
The sensitivity analysis of propagator for path independent quantum finance model
NASA Astrophysics Data System (ADS)
Kim, Min Jae; Hwang, Dong Il; Lee, Sun Young; Kim, Soo Yong
2011-03-01
Quantum finance successfully implements the imperfectly correlated fluctuation of forward interest rates at different maturities, by replacing the Wiener process with a two-dimensional quantum field. Interest rate derivatives can be priced at a more realistic value under this new framework. The quantum finance model requires three main ingredients for pricing: the initial forward interest rates, the volatility of forward interest rates, and the correlation of forward interest rates at different maturities. However, the hedging strategy only focused on fluctuation of forward interest rates. This hedging method is based on the assumption that the propagator, the covariance of forward interest rates, has an ergodic property. Since inserting the propagator is the main characteristic that distinguishes quantum finance from the Libor market model (LMM) and the Heath, Jarrow and Morton (HJM) model, understanding the impact of propagator dynamics on the price of interest rate derivatives is crucial. This research is the first step in developing a hedge strategy with respect to the evolution of the propagator. We analyze the dynamics of the propagator from Libor futures data and the integrated propagator from zero-coupon bond rate data. Then we study the sensitivity of the implied volatility of caplets and swaptions according to the three dominant dynamics of the propagator, and the change of the zero-coupon bond option price according to the two dominant dynamics of the integrated propagator.
Design of columnar quantum dots for polarization-independent emission using 8-band k·p method
NASA Astrophysics Data System (ADS)
Andrzejewski, J.; Sęk, G.; O'Reilly, E.; Fiore, A.; Misiewicz, J.
2010-09-01
Control of the polarization of the emitted light can be highly beneficial for certain optoelectronic applications such as optical amplifiers. It has been recently demonstrated experimentally that semiconductor quantum dots with large height to base length aspect ratio are able to emit polarization-independent light from the edge of the wafer. However, analysis of the physics responsible for the observed polarization properties of such nano-objects (like columnar quantum dots or quantum rods) is still rather limited. In particular, the role of the material surrounding the columnar QD on the strain and thus on the polarization properties has not been considered previously. We report here, based on original software, the results of eight-band k·p calculations of the electronic and polarization properties of columnar InyGa1-yAs quantum dots (CQD) with high aspect ratio (up to 6) embedded in an InxGa1-xAs/GaAs quantum well. We calculate the relative intensities of transverse-magnetic (TM) and transverse-electric (TE) linear polarized light emitted from the edge of the semiconductor wafer as a function of the two main factors affecting the heavy hole - light hole valence band mixing and hence the polarization dependent selection rules for the optical transitions, namely i) the composition contrast y/x between the dot material and the surrounding well, and ii) the dot aspect ratio. Our numerical results show, in contrast to the previously reported expectations, that the former is the main driving parameter for tuning the polarization properties. This is explained analyzing the biaxial strain in the CQD, based on which it is possible to predict on the TM to TE intensity ratio.
Ciufolini, Ignazio
2007-09-01
The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth. PMID:17805287
NASA Astrophysics Data System (ADS)
Cufaro-Petroni, N.; Dewdney, C.; Holland, P.; Kyprianidis, T.; Vigier, J. P.
1985-09-01
The deduction by Guerra and Marra of the usual quantum operator algebra from a canonical variable Hamiltonian treatment of Nelson's hydrodynamical stochastic description of real nonrelativistic Schrödinger waves is extended to the causal stochastic interpretation given by Guerra and Ruggiero and by Vigier of relativistic Klein-Gordon waves. A specific representation shows that the Poisson brackets for canonical hydrodynamical observables become ``averages'' of quantum observables in the given state. Stochastic quantization thus justifies the standard procedure of replacing the classical particle (or field) observables with operators according to the scheme pμ-->-iħ∂μ and Lμν-->-iħ(xμ∂ν-xν∂μ).
NASA Astrophysics Data System (ADS)
Zhang, Chun-Mei; Li, Mo; Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Dong; Huang, Jing-Zheng; Han, Yun-Guang; Xu, Man-Li; Chen, Wei; Wang, Shuang; Treeviriyanupab, Patcharapong; Guo, Guang-Can; Han, Zheng-Fu
2014-09-01
The measurement-device-independent quantum key distribution (MDI-QKD) protocol is proposed to remove the detector side channel attacks, while its security relies on the assumption that the encoding systems are perfectly characterized. In contrast, the MDI-QKD protocol based on the Clauser-Horne-Shimony-Holt inequality (CHSH-MDI-QKD) weakens this assumption, which only requires the quantum state to be prepared in the two-dimensional Hilbert space and the devices are independent. In experimental realizations, the weak coherent state, which is always used in QKD systems due to the lack of an ideal single-photon source, may be prepared in the high-dimensional space. In this paper, we investigate the decoy-state CHSH-MDI-QKD protocol with s (3≤s≤5) intensities, including one signal state and s -1 decoy states, and we also consider the finite-size effect on the decoy-state CHSH-MDI-QKD protocol with five intensities. Simulation results show that this scheme is very practical.
Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray
2012-05-01
We explore, in the quantum regime, the stochastic dynamics of a time-periodic, rapidly oscillating potential (having a characteristic frequency of ω) within the framework of a time-dependent system-reservoir Hamiltonian. We invoke the idea of a quantum gauge transformation in light of the standard Floquet theorem in an attempt to construct a Langevin equation (bearing a time-independent effective potential) by employing a systematic perturbative expansion in powers of ω^{-1} using the natural time-scale separation. The time-independent effective potential (corrected to ω^{-2} in leading order) that acts on the slow motion of the driven particle can be employed for trapping. We proceed further to evaluate the rate of escape of the driven particle from the metastable state in the high-temperature limit. We also envisage a resonance phenomena, a true hallmark of the system-reservoir quantization. This development would thus serve as a model template to investigate the trapping mechanism, as well as an appropriate analog to understand the dynamics of a fluctuation-induced escape process from the trap. PMID:23004698
NASA Astrophysics Data System (ADS)
Zhu, Qiangzhong; Zheng, Shupei; Lin, Shijie; Liu, Tian-Ran; Jin, Chongjun
2014-06-01
We have fabricated gold (Au) elliptical nanodisc (ND) arrays via three-beam interference lithography and electron beam deposition of gold. The enhanced photoluminescence intensity and emission rate of quantum dots (QDs) near to the Au elliptical NDs have been studied by tuning the nearest distance between quantum dots and Au elliptical NDs. We found that the photoluminescence intensity is polarization-dependent with the degree of polarization being equal to that of the light extinction of the Au elliptical NDs, while the emission rate is polarization-independent. This is resulted from the plasmon-coupled emission via the coupling between the QD dipole and the plasmon nano-antenna. Our experiments fully confirm the evidence of the plasmophore concept proposed recently in the interaction of the QDs with metal nanoparticles.We have fabricated gold (Au) elliptical nanodisc (ND) arrays via three-beam interference lithography and electron beam deposition of gold. The enhanced photoluminescence intensity and emission rate of quantum dots (QDs) near to the Au elliptical NDs have been studied by tuning the nearest distance between quantum dots and Au elliptical NDs. We found that the photoluminescence intensity is polarization-dependent with the degree of polarization being equal to that of the light extinction of the Au elliptical NDs, while the emission rate is polarization-independent. This is resulted from the plasmon-coupled emission via the coupling between the QD dipole and the plasmon nano-antenna. Our experiments fully confirm the evidence of the plasmophore concept proposed recently in the interaction of the QDs with metal nanoparticles. Electronic supplementary information (ESI) available: The thickness of the Al2O3 layer with different cycle numbers; SEM image of the Au ND array covered with QDs; the electric field distribution of the Au elliptical ND at two LSPR wavelengths; the emission properties of the QD-ND hybrid system with the excitation light of
Extending quantum control of time-independent systems to time-dependent systems
Wang Zhenyu; Liu Renbao
2011-06-15
We establish that if a scheme can control a time-independent system arbitrarily coupled to a generic finite bath over a short period of time T with control precision O(T{sup N+1}), it can also realize the control with the same order of precision on smoothly time-dependent systems. This result extends the validity of various universal dynamical control schemes to arbitrary analytically time-dependent systems.
NASA Astrophysics Data System (ADS)
Delben, G. J.; da Luz, M. G. E.
2016-05-01
Here we propose a tracking quantum control protocol for arbitrary N-level systems. The goal is to make the expected value of an observable O to follow a predetermined trajectory S( t). For so, we drive the quantum state |\\varPsi (t) rangle evolution through an external potential V which depends on M_V tunable parameters (e.g., the amplitude and phase (thus M_V = 2) of a laser field in the dipolar condition). At instants t_n, these parameters can be rapidly switched to specific values and then kept constant during time intervals Δ t. The method determines which sets of parameters values can result in < \\varPsi (t) | O |\\varPsi (t) rangle = S(t). It is numerically robust (no intrinsic divergences) and relatively fast since we need to solve only nonlinear algebraic (instead of a system of coupled nonlinear differential) equations to obtain the parameters at the successive Δ t's. For a given S( t), the required minimum M_V = M_min 'degrees of freedom' of V attaining the control is a good figure of merit of the problem difficulty. For instance, the control cannot be unconditionally realizable if M_{min } > 2 and V is due to a laser field (the usual context in real applications). As it is discussed and exemplified, in these cases a possible procedure is to relax the control in certain problematic (but short) time intervals. Finally, when existing the approach can systematically access distinct possible solutions, thereby allowing a relatively simple way to search for the best implementation conditions. Illustrations for 3-, 4-, and 5-level systems and some comparisons with calculations in the literature are presented.
Experimental Quantum Error Detection
Jin, Xian-Min; Yi, Zhen-Huan; Yang, Bin; Zhou, Fei; Yang, Tao; Peng, Cheng-Zhi
2012-01-01
Faithful transmission of quantum information is a crucial ingredient in quantum communication networks. To overcome the unavoidable decoherence in a noisy channel, to date, many efforts have been made to transmit one state by consuming large numbers of time-synchronized ancilla states. However, such huge demands of quantum resources are hard to meet with current technology and this restricts practical applications. Here we experimentally demonstrate quantum error detection, an economical approach to reliably protecting a qubit against bit-flip errors. Arbitrary unknown polarization states of single photons and entangled photons are converted into time bins deterministically via a modified Franson interferometer. Noise arising in both 10 m and 0.8 km fiber, which induces associated errors on the reference frame of time bins, is filtered when photons are detected. The demonstrated resource efficiency and state independence make this protocol a promising candidate for implementing a real-world quantum communication network. PMID:22953047
Reeder, Blaine; Meyer, Ellen; Lazar, Amanda; Chaudhuri, Shomir; Thompson, Hilaire J.; Demiris, George
2013-01-01
Introduction There is a critical need for public health interventions to support the independence of older adults as the world’s population ages. Health smart homes (HSH) and home-based consumer health (HCH) technologies may play a role in these interventions. Methods We conducted a systematic review of HSH and HCH literature from indexed repositories for health care and technology disciplines (e.g., MEDLINE, CINAHL, and IEEE Xplore) and classified included studies according to an evidence-based public health (EBPH) typology. Results One thousand, six hundred and thirty nine candidate articles were identified. Thirty-one studies from the years 1998–2011 were included. Twenty-one included studies were classified as emerging, 10 as promising and 3 as effective (first tier). Conclusion The majority of included studies were published in the period beginning in the year 2005. All 3 effective (first tier) studies and 9 of 10 of promising studies were published during this period. Almost all studies included an activity sensing component and most of these used passive infrared motion sensors. The three effective (first tier) studies all used a multicomponent technology approach that included activity sensing, reminders and other technologies tailored to individual preferences. Future research should explore the use of technology for self-management of health by older adults, social support and self-reported health measures incorporated into personal health records, electronic medical records, and community health registries. PMID:23639263
Shiri, Fereshteh; Pirhadi, Somayeh; Ghasemi, Jahan B.
2015-01-01
Mer receptor tyrosine kinase is a promising novel cancer therapeutic target in many human cancers, because abnormal activation of Mer has been implicated in survival signaling and chemoresistance. 3D-QSAR analyses based on alignment independent descriptors were performed on a series of 81 Mer specific tyrosine kinase inhibitors. The fractional factorial design (FFD) and the enhanced replacement method (ERM) were applied and tested as variable selection algorithms for the selection of optimal subsets of molecular descriptors from a much greater pool of such regression variables. The data set was split into 65 molecules as the training set and 16 compounds as the test set. All descriptors were generated by using the GRid INdependent descriptors (GRIND) approach. After variable selection, GRIND were correlated with activity values (pIC50) by PLS regression. Of the two applied variable selection methods, ERM had a noticeable improvement on the statistical parameters of PLS model, and yielded a q2 value of 0.77, an rpred2 of 0.94, and a low RMSEP value of 0.25. The GRIND information contents influencing the affinity on Mer specific tyrosine kinase were also confirmed by docking studies. In a quantum calculation study, the energy difference between HOMO and LUMO (gap) implied the high interaction of the most active molecule in the active site of the protein. In addition, the molecular electrostatic potential energy at DFT level confirmed results obtained from the molecular docking. The identified key features obtained from the molecular modeling, enabled us to design novel kinase inhibitors. PMID:27013913
Pustiowski, Jens; Müller, Kai; Bichler, Max; Koblmüller, Gregor; Finley, Jonathan J.; Wixforth, Achim; Krenner, Hubert J.
2015-01-05
We demonstrate tuning of single quantum dot emission lines by the combined action of the dynamic acoustic field of a radio frequency surface acoustic wave and a static electric field. Both tuning parameters are set all-electrically in a LiNbO{sub 3}-GaAs hybrid device. The surface acoustic wave is excited directly on the strong piezoelectric LiNbO{sub 3} onto which a GaAs-based p-i-n photodiode containing a single layer of quantum dots was epitaxially transferred. We demonstrate dynamic spectral tuning with bandwidths exceeding 3 meV of single quantum dot emission lines due to deformation potential coupling. The center energy of the dynamic spectral oscillation can be independently programmed simply by setting the bias voltage applied to the diode.
Cruz, Hans; Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar
2015-09-15
The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.
93. TOWER STAIRHALL, SOUTH WALL, WEST TABERNACLE FRAME. DETAIL OF ...
93. TOWER STAIRHALL, SOUTH WALL, WEST TABERNACLE FRAME. DETAIL OF DOG EAR AND TRUSS (BRACKET) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA
Guaranteed violation of a Bell inequality without aligned reference frames or calibrated devices
Shadbolt, Peter; Vértesi, Tamás; Liang, Yeong-Cherng; Branciard, Cyril; Brunner, Nicolas; O'Brien, Jeremy L.
2012-01-01
Bell tests — the experimental demonstration of a Bell inequality violation — are central to understanding the foundations of quantum mechanics, and are a powerful diagnostic tool for the development of quantum technologies. To date, Bell tests have relied on careful calibration of measurement devices and alignment of a shared reference frame between two parties — both technically demanding tasks. We show that neither of these operations are necessary, violating Bell inequalities (i) with certainty using unaligned, but calibrated, measurement devices, and (ii) with near-certainty using uncalibrated and unaligned devices. We demonstrate generic quantum nonlocality with randomly chosen measurements on a singlet state of two photons, implemented using a reconfigurable integrated optical waveguide circuit. The observed results demonstrate the robustness of our schemes to imperfections and statistical noise. This approach is likely to have important applications both in fundamental science and quantum technologies, including device-independent quantum key distribution. PMID:22737404
Guaranteed violation of a Bell inequality without aligned reference frames or calibrated devices.
Shadbolt, Peter; Vértesi, Tamás; Liang, Yeong-Cherng; Branciard, Cyril; Brunner, Nicolas; O'Brien, Jeremy L
2012-01-01
Bell tests - the experimental demonstration of a Bell inequality violation - are central to understanding the foundations of quantum mechanics, and are a powerful diagnostic tool for the development of quantum technologies. To date, Bell tests have relied on careful calibration of measurement devices and alignment of a shared reference frame between two parties - both technically demanding tasks. We show that neither of these operations are necessary, violating Bell inequalities (i) with certainty using unaligned, but calibrated, measurement devices, and (ii) with near-certainty using uncalibrated and unaligned devices. We demonstrate generic quantum nonlocality with randomly chosen measurements on a singlet state of two photons, implemented using a reconfigurable integrated optical waveguide circuit. The observed results demonstrate the robustness of our schemes to imperfections and statistical noise. This approach is likely to have important applications both in fundamental science and quantum technologies, including device-independent quantum key distribution. PMID:22737404
Pseudo-entanglement evaluated in noninertial frames
Mehri-Dehnavi, Hossein; Mirza, Behrouz; Mohammadzadeh, Hosein; Rahimi, Robabeh
2011-05-15
Research Highlights: > We study pseudo-entanglement in noninertial frames. > We examine different measures of entanglement and nonclassical correlation for the state. > We find the threshold for entanglement is changed in noninertial frames. > We also describe the behavior of local unitary classes of states in noninertial frames. - Abstract: We study quantum discord, in addition to entanglement, of bipartite pseudo-entanglement in noninertial frames. It is shown that the entanglement degrades from its maximum value in a stationary frame to a minimum value in an infinite accelerating frame. There is a critical region found in which, for particular cases, entanglement of states vanishes for certain accelerations. The quantum discord of pseudo-entanglement decreases by increasing the acceleration. Also, for a physically inaccessible region, entanglement and nonclassical correlation are evaluated and shown to match the corresponding values of the physically accessible region for an infinite acceleration.
Non-minimal Higgs inflation and frame dependence in cosmology
Steinwachs, Christian F.; Kamenshchik, Alexander Yu.
2013-02-21
We investigate a very general class of cosmological models with scalar fields non-minimally coupled to gravity. A particular representative in this class is given by the non-minimal Higgs inflation model in which the Standard Model Higgs boson and the inflaton are described by one and the same scalar particle. While the predictions of the non-minimal Higgs inflation scenario come numerically remarkably close to the recently discovered mass of the Higgs boson, there remains a conceptual problem in this model that is associated with the choice of the cosmological frame. While the classical theory is independent of this choice, we find by an explicit calculation that already the first quantum corrections induce a frame dependence. We give a geometrical explanation of this frame dependence by embedding it into a more general field theoretical context. From this analysis, some conceptional points in the long lasting cosmological debate: 'Jordan frame vs. Einstein frame' become more transparent and in principle can be resolved in a natural way.
Reference Frames and Relativity.
ERIC Educational Resources Information Center
Swartz, Clifford
1989-01-01
Stresses the importance of a reference frame in mechanics. Shows the Galilean transformation in terms of relativity theory. Discusses accelerated reference frames and noninertial reference frames. Provides examples of reference frames with diagrams. (YP)
NASA Astrophysics Data System (ADS)
Semenov, Alexander; Dubernet, Marie-Lise; Babikov, Dmitri
2014-09-01
The mixed quantum/classical theory (MQCT) for inelastic molecule-atom scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is extended to treat a general case of an asymmetric-top-rotor molecule in the body-fixed reference frame. This complements a similar theory formulated in the space-fixed reference-frame [M. Ivanov, M.-L. Dubernet, and D. Babikov, J. Chem. Phys. 140, 134301 (2014)]. Here, the goal was to develop an approximate computationally affordable treatment of the rotationally inelastic scattering and apply it to H2O + He. We found that MQCT is somewhat less accurate at lower scattering energies. For example, below E = 1000 cm-1 the typical errors in the values of inelastic scattering cross sections are on the order of 10%. However, at higher scattering energies MQCT method appears to be rather accurate. Thus, at scattering energies above 2000 cm-1 the errors are consistently in the range of 1%-2%, which is basically our convergence criterion with respect to the number of trajectories. At these conditions our MQCT method remains computationally affordable. We found that computational cost of the fully-coupled MQCT calculations scales as n2, where n is the number of channels. This is more favorable than the full-quantum inelastic scattering calculations that scale as n3. Our conclusion is that for complex systems (heavy collision partners with many internal states) and at higher scattering energies MQCT may offer significant computational advantages.
A multi-frame, megahertz CCD imager
Mendez, Jacob A; Balzer, Stephen J; Watson, Scott A
2008-01-01
A high-efficiency, high-speed imager has been fabricated capable of framing rates of 2 MHz. This device utilizes a 512 x 512 pixel charge coupled device (CCD) with a 25cmZ active area, and incorporates an electronic shutter technology designed for back-illuminated CCD's, making this the largest and fastest back-illuminated CCD in the world. Characterizing an imager capable of this frame rate presents unique challenges. High speed LED drivers and intense radioactive sources are needed to perform basic measurements. We investigate properties normally associated with single-frame CCD's such as read noise, gain, full-well capacity, detective quantum efficiency (DQE), sensitivity, and linearity. In addition, we investigate several properties associated with the imager's multi-frame operation such as transient frame response and frame-to-frame isolation while contrasting our measurement techniques and results with more conventional devices.
Deng, Zhengtao; Zhang, Yun; Yue, Jiachang; Tang, Fangqiong; Wei, Qun
2007-10-18
One of the most highlighted and fastest moving interfaces of nanotechnology is the application of quantum dots (QDs) in biology. The unparalleled advantages of the size-tunable fluorescent emission and the simultaneous excitation at a single wavelength make QDs the great possibility for use in optical encoding detection. In this paper, we report that green and orange CdTe QDs as convenient, cheap, reversible, and effective pH-sensitive fluorescent probes could monitor the proton (H+) flux driven by ATP synthesis for dual simultaneous and independent detection of viruses on the basis of antibody-antigen reactions. A new kind of biosensor (consisting of the mixture of green-QDs-labeled chromatophores and orange-QDs-labeled chromatophores) fluorescent measurement system was established for rapid, simultaneous, and independent detection of two different kinds of viruses (i.e., H9 avian influenza virus and MHV68 virus). It is crucial to find that the green and orange QDs labeled biosensors coexisting in the detection system can work independently and do not interfere with each another in the fluorescence assays. In addition, a primary steady electric double layer (EDL) model for the QDs biosensors was proposed to illustrate the mechanism of simultaneous and independent detection of the biosensors. We believe that the pH-sensitive CdTe QDs based detection system, described in this paper, is an important step toward optical encoding and has a great potential for simultaneous and independent qualitative and quantitative multiple detection systems. PMID:17887667
Semenov, Alexander; Dubernet, Marie-Lise; Babikov, Dmitri
2014-09-21
The mixed quantum/classical theory (MQCT) for inelastic molecule-atom scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is extended to treat a general case of an asymmetric-top-rotor molecule in the body-fixed reference frame. This complements a similar theory formulated in the space-fixed reference-frame [M. Ivanov, M.-L. Dubernet, and D. Babikov, J. Chem. Phys. 140, 134301 (2014)]. Here, the goal was to develop an approximate computationally affordable treatment of the rotationally inelastic scattering and apply it to H{sub 2}O + He. We found that MQCT is somewhat less accurate at lower scattering energies. For example, below E = 1000 cm{sup −1} the typical errors in the values of inelastic scattering cross sections are on the order of 10%. However, at higher scattering energies MQCT method appears to be rather accurate. Thus, at scattering energies above 2000 cm{sup −1} the errors are consistently in the range of 1%–2%, which is basically our convergence criterion with respect to the number of trajectories. At these conditions our MQCT method remains computationally affordable. We found that computational cost of the fully-coupled MQCT calculations scales as n{sup 2}, where n is the number of channels. This is more favorable than the full-quantum inelastic scattering calculations that scale as n{sup 3}. Our conclusion is that for complex systems (heavy collision partners with many internal states) and at higher scattering energies MQCT may offer significant computational advantages.
Gleim, A V; Egorov, V I; Nazarov, Yu V; Smirnov, S V; Chistyakov, V V; Bannik, O I; Anisimov, A A; Kynev, S M; Ivanova, A E; Collins, R J; Kozlov, S A; Buller, G S
2016-02-01
A quantum key distribution system based on the subcarrier wave modulation method has been demonstrated which employs the BB84 protocol with a strong reference to generate secure bits at a rate of 16.5 kbit/s with an error of 0.5% over an optical channel of 10 dB loss, and 18 bits/s with an error of 0.75% over 25 dB of channel loss. To the best of our knowledge, these results represent the highest channel loss reported for secure quantum key distribution using the subcarrier wave approach. A passive unidirectional scheme has been used to compensate for the polarization dependence of the phase modulators in the receiver module, which resulted in a high visibility of 98.8%. The system is thus fully insensitive to polarization fluctuations and robust to environmental changes, making the approach promising for use in optical telecommunication networks. Further improvements in secure key rate and transmission distance can be achieved by implementing the decoy states protocol or by optimizing the mean photon number used in line with experimental parameters. PMID:26906834
Deng, M. T.; Yu, C. L.; Huang, G. Y.; Larsson, M.; Caroff, P.; Xu, H. Q.
2014-01-01
We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. At zero magnetic field, well-defined Coulomb diamonds and the Kondo effect are observed. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with Majorana fermion physics in such a hybrid topological system. PMID:25434375
Transfer of spatial reference frame using singlet states and classical communication
NASA Astrophysics Data System (ADS)
Bahder, Thomas B.
2016-03-01
A simple protocol is described for transferring spatial orientation from Alice to Bob (two spatially separated observers). The two observers are assumed to share quantum singlet states and classical communication. The protocol assumes that Alice and Bob have complete free will (measurement independence) and is based on maximizing the Shannon mutual information between Alice and Bob's measurement outcomes. Repeated use of this protocol for each spatial axis of Alice allows transfer of a complete three-dimensional reference frame, up to inversion of each of the axes. The technological complexity of this protocol is similar to that needed for BB84 quantum key distribution and hence is much simpler to implement than recently proposed schemes for transmission of reference frames. A second protocol based on a Bayesian formalism is also discussed.
ERIC Educational Resources Information Center
Kelly, Bruce
2006-01-01
Analyzing real motion with frame-by-frame precision can be conducted using modestly priced digital-video camcorders. Although well below the 1,000 frames-per-second threshold of high-speed cameras, commercially available camcorders grab 30 frames per second. A replay dissected at this lower frequency is fun to watch, challenges students'…
ERIC Educational Resources Information Center
Pennington, Martha C.
An analysis of classroom discourse proposes four frames, modeled as concentric circles. The inner most circle is the lesson frame, removed or sheltered from outside influences and most likely, in a language class, to maintain second-language usage. The next frame from the center is the lesson-support frame, an intermediate layer of classroom…
Semiclassical framed BPS states
NASA Astrophysics Data System (ADS)
Moore, Gregory W.; Royston, Andrew B.; Van den Bleeken, Dieter
2016-07-01
We provide a semiclassical description of framed BPS states in four-dimensional {N}=2 super Yang-Mills theories probed by 't Hooft defects, in terms of a supersymmetric quantum mechanics on the moduli space of singular monopoles. Framed BPS states, like their ordinary counterparts in the theory without defects, are associated with the L 2 kernel of certain Dirac operators on moduli space, or equivalently with the L 2 cohomology of related Dolbeault operators. The Dirac/Dolbeault operators depend on two Cartan-valued Higgs vevs. We conjecture a map between these vevs and the Seiberg-Witten special coordinates, consistent with a one-loop analysis and checked in examples. The map incorporates all perturbative and nonperturbative corrections that are relevant for the semiclassical construction of BPS states, over a suitably defined weak coupling regime of the Coulomb branch. We use this map to translate wall crossing formulae and the no-exotics theorem to statements about the Dirac/Dolbeault operators. The no-exotics theorem, concerning the absence of nontrivial SU(2) R representations in the BPS spectrum, implies that the kernel of the Dirac operator is chiral, and further translates into a statement that all L 2 cohomology of the Dolbeault operator is concentrated in the middle degree. Wall crossing formulae lead to detailed predictions for where the Dirac operators fail to be Fredholm and how their kernels jump. We explore these predictions in nontrivial examples. This paper explains the background and arguments behind the results announced in the short note [1].
(Pseudo)issue of the conformal frame revisited
Faraoni, Valerio; Nadeau, Shahn
2007-01-15
The issue of the equivalence between Jordan and Einstein conformal frames in scalar-tensor gravity is revisited, with the emphasis on implementing running units in the latter. The lack of affine parametrization for timelike worldlines and the cosmological constant problem in the Einstein frame are clarified, and a paradox in the literature about cosmological singularities appearing only in one frame is solved. While, classically, the two conformal frames are physically equivalent, they seem to be inequivalent at the quantum level.
Sarkar, Suprabhat; Gandla, Dayakar; Venkatesh, Yeduru; Bangal, Prakriti Ranjan; Ghosh, Sutapa; Yang, Yang; Misra, Sunil
2016-08-21
Facile synthesis of 2-10 nm-sized graphene quantum dots (GQDs) from graphite powder by organic solvent-assisted liquid exfoliation using a sonochemical method is reported in this study. Synthesized GQDs are well dispersed in organic solvents like ethyl acetoacetate (EAA), dimethyl formamide (DMF) and also in water. MALDI-TOF mass spectrometry reveals its selective mass fragmentation. Detailed characterizations by various techniques like X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) confirm the formation of disordered, functional GQDs. Density functional theory (DFT) calculation confirms HOMO-LUMO energy gap variation with changing size and functionalities. Photoluminescence (PL) properties of as-prepared GQDs were studied in detail. The ensemble studies of GQDs showed excellent photoluminescence properties comprising normal and upconverted fluorescence, delayed fluorescence and room-temperature phosphorescence. PL decay dynamics of GQDs has been explored using time-correlated single-photon technique (TCSPC) as well as femtosecond fluorescence upconversion technique. In vitro cytotoxicity study reveals its biocompatibility and high cell viability (>91%) even at high concentration (400 μg mL(-1)) of GQDs in Chinese Hamster Ovary (CHO) cells. PMID:27302411
Sanfilippo, Antonio P.; Franklin, Lyndsey; Tratz, Stephen C.; Danielson, Gary R.; Mileson, Nicholas D.; Riensche, Roderick M.; McGrath, Liam
2008-04-01
Frame Analysis has come to play an increasingly stronger role in the study of social movements in Sociology and Political Science. While significant steps have been made in providing a theory of frames and framing, a systematic characterization of the frame concept is still largely lacking and there are no rec-ognized criteria and methods that can be used to identify and marshal frame evi-dence reliably and in a time and cost effective manner. Consequently, current Frame Analysis work is still too reliant on manual annotation and subjective inter-pretation. The goal of this paper is to present an approach to the representation, acquisition and analysis of frame evidence which leverages Content Analysis, In-formation Extraction and Semantic Search methods to provide a systematic treat-ment of a Frame Analysis and automate frame annotation.
Anomalies, equivalence and renormalization of cosmological frames
NASA Astrophysics Data System (ADS)
Herrero-Valea, Mario
2016-05-01
We study the question of whether two frames of a given physical theory are equivalent or not in the presence of quantum corrections. By using field theory arguments, we claim that equivalence is broken in the presence of anomalous symmetries in one of the frames. This is particularized to the case of the relation between the Einstein and Jordan frames in scalar-tensor theories used to describe early Universe dynamics. Although in this case a regularization that cancels the anomaly exists, the renormalized theory always develops a nonvanishing contribution to the S matrix that is present only in the Jordan frame, promoting the different frames to different physical theories that must be UV completed in a different way.
Werfelli, Ghofran; Halvick, Philippe; Honvault, Pascal; Kerkeni, Boutheïna; Stoecklin, Thierry
2015-09-21
The observed abundances of the methylidyne cation, CH(+), in diffuse molecular clouds can be two orders of magnitude higher than the prediction of the standard gas-phase models which, in turn, predict rather well the abundances of neutral CH. It is therefore necessary to investigate all the possible formation and destruction processes of CH(+) in the interstellar medium with the most abundant species H, H2, and e(-). In this work, we address the destruction process of CH(+) by hydrogen abstraction. We report a new calculation of the low temperature rate coefficients for the abstraction reaction, using accurate time-independent quantum scattering and a new high-level ab initio global potential energy surface including a realistic model of the long-range interaction between the reactants H and CH(+). The calculated thermal rate coefficient is in good agreement with the experimental data in the range 50 K-800 K. However, at lower temperatures, the experimental rate coefficient takes exceedingly small values which are not reproduced by the calculated rate coefficient. Instead, the latter rate coefficient is close to the one given by the Langevin capture model, as expected for a reaction involving an ion and a neutral species. Several recent theoretical works have reported a seemingly good agreement with the experiment below 50 K, but an analysis of these works show that they are based on potential energy surfaces with incorrect long-range behavior. The experimental results were explained by a loss of reactivity of the lowest rotational states of the reactant; however, the quantum scattering calculations show the opposite, namely, a reactivity enhancement with rotational excitation. PMID:26395702
VIRTUAL FRAME BUFFER INTERFACE
NASA Technical Reports Server (NTRS)
Wolfe, T. L.
1994-01-01
Large image processing systems use multiple frame buffers with differing architectures and vendor supplied user interfaces. This variety of architectures and interfaces creates software development, maintenance, and portability problems for application programs. The Virtual Frame Buffer Interface program makes all frame buffers appear as a generic frame buffer with a specified set of characteristics, allowing programmers to write code which will run unmodified on all supported hardware. The Virtual Frame Buffer Interface converts generic commands to actual device commands. The virtual frame buffer consists of a definition of capabilities and FORTRAN subroutines that are called by application programs. The virtual frame buffer routines may be treated as subroutines, logical functions, or integer functions by the application program. Routines are included that allocate and manage hardware resources such as frame buffers, monitors, video switches, trackballs, tablets and joysticks; access image memory planes; and perform alphanumeric font or text generation. The subroutines for the various "real" frame buffers are in separate VAX/VMS shared libraries allowing modification, correction or enhancement of the virtual interface without affecting application programs. The Virtual Frame Buffer Interface program was developed in FORTRAN 77 for a DEC VAX 11/780 or a DEC VAX 11/750 under VMS 4.X. It supports ADAGE IK3000, DEANZA IP8500, Low Resolution RAMTEK 9460, and High Resolution RAMTEK 9460 Frame Buffers. It has a central memory requirement of approximately 150K. This program was developed in 1985.
NASA Astrophysics Data System (ADS)
Seshadreesan, Kaushik P.; Takeoka, Masahiro; Sasaki, Masahide
2016-04-01
Device-independent quantum key distribution (DIQKD) guarantees unconditional security of a secret key without making assumptions about the internal workings of the devices used for distribution. It does so using the loophole-free violation of a Bell's inequality. The primary challenge in realizing DIQKD in practice is the detection loophole problem that is inherent to photonic tests of Bell' s inequalities over lossy channels. We revisit the proposal of Curty and Moroder [Phys. Rev. A 84, 010304(R) (2011), 10.1103/PhysRevA.84.010304] to use a linear optics-based entanglement-swapping relay (ESR) to counter this problem. We consider realistic models for the entanglement sources and photodetectors: more precisely, (a) polarization-entangled states based on pulsed spontaneous parametric down-conversion sources with infinitely higher-order multiphoton components and multimode spectral structure, and (b) on-off photodetectors with nonunit efficiencies and nonzero dark-count probabilities. We show that the ESR-based scheme is robust against the above imperfections and enables positive key rates at distances much larger than what is possible otherwise.
Self-aligning biaxial load frame
Ward, M.B.; Epstein, J.S.; Lloyd, W.R.
1994-01-18
An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed cross head, and by alignment and linear motion elements of one load assembly relative to the load frame. 3 figures.
Self-aligning biaxial load frame
Ward, Michael B.; Epstein, Jonathan S.; Lloyd, W. Randolph
1994-01-01
An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed crosshead, and by alignment and linear motion elements of one load assembly relative to the load frame.
Entangled light in moving frames
Gingrich, Robert M.; Bergou, Attila J.; Adami, Christoph
2003-10-01
We calculate the entanglement between a pair of polarization-entangled photon beams as a function of the reference frame, in a fully relativistic framework. We find the transformation law for helicity basis states and show that, while it is frequency independent, a Lorentz transformation on a momentum-helicity eigenstate produces a momentum-dependent phase. This phase leads to changes in the reduced polarization density matrix, such that entanglement is either decreased or increased, depending on the boost direction, the rapidity, and the spread of the beam.
ERIC Educational Resources Information Center
American Inst. of Steel Construction, Inc., New York, NY.
In view of the cost of structural framing for school buildings, ten steel-framed schools are examined to review the economical advantages of steel for school construction. These schools do not resemble each other in size, shape, arrangement or unit cost; some are original in concept and architecture, and others are conservative. Cost and…
A generalization of Fermat's principle for classical and quantum systems
NASA Astrophysics Data System (ADS)
Elsayed, Tarek A.
2014-09-01
The analogy between dynamics and optics had a great influence on the development of the foundations of classical and quantum mechanics. We take this analogy one step further and investigate the validity of Fermat's principle in many-dimensional spaces describing dynamical systems (i.e., the quantum Hilbert space and the classical phase and configuration space). We propose that if the notion of a metric distance is well defined in that space and the velocity of the representative point of the system is an invariant of motion, then a generalized version of Fermat's principle will hold. We substantiate this conjecture for time-independent quantum systems and for a classical system consisting of coupled harmonic oscillators. An exception to this principle is the configuration space of a charged particle in a constant magnetic field; in this case the principle is valid in a frame rotating by half the Larmor frequency, not the stationary lab frame.
Complex equiangular tight frames
NASA Astrophysics Data System (ADS)
Tropp, Joel A.
2005-08-01
A complex equiangular tight frame (ETF) is a tight frame consisting of N unit vectors in Cd whose absolute inner products are identical. One may view complex ETFs as a natural geometric generalization of an orthonormal basis. Numerical evidence suggests that these objects do not arise for most pairs (d, N). The goal of this paper is to develop conditions on (d, N) under which complex ETFs can exist. In particular, this work concentrates on the class of harmonic ETFs, in which the components of the frame vectors are roots of unity. In this case, it is possible to leverage field theory to obtain stringent restrictions on the possible values for (d, N).
NASA Astrophysics Data System (ADS)
Jacobs, Christopher S.
2013-09-01
Concepts and Background: This paper gives an overview of modern celestial reference frames as realized at radio frequencies using the Very Long baseline Interferometry (VLBI) technique. We discuss basic celestial reference frame concepts, desired properties, and uses. We review the networks of antennas used for this work. We briefly discuss the history of the science of astrometry touching upon the discovery of precession, proper motion, nutation, and parallax, and the field of radio astronomy. Building Celestial Frames: Next, we discuss the multi-step process of building a celestial frame: First candidate sources are identified based on point-like properties from single dish radio telescopes surveys. Second, positions are refined using connected element interferometers such as the Very Large Array, and the ATCA. Third, positions of approximately milli-arcsecond (mas) accuracy are determined using intercontinental VLBI surveys. Fourth, sub-mas positions are determined by multiyear programs using intercontinental VLBI. These sub-mas sets of positions are then verified by multiple teams in preparation for release to non-specialists in the form of an official IAU International Celestial Reference Frame (ICRF). The process described above has until recently been largely restricted to work at S/X-band (2.3/8.4 GHz). However, in the last decade sub-mas work has expanded to include celestial frames at K-band (24 GHz), Ka-band (32 GHz), and Q-band (43 GHz). While these frames currently have the disadvantage of far smaller data sets, the astrophysical quality of the sources themselves improves at these higher frequencies and thus make these frequencies attractive for realizations of celestial reference frames. Accordingly, we review progress at these higher frequency bands. Path to the Future: We discuss prospects for celestial reference frames over the next decade. We present an example of an error budget for astrometric VLBI and discuss the budget's use as a tool for
Flanagan, R.D.; Tenbus, M.A.; Bennett, R.M.; Jamal, B.D.
1992-09-21
A review of current analytical methods for infilled frame behavior is conducted. A subset of these methods are applied to experimental results. Parametric studies are used to find the sensitivity of the behavior to various parameters. In-plane loading, out-of-plane inertial loading, out-of-plane interstory drift loading, and combined loadings are examined. Particular reference is made to clay tile infilled frames, and the behavior of clay tile in compression.
Deformed symmetries from quantum relational observables
NASA Astrophysics Data System (ADS)
Girelli, Florian; Poulin, David
2007-05-01
Deformed Special Relativity (DSR) is a candidate phenomenological theory to describe the Quantum Gravitational (QG) semi-classical regime. A possible interpretation of DSR can be derived from the notion of deformed reference frame. Observables in (quantum) General Relativity can be constructed from (quantum) reference frame - a physical observable is then a relation between a system of interest and the reference frame. We present a toy model and study an example of such quantum relational observables. We show how the intrinsic quantum nature of the reference frame naturally leads to a deformation of the symmetries, comforting DSR to be a good candidate to describe the QG semi-classical regime.
Hamiltonian deformations of Gabor frames: First steps
de Gosson, Maurice A.
2015-01-01
Gabor frames can advantageously be redefined using the Heisenberg–Weyl operators familiar from harmonic analysis and quantum mechanics. Not only does this redefinition allow us to recover in a very simple way known results of symplectic covariance, but it immediately leads to the consideration of a general deformation scheme by Hamiltonian isotopies (i.e. arbitrary paths of non-linear symplectic mappings passing through the identity). We will study in some detail an associated weak notion of Hamiltonian deformation of Gabor frames, using ideas from semiclassical physics involving coherent states and Gaussian approximations. We will thereafter discuss possible applications and extensions of our method, which can be viewed – as the title suggests – as the very first steps towards a general deformation theory for Gabor frames. PMID:25892903
NASA Astrophysics Data System (ADS)
Ryabov, V. A.
2015-08-01
Quantum systems in a mechanical embedding, the breathing mode of a small particles, optomechanical system, etc. are far not the full list of examples in which the volume exhibits quantum behavior. Traditional consideration suggests strain in small systems as a result of a collective movement of particles, rather than the dynamics of the volume as an independent variable. The aim of this work is to show that some problem here might be essentially simplified by introducing periodic boundary conditions. At this case, the volume is considered as the independent dynamical variable driven by the internal pressure. For this purpose, the concept of quantum volume based on Schrödinger’s equation in 𝕋3 manifold is proposed. It is used to explore several 1D model systems: An ensemble of free particles under external pressure, quantum manometer and a quantum breathing mode. In particular, the influence of the pressure of free particle on quantum oscillator is determined. It is shown also that correction to the spectrum of the breathing mode due to internal degrees of freedom is determined by the off-diagonal matrix elements of the quantum stress. The new treatment not using the “force” theorem is proposed for the quantum stress tensor. In the general case of flexible quantum 3D dynamics, quantum deformations of different type might be introduced similarly to monopole mode.
Lin, S.-Y.; Chang, K.-P.; Hsieh, M.-S.; Ueng, S.-H.; Hao, S.-P.; Tseng, C.-K.; Pai, P.-C.; Chang, F.-T.; Tsai, M.-H.; Tsang, N.-M. . E-mail: rt3126@adm.cgmh.org.tw
2005-12-01
Purpose: The presence of Epstein-Barr virus latent membrane protein-1 (LMP-1) gene in nasopharyngeal swabs indicates the presence of nasopharyngeal carcinoma (NPC) mucosal tumor cells. This study was undertaken to investigate whether the time taken for LMP-1 to disappear after initiation of primary radiotherapy (RT) was inversely associated with NPC local control. Methods and Materials: During July 1999 and October 2002, there were 127 nondisseminated NPC patients receiving serial examinations of nasopharyngeal swabbing with detection of LMP-1 during the RT course. The time for LMP-1 regression was defined as the number of days after initiation of RT for LMP-1 results to turn negative. The primary outcome was local control, which was represented by freedom from local recurrence. Results: The time for LMP-1 regression showed a statistically significant influence on NPC local control both univariately (p < 0.0001) and multivariately (p = 0.004). In multivariate analysis, the administration of chemotherapy conferred a significantly more favorable local control (p = 0.03). Advanced T status ({>=} T2b), overall treatment time of external photon radiotherapy longer than 55 days, and older age showed trends toward being poor prognosticators. The time for LMP-1 regression was very heterogeneous. According to the quartiles of the time for LMP-1 regression, we defined the pattern of LMP-1 regression as late regression if it required 40 days or more. Kaplan-Meier plots indicated that the patients with late regression had a significantly worse local control than those with intermediate or early regression (p 0.0129). Conclusion: Among the potential prognostic factors examined in this study, the time for LMP-1 regression was the most independently significant factor that was inversely associated with NPC local control.
Communication between inertial observers with partially correlated reference frames
NASA Astrophysics Data System (ADS)
Ahmadi, Mehdi; Smith, Alexander R. H.; Dragan, Andrzej
2015-12-01
In quantum communication protocols the existence of a shared reference frame between two spatially separated parties is normally presumed. However, in many practical situations we are faced with the problem of misaligned reference frames. In this paper, we study communication between two inertial observers who have partial knowledge about the Lorentz transformation that relates their frames of reference. Since every Lorentz transformation can be decomposed into a pure boost followed by a rotation, we begin by analyzing the effects on communication when the parties have partial knowledge about the transformation relating their frames, when the transformation is either a rotation or a pure boost. This then enables us to investigate how the efficiency of communication is affected due to partially correlated inertial reference frames related by an arbitrary Lorentz transformation. Furthermore, we show how the results of previous studies where reference frames are completely uncorrelated are recovered from our results in appropriate limits.
Physics of Non-Inertial Reference Frames
NASA Astrophysics Data System (ADS)
Kamalov, Timur F.
2010-12-01
Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate of its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.
Physics of Non-Inertial Reference Frames
Kamalov, Timur F.
2010-12-22
Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate of its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.
Framing Evolution Discussion Intellectually
ERIC Educational Resources Information Center
Oliveira, Alandeom W.; Cook, Kristin; Buck, Gayle A.
2011-01-01
This study examines how a first-year biology teacher facilitates a series of whole-class discussions about evolution during the implementation of a problem-based unit. A communicative theoretical perspective is adopted wherein evolution discussions are viewed as social events that the teacher can frame intellectually (i.e., present or organize as…
Target activated frame capture
NASA Astrophysics Data System (ADS)
Roberts, G. Marlon; Fitzgerald, James; McCormack, Michael; Steadman, Robert
2008-04-01
Over the past decade, technological advances have enabled the use of increasingly intelligent systems for battlefield surveillance. These systems are triggered by a combination of external devices including acoustic and seismic sensors. Such products are mainly used to detect vehicles and personnel. These systems often use infra-red imagery to record environmental information, but Textron Defense Systems' Terrain Commander is one of a small number of systems which analyze these images for the presence of targets. The Terrain Commander combines acoustic, infrared, magnetic, seismic, and visible spectrum sensors to detect nearby targets in military scenarios. When targets are detected by these sensors, the cameras are triggered and images are captured in the infrared and visible spectrum. In this paper we discuss a method through which such systems can perform target tracking in order to record and transmit only the most pertinent surveillance images. This saves bandwidth which is crucial because these systems often use communication systems with throughputs below 2400bps. This method is expected to be executable on low-power processors at frame rates exceeding 10HZ. We accomplish this by applying target activated frame capture algorithms to infra-red video data. The target activated frame capture algorithms combine edge detection and motion detection to determine the best frames to be transmitted to the end user. This keeps power consumption and bandwidth requirements low. Finally, the results of the algorithm are analyzed.
Aluminum space frame technology
Birch, S.
1994-01-01
This article examines the increased application of aluminum to the construction of automobile frames. The topics of the article include a joint venture between Audi and Alcoa, forms in which aluminum is used, new alloys and construction methods, meeting rigidity and safety levels, manufacturing techniques, the use of extrusions, die casting, joining techniques, and pollution control during manufacturing.
Frame dragging and superenergy
Herrera, L.; Di Prisco, A.; Carot, J.
2007-08-15
We show that the vorticity appearing in stationary vacuum spacetimes is always related to the existence of a flow of superenergy on the plane orthogonal to the vorticity vector. This result, together with the previously established link between vorticity and superenergy in radiative (Bondi-Sachs) spacetimes, strengthens further the case for this latter quantity as the cause of frame dragging.
Framing for Scientific Argumentation
ERIC Educational Resources Information Center
Berland, Leema K.; Hammer, David
2012-01-01
In recent years, research on students' scientific argumentation has progressed to a recognition of nascent resources: Students can and do argue when they experience the need and possibility of persuading others who may hold competing views. Our purpose in this article is to contribute to this progress by applying the perspective of framing to the…
ERIC Educational Resources Information Center
DiLella, Carol Ann
This paper presents "popcorn story frames"--holistic outlines that facilitate comprehension when reading and writing stories, useful for outlining stories read and for creating outlines for original student stories--that are particularly useful for elementary and intermediate school students. "Popcorn" pops in a horizontal manner rather than in a…
Expected number of quantum channels in quantum networks
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-01-01
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556
Expected number of quantum channels in quantum networks.
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-01-01
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556
Solid-state framing camera with multiple time frames
Baker, K. L.; Stewart, R. E.; Steele, P. T.; Vernon, S. P.; Hsing, W. W.; Remington, B. A.
2013-10-07
A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.
Frank, A M; Wilkins, P R
2001-01-05
The advent of CCD cameras and computerized data recording has spurred the development of several new cameras and techniques for recording nanosecond images. We have made a side by side comparison of three nanosecond frame cameras, examining them for both performance and operational characteristics. The cameras include; Micro-Channel Plate/CCD, Image Diode/CCD and Image Diode/Film; combinations of gating/data recording. The advantages and disadvantages of each device will be discussed.
Recursive adaptive frame integration limited
NASA Astrophysics Data System (ADS)
Rafailov, Michael K.
2006-05-01
Recursive Frame Integration Limited was proposed as a way to improve frame integration performance and mitigate issues related to high data rate needed for conventional frame integration. The technique applies two thresholds - one tuned for optimum probability of detection, the other to manage required false alarm rate - and allows a non-linear integration process that, along with Signal-to-Noise Ratio (SNR) gain, provides system designers more capability where cost, weight, or power considerations limit system data rate, processing, or memory capability. However, Recursive Frame Integration Limited may have performance issues when single frame SNR is really low. Recursive Adaptive Frame Integration Limited is proposed as a means to improve limited integration performance with really low single frame SNR. It combines the benefits of nonlinear recursive limited frame integration and adaptive thresholds with a kind of conventional frame integration.
Crandall, David L.; Watson, Richard W.
2008-03-04
A firearm frame which is adapted to be disposed in operative relationship as a component part of a firearm, the firearm having disposed in operative relationships each with one or more of the others, a barrel, a receiver, and at least one firing mechanism; wherein the barrel and receiver form operative parts of a movable assembly and the at least one firing mechanism is disposed in a substantially stationary operative relationship therewith; the firearm frame including at least one elongated support structure discrete from the barrel and receiver, the elongated support structure being adapted to directly support the movable assembly in an operative movable relationship therewith; whereby at least one of the barrel and receiver is in direct contact with and movable on the elongated support structure; and, a firing mechanism support structure connected to the at least one elongated support structure, the firing mechanism support structure being adapted to have the firing mechanism connected thereto; the firearm frame also directly supporting the movable assembly and the firing mechanism in corresponding movable and stationary operative relationships each with the other.
Are Independent Probes Truly Independent?
ERIC Educational Resources Information Center
Camp, Gino; Pecher, Diane; Schmidt, Henk G.; Zeelenberg, Rene
2009-01-01
The independent cue technique has been developed to test traditional interference theories against inhibition theories of forgetting. In the present study, the authors tested the critical criterion for the independence of independent cues: Studied cues not presented during test (and unrelated to test cues) should not contribute to the retrieval…
Electrically insulating and sealing frame
Guthrie, Robin J.
1983-11-08
A combination gas seal and electrical insulator having a closed frame shape interconnects a fuel cell stack and a reactant gas plenum of a fuel cell generator. The frame can be of rectangular shape including at least one slidable spline connection in each side to permit expansion or contraction consistent with that of the walls of the gas plenum and fuel cell stack. The slidable spline connections in the frame sides minimizes lateral movement between the frame side members and sealing material interposed between the frame and the fuel cell stack or between the frame and the reactant gas plenum.
NASA Astrophysics Data System (ADS)
De Fazio, Dario; de Castro-Vitores, Miguel; Aguado, Alfredo; Aquilanti, Vincenzo; Cavalli, Simonetta
2012-12-01
In this work we critically revise several aspects of previous ab initio quantum chemistry studies [P. Palmieri et al., Mol. Phys. 98, 1835 (2000);, 10.1080/00268970009483387 C. N. Ramachandran et al., Chem. Phys. Lett. 469, 26 (2009)], 10.1016/j.cplett.2008.12.035 of the HeH_2^+ system. New diatomic curves for the H_2^+ and HeH+ molecular ions, which provide vibrational frequencies at a near spectroscopic level of accuracy, have been generated to test the quality of the diatomic terms employed in the previous analytical fittings. The reliability of the global potential energy surfaces has also been tested performing benchmark quantum scattering calculations within the time-independent approach in an extended interval of energies. In particular, the total integral cross sections have been calculated in the total collision energy range 0.955-2.400 eV for the scattering of the He atom by the ortho- and para-hydrogen molecular ion. The energy profiles of the total integral cross sections for selected vibro-rotational states of H_2^+ (v = 0, …,5 and j = 1, …,7) show a strong rotational enhancement for the lower vibrational states which becomes weaker as the vibrational quantum number increases. Comparison with several available experimental data is presented and discussed.
Conformal frame dependence of inflation
NASA Astrophysics Data System (ADS)
Domènech, Guillem; Sasaki, Misao
2015-04-01
Physical equivalence between different conformal frames in scalar-tensor theory of gravity is a known fact. However, assuming that matter minimally couples to the metric of a particular frame, which we call the matter Jordan frame, the matter point of view of the universe may vary from frame to frame. Thus, there is a clear distinction between gravitational sector (curvature and scalar field) and matter sector. In this paper, focusing on a simple power-law inflation model in the Einstein frame, two examples are considered; a super-inflationary and a bouncing universe Jordan frames. Then we consider a spectator curvaton minimally coupled to a Jordan frame, and compute its contribution to the curvature perturbation power spectrum. In these specific examples, we find a blue tilt at short scales for the super-inflationary case, and a blue tilt at large scales for the bouncing case.
Finite Frames and Graph Theoretic Uncertainty Principles
NASA Astrophysics Data System (ADS)
Koprowski, Paul J.
The subject of analytical uncertainty principles is an important field within harmonic analysis, quantum physics, and electrical engineering. We explore uncertainty principles in the context of the graph Fourier transform, and we prove additive results analogous to the multiplicative version of the classical uncertainty principle. We establish additive uncertainty principles for finite Parseval frames. Lastly, we examine the feasibility region of simultaneous values of the norms of a graph differential operator acting on a function f ∈ l2(G) and its graph Fourier transform.
Sanfilippo, Antonio P.; McGrath, Liam R.; Whitney, Paul D.
2011-11-17
We present a computational approach to radical rhetoric that leverages the co-expression of rhetoric and action features in discourse to identify violent intent. The approach combines text mining and machine learning techniques with insights from Frame Analysis and theories that explain the emergence of violence in terms of moral disengagement, the violation of sacred values and social isolation in order to build computational models that identify messages from terrorist sources and estimate their proximity to an attack. We discuss a specific application of this approach to a body of documents from and about radical and terrorist groups in the Middle East and present the results achieved.
ERIC Educational Resources Information Center
Rodriguez, Lulu; Dimitrova, Daniela V.
2011-01-01
While framing research has centered mostly on the evaluations of media texts, visual news discourse has remained relatively unexamined. This study surveys the visual framing techniques and methods employed in previous studies and proposes a four-tiered model of identifying and analyzing visual frames: (1) visuals as denotative systems, (2) visuals…
Huhn, John M; Potts, Cory Adam; Rosenbaum, David A
2016-06-01
Cognitive framing effects have been widely reported in higher-level decision-making and have been ascribed to rules of thumb for quick thinking. No such demonstrations have been reported for physical action, as far as we know, but they would be expected if cognition for physical action is fundamentally similar to cognition for higher-level decision-making. To test for such effects, we asked participants to reach for a horizontally-oriented pipe to move it from one height to another while turning the pipe 180° to bring one end (the "business end") to a target on the left or right. From a physical perspective, participants could have always rotated the pipe in the same angular direction no matter which end was the business end; a given participant could have always turned the pipe clockwise or counter-clockwise. Instead, our participants turned the business end counter-clockwise for left targets and clockwise for right targets. Thus, the way the identical physical task was framed altered the way it was performed. This finding is consistent with the hypothesis that cognition for physical action is fundamentally similar to cognition for higher-level decision-making. A tantalizing possibility is that higher-level decision heuristics have roots in the control of physical action, a hypothesis that accords with embodied views of cognition. PMID:26970853
Quantum Griffiths Inequalities
NASA Astrophysics Data System (ADS)
Miyao, Tadahiro
2016-07-01
We present a general framework of Griffiths inequalities for quantum systems. Our approach is based on operator inequalities associated with self-dual cones and provides a consistent viewpoint of the Griffiths inequality. As examples, we discuss the quantum Ising model, quantum rotor model, Bose-Hubbard model, and Hubbard model. We present a model-independent structure that governs the correlation inequalities.
Quantum Griffiths Inequalities
NASA Astrophysics Data System (ADS)
Miyao, Tadahiro
2016-06-01
We present a general framework of Griffiths inequalities for quantum systems. Our approach is based on operator inequalities associated with self-dual cones and provides a consistent viewpoint of the Griffiths inequality. As examples, we discuss the quantum Ising model, quantum rotor model, Bose-Hubbard model, and Hubbard model. We present a model-independent structure that governs the correlation inequalities.
Spin in stationary gravitational fields and rotating frames
NASA Astrophysics Data System (ADS)
Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.
2010-03-01
A spin motion of particles in stationary spacetimes is investigated in the framework of the classical gravity and relativistic quantum mechanics. We bring the Dirac equation for relativistic particles in nonstatic spacetimes to the Hamiltonian form and perform the Foldy-Wouthuysen transformation. We show the importance of the choice of tetrads for description of spin dynamics in the classical gravity. We derive classical and quantum mechanical equations of motion of the spin for relativistic particles in stationary gravitational fields and rotating frames and establish the full agreement between the classical and quantum mechanical approaches.
Frame architecture for video servers
NASA Astrophysics Data System (ADS)
Venkatramani, Chitra; Kienzle, Martin G.
1999-11-01
Video is inherently frame-oriented and most applications such as commercial video processing require to manipulate video in terms of frames. However, typical video servers treat videos as byte streams and perform random access based on approximate byte offsets to be supplied by the client. They do not provide frame or timecode oriented API which is essential for many applications. This paper describes a frame-oriented architecture for video servers. It also describes the implementation in the context of IBM's VideoCharger server. The later part of the paper describes an application that uses the frame architecture and provides fast and slow-motion scanning capabilities to the server.
Random subspaces for encryption based on a private shared Cartesian frame
Bartlett, Stephen D.; Hayden, Patrick; Spekkens, Robert W.
2005-11-15
A private shared Cartesian frame is a novel form of private shared correlation that allows for both private classical and quantum communication. Cryptography using a private shared Cartesian frame has the remarkable property that asymptotically, if perfect privacy is demanded, the private classical capacity is three times the private quantum capacity. We demonstrate that if the requirement for perfect privacy is relaxed, then it is possible to use the properties of random subspaces to nearly triple the private quantum capacity, almost closing the gap between the private classical and quantum capacities.
Shah, Anuj K; Shafir, Eldar; Mullainathan, Sendhil
2015-04-01
Economic models of decision making assume that people have a stable way of thinking about value. In contrast, psychology has shown that people's preferences are often malleable and influenced by normatively irrelevant contextual features. Whereas economics derives its predictions from the assumption that people navigate a world of scarce resources, recent psychological work has shown that people often do not attend to scarcity. In this article, we show that when scarcity does influence cognition, it renders people less susceptible to classic context effects. Under conditions of scarcity, people focus on pressing needs and recognize the trade-offs that must be made against those needs. Those trade-offs frame perception more consistently than irrelevant contextual cues, which exert less influence. The results suggest that scarcity can align certain behaviors more closely with traditional economic predictions. PMID:25676256
ERIC Educational Resources Information Center
Jarrell, Andrea
2009-01-01
St. Paul's School in New Hampshire, the Orchard School in Indiana, Chestnut Hill Academy in Pennsylvania, and Dana Hall School in Massachusetts are like most independent schools--they have qualities that are distinctive and extraordinary. Line up their mission statements, however, and the schools sound almost interchangeable. They're all on a…
NASA Astrophysics Data System (ADS)
Fraser, Gordon
2009-01-01
In his kind review of my biography of the Nobel laureate Abdus Salam (December 2008 pp45-46), John W Moffat wrongly claims that Salam had "independently thought of the idea of parity violation in weak interactions".
Determination of the inner planet frame tie using VLBI data
NASA Technical Reports Server (NTRS)
Mcelrath, Timothy P.; Bhat, Ramachandra S.
1988-01-01
The problem of connecting the independent reference frames formed by the planetary ephemeris and the radio source catalog is one of growing importance to spacecraft navigation. Using quasar-relative VLBI delay data collected by the Deep Space Network, and Soviet coherent data from the Venus flyby of the Soviet Vega 1 and 2 spacecraft, a self-consistent estimate of the frame tie offset has been found, along with its uncertainty.
Quantum information causality.
Pitalúa-García, Damián
2013-05-24
How much information can a transmitted physical system fundamentally communicate? We introduce the principle of quantum information causality, which states the maximum amount of quantum information that a quantum system can communicate as a function of its dimension, independently of any previously shared quantum physical resources. We present a new quantum information task, whose success probability is upper bounded by the new principle, and show that an optimal strategy to perform it combines the quantum teleportation and superdense coding protocols with a task that has classical inputs. PMID:23745844
Reference Frames in Earth Rotation Theories
NASA Astrophysics Data System (ADS)
Ferrándiz, José M.; Belda, Santiago; Heinkelmann, Robert; Getino, Juan; Schuh, Harald; Escapa, Alberto
2015-04-01
Nowadays the determination of the Earth Orientation Parameters (EOP) and the different Terrestrial Reference Frames (TRF) are not independent. The available theories of Earth rotation aims at providing the orientation of a certain reference system linked somehow to the Earth with respect to a given celestial system, considered as inertial. In the past years a considerable effort has been dedicated to the improvement of the TRF realizations, following the lines set up in the 1980's. However, the reference systems used in the derivation of the theories have been rather considered as something fully established, not deserving a special attention. In this contribution we review the definitions of the frames used in the main theoretical approaches, focusing on those used in the construction of IAU2000, and the extent to which their underlying hypotheses hold. The results are useful to determine the level of consistency of the predicted and determined EOP.
Virtual Frame Buffer Interface Program
NASA Technical Reports Server (NTRS)
Wolfe, Thomas L.
1990-01-01
Virtual Frame Buffer Interface program makes all frame buffers appear as generic frame buffer with specified set of characteristics, allowing programmers to write codes that run unmodified on all supported hardware. Converts generic commands to actual device commands. Consists of definition of capabilities and FORTRAN subroutines called by application programs. Developed in FORTRAN 77 for DEC VAX 11/780 or DEC VAX 11/750 computer under VMS 4.X.
Backreaction of frame dragging
Herdeiro, Carlos A. R.; Rebelo, Carmen; Warnick, Claude M.
2009-10-15
The backreaction on black holes due to dragging heavy, rather than test, objects is discussed. As a case study, a five-dimensional regular black Saturn system where the central black hole has vanishing intrinsic angular momentum, J{sup BH}=0, is considered. It is shown that there is a correlation between the sign of two response functions. One is interpreted as a moment of inertia of the black ring in the black Saturn system. The other measures the variation of the black ring horizon angular velocity with the central black hole mass, for fixed ring mass and angular momentum. The two different phases defined by these response functions collapse, for small central black hole mass, to the thin and fat ring phases. In the fat phase, the zero area limit of the black Saturn ring has reduced spin j{sup 2}>1, which is related to the behavior of the ring angular velocity. Using the 'gravitomagnetic clock effect', for which a universality property is exhibited, it is shown that frame dragging measured by an asymptotic observer decreases, in both phases, when the central black hole mass increases, for fixed ring mass and angular momentum. A close parallelism between the results for the fat phase and those obtained recently for the double Kerr solution is drawn, considering also a regular black Saturn system with J{sup BH}{ne}0.
Optical characterization of frame grabbers
NASA Astrophysics Data System (ADS)
Pozo, A. M.; Rubiño, M.
2013-04-01
Today, video cameras connected to frame grabbers are used in many applications such as traffic control, surveillance, medical systems or machine vision. In this work, we present an optical characterization of frame grabbers in terms of their spatial-frequency responses. This characterization is based on the modulation transfer function (MTF) determination from speckle patterns using a low-cost experimental setup. We have characterized and compared three different frame grabbers. The three frame grabbers produce an amplification (boost) in the horizontal MTF in different spatial-frequency ranges and having different maximum amplification values.
Advanced Wall Framing; BTS Technology Fact Sheet
Southface Energy Institute; Tromly, K.
2000-11-07
Advanced framing techniques for home construction have been researched extensively and proven effective. Both builders and home owners can benefit from advanced framing. Advanced framing techniques create a structurally sound home that has lower material and labor costs than a conventionally framed house. This fact sheet describes advanced framing techniques, design considerations, and framing.
FRAMES and Other IEM Technologies
A presentation package is developed that describes the FRAMES software technology system. The philosophy of FRAMES is discussed; its components and editors are reviewed; its relationship to integrated environmental modeling technologies; such as D4EM and SuperMUSE, are described;...
Quantum Bundle Description of Quantum Projective Spaces
NASA Astrophysics Data System (ADS)
Ó Buachalla, Réamonn
2012-12-01
We realise Heckenberger and Kolb's canonical calculus on quantum projective ( N - 1)-space C q [ C p N-1] as the restriction of a distinguished quotient of the standard bicovariant calculus for the quantum special unitary group C q [ SU N ]. We introduce a calculus on the quantum sphere C q [ S 2 N-1] in the same way. With respect to these choices of calculi, we present C q [ C p N-1] as the base space of two different quantum principal bundles, one with total space C q [ SU N ], and the other with total space C q [ S 2 N-1]. We go on to give C q [ C p N-1] the structure of a quantum framed manifold. More specifically, we describe the module of one-forms of Heckenberger and Kolb's calculus as an associated vector bundle to the principal bundle with total space C q [ SU N ]. Finally, we construct strong connections for both bundles.
Interference of light from independent sources
Pegg, David T.
2006-12-15
We extend and generalize previous work on the interference of light from independent cavities that began with the suggestion of Pfleegor and Mandel [Phys. Rev. 159, 1084 (1967)] that their observed interference of laser beams should not be associated too closely with particular states of the beams but more with the detection process itself. In particular we examine how the detection of interference induces a nonrandom-phase difference between internal cavity states with initial random phases for a much broader range of such states than has previously been considered. We find that a subsequent interference measurement should give results consistent with the induced phase difference. The inclusion of more cavities in the interference measurements enables the construction in principle of a laboratory in the sense used by Aharonov and Susskind, made up of cavity fields that can serve as frames of phase reference. We also show reasonably simply how intrinsic phase coherence of a beam of light leaking from a single cavity arises for any internal cavity state, even a photon number state. Although the work presented here may have some implications for the current controversy over whether or not a typical laboratory laser produces a coherent state, it is not the purpose of this paper to enter this controversy; rather it is to examine the interesting quantum physics that arises for cavities with more general internal states.
NASA Astrophysics Data System (ADS)
Annan, James; Hargreaves, Julia
2016-04-01
In order to perform any Bayesian processing of a model ensemble, we need a prior over the ensemble members. In the case of multimodel ensembles such as CMIP, the historical approach of ``model democracy'' (i.e. equal weight for all models in the sample) is no longer credible (if it ever was) due to model duplication and inbreeding. The question of ``model independence'' is central to the question of prior weights. However, although this question has been repeatedly raised, it has not yet been satisfactorily addressed. Here I will discuss the issue of independence and present a theoretical foundation for understanding and analysing the ensemble in this context. I will also present some simple examples showing how these ideas may be applied and developed.
Framed School--Frame Factors, Frames and the Dynamics of Social Interaction in School
ERIC Educational Resources Information Center
Persson, Anders
2015-01-01
This paper aims to show how the Goffman frame perspective can be used in an analysis of school and education and how it can be combined, in such analysis, with the frame factor perspective. The latter emphasizes factors that are determined outside the teaching process, while the former stresses how actors organize their experiences and define…
Werfelli, Ghofran; Halvick, Philippe; Stoecklin, Thierry; Honvault, Pascal; Kerkeni, Boutheïna
2015-09-21
The observed abundances of the methylidyne cation, CH{sup +}, in diffuse molecular clouds can be two orders of magnitude higher than the prediction of the standard gas-phase models which, in turn, predict rather well the abundances of neutral CH. It is therefore necessary to investigate all the possible formation and destruction processes of CH{sup +} in the interstellar medium with the most abundant species H, H{sub 2}, and e{sup −}. In this work, we address the destruction process of CH{sup +} by hydrogen abstraction. We report a new calculation of the low temperature rate coefficients for the abstraction reaction, using accurate time-independent quantum scattering and a new high-level ab initio global potential energy surface including a realistic model of the long-range interaction between the reactants H and CH{sup +}. The calculated thermal rate coefficient is in good agreement with the experimental data in the range 50 K–800 K. However, at lower temperatures, the experimental rate coefficient takes exceedingly small values which are not reproduced by the calculated rate coefficient. Instead, the latter rate coefficient is close to the one given by the Langevin capture model, as expected for a reaction involving an ion and a neutral species. Several recent theoretical works have reported a seemingly good agreement with the experiment below 50 K, but an analysis of these works show that they are based on potential energy surfaces with incorrect long-range behavior. The experimental results were explained by a loss of reactivity of the lowest rotational states of the reactant; however, the quantum scattering calculations show the opposite, namely, a reactivity enhancement with rotational excitation.
Framing Obesity: How News Frames Shape Attributions and Behavioral Responses.
Sun, Ye; Krakow, Melinda; John, Kevin K; Liu, Miao; Weaver, Jeremy
2016-01-01
Based on a public health model of obesity, this study set out to examine whether a news article reporting the obesity issue in a societal versus individual frame would increase perceptions of societal responsibilities for the obesity problem and motivate responsibility-taking behaviors. Responsibility-taking behaviors were examined at 3 levels: personal, interpersonal, and societal. Data from a Web-based experiment revealed significant framing effects on behaviors via causal and treatment responsibility attributions. The societal frame increased societal causal and treatment attribution, which led to greater likelihoods of interpersonal and social responsibility-taking behaviors as well as personal behaviors. Our findings suggest that news framing can be an effective venue for raising awareness of obesity as a societal issue and mobilizing collective efforts. PMID:26375052
Effect of relativistic acceleration on localized two-mode Gaussian quantum states
NASA Astrophysics Data System (ADS)
Ahmadi, Mehdi; Lorek, Krzysztof; Checińska, Agata; Smith, Alexander R. H.; Mann, Robert B.; Dragan, Andrzej
2016-06-01
We study how an arbitrary Gaussian state of two localized wave packets, prepared in an inertial frame of reference, is described by a pair of uniformly accelerated observers. We explicitly compute the resulting state for arbitrarily chosen proper accelerations of the observers and independently tuned distance between them. To do so, we introduce a generalized Rindler frame of reference and analytically derive the corresponding state transformation as a Gaussian channel. Our approach provides several new insights into the phenomenon of vacuum entanglement such as the highly nontrivial effect of spatial separation between the observers including sudden death of entanglement. We also calculate the fidelity of the two-mode channel for nonvacuum Gaussian states and obtain bounds on classical and quantum capacities of a single-mode channel. Our framework can be directly applied to any continuous variable quantum information protocol in which the effects of acceleration or gravity cannot be neglected.
Theory of quantum gravity beyond Einstein and space-time dynamics with quantum inflation
NASA Astrophysics Data System (ADS)
Wu, Yue-Liang
2015-10-01
In this talk, I present a theory of quantum gravity beyond Einstein. The theory is established based on spinnic and scaling gauge symmetries by treating the gravitational force on the same footing as the electroweak and strong forces. A bi-frame space-time is initiated to describe the laws of nature. One frame space-time is a globally flat coordinate Minkowski space-time that acts as an inertial reference frame for the motions of fields, the other is a locally flat non-coordinate Gravifield space-time that functions as an interaction representation frame for the degrees of freedom of fields. The Gravifield is sided on both the globally flat coordinate space-time and locally flat non-coordinate space-time and characterizes the gravitational force. Instead of the principle of general coordinate invariance in Einstein theory of general relativity, some underlying principles with the postulates of coordinate independence and gauge invariance are motivated to establish the theory of quantum gravity. When transmuting the Gravifield basis into the coordinate basis in Minkowski space-time, it enables us to obtain equations of motion for all quantum fields and derive basic conservation laws for all symmetries. The gravity equation is found to be governed by the total energy-momentum tensor defined in the flat Minkowski space-time. When the spinnic and scaling gauge symmetries are broken down to a background structure that possesses the global Lorentz and scaling symmetries, we arrive at a Lorentz invariant and conformally flat background Gravifield space-time that is characterized by a cosmic vector with a non-zero cosmological mass scale. We also obtain the massless graviton and massive spinnon. The resulting universe is in general not isotropic in terms of conformal proper time and turns out to be inflationary in light of cosmic proper time. The conformal size of the universe has a singular at the cosmological horizon to which the cosmic proper time must be infinitely
Framing the patent troll debate.
Risch, Michael
2014-02-01
The patent troll debate has reached a fevered pitch in the USA. This editorial seeks to frame the debate by pointing out the lack of clarity in defining patent trolls and their allegedly harmful actions. It then frames the debate by asking currently unanswered questions: Where do troll patents come from? What are the effects of troll assertions? Will policy changes improve the system? PMID:24354803
Ties Between Celestial And Planetary Reference Frames
NASA Technical Reports Server (NTRS)
Finger, Mark H.; Folkner, William M.
1992-01-01
Report presents new determination of relative orientation (or frame tie) between reference frame of extra-galactic radio sources and reference frame of planetary ephemeris. Method employed for improved frame-tie estimate relies on ability to measure orientation of Earth with respect to inertial reference frame. Improves orbit determination for interplanetary spacecraft.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Click on the image for 'Independence' Panorama (QTVR)
This is the Spirit 'Independence' panorama, acquired on martian days, or sols, 536 to 543 (July 6 to 13, 2005), from a position in the 'Columbia Hills' near the summit of 'Husband Hill.' The summit of 'Husband Hill' is the peak near the right side of this panorama and is about 100 meters (328 feet) away from the rover and about 30 meters (98 feet) higher in elevation. The rocky outcrops downhill and on the left side of this mosaic include 'Larry's Lookout' and 'Cumberland Ridge,' which Spirit explored in April, May, and June of 2005.
The panorama spans 360 degrees and consists of 108 individual images, each acquired with five filters of the rover's panoramic camera. The approximate true color of the mosaic was generated using the camera's 750-, 530-, and 480-nanometer filters. During the 8 martian days, or sols, that it took to acquire this image, the lighting varied considerably, partly because of imaging at different times of sol, and partly because of small sol-to-sol variations in the dustiness of the atmosphere. These slight changes produced some image seams and rock shadows. These seams have been eliminated from the sky portion of the mosaic to better simulate the vista a person standing on Mars would see. However, it is often not possible or practical to smooth out such seams for regions of rock, soil, rover tracks or solar panels. Such is the nature of acquiring and assembling large panoramas from the rovers.
Reciprocal Relativity of Noninertial Frames and the Quaplectic Group
NASA Astrophysics Data System (ADS)
Low, Stephen G.
2006-04-01
Newtonian mechanics has the concept of an absolute inertial rest frame. Special relativity eliminates the absolute rest frame but continues to require the absolute inertial frame. General relativity solves this for gravity by requiring particles to have locally inertial frames on a curved position-time manifold. The problem of the absolute inertial frame for other forces remains. We look again at the transformations of frames on an extended phase space with position, time, energy and momentum degrees of freedom. Under nonrelativistic assumptions, there is an invariant symplectic metric and a line element dt^2. Under special relativistic assumptions the symplectic metric continues to be invariant but the line elements are now -dt^2+dq^2/c^2 and dp^2-de^2/c^2. Max Born conjectured that the line element should be generalized to the pseudo- orthogonal metric -dt^2+dq^2/c^2+ (1/b^2)(dp^2-de^2/c^2). The group leaving these two metrics invariant is the pseudo-unitary group of transformations between noninertial frames. We show that these transformations eliminate the need for an absolute inertial frame by making forces relative and bounded by b and so embodies a relativity that is 'reciprocal' in the sense of Born. The inhomogeneous version of this group is naturally the semidirect product of the pseudo-unitary group with the nonabelian Heisenberg group. This is the quaplectic group. The Heisenberg group itself is the semidirect product of two translation groups. This provides the noncommutative properties of position and momentum and also time and energy that are required for the quantum mechanics that results from considering the unitary representations of the quaplectic group.
Mizel, Ari
2004-07-01
Ground-state quantum computers mimic quantum-mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.
Device-independent tests of entropy.
Chaves, Rafael; Brask, Jonatan Bohr; Brunner, Nicolas
2015-09-11
We show that the entropy of a message can be tested in a device-independent way. Specifically, we consider a prepare-and-measure scenario with classical or quantum communication, and develop two different methods for placing lower bounds on the communication entropy, given observable data. The first method is based on the framework of causal inference networks. The second technique, based on convex optimization, shows that quantum communication provides an advantage over classical communication, in the sense of requiring a lower entropy to reproduce given data. These ideas may serve as a basis for novel applications in device-independent quantum information processing. PMID:26406813
Extending Bell's Theorem: Ruling out Paramater Independent Hidden Variable Theories
NASA Astrophysics Data System (ADS)
Leegwater, G. J.
2016-03-01
Bell's Theorem may well be the best known result in the foundations of quantum mechanics. Here, it is presented as stating that for any hidden variable theory the combination of the conditions Parameter Independence, Outcome Independence, Source Independence and Compatibility with Quantum Theory leads to a contradiction. Based on work by Roger Colbeck and Renato Renner, an extension of Bell's Theorem is considered. In this extension the theorem is strengthened by replacing Outcome Independence by a strictly weaker condition.
Quantum Computation and Quantum Information
NASA Astrophysics Data System (ADS)
Nielsen, Michael A.; Chuang, Isaac L.
2010-12-01
Part I. Fundamental Concepts: 1. Introduction and overview; 2. Introduction to quantum mechanics; 3. Introduction to computer science; Part II. Quantum Computation: 4. Quantum circuits; 5. The quantum Fourier transform and its application; 6. Quantum search algorithms; 7. Quantum computers: physical realization; Part III. Quantum Information: 8. Quantum noise and quantum operations; 9. Distance measures for quantum information; 10. Quantum error-correction; 11. Entropy and information; 12. Quantum information theory; Appendices; References; Index.
Determinism, independence, and objectivity are incompatible.
Ionicioiu, Radu; Mann, Robert B; Terno, Daniel R
2015-02-13
Hidden-variable models aim to reproduce the results of quantum theory and to satisfy our classical intuition. Their refutation is usually based on deriving predictions that are different from those of quantum mechanics. Here instead we study the mutual compatibility of apparently reasonable classical assumptions. We analyze a version of the delayed-choice experiment which ostensibly combines determinism, independence of hidden variables on the conducted experiments, and wave-particle objectivity (the assertion that quantum systems are, at any moment, either particles or waves, but not both). These three ideas are incompatible with any theory, not only with quantum mechanics. PMID:25723195
Determinism, Independence, and Objectivity are Incompatible
NASA Astrophysics Data System (ADS)
Ionicioiu, Radu; Mann, Robert B.; Terno, Daniel R.
2015-02-01
Hidden-variable models aim to reproduce the results of quantum theory and to satisfy our classical intuition. Their refutation is usually based on deriving predictions that are different from those of quantum mechanics. Here instead we study the mutual compatibility of apparently reasonable classical assumptions. We analyze a version of the delayed-choice experiment which ostensibly combines determinism, independence of hidden variables on the conducted experiments, and wave-particle objectivity (the assertion that quantum systems are, at any moment, either particles or waves, but not both). These three ideas are incompatible with any theory, not only with quantum mechanics.
Indistinguishable Photons from Independent Semiconductor Nanostructures
NASA Astrophysics Data System (ADS)
Sanaka, Kaoru; Pawlis, Alexander; Ladd, Thaddeus D.; Lischka, Klaus; Yamamoto, Yoshihisa
2009-07-01
We demonstrate quantum interference between photons generated by the radiative decay processes of excitons that are bound to isolated fluorine donor impurities in ZnSe/ZnMgSe quantum-well nanostructures. The ability to generate single photons from these devices is confirmed by autocorrelation experiments, and the indistinguishability of photons emitted from two independent nanostructures is confirmed via a Hong-Ou-Mandel dip. These results indicate that donor impurities in appropriately engineered semiconductor structures can portray atomlike homogeneity and coherence properties, potentially enabling scalable technologies for future large-scale optical quantum computers and quantum communication networks.
Hamiltonian approach to frame dragging
NASA Astrophysics Data System (ADS)
Epstein, Kenneth J.
2008-07-01
A Hamiltonian approach makes the phenomenon of frame dragging apparent “up front” from the appearance of the drag velocity in the Hamiltonian of a test particle in an arbitrary metric. Hamiltonian (1) uses the inhomogeneous force equation (4), which applies to non-geodesic motion as well as to geodesics. The Hamiltonian is not in manifestly covariant form, but is covariant because it is derived from Hamilton’s manifestly covariant scalar action principle. A distinction is made between manifest frame dragging such as that in the Kerr metric, and hidden frame dragging that can be made manifest by a coordinate transformation such as that applied to the Robertson-Walker metric in Sect. 2. In Sect. 3 a zone of repulsive gravity is found in the extreme Kerr metric. Section 4 treats frame dragging in special relativity as a manifestation of the equivalence principle in accelerated frames. It answers a question posed by Bell about how the Lorentz contraction can break a thread connecting two uniformly accelerated rocket ships. In Sect. 5 the form of the Hamiltonian facilitates the definition of gravitomagnetic and gravitoelectric potentials.
Iron Framing Axonometric, Stringer, IBeam, Channel, Composite TieBeam, and Small ...
Iron Framing Axonometric, Stringer, I-Beam, Channel, Composite Tie-Beam, and Small and Large Phoenix Columns - Washington Monument, High ground West of Fifteenth Street, Northwest, between Independence & Constitution Avenues, Washington, District of Columbia, DC
Free-space quantum key distribution by rotation-invariant twisted photons.
Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo
2014-08-01
"Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network. PMID:25148310
SEOS frame camera applications study
NASA Technical Reports Server (NTRS)
1974-01-01
A research and development satellite is discussed which will provide opportunities for observation of transient phenomena that fall within the fixed viewing circle of the spacecraft. The evaluation of possible applications for frame cameras, for SEOS, are studied. The computed lens characteristics for each camera are listed.
Plasma physics in noninertial frames
Thyagaraja, A.; McClements, K. G.
2009-09-15
Equations describing the nonrelativistic motion of a charged particle in an arbitrary noninertial reference frame are derived from the relativistically invariant form of the particle action. It is shown that the equations of motion can be written in the same form in inertial and noninertial frames, with the effective electric and magnetic fields in the latter modified by inertial effects associated with centrifugal and Coriolis accelerations. These modifications depend on the particle charge-to-mass ratio, and also the vorticity, specific kinetic energy, and compressibility of the frame flow. The Newton-Lorentz, Vlasov, and Fokker-Planck equations in such a frame are derived. Reduced models such as gyrokinetic, drift-kinetic, and fluid equations are then derivable from these equations in the appropriate limits, using standard averaging procedures. The results are applied to tokamak plasmas rotating about the machine symmetry axis with a nonrelativistic but otherwise arbitrary toroidal flow velocity. Astrophysical applications of the analysis are also possible since the power of the action principle is such that it can be used to describe relativistic flows in curved spacetime.
NASA Technical Reports Server (NTRS)
Curtis, Steven A.
2010-01-01
The space-frame lunar lander was originally intended to (1) land on rough lunar terrain, (2) deform itself to conform to the terrain so as to be able to remain there in a stable position and orientation, and (3) if required, further deform itself to perform various functions. In principle, the space-frame lunar lander could be used in the same way on Earth, as might be required, for example, to place meteorological sensors or a radio-communication relay station on an otherwise inaccessible mountain peak. the space-frame lunar lander would include a truss-like structure consisting mostly of a tetrahedral mesh of nodes connected by variable-length struts, the lengths of which would be altered in coordination to impart the desired overall size and shape to the structure. Thrusters (that is, small rocket engines), propellant tanks, a control system, and instrumentation would be mounted in and on the structure (see figure). Once it had landed and deformed itself to the terrain through coordinated variations in the lengths of the struts, the structure could be further deformed into another space-frame structure
Epistemic Frames for Epistemic Games
ERIC Educational Resources Information Center
Shaffer, David W.
2006-01-01
This paper, develops the concept of "epistemic frames" as a mechanism through which students can use experiences in video games, computer games, and other interactive learning environments to help them deal more effectively with situations outside of the original context of learning. Building on ideas of "islands of expertise" [Crowley, K., &…
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
2012-01-01
To enhance the quality of the theatre experience, the film industry is interested in achieving higher frame rates for capture and display. In this talk I will describe the basic spatio-temporal sensitivities of human vision, and how they respond to the time sequence of static images that is fundamental to cinematic presentation.
Examining the Linkage Between FRAMES and GMS
Whelan, Gene; Castleton, Karl J.
2006-02-13
Because GMS provides so many features, of which some are also addressed by FRAMES, it could represent a platform to link to FRAMES, or FRAMES could represent a platform to link to GMS. The focus of this summary is to examine the strengths and weaknesses of the potential linkage direction and provide recommendations for the linkage between FRAMES and GMS.
Integrated Broadband Quantum Cascade Laser
NASA Technical Reports Server (NTRS)
Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)
2016-01-01
A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.
Astrophysics of Reference Frame Tie Objects
NASA Technical Reports Server (NTRS)
Johnston, Kenneth J.; Boboltz, David; Fey, Alan Lee; Gaume, Ralph A.; Zacharias, Norbert
2004-01-01
The Astrophysics of Reference Frame Tie Objects Key Science program will investigate the underlying physics of SIM grid objects. Extragalactic objects in the SIM grid will be used to tie the SIM reference frame to the quasi-inertial reference frame defined by extragalactic objects and to remove any residual frame rotation with respect to the extragalactic frame. The current realization of the extragalactic frame is the International Celestial Reference Frame (ICRF). The ICRF is defined by the radio positions of 212 extragalactic objects and is the IAU sanctioned fundamental astronomical reference frame. This key project will advance our knowledge of the physics of the objects which will make up the SIM grid, such as quasars and chromospherically active stars, and relates directly to the stability of the SIM reference frame. The following questions concerning the physics of reference frame tie objects will be investigated.
NASA Technical Reports Server (NTRS)
2000-01-01
This sequence of nine true-color, narrow-angle images shows the varying appearance of Jupiter as it rotated through more than a complete 360-degree turn. The smallest features seen in this sequence are no bigger than about 380 kilometers (about 236 miles). Rotating more than twice as fast as Earth, Jupiter completes one rotation in about 10 hours. These images were taken on Oct. 22 and 23, 2000. From image to image (proceeding left to right across each row and then down to the next row), cloud features on Jupiter move from left to right before disappearing over the edge onto the nightside of the planet. The most obvious Jovian feature is the Great Red Spot, which can be seen moving onto the dayside in the third frame (below and to the left of the center of the planet). In the fourth frame, taken about 1 hour and 40 minutes later, the Great Red Spot has been carried by the planet's rotation to the east and does not appear again until the final frame, which was taken one complete rotation after the third frame.
Unlike weather systems on Earth, which change markedly from day to day, large cloud systems in Jupiter's colder, thicker atmosphere are long-lived, so the two frames taken one rotation apart have a very similar appearance. However, when this sequence of images is eventually animated, strong winds blowing eastward at some latitudes and westward at other latitudes will be readily apparent. The results of such differential motions can be seen even in the still frames shown here. For example, the clouds of the Great Red Spot rotate counterclockwise. The strong westward winds northeast of the Great Red Spot are deflected around the spot and form a wake of turbulent clouds downstream (visible in the fourth image), just as a rock in a rapidly flowing river deflects the fluid around it.
The equatorial zone on Jupiter is currently bright white, indicating the presence of clouds much like cirrus clouds on Earth, but made of ammonia instead of water ice. This
Lattice QCD in rotating frames.
Yamamoto, Arata; Hirono, Yuji
2013-08-23
We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD. PMID:24010426
Ultra-fast framing camera tube
Kalibjian, Ralph
1981-01-01
An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.
Kilpatrick, W.
1982-01-01
While literal language is successfully being subjected to automatic analysis, metaphors remain intractable. Using Minsky's frame theory the metaphoric process is viewed as a copying of stereotypic terminal clusters from the frames of the 1 degrees and 2 degrees terms of the metaphor. Stereotypic values from the two original frames share equal status in this new frame, while non-stereotypic values from the two will be kept separate for possible use in metaphoric extension. The a-frame analysis is illustrated by application to non-literary novel metaphors. Frames provide the quantity of information needed for interpretation. Certain frame values are marked as stereotypic. Creativity is realized by the construction of a new a-frame, and the tension is realized by the presence in a single a-frame of both shared stereotypic and discrete non-stereotypic values. 10 references.
NASA Astrophysics Data System (ADS)
Dotson, Jessie L.; Batalha, N.; Bryson, S.; Caldwell, D. A.; Clarke, B.; Haas, M. R.; Jenkins, J.; Kolodziejczak, J.; Quintana, E.; Van Cleve, J.; Kepler Team
2010-01-01
NASA's exoplanet discovery mission Kepler provides uninterrupted 1-min and 30-min optical photometry of a 100 square degree field over a 3.5 yr nominal mission. Downlink bandwidth is filled at these short cadences by selecting only detector pixels specific to 105 preselected stellar targets. The majority of the Kepler field, comprising 4 x 106 mv < 20 sources, is sampled at much lower 1-month cadence in the form of a full-frame image. The Full Frame Images (FFIs) are calibrated by the Science Operations Center at NASA Ames Research Center. The Kepler Team employ these images for astrometric and photometric reference but make the images available to the astrophysics community through the Multimission Archive at STScI (MAST). The full-frame images provide a resource for potential Kepler Guest Observers to select targets and plan observing proposals, while also providing a freely-available long-cadence legacy of photometric variation across a swathe of the Galactic disk. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.
NASA Technical Reports Server (NTRS)
Dotson, Jessie L.; Batalha, Natalie; Bryson, Stephen T.; Caldwell, Douglas A.; Clarke, Bruce D.
2010-01-01
NASA's exoplanet discovery mission Kepler provides uninterrupted 1-min and 30-min optical photometry of a 100 square degree field over a 3.5 yr nominal mission. Downlink bandwidth is filled at these short cadences by selecting only detector pixels specific to 105 preselected stellar targets. The majority of the Kepler field, comprising 4 x 10(exp 6) m_v < 20 sources, is sampled at much lower 1-month cadence in the form of a full-frame image. The Full Frame Images (FFIs) are calibrated by the Science Operations Center at NASA Ames Research Center. The Kepler Team employ these images for astrometric and photometric reference but make the images available to the astrophysics community through the Multimission Archive at STScI (MAST). The full-frame images provide a resource for potential Kepler Guest Observers to select targets and plan observing proposals, while also providing a freely-available long-cadence legacy of photometric variation across a swathe of the Galactic disk.
Framed Morse functions on surfaces
Kudryavtseva, Elena A; Permyakov, Dmitrii A
2010-06-09
Let M be a smooth, compact, not necessarily orientable surface with (maybe empty) boundary, and let F be the space of Morse functions on M that are constant on each component of the boundary and have no critical points at the boundary. The notion of framing is defined for a Morse function f element of F. In the case of an orientable surface M this is a closed 1-form {alpha} on M with punctures at the critical points of local minimum and maximum of f such that in a neighbourhood of each critical point the pair (f,{alpha}) has a canonical form in a suitable local coordinate chart and the 2-form df and {alpha} does not vanish on M punctured at the critical points and defines there a positive orientation. Each Morse function on M is shown to have a framing, and the space F endowed with the C{sup {infinity}-}topology is homotopy equivalent to the space F of framed Morse functions. The results obtained make it possible to reduce the problem of describing the homotopy type of F to the simpler problem of finding the homotopy type of F. As a solution of the latter, an analogue of the parametric h-principle is stated for the space F. Bibliography: 41 titles.
Tripartite entanglement of fermionic system in accelerated frames
Khan, Salman
2014-09-15
The dynamics of tripartite entanglement of fermionic system in noninertial frames through linear contraction criterion when one or two observers are accelerated is investigated. In one observer accelerated case the entanglement measurement is not invariant with respect to the partial realignment of different subsystems and for two observers accelerated case it is invariant. It is shown that the acceleration of the frame does not generate entanglement in any bipartite subsystems. Unlike the bipartite states, the genuine tripartite entanglement does not completely vanish in both one observer accelerated and two observers accelerated cases even in the limit of infinite acceleration. The degradation of tripartite entanglement is fast when two observers are accelerated than when one observer is accelerated. It is shown that tripartite entanglement is a better resource for quantum information processing than the bipartite entanglement in noninertial frames. - Highlights: • Tripartite entanglement of fermionic system in noninertial frames is studied. • Linear contraction criterion for quantifying tripartite entanglement is used. • Acceleration does not produce any bipartite entanglement. • The invariance of entanglement quantifier depends on accelerated observers. • The tripartite entanglement degrades against the acceleration, it never vanishes.
Monolithic LTCC seal frame and lid
Krueger, Daniel S.; Peterson, Kenneth A.; Stockdale, Dave; Duncan, James Brent; Riggs, Bristen
2016-06-21
A method for forming a monolithic seal frame and lid for use with a substrate and electronic circuitry comprises the steps of forming a mandrel from a ceramic and glass based material, forming a seal frame and lid block from a ceramic and glass based material, creating a seal frame and lid by forming a compartment and a plurality of sidewalls in the seal frame and lid block, placing the seal frame and lid on the mandrel such that the mandrel fits within the compartment, and cofiring the seal frame and lid block.
Framing and global health governance: key findings.
McInnes, Colin; Lee, Kelley
2012-01-01
Despite widespread agreement that collective action to address shared health challenges across countries is desirable and necessary, the realm of global health governance has remained highly problematic. A key reason for this is the manner in which health issues are presented ('framed'). Because multiple frames are operating simultaneously, confusion and a range of competing policy recommendations and priorities result. Drawing on the previous articles published in this Special Supplement, these key findings explore how health issues are framed, what makes a framing successful, what frames are used for and what effects framing has. PMID:23088193
Mars Science Laboratory Frame Manager for Centralized Frame Tree Database and Target Pointing
NASA Technical Reports Server (NTRS)
Kim, Won S.; Leger, Chris; Peters, Stephen; Carsten, Joseph; Diaz-Calderon, Antonio
2013-01-01
The FM (Frame Manager) flight software module is responsible for maintaining the frame tree database containing coordinate transforms between frames. The frame tree is a proper tree structure of directed links, consisting of surface and rover subtrees. Actual frame transforms are updated by their owner. FM updates site and saved frames for the surface tree. As the rover drives to a new area, a new site frame with an incremented site index can be created. Several clients including ARM and RSM (Remote Sensing Mast) update their related rover frames that they own. Through the onboard centralized FM frame tree database, client modules can query transforms between any two frames. Important applications include target image pointing for RSM-mounted cameras and frame-referenced arm moves. The use of frame tree eliminates cumbersome, error-prone calculations of coordinate entries for commands and thus simplifies flight operations significantly.
Detection of gravitational frame dragging using orbiting qubits
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco; Salgado, Marcelo
2016-05-01
In this paper we propose information theoretic and interferometric techniques to detect the effect of gravitational frame dragging on orbiting qubits. In particular, we consider the Kerr spacetime geometry and spin-\\tfrac{1}{2} qubits moving in equatorial circular orbits. We ignore the { O }({\\hslash }) order effects due to spin-curvature coupling, which allows us to consider the motion of the spin-\\tfrac{1}{2} particles as Kerr geometry geodesics. We derive analytical expressions for the infinitesimal Wigner rotation and numerical results for their integration across the length of the particle’s trajectory. To this end, we consider the bounds on the finite Wigner rotation imposed by Penrose’s cosmic censorship hypothesis. Finally we propose how the Wigner rotation strictly due to frame dragging could be observed using interferometry and other quantum metrology techniques.
Experimental Measurement-Device-Independent Entanglement Detection
Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed
2015-01-01
Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols. PMID:25649664
Experimental measurement-device-independent entanglement detection.
Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed
2015-01-01
Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols. PMID:25649664
Framing effects on metacognitive monitoring and control
Finn, Bridgid
2008-01-01
Three experiments explored the contribution of framing effects on metamemory judgments. In Experiment 1, participants studied word pairs. After each presentation, they made an immediate judgment of learning (JOL), framed in terms of either remembering or forgetting. In the remember frame, participants made judgments about how likely it was that they would remember each pair on the upcoming test. In the forget frame, participants made judgments about how likely it was that they would forget each pair. Confidence differed as a result of the frame. Forget frame JOLs, equated to the remember frame JOL scale by a 1-judgment conversion, were lower and demonstrated a smaller overconfidence bias than did remember frame JOLs. When judgments were made at a delay, framing effects did not occur. In Experiment 2, people chose to restudy more items when choices were made within a forget frame. In Experiment 3, people studied Spanish–English vocabulary pairs ranging in difficulty. The framing effect was replicated with judgments and choices. Moreover, forget frame participants included more easy and medium items to restudy. These results demonstrated the important consequences of framing effects on assessment and control of study. PMID:18604963
Quantum defect analysis of HD photoionization
Du, N.Y.; Greene, C.H.
1986-11-15
A multichannel quantum defect calculation is shown to reproduce most observed features in several portions of the HD photoabsorption spectrum. The rovibrational frame transformation theory of Atabek, Dill, and Jungen is reformulated in terms of a quantum defect matrix. The calculation accounts for spectral regions far from dissociation thresholds despite its neglect of g--u mixing.
Fabric panel clean change-out frame
Brown, Ronald M.
1995-01-31
A fabric panel clean change-out frame, for use on a containment structure having rigid walls, is formed of a compression frame and a closure panel. The frame is formed of elongated spacers, each carrying a plurality of closely spaced flat springs, and each having a hooked lip extending on the side of the spring facing the spacer. The closure panel is includes a perimeter frame formed of flexible, wedge-shaped frame members that are receivable under the springs to deflect the hooked lips. A groove on the flexible frame members engages the hooked lips and locks the frame members in place under the springs. A flexible fabric panel is connected to the flexible frame members and closes its center.
Rest frame of bubble nucleation
Garriga, Jaume; Kanno, Sugumi; Tanaka, Takahiro E-mail: sugumi@cosmos.phy.tufts.edu
2013-06-01
Vacuum bubbles nucleate at rest with a certain critical size and subsequently expand. But what selects the rest frame of nucleation? This question has been recently addressed in [1] in the context of Schwinger pair production in 1+1 dimensions, by using a model detector in order to probe the nucleated pairs. The analysis in [1] showed that, for a constant external electric field, the adiabatic ''in'' vacuum of charged particles is Lorentz invariant, (and in this) case pairs tend to nucleate preferentially at rest with respect to the detector. Here, we sharpen this picture by showing that the typical relative velocity between the frame of nucleation and that of the detector is at most of order Δv ∼ S{sub E}{sup −1/3} << 1. Here, S{sub E} >> 1 is the action of the instanton describing pair creation. The bound Δv coincides with the minimum uncertainty in the velocity of a non-relativistic charged particle embedded in a constant electric field. A velocity of order Δv is reached after a time interval of order Δt ∼ S{sub E}{sup −1/3}r{sub 0} << r{sub 0} past the turning point in the semiclassical trajectory, where r{sub 0} is the size of the instanton. If the interaction takes place in the vicinity of the turning point, the semiclassical description of collision does not apply. Nonetheless, we find that even in this case there is still a strong asymmetry in the momentum transferred from the nucleated particles to the detector, in the direction of expansion after the turning point. We conclude that the correlation between the rest frame of nucleation and that of the detector is exceedingly sharp.
Quantum fully homomorphic encryption scheme based on universal quantum circuit
NASA Astrophysics Data System (ADS)
Liang, Min
2015-08-01
Fully homomorphic encryption enables arbitrary computation on encrypted data without decrypting the data. Here it is studied in the context of quantum information processing. Based on universal quantum circuit, we present a quantum fully homomorphic encryption (QFHE) scheme, which permits arbitrary quantum transformation on any encrypted data. The QFHE scheme is proved to be perfectly secure. In the scheme, the decryption key is different from the encryption key; however, the encryption key cannot be revealed. Moreover, the evaluation algorithm of the scheme is independent of the encryption key, so it is suitable for delegated quantum computing between two parties.
Independence Generalizing Monotone and Boolean Independences
NASA Astrophysics Data System (ADS)
Hasebe, Takahiro
2011-01-01
We define conditionally monotone independence in two states which interpolates monotone and Boolean ones. This independence is associative, and therefore leads to a natural probability theory in a non-commutative algebra.
Reference frames and reference networks
NASA Astrophysics Data System (ADS)
Bosy, Jaroslaw; Krynski, Jan
2015-12-01
The summary of research activities concerning reference frames and reference networks performed in Poland in a period of 2011-2014 is presented. It contains the results of research on implementation of IUGG2011 and IAU2012 resolutions on reference systems, implementation of the ETRS89 in Poland, operational work of permanent IGS/ EUREF stations in Poland, operational work of ILRS laser ranging station in Poland, active GNSS station networks in Poland, maintenance of vertical control in Poland, maintenance and modernization of gravity control, and maintenance of magnetic control in Poland. The bibliography of the related works is given in references.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Time frames. 710.35 Section 710.35 Energy DEPARTMENT OF... Matter or Special Nuclear Material Miscellaneous § 710.35 Time frames. Statements of time established for processing aspects of a case under this subpart are the agency's desired time frames in implementing...
Influence of framing on medical decision making
Gong, Jingjing; Zhang, Yan; Feng, Jun; Huang, Yonghua; Wei, Yazhou; Zhang, Weiwei
2013-01-01
Numerous studies have demonstrated the robustness of the framing effect in a variety of contexts, especially in medical decision making. Unfortunately, research is still inconsistent as to how so many variables impact framing effects in medical decision making. Additionally, much attention should be paid to the framing effect not only in hypothetical scenarios but also in clinical experience. PMID:27034630
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Time frames. 710.35 Section 710.35 Energy DEPARTMENT OF... Matter or Special Nuclear Material Miscellaneous § 710.35 Time frames. Statements of time established for processing aspects of a case under this subpart are the agency's desired time frames in implementing...
Information Leakage from Logically Equivalent Frames
ERIC Educational Resources Information Center
Sher, Shlomi; McKenzie, Craig R. M.
2006-01-01
Framing effects are said to occur when equivalent frames lead to different choices. However, the equivalence in question has been incompletely conceptualized. In a new normative analysis of framing effects, we complete the conceptualization by introducing the notion of information equivalence. Information equivalence obtains when no…
21 CFR 886.5842 - Spectacle frame.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Spectacle frame. 886.5842 Section 886.5842 Food... DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5842 Spectacle frame. (a) Identification. A spectacle frame is a device made of metal or plastic intended to hold prescription spectacle lenses worn by...
21 CFR 886.5842 - Spectacle frame.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Spectacle frame. 886.5842 Section 886.5842 Food... DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5842 Spectacle frame. (a) Identification. A spectacle frame is a device made of metal or plastic intended to hold prescription spectacle lenses worn by...
21 CFR 886.5842 - Spectacle frame.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Spectacle frame. 886.5842 Section 886.5842 Food... DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5842 Spectacle frame. (a) Identification. A spectacle frame is a device made of metal or plastic intended to hold prescription spectacle lenses worn by...
21 CFR 886.5842 - Spectacle frame.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Spectacle frame. 886.5842 Section 886.5842 Food... DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5842 Spectacle frame. (a) Identification. A spectacle frame is a device made of metal or plastic intended to hold prescription spectacle lenses worn by...
21 CFR 886.5842 - Spectacle frame.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Spectacle frame. 886.5842 Section 886.5842 Food... DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5842 Spectacle frame. (a) Identification. A spectacle frame is a device made of metal or plastic intended to hold prescription spectacle lenses worn by...
Frames of Reference in the Classroom
ERIC Educational Resources Information Center
Grossman, Joshua
2012-01-01
The classic film "Frames of Reference" effectively illustrates concepts involved with inertial and non-inertial reference frames. In it, Donald G. Ivey and Patterson Hume use the cameras perspective to allow the viewer to see motion in reference frames translating with a constant velocity, translating while accelerating, and rotating--all with…
Non-Syntactic Antecedents and Frame Semantics.
ERIC Educational Resources Information Center
Gensler, Orin
A polemic is made for frame semantics and the linguistic phenomenon of anaphoric reference without noun phrase (NP) antecedent is examined within this frame. Non-syntactic anaphora is that which does not point out into the real world but rather points back into the discourse in a frame which has been built up between the speaker and hearer in a…
Simultaneous message framing and error detection
NASA Technical Reports Server (NTRS)
Frey, A. H., Jr.
1968-01-01
Circuitry simultaneously inserts message framing information and detects noise errors in binary code data transmissions. Separate message groups are framed without requiring both framing bits and error-checking bits, and predetermined message sequence are separated from other message sequences without being hampered by intervening noise.
Popcorn Story Frames from a Multicultural Perspective.
ERIC Educational Resources Information Center
DiLella, Carol Ann
Popcorn story frames from a multicultural perspective are holistic outlines that in the reading/writing process facilitate comprehension for all cultures learning to read and write stories. Popcorn story frames are structured and modeled in a horizontal fashion just like popcorn pops in a horizontal fashion. The frames are designed for learners…
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Time frames. 710.35 Section 710.35 Energy DEPARTMENT OF... Matter or Special Nuclear Material Miscellaneous § 710.35 Time frames. Statements of time established for processing aspects of a case under this subpart are the agency's desired time frames in implementing...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Time frames. 710.35 Section 710.35 Energy DEPARTMENT OF... Matter or Special Nuclear Material Miscellaneous § 710.35 Time frames. Statements of time established for processing aspects of a case under this subpart are the agency's desired time frames in implementing...
Quantum Games under Decoherence
NASA Astrophysics Data System (ADS)
Huang, Zhiming; Qiu, Daowen
2016-02-01
Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv: 1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners' Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game's properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which
Video Encryption and Decryption on Quantum Computers
NASA Astrophysics Data System (ADS)
Yan, Fei; Iliyasu, Abdullah M.; Venegas-Andraca, Salvador E.; Yang, Huamin
2015-08-01
A method for video encryption and decryption on quantum computers is proposed based on color information transformations on each frame encoding the content of the encoding the content of the video. The proposed method provides a flexible operation to encrypt quantum video by means of the quantum measurement in order to enhance the security of the video. To validate the proposed approach, a tetris tile-matching puzzle game video is utilized in the experimental simulations. The results obtained suggest that the proposed method enhances the security and speed of quantum video encryption and decryption, both properties required for secure transmission and sharing of video content in quantum communication.
Quantum coherence in multipartite systems
NASA Astrophysics Data System (ADS)
Yao, Yao; Xiao, Xing; Ge, Li; Sun, C. P.
2015-08-01
Within the unified framework of exploiting the relative entropy as a distance measure of quantum correlations, we make explicit the hierarchical structure of quantum coherence, quantum discord, and quantum entanglement in multipartite systems. On this basis, we define a basis-independent measure of quantum coherence and prove that it is exactly equivalent to quantum discord. Furthermore, since the original relative entropy of coherence is a basis-dependent quantity, we investigate the local and nonlocal unitary creation of quantum coherence, focusing on the two-qubit unitary gates. Intriguingly, our results demonstrate that nonlocal unitary gates do not necessarily outperform the local unitary gates. Finally, the additivity relationship of quantum coherence in tripartite systems is discussed in detail, where the strong subadditivity of von Neumann entropy plays an essential role.
Quantum defragmentation algorithm
Burgarth, Daniel; Giovannetti, Vittorio
2010-08-15
In this addendum to our paper [D. Burgarth and V. Giovannetti, Phys. Rev. Lett. 99, 100501 (2007)] we prove that during the transformation that allows one to enforce control by relaxation on a quantum system, the ancillary memory can be kept at a finite size, independently from the fidelity one wants to achieve. The result is obtained by introducing the quantum analog of defragmentation algorithms which are employed for efficiently reorganizing classical information in conventional hard disks.
Modeling laser wakefield accelerators in a Lorentz boosted frame
Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grotec, D. P.
2010-06-15
Modeling of laser-plasma wakefield accelerators in an optimal frame of reference is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.
Wave Propagation Properties of Frame Structures─Formulation for Three-Dimensional Frame Structures
NASA Astrophysics Data System (ADS)
Nishida, Akemi
Since it is generally difficult to predict the occurrence of natural disasters such as earthquakes, a performance management system that constantly maintains the safety and functionality of structures is required, particularly for critical structures like nuclear power plants. In order to realize such a system, it is becoming important to carry out detailed modeling procedures and analyses to better understand actual phenomena. The aim of our research is to determine the dynamic behavior─especially the wave propagation phenomena─of piping systems in nuclear power plants, which are complicated assemblages of parts. The spectral element method is adopted in this study, and the formulation considering a shear deformation independently for a frame element is described. The Timoshenko beam theory is introduced for the purpose of this formulation. The validity of the presented element will be shown through comparisons with the conventional beam element.
Indistinguishability of independent single photons
NASA Astrophysics Data System (ADS)
Sun, F. W.; Wong, C. W.
2009-01-01
The indistinguishability of independent single photons is presented by decomposing the single photon pulse into the mixed state of different transform-limited pulses. The entanglement between single photons and outer environment or other photons induces the distribution of the center frequencies of those transform-limited pulses and makes photons distinguishable. Only the single photons with the same transform-limited form are indistinguishable. In details, the indistinguishability of single photons from the solid-state quantum emitter and spontaneous parametric down-conversion is examined with two-photon Hong-Ou-Mandel interferometer. Moreover, experimental methods to enhance the indistinguishability are discussed, where the usage of spectral filter is highlighted.
Path integral approach to two-dimensional QCD in the light-front frame
NASA Astrophysics Data System (ADS)
Gaete, P.; Gamboa, J.; Schmidt, I.
1994-05-01
Two-dimensional quantum chromodynamics in the light-front frame is studied following Hamiltonian methods. The theory is quantized using the path integral formalism and an effective theory similar to the Nambu-Jona-Lasinio model is obtained. Confinement in two dimensions is derived by analyzing directly the constraints in the path integral.
Partially entangled states bridge in quantum teleportation
NASA Astrophysics Data System (ADS)
Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen
2014-10-01
The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.
The Quantum Steganography Protocol via Quantum Noisy Channels
NASA Astrophysics Data System (ADS)
Wei, Zhan-Hong; Chen, Xiu-Bo; Niu, Xin-Xin; Yang, Yi-Xian
2015-08-01
As a promising branch of quantum information hiding, Quantum steganography aims to transmit secret messages covertly in public quantum channels. But due to environment noise and decoherence, quantum states easily decay and change. Therefore, it is very meaningful to make a quantum information hiding protocol apply to quantum noisy channels. In this paper, we make the further research on a quantum steganography protocol for quantum noisy channels. The paper proved that the protocol can apply to transmit secret message covertly in quantum noisy channels, and explicity showed quantum steganography protocol. In the protocol, without publishing the cover data, legal receivers can extract the secret message with a certain probability, which make the protocol have a good secrecy. Moreover, our protocol owns the independent security, and can be used in general quantum communications. The communication, which happen in our protocol, do not need entangled states, so our protocol can be used without the limitation of entanglement resource. More importantly, the protocol apply to quantum noisy channels, and can be used widely in the future quantum communication.
Prospective applications of optical quantum memories
NASA Astrophysics Data System (ADS)
Bussières, Félix; Sangouard, Nicolas; Afzelius, Mikael; de Riedmatten, Hugues; Simon, Christoph; Tittel, Wolfgang
2013-10-01
An optical quantum memory can be broadly defined as a system capable of storing a quantum state through interaction with light at optical frequencies. During the last decade, intense research was devoted to their development, mostly with the aim of fulfilling the requirements of their first two applications, namely quantum repeaters and linear-optical quantum computation. A better understanding of those requirements then motivated several different experimental approaches. Along the way, other exciting applications emerged, such as as quantum metrology, single-photon detection, tests of the foundations of quantum physics, device-independent quantum information processing and nonlinear processing of quantum information. Here we review several prospective applications of optical quantum memories, as well as recent experimental achievements pertaining to these applications. This review highlights that optical quantum memories have become essential for the development of optical quantum information processing.
Frame by Frame II: A Filmography of the African American Image, 1978-1994.
ERIC Educational Resources Information Center
Klotman, Phyllis R.; Gibson, Gloria J.
A reference guide on African American film professionals, this book is a companion volume to the earlier "Frame by Frame I." It focuses on giving credit to African Americans who have contributed their talents to a film industry that has scarcely recognized their contributions, building on the aforementioned "Frame by Frame I," which included…
Adding HDLC Framing to CCSDS Recommendations
NASA Technical Reports Server (NTRS)
Hogie, Keith; Criscuolo, Ed; Parise, Ron
2004-01-01
Current Space IP missions use High-Level Data Link Control (HDLC) framing to provide standard serial link interfaces over a space link. HDLC is the standard framing technique used by all routers over clock and data serial lines and is also the basic framing used in all Frame Relay services which are widely deployed in national and international communication networks. In late 2003 a presentation was made to CCSDS committees to initiate discussion on including HDLC in the CCSDS recommendations for space systems. This presentation will summarize the differences between variable length HDLC frames and fixed length CCSDS frames. It will also discuss where and how HDLC framing would fit into the overall CCSDS structures.
Technological Frame Incongruence, Diffusion, and Noncompliance
NASA Astrophysics Data System (ADS)
Sobreperez, Polly
The technological frames of reference strand of social shaping of technology theory is used to overlay the issues arising from a case study looking at noncompliance with information systems. A recent review of the theory suggests that although frame content is often addressed, frame structure, the process of framing, and the characteristics and outcomes of frames are largely overlooked. This paper attempts to address this shortfall by applying the indicators identified by case study research to the frames of different groups and using them to highlight differing perceptions and attitudes. In this way, the author suggests that issues surrounding noncompliance should not be dismissed as resistance but instead should be further studied by managers and developers, leading to accommodation of differing views. Further examination of frame incongruence reveals dependence on inefficient or ineffective organizational situations and thus these indicators can be useful in future studies to identify and address procedural, acceptance and cultural issues leading to acts of noncompliance.
A multi-frame, megahertz CCd imager
Mendez, Jacob; Balzer, Stephen; Watson, Scott; Reich, Robert
2010-01-01
To record high-speed, explosively driven, events, a high efficiency, high speed, imager has been fabricated which is capable of framing rates of 2 MHz. This device utilizes a 512 x 512 pixel charge coupled device (CCD) with a 25cm{sup 2} active area, and incorporates an electronic shutter technology designed for back-illuminated CCD's, making this the largest and fastest back-illuminated CCD in the world. Characterizing an imager capable of this frame rate presents unique challenges. High speed LED drivers and intense radioactive sources are needed to perform the most basic measurements. We investigate properties normally associated with single-frame CCD's such as read noise, full-well capacity, sensitivity, signal to noise ratio, linearity and dynamic range. In addition, we investigate several properties associated with the imager's multi-frame operation such as transient frame response and frame-to-frame isolation while contrasting our measurement techniques and results with more conventional devices.
Driven Markovian Quantum Criticality.
Marino, Jamir; Diehl, Sebastian
2016-02-19
We identify a new universality class in one-dimensional driven open quantum systems with a dark state. Salient features are the persistence of both the microscopic nonequilibrium conditions as well as the quantum coherence of dynamics close to criticality. This provides a nonequilibrium analogue of quantum criticality, and is sharply distinct from more generic driven systems, where both effective thermalization as well as asymptotic decoherence ensue, paralleling classical dynamical criticality. We quantify universality by computing the full set of independent critical exponents within a functional renormalization group approach. PMID:26943517
Danilov, Viatcheslav; Nagaitsev, Sergei; /Fermilab
2011-11-01
Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or normalized variables) transformation. This technique was used to create classical nonlinear integrable lattices for accelerators and nonlinear integrable plasma traps. Now, all classical results are carried over to a nonrelativistic quantum case. In this paper we have described an extension of the Ermakov-like transformation to the Schroedinger and Pauli equations. It is shown that these newly found transformations create a vast variety of time dependent quantum equations that can be solved in analytic functions, or, at least, can be reduced to time-independent ones.
Parallel integrated frame synchronizer chip
NASA Technical Reports Server (NTRS)
Ghuman, Parminder Singh (Inventor); Solomon, Jeffrey Michael (Inventor); Bennett, Toby Dennis (Inventor)
2000-01-01
A parallel integrated frame synchronizer which implements a sequential pipeline process wherein serial data in the form of telemetry data or weather satellite data enters the synchronizer by means of a front-end subsystem and passes to a parallel correlator subsystem or a weather satellite data processing subsystem. When in a CCSDS mode, data from the parallel correlator subsystem passes through a window subsystem, then to a data alignment subsystem and then to a bit transition density (BTD)/cyclical redundancy check (CRC) decoding subsystem. Data from the BTD/CRC decoding subsystem or data from the weather satellite data processing subsystem is then fed to an output subsystem where it is output from a data output port.
Moving frames and prolongation algebras
NASA Technical Reports Server (NTRS)
Estabrook, F. B.
1982-01-01
Differential ideals generated by sets of 2-forms which can be written with constant coefficients in a canonical basis of 1-forms are considered. By setting up a Cartan-Ehresmann connection, in a fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of vector fields in the fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive the differential ideal. The two constructs are thus dual, and analysis of either derives properties of both. Such systems arise in the classical differential geometry of moving frames. Examples of this are discussed, together with examples arising more recently: the Korteweg-de Vries and Harrison-Ernst systems.
Pylkkänen, Paavo
2015-12-01
The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. PMID:26276464
2012-03-16
Independent Assessments: DOE's Systems Integrator convenes independent technical reviews to gauge progress toward meeting specific technical targets and to provide technical information necessary for key decisions.
Quantum correlation via quantum coherence
NASA Astrophysics Data System (ADS)
Yu, Chang-shui; Zhang, Yang; Zhao, Haiqing
2014-06-01
Quantum correlation includes quantum entanglement and quantum discord. Both entanglement and discord have a common necessary condition—quantum coherence or quantum superposition. In this paper, we attempt to give an alternative understanding of how quantum correlation is related to quantum coherence. We divide the coherence of a quantum state into several classes and find the complete coincidence between geometric (symmetric and asymmetric) quantum discords and some particular classes of quantum coherence. We propose a revised measure for total coherence and find that this measure can lead to a symmetric version of geometric quantum correlation, which is analytic for two qubits. In particular, this measure can also arrive at a monogamy equality on the distribution of quantum coherence. Finally, we also quantify a remaining type of quantum coherence and find that for two qubits, it is directly connected with quantum nonlocality.
A new frame-based registration algorithm.
Yan, C H; Whalen, R T; Beaupre, G S; Sumanaweera, T S; Yen, S Y; Napel, S
1998-01-01
This paper presents a new algorithm for frame registration. Our algorithm requires only that the frame be comprised of straight rods, as opposed to the N structures or an accurate frame model required by existing algorithms. The algorithm utilizes the full 3D information in the frame as well as a least squares weighting scheme to achieve highly accurate registration. We use simulated CT data to assess the accuracy of our algorithm. We compare the performance of the proposed algorithm to two commonly used algorithms. Simulation results show that the proposed algorithm is comparable to the best existing techniques with knowledge of the exact mathematical frame model. For CT data corrupted with an unknown in-plane rotation or translation, the proposed technique is also comparable to the best existing techniques. However, in situations where there is a discrepancy of more than 2 mm (0.7% of the frame dimension) between the frame and the mathematical model, the proposed technique is significantly better (p < or = 0.05) than the existing techniques. The proposed algorithm can be applied to any existing frame without modification. It provides better registration accuracy and is robust against model mis-match. It allows greater flexibility on the frame structure. Lastly, it reduces the frame construction cost as adherence to a concise model is not required. PMID:9472834
A new frame-based registration algorithm
NASA Technical Reports Server (NTRS)
Yan, C. H.; Whalen, R. T.; Beaupre, G. S.; Sumanaweera, T. S.; Yen, S. Y.; Napel, S.
1998-01-01
This paper presents a new algorithm for frame registration. Our algorithm requires only that the frame be comprised of straight rods, as opposed to the N structures or an accurate frame model required by existing algorithms. The algorithm utilizes the full 3D information in the frame as well as a least squares weighting scheme to achieve highly accurate registration. We use simulated CT data to assess the accuracy of our algorithm. We compare the performance of the proposed algorithm to two commonly used algorithms. Simulation results show that the proposed algorithm is comparable to the best existing techniques with knowledge of the exact mathematical frame model. For CT data corrupted with an unknown in-plane rotation or translation, the proposed technique is also comparable to the best existing techniques. However, in situations where there is a discrepancy of more than 2 mm (0.7% of the frame dimension) between the frame and the mathematical model, the proposed technique is significantly better (p < or = 0.05) than the existing techniques. The proposed algorithm can be applied to any existing frame without modification. It provides better registration accuracy and is robust against model mis-match. It allows greater flexibility on the frame structure. Lastly, it reduces the frame construction cost as adherence to a concise model is not required.
Looking for systematic error in scale from terrestrial reference frames derived from DORIS data
NASA Technical Reports Server (NTRS)
Willis, Pascal; Soudarin, L.; Lemoine, F. G.
2005-01-01
The long-term stability of the scale of Terrestrial Reference Frames is directly linked with station height determination and is critical for several scientific studies, such as global mean sea level rise or ocean circulation with consequences on global warming studies. In recent International Terrestrial Reference Frame solutions, the DORIS technique was not sonsidered able to provide any useful information on scale. We have analyzed three different DORIS time series of coordinates performed independently using different software packages.
NASA Astrophysics Data System (ADS)
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The
Robust and efficient in situ quantum control
NASA Astrophysics Data System (ADS)
Ferrie, Christopher; Moussa, Osama
2015-05-01
Precision control of quantum systems is the driving force for both quantum technology and the probing of physics at the quantum and nanoscale levels. We propose an implementation-independent method for in situ quantum control that leverages recent advances in the direct estimation of quantum gate fidelity. Our algorithm takes account of the stochasticity of the problem, is suitable for closed-loop control, and requires only a constant number of fidelity-estimating experiments per iteration independent of the dimension of the control space. It is efficient and robust to both statistical and technical noise.
Non-Markovian dynamics of quantum discord
Fanchini, F. F.; Caldeira, A. O.; Werlang, T.; Brasil, C. A.; Arruda, L. G. E.
2010-05-15
We evaluate the quantum discord dynamics of two qubits in independent and common non-Markovian environments. We compare the dynamics of entanglement with that of quantum discord. For independent reservoirs the quantum discord vanishes only at discrete instants whereas the entanglement can disappear during a finite time interval. For a common reservoir, quantum discord and entanglement can behave very differently with sudden birth of the former but not of the latter. Furthermore, in this case the quantum discord dynamics presents sudden changes in the derivative of its time evolution which is evidenced by the presence of kinks in its behavior at discrete instants of time.
Adding control to arbitrary unknown quantum operations
Zhou, Xiao-Qi; Ralph, Timothy C.; Kalasuwan, Pruet; Zhang, Mian; Peruzzo, Alberto; Lanyon, Benjamin P.; O'Brien, Jeremy L.
2011-01-01
Although quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations—a requirement in many quantum algorithms, simulations and metrology. The technique, which is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. Here, we demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity. PMID:21811242
Wire frame to MOVIE. BYU transfer program
Robbins, D.; Byers, L.D.; Benner, M.S.
1982-12-01
At SNLA, the primary computer-aided drafting tool is the Applicon Graphics System (AGS). The data base for mechanical parts on the AGS is a wire frame model. This report summarizes a method of adding surface information to the wire frame and passing this information up stream to MOVIE.BYU which is on a VAX computer and is used to produce shaded graphics pictures of the AGS wire frame model on a RAMTEK 9400 display terminal.
Frame-based cranial reconstruction.
Hochfeld, Mascha; Lamecker, Hans; Thomale, Ulrich-W; Schulz, Matthias; Zachow, Stefan; Haberl, Hannes
2014-03-01
The authors report on the first experiences with the prototype of a surgical tool for cranial remodeling. The device enables the surgeon to transfer statistical information, represented in a model, into the disfigured bone. The model is derived from a currently evolving databank of normal head shapes. Ultimately, the databank will provide a set of standard models covering the statistical range of normal head shapes, thus providing the required template for any standard remodeling procedure as well as customized models for intended overcorrection. To date, this technique has been used in the surgical treatment of 14 infants (age range 6-12 months) with craniosynostosis. In all 14 cases, the designated esthetic result, embodied by the selected model, has been achieved, without morbidity or mortality. Frame-based reconstruction provides the required tools to precisely realize the surgical reproduction of the model shape. It enables the establishment of a self-referring system, feeding back postoperative growth patterns, recorded by 3D follow-up, into the model design. PMID:24437987
Pilotless Frame Synchronization Using LDPC Code Constraints
NASA Technical Reports Server (NTRS)
Jones, Christopher; Vissasenor, John
2009-01-01
A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.
Composite curved frames for helicopter fuselage structure
NASA Technical Reports Server (NTRS)
Rich, M. J.; Lowry, D. W.
1984-01-01
This paper presents the results of analysis and testing of composite curved frames. A major frame was selected from the UH-60 Black Hawk helicopter and designed as a composite structure. The curved beam effects were expected to increase flange axial stresses and induce transverse bending. A NASTRAN finite element analysis was conducted and the results were used in the design of composite curved frame specimens. Three specimens were fabricated and five static tests were conducted. The NASTRAN analysis and test results are compared for axial, transverse, and Web strains. Results show the curved beam effects are closely predicted by a NASTRAN analysis and the effects increase with loading on the composite frames.
Pyramidal space frame and associated methods
Clark, Ryan Michael; White, David; Farr, Jr, Adrian Lawrence
2016-07-19
A space frame having a high torsional strength comprising a first square bipyramid and two planar structures extending outward from an apex of the first square bipyramid to form a "V" shape is disclosed. Some embodiments comprise a plurality of edge-sharing square bipyramids configured linearly, where the two planar structures contact apexes of all the square bipyramids. A plurality of bridging struts, apex struts, corner struts and optional internal bracing struts increase the strength and rigidity of the space frame. In an embodiment, the space frame supports a solar reflector, such as a parabolic solar reflector. Methods of fabricating and using the space frames are also disclosed.
Modeling laser wakefield accelerators in a Lorentz boosted frame
Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.
2010-09-15
Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing theframe of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.
Quantum Cauchy surfaces in canonical quantum gravity
NASA Astrophysics Data System (ADS)
Lin, Chun-Yen
2016-09-01
For a Dirac theory of quantum gravity obtained from the refined algebraic quantization procedure, we propose a quantum notion of Cauchy surfaces. In such a theory, there is a kernel projector for the quantized scalar and momentum constraints, which maps the kinematic Hilbert space {{K}} into the physical Hilbert space {{H}}. Under this projection, a quantum Cauchy surface isomorphically represents a physical subspace {{D}}\\subset {{H}} with a kinematic subspace {{V}}\\subset {{K}}. The isomorphism induces the complete sets of Dirac observables in {{D}}, which faithfully represent the corresponding complete sets of self-adjoint operators in {{V}}. Due to the constraints, a specific subset of the observables would be ‘frozen’ as number operators, providing a background physical time for the rest of the observables. Therefore, a proper foliation with the quantum Cauchy surfaces may provide an observer frame describing the physical states of spacetimes in a Schrödinger picture, with the evolutions under a specific physical background. A simple model will be supplied as an initiative trial.
SNR improvement for hyperspectral application using frame and pixel binning
NASA Astrophysics Data System (ADS)
Rehman, Sami Ur; Kumar, Ankush; Banerjee, Arup
2016-05-01
Hyperspectral imaging spectrometer systems are increasingly being used in the field of remote sensing for variety of civilian and military applications. The ability of such instruments in discriminating finer spectral features along with improved spatial and radiometric performance have made such instruments a powerful tool in the field of remote sensing. Design and development of spaceborne hyper spectral imaging spectrometers poses lot of technological challenges in terms of optics, dispersion element, detectors, electronics and mechanical systems. The main factors that define the type of detectors are the spectral region, SNR, dynamic range, pixel size, number of pixels, frame rate, operating temperature etc. Detectors with higher quantum efficiency and higher well depth are the preferred choice for such applications. CCD based Si detectors serves the requirement of high well depth for VNIR band spectrometers but suffers from smear. Smear can be controlled by using CMOS detectors. Si CMOS detectors with large format arrays are available. These detectors generally have smaller pitch and low well depth. Binning technique can be used with available CMOS detectors to meet the large swath, higher resolution and high SNR requirements. Availability of larger dwell time of satellite can be used to bin multiple frames to increase the signal collection even with lesser well depth detectors and ultimately increase the SNR. Lab measurements reveal that SNR improvement by frame binning is more in comparison to pixel binning. Effect of pixel binning as compared to the frame binning will be discussed and degradation of SNR as compared to theoretical value for pixel binning will be analyzed.
Quantum discord as a resource for quantum cryptography.
Pirandola, Stefano
2014-01-01
Quantum discord is the minimal bipartite resource which is needed for a secure quantum key distribution, being a cryptographic primitive equivalent to non-orthogonality. Its role becomes crucial in device-dependent quantum cryptography, where the presence of preparation and detection noise (inaccessible to all parties) may be so strong to prevent the distribution and distillation of entanglement. The necessity of entanglement is re-affirmed in the stronger scenario of device-independent quantum cryptography, where all sources of noise are ascribed to the eavesdropper. PMID:25378231
Network-based H.264/AVC whole frame loss visibility model and frame dropping methods.
Chang, Yueh-Lun; Lin, Ting-Lan; Cosman, Pamela C
2012-08-01
We examine the visual effect of whole frame loss by different decoders. Whole frame losses are introduced in H.264/AVC compressed videos which are then decoded by two different decoders with different common concealment effects: frame copy and frame interpolation. The videos are seen by human observers who respond to each glitch they spot. We found that about 39% of whole frame losses of B frames are not observed by any of the subjects, and over 58% of the B frame losses are observed by 20% or fewer of the subjects. Using simple predictive features which can be calculated inside a network node with no access to the original video and no pixel level reconstruction of the frame, we developed models which can predict the visibility of whole B frame losses. The models are then used in a router to predict the visual impact of a frame loss and perform intelligent frame dropping to relieve network congestion. Dropping frames based on their visual scores proves superior to random dropping of B frames. PMID:22453638
Spatial properties of non-retinotopic reference frames in human vision.
Noory, Babak; Herzog, Michael H; Ogmen, Haluk
2015-08-01
Many visual attributes of a target stimulus are computed according to dynamic, non-retinotopic reference frames. For example, the motion trajectory of a reflector on a bicycle wheel is perceived as orbital, even though it is in fact cycloidal in retinal, as well as spatial coordinates. We cannot perceive the cycloidal motion because the linear motion of the bike is discounted for. In other words, the linear motion common to all bicycle components serves as a non-retinotopic reference frame, with respect to which the residual (orbital) motion of the reflector is computed. Very little is known about the underlying mechanisms involved in formation and operation of non-retinotopic reference frames. Here, we investigate spatial properties of non-retinotopic reference frames. We show that reference frames are not restricted within the boundaries of moving stimuli but extend over space. By using a variation of the Ternus-Pikler paradigm, we show that the spatial extent of a non-retinotopic reference frame is independent of the size of the inducing elements and the target position near the object boundary. While dynamic reference-frames interact with each other significantly, a static reference-frame has no effect on a dynamic one. The magnitude of interactions between two neighboring dynamic reference-frames increases as the distance between them reduces. Finally, our results indicate that the reference-frame strength is significantly attenuated if the locus of attention is shifted to the elements of the neighboring reference instead of the main reference. We suggest that these results can be conceptualized as reference frames that act and interact as fields. PMID:26049040
Coherence susceptibility as a probe of quantum phase transitions
NASA Astrophysics Data System (ADS)
Chen, Jin-Jun; Cui, Jian; Zhang, Yu-Ran; Fan, Heng
2016-08-01
We introduce a coherence susceptibility method, based on the fact that it signals quantum fluctuations, for identifying quantum phase transitions, which are induced by quantum fluctuations. This method requires no prior knowledge of order parameter, and there is no need for careful considerations concerning the choice of a bipartition of the system. It can identify different types of quantum phase transition points exactly. At finite temperatures, where quantum criticality is influenced by thermal fluctuations, our method can pinpoint the temperature frame of quantum criticality, which perfectly coincides with recent experiments.
NASA Astrophysics Data System (ADS)
Georgescu, I. M.; Ashhab, S.; Nori, Franco
2014-01-01
Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems. However, this difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system, i.e., quantum simulation. Quantum simulation promises to have applications in the study of many problems in, e.g., condensed-matter physics, high-energy physics, atomic physics, quantum chemistry, and cosmology. Quantum simulation could be implemented using quantum computers, but also with simpler, analog devices that would require less control, and therefore, would be easier to construct. A number of quantum systems such as neutral atoms, ions, polar molecules, electrons in semiconductors, superconducting circuits, nuclear spins, and photons have been proposed as quantum simulators. This review outlines the main theoretical and experimental aspects of quantum simulation and emphasizes some of the challenges and promises of this fast-growing field.
A Relational Frame Theory Account of Empathy
ERIC Educational Resources Information Center
Vilardaga, Roger
2009-01-01
The current paper proposes a Relational Frame Theory (RFT, Hayes, Barnes-Holmes, & Roche, 2001a) conceptualization of empathy and perspective taking that follows previous literature outlining a relationship between those phenomena and general functioning. Deictic framing, a relational operant investigated by RFT researchers, constitutes the…
Framing in the Field: A Case Study
ERIC Educational Resources Information Center
Benjamin, Diane
2009-01-01
Strategic Frame Analysis can inform the daily practice of policy advocates by bringing an evidence-based communications approach to their work. This case study of FrameWorks' decade-long association with the national Kids Count Network shares stories from advocates who are transforming their communications strategies, resulting in more effective…
Recursive frame integration of limited data: RAFAIL
NASA Astrophysics Data System (ADS)
Rafailov, Michael K.; Soli, Robert A.
2005-08-01
Real time infrared imaging and tracking usually requires a high probability of target detection along with a low false alarm rate, achievable only with a high "Signal-to-Noise Ratio" (SNR). Frame integration--summing of non-correlated frames--is commonly used to improve the SNR. But conventional frame integration requires significant processing to store full frames and integrate intermediate results, normalize frame data, etc. It may drive acquisition of highly specialized hardware, faster processors, dedicated frame integration circuit cards and extra memory cards. Non-stationary noise, low frequency noise correlation, non-ergodic noise, scene dynamics, or pointing accuracy may also limit performance. Recursive frame integration of limited data--RAFAIL, is proposed as a means to improve frame integration performance and mitigate the issues. The technique applies two thresholds--one tuned for optimum probability of detection, the other to manage required false alarm rate--and allows a non-linear integration process that, along with optimal noise management, provides system designers more capability where cost, weight, or power considerations limit system data rate, processing, or memory capability.
Dynamics of the Frame in Visual Composition.
ERIC Educational Resources Information Center
Herbener, Gerald F.; And Others
1979-01-01
Forty-four college students rated six framed, black-and-white single object pictures to determine if the framing of an object or the field surrounding it gives it more meaning. Based on factor analysis of the results, recommendations are made for future research. (JEG)
Frame Dominance in Infants with Hearing Loss
ERIC Educational Resources Information Center
von Hapsburg, Deborah; Davis, Barbara L.; MacNeilage, Peter F.
2008-01-01
Purpose: According to the frames then content (f/c) hypothesis (P. F. MacNeilage & B. L. Davis, 1990), the internal structure of syllables with consonant plus vowel structure (CV) during canonical babbling is determined primarily by production system properties related to rhythmic mandibular oscillations ("motor frames"). The purpose of this study…
Teaching the Dynamics of Framing Competitions
ERIC Educational Resources Information Center
Rinke, Eike Mark
2012-01-01
Framing theory is one of the most thriving and complex fields of communication theory, and as such it has grown to be an integral part of many political communication, public opinion, and communication theory courses. Part of the complexity stems from scholars' efforts to develop accounts of framing processes that are closer to the "real world" of…
Spatial Reference Frame of Incidentally Learned Attention
ERIC Educational Resources Information Center
Jiang, Yuhong V.; Swallow, Khena M.
2013-01-01
Visual attention prioritizes information presented at particular spatial locations. These locations can be defined in reference frames centered on the environment or on the viewer. This study investigates whether incidentally learned attention uses a viewer-centered or environment-centered reference frame. Participants conducted visual search on a…
A Framing Primer for Community College Leaders
ERIC Educational Resources Information Center
Nausieda, Ryan
2014-01-01
The purpose of this article is to be a tool for community college leaders, as well as campus members, to positively and effectively utilize framing on their campuses. The fictional case of Maggie Pascal at Midwestern Community College illustrates the process of framing the change of a new partnership with Wind Energy Corporation to internal…
The vista paradox: Framing or contrast?
Daum, S Oliver; Both, Bernhard S; Bertamini, Marco; Hecht, Heiko
2015-12-01
The vista paradox is the illusion in which an object seen through a window appears to shrink in apparent size (and appears farther away) as the observer approaches the window. Paradoxically, the distal object appears smaller as its visual angle increases. We investigated the effect in four experiments varying object size, distance, point of fixation, and texture of the frame and of the object. In the first experiment, we tried to confirm the illusion and to test the robustness of the phenomenon. In the second experiment, we manipulated where subjects fixated (on the frame or on the object) as well as the texture of the object and the frame. Fixation was essential for the illusion: fixating the frame led to an apparent shrinking of the object, whereas fixation on the object did not. Texture of the frame intensified the apparent shrinking of the object. In a third experiment, we separated the point of fixation from the frame in a between-subjects design. Finally, in Experiment 4, we showed that the paradox does not require a frame, but it requires a fixation on a location different from the object. That is, the window or frame is dispensable for the vista paradox, but fixation is critical. PMID:26280259
The Conversational Frame in Public Address.
ERIC Educational Resources Information Center
Branham, Robert James; Pearce, W. Barnett
1996-01-01
Explores the diverse forms and motives of the conversational frame in public address. Argues that, by framing their remarks and transactions with their listeners as conversational, orators may attempt to reconstruct or seem to reconstruct speaker-audience relationships and to position themselves and their audiences within networks of reciprocal…
Independent Schools - Independent Thinking - Independent Art: Testing Assumptions.
ERIC Educational Resources Information Center
Carnes, Virginia
This study consists of a review of selected educational reform issues from the past 10 years that deal with changing attitudes towards art and art instruction in the context of independent private sector schools. The major focus of the study is in visual arts and examines various programs and initiatives with an art focus. Programs include…
Integrated seat frame and back support
Martin, Leo
1999-01-01
An integrated seating device comprises a seat frame having a front end and a rear end. The seat frame has a double wall defining an exterior wall and an interior wall. The rear end of the seat frame has a slot cut therethrough both the exterior wall and the interior wall. The front end of the seat frame has a slot cut through just the interior wall thereof. A back support comprising a generally L shape has a horizontal member, and a generally vertical member which is substantially perpendicular to the horizontal member. The horizontal member is sized to be threaded through the rear slot and is fitted into the front slot. Welded slat means secures the back support to the seat frame to result in an integrated seating device.
ERIC Educational Resources Information Center
Rhee, June Woong
1997-01-01
Examines how news frames in campaign coverage affect an individual's interpretation of campaigns. Conceptualizes framing effects in terms of a construction of a mental model and emphasizes how news interpretation is influenced by news texts and by interpreter's social knowledge. Explores message structures of the strategy and issue frames, and…
Informative-frame filtering in endoscopy videos
NASA Astrophysics Data System (ADS)
An, Yong Hwan; Hwang, Sae; Oh, JungHwan; Lee, JeongKyu; Tavanapong, Wallapak; de Groen, Piet C.; Wong, Johnny
2005-04-01
Advances in video technology are being incorporated into today"s healthcare practice. For example, colonoscopy is an important screening tool for colorectal cancer. Colonoscopy allows for the inspection of the entire colon and provides the ability to perform a number of therapeutic operations during a single procedure. During a colonoscopic procedure, a tiny video camera at the tip of the endoscope generates a video signal of the internal mucosa of the colon. The video data are displayed on a monitor for real-time analysis by the endoscopist. Other endoscopic procedures include upper gastrointestinal endoscopy, enteroscopy, bronchoscopy, cystoscopy, and laparoscopy. However, a significant number of out-of-focus frames are included in this type of videos since current endoscopes are equipped with a single, wide-angle lens that cannot be focused. The out-of-focus frames do not hold any useful information. To reduce the burdens of the further processes such as computer-aided image processing or human expert"s examinations, these frames need to be removed. We call an out-of-focus frame as non-informative frame and an in-focus frame as informative frame. We propose a new technique to classify the video frames into two classes, informative and non-informative frames using a combination of Discrete Fourier Transform (DFT), Texture Analysis, and K-Means Clustering. The proposed technique can evaluate the frames without any reference image, and does not need any predefined threshold value. Our experimental studies indicate that it achieves over 96% of four different performance metrics (i.e. precision, sensitivity, specificity, and accuracy).
Quantum probabilistic logic programming
NASA Astrophysics Data System (ADS)
Balu, Radhakrishnan
2015-05-01
We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.
Inconstancy-theory/quantum-gravity
NASA Astrophysics Data System (ADS)
Murtaza, Faheem
1999-05-01
Inconstancy-theory is the union of "relativity" and "quantum" theories which rests upon the answers of the simple questions. 1) That if only the simple motion of a particle can not be observed without the "reference-frame" then how the whole universe can be expected to be observable without any "reference-frame". 2) Does not the inter-influence (Unity) of space-time-mass suggest that these are generated by common source and might not there be some invisible "flow" (dynamical-equilibrium) that is the cause of space-time-mass,as time itself is a flow. "Inconstancy" proposes, interalia, the principle that "relativity (generalised) is the universal law of nature in each and every respect". For that "inconstancy" admits only the light, being absolute, a real reference-frame and medium(mirror) for the display of relative "space-time-mass". Light as reference-frame in "Inconstancy" unifies "relativity" and "quantum" theories and establishes the inter-connection between "quantum-gravity" and strong-nuclear interactions, which offers the velocity of light in terms of physical and spatial-temporal components. "Inconstancy" introduces another "constant" operative in "quantum-gravity" and unveils the "graviton" location for its novel range as previously "relativity" escaped detection for v<<
Quantum networks reveal quantum nonlocality.
Cavalcanti, Daniel; Almeida, Mafalda L; Scarani, Valerio; Acín, Antonio
2011-01-01
The results of local measurements on some composite quantum systems cannot be reproduced classically. This impossibility, known as quantum nonlocality, represents a milestone in the foundations of quantum theory. Quantum nonlocality is also a valuable resource for information-processing tasks, for example, quantum communication, quantum key distribution, quantum state estimation or randomness extraction. Still, deciding whether a quantum state is nonlocal remains a challenging problem. Here, we introduce a novel approach to this question: we study the nonlocal properties of quantum states when distributed and measured in networks. We show, using our framework, how any one-way entanglement distillable state leads to nonlocal correlations and prove that quantum nonlocality is a non-additive resource, which can be activated. There exist states, local at the single-copy level, that become nonlocal when taking several copies of them. Our results imply that the nonlocality of quantum states strongly depends on the measurement context. PMID:21304513
Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule
Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; Zurek, Wojciech H.; Boyd, Robert W.; Karimi, Ebrahim
2016-05-01
The Born rule, a foundational axiom was used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr's Copenhagen interpretation, textbooks postulate the Born rule outright. But, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. Moreover, a major family of derivations is based onmore » envariance, a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Furthermore, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.« less
Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule
NASA Astrophysics Data System (ADS)
Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; Zurek, Wojciech H.; Boyd, Robert W.; Karimi, Ebrahim
2016-05-01
The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr’s Copenhagen interpretation, textbooks postulate the Born rule outright. However, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. A major family of derivations is based on envariance, a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Further, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.
Dynamics of Super Quantum Correlations and Quantum Correlations for a System of Three Qubits
NASA Astrophysics Data System (ADS)
Siyouri, F.; El Baz, M.; Rfifi, S.; Hassouni, Y.
2016-04-01
The dynamics of quantum discord for two qubits independently interacting with dephasing reservoirs have been studied recently. The authors [Phys. Rev. A 88 (2013) 034304] found that for some Bell-diagonal states (BDS) which interact with their environments the calculation of quantum discord could experience a sudden transition in its dynamics, this phenomenon is known as the sudden change. Here in the present paper, we analyze the dynamics of normal quantum discord and super quantum discord for tripartite Bell-diagonal states independently interacting with dephasing reservoirs. Then, we find that basis change does not necessary mean sudden change of quantum correlations.
Quantitative rotating frame relaxometry methods in MRI.
Gilani, Irtiza Ali; Sepponen, Raimo
2016-06-01
Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27100142
Stapp, H.P.
1988-12-01
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs.
Effective methods for quantum theories
NASA Astrophysics Data System (ADS)
Brahma, Suddhasattwa
Whenever a full theory is unavailable, effective frameworks serve as powerful tools for examining physical phenomena below some energy scale. However, standard quantum field theory techniques are not always applicable in various exotic, yet physically relevant, systems. This thesis presents a new effective method for quantum theories, which is particularly tailored towards background independent theories such as gravity. Our main motivation is to utilize these techniques to extract the semi-classical dynamics from canonical quantum gravity theories. Application to field theoretic toy models of loop quantum gravity and non-associative quantum mechanics is elaborated in detail. We also extend this framework to fully constrained systems, as is required for gravity, and discuss several consequences for quantum gravity.
Indistinguishability of thermal and quantum fluctuations
NASA Astrophysics Data System (ADS)
Kolekar, Sanved; Padmanabhan, T.
2015-10-01
The existence of Davies-Unruh temperature in a uniformly accelerated frame shows that quantum fluctuations of the inertial vacuum state appears as thermal fluctuations in the accelerated frame. Hence thermodynamic experiments cannot distinguish between phenomena occurring in a thermal bath of temperature T in the inertial frame from those in a frame accelerating through inertial vacuum with the acceleration a=2π T. We show that this indisguishability between quantum fluctuations and thermal fluctuations goes far beyond the fluctuations in the vacuum state. We show by an exact calculation, that the reduced density matrix for a uniformly accelerated observer when the quantum field is in a thermal state of temperature {T}\\prime , is symmetric between acceleration temperature T=a/(2π ) and the thermal bath temperature {T}\\prime . Thus thermal phenomena cannot distinguish whether (i) one is accelerating with a=2π T through a bath of temperature {T}\\prime or (ii) accelerating with a=2π {T}\\prime through a bath of temperature T. This shows that thermal and quantum fluctuations in an accelerated frame affect the observer in a symmetric manner. The implications are discussed.
Inertial nonvacuum states viewed from the Rindler frame
NASA Astrophysics Data System (ADS)
Lochan, Kinjalk; Padmanabhan, T.
2015-02-01
The appearance of the inertial vacuum state in Rindler frame has been extensively studied in the literature, both from the point of view of quantum field theory developed using Rindler foliation and using the response of an Unruh-Dewitt detector. In comparison, less attention has been devoted to the study of inertial nonvacuum states when viewed from the Rindler frame. We provide a comprehensive study of this issue in this paper. We first present a general formalism describing the characterization of arbitrary inertial state (i) when described using an arbitrary foliation and (ii) using the response of an Unruh-DeWitt detector moving along an arbitrary trajectory. This allows us to calculate the mean number of particles in an arbitrary inertial state, when the QFT is described using an arbitrary foliation of spacetime or when the state is probed by a detector moving along an arbitrary trajectory. We use this formalism to explicitly compute the results for the Rindler frame and uniformly accelerated detectors. Any arbitrary inertial state will always have a thermal component in the Rindler frame with additional contributions arising from the nonvacuum nature. We classify the nature of the additional contributions in terms of functions characterizing the inertial state. We establish that for all physically well-behaved normalizable inertial states, the correction terms decrease rapidly with the energy of the Rindler mode so that the high frequency limit is dominated by the thermal noise in any normalizable inertial state. However, inertial states which are not strictly normalizable like, for example, the one-particle state with definite momentum, lead to a constant contribution at all high frequencies in the Rindler frame. We show that a similar behavior arises in the response of the Unruh-DeWitt detector as well. In the case of the detector response, we provide a physical interpretation for the constant contribution at high frequencies in terms of total detection
Wavelet frames and admissibility in higher dimensions
Fuehr, H.
1996-12-01
This paper is concerned with the relations between discrete and continuous wavelet transforms on {ital k}-dimensional Euclidean space. We start with the construction of continuous wavelet transforms with the help of square-integrable representations of certain semidirect products, thereby generalizing results of Bernier and Taylor. We then turn to frames of L{sup 2}({bold R}{sup {ital k}}) and to the question, when the functions occurring in a given frame are admissible for a given continuous wavelet transform. For certain frames we give a characterization which generalizes a result of Daubechies to higher dimensions. {copyright} {ital 1996 American Institute of Physics.}
Alternative approximation concepts for space frame synthesis
NASA Technical Reports Server (NTRS)
Lust, R. V.; Schmit, L. A.
1985-01-01
A method for space frame synthesis based on the application of a full gamut of approximation concepts is presented. It is found that with the thoughtful selection of design space, objective function approximation, constraint approximation and mathematical programming problem formulation options it is possible to obtain near minimum mass designs for a significant class of space frame structural systems while requiring fewer than 10 structural analyses. Example problems are presented which demonstrate the effectiveness of the method for frame structures subjected to multiple static loading conditions with limits on structural stiffness and strength.
Quantum Computer Games: Quantum Minesweeper
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
NASA Astrophysics Data System (ADS)
Crease, Robert P.
2008-09-01
Its name is Quantum Cloud. Visitors to London cannot miss it when visiting the park next to the Millennium Dome or taking a cruise along the Thames. It rises 30 m above a platform on the banks of the river, and from a distance looks like a huge pile of steel wool. As you draw closer, you can make out the hazy, ghost-like shape of a human being in its centre. It is a sculpture, by the British artist Anthony Gormley, made from steel rods about a metre and a half long that are attached to each other in seemingly haphazard ways. Framed by the habitually grey London sky, it does indeed look cloud-like. But "quantum"?
Torque or no torque? Simple charged particle motion observed in different inertial frames
NASA Astrophysics Data System (ADS)
Jackson, J. D.
2004-12-01
In a given inertial frame, a charged particle initially at rest moves in the central electric field caused by a fixed charge at the origin. The particle has no initial angular momentum and experiences no torque. However, in an inertial frame moving with a nonvanishing velocity with respect to the first, the charged particle's motion is subject to the Lorentz force with both electric and magnetic fields produced by the "fixed" charge, which is now in uniform motion. The charged particle experiences a torque from the magnetic part of the force; its nonvanishing angular momentum changes in time. This puzzle is analyzed in detail from different reference frames. The chief characteristic of the motion, independent of the choice of the inertial frame, is the constancy in time of the orientation of the relative coordinate r as the particle moves with respect to the fixed (or uniformly moving) charge.
Protection of Quantum Correlation Through the Quantum Erasing Effect
NASA Astrophysics Data System (ADS)
Xu, Hui-Yun; Yang, Guo-Hui
2016-05-01
By taking into account the quantum erasing effect(QEE), the quantum discord (QD) behavior of a two-qubit system with different initial states are investigated in detail. We find that the quantum correlation can be saved under a scheme of two spatially separated atoms, each located in a leaky cavity through the quantum erasing method. It is shown that QEE can weaken the effects of decoherence, and preserve the maximum information of the coherent item. No matter whether the two atoms are in the mixted or pure state, one can robusty save their initial quantum correlation even the number of erasing events is finite. If one limit the erasing events N → ∞, the QEE can be used to protect the initial quantum correlation independently of the state in which it is stored, the values of QD is always nearly equal to the initial QD values, and it is nearly independent of the decoherence, which imply us more encourage strategy for protecting the quantum correlation properties in some quantum systems.
Language switching-but not foreign language use per se-reduces the framing effect.
Oganian, Y; Korn, C W; Heekeren, H R
2016-01-01
Recent studies reported reductions of well-established biases in decision making under risk, such as the framing effect, during foreign language (FL) use. These modulations were attributed to the use of FL itself, which putatively entails an increase in emotional distance. A reduced framing effect in this setting, however, might also result from enhanced cognitive control associated with language-switching in mixed-language contexts, an account that has not been tested yet. Here we assess predictions of the 2 accounts in 2 experiments with over 1,500 participants. In Experiment 1, we tested a central prediction of the emotional distance account, namely that the framing effect would be reduced at low, but not high, FL proficiency levels. We found a strong framing effect in the native language, and surprisingly also in the foreign language, independent of proficiency. In Experiment 2, we orthogonally manipulated foreign language use and language switching to concurrently test the validity of both accounts. As in Experiment 1, foreign language use per se had no effect on framing. Crucially, the framing effect was reduced following a language switch, both when switching into the foreign and the native language. Thus, our results suggest that reduced framing effects are not mediated by increased emotional distance in a foreign language, but by transient enhancement of cognitive control, putting the interplay of bilingualism and decision making in a new light. (PsycINFO Database Record PMID:26098182
Human-competitive evolution of quantum computing artefacts by Genetic Programming.
Massey, Paul; Clark, John A; Stepney, Susan
2006-01-01
We show how Genetic Programming (GP) can be used to evolve useful quantum computing artefacts of increasing sophistication and usefulness: firstly specific quantum circuits, then quantum programs, and finally system-independent quantum algorithms. We conclude the paper by presenting a human-competitive Quantum Fourier Transform (QFT) algorithm evolved by GP. PMID:16536889
Do spinors give rise to a frame-dragging effect?
Randono, Andrew
2010-01-15
We investigate the effect of the intrinsic spin of a fundamental spinor field on the surrounding spacetime geometry. We show that despite the lack of a rotating stress-energy source (and despite claims to the contrary) the intrinsic spin of a spin-half fermion gives rise to a frame-dragging effect analogous to that of orbital angular momentum, even in Einstein-Hilbert gravity where torsion is constrained to be zero. This resolves a paradox regarding the counter-force needed to restore Newton's third law in the well-known spin-orbit interaction. In addition, the frame-dragging effect gives rise to a long-range gravitationally mediated spin-spin dipole interaction coupling the internal spins of two sources. We argue that despite the weakness of the interaction, the spin-spin interaction will dominate over the ordinary inverse square Newtonian interaction in any process of sufficiently high energy for quantum field theoretical effects to be non-negligible.
NASA Astrophysics Data System (ADS)
Pfeiffer, P.; Egusquiza, I. L.; di Ventra, M.; Sanz, M.; Solano, E.
2016-07-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.
Pfeiffer, P; Egusquiza, I L; Di Ventra, M; Sanz, M; Solano, E
2016-01-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.
2016-01-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511
Covariance and the hierarchy of frame bundles
NASA Technical Reports Server (NTRS)
Estabrook, Frank B.
1987-01-01
This is an essay on the general concept of covariance, and its connection with the structure of the nested set of higher frame bundles over a differentiable manifold. Examples of covariant geometric objects include not only linear tensor fields, densities and forms, but affinity fields, sectors and sector forms, higher order frame fields, etc., often having nonlinear transformation rules and Lie derivatives. The intrinsic, or invariant, sets of forms that arise on frame bundles satisfy the graded Cartan-Maurer structure equations of an infinite Lie algebra. Reduction of these gives invariant structure equations for Lie pseudogroups, and for G-structures of various orders. Some new results are introduced for prolongation of structure equations, and for treatment of Riemannian geometry with higher-order moving frames. The use of invariant form equations for nonlinear field physics is implicitly advocated.
Moving Frames for Heart Fiber Reconstruction.
Piuze, Emmanuel; Sporring, Jon; Siddiqi, Kaleem
2015-01-01
The method of moving frames provides powerful geometrical tools for the analysis of smoothly varying frame fields. However, in the face of missing measurements, a reconstruction problem arises, one that is largely unexplored for 3D frame fields. Here we consider the particular example of reconstructing impaired cardiac diffusion magnetic resonance imaging (dMRI) data. We combine moving frame analysis with a diffusion inpainting scheme that incorporates rule-based priors. In contrast to previous reconstruction methods, this new approach uses comprehensive differential descriptors for cardiac fibers, and is able to fully recover their orientation. We demonstrate the superior performance of this approach in terms of error of fit when compared to alternate methods. We anticipate that these tools could find application in clinical settings, where damaged heart tissue needs to be replaced or repaired, and for generating dense fiber volumes in electromechanical modelling of the heart. PMID:26221700
Toward a generalized plate motion reference frame
NASA Astrophysics Data System (ADS)
Becker, T. W.; Schaeffer, A. J.; Lebedev, S.; Conrad, C. P.
2015-05-01
An absolute plate motion (APM) model is required to address issues such as the thermochemical evolution of Earth's mantle. All APM models have to rely on indirect inferences, including those based on hot spots and seismic anisotropy, each with their own set of uncertainties. Here, we explore a seafloor spreading-aligned reference frame. We show that this reference frame fits azimuthal seismic anisotropy in the uppermost mantle very well. The corresponding Euler pole is close to those of hot spot reference frames, ridge motion minimizing models, and geodynamic estimates of net rotation and predicts clear trench motion patterns. We conclude that a net rotation pole guided by the spreading-aligned model (at 64°E, 61°S, with moderate rotation of ˜ 0.2 … 0.3°/Myr) could indeed represent a standard, comprehensive reference frame for present-day plate motions with respect to the deep mantle.
Vibration of x-braced portal frames
NASA Astrophysics Data System (ADS)
Chang, C. H.; Wang, P. Y.; Lin, Y. W.
1987-09-01
Both free and forced vibrations of elastic X-braced portal frames are investigated. Solutions of the Euler-Bernoulli equation for the transverse vibration coupled with the axial vibration are used. The first five natural frequencies, with the angle of inclination, α, of the bracing bars ranging from 15° to 75°, with different slenderness ratios, R, of the columns, and different stiffness of the floor beam and crossing bars, are presented along with two sets of the natural modes of the frames with α = 45°. For the forced vibration, the dynamic responses of the frames with a concentrated horizontal time dependent force acting at a top joint are studied. The responses of the frames with α = 45° are analyzed in detail.
High Performance Commercial Fenestration Framing Systems
Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli
2010-01-31
A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial
ERIC Educational Resources Information Center
Hill, Jennifer; Kneale, Pauline; Nicholson, Dawn; Waddington, Shelagh; Ray, Waverly
2011-01-01
This paper reviews the opportunities and challenges for re-framing the purpose, process, product and assessment of final-year geography dissertations. It argues that the academic centralities of critical thinking, analysis, evaluation, effective communication and independence must be retained, but that the traditional format limits creativity and…
Geodetic precession or dragging of inertial frames
NASA Technical Reports Server (NTRS)
Ashby, Neil; Shahid-Saless, Bahman
1989-01-01
In General Relativity, the Principle of General Covariance allows one to describe phenomena by means of any convenient choice of coordinate system. Here, it is shown that the geodetic precession of a gyroscope orbiting a spherically symmetric, nonrotating mass can be recast as a Lense-Thirring frame-dragging effect, in an appropriately chosen coordinate frame whose origin falls freely along with the gyroscope and whose spatial coordinate axes point in fixed directions.
Complete experimental toolbox for alignment-free quantum communication
NASA Astrophysics Data System (ADS)
D'Ambrosio, Vincenzo; Nagali, Eleonora; Walborn, Stephen P.; Aolita, Leandro; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio
2012-07-01
Quantum communication employs the counter-intuitive features of quantum physics for tasks that are impossible in the classical world. It is crucial for testing the foundations of quantum theory and promises to revolutionize information and communication technologies. However, to execute even the simplest quantum transmission, one must establish, and maintain, a shared reference frame. This introduces a considerable overhead in resources, particularly if the parties are in motion or rotating relative to each other. Here we experimentally show how to circumvent this problem with the transmission of quantum information encoded in rotationally invariant states of single photons. By developing a complete toolbox for the efficient encoding and decoding of quantum information in such photonic qubits, we demonstrate the feasibility of alignment-free quantum key-distribution, and perform proof-of-principle demonstrations of alignment-free entanglement distribution and Bell-inequality violation. The scheme should find applications in fundamental tests of quantum mechanics and satellite-based quantum communication.
Control aspects of quantum computing using pure and mixed states
Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J.
2012-01-01
Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems. PMID:22946034
Celestial Reference Frames at Multiple Radio Wavelengths
NASA Technical Reports Server (NTRS)
Jacobs, Christopher S.
2012-01-01
In 1997 the IAU adopted the International Celestial Reference Frame (ICRF) built from S/X VLBI data. In response to IAU resolutions encouraging the extension of the ICRF to additional frequency bands, VLBI frames have been made at 24, 32, and 43 gigahertz. Meanwhile, the 8.4 gigahertz work has been greatly improved with the 2009 release of the ICRF-2. This paper discusses the motivations for extending the ICRF to these higher radio bands. Results to date will be summarized including evidence that the high frequency frames are rapidly approaching the accuracy of the 8.4 gigahertz ICRF-2. We discuss current limiting errors and prospects for the future accuracy of radio reference frames. We note that comparison of multiple radio frames is characterizing the frequency dependent systematic noise floor from extended source morphology and core shift. Finally, given Gaia's potential for high accuracy optical astrometry, we have simulated the precision of a radio-optical frame tie to be approximately10-15 microarcseconds ((1-sigma) (1-standard deviation), per component).
Tracking in high-frame-rate imaging.
Wu, Shih-Ying; Wang, Shun-Li; Li, Pai-Chi
2010-01-01
Speckle tracking has been used for motion estimation in ultrasound imaging. Unlike conventional Doppler techniques, which are angle-dependent, speckle tracking can be utilized to estimate velocity vectors. However, the accuracy of speckle-tracking methods is limited by speckle decorrelation, which is related to the displacement between two consecutive images, and, hence, combining high-frame-rate imaging and speckle tracking could potentially increase the accuracy of motion estimation. However, the lack of transmit focusing may also affect the tracking results and the high computational requirement may be problematic. This study therefore assessed the performance of high-frame-rate speckle tracking and compared it with conventional focusing. The effects of the signal-to-noise ratio (SNR), bulk motion, and velocity gradients were investigated in both experiments and simulations. The results show that high-frame-rate speckle tracking can achieve high accuracy if the SNR is sufficiently high. In addition, its computational complexity is acceptable because smaller search windows can be used due to the displacements between frames generally being smaller during high-frame-rate imaging. Speckle decor-relation resulting from velocity gradients within a sample volume is also not as significant during high-frame-rate imaging. PMID:20690428
NASA Astrophysics Data System (ADS)
Svehla, Drazen; Rothacher, Markus; Hugentobler, Urs; Nothnagel, Axel; Willis, Pascal; Biancale, Richard; Ziebart, Marek; Appleby, Graham; Schuh, Harald; Ádám, József; Iess, Luciano; Cacciapuoti, Luigi
2014-05-01
The Space-Time Explorer and QUantum Equivalence Principle Space Test (STE-QUEST) is a Medium Class fundamental physics mission pre-selected for the M3 slot of the ESA Cosmic Vision Programme to test Einstein's Equivalence Principle using atom interferometry and the general and special theory of relativity. Two secondary mission objectives are related to space geodesy: terrestrial and celestial reference frame of the Earth and relativistic geodesy aiming at the realization of unified reference frame for positioning, time, and temporal gravity. The highly elliptical orbit of the STE-QUEST satellite can be used for terrestrial reference frame realization by means of on board GNSS, SLR and VLBI radio source (STE-QUEST metrology link tracked by VLBI antenna - compatible with VLBI2010). By upgrading the on board GNSS receiver for DORIS tracking, the STE-QUEST mission will be similar to the GRASP mission proposal from JPL. Due to the highly elliptical orbit of STE-QUEST (apogee
Device-independent two-party cryptography secure against sequential attacks
NASA Astrophysics Data System (ADS)
Kaniewski, Jędrzej; Wehner, Stephanie
2016-05-01
The goal of two-party cryptography is to enable two parties, Alice and Bob, to solve common tasks without the need for mutual trust. Examples of such tasks are private access to a database, and secure identification. Quantum communication enables security for all of these problems in the noisy-storage model by sending more signals than the adversary can store in a certain time frame. Here, we initiate the study of device-independent (DI) protocols for two-party cryptography in the noisy-storage model. Specifically, we present a relatively easy to implement protocol for a cryptographic building block known as weak string erasure and prove its security even if the devices used in the protocol are prepared by the dishonest party. DI two-party cryptography is made challenging by the fact that Alice and Bob do not trust each other, which requires new techniques to establish security. We fully analyse the case of memoryless devices (for which sequential attacks are optimal) and the case of sequential attacks for arbitrary devices. The key ingredient of the proof, which might be of independent interest, is an explicit (and tight) relation between the violation of the Clauser–Horne–Shimony–Holt inequality observed by Alice and Bob and uncertainty generated by Alice against Bob who is forced to measure his system before finding out Alice’s setting (guessing with postmeasurement information). In particular, we show that security is possible for arbitrarily small violation.
Classical-Quantum Correspondence by Means of Probability Densities
NASA Technical Reports Server (NTRS)
Vegas, Gabino Torres; Morales-Guzman, J. D.
1996-01-01
Within the frame of the recently introduced phase space representation of non relativistic quantum mechanics, we propose a Lagrangian from which the phase space Schrodinger equation can be derived. From that Lagrangian, the associated conservation equations, according to Noether's theorem, are obtained. This shows that one can analyze quantum systems completely in phase space as it is done in coordinate space, without additional complications.
Entanglement-Based Quantum Cryptography and Quantum Communication
NASA Astrophysics Data System (ADS)
Zeilinger, Anton
2007-03-01
Quantum entanglement, to Erwin Schroedinger the essential feature of quantum mechanics, has become a central resource in various quantum communication protocols including quantum cryptography and quantum teleportation. From a fundamental point of view what is exploited in these experiments is the very fact which led Schroedinger to his statement namely that in entangled states joint properties of the entangled systems may be well defined while the individual subsystems may carry no information at all. In entanglement-based quantum cryptography it leads to the most elegant possible solution of the classic key distribution problem. It implies that the key comes into existence at spatially distant location at the same time and does not need to be transported. A number recent developments include for example highly efficient, robust and stable sources of entangled photons with a broad bandwidth of desired features. Also, entanglement-based quantum cryptography is successfully joining other methods in the work towards demonstrating quantum key distribution networks. Along that line recently decoy-state quantum cryptography over a distance of 144 km between two Canary Islands was demonstrated successfully. Such experiments also open up the possibility of quantum communication on a really large scale using LEO satellites. Another important possible future branch of quantum communication involves quantum repeaters in order to cover larger distances with entangled states. Recently the connection of two fully independent lasers in an entanglement swapping experiment did demonstrate that the timing control of such systems on a femtosecond time scale is possible. A related development includes recent demonstrations of all-optical one-way quantum computation schemes with the extremely short cycle time of only 100 nanoseconds.
Field Dependence-Independence and Physical Activity Engagement among Middle School Students
ERIC Educational Resources Information Center
Liu, Wenhao; Chepyator-Thomson, Jepkorir Rose
2009-01-01
Background: Field dependence-independence (FDI) is a tendency to rely on external frames (given situations and authoritative people) or internal frames (oneself, including one's own body) for one's information processing and behavior. Literature has constantly reported that field-dependent (FD) individuals, who are less autonomous in…
Representation of the inverse of a frame multiplier☆
Balazs, P.; Stoeva, D.T.
2015-01-01
Certain mathematical objects appear in a lot of scientific disciplines, like physics, signal processing and, naturally, mathematics. In a general setting they can be described as frame multipliers, consisting of analysis, multiplication by a fixed sequence (called the symbol), and synthesis. In this paper we show a surprising result about the inverse of such operators, if any, as well as new results about a core concept of frame theory, dual frames. We show that for semi-normalized symbols, the inverse of any invertible frame multiplier can always be represented as a frame multiplier with the reciprocal symbol and dual frames of the given ones. Furthermore, one of those dual frames is uniquely determined and the other one can be arbitrarily chosen. We investigate sufficient conditions for the special case, when both dual frames can be chosen to be the canonical duals. In connection to the above, we show that the set of dual frames determines a frame uniquely. Furthermore, for a given frame, the union of all coefficients of its dual frames is dense in ℓ2. We also introduce a class of frames (called pseudo-coherent frames), which includes Gabor frames and coherent frames, and investigate invertible pseudo-coherent frame multipliers, allowing a classification for frame-type operators for these frames. Finally, we give a numerical example for the invertibility of multipliers in the Gabor case. PMID:25843976
Locking Corners Speed Solar-Array Frame Assembly
NASA Technical Reports Server (NTRS)
Olah, S.; Sampson, W. J.
1984-01-01
Mitered corners of solar-array frames joined together by single angle brace and two springs. Locking corner braces and mating frame members pushed together by hand or assembled automatically. Fastening system used to assemble window screens and picture frames.
Quantum robots and quantum computers
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Quantum hair and quantum gravity
Coleman, S. ); Krauss, L.M. ); Preskill, J. ); Wilczek, F. )
1992-01-01
A black hole may carry quantum numbers that are not associated with massless gauge fields, contrary to the spirit of the 'no-hair' theorems. The 'quantum hair' is invisible in the classical limit, but measurable via quantum interference experiments. Quantum hair alters the temperature of the radiation emitted by a black hole. It also induces non-zero expectation values for fields outside the event horizon; these expectation values are non-perturbative in [Dirac h], and decay exponentially far from the hole. The existence of quantum hair demonstrates that a black hole can have an intricate quantum-mechanical structure that is completely missed by standard semiclassical theory.
Zurek, Wojciech H
2008-01-01
Quantum Darwinism - proliferation, in the environment, of multiple records of selected states of the system (its information-theoretic progeny) - explains how quantum fragility of individual state can lead to classical robustness of their multitude.
NASA Astrophysics Data System (ADS)
Harju, Antti J.
2016-06-01
This is a study of orbifold-quotients of quantum groups (quantum orbifolds {Θ } rightrightarrows Gq). These structures have been studied extensively in the case of the quantum S U 2 group. A generalized theory of quantum orbifolds over compact simple and simply connected quantum groups is developed. Associated with a quantum orbifold there is an invariant subalgebra and a crossed product algebra. For each spin quantum orbifold, there is a unitary equivalence class of Dirac spectral triples over the invariant subalgebra, and for each effective spin quantum orbifold associated with a finite group action, there is a unitary equivalence class of Dirac spectral triples over the crossed product algebra. A Hopf-equivariant Fredholm index problem is studied as an application.
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.
2016-07-06
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantummore » regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.« less
The Field Dependence-Independence Construct: Some, One, or None.
ERIC Educational Resources Information Center
Linn, Marcia C.; Kyllonen, Patrick
The field dependency/independency construct (FDI) was measured using tests of perception of the upright such as the Rod and Frame Test (RFT) and tests of cognitive restructuring such as the Hidden Figures Test (HFT); relationships between cognitive restructing and perception of the upright were investigated. High school seniors received 34 tests…
Independent Discovery of a Probable Nova in M81
NASA Astrophysics Data System (ADS)
Hornoch, K.; Kucakova, H.
2016-06-01
We report the independent discovery of a probable nova in M81 (first reported by M. Henze et al. in ATel #9175) on a co-added 3960-s unfiltered CCD frame taken on 2016 Jun. 20.880 UT with the 0.65-m telescope at Ondrejov.
Independence of Internal Auditors.
ERIC Educational Resources Information Center
Montondon, Lucille; Meixner, Wilda F.
1993-01-01
A survey of 288 college and university auditors investigated patterns in their appointment, reporting, and supervisory practices as indicators of independence and objectivity. Results indicate a weakness in the positioning of internal auditing within institutions, possibly compromising auditor independence. Because the auditing function is…
American Independence. Fifth Grade.
ERIC Educational Resources Information Center
Crosby, Annette
This fifth grade teaching unit covers early conflicts between the American colonies and Britain, battles of the American Revolutionary War, and the Declaration of Independence. Knowledge goals address the pre-revolutionary acts enforced by the British, the concepts of conflict and independence, and the major events and significant people from the…
Fostering Musical Independence
ERIC Educational Resources Information Center
Shieh, Eric; Allsup, Randall Everett
2016-01-01
Musical independence has always been an essential aim of musical instruction. But this objective can refer to everything from high levels of musical expertise to more student choice in the classroom. While most conceptualizations of musical independence emphasize the demonstration of knowledge and skills within particular music traditions, this…
Centering on Independent Study.
ERIC Educational Resources Information Center
Miller, Stephanie
Independent study is an instructional approach that can have enormous power in the classroom. It can be used successfully with students at all ability levels, even though it is often associated with gifted students. Independent study is an opportunity for students to study a subject of their own choosing under the guidance of a teacher. The…
Creating a Superposition of Unknown Quantum States.
Oszmaniec, Michał; Grudka, Andrzej; Horodecki, Michał; Wójcik, Antoni
2016-03-18
The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states. PMID:27035290
Creating a Superposition of Unknown Quantum States
NASA Astrophysics Data System (ADS)
Oszmaniec, Michał; Grudka, Andrzej; Horodecki, Michał; Wójcik, Antoni
2016-03-01
The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states.
Quantum gravity and charge renormalization
Toms, David J.
2007-08-15
We study the question of the gauge dependence of the quantum gravity contribution to the running gauge coupling constant for electromagnetism. The calculations are performed using dimensional regularization in a manifestly gauge-invariant and gauge-condition-independent formulation of the effective action. It is shown that there is no quantum gravity contribution to the running charge, and hence there is no alteration to asymptotic freedom at high energies as predicted by Robinson and Wilczek.
No Drama Quantum Electrodynamics?
NASA Astrophysics Data System (ADS)
Akhmeteli, Andrey
2015-03-01
Is it possible to offer a ``no drama'' quantum electrodynamics, as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations (PDE) in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the Fock space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics. 2. After introduction of a complex 4-potential (producing the same electromagnetic field (EMF) as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics. 3. The resulting theories describe independent evolution of EMF and can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order PDE for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem and the connection with Barut's self-field electrodynamics are discussed.
Parallel Photonic Quantum Computation Assisted by Quantum Dots in One-Side Optical Microcavities
NASA Astrophysics Data System (ADS)
Luo, Ming-Xing; Wang, Xiaojun
2014-07-01
Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions on one degree of freedom (DOF) of quantum systems, we investigate the possibility of parallel quantum computations dependent on two DOFs of photon systems. We construct deterministic hyper-controlled-not (hyper-CNOT) gates operating on the spatial-mode and the polarization DOFs of two-photon or one-photon systems by exploring the giant optical circular birefringence induced by quantum-dot spins in one-sided optical microcavities. These hyper-CNOT gates show that the quantum states of two DOFs can be viewed as independent qubits without requiring auxiliary DOFs in theory. This result can reduce the quantum resources by half for quantum applications with large qubit systems, such as the quantum Shor algorithm.
Parallel photonic quantum computation assisted by quantum dots in one-side optical microcavities.
Luo, Ming-Xing; Wang, Xiaojun
2014-01-01
Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions on one degree of freedom (DOF) of quantum systems, we investigate the possibility of parallel quantum computations dependent on two DOFs of photon systems. We construct deterministic hyper-controlled-not (hyper-CNOT) gates operating on the spatial-mode and the polarization DOFs of two-photon or one-photon systems by exploring the giant optical circular birefringence induced by quantum-dot spins in one-sided optical microcavities. These hyper-CNOT gates show that the quantum states of two DOFs can be viewed as independent qubits without requiring auxiliary DOFs in theory. This result can reduce the quantum resources by half for quantum applications with large qubit systems, such as the quantum Shor algorithm. PMID:25030424
Could space be considered as the inertial rest frame?
NASA Astrophysics Data System (ADS)
Roychoudhuri, Chandrasekhar; Ambroselli, Michael
2015-09-01
We take the postulate of Special Relativity, that the cosmic rules observable through physical phenomena, are the same for all stars in all galaxies. We have deliberately avoided using the phrase; "in all inertial frames of reference" to avoid conceptual mathematical debate in defining what such frames of references are [1-4]. Then, accepting the universal validity of light velocity defined by Maxwell's wave equation, c2 = 1 / (ɛ 0μ 0) ; we revive the old ether concept with physically descriptive phrase that space is a continuous Complex Tension Field (CTF). This is strengthened by the fact that all non-dissipative tension fields allow for perpetual propagation of waves when excited within its linear restoration capability. We accommodate the particles as localized self-phase-looped resonant oscillations of the same CTF; thus integrating particles as another kind of excited states of the same CTF [5]. Further, all tension fields allow co-propagation and cross-propagation of multiple waves (preservation of wave properties and the respective Poynting vectors) through the same physical volume (linear Superposition Principle) in the absence of perturbing resonant detectors within the volume of superposition. We have re-named this universal property of all waves as Non-Interaction of Waves [6,7]. Thus, Doppler shifted waves from different stars and galaxies can cross through each other unperturbed while bringing to us the signatures of the properties of their parent stars. Now, if these light signals are waving of CTF, the optical Doppler effects must also be, as for sound waves in air pressure tension field, discernable into two different frequency shifts: as due to (i) source velocity (distant stars) and (ii) detector velocity (that of the earth) [8,9]. In other words, we are proposing that CTF (modified old ether) is the stationary cosmic rest frame. Since we have been routinely assuming that quantum phenomena are same in all stars; we strengthen our position by
A genetic scale of reading frame coding.
Michel, Christian J
2014-08-21
The reading frame coding (RFC) of codes (sets) of trinucleotides is a genetic concept which has been largely ignored during the last 50 years. A first objective is the definition of a new and simple statistical parameter PrRFC for analysing the probability (efficiency) of reading frame coding (RFC) of any trinucleotide code. A second objective is to reveal different classes and subclasses of trinucleotide codes involved in reading frame coding: the circular codes of 20 trinucleotides and the bijective genetic codes of 20 trinucleotides coding the 20 amino acids. This approach allows us to propose a genetic scale of reading frame coding which ranges from 1/3 with the random codes (RFC probability identical in the three frames) to 1 with the comma-free circular codes (RFC probability maximal in the reading frame and null in the two shifted frames). This genetic scale shows, in particular, the reading frame coding probabilities of the 12,964,440 circular codes (PrRFC=83.2% in average), the 216 C(3) self-complementary circular codes (PrRFC=84.1% in average) including the code X identified in eukaryotic and prokaryotic genes (PrRFC=81.3%) and the 339,738,624 bijective genetic codes (PrRFC=61.5% in average) including the 52 codes without permuted trinucleotides (PrRFC=66.0% in average). Otherwise, the reading frame coding probabilities of each trinucleotide code coding an amino acid with the universal genetic code are also determined. The four amino acids Gly, Lys, Phe and Pro are coded by codes (not circular) with RFC probabilities equal to 2/3, 1/2, 1/2 and 2/3, respectively. The amino acid Leu is coded by a circular code (not comma-free) with a RFC probability equal to 18/19. The 15 other amino acids are coded by comma-free circular codes, i.e. with RFC probabilities equal to 1. The identification of coding properties in some classes of trinucleotide codes studied here may bring new insights in the origin and evolution of the genetic code. PMID:24698943
MRI Contrasts in High Rank Rotating Frames
Liimatainen, Timo; Hakkarainen, Hanne; Mangia, Silvia; Huttunen, Janne M.J.; Storino, Christine; Idiyatullin, Djaudat; Sorce, Dennis; Garwood, Michael; Michaeli, Shalom
2014-01-01
Purpose MRI relaxation measurements are performed in the presence of a fictitious magnetic field in the recently described technique known as RAFF (Relaxation Along a Fictitious Field). This method operates in the 2nd rotating frame (rank n = 2) by utilizing a non-adiabatic sweep of the radiofrequency effective field to generate the fictitious magnetic field. In the present study, the RAFF method is extended for generating MRI contrasts in rotating frames of ranks 1 ≤ n ≤ 5. The developed method is entitled RAFF in rotating frame of rank n (RAFFn). Methods RAFFn pulses were designed to generate fictitious fields that allow locking of magnetization in rotating frames of rank n. Contrast generated with RAFFn was studied using Bloch-McConnell formalism together with experiments on human and rat brains. Results Tolerance to B0 and B1 inhomogeneities and reduced specific absorption rate with increasing n in RAFFn were demonstrated. Simulations of exchange-induced relaxations revealed enhanced sensitivity of RAFFn to slow exchange. Consistent with such feature, an increased grey/white matter contrast was observed in human and rat brain as n increased. Conclusion RAFFn is a robust and safe rotating frame relaxation method to access slow molecular motions in vivo. PMID:24523028
NASA Astrophysics Data System (ADS)
Akhmeteli, Andrey
2013-03-01
Is it possible to offer a ``no drama'' quantum theory? Something as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations (PDE) in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the Fock space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics; the resulting equations describe independent evolution of the electromagnetic field (EMF). 2. After introduction of a complex 4-potential (producing the same EMF as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics; the resulting equations describe independent evolution of EMF. 3. The resulting theories for EMF can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order PDE for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed. A. Akhmeteli, Int'l Journal of Quantum Information, Vol. 9, Suppl., 17-26 (2011) A. Akhmeteli, Journal of Mathematical Physics, Vol. 52, 082303 (2011) A. Akhmeteli, quant-ph/1111.4630 A. Akhmeteli, J. Phys.: Conf. Ser., Vol. 361, 012037 (2012)
NASA Astrophysics Data System (ADS)
Akhmeteli, Andrey
2012-02-01
Is it possible to offer a ``no drama'' quantum theory? Something as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations (PDE) in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the configuration space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics; the resulting equations describe independent evolution of the electromagnetic field (EMF). 2. After introduction of a complex 4-potential (producing the same EMF as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics; the resulting equations describe independent evolution of EMF. 3. The resulting theories for EMF can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order PDE for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed. A. Akhmeteli, Int'l Journal of Quantum Information, Vol. 9, Suppl., 17-26 (2011) A. Akhmeteli, Journal of Mathematical Physics, Vol. 52, 082303 (2011) A. Akhmeteli, quant-ph/1108.1588
NASA Astrophysics Data System (ADS)
Lütkenhaus, N.; Shields, A. J.
2009-04-01
work done to date relates to point-to-point links. Another recent advance has been the development of trusted networks for QKD. This is important for further increasing the range of the technology, and for overcoming denial-of-service attacks on an individual link. It is interesting to see that the optimization of QKD devices differs for point-to-point and network applications. Network operation is essential for widespread adoption of the technology, as it can dramatically reduce the deployment costs and allow connection flexibility. Also important is the multiplexing of the quantum signals with conventional network traffic. For the future, quantum repeaters should be developed for longer range links. On the theoretical side, different approaches to security proofs have recently started to converge, offering several paradigms of the same basic idea. Our improved theoretical understanding places more stringent demands on the QKD devices. We are aware by now that finite size effects in key generation arise not only from parameter estimation. It will not be possible to generate a key from just a few hundred received signals. It is a stimulating challenge for the theory of security proofs to develop lean proof strategies that work with finite signal block sizes. As QKD advances to a real-world cryptographic solution, side channel attacks must be carefully analysed. Theoretical security proofs for QKD schemes are so far based on physical models of these devices. It is in the nature of models that any real implementation will deviate from this model, creating a potential weakness for an eavesdropper to exploit. There are two solutions to this problem: the traditional path of refining the models to reduce the deviations, or the radically different approach of device-independent security proofs, in which none or only a few well controlled assumptions about the devices are made. Clearly, it is desirable to find security proofs that require only minimal or fairly general model
Controlled Photon Switch Assisted by Coupled Quantum Dots
Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun
2015-01-01
Quantum switch is a primitive element in quantum network communication. In contrast to previous switch schemes on one degree of freedom (DOF) of quantum systems, we consider controlled switches of photon system with two DOFs. These controlled photon switches are constructed by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. Several double controlled-NOT gate on different joint systems are greatly simplified with an auxiliary DOF of the controlling photon. The photon switches show that two DOFs of photons can be independently transmitted in quantum networks. This result reduces the quantum resources for quantum network communication. PMID:26095049
NASA Astrophysics Data System (ADS)
Moulick, Subhayan Roy; Panigrahi, Prasanta K.
2016-06-01
We propose the idea of a quantum cheque scheme, a cryptographic protocol in which any legitimate client of a trusted bank can issue a cheque, that cannot be counterfeited or altered in anyway, and can be verified by a bank or any of its branches. We formally define a quantum cheque and present the first unconditionally secure quantum cheque scheme and show it to be secure against any no-signalling adversary. The proposed quantum cheque scheme can been perceived as the quantum analog of Electronic Data Interchange, as an alternate for current e-Payment Gateways.
NASA Astrophysics Data System (ADS)
Moulick, Subhayan Roy; Panigrahi, Prasanta K.
2016-03-01
We propose the idea of a quantum cheque scheme, a cryptographic protocol in which any legitimate client of a trusted bank can issue a cheque, that cannot be counterfeited or altered in anyway, and can be verified by a bank or any of its branches. We formally define a quantum cheque and present the first unconditionally secure quantum cheque scheme and show it to be secure against any no-signalling adversary. The proposed quantum cheque scheme can been perceived as the quantum analog of Electronic Data Interchange, as an alternate for current e-Payment Gateways.
Phase space quantum mechanics - Direct
Nasiri, S.; Sobouti, Y.; Taati, F.
2006-09-15
Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.
Microlens frames for laser diode arrays
Skidmore, J.A.; Freitas, B.L.
1999-07-13
Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter. 12 figs.
Microlens frames for laser diode arrays
Skidmore, Jay A.; Freitas, Barry L.
1999-01-01
Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter.
Framing global health: the governance challenge.
McInnes, Colin; Kamradt-Scott, Adam; Lee, Kelley; Reubi, David; Roemer-Mahler, Anne; Rushton, Simon; Williams, Owain David; Woodling, Marie
2012-01-01
With the emergence of global health comes governance challenges which are equally global in nature. This article identifies some of the initial limitations in analyses of global health governance (GHG) before discussing the focus of this special supplement: the framing of global health issues and the manner in which this impacts upon GHG. Whilst not denying the importance of material factors (such as resources and institutional competencies), the article identifies how issues can be framed in different ways, thereby creating particular pathways of response which in turn affect the potential for and nature of GHG. It also identifies and discusses the key frames operating in global health: evidence-based medicine, human rights, security, economics and development. PMID:23113870
Flexible Reference Frames for Grasp Planning in Human Parietofrontal Cortex(1,2,3).
Leoné, Frank T M; Monaco, Simona; Henriques, Denise Y P; Toni, Ivan; Medendorp, W Pieter
2015-01-01
Reaching to a location in space is supported by a cortical network that operates in a variety of reference frames. Computational models and recent fMRI evidence suggest that this diversity originates from neuronal populations dynamically shifting between reference frames as a function of task demands and sensory modality. In this human fMRI study, we extend this framework to nonmanipulative grasping movements, an action that depends on multiple properties of a target, not only its spatial location. By presenting targets visually or somaesthetically, and by manipulating gaze direction, we investigate how information about a target is encoded in gaze- and body-centered reference frames in dorsomedial and dorsolateral grasping-related circuits. Data were analyzed using a novel multivariate approach that combines classification and cross-classification measures to explicitly aggregate evidence in favor of and against the presence of gaze- and body-centered reference frames. We used this approach to determine whether reference frames are differentially recruited depending on the availability of sensory information, and where in the cortical networks there is common coding across modalities. Only in the left anterior intraparietal sulcus (aIPS) was coding of the grasping target modality dependent: predominantly gaze-centered for visual targets and body-centered for somaesthetic targets. Left superior parieto-occipital cortex consistently coded targets for grasping in a gaze-centered reference frame. Left anterior precuneus and premotor areas operated in a modality-independent, body-centered frame. These findings reveal how dorsolateral grasping area aIPS could play a role in the transition between modality-independent gaze-centered spatial maps and body-centered motor areas. PMID:26464989
FRAMES-2.0 Software System: Frames 2.0 Pest Integration (F2PEST)
Castleton, Karl J.; Meyer, Philip D.
2009-06-17
The implementation of the FRAMES 2.0 F2PEST module is described, including requirements, design, and specifications of the software. This module integrates the PEST parameter estimation software within the FRAMES 2.0 environmental modeling framework. A test case is presented.
Strategic Framing Study Circles: Toward a Gold Standard of Framing Pedagogy
ERIC Educational Resources Information Center
Feinberg, Jane
2009-01-01
This article explains how communities of practice have been developed as part of FrameWorks' field-building efforts. Strategic Framing Study Circles, as they are known, have been conducted with four statewide coalitions, one group of national organizations, and an emerging regional coalition. The goal of each community of practice is to build…
BioFrameNet: A FrameNet Extension to the Domain of Molecular Biology
ERIC Educational Resources Information Center
Dolbey, Andrew Eric
2009-01-01
In this study I introduce BioFrameNet, an extension of the Berkeley FrameNet lexical database to the domain of molecular biology. I examine the syntactic and semantic combinatorial possibilities exhibited in the lexical items used in this domain in order to get a better understanding of the grammatical properties of the language used in scientific…
Zhen, Shanshan; Yu, Rongjun
2016-01-01
Human risk-taking attitudes can be influenced by two logically equivalent but descriptively different frames, termed the framing effect. The classic hypothetical vignette-based task (Asian disease problem) and a recently developed reward-based gambling task have been widely used to assess individual differences in the framing effect. Previous studies treat framing bias as a stable trait that has genetic basis. However, these two paradigms differ in terms of task domain (loss vs. gain) and task context (vignette-based vs. reward-based) and the convergent validity of these measurements remains unknown. Here, we developed a vignette-based task and a gambling task in both gain and loss domains and tested correlations of the framing effect among these tasks in 159 young adults. Our results revealed no significant correlation between the vignette-based task in the loss domain and the gambling task in the gain domain, indicating low convergent validity. The current findings raise the question of how to measure the framing effect precisely, especially in individual difference studies using large samples and expensive neuroscience methods. Our results suggest that the framing effect is influenced by both task domain and task context and future research should be cautious about the operationalization of the framing effect. PMID:27436680
Zhen, Shanshan; Yu, Rongjun
2016-01-01
Human risk-taking attitudes can be influenced by two logically equivalent but descriptively different frames, termed the framing effect. The classic hypothetical vignette-based task (Asian disease problem) and a recently developed reward-based gambling task have been widely used to assess individual differences in the framing effect. Previous studies treat framing bias as a stable trait that has genetic basis. However, these two paradigms differ in terms of task domain (loss vs. gain) and task context (vignette-based vs. reward-based) and the convergent validity of these measurements remains unknown. Here, we developed a vignette-based task and a gambling task in both gain and loss domains and tested correlations of the framing effect among these tasks in 159 young adults. Our results revealed no significant correlation between the vignette-based task in the loss domain and the gambling task in the gain domain, indicating low convergent validity. The current findings raise the question of how to measure the framing effect precisely, especially in individual difference studies using large samples and expensive neuroscience methods. Our results suggest that the framing effect is influenced by both task domain and task context and future research should be cautious about the operationalization of the framing effect. PMID:27436680
Framing the Future. Re-framing the Future: A Report on the Long-Term Impacts of Framing the Future.
ERIC Educational Resources Information Center
Mitchell, John
Australia's Framing the Future (FTF) project was designed to develop a model of staff development to support implementation of the National Training Framework (NTF). A survey of FTF project managers found these long-term impacts: implementation of training packages and other aspects of NTF, new forms of collaboration between industry and training…
Magnetization patterns of permalloy square frames
NASA Astrophysics Data System (ADS)
Lai, Mei-Feng; Wei, Zung-Hang; Chang, Ching-Ray; Wu, J. C.; Hsieh, W. Z.; Usov, Nickolai A.; Lai, Jun-Yang; Yao, Y. D.
2003-05-01
Four different magnetization configurations of micron- and submicron-sized permalloy square frames are investigated by numerical simulations and experiments. Beside the pure conventional 90° Neel type wall with zero net magnetic pole, we also obtain numerically another high energy domain wall with positive or negative net magnetic poles in the corner. These three kinds of domain walls constitute four different patterns in square frames. We compare the magnetic pole density distributions derived from the spin configurations of simulation results with the images taken by magnetic force microscopy, and find reasonable agreement between them.
Notes for Brazil sampling frame evaluation trip
NASA Technical Reports Server (NTRS)
Horvath, R. (Principal Investigator); Hicks, D. R. (Compiler)
1981-01-01
Field notes describing a trip conducted in Brazil are presented. This trip was conducted for the purpose of evaluating a sample frame developed using LANDSAT full frame images by the USDA Economic and Statistics Service for the eventual purpose of cropland production estimation with LANDSAT by the Foreign Commodity Production Forecasting Project of the AgRISTARS program. Six areas were analyzed on the basis of land use, crop land in corn and soybean, field size and soil type. The analysis indicated generally successful use of LANDSAT images for purposes of remote large area land use stratification.
Ray Effect Mitigation Through Reference Frame Rotation
Tencer, John
2016-06-14
The discrete ordinates method is a popular and versatile technique for solving the radiative transport equation, a major drawback of which is the presence of ray effects. Mitigation of ray effects can yield significantly more accurate results and enhanced numerical stability for combined mode codes. Moreover, when ray effects are present, the solution is seen to be highly dependent upon the relative orientation of the geometry and the global reference frame. It is an undesirable property. A novel ray effect mitigation technique of averaging the computed solution for various reference frame orientations is proposed.
Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames
Poulsen, Per Rugaard; Jonassen, Johnny; Jensen, Carsten; Schmidt, Mai Lykkegaard
2015-11-15
Purpose: The gantry-mounted kilovoltage (kV) imager of modern linear accelerators can be used for real-time tumor localization during radiation treatment delivery. However, the kV image quality often suffers from cross-scatter from the megavoltage (MV) treatment beam. This study investigates readout of unexposed kV frames as a means to improve the kV image quality in a series of experiments and a theoretical model of the observed image quality improvements. Methods: A series of fluoroscopic images were acquired of a solid water phantom with an embedded gold marker and an air cavity with and without simultaneous radiation of the phantom with a 6 MV beam delivered perpendicular to the kV beam with 300 and 600 monitor units per minute (MU/min). An in-house built device triggered readout of zero, one, or multiple unexposed frames between the kV exposures. The unexposed frames contained part of the MV scatter, consequently reducing the amount of MV scatter accumulated in the exposed frames. The image quality with and without unexposed frame readout was quantified as the contrast-to-noise ratio (CNR) of the gold marker and air cavity for a range of imaging frequencies from 1 to 15 Hz. To gain more insight into the observed CNR changes, the image lag of the kV imager was measured and used as input in a simple model that describes the CNR with unexposed frame readout in terms of the contrast, kV noise, and MV noise measured without readout of unexposed frames. Results: Without readout of unexposed kV frames, the quality of intratreatment kV images decreased dramatically with reduced kV frequencies due to MV scatter. The gold marker was only visible for imaging frequencies ≥3 Hz at 300 MU/min and ≥5 Hz for 600 MU/min. Visibility of the air cavity required even higher imaging frequencies. Readout of multiple unexposed frames ensured visibility of both structures at all imaging frequencies and a CNR that was independent of the kV frame rate. The image lag was 12.2%, 2
NASA Astrophysics Data System (ADS)
Hakam, Zeyad Hamed-Ramzy
2000-11-01
This study focuses on the retrofit of hollow concrete masonry infilled steel frames subjected to in-plane lateral loads using glass fiber reinforced plastic (GFRP) laminates that are epoxy-bonded to the exterior faces of the infill walls. An extensive experimental investigation using one-third scale modeling was conducted and consisted of two phases. In the first phase, 64 assemblages, half of which were retrofitted, were tested under various combined in-plane loading conditions similar to those which different regions of a typical infill wall are subjected to. In the second phase, one bare and four masonry-infilled steel frames representative of a typical single-story, single-bay panel were tested under diagonal loading to study the overall behavior and the infill-frame interaction. The relative infill-to-frame stiffness was varied as a test parameter by using two different steel frame sections. The laminates altered the failure modes of the masonry assemblages and reduced the variability and anisotropic nature of the masonry. For the prisms which failed due to shear and/or mortar joint slip, significant strength increases were observed. For those exhibiting compression failure modes, a marginal increase in strength resulted. Retrofitting the infilled frames resulted in an average increase in initial stiffness of two-fold compared to the unretrofitted infilled frames, and seemed independent of the relative infill-to-frame stiffness. However, the increase in the load-carrying capacity of the retrofitted frames compared to the unretrofitted counterparts was higher for those with the larger relative infill-to-frame stiffness parameter. Unlike the unretrofitted infill walls, the retrofitted panels demonstrated almost identical failure modes that were characterized as "strictly comer crushing" in the vicinity of the loaded comers whereas no signs of distress were evident throughout the remainder of the infill. The laminates also maintained the structural integrity of
Nan, Xiaoli; Zhao, Xiaoquan; Yang, Bo; Iles, Irina
2015-01-01
This study examines the effectiveness of cigarette warning labels, with a specific focus on the impact of graphics, message framing (gain vs. loss), and temporal framing (present-oriented vs. future-oriented) among nonsmokers in the United States. A controlled experiment (N = 253) revealed that graphic warning labels were perceived as more effective, stronger in argument strength, and were generally liked more compared to text-only labels. In addition, loss-framed labels, compared to their gain-framed counterparts, were rated higher in perceived effectiveness, argument strength, and liking. No significant difference was observed between the present- and future-oriented frames on any of the dependent variables. Implications of the findings for antismoking communication efforts are discussed. PMID:24628288
General Quantum Interference Principle and Duality Computer
NASA Astrophysics Data System (ADS)
Long, Gui-Lu
2006-05-01
In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer, the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer, it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented: the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.
NASA Astrophysics Data System (ADS)
Boudreaux, Andrew
1999-05-01
The Physics Education Group at the University of Washington has been examining student understanding of relative motion in one and two dimensions. We have found that many students in introductory physics treat some vector quantities as being frame-independent or have difficulty in transforming these quantities from one frame to another. Evidence will be presented from results of interviews and written questions. * This work has been funded in part by NSF Grants DUE 9354501 and DUE 9727648, which include support from other Divisions of EHR and the Physics Division of MPS.
Probabilistic frames for non-Boolean phenomena.
Narens, Louis
2016-01-13
Classical probability theory, as axiomatized in 1933 by Andrey Kolmogorov, has provided a useful and almost universally accepted theory for describing and quantifying uncertainty in scientific applications outside quantum mechanics. Recently, cognitive psychologists and mathematical economists have provided examples where classical probability theory appears inadequate but the probability theory underlying quantum mechanics appears effective. Formally, quantum probability theory is a generalization of classical probability. This article explores relationships between generalized probability theories, in particular quantum-like probability theories and those that do not have full complementation operators (e.g. event spaces based on intuitionistic logic), and discusses how these generalizations bear on important issues in the foundations of probability and the development of non-classical probability theories for the behavioural sciences. PMID:26621992
Energy Science and Technology Software Center (ESTSC)
1994-12-30
Data-machine independence achieved by using four technologies (ASN.1, XDR, SDS, and ZEBRA) has been evaluated by encoding two different applications in each of the above; and their results compared against the standard programming method using C.
NASA Technical Reports Server (NTRS)
1987-01-01
The work done on the Media Independent Interface (MII) Interface Control Document (ICD) program is described and recommendations based on it were made. Explanations and rationale for the content of the ICD itself are presented.
Multiple reference frames in haptic spatial processing
NASA Astrophysics Data System (ADS)
Volčič, R.
2008-08-01
The present thesis focused on haptic spatial processing. In particular, our interest was directed to the perception of spatial relations with the main focus on the perception of orientation. To this end, we studied haptic perception in different tasks, either in isolation or in combination with vision. The parallelity task, where participants have to match the orientations of two spatially separated bars, was used in its two-dimensional and three-dimensional versions in Chapter 2 and Chapter 3, respectively. The influence of non-informative vision and visual interference on performance in the parallelity task was studied in Chapter 4. A different task, the mental rotation task, was introduced in a purely haptic study in Chapter 5 and in a visuo-haptic cross-modal study in Chapter 6. The interaction of multiple reference frames and their influence on haptic spatial processing were the common denominators of these studies. In this thesis we approached the problems of which reference frames play the major role in haptic spatial processing and how the relative roles of distinct reference frames change depending on the available information and the constraints imposed by different tasks. We found that the influence of a reference frame centered on the hand was the major cause of the deviations from veridicality observed in both the two-dimensional and three-dimensional studies. The results were described by a weighted average model, in which the hand-centered egocentric reference frame is supposed to have a biasing influence on the allocentric reference frame. Performance in haptic spatial processing has been shown to depend also on sources of information or processing that are not strictly connected to the task at hand. When non-informative vision was provided, a beneficial effect was observed in the haptic performance. This improvement was interpreted as a shift from the egocentric to the allocentric reference frame. Moreover, interfering visual information presented
Relating the Planetary Ephemerides and the Radio Reference Frame
NASA Technical Reports Server (NTRS)
Niell, A. E.; Newhall, X. X.; Preston, R. A.; Berge, G. L.; Muhleman, D. O.; Rudy, D. J.; Campbell, J. K.; Esposito, P. B.; Standish, E. M.
1985-01-01
The positions of Venus, Mars, and Jupiter were obtained in the VLBI radio reference frame by measuring the position of a satellite (natural or artificial) of each planet relative to an extragalactic source in the radio catalogue. From the results for Mars and Venus it is concluded that the offset in right ascension of the radio frame from the dynamical equinox defined in DE200 is 0.00 sec +/- 0.04 sec. The observations for Jupiter imply a correction to its position from DE200 of -0.18 sec +/- 0.04 sec in right ascension and -0.06 +/- 0.05 sec in declination on 1983 April 29. The right ascension of Jupiter relative to the inner planets has been measured independently using Doppler tracking data near Jupiter encounter from Pioneers 10 and 11 and from Voyagers 1 and 2 by tying the tracking station positions, through previous spacecraft missions, to the DE200 ephemerides of the inner planets. This technique yielded a correction to Jupiter's right ascension of -0.22 +/- 0.05 sec, in good agreement with the results from the direct radio measurements.
Gate fidelity fluctuations and quantum process invariants
Magesan, Easwar; Emerson, Joseph; Blume-Kohout, Robin
2011-07-15
We characterize the quantum gate fidelity in a state-independent manner by giving an explicit expression for its variance. The method we provide can be extended to calculate all higher order moments of the gate fidelity. Using these results, we obtain a simple expression for the variance of a single-qubit system and deduce the asymptotic behavior for large-dimensional quantum systems. Applications of these results to quantum chaos and randomized benchmarking are discussed.
KS variables in rotating reference frame. Application to cometary dynamics
NASA Astrophysics Data System (ADS)
Langner, K.; Breiter, S.
2015-06-01
The problem of Keplerian motion in the uniformly rotating reference frame has been solved in terms of the Kustaanheimo-Stiefel (KS) variables using canonical formalism. No recourse to the Cartesian variables or orbital elements has been required. The form of solution is well suited for the application as a part of symplectic integrator. The results show that the motion is actually the composition of four independent harmonic oscillations and of the rotation in two specific coordinate planes and their conjugate momenta planes. As an example of application, we use the KS symplectic integrator to study the motion of comet C/1997 J2 (Meunier-Dupuoy) under the action of Galactic tides. The comet is found to follow an orbit in commensurability with the Sun motion around the Galactic centre, but the perturbations are not qualified as a resonance.
NASA Astrophysics Data System (ADS)
Luo, Ji
2012-08-01
Quantitative transformations between corresponding kinetic quantities defined by any two spatial referential frames, whose relative kinematics relations (purely rotational and translational movement) are known, are presented based on necessarily descriptive definitions of the fundamental concepts (instant, time, spatial referential frame that distinguishes from Maths. Coordination, physical point) had being clarified by directly empirical observation with artificially descriptive purpose. Inductive investigation of the transformation reveals that all physical quantities such as charge, temperature, time, volume, length, temporal rate of the quantities and relations like temporal relation between signal source and observer as such are independent to spatial frames transformation except above kinematical quantities transformations, kinematics related dynamics such as Newton ’ s second law existing only in inertial frames and exchange of kinetic energy of mass being valid only in a selected inertial frame. From above bas is, we demonstrate a series of inferences and applications such as phase velocity of light being direct respect to medium (including vacuum) rather than to the frame, using spatial referential frame to describe any measurable field (electric field, magnetic field, gravitational field) and the field ’ s variation; and have tables to contrast and evaluate all aspects of those hypotheses related with spacetime such as distorted spacetime around massive stellar, four dimension spacetime, gravitational time dilation and non - Euclid geometry with new one. The demonstration strongly suggests all the hypotheses are invalid in capable tested concepts ’ meaning and relations. The conventional work on frame transformation and its property, hypothesized by Voigt, Heaviside, Lorentz, Poincare and Einstein a century ago with some mathematical speculation lacking rigorous definition of the fundamental concepts such as instant, time, spatial reference
Interaction between allocentric and egocentric reference frames in deaf and hearing populations.
Zhang, Ming; Tan, Xinyi; Shen, Lu; Wang, Aijun; Geng, Shuang; Chen, Qi
2014-02-01
Spatial position of an object can be represented in the human brain based on two types of reference frames: allocentric and egocentric. The perception/action hypothesis of the ventral/dorsal visual stream proposed that allocentric reference frame codes object positions relative to another object/background subserving conscious perception of the external world while egocentric reference frame codes object positions relative to the observer's body/body parts subserving goal-directed actions towards the objects. In three experiments of the present study, by asking congenitally deaf participants and hearing controls to perform allocentric and egocentric judgment tasks on the same stimulus set and by using the spatial congruency effect between allocentric and egocentric positions of the same target object to indicate the extent of influences between the two frames, we aimed to investigate whether the two frames and the potential interaction between them are altered after early deafness. Our results suggested that deaf participants' responses were significantly slower in the egocentric tasks as compared to hearing controls while the two groups showed comparable task performance in the allocentric tasks, indicating that egocentric reference frame was impaired after early deafness. Moreover, the pattern of interaction between the two frames was different between deaf and hearing groups: irrelevant egocentric positions caused more interference to allocentric processing than vice versa in the hearing group while the two frames caused equivalent interference to each other in the deaf group. Further control experiments suggested that the above effects were not caused by the impaired sense of balance in the congenitally deaf participants (via open-loop pointing test), and was independent of whether the speed of allocentric and egocentric processing was equivalent or not in the hearing group. PMID:24361477
Classical versus quantum errors in quantum computation of dynamical systems.
Rossini, Davide; Benenti, Giuliano; Casati, Giulio
2004-11-01
We analyze the stability of a quantum algorithm simulating the quantum dynamics of a system with different regimes, ranging from global chaos to integrability. We compare, in these different regimes, the behavior of the fidelity of quantum motion when the system's parameters are perturbed or when there are unitary errors in the quantum gates implementing the quantum algorithm. While the first kind of errors has a classical limit, the second one has no classical analog. It is shown that, whereas in the first case ("classical errors") the decay of fidelity is very sensitive to the dynamical regime, in the second case ("quantum errors") it is almost independent of the dynamical behavior of the simulated system. Therefore, the rich variety of behaviors found in the study of the stability of quantum motion under "classical" perturbations has no correspondence in the fidelity of quantum computation under its natural perturbations. In particular, in this latter case it is not possible to recover the semiclassical regime in which the fidelity decays with a rate given by the classical Lyapunov exponent. PMID:15600737
NASA Astrophysics Data System (ADS)
Steffen, Matthias
2013-03-01
Quantum mechanics plays a crucial role in many day-to-day products, and has been successfully used to explain a wide variety of observations in Physics. While some quantum effects such as tunneling limit the degree to which modern CMOS devices can be scaled to ever reducing dimensions, others may potentially be exploited to build an entirely new computing architecture: The quantum computer. In this talk I will review several basic concepts of a quantum computer. Why quantum computing and how do we do it? What is the status of several (but not all) approaches towards building a quantum computer, including IBM's approach using superconducting qubits? And what will it take to build a functional machine? The promise is that a quantum computer could solve certain interesting computational problems such as factoring using exponentially fewer computational steps than classical systems. Although the most sophisticated modern quantum computing experiments to date do not outperform simple classical computations, it is increasingly becoming clear that small scale demonstrations with as many as 100 qubits are beginning to be within reach over the next several years. Such a demonstration would undoubtedly be a thrilling feat, and usher in a new era of controllably testing quantum mechanics or quantum computing aspects. At the minimum, future demonstrations will shed much light on what lies ahead.
Framing the Future: Workbased Learning Facilitation Tips.
ERIC Educational Resources Information Center
Australian National Training Authority, Melbourne.
This resource provides tips to assist facilitators as they work with Australia's Framing the Future project teams. The 16 tips are about group selection; how to prepare for input; participant roles; how to use participants and observers; scribes and recorders; some ideas for launches and fun; praise! praise! praise!; making facilitation the key to…
Construction Cluster Volume I [Wood Structural Framing].
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Justice, Harrisburg. Bureau of Correction.
The document is the first of a series, to be integrated with a G.E.D. program, containing instructional materials at the basic skills level for the construction cluster. It focuses on wood structural framing and contains 20 units: (1) occupational information; (2) blueprint reading; (3) using leveling instruments and laying out building lines; (4)…
Shadowgraph illumination techniques for framing cameras
Malone, R.M.; Flurer, R.L.; Frogget, B.C.; Sorenson, D.S.; Holmes, V.H.; Obst, A.W.
1997-12-31
Many pulse power applications in use at the Pegasus facility at the Los Alamos National Laboratory require specialized imaging techniques. Due to the short event duration times, visible images are recorded by high-speed electronic framing cameras. Framing cameras provide the advantages of high speed movies of back light experiments. These high-speed framing cameras require bright illumination sources to record images with 10 ns integration times. High-power lasers offer sufficient light for back illuminating the target assemblies; however, laser speckle noise lowers the contrast in the image. Laser speckle noise also limits the effective resolution. This discussion focuses on the use of telescopes to collect images 50 feet away. Both light field and dark field illumination techniques are compared. By adding relay lenses between the assembly target and the telescope, a high-resolution magnified image can be recorded. For dark field illumination, these relay lenses can be used to separate the object field from the illumination laser. The illumination laser can be made to focus onto the opaque secondary of a Schmidt telescope. Thus, the telescope only collects scattered light from the target assembly. This dark field illumination eliminates the laser speckle noise and allows high-resolution images to be recorded. Using the secondary of the telescope to block the illumination laser makes dark field illumination an ideal choice for the framing camera.
Shadowgraph illumination techniques for framing cameras
Malone, R.M.; Flurer, R.L.; Frogget, B.C.; Sorenson, D.S.; Holmes, V.H.; Obst, A.W.
1997-06-01
Many pulse power applications in use at the Pegasus facility at the Los Alamos National Laboratory require specialized imaging techniques. Due to the short event duration times, visible images are recorded by high speed electronic framing cameras. Framing cameras provide the advantages of high speed movies of back light experiments. These high speed framing cameras require bright illumination sources to record images with 10 ns integration times. High power lasers offer sufficient light for back illuminating the target assemblies; however, laser speckle noise lowers the contrast in the image. Laser speckle noise also limits the effective resolution. This discussion focuses on the use of telescopes to collect images 50 feet away. Both light field and dark field illumination techniques are compared. By adding relay lenses between the assembly target and the telescope, a high resolution magnified image can be recorded. For dark field illumination, these relay lenses can be used to separate the object field from the illumination laser. The illumination laser can be made to focus onto the opaque secondary of a Schmidt telescope. Thus, the telescope only collects scattered light from the target assembly. This dark field illumination eliminates the laser speckle noise and allows high resolution images to be recorded. Using the secondary of the telescope to block the illumination laser makes dark field illumination an ideal choice for the framing camera.
Building Trades. Block III. Floor Framing.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Vocational Instructional Services.
This document contains three units of a course on floor framing to be used as part of a building trades program. Each unit consists, first, of an informational lesson, with complete lesson plan for the teacher's use. Included in each lesson plan are the lesson aim; lists of teaching aids, materials, references, and prerequisites for students;…
FREEZE-FRAME: Fast Action Stress Relief.
ERIC Educational Resources Information Center
Childre, Doc Lew
Recent scientific research has proven that we can, not only manage our stress, we can even prevent it. Ways to achieve stress management are presented in this book. It details a method called FREEZE-FRAME, a process in which individuals mentally stop the chaos that surrounds them and then calmly contemplate their situation. The text opens with an…
Framing Learning Conditions in Geography Excursions
ERIC Educational Resources Information Center
Jonasson, Mikael
2011-01-01
The aim of this paper is to investigate and frame some learning conditions involved in the practice of geographical excursions. The empirical material from this study comes from several excursions made by students in human geography and an ethnomethodological approach through participant observation is used. The study is informed by theories from…
Cultural Framing: Foreign Correspondents and Their Work.
ERIC Educational Resources Information Center
Starck, Kenneth; Villanueva, Estela
With the notion of cultural framing as a theoretical backdrop, a study examined the role of culture in the work of foreign correspondents. The aim was to explore cultural aspects of international news reporting that may suggest avenues for more systematic inquiry into the role of culture in the work of the foreign correspondent. Of 75 examined…
The Hot Hand Belief and Framing Effects
ERIC Educational Resources Information Center
MacMahon, Clare; Köppen, Jörn; Raab, Markus
2014-01-01
Purpose: Recent evidence of the hot hand in sport--where success breeds success in a positive recency of successful shots, for instance--indicates that this pattern does not actually exist. Yet the belief persists. We used 2 studies to explore the effects of framing on the hot hand belief in sport. We looked at the effect of sport experience and…
Defining Enrollment Management: The Political Frame
ERIC Educational Resources Information Center
Black, Jim
2004-01-01
This article describes the elements of Bolman and Deal's (1991) political frame, which are widely discussed and written about among enrollment managers. Whether it is under the guise of managing change, getting things done, understanding institutional politics, or soliciting campus-wide involvement, the issues are often thorny and leave many…
District Leaders' Framing of Educator Evaluation Policy
ERIC Educational Resources Information Center
Woulfin, Sarah L.; Donaldson, Morgaen L.; Gonzales, Richard
2016-01-01
Purpose: Educator evaluation systems have recently undergone scrutiny and reform, and district and school leaders play a key role in interpreting and enacting these systems. This article uses framing theory to understand district leaders' interpretation and advancement of a state's new educator evaluation policy. Research Methods: The article…
The framing effect and skin conductance responses
Ring, Patrick
2015-01-01
Individuals often rely on simple heuristics when they face complex choice situations under uncertainty. Traditionally, it has been proposed that cognitive processes are the main driver to evaluate different choice options and to finally reach a decision. Growing evidence, however, highlights a strong interrelation between judgment and decision-making (JDM) on the one hand, and emotional processes on the other hand. This also seems to apply to judgmental heuristics, i.e., decision processes that are typically considered to be fast and intuitive. In this study, participants are exposed to different probabilities of receiving an unpleasant electric shock. Information about electric shock probabilities is either positively or negatively framed. Integrated skin conductance responses (ISCRs) while waiting for electric shock realization are used as an indicator for participants' emotional arousal. This measure is compared to objective probabilities. I find evidence for a relation between emotional body reactions measured by ISCRs and the framing effect. Under negative frames, participants show significantly higher ISCRs while waiting for an electric shock to be delivered than under positive frames. This result might contribute to a better understanding of the psychological processes underlying JDM. Further studies are necessary to reveal the causality underlying this finding, i.e., whether emotional processes influence JDM or vice versa. PMID:26300747
Cognitive Style, Creativity Framing and Effects
ERIC Educational Resources Information Center
Dew, Robert
2009-01-01
This study investigates how individuals with different cognitive styles respond to choices involving framing effects. The results suggest that cognitive style as defined by Kirton (1976) is far more complex than previous studies indicate. Kirton characterises "Innovators" as rule breakers and "Adaptors" as conformists. The most important finding…
Cultural background shapes spatial reference frame proclivity
Goeke, Caspar; Kornpetpanee, Suchada; Köster, Moritz; Fernández-Revelles, Andrés B.; Gramann, Klaus; König, Peter
2015-01-01
Spatial navigation is an essential human skill that is influenced by several factors. The present study investigates how gender, age, and cultural background account for differences in reference frame proclivity and performance in a virtual navigation task. Using an online navigation study, we recorded reaction times, error rates (confusion of turning axis), and reference frame proclivity (egocentric vs. allocentric reference frame) of 1823 participants. Reaction times significantly varied with gender and age, but were only marginally influenced by the cultural background of participants. Error rates were in line with these results and exhibited a significant influence of gender and culture, but not age. Participants’ cultural background significantly influenced reference frame selection; the majority of North-Americans preferred an allocentric strategy, while Latin-Americans preferred an egocentric navigation strategy. European and Asian groups were in between these two extremes. Neither the factor of age nor the factor of gender had a direct impact on participants’ navigation strategies. The strong effects of cultural background on navigation strategies without the influence of gender or age underlines the importance of socialized spatial cognitive processes and argues for socio-economic analysis in studies investigating human navigation. PMID:26073656
The Frame Game: A Flexible Conversation Activity.
ERIC Educational Resources Information Center
Luster, Carl
The Frame Game is a second language conversation activity that allows instructors to determine the content. The activity provides a structure for communication between students and adapts easily to almost any topic. The basic version of the game has been adapted from a management training activity, and is presented along with several variations…
Leaders as Linchpins for Framing Meaning
ERIC Educational Resources Information Center
Eddy, Pamela L.
2010-01-01
Community college leaders serve as linchpins for framing meaning on campus. The current pressures on institutions (given declining financial resources, demands for accountability, changing faculty ranks, and societal need for new knowledge) require presidents to juggle multiple priorities while presenting a cohesive message to campus constituents.…
On Translators' Cultural Frame of Functionist Reference
ERIC Educational Resources Information Center
Fu, Zhiyi
2009-01-01
A deep cognition with translators' cultural frame of functionist reference can help instructors and teachers adjust and extend patterns and schemes of translation and generate the optimal classroom conditions for acquisition of the target language. The author of the paper, in the perspectives of motivational, cognitive and communicative…
Boy Trouble: Rhetorical Framing of Boys' Underachievement
ERIC Educational Resources Information Center
Titus, Jordan J.
2004-01-01
This article examines discourse in the United States used to socially construct an "underachieving boys" moral panic. Employing discourse analysis I examine the adversarial rhetoric of claims-makers and the frames they deploy to undermine alternative and conflicting accounts (of females as disadvantaged) and to forestall any challenges to the…
Productivity of Noun Slots in Verb Frames
ERIC Educational Resources Information Center
Theakston, Anna L.; Ibbotson, Paul; Freudenthal, Daniel; Lieven, Elena V. M.; Tomasello, Michael
2015-01-01
Productivity is a central concept in the study of language and language acquisition. As a test case for exploring the notion of productivity, we focus on the noun slots of verb frames, such as __"want"__, __"see"__, and __"get"__. We develop a novel combination of measures designed to assess both the flexibility and…
Emergent Bilinguals: Framing Students as Statistical Data?
ERIC Educational Resources Information Center
Koyama, Jill; Menken, Kate
2013-01-01
Immigrant youth who are designated as English language learners in American schools--whom we refer to as "emergent bilinguals"--are increasingly framed by numerical calculations. Utilizing the notion of assemblage from actor-network theory (ANT), we trace how emergent bilinguals are discursively constructed by officials, administrators,…
Frames of Reference in the Classroom
NASA Astrophysics Data System (ADS)
Grossman, Joshua
2012-12-01
The classic film "Frames of Reference"1,2 effectively illustrates concepts involved with inertial and non-inertial reference frames. In it, Donald G. Ivey and Patterson Hume use the cameras perspective to allow the viewer to see motion in reference frames translating with a constant velocity, translating while accelerating, and rotating—all with respect to the Earth frame. The film is a classic for good reason, but today it does have a couple of drawbacks: 1) The film by nature only accommodates passive learning. It does not give students the opportunity to try any of the experiments themselves. 2) The dated style of the 50-year-old film can distract students from the physics content. I present here a simple setup that can recreate many of the movies demonstrations in the classroom. The demonstrations can be used to supplement the movie or in its place, if desired. All of the materials except perhaps the inexpensive web camera should likely be available already in most teaching laboratories. Unlike previously described activities, these experiments do not require travel to another location3 or an involved setup.4,5
Section BB Hatch Coating; Framing Plan on Line C Lodging ...
Section B-B Hatch Coating; Framing Plan on Line C Lodging Knees at Hatch; Elevation A-A Hull Framing; Section at Hatch Frame 36, Starboard Looking Aft; Midship Section Frame 37, Port Looking Aft - Steam Schooner WAPAMA, Kaiser Shipyard No. 3 (Shoal Point), Richmond, Contra Costa County, CA
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Time-frames. 570.21 Section 570.21... PROGRAMS Pre-Release Community Confinement § 570.21 Time-frames. (a) Community confinement. Inmates may be... inmate's term of imprisonment or six months. (c) Exceeding time-frames. These time-frames may be...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Time-frames. 570.21 Section 570.21... PROGRAMS Pre-Release Community Confinement § 570.21 Time-frames. (a) Community confinement. Inmates may be... inmate's term of imprisonment or six months. (c) Exceeding time-frames. These time-frames may be...
49 CFR 230.107 - Tender frame and body.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Tender frame and body. 230.107 Section 230.107... Tenders Trucks, Frames and Equalizing System § 230.107 Tender frame and body. (a) Maintenance. Tender... repaired: (1) Portions of the tender frame or body (except wheels) that have less than a 21/2...
49 CFR 230.107 - Tender frame and body.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Tender frame and body. 230.107 Section 230.107... Tenders Trucks, Frames and Equalizing System § 230.107 Tender frame and body. (a) Maintenance. Tender... repaired: (1) Portions of the tender frame or body (except wheels) that have less than a 21/2...
49 CFR 230.107 - Tender frame and body.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Tender frame and body. 230.107 Section 230.107... Tenders Trucks, Frames and Equalizing System § 230.107 Tender frame and body. (a) Maintenance. Tender... repaired: (1) Portions of the tender frame or body (except wheels) that have less than a 21/2...
49 CFR 230.107 - Tender frame and body.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Tender frame and body. 230.107 Section 230.107... Tenders Trucks, Frames and Equalizing System § 230.107 Tender frame and body. (a) Maintenance. Tender... repaired: (1) Portions of the tender frame or body (except wheels) that have less than a 21/2...
49 CFR 230.107 - Tender frame and body.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Tender frame and body. 230.107 Section 230.107... Tenders Trucks, Frames and Equalizing System § 230.107 Tender frame and body. (a) Maintenance. Tender... repaired: (1) Portions of the tender frame or body (except wheels) that have less than a 21/2...
Transitions in Students' Epistemic Framing along Two Axes
ERIC Educational Resources Information Center
Irving, Paul W.; Martinuk, Mathew Sandy; Sayre, Eleanor C.
2013-01-01
We use epistemological framing to interpret participants' behavior during group problem-solving sessions in an intermediate mechanics course. We are interested in how students frame discussion and in how the groups shift discussion framings. Our analysis includes two framing axes, expansive vs narrow and serious vs silly, which together…
Effects of Problem Frame and Gender on Principals' Decision Making
ERIC Educational Resources Information Center
Miller, Paul M.; Fagley, Nancy S.; Casella, Nancy E.
2009-01-01
Research indicates people's decisions can sometimes be influenced by seemingly trivial differences in the "framing" (i.e., wording) of alternative options. The tendency to prefer risk averse options when framed positively and risky options when framed negatively is known as the framing effect. The current study examined the susceptibility of…
Remarks on Viewing Situation in a Rotating Frame
ERIC Educational Resources Information Center
Kobayashi, Yukio
2008-01-01
Representations of centrifugal forces are derived in a variety of rotating frames. Although the rotating angle of a point mass relative to an inertial frame is often confused with the rotating angle of a rotating frame relative to the inertial frame, they should be differentiated. (Contains 4 figures and 1 table.)
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Time-frames. 570.21 Section 570.21... PROGRAMS Pre-Release Community Confinement § 570.21 Time-frames. (a) Community confinement. Inmates may be... inmate's term of imprisonment or six months. (c) Exceeding time-frames. These time-frames may be...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Time-frames. 570.21 Section 570.21... PROGRAMS Pre-Release Community Confinement § 570.21 Time-frames. (a) Community confinement. Inmates may be... inmate's term of imprisonment or six months. (c) Exceeding time-frames. These time-frames may be...