Reference-frame-independent quantum key distribution
Laing, Anthony; Rarity, John G.; O'Brien, Jeremy L.; Scarani, Valerio
2010-07-15
We describe a quantum key distribution protocol based on pairs of entangled qubits that generates a secure key between two partners in an environment of unknown and slowly varying reference frame. A direction of particle delivery is required, but the phases between the computational basis states need not be known or fixed. The protocol can simplify the operation of existing setups and has immediate applications to emerging scenarios such as earth-to-satellite links and the use of integrated photonic waveguides. We compute the asymptotic secret key rate for a two-qubit source, which coincides with the rate of the six-state protocol for white noise. We give the generalization of the protocol to higher-dimensional systems and detail a scheme for physical implementation in the three-dimensional qutrit case.
Reference-frame-independent quantum key distribution with source flaws
NASA Astrophysics Data System (ADS)
Wang, Can; Sun, Shi-Hai; Ma, Xiang-Chun; Tang, Guang-Zhao; Liang, Lin-Mei
2015-10-01
Compared with the traditional protocols of quantum key distribution (QKD), the reference-frame-independent (RFI)-QKD protocol has been generally proved to be very useful and practical, since its experimental implementation can be simplified without the alignment of a reference frame. In most RFI-QKD systems, the encoding states are always taken to be perfect, which, however, is not practical in realizations. In this paper, we consider the security of RFI QKD with source flaws based on the loss-tolerant method proposed by Tamaki et al. [Phys. Rev. A 90, 052314 (2014), 10.1103/PhysRevA.90.052314]. As the six-state protocol can be realized with four states, we show that the RFI-QKD protocol can also be performed with only four encoding states instead of six encoding states in its standard version. Furthermore, the numerical simulation results show that the source flaws in the key-generation basis (Z basis) will reduce the key rate but are loss tolerant, while the ones in X and Y bases almost have no effect and the key rate remains almost the same even when they are very large. Hence, our method and results will have important significance in practical experiments, especially in earth-to-satellite or chip-to-chip quantum communications.
Quantum image coding with a reference-frame-independent scheme
NASA Astrophysics Data System (ADS)
Chapeau-Blondeau, François; Belin, Etienne
2016-07-01
For binary images, or bit planes of non-binary images, we investigate the possibility of a quantum coding decodable by a receiver in the absence of reference frames shared with the emitter. Direct image coding with one qubit per pixel and non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two controlled entangled states. With just one common axis shared between the emitter and receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective measurements operating separately on each qubit of the pair. With strictly no alignment information between the emitter and receiver, exact decoding can be obtained by means of a two-outcome projective measurement operating jointly on the qubit pair. In addition, the frame-invariant coding is shown much more resistant to quantum bit-flip noise compared to the direct non-invariant coding. For a cost per pixel of two (entangled) qubits instead of one, complete frame-invariant image coding and enhanced noise resistance are thus obtained.
Quantum image coding with a reference-frame-independent scheme
NASA Astrophysics Data System (ADS)
Chapeau-Blondeau, François; Belin, Etienne
2016-04-01
For binary images, or bit planes of non-binary images, we investigate the possibility of a quantum coding decodable by a receiver in the absence of reference frames shared with the emitter. Direct image coding with one qubit per pixel and non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two controlled entangled states. With just one common axis shared between the emitter and receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective measurements operating separately on each qubit of the pair. With strictly no alignment information between the emitter and receiver, exact decoding can be obtained by means of a two-outcome projective measurement operating jointly on the qubit pair. In addition, the frame-invariant coding is shown much more resistant to quantum bit-flip noise compared to the direct non-invariant coding. For a cost per pixel of two (entangled) qubits instead of one, complete frame-invariant image coding and enhanced noise resistance are thus obtained.
NASA Astrophysics Data System (ADS)
Brown, Matthew J.
2014-02-01
The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.
Liang, Wen-Ye; Wang, Shuang; Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Yao, Yao; Huang, Jing-Zheng; Guo, Guang-Can; Han, Zheng-Fu
2014-01-01
We have demonstrated a proof-of-principle experiment of reference-frame-independent phase coding quantum key distribution (RFI-QKD) over an 80-km optical fiber. After considering the finite-key bound, we still achieve a distance of 50 km. In this scenario, the phases of the basis states are related by a slowly time-varying transformation. Furthermore, we developed and realized a new decoy state method for RFI-QKD systems with weak coherent sources to counteract the photon-number-splitting attack. With the help of a reference-frame-independent protocol and a Michelson interferometer with Faraday rotator mirrors, our system is rendered immune to the slow phase changes of the interferometer and the polarization disturbances of the channel, making the procedure very robust. PMID:24402550
Demonstration of free-space reference frame independent quantum key distribution
NASA Astrophysics Data System (ADS)
Wabnig, J.; Bitauld, D.; Li, H. W.; Laing, A.; O'Brien, J. L.; Niskanen, A. O.
2013-07-01
Quantum key distribution (QKD) is moving from research laboratories towards applications. As computing becomes more mobile, cashless as well as cardless payment solutions are introduced. A possible route to increase the security of wireless communications is to incorporate QKD in a mobile device. Handheld devices present a particular challenge as the orientation and the phase of a qubit will depend on device motion. This problem is addressed by the reference frame independent (RFI) QKD scheme. The scheme tolerates an unknown phase between logical states that vary slowly compared to the rate of particle repetition. Here we experimentally demonstrate the feasibility of RFI QKD over a free-space link in a prepare and measure scheme using polarization encoding. We extend the security analysis of the RFI QKD scheme to be able to deal with uncalibrated devices and a finite number of measurements. Together these advances are an important step towards mass production of handheld QKD devices.
Frame independent cosmological perturbations
Prokopec, Tomislav; Weenink, Jan E-mail: j.g.weenink@uu.nl
2013-09-01
We compute the third order gauge invariant action for scalar-graviton interactions in the Jordan frame. We demonstrate that the gauge invariant action for scalar and tensor perturbations on one physical hypersurface only differs from that on another physical hypersurface via terms proportional to the equation of motion and boundary terms, such that the evolution of non-Gaussianity may be called unique. Moreover, we demonstrate that the gauge invariant curvature perturbation and graviton on uniform field hypersurfaces in the Jordan frame are equal to their counterparts in the Einstein frame. These frame independent perturbations are therefore particularly useful in relating results in different frames at the perturbative level. On the other hand, the field perturbation and graviton on uniform curvature hypersurfaces in the Jordan and Einstein frame are non-linearly related, as are their corresponding actions and n-point functions.
Zhang, P; Aungskunsiri, K; Martín-López, E; Wabnig, J; Lobino, M; Nock, R W; Munns, J; Bonneau, D; Jiang, P; Li, H W; Laing, A; Rarity, J G; Niskanen, A O; Thompson, M G; O'Brien, J L
2014-04-01
We demonstrate a client-server quantum key distribution (QKD) scheme. Large resources such as laser and detectors are situated at the server side, which is accessible via telecom fiber to a client requiring only an on-chip polarization rotator, which may be integrated into a handheld device. The detrimental effects of unstable fiber birefringence are overcome by employing the reference-frame-independent QKD protocol for polarization qubits in polarization maintaining fiber, where standard QKD protocols fail, as we show for comparison. This opens the way for quantum enhanced secure communications between companies and members of the general public equipped with handheld mobile devices, via telecom-fiber tethering. PMID:24745397
Quantum decoherence in noninertial frames
NASA Astrophysics Data System (ADS)
Wang, Jieci; Jing, Jiliang
2010-09-01
Quantum decoherence, which appears when a system interacts with its environment in an irreversible way, plays a fundamental role in the description of quantum-to-classical transitions and has been successfully applied in some important experiments. Here, we study the decoherence in noninertial frames. It is shown that the decoherence and loss of the entanglement generated by the Unruh effect will influence each other remarkably. It is interesting to note that, in the case of the total system under decoherence, the sudden death of entanglement may appear for any acceleration. However, in the case of only Rob’s qubit undergoing decoherence, sudden death may only occur when the acceleration parameter is greater than a “critical point.”
Quantum decoherence in noninertial frames
Wang Jieci; Jing Jiliang
2010-09-15
Quantum decoherence, which appears when a system interacts with its environment in an irreversible way, plays a fundamental role in the description of quantum-to-classical transitions and has been successfully applied in some important experiments. Here, we study the decoherence in noninertial frames. It is shown that the decoherence and loss of the entanglement generated by the Unruh effect will influence each other remarkably. It is interesting to note that, in the case of the total system under decoherence, the sudden death of entanglement may appear for any acceleration. However, in the case of only Rob's qubit undergoing decoherence, sudden death may only occur when the acceleration parameter is greater than a 'critical point'.
Independent Study Unit on Accelerated Reference Frames
ERIC Educational Resources Information Center
Poultney, S. K.
1973-01-01
Presents a list of topics, research areas, references, and laboratory equipment which is prepared to facilitate general-science students' understanding of physics aspects in accelerated reference frames after their study of circular motion and Galilean relativity in mechanics. (CC)
Time reversibility in the quantum frame
Masot-Conde, Fátima
2014-12-04
Classic Mechanics and Electromagnetism, conventionally taken as time-reversible, share the same concept of motion (either of mass or charge) as the basis of the time reversibility in their own fields. This paper focuses on the relationship between mobile geometry and motion reversibility. The goal is to extrapolate the conclusions to the quantum frame, where matter and radiation behave just as elementary mobiles. The possibility that the asymmetry of Time (Time’s arrow) is an effect of a fundamental quantum asymmetry of elementary particles, turns out to be a consequence of the discussion.
Relativistic quantum games in noninertial frames
NASA Astrophysics Data System (ADS)
Khan, Salman; Khalid Khan, M.
2011-09-01
We study the influence of the Unruh effect on quantum non-zero sum games. In particular, we investigate the quantum Prisoners’ Dilemma both for entangled and unentangled initial states and show that the acceleration of the noninertial frames disturbs the symmetry of the game. It is shown that for the maximally entangled initial state, the classical strategy \\hat{C} (cooperation) becomes the dominant strategy. Our investigation shows that any quantum strategy does no better for any player against the classical strategies. The miracle move of Eisert et al (1999 Phys. Rev. Lett.83 3077) is no more a superior move. We show that the dilemma-like situation is resolved in favor of one player or the other.
Reciprocal relativity of noninertial frames: quantum mechanics
NASA Astrophysics Data System (ADS)
Low, Stephen G.
2007-04-01
Noninertial transformations on time-position-momentum-energy space {t, q, p, e} with invariant Born-Green metric ds^{2}=-d t^{2}+\\frac{1}{c^{2}}\\,d q^{2}+\\frac{1}{b^{2}} \\big(d p^{2}-\\frac{1}{c^{2}}\\,d e^{2}\\big) and the symplectic metric -de ∧ dt + dp ∧ dq are studied. This {\\cal U}1,3) group of transformations contains the Lorentz group as the inertial special case and, in the limit of small forces and velocities, reduces to the expected Hamilton transformations leaving invariant the symplectic metric and the nonrelativistic line element ds2 = -dt2. The {\\cal U}( 1,3) transformations bound relative velocities by c and relative forces by b. Spacetime is no longer an invariant subspace but is relative to noninertial observer frames. In the limit of b → ∞, spacetime is invariant. Born was lead to the metric by a concept of reciprocity between position and momentum degrees of freedom and for this reason we call this reciprocal relativity. For large b, such effects will almost certainly only manifest in a quantum regime. Wigner showed that special relativistic quantum mechanics follows from the projective representations of the inhomogeneous Lorentz group. Projective representations of a Lie group are equivalent to the unitary representations of its central extension. The same method of projective representations for the inhomogeneous {\\cal U}( 1,3) group is used to define the quantum theory in the noninertial case. The central extension of the inhomogeneous {\\cal U}( 1,3) group is the cover of the quaplectic group {\\cal Q}( 1,3) ={\\cal U}( 1,3) \\otimes _{s}{\\cal H}(4) . {\\cal H}( 4) is the Weyl-Heisenberg group. The {\\cal H}( 4) group, and the associated Heisenberg commutation relations central to quantum mechanics, results directly from requiring projective representations. A set of second-order wave equations result from the representations of the Casimir operators.
Noisy relativistic quantum games in noninertial frames
NASA Astrophysics Data System (ADS)
Khan, Salman; Khan, M. Khalid
2013-02-01
The influence of noise and of Unruh effect on quantum Prisoners' dilemma is investigated both for entangled and unentangled initial states. The noise is incorporated through amplitude damping channel. For unentangled initial state, the decoherence compensates for the adverse effect of acceleration of the frame and the effect of acceleration becomes irrelevant provided the game is fully decohered. It is shown that the inertial player always out scores the noninertial player by choosing defection. For maximally entangled initially state, we show that for fully decohered case every strategy profile results in either of the two possible equilibrium outcomes. Two of the four possible strategy profiles become Pareto optimal and Nash equilibrium and no dilemma is leftover. It is shown that other equilibrium points emerge for different region of values of decoherence parameter that are either Pareto optimal or Pareto inefficient in the quantum strategic spaces. It is shown that the Eisert et al. (Phys Rev Lett 83:3077, 1999) miracle move is a special move that leads always to distinguishable results compare to other moves. We show that the dilemma like situation is resolved in favor of one player or the other.
Harsij, Zeynab Mirza, Behrouz
2014-12-15
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.
Mesoscopic mechanical resonators as quantum noninertial reference frames
NASA Astrophysics Data System (ADS)
Katz, B. N.; Blencowe, M. P.; Schwab, K. C.
2015-10-01
An atom attached to a micrometer-scale wire that is vibrating at a frequency ˜100 MHz and with displacement amplitude ˜1 nm experiences an acceleration magnitude ˜109ms -2 , approaching the surface gravity of a neutron star. As one application of such extreme noninertial forces in a mesoscopic setting, we consider a model two-path atom interferometer with one path consisting of the 100 MHz vibrating wire atom guide. The vibrating wire guide serves as a noninertial reference frame and induces an in principle measurable phase shift in the wave function of an atom traversing the wire frame. We furthermore consider the effect on the two-path atom wave interference when the vibrating wire is modeled as a quantum object, hence functioning as a quantum noninertial reference frame. We outline a possible realization of the vibrating wire, atom interferometer using a superfluid helium quantum interference setup.
Quantum Fisher information in noninertial frames
NASA Astrophysics Data System (ADS)
Yao, Yao; Xiao, Xing; Ge, Li; Wang, Xiao-guang; Sun, Chang-pu
2014-04-01
We investigate the performance of quantum Fisher information (QFI) under the Unruh-Hawking effect, where one of the observers (e.g., Rob) is uniformly accelerated with respect to other partners. In the context of relativistic quantum information theory, we demonstrate that quantum Fisher information, as an important measure of the information content of quantum states, has a rich and subtle physical structure compared with entanglement or Bell nonlocality. In this work, we mainly focus on the parametrized (and arbitrary) pure two-qubit states, where the weight parameter θ and phase parameter ϕ are naturally introduced. Intriguingly, we prove that QFI with respect to θ (Fθ) remains unchanged for both scalar and Dirac fields. Meanwhile, we observe that QFI with respect to ϕ (Fϕ) decreases with the increase of acceleration r but remains finite in the limit of infinite acceleration. More importantly, our results show that the symmetry of Fϕ (with respect to θ =π/4) has been broken by the influence of the Unruh effect for both cases.
Measurement-device-independent quantum key distribution.
Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing
2012-03-30
How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors. PMID:22540686
Device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Hänggi, Esther
2010-12-01
In this thesis, we study two approaches to achieve device-independent quantum key distribution: in the first approach, the adversary can distribute any system to the honest parties that cannot be used to communicate between the three of them, i.e., it must be non-signalling. In the second approach, we limit the adversary to strategies which can be implemented using quantum physics. For both approaches, we show how device-independent quantum key distribution can be achieved when imposing an additional condition. In the non-signalling case this additional requirement is that communication is impossible between all pairwise subsystems of the honest parties, while, in the quantum case, we demand that measurements on different subsystems must commute. We give a generic security proof for device-independent quantum key distribution in these cases and apply it to an existing quantum key distribution protocol, thus proving its security even in this setting. We also show that, without any additional such restriction there always exists a successful joint attack by a non-signalling adversary.
Kinematics and dynamics in noninertial quantum frames of reference
NASA Astrophysics Data System (ADS)
Angelo, R. M.; Ribeiro, A. D.
2012-11-01
From the principle that there is no absolute description of a physical state, we advance the approach according to which one should be able to describe the physics from the perspective of a quantum particle. The kinematics seen from this frame of reference is shown to be rather unconventional. In particular, we discuss several subtleties emerging in the relative formulation of central notions, such as vector states, the classical limit, entanglement, uncertainty relations and the complementary principle. A Hamiltonian formulation is also derived which correctly encapsulates effects of fictitious forces associated with the accelerated motion of the frame. Our approach shows, therefore, how to formulate nonrelativistic quantum mechanics within noninertial reference frames which can be consistently described by the theory, with no appeal to classical elements.
Fully device-independent quantum key distribution.
Vazirani, Umesh; Vidick, Thomas
2014-10-01
Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol. PMID:25325625
Quantum key distribution based on quantum dimension and independent devices
NASA Astrophysics Data System (ADS)
Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Wang, Shuang; Guo, Guang-Can; Han, Zheng-Fu
2014-03-01
In this paper, we propose a quantum key distribution (QKD) protocol based on only a two-dimensional Hilbert space encoding a quantum system and independent devices between the equipment for state preparation and measurement. Our protocol is inspired by the fully device-independent quantum key distribution (FDI-QKD) protocol and the measurement-device-independent quantum key distribution (MDI-QKD) protocol. Our protocol only requires the state to be prepared in the two-dimensional Hilbert space, which weakens the state preparation assumption in the original MDI-QKD protocol. More interestingly, our protocol can overcome the detection loophole problem in the FDI-QKD protocol, which greatly limits the application of FDI-QKD. Hence our protocol can be implemented with practical optical components.
Asynchronous reference frame agreement in a quantum network
NASA Astrophysics Data System (ADS)
Islam, Tanvirul; Wehner, Stephanie
2016-03-01
An efficient implementation of many multiparty protocols for quantum networks requires that all the nodes in the network share a common reference frame. Establishing such a reference frame from scratch is especially challenging in an asynchronous network where network links might have arbitrary delays and the nodes do not share synchronised clocks. In this work, we study the problem of establishing a common reference frame in an asynchronous network of n nodes of which at most t are affected by arbitrary unknown error, and the identities of the faulty nodes are not known. We present a protocol that allows all the correctly functioning nodes to agree on a common reference frame as long as the network graph is complete and not more than t\\lt n/4 nodes are faulty. As the protocol is asynchronous, it can be used with some assumptions to synchronise clocks over a network. Also, the protocol has the appealing property that it allows any existing two-node asynchronous protocol for reference frame agreement to be lifted to a robust protocol for an asynchronous quantum network.
Galilei covariance and Einstein's equivalence principle in quantum reference frames
NASA Astrophysics Data System (ADS)
Pereira, S. T.; Angelo, R. M.
2015-02-01
The covariance of the Schrödinger equation under Galilei boosts and the compatibility of nonrelativistic quantum mechanics with Einstein's equivalence principle have been constrained for so long to the existence of a superselection rule which would prevent a quantum particle from being found in superposition states of different masses. In an effort to avoid this expedient, and thus allow nonrelativistic quantum mechanics to account for unstable particles, recent works have suggested that the usual Galilean transformations are inconsistent with the nonrelativistic limit implied by the Lorentz transformation. Here we approach the issue in a fundamentally different way. Using a formalism of unitary transformations and employing quantum reference frames rather than immaterial coordinate systems, we show that the Schrödinger equation, although form variant, is fully compatible with the aforementioned principles of relativity.
Conformal-frame (in)dependence of cosmological observations in scalar-tensor theory
Chiba, Takeshi; Yamaguchi, Masahide E-mail: gucci@phys.titech.ac.jp
2013-10-01
We provide the correspondence between the variables in the Jordan frame and those in the Einstein frame in scalar-tensor gravity and consider the frame-(in)dependence of the cosmological observables. In particular, we show that the cosmological observables/relations (redshift, luminosity distance, temperature anisotropies) are frame-independent. We also study the frame-dependence of curvature perturbations and find that the curvature perturbations are conformal invariant if the perturbation is adiabatic and the entropy perturbation between matter and the Brans-Dicke scalar is vanishing. The relation among various definitions of curvature perturbations in the both frames is also discussed, and the condition for the equivalence is clarified.
Source-Independent Quantum Random Number Generation
NASA Astrophysics Data System (ADS)
Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng
2016-01-01
Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .
Measurement-device-independent quantum cryptography
Xu, Feihu; Curty, Marcos; Qi, Bing; Lo, Hoi-Kwong
2014-12-18
In theory, quantum key distribution (QKD) provides information-theoretic security based on the laws of physics. Owing to the imperfections of real-life implementations, however, there is a big gap between the theory and practice of QKD, which has been recently exploited by several quantum hacking activities. To fill this gap, a novel approach, called measurement-device-independent QKD (mdiQKD), has been proposed. In addition, it can remove all side-channels from the measurement unit, arguably the most vulnerable part in QKD systems, thus offering a clear avenue toward secure QKD realisations. In this study, we review the latest developments in the framework of mdiQKD,more » together with its assumptions, strengths, and weaknesses.« less
Measurement-device-independent quantum cryptography
Xu, Feihu; Curty, Marcos; Qi, Bing; Lo, Hoi-Kwong
2014-12-18
In theory, quantum key distribution (QKD) provides information-theoretic security based on the laws of physics. Owing to the imperfections of real-life implementations, however, there is a big gap between the theory and practice of QKD, which has been recently exploited by several quantum hacking activities. To fill this gap, a novel approach, called measurement-device-independent QKD (mdiQKD), has been proposed. In addition, it can remove all side-channels from the measurement unit, arguably the most vulnerable part in QKD systems, thus offering a clear avenue toward secure QKD realisations. In this study, we review the latest developments in the framework of mdiQKD, together with its assumptions, strengths, and weaknesses.
Detector-device-independent quantum key distribution
Lim, Charles Ci Wen; Korzh, Boris; Martin, Anthony; Bussières, Félix; Thew, Rob; Zbinden, Hugo
2014-12-01
Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all measurement side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity is challenging for practical systems. For instance, it requires interference between two widely separated independent single-photon sources, and the secret key rates are dependent on detecting two photons—one from each source. Here, we demonstrate a proof-of-principle experiment of a QKD scheme that removes the need for a two-photon system and instead uses the idea of a two-qubit single-photon to significantly simplify the implementation and improve the efficiency of mdiQKD in several aspects.
Measurement-device-independent quantum coin tossing
NASA Astrophysics Data System (ADS)
Zhao, Liangyuan; Yin, Zhenqiang; Wang, Shuang; Chen, Wei; Chen, Hua; Guo, Guangcan; Han, Zhengfu
2015-12-01
Quantum coin tossing (QCT) is an important primitive of quantum cryptography and has received continuous interest. However, in practical QCT, Bob's detectors can be subjected to detector-side channel attacks launched by dishonest Alice, which will possibly make the protocol completely insecure. Here, we report a simple strategy of a detector-blinding attack based on a recent experiment. To remove all the detector side channels, we present a solution of measurement-device-independent QCT (MDI-QCT). This method is similar to the idea of MDI quantum key distribution (QKD). MDI-QCT is loss tolerant with single-photon sources and has the same bias as the original loss-tolerant QCT under a coherent attack. Moreover, it provides the potential advantage of doubling the secure distance for some special cases. Finally, MDI-QCT can also be modified to fit the weak coherent-state sources. Thus, based on the rapid development of practical MDI-QKD, our proposal can be implemented easily.
Implementations for device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Máttar, Alejandro; Acín, Antonio
2016-04-01
Device-independent quantum key distribution (DIQKD) generates a secret key among two parties in a provably secure way without making assumptions about the internal working of the devices used in the protocol. The main challenge for a DIQKD physical implementation is that the data observed among the two parties must violate a Bell inequality without fair-sampling, since otherwise the observed correlations can be faked with classical resources and security can no longer be guaranteed. In spite of the advances recently made to achieve higher detection efficiencies in Bell experiments, DIQKD remains experimentally difficult at long distances due to the exponential increase of loss in the channel separating the two parties. Here we describe and analyze plausible solutions to overcome the crucial problem of channel loss in the frame of DIQKD physical implementations.
Completely device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Aguilar, Edgar A.; Ramanathan, Ravishankar; Kofler, Johannes; Pawłowski, Marcin
2016-08-01
Quantum key distribution (QKD) is a provably secure way for two distant parties to establish a common secret key, which then can be used in a classical cryptographic scheme. Using quantum entanglement, one can reduce the necessary assumptions that the parties have to make about their devices, giving rise to device-independent QKD (DIQKD). However, in all existing protocols to date the parties need to have an initial (at least partially) random seed as a resource. In this work, we show that this requirement can be dropped. Using recent advances in the fields of randomness amplification and randomness expansion, we demonstrate that it is sufficient for the message the parties want to communicate to be (partially) unknown to the adversaries—an assumption without which any type of cryptography would be pointless to begin with. One party can use her secret message to locally generate a secret sequence of bits, which can then be openly used by herself and the other party in a DIQKD protocol. Hence our work reduces the requirements needed to perform secure DIQKD and establish safe communication.
Reference-free-independent quantum key distribution immune to detector side channel attacks
NASA Astrophysics Data System (ADS)
Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Li, Hong-Wei; Guo, Guang-Can; Han, Zheng-Fu
2014-05-01
Usually, a shared reference frame is indispensable for practical quantum key distribution (QKD) systems. As a result, most QKD systems need active alignment of reference frame due to the unknown and slowly variances of reference frame introduced by environment. Quite interestingly, reference-free-independent (RFI) QKD can generate secret-key bits without alignment of reference frame. However, RFI QKD may be still vulnerable to detector side channel attacks. Here, we propose a new RFI QKD protocol, in which all detector side channels are removed. Furthermore, our protocol can still tolerate unknown and slow variance of reference frame without active alignment. And a numerical simulation shows that long security distance is probable in this protocol.
NASA Astrophysics Data System (ADS)
Wang, Zhao; Zhang, Chao; Huang, Yun-Feng; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can
2016-03-01
Multipartite quantum nonlocality is an important diagnostic tool and resource for both researches in fundamental quantum mechanics and applications in quantum information protocols. Shared reference frames among all parties are usually required for experimentally observing quantum nonlocality, which is not possible in many circumstances. Previous results have shown violations of bipartite Bell inequalities with approaching unit probability, without shared reference frames. Here we experimentally demonstrate genuine multipartite quantum nonlocality without shared reference frames, using the Svetlichny inequality. A significant violation probability of 0.58 is observed with a high-fidelity three-photon Greenberger-Horne-Zeilinger state. Furthermore, when there is one shared axis among all the parties, which is the usual case in fiber-optic or earth-satellite links, the experimental results demonstrate the genuine three-partite nonlocality with certainty. Our experiment will be helpful for applications in multipartite quantum communication protocols.
Performance of device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Cao, Zhu; Zhao, Qi; Ma, Xiongfeng
2016-07-01
Quantum key distribution provides information-theoretically-secure communication. In practice, device imperfections may jeopardise the system security. Device-independent quantum key distribution solves this problem by providing secure keys even when the quantum devices are untrusted and uncharacterized. Following a recent security proof of the device-independent quantum key distribution, we improve the key rate by tightening the parameter choice in the security proof. In practice where the system is lossy, we further improve the key rate by taking into account the loss position information. From our numerical simulation, our method can outperform existing results. Meanwhile, we outline clear experimental requirements for implementing device-independent quantum key distribution. The maximal tolerable error rate is 1.6%, the minimal required transmittance is 97.3%, and the minimal required visibility is 96.8 % .
Quantum interference of independently generated telecom-band single photons
Patel, Monika; Altepeter, Joseph B.; Huang, Yu-Ping; Oza, Neal N.; Kumar, Prem
2014-12-04
We report on high-visibility quantum interference of independently generated telecom O-band (1310 nm) single photons using standard single-mode fibers. The experimental data are shown to agree well with the results of simulations using a comprehensive quantum multimode theory without the need for any fitting parameter.
Eavesdropping of quantum communication from a noninertial frame
Bradler, K.
2007-02-15
We introduce a relativistic version of the quantum encryption protocol by considering two inertial observers who wish to securely transmit quantum information encoded in a free scalar quantum field state forming Minkowski particles. In a nonrelativistic setting a certain amount of shared classical resources is necessary to perfectly encrypt the state. We show that in the case of a uniformly accelerated eavesdropper the communicating parties need to share (asymptotically in the limit of infinite acceleration) just half of the classical resources.
State-independent purity and fidelity of quantum operations
NASA Astrophysics Data System (ADS)
Kong, Fan-Zhen; Zong, Xiao-Lan; Yang, Ming; Cao, Zhuo-Liang
2016-04-01
The purity and fidelity of quantum operations are of great importance in characterizing the quality of quantum operations. The currently available definitions of the purity and fidelity of quantum operations are based on the average over all possible input pure quantum states, i.e. they are state-dependent (SD). In this paper, without resorting to quantum states, we define the state-independent (SI) purity and fidelity of a general quantum operation (evolution) in virtue of a new density matrix formalism for quantum operations, which is extended from the quantum state level to quantum operation level. The SI purity and fidelity gain more intrinsic physical properties of quantum operations than state-dependent ones, such as the purity of a one-qubit amplitude damping channel (with damping rate 1) is 1/2, which is in line with the fact that the channel is still a nonunitary operation described by two Kraus operators rather than a unitary one. But the state-dependent Haar average purity is 1 in this case. So the SI purity and fidelity proposed here can help the experimentalists to exactly quantify the implementation quality of an operation. As a byproduct, a new measure of the operator entanglement is proposed for a quantum evolution (unitary or nonunitary) in terms of the linear entropy of its density matrix on the orthonormal operator bases (OOBs) in Hilbert-Schmidt space.
Framing Anomaly in the Effective Theory of Fractional Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Gromov, Andrey; Abanov, Alexander; Cho, Gil Young; You, Yizhi; Fradkin, Eduardo
2015-03-01
While the classical Chern-Simons theory is topological, it's quantum version is not as it depends on the metric of the base manifold through the path integral measure. This phenomenon is known as the framing anomaly. It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions of fractional quantum Hall systems (FQH). In the lowest order in gradients the effective action includes Chern-Simons, Wen-Zee and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and generates a ``finite size correction'' to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses of non-Abelian FQH states.
Optimal Device Independent Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Kamaruddin, S.; Shaari, J. S.
2016-08-01
We consider an optimal quantum key distribution setup based on minimal number of measurement bases with binary yields used by parties against an eavesdropper limited only by the no-signaling principle. We note that in general, the maximal key rate can be achieved by determining the optimal tradeoff between measurements that attain the maximal Bell violation and those that maximise the bit correlation between the parties. We show that higher correlation between shared raw keys at the expense of maximal Bell violation provide for better key rates for low channel disturbance.
Optimal Device Independent Quantum Key Distribution
Kamaruddin, S.; Shaari, J. S.
2016-01-01
We consider an optimal quantum key distribution setup based on minimal number of measurement bases with binary yields used by parties against an eavesdropper limited only by the no-signaling principle. We note that in general, the maximal key rate can be achieved by determining the optimal tradeoff between measurements that attain the maximal Bell violation and those that maximise the bit correlation between the parties. We show that higher correlation between shared raw keys at the expense of maximal Bell violation provide for better key rates for low channel disturbance. PMID:27485160
Optimal Device Independent Quantum Key Distribution.
Kamaruddin, S; Shaari, J S
2016-01-01
We consider an optimal quantum key distribution setup based on minimal number of measurement bases with binary yields used by parties against an eavesdropper limited only by the no-signaling principle. We note that in general, the maximal key rate can be achieved by determining the optimal tradeoff between measurements that attain the maximal Bell violation and those that maximise the bit correlation between the parties. We show that higher correlation between shared raw keys at the expense of maximal Bell violation provide for better key rates for low channel disturbance. PMID:27485160
Continuous-variable measurement-device-independent multipartite quantum communication
NASA Astrophysics Data System (ADS)
Wu, Yadong; Zhou, Jian; Gong, Xinbao; Guo, Ying; Zhang, Zhi-Ming; He, Guangqiang
2016-02-01
A continuous-variable measurement-device-independent multiparty quantum communication protocol is investigated in this paper. Utilizing the distributed continuous-variable Greenberger-Horne-Zeilinger state, this protocol can implement both quantum cryptographic conference and quantum secret sharing. We analyze the security of the protocol against both the entangling cloner attack and the coherent attack. The entangling cloner attack is a practical individual attack, and the coherent attack is the optimal attack Eve can implement. Simulation results show that the coherent attack can greatly reduce the secret key rate. Different kinds of entangled attacks are compared and we finally discuss the optimal coherent attacks.
The optimization of measurement device independent quantum key distribution
NASA Astrophysics Data System (ADS)
Gao, Feng; Ma, Hai-Qiang; Jiao, Rong-Zhen
2016-04-01
Measurement device independent quantum key distribution (MDI-QKD) is a promising method for realistic quantum communication which could remove all the side-channel attacks from the imperfections of the devices. Here in this study, we theoretically analyzed the performance of the MDI-QKD system. The asymptotic case rate with the increment of the transmission distance at different polarization misalignment, background count rate and intensity is calculated respectively. The result may provide important parameters for practical application of quantum communications.
Quantum Holonomies from Spectral Networks and Framed BPS States
NASA Astrophysics Data System (ADS)
Gabella, Maxime
2016-08-01
We propose a method for determining the spins of BPS states supported on line defects in 4d {{N}=2} theories of class S. Via the 2d-4d correspondence, this translates to the construction of quantum holonomies on a punctured Riemann surface {{C}} . Our approach combines the technology of spectral networks, which decomposes flat {GL(K,{C})} -connections on {{C}} in terms of flat abelian connections on a K-fold cover of {{C}} , and the skein algebra in the 3-manifold {{C} × [0,1]} , which expresses the representation theory of the quantum group U q (gl K ). With any path on {{C}} , the quantum holonomy associates a positive Laurent polynomial in the quantized Fock-Goncharov coordinates of higher Teichmüller space. This confirms various positivity conjectures in physics and mathematics.
Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces
NASA Astrophysics Data System (ADS)
Klink, W. H.; Wickramasekara, S.
2016-06-01
One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner-Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated in quantum theory.
Measurement-device-independent entanglement-based quantum key distribution
NASA Astrophysics Data System (ADS)
Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan
2016-05-01
We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.
Device-independent quantum cryptography for continuous variables
NASA Astrophysics Data System (ADS)
Marshall, Kevin; Weedbrook, Christian
2014-10-01
We present a device-independent quantum cryptography protocol for continuous variables. Our scheme is based on the Gottesman-Kitaev-Preskill encoding scheme whereby a qubit is embedded in the infinite-dimensional space of a quantum harmonic oscillator. The application of discrete-variable device-independent quantum key distribution to this encoding enables a continuous-variable analog. Since the security of this protocol is based on discrete variables we inherit by default security against collective attacks and, under certain memoryless assumptions, coherent attacks. We find that our protocol is valid over the same distances as its discrete-variable counterpart, except that we are able to take advantage of high efficiency commercially available detectors where, for the most part, only homodyne detection is required. This offers the prospect of closing the loopholes associated with Bell inequalities.
Long-distance measurement-device-independent multiparty quantum communication.
Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing
2015-03-01
The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication. PMID:25793788
Zanzi, Andrea
2010-08-15
The chameleonic behavior of the string theory dilaton is suggested. Some of the possible consequences of the chameleonic string dilaton are analyzed in detail. In particular, (1) we suggest a new stringy solution to the cosmological constant problem and (2) we point out the nonequivalence of different conformal frames at the quantum level. In order to obtain these results, we start taking into account the (strong coupling) string loop expansion in the string frame (S-frame), therefore the so-called form factors are present in the effective action. The correct dark energy scale is recovered in the Einstein frame (E-frame) without unnatural fine-tunings and this result is robust against all quantum corrections, granted that we assume a proper structure of the S-frame form factors in the strong coupling regime. At this stage, the possibility still exists that a certain amount of fine-tuning may be required to satisfy some phenomenological constraints. Moreover in the E-frame, in our proposal, all the interactions are switched off on cosmological length scales (i.e., the theory is IR-free), while higher derivative gravitational terms might be present locally (on short distances) and it remains to be seen whether these facts clash with phenomenology. A detailed phenomenological analysis is definitely necessary to clarify these points.
Wiestler, Tobias; Waters-Metenier, Sheena
2014-01-01
Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere. PMID:24695723
Conditional independence in quantum many-body systems
NASA Astrophysics Data System (ADS)
Kim, Isaac Hyun
In this thesis, I will discuss how information-theoretic arguments can be used to produce sharp bounds in the studies of quantum many-body systems. The main advantage of this approach, as opposed to the conventional field-theoretic argument, is that it depends very little on the precise form of the Hamiltonian. The main idea behind this thesis lies on a number of results concerning the structure of quantum states that are conditionally independent. Depending on the application, some of these statements are generalized to quantum states that are approximately conditionally independent. These structures can be readily used in the studies of gapped quantum many-body systems, especially for the ones in two spatial dimensions. A number of rigorous results are derived, including (i) a universal upper bound for a maximal number of topologically protected states that is expressed in terms of the topological entanglement entropy, (ii) a first-order perturbation bound for the topological entanglement entropy that decays superpolynomially with the size of the subsystem, and (iii) a correlation bound between an arbitrary local operator and a topological operator constructed from a set of local reduced density matrices. I also introduce exactly solvable models supported on a three-dimensional lattice that can be used as a reliable quantum memory.
Quantum mechanics in non-inertial reference frames: Time-dependent rotations and loop prolongations
NASA Astrophysics Data System (ADS)
Klink, W. H.; Wickramasekara, S.
2013-09-01
This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle as well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics.
Framing Anomaly in the Effective Theory of the Fractional Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G.; Fradkin, Eduardo
2015-01-01
We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states.
Framing anomaly in the effective theory of the fractional quantum Hall effect.
Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G; Fradkin, Eduardo
2015-01-01
We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states. PMID:25615495
Frame independence of the inhomogeneous mixmaster chaos via Misner-Chitre-like variables
Benini, Riccardo; Montani, Giovanni
2004-11-15
We outline the covariant nature, with respect to the choice of a reference frame, of the chaos characterizing the generic cosmological solution near the initial singularity, i.e., the so-called inhomogeneous mixmaster model. Our analysis is based on a gauge independent Arnowitt-Deser-Misner reduction of the dynamics to the physical degrees of freedom. The resulting picture shows how the inhomogeneous mixmaster model is isomorphic point by point in space to a billiard on a Lobachevsky plane. Indeed, the existence of an asymptotic (energylike) constant of the motion allows one to construct the Jacobi metric associated with the geodesic flow and to calculate a nonzero Lyapunov exponent in each space point. The chaos covariance emerges from the independence of our scheme with respect to the form of the lapse function and the shift vector; the origin of this result relies on the dynamical decoupling of the space points which takes place near the singularity, due to the asymptotic approach of the potential term to infinite walls. At the ground of the obtained dynamical scheme is the choice of Misner-Chitre-like variables which allows one to fix the billiard potential walls.
Quantum mechanics in non-inertial reference frames: Time-dependent rotations and loop prolongations
Klink, W.H.; Wickramasekara, S.
2013-09-15
This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle as well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is presented. •The Galilei group is generalized to infinite dimensional Galilean line group. •Loop prolongations of Galilean line group contain central extensions of Galilei group. •Unitary representations of the loops are constructed. •These representations lead to terms in the Hamiltonian corresponding to fictitious forces, including centrifugal and Coriolis
Local thermodynamical equilibrium and the frame for a quantum relativistic fluid
NASA Astrophysics Data System (ADS)
Becattini, Francesco; Bucciantini, Leda; Grossi, Eduardo; Tinti, Leonardo
2015-05-01
We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector , which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of the stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the frame and Landau frame and present an instance where they differ.
Temperature independent quantum well FET with delta channel doping
NASA Technical Reports Server (NTRS)
Young, P. G.; Mena, R. A.; Alterovitz, S. A.; Schacham, S. E.; Haugland, E. J.
1992-01-01
A temperature independent device is presented which uses a quantum well structure and delta doping within the channel. The device requires a high delta doping concentration within the channel to achieve a constant Hall mobility and carrier concentration across the temperature range 300-1.4 K. Transistors were RF tested using on-wafer probing and a constant G sub max and F sub max were measured over the temperature range 300-70 K.
Temperature independent infrared responsivity of a quantum dot quantum cascade photodetector
NASA Astrophysics Data System (ADS)
Wang, Feng-Jiao; Zhuo, Ning; Liu, Shu-Man; Ren, Fei; Ning, Zhen-Dong; Ye, Xiao-Ling; Liu, Jun-Qi; Zhai, Shen-Qiang; Liu, Feng-Qi; Wang, Zhan-Guo
2016-06-01
We demonstrate a quantum dot quantum cascade photodetector with a hybrid active region of InAs quantum dots and an InGaAs quantum well, which exhibited a temperature independent response at 4.5 μm. The normal incident responsivity reached 10.3 mA/W at 120 K and maintained a value of 9 mA/W up to 260 K. It exhibited a specific detectivity above 1011 cm Hz1/2 W-1 at 77 K, which remained at 108 cm Hz1/2 W-1 at 260 K. We ascribe the device's good thermal stability of infrared response to the three-dimensional quantum confinement of the InAs quantum dots incorporated in the active region.
Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution.
Wang, Chao; Song, Xiao-Tian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu
2015-10-16
Measurement-device-independent quantum key distribution (MDI QKD) is a substantial step toward practical information-theoretic security for key sharing between remote legitimate users (Alice and Bob). As with other standard device-dependent quantum key distribution protocols, such as BB84, MDI QKD assumes that the reference frames have been shared between Alice and Bob. In practice, a nontrivial alignment procedure is often necessary, which requires system resources and may significantly reduce the secure key generation rate. Here, we propose a phase-coding reference-frame-independent MDI QKD scheme that requires no phase alignment between the interferometers of two distant legitimate parties. As a demonstration, a proof-of-principle experiment using Faraday-Michelson interferometers is presented. The experimental system worked at 1 MHz, and an average secure key rate of 8.309 bps was obtained at a fiber length of 20 km between Alice and Bob. The system can maintain a positive key generation rate without phase compensation under normal conditions. The results exhibit the feasibility of our system for use in mature MDI QKD devices and its value for network scenarios. PMID:26550855
Single Motional Quantum Exchange between Independently Trapped Ions
NASA Astrophysics Data System (ADS)
Brown, K. R.; Ospelkaus, C.; Colombe, Y.; Wilson, A. C.; Leibfried, D.; Wineland, D. J.
2011-05-01
The Coulomb coupling of ions in separate potential wells is a key feature of proposals to implement quantum simulation and could enable logic operations to be performed in a multi-zone quantum information processor without the requirement of bringing the ion qubits into the same trapping potential. It might also extend the capabilities of quantum logic spectroscopy to ions that cannot be trapped in the same potential well as the measurement ion, such as oppositely charged ions or even antimatter particles. We report recent results demonstrating tunable coupling of two 9Be+ ions held in trapping potentials separated by 40 μm. The ions are trapped 40 μm above the surface of a microfabricated planar trap with independently tunable axial frequencies of ~4 MHz. The trap is cooled to 4.2 K with a helium bath cryostat to suppress anomalous heating and to extend the lifetime of ions from minutes to days. By preparing approximate motional number states with n=0 and n=1 in the respective wells, and tuning the confining wells into resonance, a single quantum of motion is exchanged between the ions in ~200 μs. Work supported by IARPA, DARPA, ONR, and the NIST Quantum Information Program.
Benioff, Paul
2009-01-01
Tmore » his work is based on the field of reference frames based on quantum representations of real and complex numbers described in other work. Here frame domains are expanded to include space and time lattices. Strings of qukits are described as hybrid systems as they are both mathematical and physical systems. As mathematical systems they represent numbers. As physical systems in each frame the strings have a discrete Schrodinger dynamics on the lattices.he frame field has an iterative structure such that the contents of a stage j frame have images in a stage j - 1 (parent) frame. A discussion of parent frame images includes the proposal that points of stage j frame lattices have images as hybrid systems in parent frames.he resulting association of energy with images of lattice point locations, as hybrid systems states, is discussed. Representations and images of other physical systems in the different frames are also described.« less
Memory Attacks on Device-Independent Quantum Cryptography
NASA Astrophysics Data System (ADS)
Barrett, Jonathan; Colbeck, Roger; Kent, Adrian
2013-01-01
Device-independent quantum cryptographic schemes aim to guarantee security to users based only on the output statistics of any components used, and without the need to verify their internal functionality. Since this would protect users against untrustworthy or incompetent manufacturers, sabotage, or device degradation, this idea has excited much interest, and many device-independent schemes have been proposed. Here we identify a critical weakness of device-independent protocols that rely on public communication between secure laboratories. Untrusted devices may record their inputs and outputs and reveal information about them via publicly discussed outputs during later runs. Reusing devices thus compromises the security of a protocol and risks leaking secret data. Possible defenses include securely destroying or isolating used devices. However, these are costly and often impractical. We propose other more practical partial defenses as well as a new protocol structure for device-independent quantum key distribution that aims to achieve composable security in the case of two parties using a small number of devices to repeatedly share keys with each other (and no other party).
Memory attacks on device-independent quantum cryptography.
Barrett, Jonathan; Colbeck, Roger; Kent, Adrian
2013-01-01
Device-independent quantum cryptographic schemes aim to guarantee security to users based only on the output statistics of any components used, and without the need to verify their internal functionality. Since this would protect users against untrustworthy or incompetent manufacturers, sabotage, or device degradation, this idea has excited much interest, and many device-independent schemes have been proposed. Here we identify a critical weakness of device-independent protocols that rely on public communication between secure laboratories. Untrusted devices may record their inputs and outputs and reveal information about them via publicly discussed outputs during later runs. Reusing devices thus compromises the security of a protocol and risks leaking secret data. Possible defenses include securely destroying or isolating used devices. However, these are costly and often impractical. We propose other more practical partial defenses as well as a new protocol structure for device-independent quantum key distribution that aims to achieve composable security in the case of two parties using a small number of devices to repeatedly share keys with each other (and no other party). PMID:23383767
NASA Astrophysics Data System (ADS)
Smith, Alexander R. H.; Piani, Marco; Mann, Robert B.
2016-07-01
Quantum communication without a shared reference frame or the construction of a relational quantum theory requires the notion of a quantum reference frame. We analyze aspects of quantum reference frames associated with noncompact groups, specifically, the group of spatial translations and Galilean boosts. We begin by demonstrating how the usually employed group average, used to dispense of the notion of an external reference frame, leads to unphysical states when applied to reference frames associated with noncompact groups. However, we show that this average does lead naturally to a reduced state on the relative degrees of freedom of a system, which was previously considered by Angelo et al. [J. Phys. A: Math. Theor. 44, 145304 (2011), 10.1088/1751-8113/44/14/145304]. We then study in detail the informational properties of this reduced state for systems of two and three particles in Gaussian states.
ERIC Educational Resources Information Center
Roddy, Troy Paul
2010-01-01
This study examined the self-perceived leadership orientations of headmasters of independent schools. This research expanded the current body of work that supports Bolman and Deal's (2003) multi-frame explanation that leaders use different orientations (frames) to understand their roles, clarify organizational situations, and make decisions. Using…
Relativeness in quantum gravity: limitations and frame dependence of semiclassical descriptions
NASA Astrophysics Data System (ADS)
Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J.
2015-04-01
Consistency between quantum mechanical and general relativistic views of the world is a longstanding problem, which becomes particularly prominent in black hole physics. We develop a coherent picture addressing this issue by studying the quantum mechanics of an evolving black hole. After interpreting the Bekenstein-Hawking entropy as the entropy representing the degrees of freedom that are coarse-grained to obtain a semiclassical description from the microscopic theory of quantum gravity, we discuss the properties these degrees of freedom exhibit when viewed from the semiclassical standpoint. We are led to the conclusion that they show features which we call extreme relativeness and spacetime-matter duality — a nontrivial reference frame dependence of their spacetime distribution and the dual roles they play as the "constituents" of spacetime and as thermal radiation. We describe black hole formation and evaporation processes in distant and infalling reference frames, showing that these two properties allow us to avoid the arguments for firewalls and to make the existence of the black hole interior consistent with unitary evolution in the sense of complementarity. Our analysis provides a concrete answer to how information can be preserved at the quantum level throughout the evolution of a black hole, and gives a basic picture of how general coordinate transformations may work at the level of full quantum gravity beyond the approximation of semiclassical theory.
TOPICAL REVIEW: Background independent quantum gravity: a status report
NASA Astrophysics Data System (ADS)
Ashtekar, Abhay; Lewandowski, Jerzy
2004-08-01
The goal of this review is to present an introduction to loop quantum gravity—a background-independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry. Our presentation is pedagogical. Thus, in addition to providing a bird's eye view of the present status of the subject, the review should also serve as a vehicle to enter the field and explore it in detail. To aid non-experts, very little is assumed beyond elements of general relativity, gauge theories and quantum field theory. While the review is essentially self-contained, the emphasis is on communicating the underlying ideas and the significance of results rather than on presenting systematic derivations and detailed proofs. (These can be found in the listed references.) The subject can be approached in different ways. We have chosen one which is deeply rooted in well-established physics and also has sufficient mathematical precision to ensure that there are no hidden infinities. In order to keep the review to a reasonable size, and to avoid overwhelming non-experts, we have had to leave out several interesting topics, results and viewpoints; this is meant to be an introduction to the subject rather than an exhaustive review of it.
High-rate measurement-device-independent quantum cryptography
NASA Astrophysics Data System (ADS)
Pirandola, Stefano; Ottaviani, Carlo; Spedalieri, Gaetana; Weedbrook, Christian; Braunstein, Samuel L.; Lloyd, Seth; Gehring, Tobias; Jacobsen, Christian S.; Andersen, Ulrik L.
2015-06-01
Quantum cryptography achieves a formidable task—the remote distribution of secret keys by exploiting the fundamental laws of physics. Quantum cryptography is now headed towards solving the practical problem of constructing scalable and secure quantum networks. A significant step in this direction has been the introduction of measurement-device independence, where the secret key between two parties is established by the measurement of an untrusted relay. Unfortunately, although qubit-implemented protocols can reach long distances, their key rates are typically very low, unsuitable for the demands of a metropolitan network. Here we show, theoretically and experimentally, that a solution can come from the use of continuous-variable systems. We design a coherent-state network protocol able to achieve remarkably high key rates at metropolitan distances, in fact three orders of magnitude higher than those currently achieved. Our protocol could be employed to build high-rate quantum networks where devices securely connect to nearby access points or proxy servers.
Experimental measurement-device-independent verification of quantum steering
NASA Astrophysics Data System (ADS)
Kocsis, Sacha; Hall, Michael J. W.; Bennet, Adam J.; Saunders, Dylan J.; Pryde, Geoff J.
2015-01-01
Bell non-locality between distant quantum systems—that is, joint correlations which violate a Bell inequality—can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.
Experimental Measurement-Device-Independent Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei
2013-09-01
Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.
Experimental measurement-device-independent quantum key distribution.
Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei
2013-09-27
Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices. PMID:24116758
PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity
NASA Astrophysics Data System (ADS)
Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier
2012-05-01
Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not
Existence of an independent phonon bath in a quantum device
NASA Astrophysics Data System (ADS)
Pascal, L. M. A.; Fay, A.; Winkelmann, C. B.; Courtois, H.
2013-09-01
At low temperatures, the thermal wavelength of acoustic phonons in a metallic thin film on a substrate can widely exceed the film thickness. It is thus generally believed that a mesoscopic device operating at low temperature does not carry an individual phonon population. In this work, we provide direct experimental evidence for the thermal decoupling of phonons in a mesoscopic quantum device from its substrate phonon heat bath at a sub-Kelvin temperature. A simple heat balance model assuming an independent phonon bath following the usual electron-phonon and Kapitza coupling laws can account for all experimental observations.
Instructions, Independence and Uncertainty: Student Framing in Self-Regulated Project Work
ERIC Educational Resources Information Center
Eklof, Anders; Nilsson, Lars-Erik; Ottosson, Torgny
2014-01-01
This study presents an approach to student interaction in self-regulated project work. By combining frame analysis and socio-cultural risk theory, the authors explore the importance of students' framing activities as a basis for their understanding of tasks. The increase in self-regulated work in Swedish schools can be seen as being in line…
NASA Astrophysics Data System (ADS)
McKeown, Martin J.; Gadala, Marwa; Abu-Gharbieh, Rafeef
2005-04-01
Independent Component Analysis (ICA) has proved a powerful exploratory analysis method for fMRI. In the ICA model, the fMRI data at a given time point are modeled as the linear superposition of spatially independent (and spatially stationary) component maps. The ICA model has been recently applied to positron emission tomography (PET) data with some success (Human Brain Mapping 18:284-295(2003), IEEE Trans. BME, Naganawa et al, in press). However, in PET imaging each frame is, in fact, activity integrated over a relatively long period of time, making the assumption that the underlying component maps are spatially stationary (and hence no head movement has taken place during the frame collection) very tenuous. Here we extend the application of the ICA model to 11C-methylphenidate PET data by assuming that each frame is actually composed of the superposition of rigidly transformed underlying spatial components. We first determine the "noisy" initial spatially independent components of a data set under the erroneous assumption of no intra or inter-frame motion. Aspects of the initial components that reliably track spatial perturbations of the data are then determined to produce the motion-compensated components. Initial components included ring-like spatial distributions, indicating that movement corrupts the statistical properties of the data. The final intra-frame motion-compensated components included more plausible symmetric and robust activity in the striatum as would be expected compared to the raw data and the initial components. We conclude that 1) intra-frame motion is a serious confound in PET imaging which affects the statistical properties of the data and 2) our proposed procedure ameliorates such motion effects.
NASA Astrophysics Data System (ADS)
Ji, Yi-Ming; Li, Yun-Xia; Shi, Lei; Meng, Wen; Cui, Shu-Min; Xu, Zhen-Yu
2015-10-01
Quantum access network can't guarantee the absolute security of multi-user detector and eavesdropper can get access to key information through time-shift attack and other ways. Measurement-device-independent quantum key distribution is immune from all the detection attacks, and accomplishes the safe sharing of quantum key. In this paper, that Measurement-device-independent quantum key distribution is used in the application of multi-user quantum access to the network is on the research. By adopting time-division multiplexing technology to achieve the sharing of multiuser detector, the system structure is simplified and the security of quantum key sharing is acquired.
Padmanabhan, Hamsa; Padmanabhan, T.
2011-10-15
We discuss the nonrelativistic limit of quantum field theory in an inertial frame, in the Rindler frame and in the presence of a weak gravitational field, and attempt to highlight and clarify several subtleties. In particular, we study the following issues: (a) While the action for a relativistic free particle is invariant under the Lorentz transformation, the corresponding action for a nonrelativistic free particle is not invariant under the Galilean transformation, but picks up extra contributions at the end points. This leads to an extra phase in the nonrelativistic wave function under a Galilean transformation, which can be related to the rest energy of the particle even in the nonrelativistic limit. We show that this is closely related to the peculiar fact that the relativistic action for a free particle remains invariant even if we restrict ourselves to O(1/c{sup 2}) in implementing the Lorentz transformation. (b) We provide a brief critique of the principle of equivalence in the quantum mechanical context. In particular, we show how solutions to the generally covariant Klein-Gordon equation in a noninertial frame, which has a time-dependent acceleration, reduce to the nonrelativistic wave function in the presence of an appropriate (time-dependent) gravitational field in the c{yields}{infinity} limit, and relate this fact to the validity of the principle of equivalence in a quantum mechanical context. We also show that the extra phase acquired by the nonrelativistic wave function in an accelerated frame, actually arises from the gravitational time dilation and survives in the nonrelativistic limit. (c) While the solution of the Schroedinger equation can be given an interpretation as being the probability amplitude for a single particle, such an interpretation fails in quantum field theory. We show how, in spite of this, one can explicitly evaluate the path integral using the (nonquadratic) action for a relativistic particle (involving a square root) and
Quantum many-body dynamics in a Lagrangian frame: I. Equations of motion and conservation laws
NASA Astrophysics Data System (ADS)
Tokatly, I. V.
2005-04-01
We formulate equations of motion and conservation laws for a quantum many-body system in a co-moving Lagrangian reference frame. It is shown that generalized inertia forces in the co-moving frame are described by Green’s deformation tensor gμν(ξ,t) and a skew-symmetric vorticity tensor Ftilde μν(ξ,t) , where ξ in the Lagrangian coordinate. Equations of motion are equivalent to those for a quantum many-body system in a space with time-dependent metric gμν(ξ,t) in the presence of an effective magnetic field Ftilde μν(ξ,t) . To illustrate the general formalism we apply it to the proof of the harmonic potential theorem. As another example of application we consider a fast long wavelength dynamics of a Fermi system in the dynamic Hartree approximation. In this case the kinetic equation in the Lagrangian frame can be solved explicitly. This allows us to formulate the description of a Fermi gas in terms of an effective nonlinear elasticity theory. We also discuss a relation of our results to time-dependent density functional theory.
PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity
NASA Astrophysics Data System (ADS)
Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier
2012-05-01
Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not
Quantum-optical Space-time Wave Frames: When light coordinates itself coherently
NASA Astrophysics Data System (ADS)
Harter, William; Mitchell, Justin
2006-05-01
Careful re-examination of details of quantum and classical optical wave interference leads to a more precise and elegant logic for two of the foundations of modern physics, special relativity and quantum theory. This provides a transparent unified development of both subjects together in a few simple logical steps with improved intuition and fewer ``mysteries.'' The first step is an Occam razor reduction of Einstein's axiom to a spectral form based on linear dispersion or, ``All colors go c.'' Then wave nodal planes of interfering CW beams or optical cavity modes provide their own space-time coordinate frames with a reciprocal per-space-time lattice.[1] These clearly display Lorentz-Poincare symmetry and hyperbolic dispersion characteristic of quantum matter with very simple Compton recoil analyses. Accelerated coordinate frames made by cavity chirping are used to relate Compton effects to the relativistic shifts and horizons that are present in an Einstein elevator and shows them to be an elegant result of wave interference. [1] W. G. Harter, J. Mol. Spect. 210, 166 (2001)
Alba, David; Crater, Horace W.; Lusanna, Luca
2011-06-15
A new formulation of relativistic quantum mechanics is proposed in the framework of the rest-frame instant form of dynamics, where the world-lines of the particles are parametrized in terms of the Fokker-Pryce center of inertia and of Wigner-covariant relative 3-coordinates inside the instantaneous Wigner 3-spaces, and where there is a decoupled (non-covariant and non-local) canonical relativistic center of mass. This approach: (a) allows us to make a consistent quantization in every inertial frame; (b) leads to a description of both bound and scattering states; (c) offers new insights on the relativistic localization problem; (d) leads to a non-relativistic limit with a Hamilton-Jacobi treatment of the Newton center of mass; (e) clarifies non-local aspects (spatial non-separability) of relativistic entanglement connected with Lorentz signature and not present in its non-relativistic treatment.
Geometric measure of quantum discord for entanglement of Dirac fields in noninertial frames
NASA Astrophysics Data System (ADS)
Qiang, Wen-Chao; Zhang, Lei
2015-03-01
We investigate the geometric measure of quantum discord of all possible bipartite divisions of a tripartite system of Dirac fields in noninertial frames. As a comparison, we calculate the geometric measure of entanglement. We discuss the properties of geometric measure of quantum discord and geometric measure of entanglement for three qubit-qubit subsystems with acceleration parameter and the parameter describing the degree of entanglement the system in detail. We have found a conservative relationship involving two of three geometric discords in some condition and another conservative relationship involving three geometric discords for initially maximally entangled states. By the way, we also report some conservative relationships of concurrence, mutual information and geometric measure of entanglement for two bipartite subsystems.
Device-independent quantum key distribution based on measurement inputs
NASA Astrophysics Data System (ADS)
Rahaman, Ramij; Parker, Matthew G.; Mironowicz, Piotr; Pawłowski, Marcin
2015-12-01
We provide an analysis of a family of device-independent quantum key distribution (QKD) protocols that has the following features. (a) The bits used for the secret key do not come from the results of the measurements on an entangled state but from the choices of settings. (b) Instead of a single security parameter (a violation of some Bell inequality) a set of them is used to estimate the level of trust in the secrecy of the key. The main advantage of these protocols is a smaller vulnerability to imperfect random number generators made possible by feature (a). We prove the security and the robustness of such protocols. We show that using our method it is possible to construct a QKD protocol which retains its security even if the source of randomness used by communicating parties is strongly biased. As a proof of principle, an explicit example of a protocol based on the Hardy's paradox is presented. Moreover, in the noiseless case, the protocol is secure in a natural way against any type of memory attack, and thus allows one to reuse the device in subsequent rounds. We also analyze the robustness of the protocol using semidefinite programming methods. Finally, we present a postprocessing method, and observe a paradoxical property that rejecting some random part of the private data can increase the key rate of the protocol.
Time-independent quantum circuits with local interactions
NASA Astrophysics Data System (ADS)
Seifnashri, Sahand; Kianvash, Farzad; Nobakht, Jahangir; Karimipour, Vahid
2016-06-01
Heisenberg spin chains can act as quantum wires transferring quantum states either perfectly or with high fidelity. Gaussian packets of excitations passing through dual rails can encode the two states of a logical qubit, depending on which rail is empty and which rail is carrying the packet. With extra interactions in one or between different chains, one can introduce interaction zones in arrays of such chains, where specific one- or two-qubit gates act on any qubit which passes through these interaction zones. Therefore, universal quantum computation is made possible in a static way where no external control is needed. This scheme will then pave the way for a scalable way of quantum computation where specific hardware can be connected to make large quantum circuits. Our scheme is an improvement of a recent scheme where we borrowed an idea from quantum electrodynamics to replace nonlocal interactions between spin chains with local interactions mediated by an ancillary chain.
Tommaso, Anne di; Hagen, Jussara; Tompkins, Van; Muniz, Viviane; Dudakovic, Amel; Kitzis, Alain; Ladeveze, Veronique; Quelle, Dawn E.
2009-04-15
The Alternative Reading Frame (ARF) protein suppresses tumorigenesis through p53-dependent and p53-independent pathways. Most of ARF's anti-proliferative activity is conferred by sequences in its first exon. Previous work showed specific amino acid changes occurred in that region during primate evolution, so we programmed those changes into human p14ARF to assay their functional impact. Two human p14ARF residues (Ala{sup 14} and Thr{sup 31}) were found to destabilize the protein while two others (Val{sup 24} and Ala{sup 41}) promoted more efficient p53 stabilization and activation. Despite those effects, all modified p14ARF forms displayed robust p53-dependent anti-proliferative activity demonstrating there are no significant biological differences in p53-mediated growth suppression associated with simian versus human p14ARF residues. In contrast, p53-independent p14ARF function was considerably altered by several residue changes. Val{sup 24} was required for p53-independent growth suppression whereas multiple residues (Val{sup 24}, Thr{sup 31}, Ala{sup 41} and His{sup 60}) enabled p14ARF to block or reverse the inherent chromosomal instability of p53-null MEFs. Together, these data pinpoint specific residues outside of established p14ARF functional domains that influence its expression and signaling activities. Most intriguingly, this work reveals a novel and direct role for p14ARF in the p53-independent maintenance of genomic stability.
Time independent universal computing with spin chains: quantum plinko machine
NASA Astrophysics Data System (ADS)
Thompson, K. F.; Gokler, C.; Lloyd, S.; Shor, P. W.
2016-07-01
We present a scheme for universal quantum computing using XY Heisenberg spin chains. Information is encoded into packets propagating down these chains, and they interact with each other to perform universal quantum computation. A circuit using g gate blocks on m qubits can be encoded into chains of length O({g}3+δ {m}3+δ ) for all δ \\gt 0 with vanishingly small error.
Bell nonlocality: a resource for device-independent quantum information protocols
NASA Astrophysics Data System (ADS)
Acin, Antonio
2015-05-01
Bell nonlocality is not only one of the most fundamental properties of quantum physics, but has also recently acquired the status of an information resource for device-independent quantum information protocols. In the device-independent approach, protocols are designed so that their performance is independent of the internal working of the devices used in the implementation. We discuss all these ideas and argue that device-independent protocols are especially relevant or cryptographic applications, as they are insensitive to hacking attacks exploiting imperfections on the modelling of the devices.
Device-independent tomography of multipartite quantum states
NASA Astrophysics Data System (ADS)
Pál, Károly F.; Vértesi, Tamás; Navascués, Miguel
2014-10-01
In the usual tomography of multipartite entangled quantum states one assumes that the measurement devices used in the laboratory are under perfect control of the experimenter. In this paper, using the so-called swap concept introduced recently, we show how one can remove this assumption in realistic experimental conditions and nevertheless be able to characterize the produced multipartite state based only on observed statistics. Such a black-box tomography of quantum states is termed self-testing. As a function of the magnitude of the Bell violation, we are able to self-test emblematic multipartite quantum states such as the three-qubit W state, the three- and four-qubit Greenberger-Horne-Zeilinger states, and the four-qubit linear cluster state.
NASA Astrophysics Data System (ADS)
Li, Fang-Yi; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Wang, Shuang; Wen, Hao; Zhao, Yi-Bo; Han, Zheng-Fu
2014-07-01
Although some ideal quantum key distribution protocols have been proved to be secure, there have been some demonstrations that practical quantum key distribution implementations were hacked due to some real-life imperfections. Among these attacks, detector side channel attacks may be the most serious. Recently, a measurement device independent quantum key distribution protocol [Phys. Rev. Lett. 108 (2012) 130503] was proposed and all detector side channel attacks are removed in this scheme. Here a new security proof based on quantum information theory is given. The eavesdropper's information of the sifted key bits is bounded. Then with this bound, the final secure key bit rate can be obtained.
Gaussian-modulated coherent-state measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Ma, Xiang-Chun; Sun, Shi-Hai; Jiang, Mu-Sheng; Gui, Ming; Liang, Lin-Mei
2014-04-01
Measurement-device-independent quantum key distribution (MDI-QKD), leaving the detection procedure to the third partner and thus being immune to all detector side-channel attacks, is very promising for the construction of high-security quantum information networks. We propose a scheme to implement MDI-QKD, but with continuous variables instead of discrete ones, i.e., with the source of Gaussian-modulated coherent states, based on the principle of continuous-variable entanglement swapping. This protocol not only can be implemented with current telecom components but also has high key rates compared to its discrete counterpart; thus it will be highly compatible with quantum networks.
NASA Astrophysics Data System (ADS)
Chen, Shin-Liang; Budroni, Costantino; Liang, Yeong-Cherng; Chen, Yueh-Nan
2016-06-01
We introduce the concept of assemblage moment matrices, i.e., a collection of matrices of expectation values, each associated with a conditional quantum state obtained in a steering experiment. We demonstrate how it can be used for quantum states and measurements characterization in a device-independent manner, i.e., without invoking any assumption about the measurement or the preparation device. Specifically, we show how the method can be used to lower bound the steerability of an underlying quantum state directly from the observed correlation between measurement outcomes. Combining such device-independent quantifications with earlier results established by Piani and Watrous [Phys. Rev. Lett. 114, 060404 (2015)], our approach immediately provides a device-independent lower bound on the generalized robustness of entanglement, as well as the usefulness of the underlying quantum state for a type of subchannel discrimination problem. In addition, by proving a quantitative relationship between steering robustness and the recently introduced incompatibility robustness, our approach also allows for a device-independent quantification of the incompatibility between various measurements performed in a Bell-type experiment. Explicit examples where such bounds provide a kind of self-testing of the performed measurements are provided.
Chen, Shin-Liang; Budroni, Costantino; Liang, Yeong-Cherng; Chen, Yueh-Nan
2016-06-17
We introduce the concept of assemblage moment matrices, i.e., a collection of matrices of expectation values, each associated with a conditional quantum state obtained in a steering experiment. We demonstrate how it can be used for quantum states and measurements characterization in a device-independent manner, i.e., without invoking any assumption about the measurement or the preparation device. Specifically, we show how the method can be used to lower bound the steerability of an underlying quantum state directly from the observed correlation between measurement outcomes. Combining such device-independent quantifications with earlier results established by Piani and Watrous [Phys. Rev. Lett. 114, 060404 (2015)], our approach immediately provides a device-independent lower bound on the generalized robustness of entanglement, as well as the usefulness of the underlying quantum state for a type of subchannel discrimination problem. In addition, by proving a quantitative relationship between steering robustness and the recently introduced incompatibility robustness, our approach also allows for a device-independent quantification of the incompatibility between various measurements performed in a Bell-type experiment. Explicit examples where such bounds provide a kind of self-testing of the performed measurements are provided. PMID:27367365
NASA Astrophysics Data System (ADS)
Jihyun Park, Annie; McKay, Emma; Lu, Dawei; Laflamme, Raymond
2016-04-01
Anyons, quasiparticles living in two-dimensional spaces with exotic exchange statistics, can serve as the fundamental units for fault-tolerant quantum computation. However, experimentally demonstrating anyonic statistics is a challenge due to the technical limitations of current experimental platforms. Here, we take a state perpetration approach to mimic anyons in the toric code using a seven-qubit nuclear magnetic resonance quantum simulator. Anyons are created by dynamically preparing the ground and excited states of a seven-qubit planar version of the toric code, and are subsequently braided along two distinct, but topologically equivalent paths. We observe that the phase acquired by the anyons is independent of the path, and coincides with the ideal theoretical predictions when decoherence and implementation errors are taken into account. As the first demonstration of the topological path independence of anyons, our experiment helps to study and exploit the anyonic properties towards the goal of building a topological quantum computer.
W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution
Zhu, Changhua; Xu, Feihu; Pei, Changxing
2015-01-01
W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-QKD. Moreover, we derived a complete security proof of the four-party MDI-QKD, and performed a numerical simulation to study its performance. The results show that four-party MDI-QKD is feasible over 150 km standard telecom fiber with off-the-shelf single photon detectors. This work takes an important step towards multi-party quantum communication and a quantum network. PMID:26644289
Plug-and-play measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Choi, Yujun; Kwon, Osung; Woo, Minki; Oh, Kyunghwan; Han, Sang-Wook; Kim, Yong-Su; Moon, Sung
2016-03-01
Quantum key distribution (QKD) guarantees unconditional communication security based on the laws of quantum physics. However, practical QKD suffers from a number of quantum hackings due to the device imperfections. From the security standpoint, measurement-device-independent quantum key distribution (MDI-QKD) is in the limelight since it eliminates all the possible loopholes in detection. Due to active control units for mode matching between the photons from remote parties, however, the implementation of MDI-QKD is highly impractical. In this paper, we propose a method to resolve the mode matching problem while minimizing the use of active control units. By introducing the plug-and-play (P&P) concept into MDI-QKD, the indistinguishability in spectral and polarization modes between photons can naturally be guaranteed. We show the feasibility of P&P MDI-QKD with a proof-of-principle experiment.
W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Zhu, Changhua; Xu, Feihu; Pei, Changxing
2015-12-01
W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-QKD. Moreover, we derived a complete security proof of the four-party MDI-QKD, and performed a numerical simulation to study its performance. The results show that four-party MDI-QKD is feasible over 150 km standard telecom fiber with off-the-shelf single photon detectors. This work takes an important step towards multi-party quantum communication and a quantum network.
W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution.
Zhu, Changhua; Xu, Feihu; Pei, Changxing
2015-01-01
W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-QKD. Moreover, we derived a complete security proof of the four-party MDI-QKD, and performed a numerical simulation to study its performance. The results show that four-party MDI-QKD is feasible over 150 km standard telecom fiber with off-the-shelf single photon detectors. This work takes an important step towards multi-party quantum communication and a quantum network. PMID:26644289
Yeh, Te-Fu; Huang, Wei-Lun; Chung, Chung-Jen; Chiang, I-Ting; Chen, Liang-Che; Chang, Hsin-Yu; Su, Wu-Chou; Cheng, Ching; Chen, Shean-Jen; Teng, Hsisheng
2016-06-01
Investigating quantum confinement in graphene under ambient conditions remains a challenge. In this study, we present graphene oxide quantum dots (GOQDs) that show excitation-wavelength-independent photoluminescence. The luminescence color varies from orange-red to blue as the GOQD size is reduced from 8 to 1 nm. The photoluminescence of each GOQD specimen is associated with electron transitions from the antibonding π (π*) to oxygen nonbonding (n-state) orbitals. The observed quantum confinement is ascribed to a size change in the sp(2) domains, which leads to a change in the π*-π gap; the n-state levels remain unaffected by the size change. The electronic properties and mechanisms involved in quantum-confined photoluminescence can serve as the foundation for the application of oxygenated graphene in electronics, photonics, and biology. PMID:27192445
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Ragy, Sammy; Girolami, Davide
2012-11-01
We review a recently introduced unified approach to the analytical quantification of correlations in Gaussian states of bosonic scalar fields by means of Rényi-2 entropy. This allows us to obtain handy formulae for classical, quantum, total correlations, as well as bipartite and multipartite entanglement. We apply our techniques to the study of correlations between two modes of a scalar field as described by observers in different states of motion. When one or both observers are in uniform acceleration, the quantum and classical correlations are degraded differently by the Unruh effect, depending on which mode is detected. Residual quantum correlations, in the form of quantum discord without entanglement, may survive in the limit of an infinitely accelerated observer Rob, provided they are revealed in a measurement performed by the inertial Alice.
NASA Astrophysics Data System (ADS)
Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo
2016-07-01
We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing.
Semi-device-independent security of one-way quantum key distribution
Pawlowski, Marcin; Brunner, Nicolas
2011-07-15
By testing nonlocality, the security of entanglement-based quantum key distribution (QKD) can be enhanced to being ''device-independent.'' Here we ask whether such a strong form of security could also be established for one-way (prepare and measure) QKD. While fully device-independent security is impossible, we show that security can be guaranteed against individual attacks in a semi-device-independent scenario. In the latter, the devices used by the trusted parties are noncharacterized, but the dimensionality of the quantum systems used in the protocol is assumed to be bounded. Our security proof relies on the analogies between one-way QKD, dimension witnesses, and random-access codes.
NASA Astrophysics Data System (ADS)
Alba, David
The nonrelativistic version of the multitemporal quantization scheme of relativistic particles in a family of noninertial frames (see Ref. 1) is defined. At the classical level the description of a family of nonrigid noninertial frames, containing the standard rigidly linear accelerated and rotating ones, is given in the framework of parametrized Galilei theories. Then the multitemporal quantization, in which the gauge variables, describing the noninertial effects, are not quantized but considered as c-number generalized times, is applied to nonrelativistic particles. It is shown that with a suitable ordering there is unitary evolution in all times and that, after the separation of the center-of-mass, it is still possible to identify the inertial bound states. The few existing results of quantization in rigid noninertial frames are recovered as special cases.
Finite-key analysis for measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Song, Ting-Ting; Wen, Qiao-Yan; Guo, Fen-Zhuo; Tan, Xiao-Qing
2012-08-01
The length of signal pulses is finite in practical quantum key distribution. The finite-key analysis of an unconditional quantum key distribution is a burning problem, and the efficient quantum key distribution protocol suitable for practical implementation, measurement-device-independent quantum key distribution (MDI QKD), was proposed very recently. We give the finite-key analysis of MDI QKD, which removes all detector side channels and generates many orders of key rate higher than that of full-device-independent quantum key distribution. The secure bound of the ultimate key rate is obtained under the statistical fluctuations of relative frequency, which can be applied directly to practical threshold detectors with low detection efficiency and highly lossy channels. The bound is evaluated for reasonable values of the observed parameters. The simulation shows that the secure distance is around 10 km when the number of sifted data is 1010. Moreover the secure distance would be much longer in practice because of some simplified treatments used in our paper.
NASA Astrophysics Data System (ADS)
Novotny, M. A.
2014-10-01
In nanostructures with no appreciable scattering, electrons propagate ballistically, and hence have energy-independent total quantum transmission. For an incoming electron of energy E, the probability T (E) of transmission is obtained from the solution of the time-independent Schrödinger equation. Ballistic transport hence corresponds to T (E)=1. We show that there is a wide class of nanostructures with correlated disorder that have T (E)=1 for all propagating modes, even though they can have strong scattering. We call these nanostructures quantum dragons. An exact mathematical mapping for quantum transmission valid for a large class of atomic arrangements is presented within the single-band tight-binding model. Quantum transmission through a nanostructure is exactly mapped onto quantum transmission through a one-dimensional chain. The mapping is applied to carbon nanotubes in the armchair and zigzag configurations, Bethe lattices, conjoined Bethe lattices, Bethe lattices with hopping within each ring, and tubes formed from rectangular and orthorhombic lattices. The mapping shows that tuning tight-binding parameters to particular correlated values gives T (E)=1 for all the systems studied. A quantum dragon has the same electrical conductivity as a ballistic nanodevice, namely, in a four-terminal measurement the electrical resistance is zero, while in a two-terminal measurement for the single-channel case, the electrical conductivity is equal to the conductance quantum G0=2e2/h, where h is Planck's constant and e the electron charge. We find T (E)=1 is ubiquitous but occurs only on particular surfaces in the tight-binding parameter space.
Heralded-qubit amplifiers for practical device-independent quantum key distribution
Curty, Marcos; Moroder, Tobias
2011-07-15
Device-independent quantum key distribution does not need a precise quantum mechanical model of employed devices to guarantee security. Despite its beauty, it is still a very challenging experimental task. We compare a recent proposal by Gisin et al.[Phys. Rev. Lett. 105, 070501 (2010)] to close the detection loophole problem with that of a simpler quantum relay based on entanglement swapping with linear optics. Our full-mode analysis for both schemes confirms that, in contrast to recent beliefs, the second scheme can indeed provide a positive key rate which is even considerably higher than that of the first alternative. The resulting key rates and required detection efficiencies of approximately 95% for both schemes, however, strongly depend on the underlying security proof.
Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network
NASA Astrophysics Data System (ADS)
Tang, Yan-Lin; Yin, Hua-Lei; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Huang, Ming-Qi; Zhang, Wei-Jun; Chen, Si-Jing; Zhang, Lu; You, Li-Xing; Wang, Zhen; Liu, Yang; Lu, Chao-Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Chen, Teng-Yun; Pan, Jian-Wei
2016-01-01
Quantum cryptography holds the promise to establish an information-theoretically secure global network. All field tests of metropolitan-scale quantum networks to date are based on trusted relays. The security critically relies on the accountability of the trusted relays, which will break down if the relay is dishonest or compromised. Here, we construct a measurement-device-independent quantum key distribution (MDIQKD) network in a star topology over a 200-square-kilometer metropolitan area, which is secure against untrustful relays and against all detection attacks. In the field test, our system continuously runs through one week with a secure key rate 10 times larger than previous results. Our results demonstrate that the MDIQKD network, combining the best of both worlds—security and practicality, constitutes an appealing solution to secure metropolitan communications.
NASA Astrophysics Data System (ADS)
Murta, Gláucia; Ramanathan, Ravishankar; Móller, Natália; Terra Cunha, Marcelo
2016-02-01
Here we study multiplayer linear games, a natural generalization of xor games to multiple outcomes. We generalize a recently proposed efficiently computable bound, in terms of the norm of a game matrix, on the quantum value of two-player games to linear games with n players. As an example, we bound the quantum value of a generalization of the well-known CHSH game to n players and d outcomes. We also apply the bound to show in a simple manner that any nontrivial functional box, that could lead to trivialization of communication complexity in a multiparty scenario, cannot be realized in quantum mechanics. We then present a systematic method to derive device-independent witnesses of genuine tripartite entanglement.
Heralded-qubit amplifiers for practical device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Curty, Marcos; Moroder, Tobias
2011-07-01
Device-independent quantum key distribution does not need a precise quantum mechanical model of employed devices to guarantee security. Despite its beauty, it is still a very challenging experimental task. We compare a recent proposal by Gisin [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.070501 105, 070501 (2010)] to close the detection loophole problem with that of a simpler quantum relay based on entanglement swapping with linear optics. Our full-mode analysis for both schemes confirms that, in contrast to recent beliefs, the second scheme can indeed provide a positive key rate which is even considerably higher than that of the first alternative. The resulting key rates and required detection efficiencies of approximately 95% for both schemes, however, strongly depend on the underlying security proof.
Measurement device-independent quantum key distribution with heralded pair coherent state
NASA Astrophysics Data System (ADS)
Chen, Dong; Shang-Hong, Zhao; Lei, Shi
2016-07-01
The original measurement device-independent quantum key distribution is reviewed, and a modified protocol using heralded pair coherent state (HPCS) is proposed to overcome the quantum bit error rate associated with the dark count rate of the detectors in long-distance quantum key distribution. Our simulation indicates that the secure transmission distance can be improved evidently with HPCS owing to the lower probability of vacuum events when compared with weak coherent source scenario, while the secure key rate can be increased with HPCS due to the higher probability of single-photon events when compared with heralded single-photon source scenario. Furthermore, we apply the finite key analysis to the decoy state MDI-QKD with HPCS and obtain a practical key rate.
Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B
2014-09-15
Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case. PMID:26466295
The enhanced measurement-device-independent quantum key distribution with two-intensity decoy states
NASA Astrophysics Data System (ADS)
Zhu, Jian-Rong; Zhu, Feng; Zhou, Xing-Yu; Wang, Qin
2016-06-01
We put forward a new scheme for implementing the measurement-device-independent quantum key distribution (QKD) with weak coherent source, while using only two different intensities. In the new scheme, we insert a beam splitter and a local detector at both Alice's and Bob's side, and then all the triggering and non-triggering signals could be employed to process parameter estimations, resulting in very precise estimations for the two-single-photon contributions. Besides, we compare its behavior with two other often used methods, i.e., the conventional standard three-intensity decoy-state measurement-device-independent QKD and the passive measurement-device-independent QKD. Through numerical simulations, we demonstrate that our new approach can exhibit outstanding characteristics not only in the secure transmission distance, but also in the final key generation rate.
NASA Astrophysics Data System (ADS)
Seshavatharam, U. V. S.; Lakshminarayana, S.
If one is willing to consider the current cosmic microwave back ground temperature as a quantum gravitational effect of the evolving primordial cosmic black hole (universe that constitutes dynamic space-time and exhibits quantum behavior) automatically general theory of relativity and quantum mechanics can be combined into a `scale independent' true unified model of quantum gravity. By considering the `Planck mass' as the initial mass of the baby Hubble volume, past and current physical and thermal parameters of the cosmic black hole can be understood. Current rate of cosmic black hole expansion is being stopped by the microscopic quantum mechanical lengths. In this new direction authors observed 5 important quantum mechanical methods for understanding the current cosmic deceleration. To understand the ground reality of current cosmic rate of expansion, sensitivity and accuracy of current methods of estimating the magnitudes of current CMBR temperature and current Hubble constant must be improved and alternative methods must be developed. If it is true that galaxy constitutes so many stars, each star constitutes so many hydrogen atoms and light is coming from the excited electron of galactic hydrogen atom, then considering redshift as an index of `whole galaxy' receding may not be reasonable. During cosmic evolution, at any time in the past, in hydrogen atom emitted photon energy was always inversely proportional to the CMBR temperature. Thus past light emitted from older galaxy's excited hydrogen atom will show redshift with reference to the current laboratory data. As cosmic time passes, in future, the absolute rate of cosmic expansion can be understood by observing the rate of increase in the magnitude of photon energy emitted from laboratory hydrogen atom. Aged super novae dimming may be due to the effect of high cosmic back ground temperature. Need of new mathematical methods & techniques, computer simulations, advanced engineering skills seem to be essential
Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo
2016-01-01
We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing. PMID:27452275
Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo
2016-01-01
We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing. PMID:27452275
NASA Astrophysics Data System (ADS)
Qian, Peng; Gu, Zhenjie; Cao, Rong; Wen, Rong; Ou, Z. Y.; Chen, J. F.; Zhang, Weiping
2016-07-01
The temporal purity of single photons is crucial to the indistinguishability of independent photon sources for the fundamental study of the quantum nature of light and the development of photonic technologies. Currently, the technique for single photons heralded from time-frequency entangled biphotons created in nonlinear crystals does not guarantee the temporal-quantum purity, except using spectral filtering. Nevertheless, an entirely different situation is anticipated for narrow-band biphotons with a coherence time far longer than the time resolution of a single-photon detector. Here we demonstrate temporally pure single photons with a coherence time of 100 ns, directly heralded from the time-frequency entangled biphotons generated by spontaneous four-wave mixing in cold atomic ensembles, without any supplemented filters or cavities. A near-perfect purity and indistinguishability are both verified through Hong-Ou-Mandel quantum interference using single photons from two independent cold atomic ensembles. The time-frequency entanglement provides a route to manipulate the pure temporal state of the single-photon source.
Chen, RuiKe; Bao, WanSu; Zhou, Chun; Li, Hongwei; Wang, Yang; Bao, HaiZe
2016-03-21
In recent years, a large quantity of work have been done to narrow the gap between theory and practice in quantum key distribution (QKD). However, most of them are focus on two-party protocols. Very recently, Yao Fu et al proposed a measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol and proved its security in the limit of infinitely long keys. As a step towards practical application for MDI-QCC, we design a biased decoy-state measurement-device-independent quantum cryptographic conferencing protocol and analyze the performance of the protocol in both the finite-key and infinite-key regime. From numerical simulations, we show that our decoy-state analysis is tighter than Yao Fu et al. That is, we can achieve the nonzero asymptotic secret key rate in long distance with approximate to 200km and we also demonstrate that with a finite size of data (say 10^{11} to 10^{13} signals) it is possible to perform secure MDI-QCC over reasonable distances. PMID:27136849
Qian, Peng; Gu, Zhenjie; Cao, Rong; Wen, Rong; Ou, Z Y; Chen, J F; Zhang, Weiping
2016-07-01
The temporal purity of single photons is crucial to the indistinguishability of independent photon sources for the fundamental study of the quantum nature of light and the development of photonic technologies. Currently, the technique for single photons heralded from time-frequency entangled biphotons created in nonlinear crystals does not guarantee the temporal-quantum purity, except using spectral filtering. Nevertheless, an entirely different situation is anticipated for narrow-band biphotons with a coherence time far longer than the time resolution of a single-photon detector. Here we demonstrate temporally pure single photons with a coherence time of 100 ns, directly heralded from the time-frequency entangled biphotons generated by spontaneous four-wave mixing in cold atomic ensembles, without any supplemented filters or cavities. A near-perfect purity and indistinguishability are both verified through Hong-Ou-Mandel quantum interference using single photons from two independent cold atomic ensembles. The time-frequency entanglement provides a route to manipulate the pure temporal state of the single-photon source. PMID:27419568
Measurement-device-independent quantum key distribution with pairs of vector vortex beams
NASA Astrophysics Data System (ADS)
Chen, Dong; Zhao, Shang-Hong; Shi, Lei; Liu, Yun
2016-03-01
The vector vortex (VV) beam, originally introduced to exhibit a form of single-particle quantum entanglement between different degrees of freedom, has specific applications for quantum-information protocols. In this paper, by combining measurement-device-independent quantum key distribution (MDIQKD) with a spontaneous parametric-downconversion source (SPDCS), we present a modified MDIQKD scheme with pairs of VV beams, which shows a structure of hybrid entangled entanglement corresponding to intrasystem entanglement and intersystem entanglement. The former entanglement, which is entangled between polarization and orbit angular momentum within each VV beam, is adopted to overcome the polarization misalignment associated with random rotations in quantum key distribution. The latter entanglement, which is entangled between the two VV beams, is used to perform the MDIQKD protocol with SPDCS to inherit the merit of the heralded process. The numerical simulations show that our modified scheme has apparent advances both in transmission distance and key-generation rate compared to the original MDIQKD. Furthermore, our modified protocol only needs to insert q plates in a practical experiment.
Pitkanen, David; Ma Xiongfeng; Luetkenhaus, Norbert; Wickert, Ricardo; Loock, Peter van
2011-08-15
We present an efficient way of heralding photonic qubit signals using linear optics devices. First, we show that one can obtain asymptotically perfect heralding and unit success probability with growing resources. Second, we show that even using finite resources, we can improve qualitatively and quantitatively over earlier heralding results. In the latter scenario, we can obtain perfect heralded photonic qubits while maintaining a finite success probability. We demonstrate the advantage of our heralding scheme by predicting key rates for device-independent quantum key distribution, taking imperfections of sources and detectors into account.
An enhanced proposal on decoy-state measurement device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Wang, Qin; Zhang, Chun-Hui; Luo, Shunlong; Guo, Guang-Can
2016-06-01
By employing pulses involving three-intensity, we propose a scheme for the measurement device-independent quantum key distribution with heralded single-photon sources. We make a comparative study of this scheme with the standard three-intensity decoy-state scheme using weak coherent sources or heralded single-photon sources. The advantage of this scheme is illustrated through numerical simulations: It can approach very closely the asymptotic case of using an infinite number of decoy-states and exhibits excellent behavior in both the secure transmission distance and the final key generation rate.
NASA Astrophysics Data System (ADS)
Kwon, Osung; Lee, Min-Soo; Woo, Min Ki; Park, Byung Kwon; Kim, Il Young; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung
2015-12-01
We characterized a polarization-independent phase modulation method, called double phase modulation, for a practical plug and play quantum key distribution (QKD) system. Following investigation of theoretical backgrounds, we applied the method to the practical QKD system and characterized the performance through comparing single phase modulation (SPM) and double phase modulation. Consequently, we obtained repeatable and accurate phase modulation confirmed by high visibility single photon interference even for input signals with arbitrary polarization. Further, the results show that only 80% of the bias voltage required in the case of single phase modulation is needed to obtain the target amount of phase modulation.
Getting something out of nothing in the measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Tan, Yong-Gang; Cai, Qing-Yu; Yang, Hai-Feng; Hu, Yao-Hua
2015-11-01
Because of the monogamy of entanglement, the measurement-device-independent quantum key distribution is immune to the side-information leaking of the measurement devices. When the correlated measurement outcomes are generated from the dark counts, no entanglement is actually obtained. However, secure key bits can still be proven to be generated from these measurement outcomes. Especially, we will give numerical studies on the contributions of dark counts to the key generation rate in practical decoy state MDI-QKD where a signal source, a weaker decoy source and a vacuum decoy source are used by either legitimate key distributer.
Making the decoy-state measurement-device-independent quantum key distribution practically useful
NASA Astrophysics Data System (ADS)
Zhou, Yi-Heng; Yu, Zong-Wen; Wang, Xiang-Bin
2016-04-01
The relatively low key rate seems to be the major barrier to its practical use for the decoy-state measurement-device-independent quantum key distribution (MDI-QKD). We present a four-intensity protocol for the decoy-state MDI-QKD that hugely raises the key rate, especially in the case in which the total data size is not large. Also, calculations show that our method makes it possible for secure private communication with fresh keys generated from MDI-QKD with a delay time of only a few seconds.
Loss-tolerant measurement-device-independent quantum random number generation
NASA Astrophysics Data System (ADS)
Cao, Zhu; Zhou, Hongyi; Ma, Xiongfeng
2015-12-01
Quantum random number generators (QRNGs) output genuine random numbers based upon the uncertainty principle. A QRNG contains two parts in general—a randomness source and a readout detector. How to remove detector imperfections has been one of the most important questions in practical randomness generation. We propose a simple solution, measurement-device-independent QRNG, which not only removes all detector side channels but is robust against losses. In contrast to previous fully device-independent QRNGs, our scheme does not require high detector efficiency or nonlocality tests. Simulations show that our protocol can be implemented efficiently with a practical coherent state laser and other standard optical components. The security analysis of our QRNG consists mainly of two parts: measurement tomography and randomness quantification, where several new techniques are developed to characterize the randomness associated with a positive-operator valued measure.
NASA Astrophysics Data System (ADS)
Ferreira da Silva, T.; Vitoreti, D.; Xavier, G. B.; do Amaral, G. C.; Temporão, G. P.; von der Weid, J. P.
2013-11-01
We perform a proof-of-principle demonstration of the measurement-device-independent quantum key distribution protocol using weak coherent states and polarization-encoded qubits over two optical fiber links of 8.5 km each. Each link was independently stabilized against polarization drifts using a full-polarization control system employing two wavelength-multiplexed control channels. A linear-optics-based polarization Bell-state analyzer was built into the intermediate station, Charlie, which is connected to both Alice and Bob via the optical fiber links. Using decoy states, a lower bound for the secret-key generation rate of 1.04×10-6 bits/pulse is computed.
A monogamy-of-entanglement game with applications to device-independent quantum cryptography
NASA Astrophysics Data System (ADS)
Tomamichel, Marco; Fehr, Serge; Kaniewski, Jędrzej; Wehner, Stephanie
2013-10-01
We consider a game in which two separate laboratories collaborate to prepare a quantum system and are then asked to guess the outcome of a measurement performed by a third party in a random basis on that system. Intuitively, by the uncertainty principle and the monogamy of entanglement, the probability that both players simultaneously succeed in guessing the outcome correctly is bounded. We are interested in the question of how the success probability scales when many such games are performed in parallel. We show that any strategy that maximizes the probability to win every game individually is also optimal for the parallel repetition of the game. Our result implies that the optimal guessing probability can be achieved without the use of entanglement. We explore several applications of this result. Firstly, we show that it implies security for standard BB84 quantum key distribution when the receiving party uses fully untrusted measurement devices, i.e. we show that BB84 is one-sided device independent. Secondly, we show how our result can be used to prove security of a one-round position-verification scheme. Finally, we generalize a well-known uncertainty relation for the guessing probability to quantum side information.
NASA Astrophysics Data System (ADS)
Nagamatsu, Yuichi; Mizutani, Akihiro; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki; Tamaki, Kiyoshi
2016-04-01
Although quantum key distribution (QKD) is theoretically secure, there is a gap between the theory and practice. In fact, real-life QKD may not be secure because component devices in QKD systems may deviate from the theoretical models assumed in security proofs. To solve this problem, it is necessary to construct the security proof under realistic assumptions on the source and measurement unit. In this paper, we prove the security of a QKD protocol under practical assumptions on the source that accommodate fluctuation of the phase and intensity modulations. As long as our assumptions hold, it does not matter at all how the phase and intensity distribute or whether or not their distributions over different pulses are independently and identically distributed. Our work shows that practical sources can be safely employed in QKD experiments.
Long distance measurement-device-independent quantum key distribution with entangled photon sources
Xu, Feihu; Qi, Bing; Liao, Zhongfa; Lo, Hoi-Kwong
2013-08-05
We present a feasible method that can make quantum key distribution (QKD), both ultra-long-distance and immune, to all attacks in the detection system. This method is called measurement-device-independent QKD (MDI-QKD) with entangled photon sources in the middle. By proposing a model and simulating a QKD experiment, we find that MDI-QKD with one entangled photon source can tolerate 77 dB loss (367 km standard fiber) in the asymptotic limit and 60 dB loss (286 km standard fiber) in the finite-key case with state-of-the-art detectors. Our general model can also be applied to other non-QKD experiments involving entanglement and Bell state measurements.
Note: A pure-sampling quantum Monte Carlo algorithm with independent Metropolis
NASA Astrophysics Data System (ADS)
Vrbik, Jan; Ospadov, Egor; Rothstein, Stuart M.
2016-07-01
Recently, Ospadov and Rothstein published a pure-sampling quantum Monte Carlo algorithm (PSQMC) that features an auxiliary Path Z that connects the midpoints of the current and proposed Paths X and Y, respectively. When sufficiently long, Path Z provides statistical independence of Paths X and Y. Under those conditions, the Metropolis decision used in PSQMC is done without any approximation, i.e., not requiring microscopic reversibility and without having to introduce any G(x → x'; τ) factors into its decision function. This is a unique feature that contrasts with all competing reptation algorithms in the literature. An example illustrates that dependence of Paths X and Y has adverse consequences for pure sampling.
Measurement-device-independent quantum key distribution with a passive decoy-state method
NASA Astrophysics Data System (ADS)
Shan, Yu-Zhu; Sun, Shi-Hai; Ma, Xiang-Chun; Jiang, Mu-Sheng; Zhou, Yan-Li; Liang, Lin-Mei
2014-10-01
Measurement-device-independent quantum key distribution (MDI-QKD) can remove all detector loopholes. When it is combined with the decoy-state method, the final key is unconditionally secure, even if Alice and Bob do not have strict single-photon sources. However, active modulation of source intensity, which is used to generate the decoy state, may leave side channels and leak additional information to Eve. In this paper, we consider the MDI-QKD with a passive decoy state, in which both Alice and Bob send pulses to an untrusted third party, Charlie. Then, in order to estimate the key generation rate, we derive two tight formulas to estimate the lower bound of the yield and the upper bound of the error rate that both Alice and Bob send a single-photon pulse to Charlie. Furthermore, the statistical fluctuation due to the finite length of data is also taken into account based on the standard statistical analysis.
NASA Astrophysics Data System (ADS)
Tamaki, Kiyoshi; Lo, Hoi-Kwong; Fung, Chi-Hang Fred; Qi, Bing
2012-04-01
In this paper, we study the unconditional security of the so-called measurement-device-independent quantum key distribution (MDIQKD) with the basis-dependent flaw in the context of phase encoding schemes. We propose two schemes for the phase encoding: The first one employs a phase locking technique with the use of non-phase-randomized coherent pulses, and the second one uses conversion of standard Bennett-Brassard 1984 (BB84) phase encoding pulses into polarization modes. We prove the unconditional security of these schemes and we also simulate the key generation rate based on simple device models that accommodate imperfections. Our simulation results show the feasibility of these schemes with current technologies and highlight the importance of the state preparation with good fidelity between the density matrices in the two bases. Since the basis-dependent flaw is a problem not only for MDIQKD but also for standard quantum key distribution (QKD), our work highlights the importance of an accurate signal source in practical QKD systems.
Experimental measurement-device-independent quantum key distribution with imperfect sources
NASA Astrophysics Data System (ADS)
Tang, Zhiyuan; Wei, Kejin; Bedroya, Olinka; Qian, Li; Lo, Hoi-Kwong
2016-04-01
Measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks, is the most promising solution to the security issues in practical quantum key distribution systems. Although several experimental demonstrations of MDI-QKD have been reported, they all make one crucial but not yet verified assumption, that is, there are no flaws in state preparation. Such an assumption is unrealistic and security loopholes remain in the source. Here we present a MDI-QKD experiment with the modulation error taken into consideration. By applying the loss-tolerant security proof by Tamaki et al. [Phys. Rev. A 90, 052314 (2014)], 10.1103/PhysRevA.90.052314, we distribute secure keys over fiber links up to 40 km with imperfect sources, which would not have been possible under previous security proofs. By simultaneously closing loopholes at the detectors and a critical loophole—modulation error in the source, our work shows the feasibility of secure QKD with practical imperfect devices.
Guta, Madalin; Bowles, Peter; Adesso, Gerardo
2010-10-15
A successful state-transfer (or teleportation) experiment must perform better than the benchmark set by the 'best' measure and prepare procedure. We consider the benchmark problem for the following families of states: (i) displaced thermal equilibrium states of a given temperature; (ii) independent identically prepared qubits with a completely unknown state. For the first family we show that the optimal procedure is heterodyne measurement followed by the preparation of a coherent state. This procedure was known to be optimal for coherent states and for squeezed states with the 'overlap fidelity' as the figure of merit. Here, we prove its optimality with respect to the trace norm distance and supremum risk. For the second problem we consider n independent and identically distributed (i.i.d.) spin-(1/2) systems in an arbitrary unknown state {rho} and look for the measurement-preparation pair (M{sub n},P{sub n}) for which the reconstructed state {omega}{sub n}:=P{sub n} circle M{sub n}({rho}{sup xn}) is as close as possible to the input state (i.e., parallel {omega}{sub n}-{rho}{sup xn} parallel {sub 1} is small). The figure of merit is based on the trace norm distance between the input and output states. We show that asymptotically with n this problem is equivalent to the first one. The proof and construction of (M{sub n},P{sub n}) uses the theory of local asymptotic normality developed for state estimation which shows that i.i.d. quantum models can be approximated in a strong sense by quantum Gaussian models. The measurement part is identical to 'optimal estimation', showing that 'benchmarking' and estimation are closely related problems in the asymptotic set up.
Detector-device-independent quantum key distribution: Security analysis and fast implementation
NASA Astrophysics Data System (ADS)
Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; Boso, Gianluca; Lim, Charles Ci Wen; Martin, Anthony; Zbinden, Hugo
2016-08-01
One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant "time-reversal" QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. However, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) has been proposed to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. Here, we analyze the security of DDI-QKD and elucidate its security assumptions. We find that DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.
NASA Astrophysics Data System (ADS)
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman
2015-10-01
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman
2015-01-01
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman
2015-01-01
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280
Measurement-device-independent quantum key distribution with heralded pair coherent state
NASA Astrophysics Data System (ADS)
Wang, Xiang; Wang, Yang; Chen, Rui-Ke; Zhou, Chun; Li, Hong-Wei; Bao, Wan-Su
2016-06-01
Measurement-device-independent QKD (MDI-QKD) can solve security loophole problems brought by imperfections of detectors and provide enhanced practical security compared to traditional QKD. We propose an active-passive-combined decoy state MDI-QKD protocol with heralded pair coherent state (HPCS) source. By calculating the lower bound of the single-photon counting rate and the upper bound of the single-photon error rate, we present formulas of the secure key rate in our protocol. Based on the linear lossy channel model, we present calculation methods of estimating the overall gain and quantum bit error rate for HPCS source with full phase randomization. We numerically compare secure key rates for different decoy MDI-QKD protocol with different sources. The result shows that the active-passive-combined decoy state MDI-QKD protocol with HPCS source has certain superiority in the secure key rate. It can provide an important theoretical reference for practical implementations of MDI-QKD.
Wu, Feng; Ren, Yinghui; Bian, Wensheng
2016-08-21
The accurate time-independent quantum dynamics calculations on the ground-state tunneling splitting of malonaldehyde in full dimensionality are reported for the first time. This is achieved with an efficient method developed by us. In our method, the basis functions are customized for the hydrogen transfer process which has the effect of greatly reducing the size of the final Hamiltonian matrix, and the Lanczos method and parallel strategy are used to further overcome the memory and central processing unit time bottlenecks. The obtained ground-state tunneling splitting of 24.5 cm(-1) is in excellent agreement with the benchmark value of 23.8 cm(-1) computed with the full-dimensional, multi-configurational time-dependent Hartree approach on the same potential energy surface, and we estimate that our reported value has an uncertainty of less than 0.5 cm(-1). Moreover, the role of various vibrational modes strongly coupled to the hydrogen transfer process is revealed. PMID:27544107
Practical decoy-state measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Sun, Shi-Hai; Gao, Ming; Li, Chun-Yan; Liang, Lin-Mei
2013-05-01
Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all the detection attacks; thus when it is combined with the decoy-state method, the final key is unconditionally secure, even if a practical weak coherent source is used by Alice and Bob. However, until now, the analysis of decoy-state MDI-QKD with a weak coherent source is incomplete. In this paper, we derive, with only vacuum+weak decoy state, some tight formulas to estimate the lower bound of yield and the upper bound of error rate for the fraction of signals in which both Alice and Bob send a single-photon pulse to the untrusted third party Charlie. The numerical simulations show that our method with only vacuum+weak decoy state can asymptotically approach the theoretical limit of the infinite number of decoy states. Furthermore, the statistical fluctuation due to the finite length of date is also considered based on the standard statistical analysis.
NASA Astrophysics Data System (ADS)
Wang, Le; Zhao, Sheng-Mei; Gong, Long-Yan; Cheng, Wei-Wen
2015-12-01
In this paper, we propose a measurement-device-independent quantum-key-distribution (MDI-QKD) protocol using orbital angular momentum (OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol, the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie’s successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover, the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence (AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), the Natural Science Research Foundation for Universities of Jiangsu Province of China (Grant No. 11KJA510002), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), and the
Bowles, Joseph; Quintino, Marco Túlio; Brunner, Nicolas
2014-04-11
We consider the problem of testing the dimension of uncharacterized classical and quantum systems in a prepare-and-measure setup. Here we assume the preparation and measurement devices to be independent, thereby making the problem nonconvex. We present a simple method for generating nonlinear dimension witnesses for systems of arbitrary dimension. The simplest of our witnesses is highly robust to technical imperfections, and can certify the use of qubits in the presence of arbitrary noise and arbitrarily low detection efficiency. Finally, we show that this witness can be used to certify the presence of randomness, suggesting applications in quantum information processing. PMID:24765929
NASA Astrophysics Data System (ADS)
Zhou, Xing-Yu; Zhang, Chun-Hui; Guo, Guang-Can; Wang, Qin
2016-06-01
In this paper, we carry out statistical fluctuation analysis for the new proposed measurement-device-independent quantum key distribution with heralded single-photon sources and further compare its performance with the mostly often used light sources, i.e., the weak coherent source. Due to a significantly lower probability for events with two photons present on the same side of the beam splitter in former than in latter, it gives drastically reduced quantum bit error rate in the X basis and can thus show splendid behavior in real-life implementations even when taking statistical fluctuations into account.
Quantum-Classical Nonadiabatic Dynamics: Coupled- vs Independent-Trajectory Methods.
Agostini, Federica; Min, Seung Kyu; Abedi, Ali; Gross, E K U
2016-05-10
Trajectory-based mixed quantum-classical approaches to coupled electron-nuclear dynamics suffer from well-studied problems such as the lack of (or incorrect account for) decoherence in the trajectory surface hopping method and the inability of reproducing the spatial splitting of a nuclear wave packet in Ehrenfest-like dynamics. In the context of electronic nonadiabatic processes, these problems can result in wrong predictions for quantum populations and in unphysical outcomes for the nuclear dynamics. In this paper, we propose a solution to these issues by approximating the coupled electronic and nuclear equations within the framework of the exact factorization of the electron-nuclear wave function. We present a simple quantum-classical scheme based on coupled classical trajectories and test it against the full quantum mechanical solution from wave packet dynamics for some model situations which represent particularly challenging problems for the above-mentioned traditional methods. PMID:27030209
Ge, Shuaipeng; Zhang, Lisheng; Wang, Peijie; Fang, Yan
2016-01-01
Nanoscale phosphorene quantum dots (PQDs) with few-layer structures were fabricated by pulsed laser ablation of a bulk black phosphorus target in diethyl ether. An intense and stable photoluminescence (PL) emission of the PQDs in the blue-violet wavelength region is clearly observed for the first time, which is attributed to electronic transitions from the lowest unoccupied molecular orbital (LUMO) to the highest occupied molecular orbital (HOMO) and occupied molecular orbitals below the HOMO (H-1, H-2), respectively. Surprisingly, the PL emission peak positions of the PQDs are not red-shifted with progressively longer excitation wavelengths, which is in contrast to the cases of graphene and molybdenum disulphide quantum dots. This excitation wavelength-independence is derived from the saturated passivation on the periphery and surfaces of the PQDs by large numbers of electron-donating functional groups which cause the electron density on the PQDs to be dramatically increased and the band gap to be insensitive to the quantum size effect in the PQDs. This work suggests that PQDs with intense, stable and excitation wavelength-independent PL emission in the blue-violet region have a potential application as semiconductor-based blue-violet light irradiation sources. PMID:27265198
Ge, Shuaipeng; Zhang, Lisheng; Wang, Peijie; Fang, Yan
2016-01-01
Nanoscale phosphorene quantum dots (PQDs) with few-layer structures were fabricated by pulsed laser ablation of a bulk black phosphorus target in diethyl ether. An intense and stable photoluminescence (PL) emission of the PQDs in the blue-violet wavelength region is clearly observed for the first time, which is attributed to electronic transitions from the lowest unoccupied molecular orbital (LUMO) to the highest occupied molecular orbital (HOMO) and occupied molecular orbitals below the HOMO (H-1, H-2), respectively. Surprisingly, the PL emission peak positions of the PQDs are not red-shifted with progressively longer excitation wavelengths, which is in contrast to the cases of graphene and molybdenum disulphide quantum dots. This excitation wavelength-independence is derived from the saturated passivation on the periphery and surfaces of the PQDs by large numbers of electron-donating functional groups which cause the electron density on the PQDs to be dramatically increased and the band gap to be insensitive to the quantum size effect in the PQDs. This work suggests that PQDs with intense, stable and excitation wavelength-independent PL emission in the blue-violet region have a potential application as semiconductor-based blue-violet light irradiation sources. PMID:27265198
NASA Astrophysics Data System (ADS)
Ge, Shuaipeng; Zhang, Lisheng; Wang, Peijie; Fang, Yan
2016-06-01
Nanoscale phosphorene quantum dots (PQDs) with few-layer structures were fabricated by pulsed laser ablation of a bulk black phosphorus target in diethyl ether. An intense and stable photoluminescence (PL) emission of the PQDs in the blue-violet wavelength region is clearly observed for the first time, which is attributed to electronic transitions from the lowest unoccupied molecular orbital (LUMO) to the highest occupied molecular orbital (HOMO) and occupied molecular orbitals below the HOMO (H-1, H-2), respectively. Surprisingly, the PL emission peak positions of the PQDs are not red-shifted with progressively longer excitation wavelengths, which is in contrast to the cases of graphene and molybdenum disulphide quantum dots. This excitation wavelength-independence is derived from the saturated passivation on the periphery and surfaces of the PQDs by large numbers of electron-donating functional groups which cause the electron density on the PQDs to be dramatically increased and the band gap to be insensitive to the quantum size effect in the PQDs. This work suggests that PQDs with intense, stable and excitation wavelength-independent PL emission in the blue-violet region have a potential application as semiconductor-based blue-violet light irradiation sources.
Wang, Dong; Li, Mo; Guo, Guang-Can; Wang, Qin
2015-01-01
Quantum key distribution involving decoy-states is a significant application of quantum information. By using three-intensity decoy-states of single-photon-added coherent sources, we propose a practically realizable scheme on quantum key distribution which approaches very closely the ideal asymptotic case of an infinite number of decoy-states. We make a comparative study between this scheme and two other existing ones, i.e., two-intensity decoy-states with single-photon-added coherent sources, and three-intensity decoy-states with weak coherent sources. Through numerical analysis, we demonstrate the advantages of our scheme in secure transmission distance and the final key generation rate. PMID:26463580
An improved scheme on decoy-state method for measurement-device-independent quantum key distribution
Wang, Dong; Li, Mo; Guo, Guang-Can; Wang, Qin
2015-01-01
Quantum key distribution involving decoy-states is a significant application of quantum information. By using three-intensity decoy-states of single-photon-added coherent sources, we propose a practically realizable scheme on quantum key distribution which approaches very closely the ideal asymptotic case of an infinite number of decoy-states. We make a comparative study between this scheme and two other existing ones, i.e., two-intensity decoy-states with single-photon-added coherent sources, and three-intensity decoy-states with weak coherent sources. Through numerical analysis, we demonstrate the advantages of our scheme in secure transmission distance and the final key generation rate. PMID:26463580
Liu, Shihao; Liu, Wenbo; Ji, Wenyu; Yu, Jing; Zhang, Wei; Zhang, Letian; Xie, Wenfa
2016-01-01
Recent breakthroughs in quantum dot light-emitting devices (QD-LEDs) show their promise in the development of next-generation displays. However, the QD-LED with conventional ITO-based bottom emission structure is difficult to realize the high aperture ratio, electricfield-independent emission and flexible full-color displays. Hence, we demonstrate top-emitting QD-LEDs with dry microcontact printing quantum dot films. The top-emitting structure is proved to be able to accelerate the excitons radiative transition rate, then contributing to stable electroluminescent efficiency with a very low roll-off, and preventing spectra from shifting and broadening with the electric field increases. The results suggest potential routes towards creating high aperture ratio, wide color gamut, color-stable and flexible QD-LED displays. PMID:26932521
Zhu, Qiangzhong; Zheng, Shupei; Lin, Shijie; Liu, Tian-Ran; Jin, Chongjun
2014-07-01
We have fabricated gold (Au) elliptical nanodisc (ND) arrays via three-beam interference lithography and electron beam deposition of gold. The enhanced photoluminescence intensity and emission rate of quantum dots (QDs) near to the Au elliptical NDs have been studied by tuning the nearest distance between quantum dots and Au elliptical NDs. We found that the photoluminescence intensity is polarization-dependent with the degree of polarization being equal to that of the light extinction of the Au elliptical NDs, while the emission rate is polarization-independent. This is resulted from the plasmon-coupled emission via the coupling between the QD dipole and the plasmon nano-antenna. Our experiments fully confirm the evidence of the plasmophore concept proposed recently in the interaction of the QDs with metal nanoparticles. PMID:24898688
NASA Astrophysics Data System (ADS)
Liu, Shihao; Liu, Wenbo; Ji, Wenyu; Yu, Jing; Zhang, Wei; Zhang, Letian; Xie, Wenfa
2016-03-01
Recent breakthroughs in quantum dot light-emitting devices (QD-LEDs) show their promise in the development of next-generation displays. However, the QD-LED with conventional ITO-based bottom emission structure is difficult to realize the high aperture ratio, electricfield-independent emission and flexible full-color displays. Hence, we demonstrate top-emitting QD-LEDs with dry microcontact printing quantum dot films. The top-emitting structure is proved to be able to accelerate the excitons radiative transition rate, then contributing to stable electroluminescent efficiency with a very low roll-off, and preventing spectra from shifting and broadening with the electric field increases. The results suggest potential routes towards creating high aperture ratio, wide color gamut, color-stable and flexible QD-LED displays.
Liu, Shihao; Liu, Wenbo; Ji, Wenyu; Yu, Jing; Zhang, Wei; Zhang, Letian; Xie, Wenfa
2016-01-01
Recent breakthroughs in quantum dot light-emitting devices (QD-LEDs) show their promise in the development of next-generation displays. However, the QD-LED with conventional ITO-based bottom emission structure is difficult to realize the high aperture ratio, electricfield-independent emission and flexible full-color displays. Hence, we demonstrate top-emitting QD-LEDs with dry microcontact printing quantum dot films. The top-emitting structure is proved to be able to accelerate the excitons radiative transition rate, then contributing to stable electroluminescent efficiency with a very low roll-off, and preventing spectra from shifting and broadening with the electric field increases. The results suggest potential routes towards creating high aperture ratio, wide color gamut, color-stable and flexible QD-LED displays. PMID:26932521
NASA Astrophysics Data System (ADS)
Oriti, Daniele
2009-03-01
Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and
Bouchard, A.M.
1994-07-27
This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices.
The sensitivity analysis of propagator for path independent quantum finance model
NASA Astrophysics Data System (ADS)
Kim, Min Jae; Hwang, Dong Il; Lee, Sun Young; Kim, Soo Yong
2011-03-01
Quantum finance successfully implements the imperfectly correlated fluctuation of forward interest rates at different maturities, by replacing the Wiener process with a two-dimensional quantum field. Interest rate derivatives can be priced at a more realistic value under this new framework. The quantum finance model requires three main ingredients for pricing: the initial forward interest rates, the volatility of forward interest rates, and the correlation of forward interest rates at different maturities. However, the hedging strategy only focused on fluctuation of forward interest rates. This hedging method is based on the assumption that the propagator, the covariance of forward interest rates, has an ergodic property. Since inserting the propagator is the main characteristic that distinguishes quantum finance from the Libor market model (LMM) and the Heath, Jarrow and Morton (HJM) model, understanding the impact of propagator dynamics on the price of interest rate derivatives is crucial. This research is the first step in developing a hedge strategy with respect to the evolution of the propagator. We analyze the dynamics of the propagator from Libor futures data and the integrated propagator from zero-coupon bond rate data. Then we study the sensitivity of the implied volatility of caplets and swaptions according to the three dominant dynamics of the propagator, and the change of the zero-coupon bond option price according to the two dominant dynamics of the integrated propagator.
Design of columnar quantum dots for polarization-independent emission using 8-band k·p method
NASA Astrophysics Data System (ADS)
Andrzejewski, J.; Sęk, G.; O'Reilly, E.; Fiore, A.; Misiewicz, J.
2010-09-01
Control of the polarization of the emitted light can be highly beneficial for certain optoelectronic applications such as optical amplifiers. It has been recently demonstrated experimentally that semiconductor quantum dots with large height to base length aspect ratio are able to emit polarization-independent light from the edge of the wafer. However, analysis of the physics responsible for the observed polarization properties of such nano-objects (like columnar quantum dots or quantum rods) is still rather limited. In particular, the role of the material surrounding the columnar QD on the strain and thus on the polarization properties has not been considered previously. We report here, based on original software, the results of eight-band k·p calculations of the electronic and polarization properties of columnar InyGa1-yAs quantum dots (CQD) with high aspect ratio (up to 6) embedded in an InxGa1-xAs/GaAs quantum well. We calculate the relative intensities of transverse-magnetic (TM) and transverse-electric (TE) linear polarized light emitted from the edge of the semiconductor wafer as a function of the two main factors affecting the heavy hole - light hole valence band mixing and hence the polarization dependent selection rules for the optical transitions, namely i) the composition contrast y/x between the dot material and the surrounding well, and ii) the dot aspect ratio. Our numerical results show, in contrast to the previously reported expectations, that the former is the main driving parameter for tuning the polarization properties. This is explained analyzing the biaxial strain in the CQD, based on which it is possible to predict on the TM to TE intensity ratio.
Ciufolini, Ignazio
2007-09-01
The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth. PMID:17805287
NASA Astrophysics Data System (ADS)
Cufaro-Petroni, N.; Dewdney, C.; Holland, P.; Kyprianidis, T.; Vigier, J. P.
1985-09-01
The deduction by Guerra and Marra of the usual quantum operator algebra from a canonical variable Hamiltonian treatment of Nelson's hydrodynamical stochastic description of real nonrelativistic Schrödinger waves is extended to the causal stochastic interpretation given by Guerra and Ruggiero and by Vigier of relativistic Klein-Gordon waves. A specific representation shows that the Poisson brackets for canonical hydrodynamical observables become ``averages'' of quantum observables in the given state. Stochastic quantization thus justifies the standard procedure of replacing the classical particle (or field) observables with operators according to the scheme pμ-->-iħ∂μ and Lμν-->-iħ(xμ∂ν-xν∂μ).
Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray
2012-05-01
We explore, in the quantum regime, the stochastic dynamics of a time-periodic, rapidly oscillating potential (having a characteristic frequency of ω) within the framework of a time-dependent system-reservoir Hamiltonian. We invoke the idea of a quantum gauge transformation in light of the standard Floquet theorem in an attempt to construct a Langevin equation (bearing a time-independent effective potential) by employing a systematic perturbative expansion in powers of ω^{-1} using the natural time-scale separation. The time-independent effective potential (corrected to ω^{-2} in leading order) that acts on the slow motion of the driven particle can be employed for trapping. We proceed further to evaluate the rate of escape of the driven particle from the metastable state in the high-temperature limit. We also envisage a resonance phenomena, a true hallmark of the system-reservoir quantization. This development would thus serve as a model template to investigate the trapping mechanism, as well as an appropriate analog to understand the dynamics of a fluctuation-induced escape process from the trap. PMID:23004698
NASA Astrophysics Data System (ADS)
Zhang, Chun-Mei; Li, Mo; Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Dong; Huang, Jing-Zheng; Han, Yun-Guang; Xu, Man-Li; Chen, Wei; Wang, Shuang; Treeviriyanupab, Patcharapong; Guo, Guang-Can; Han, Zheng-Fu
2014-09-01
The measurement-device-independent quantum key distribution (MDI-QKD) protocol is proposed to remove the detector side channel attacks, while its security relies on the assumption that the encoding systems are perfectly characterized. In contrast, the MDI-QKD protocol based on the Clauser-Horne-Shimony-Holt inequality (CHSH-MDI-QKD) weakens this assumption, which only requires the quantum state to be prepared in the two-dimensional Hilbert space and the devices are independent. In experimental realizations, the weak coherent state, which is always used in QKD systems due to the lack of an ideal single-photon source, may be prepared in the high-dimensional space. In this paper, we investigate the decoy-state CHSH-MDI-QKD protocol with s (3≤s≤5) intensities, including one signal state and s -1 decoy states, and we also consider the finite-size effect on the decoy-state CHSH-MDI-QKD protocol with five intensities. Simulation results show that this scheme is very practical.
NASA Astrophysics Data System (ADS)
Zhu, Qiangzhong; Zheng, Shupei; Lin, Shijie; Liu, Tian-Ran; Jin, Chongjun
2014-06-01
We have fabricated gold (Au) elliptical nanodisc (ND) arrays via three-beam interference lithography and electron beam deposition of gold. The enhanced photoluminescence intensity and emission rate of quantum dots (QDs) near to the Au elliptical NDs have been studied by tuning the nearest distance between quantum dots and Au elliptical NDs. We found that the photoluminescence intensity is polarization-dependent with the degree of polarization being equal to that of the light extinction of the Au elliptical NDs, while the emission rate is polarization-independent. This is resulted from the plasmon-coupled emission via the coupling between the QD dipole and the plasmon nano-antenna. Our experiments fully confirm the evidence of the plasmophore concept proposed recently in the interaction of the QDs with metal nanoparticles.We have fabricated gold (Au) elliptical nanodisc (ND) arrays via three-beam interference lithography and electron beam deposition of gold. The enhanced photoluminescence intensity and emission rate of quantum dots (QDs) near to the Au elliptical NDs have been studied by tuning the nearest distance between quantum dots and Au elliptical NDs. We found that the photoluminescence intensity is polarization-dependent with the degree of polarization being equal to that of the light extinction of the Au elliptical NDs, while the emission rate is polarization-independent. This is resulted from the plasmon-coupled emission via the coupling between the QD dipole and the plasmon nano-antenna. Our experiments fully confirm the evidence of the plasmophore concept proposed recently in the interaction of the QDs with metal nanoparticles. Electronic supplementary information (ESI) available: The thickness of the Al2O3 layer with different cycle numbers; SEM image of the Au ND array covered with QDs; the electric field distribution of the Au elliptical ND at two LSPR wavelengths; the emission properties of the QD-ND hybrid system with the excitation light of
Extending quantum control of time-independent systems to time-dependent systems
Wang Zhenyu; Liu Renbao
2011-06-15
We establish that if a scheme can control a time-independent system arbitrarily coupled to a generic finite bath over a short period of time T with control precision O(T{sup N+1}), it can also realize the control with the same order of precision on smoothly time-dependent systems. This result extends the validity of various universal dynamical control schemes to arbitrary analytically time-dependent systems.
NASA Astrophysics Data System (ADS)
Delben, G. J.; da Luz, M. G. E.
2016-05-01
Here we propose a tracking quantum control protocol for arbitrary N-level systems. The goal is to make the expected value of an observable O to follow a predetermined trajectory S( t). For so, we drive the quantum state |\\varPsi (t) rangle evolution through an external potential V which depends on M_V tunable parameters (e.g., the amplitude and phase (thus M_V = 2) of a laser field in the dipolar condition). At instants t_n, these parameters can be rapidly switched to specific values and then kept constant during time intervals Δ t. The method determines which sets of parameters values can result in < \\varPsi (t) | O |\\varPsi (t) rangle = S(t). It is numerically robust (no intrinsic divergences) and relatively fast since we need to solve only nonlinear algebraic (instead of a system of coupled nonlinear differential) equations to obtain the parameters at the successive Δ t's. For a given S( t), the required minimum M_V = M_min 'degrees of freedom' of V attaining the control is a good figure of merit of the problem difficulty. For instance, the control cannot be unconditionally realizable if M_{min } > 2 and V is due to a laser field (the usual context in real applications). As it is discussed and exemplified, in these cases a possible procedure is to relax the control in certain problematic (but short) time intervals. Finally, when existing the approach can systematically access distinct possible solutions, thereby allowing a relatively simple way to search for the best implementation conditions. Illustrations for 3-, 4-, and 5-level systems and some comparisons with calculations in the literature are presented.
Experimental Quantum Error Detection
Jin, Xian-Min; Yi, Zhen-Huan; Yang, Bin; Zhou, Fei; Yang, Tao; Peng, Cheng-Zhi
2012-01-01
Faithful transmission of quantum information is a crucial ingredient in quantum communication networks. To overcome the unavoidable decoherence in a noisy channel, to date, many efforts have been made to transmit one state by consuming large numbers of time-synchronized ancilla states. However, such huge demands of quantum resources are hard to meet with current technology and this restricts practical applications. Here we experimentally demonstrate quantum error detection, an economical approach to reliably protecting a qubit against bit-flip errors. Arbitrary unknown polarization states of single photons and entangled photons are converted into time bins deterministically via a modified Franson interferometer. Noise arising in both 10 m and 0.8 km fiber, which induces associated errors on the reference frame of time bins, is filtered when photons are detected. The demonstrated resource efficiency and state independence make this protocol a promising candidate for implementing a real-world quantum communication network. PMID:22953047
Reeder, Blaine; Meyer, Ellen; Lazar, Amanda; Chaudhuri, Shomir; Thompson, Hilaire J.; Demiris, George
2013-01-01
Introduction There is a critical need for public health interventions to support the independence of older adults as the world’s population ages. Health smart homes (HSH) and home-based consumer health (HCH) technologies may play a role in these interventions. Methods We conducted a systematic review of HSH and HCH literature from indexed repositories for health care and technology disciplines (e.g., MEDLINE, CINAHL, and IEEE Xplore) and classified included studies according to an evidence-based public health (EBPH) typology. Results One thousand, six hundred and thirty nine candidate articles were identified. Thirty-one studies from the years 1998–2011 were included. Twenty-one included studies were classified as emerging, 10 as promising and 3 as effective (first tier). Conclusion The majority of included studies were published in the period beginning in the year 2005. All 3 effective (first tier) studies and 9 of 10 of promising studies were published during this period. Almost all studies included an activity sensing component and most of these used passive infrared motion sensors. The three effective (first tier) studies all used a multicomponent technology approach that included activity sensing, reminders and other technologies tailored to individual preferences. Future research should explore the use of technology for self-management of health by older adults, social support and self-reported health measures incorporated into personal health records, electronic medical records, and community health registries. PMID:23639263
Shiri, Fereshteh; Pirhadi, Somayeh; Ghasemi, Jahan B.
2015-01-01
Mer receptor tyrosine kinase is a promising novel cancer therapeutic target in many human cancers, because abnormal activation of Mer has been implicated in survival signaling and chemoresistance. 3D-QSAR analyses based on alignment independent descriptors were performed on a series of 81 Mer specific tyrosine kinase inhibitors. The fractional factorial design (FFD) and the enhanced replacement method (ERM) were applied and tested as variable selection algorithms for the selection of optimal subsets of molecular descriptors from a much greater pool of such regression variables. The data set was split into 65 molecules as the training set and 16 compounds as the test set. All descriptors were generated by using the GRid INdependent descriptors (GRIND) approach. After variable selection, GRIND were correlated with activity values (pIC50) by PLS regression. Of the two applied variable selection methods, ERM had a noticeable improvement on the statistical parameters of PLS model, and yielded a q2 value of 0.77, an rpred2 of 0.94, and a low RMSEP value of 0.25. The GRIND information contents influencing the affinity on Mer specific tyrosine kinase were also confirmed by docking studies. In a quantum calculation study, the energy difference between HOMO and LUMO (gap) implied the high interaction of the most active molecule in the active site of the protein. In addition, the molecular electrostatic potential energy at DFT level confirmed results obtained from the molecular docking. The identified key features obtained from the molecular modeling, enabled us to design novel kinase inhibitors. PMID:27013913
Pustiowski, Jens; Müller, Kai; Bichler, Max; Koblmüller, Gregor; Finley, Jonathan J.; Wixforth, Achim; Krenner, Hubert J.
2015-01-05
We demonstrate tuning of single quantum dot emission lines by the combined action of the dynamic acoustic field of a radio frequency surface acoustic wave and a static electric field. Both tuning parameters are set all-electrically in a LiNbO{sub 3}-GaAs hybrid device. The surface acoustic wave is excited directly on the strong piezoelectric LiNbO{sub 3} onto which a GaAs-based p-i-n photodiode containing a single layer of quantum dots was epitaxially transferred. We demonstrate dynamic spectral tuning with bandwidths exceeding 3 meV of single quantum dot emission lines due to deformation potential coupling. The center energy of the dynamic spectral oscillation can be independently programmed simply by setting the bias voltage applied to the diode.
Cruz, Hans; Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar
2015-09-15
The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.
93. TOWER STAIRHALL, SOUTH WALL, WEST TABERNACLE FRAME. DETAIL OF ...
93. TOWER STAIRHALL, SOUTH WALL, WEST TABERNACLE FRAME. DETAIL OF DOG EAR AND TRUSS (BRACKET) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA
Guaranteed violation of a Bell inequality without aligned reference frames or calibrated devices.
Shadbolt, Peter; Vértesi, Tamás; Liang, Yeong-Cherng; Branciard, Cyril; Brunner, Nicolas; O'Brien, Jeremy L
2012-01-01
Bell tests - the experimental demonstration of a Bell inequality violation - are central to understanding the foundations of quantum mechanics, and are a powerful diagnostic tool for the development of quantum technologies. To date, Bell tests have relied on careful calibration of measurement devices and alignment of a shared reference frame between two parties - both technically demanding tasks. We show that neither of these operations are necessary, violating Bell inequalities (i) with certainty using unaligned, but calibrated, measurement devices, and (ii) with near-certainty using uncalibrated and unaligned devices. We demonstrate generic quantum nonlocality with randomly chosen measurements on a singlet state of two photons, implemented using a reconfigurable integrated optical waveguide circuit. The observed results demonstrate the robustness of our schemes to imperfections and statistical noise. This approach is likely to have important applications both in fundamental science and quantum technologies, including device-independent quantum key distribution. PMID:22737404
Guaranteed violation of a Bell inequality without aligned reference frames or calibrated devices
Shadbolt, Peter; Vértesi, Tamás; Liang, Yeong-Cherng; Branciard, Cyril; Brunner, Nicolas; O'Brien, Jeremy L.
2012-01-01
Bell tests — the experimental demonstration of a Bell inequality violation — are central to understanding the foundations of quantum mechanics, and are a powerful diagnostic tool for the development of quantum technologies. To date, Bell tests have relied on careful calibration of measurement devices and alignment of a shared reference frame between two parties — both technically demanding tasks. We show that neither of these operations are necessary, violating Bell inequalities (i) with certainty using unaligned, but calibrated, measurement devices, and (ii) with near-certainty using uncalibrated and unaligned devices. We demonstrate generic quantum nonlocality with randomly chosen measurements on a singlet state of two photons, implemented using a reconfigurable integrated optical waveguide circuit. The observed results demonstrate the robustness of our schemes to imperfections and statistical noise. This approach is likely to have important applications both in fundamental science and quantum technologies, including device-independent quantum key distribution. PMID:22737404
Pseudo-entanglement evaluated in noninertial frames
Mehri-Dehnavi, Hossein; Mirza, Behrouz; Mohammadzadeh, Hosein; Rahimi, Robabeh
2011-05-15
Research Highlights: > We study pseudo-entanglement in noninertial frames. > We examine different measures of entanglement and nonclassical correlation for the state. > We find the threshold for entanglement is changed in noninertial frames. > We also describe the behavior of local unitary classes of states in noninertial frames. - Abstract: We study quantum discord, in addition to entanglement, of bipartite pseudo-entanglement in noninertial frames. It is shown that the entanglement degrades from its maximum value in a stationary frame to a minimum value in an infinite accelerating frame. There is a critical region found in which, for particular cases, entanglement of states vanishes for certain accelerations. The quantum discord of pseudo-entanglement decreases by increasing the acceleration. Also, for a physically inaccessible region, entanglement and nonclassical correlation are evaluated and shown to match the corresponding values of the physically accessible region for an infinite acceleration.
Non-minimal Higgs inflation and frame dependence in cosmology
Steinwachs, Christian F.; Kamenshchik, Alexander Yu.
2013-02-21
We investigate a very general class of cosmological models with scalar fields non-minimally coupled to gravity. A particular representative in this class is given by the non-minimal Higgs inflation model in which the Standard Model Higgs boson and the inflaton are described by one and the same scalar particle. While the predictions of the non-minimal Higgs inflation scenario come numerically remarkably close to the recently discovered mass of the Higgs boson, there remains a conceptual problem in this model that is associated with the choice of the cosmological frame. While the classical theory is independent of this choice, we find by an explicit calculation that already the first quantum corrections induce a frame dependence. We give a geometrical explanation of this frame dependence by embedding it into a more general field theoretical context. From this analysis, some conceptional points in the long lasting cosmological debate: 'Jordan frame vs. Einstein frame' become more transparent and in principle can be resolved in a natural way.
Reference Frames and Relativity.
ERIC Educational Resources Information Center
Swartz, Clifford
1989-01-01
Stresses the importance of a reference frame in mechanics. Shows the Galilean transformation in terms of relativity theory. Discusses accelerated reference frames and noninertial reference frames. Provides examples of reference frames with diagrams. (YP)
NASA Astrophysics Data System (ADS)
Semenov, Alexander; Dubernet, Marie-Lise; Babikov, Dmitri
2014-09-01
The mixed quantum/classical theory (MQCT) for inelastic molecule-atom scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is extended to treat a general case of an asymmetric-top-rotor molecule in the body-fixed reference frame. This complements a similar theory formulated in the space-fixed reference-frame [M. Ivanov, M.-L. Dubernet, and D. Babikov, J. Chem. Phys. 140, 134301 (2014)]. Here, the goal was to develop an approximate computationally affordable treatment of the rotationally inelastic scattering and apply it to H2O + He. We found that MQCT is somewhat less accurate at lower scattering energies. For example, below E = 1000 cm-1 the typical errors in the values of inelastic scattering cross sections are on the order of 10%. However, at higher scattering energies MQCT method appears to be rather accurate. Thus, at scattering energies above 2000 cm-1 the errors are consistently in the range of 1%-2%, which is basically our convergence criterion with respect to the number of trajectories. At these conditions our MQCT method remains computationally affordable. We found that computational cost of the fully-coupled MQCT calculations scales as n2, where n is the number of channels. This is more favorable than the full-quantum inelastic scattering calculations that scale as n3. Our conclusion is that for complex systems (heavy collision partners with many internal states) and at higher scattering energies MQCT may offer significant computational advantages.
A multi-frame, megahertz CCD imager
Mendez, Jacob A; Balzer, Stephen J; Watson, Scott A
2008-01-01
A high-efficiency, high-speed imager has been fabricated capable of framing rates of 2 MHz. This device utilizes a 512 x 512 pixel charge coupled device (CCD) with a 25cmZ active area, and incorporates an electronic shutter technology designed for back-illuminated CCD's, making this the largest and fastest back-illuminated CCD in the world. Characterizing an imager capable of this frame rate presents unique challenges. High speed LED drivers and intense radioactive sources are needed to perform basic measurements. We investigate properties normally associated with single-frame CCD's such as read noise, gain, full-well capacity, detective quantum efficiency (DQE), sensitivity, and linearity. In addition, we investigate several properties associated with the imager's multi-frame operation such as transient frame response and frame-to-frame isolation while contrasting our measurement techniques and results with more conventional devices.
Deng, Zhengtao; Zhang, Yun; Yue, Jiachang; Tang, Fangqiong; Wei, Qun
2007-10-18
One of the most highlighted and fastest moving interfaces of nanotechnology is the application of quantum dots (QDs) in biology. The unparalleled advantages of the size-tunable fluorescent emission and the simultaneous excitation at a single wavelength make QDs the great possibility for use in optical encoding detection. In this paper, we report that green and orange CdTe QDs as convenient, cheap, reversible, and effective pH-sensitive fluorescent probes could monitor the proton (H+) flux driven by ATP synthesis for dual simultaneous and independent detection of viruses on the basis of antibody-antigen reactions. A new kind of biosensor (consisting of the mixture of green-QDs-labeled chromatophores and orange-QDs-labeled chromatophores) fluorescent measurement system was established for rapid, simultaneous, and independent detection of two different kinds of viruses (i.e., H9 avian influenza virus and MHV68 virus). It is crucial to find that the green and orange QDs labeled biosensors coexisting in the detection system can work independently and do not interfere with each another in the fluorescence assays. In addition, a primary steady electric double layer (EDL) model for the QDs biosensors was proposed to illustrate the mechanism of simultaneous and independent detection of the biosensors. We believe that the pH-sensitive CdTe QDs based detection system, described in this paper, is an important step toward optical encoding and has a great potential for simultaneous and independent qualitative and quantitative multiple detection systems. PMID:17887667
Semenov, Alexander; Dubernet, Marie-Lise; Babikov, Dmitri
2014-09-21
The mixed quantum/classical theory (MQCT) for inelastic molecule-atom scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is extended to treat a general case of an asymmetric-top-rotor molecule in the body-fixed reference frame. This complements a similar theory formulated in the space-fixed reference-frame [M. Ivanov, M.-L. Dubernet, and D. Babikov, J. Chem. Phys. 140, 134301 (2014)]. Here, the goal was to develop an approximate computationally affordable treatment of the rotationally inelastic scattering and apply it to H{sub 2}O + He. We found that MQCT is somewhat less accurate at lower scattering energies. For example, below E = 1000 cm{sup −1} the typical errors in the values of inelastic scattering cross sections are on the order of 10%. However, at higher scattering energies MQCT method appears to be rather accurate. Thus, at scattering energies above 2000 cm{sup −1} the errors are consistently in the range of 1%–2%, which is basically our convergence criterion with respect to the number of trajectories. At these conditions our MQCT method remains computationally affordable. We found that computational cost of the fully-coupled MQCT calculations scales as n{sup 2}, where n is the number of channels. This is more favorable than the full-quantum inelastic scattering calculations that scale as n{sup 3}. Our conclusion is that for complex systems (heavy collision partners with many internal states) and at higher scattering energies MQCT may offer significant computational advantages.
Deng, M. T.; Yu, C. L.; Huang, G. Y.; Larsson, M.; Caroff, P.; Xu, H. Q.
2014-01-01
We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. At zero magnetic field, well-defined Coulomb diamonds and the Kondo effect are observed. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with Majorana fermion physics in such a hybrid topological system. PMID:25434375
Gleim, A V; Egorov, V I; Nazarov, Yu V; Smirnov, S V; Chistyakov, V V; Bannik, O I; Anisimov, A A; Kynev, S M; Ivanova, A E; Collins, R J; Kozlov, S A; Buller, G S
2016-02-01
A quantum key distribution system based on the subcarrier wave modulation method has been demonstrated which employs the BB84 protocol with a strong reference to generate secure bits at a rate of 16.5 kbit/s with an error of 0.5% over an optical channel of 10 dB loss, and 18 bits/s with an error of 0.75% over 25 dB of channel loss. To the best of our knowledge, these results represent the highest channel loss reported for secure quantum key distribution using the subcarrier wave approach. A passive unidirectional scheme has been used to compensate for the polarization dependence of the phase modulators in the receiver module, which resulted in a high visibility of 98.8%. The system is thus fully insensitive to polarization fluctuations and robust to environmental changes, making the approach promising for use in optical telecommunication networks. Further improvements in secure key rate and transmission distance can be achieved by implementing the decoy states protocol or by optimizing the mean photon number used in line with experimental parameters. PMID:26906834
Transfer of spatial reference frame using singlet states and classical communication
NASA Astrophysics Data System (ADS)
Bahder, Thomas B.
2016-03-01
A simple protocol is described for transferring spatial orientation from Alice to Bob (two spatially separated observers). The two observers are assumed to share quantum singlet states and classical communication. The protocol assumes that Alice and Bob have complete free will (measurement independence) and is based on maximizing the Shannon mutual information between Alice and Bob's measurement outcomes. Repeated use of this protocol for each spatial axis of Alice allows transfer of a complete three-dimensional reference frame, up to inversion of each of the axes. The technological complexity of this protocol is similar to that needed for BB84 quantum key distribution and hence is much simpler to implement than recently proposed schemes for transmission of reference frames. A second protocol based on a Bayesian formalism is also discussed.
ERIC Educational Resources Information Center
Kelly, Bruce
2006-01-01
Analyzing real motion with frame-by-frame precision can be conducted using modestly priced digital-video camcorders. Although well below the 1,000 frames-per-second threshold of high-speed cameras, commercially available camcorders grab 30 frames per second. A replay dissected at this lower frequency is fun to watch, challenges students'…
ERIC Educational Resources Information Center
Pennington, Martha C.
An analysis of classroom discourse proposes four frames, modeled as concentric circles. The inner most circle is the lesson frame, removed or sheltered from outside influences and most likely, in a language class, to maintain second-language usage. The next frame from the center is the lesson-support frame, an intermediate layer of classroom…
Semiclassical framed BPS states
NASA Astrophysics Data System (ADS)
Moore, Gregory W.; Royston, Andrew B.; Van den Bleeken, Dieter
2016-07-01
We provide a semiclassical description of framed BPS states in four-dimensional {N}=2 super Yang-Mills theories probed by 't Hooft defects, in terms of a supersymmetric quantum mechanics on the moduli space of singular monopoles. Framed BPS states, like their ordinary counterparts in the theory without defects, are associated with the L 2 kernel of certain Dirac operators on moduli space, or equivalently with the L 2 cohomology of related Dolbeault operators. The Dirac/Dolbeault operators depend on two Cartan-valued Higgs vevs. We conjecture a map between these vevs and the Seiberg-Witten special coordinates, consistent with a one-loop analysis and checked in examples. The map incorporates all perturbative and nonperturbative corrections that are relevant for the semiclassical construction of BPS states, over a suitably defined weak coupling regime of the Coulomb branch. We use this map to translate wall crossing formulae and the no-exotics theorem to statements about the Dirac/Dolbeault operators. The no-exotics theorem, concerning the absence of nontrivial SU(2) R representations in the BPS spectrum, implies that the kernel of the Dirac operator is chiral, and further translates into a statement that all L 2 cohomology of the Dolbeault operator is concentrated in the middle degree. Wall crossing formulae lead to detailed predictions for where the Dirac operators fail to be Fredholm and how their kernels jump. We explore these predictions in nontrivial examples. This paper explains the background and arguments behind the results announced in the short note [1].
(Pseudo)issue of the conformal frame revisited
Faraoni, Valerio; Nadeau, Shahn
2007-01-15
The issue of the equivalence between Jordan and Einstein conformal frames in scalar-tensor gravity is revisited, with the emphasis on implementing running units in the latter. The lack of affine parametrization for timelike worldlines and the cosmological constant problem in the Einstein frame are clarified, and a paradox in the literature about cosmological singularities appearing only in one frame is solved. While, classically, the two conformal frames are physically equivalent, they seem to be inequivalent at the quantum level.
Sarkar, Suprabhat; Gandla, Dayakar; Venkatesh, Yeduru; Bangal, Prakriti Ranjan; Ghosh, Sutapa; Yang, Yang; Misra, Sunil
2016-08-21
Facile synthesis of 2-10 nm-sized graphene quantum dots (GQDs) from graphite powder by organic solvent-assisted liquid exfoliation using a sonochemical method is reported in this study. Synthesized GQDs are well dispersed in organic solvents like ethyl acetoacetate (EAA), dimethyl formamide (DMF) and also in water. MALDI-TOF mass spectrometry reveals its selective mass fragmentation. Detailed characterizations by various techniques like X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) confirm the formation of disordered, functional GQDs. Density functional theory (DFT) calculation confirms HOMO-LUMO energy gap variation with changing size and functionalities. Photoluminescence (PL) properties of as-prepared GQDs were studied in detail. The ensemble studies of GQDs showed excellent photoluminescence properties comprising normal and upconverted fluorescence, delayed fluorescence and room-temperature phosphorescence. PL decay dynamics of GQDs has been explored using time-correlated single-photon technique (TCSPC) as well as femtosecond fluorescence upconversion technique. In vitro cytotoxicity study reveals its biocompatibility and high cell viability (>91%) even at high concentration (400 μg mL(-1)) of GQDs in Chinese Hamster Ovary (CHO) cells. PMID:27302411
Sanfilippo, Antonio P.; Franklin, Lyndsey; Tratz, Stephen C.; Danielson, Gary R.; Mileson, Nicholas D.; Riensche, Roderick M.; McGrath, Liam
2008-04-01
Frame Analysis has come to play an increasingly stronger role in the study of social movements in Sociology and Political Science. While significant steps have been made in providing a theory of frames and framing, a systematic characterization of the frame concept is still largely lacking and there are no rec-ognized criteria and methods that can be used to identify and marshal frame evi-dence reliably and in a time and cost effective manner. Consequently, current Frame Analysis work is still too reliant on manual annotation and subjective inter-pretation. The goal of this paper is to present an approach to the representation, acquisition and analysis of frame evidence which leverages Content Analysis, In-formation Extraction and Semantic Search methods to provide a systematic treat-ment of a Frame Analysis and automate frame annotation.
Anomalies, equivalence and renormalization of cosmological frames
NASA Astrophysics Data System (ADS)
Herrero-Valea, Mario
2016-05-01
We study the question of whether two frames of a given physical theory are equivalent or not in the presence of quantum corrections. By using field theory arguments, we claim that equivalence is broken in the presence of anomalous symmetries in one of the frames. This is particularized to the case of the relation between the Einstein and Jordan frames in scalar-tensor theories used to describe early Universe dynamics. Although in this case a regularization that cancels the anomaly exists, the renormalized theory always develops a nonvanishing contribution to the S matrix that is present only in the Jordan frame, promoting the different frames to different physical theories that must be UV completed in a different way.
Werfelli, Ghofran; Halvick, Philippe; Honvault, Pascal; Kerkeni, Boutheïna; Stoecklin, Thierry
2015-09-21
The observed abundances of the methylidyne cation, CH(+), in diffuse molecular clouds can be two orders of magnitude higher than the prediction of the standard gas-phase models which, in turn, predict rather well the abundances of neutral CH. It is therefore necessary to investigate all the possible formation and destruction processes of CH(+) in the interstellar medium with the most abundant species H, H2, and e(-). In this work, we address the destruction process of CH(+) by hydrogen abstraction. We report a new calculation of the low temperature rate coefficients for the abstraction reaction, using accurate time-independent quantum scattering and a new high-level ab initio global potential energy surface including a realistic model of the long-range interaction between the reactants H and CH(+). The calculated thermal rate coefficient is in good agreement with the experimental data in the range 50 K-800 K. However, at lower temperatures, the experimental rate coefficient takes exceedingly small values which are not reproduced by the calculated rate coefficient. Instead, the latter rate coefficient is close to the one given by the Langevin capture model, as expected for a reaction involving an ion and a neutral species. Several recent theoretical works have reported a seemingly good agreement with the experiment below 50 K, but an analysis of these works show that they are based on potential energy surfaces with incorrect long-range behavior. The experimental results were explained by a loss of reactivity of the lowest rotational states of the reactant; however, the quantum scattering calculations show the opposite, namely, a reactivity enhancement with rotational excitation. PMID:26395702
VIRTUAL FRAME BUFFER INTERFACE
NASA Technical Reports Server (NTRS)
Wolfe, T. L.
1994-01-01
Large image processing systems use multiple frame buffers with differing architectures and vendor supplied user interfaces. This variety of architectures and interfaces creates software development, maintenance, and portability problems for application programs. The Virtual Frame Buffer Interface program makes all frame buffers appear as a generic frame buffer with a specified set of characteristics, allowing programmers to write code which will run unmodified on all supported hardware. The Virtual Frame Buffer Interface converts generic commands to actual device commands. The virtual frame buffer consists of a definition of capabilities and FORTRAN subroutines that are called by application programs. The virtual frame buffer routines may be treated as subroutines, logical functions, or integer functions by the application program. Routines are included that allocate and manage hardware resources such as frame buffers, monitors, video switches, trackballs, tablets and joysticks; access image memory planes; and perform alphanumeric font or text generation. The subroutines for the various "real" frame buffers are in separate VAX/VMS shared libraries allowing modification, correction or enhancement of the virtual interface without affecting application programs. The Virtual Frame Buffer Interface program was developed in FORTRAN 77 for a DEC VAX 11/780 or a DEC VAX 11/750 under VMS 4.X. It supports ADAGE IK3000, DEANZA IP8500, Low Resolution RAMTEK 9460, and High Resolution RAMTEK 9460 Frame Buffers. It has a central memory requirement of approximately 150K. This program was developed in 1985.
NASA Astrophysics Data System (ADS)
Seshadreesan, Kaushik P.; Takeoka, Masahiro; Sasaki, Masahide
2016-04-01
Device-independent quantum key distribution (DIQKD) guarantees unconditional security of a secret key without making assumptions about the internal workings of the devices used for distribution. It does so using the loophole-free violation of a Bell's inequality. The primary challenge in realizing DIQKD in practice is the detection loophole problem that is inherent to photonic tests of Bell' s inequalities over lossy channels. We revisit the proposal of Curty and Moroder [Phys. Rev. A 84, 010304(R) (2011), 10.1103/PhysRevA.84.010304] to use a linear optics-based entanglement-swapping relay (ESR) to counter this problem. We consider realistic models for the entanglement sources and photodetectors: more precisely, (a) polarization-entangled states based on pulsed spontaneous parametric down-conversion sources with infinitely higher-order multiphoton components and multimode spectral structure, and (b) on-off photodetectors with nonunit efficiencies and nonzero dark-count probabilities. We show that the ESR-based scheme is robust against the above imperfections and enables positive key rates at distances much larger than what is possible otherwise.
Self-aligning biaxial load frame
Ward, M.B.; Epstein, J.S.; Lloyd, W.R.
1994-01-18
An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed cross head, and by alignment and linear motion elements of one load assembly relative to the load frame. 3 figures.
Self-aligning biaxial load frame
Ward, Michael B.; Epstein, Jonathan S.; Lloyd, W. Randolph
1994-01-01
An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed crosshead, and by alignment and linear motion elements of one load assembly relative to the load frame.
Entangled light in moving frames
Gingrich, Robert M.; Bergou, Attila J.; Adami, Christoph
2003-10-01
We calculate the entanglement between a pair of polarization-entangled photon beams as a function of the reference frame, in a fully relativistic framework. We find the transformation law for helicity basis states and show that, while it is frequency independent, a Lorentz transformation on a momentum-helicity eigenstate produces a momentum-dependent phase. This phase leads to changes in the reduced polarization density matrix, such that entanglement is either decreased or increased, depending on the boost direction, the rapidity, and the spread of the beam.
ERIC Educational Resources Information Center
American Inst. of Steel Construction, Inc., New York, NY.
In view of the cost of structural framing for school buildings, ten steel-framed schools are examined to review the economical advantages of steel for school construction. These schools do not resemble each other in size, shape, arrangement or unit cost; some are original in concept and architecture, and others are conservative. Cost and…
A generalization of Fermat's principle for classical and quantum systems
NASA Astrophysics Data System (ADS)
Elsayed, Tarek A.
2014-09-01
The analogy between dynamics and optics had a great influence on the development of the foundations of classical and quantum mechanics. We take this analogy one step further and investigate the validity of Fermat's principle in many-dimensional spaces describing dynamical systems (i.e., the quantum Hilbert space and the classical phase and configuration space). We propose that if the notion of a metric distance is well defined in that space and the velocity of the representative point of the system is an invariant of motion, then a generalized version of Fermat's principle will hold. We substantiate this conjecture for time-independent quantum systems and for a classical system consisting of coupled harmonic oscillators. An exception to this principle is the configuration space of a charged particle in a constant magnetic field; in this case the principle is valid in a frame rotating by half the Larmor frequency, not the stationary lab frame.
Complex equiangular tight frames
NASA Astrophysics Data System (ADS)
Tropp, Joel A.
2005-08-01
A complex equiangular tight frame (ETF) is a tight frame consisting of N unit vectors in Cd whose absolute inner products are identical. One may view complex ETFs as a natural geometric generalization of an orthonormal basis. Numerical evidence suggests that these objects do not arise for most pairs (d, N). The goal of this paper is to develop conditions on (d, N) under which complex ETFs can exist. In particular, this work concentrates on the class of harmonic ETFs, in which the components of the frame vectors are roots of unity. In this case, it is possible to leverage field theory to obtain stringent restrictions on the possible values for (d, N).
NASA Astrophysics Data System (ADS)
Jacobs, Christopher S.
2013-09-01
Concepts and Background: This paper gives an overview of modern celestial reference frames as realized at radio frequencies using the Very Long baseline Interferometry (VLBI) technique. We discuss basic celestial reference frame concepts, desired properties, and uses. We review the networks of antennas used for this work. We briefly discuss the history of the science of astrometry touching upon the discovery of precession, proper motion, nutation, and parallax, and the field of radio astronomy. Building Celestial Frames: Next, we discuss the multi-step process of building a celestial frame: First candidate sources are identified based on point-like properties from single dish radio telescopes surveys. Second, positions are refined using connected element interferometers such as the Very Large Array, and the ATCA. Third, positions of approximately milli-arcsecond (mas) accuracy are determined using intercontinental VLBI surveys. Fourth, sub-mas positions are determined by multiyear programs using intercontinental VLBI. These sub-mas sets of positions are then verified by multiple teams in preparation for release to non-specialists in the form of an official IAU International Celestial Reference Frame (ICRF). The process described above has until recently been largely restricted to work at S/X-band (2.3/8.4 GHz). However, in the last decade sub-mas work has expanded to include celestial frames at K-band (24 GHz), Ka-band (32 GHz), and Q-band (43 GHz). While these frames currently have the disadvantage of far smaller data sets, the astrophysical quality of the sources themselves improves at these higher frequencies and thus make these frequencies attractive for realizations of celestial reference frames. Accordingly, we review progress at these higher frequency bands. Path to the Future: We discuss prospects for celestial reference frames over the next decade. We present an example of an error budget for astrometric VLBI and discuss the budget's use as a tool for
Flanagan, R.D.; Tenbus, M.A.; Bennett, R.M.; Jamal, B.D.
1992-09-21
A review of current analytical methods for infilled frame behavior is conducted. A subset of these methods are applied to experimental results. Parametric studies are used to find the sensitivity of the behavior to various parameters. In-plane loading, out-of-plane inertial loading, out-of-plane interstory drift loading, and combined loadings are examined. Particular reference is made to clay tile infilled frames, and the behavior of clay tile in compression.
Deformed symmetries from quantum relational observables
NASA Astrophysics Data System (ADS)
Girelli, Florian; Poulin, David
2007-05-01
Deformed Special Relativity (DSR) is a candidate phenomenological theory to describe the Quantum Gravitational (QG) semi-classical regime. A possible interpretation of DSR can be derived from the notion of deformed reference frame. Observables in (quantum) General Relativity can be constructed from (quantum) reference frame - a physical observable is then a relation between a system of interest and the reference frame. We present a toy model and study an example of such quantum relational observables. We show how the intrinsic quantum nature of the reference frame naturally leads to a deformation of the symmetries, comforting DSR to be a good candidate to describe the QG semi-classical regime.
Hamiltonian deformations of Gabor frames: First steps
de Gosson, Maurice A.
2015-01-01
Gabor frames can advantageously be redefined using the Heisenberg–Weyl operators familiar from harmonic analysis and quantum mechanics. Not only does this redefinition allow us to recover in a very simple way known results of symplectic covariance, but it immediately leads to the consideration of a general deformation scheme by Hamiltonian isotopies (i.e. arbitrary paths of non-linear symplectic mappings passing through the identity). We will study in some detail an associated weak notion of Hamiltonian deformation of Gabor frames, using ideas from semiclassical physics involving coherent states and Gaussian approximations. We will thereafter discuss possible applications and extensions of our method, which can be viewed – as the title suggests – as the very first steps towards a general deformation theory for Gabor frames. PMID:25892903
NASA Astrophysics Data System (ADS)
Ryabov, V. A.
2015-08-01
Quantum systems in a mechanical embedding, the breathing mode of a small particles, optomechanical system, etc. are far not the full list of examples in which the volume exhibits quantum behavior. Traditional consideration suggests strain in small systems as a result of a collective movement of particles, rather than the dynamics of the volume as an independent variable. The aim of this work is to show that some problem here might be essentially simplified by introducing periodic boundary conditions. At this case, the volume is considered as the independent dynamical variable driven by the internal pressure. For this purpose, the concept of quantum volume based on Schrödinger’s equation in 𝕋3 manifold is proposed. It is used to explore several 1D model systems: An ensemble of free particles under external pressure, quantum manometer and a quantum breathing mode. In particular, the influence of the pressure of free particle on quantum oscillator is determined. It is shown also that correction to the spectrum of the breathing mode due to internal degrees of freedom is determined by the off-diagonal matrix elements of the quantum stress. The new treatment not using the “force” theorem is proposed for the quantum stress tensor. In the general case of flexible quantum 3D dynamics, quantum deformations of different type might be introduced similarly to monopole mode.
Lin, S.-Y.; Chang, K.-P.; Hsieh, M.-S.; Ueng, S.-H.; Hao, S.-P.; Tseng, C.-K.; Pai, P.-C.; Chang, F.-T.; Tsai, M.-H.; Tsang, N.-M. . E-mail: rt3126@adm.cgmh.org.tw
2005-12-01
Purpose: The presence of Epstein-Barr virus latent membrane protein-1 (LMP-1) gene in nasopharyngeal swabs indicates the presence of nasopharyngeal carcinoma (NPC) mucosal tumor cells. This study was undertaken to investigate whether the time taken for LMP-1 to disappear after initiation of primary radiotherapy (RT) was inversely associated with NPC local control. Methods and Materials: During July 1999 and October 2002, there were 127 nondisseminated NPC patients receiving serial examinations of nasopharyngeal swabbing with detection of LMP-1 during the RT course. The time for LMP-1 regression was defined as the number of days after initiation of RT for LMP-1 results to turn negative. The primary outcome was local control, which was represented by freedom from local recurrence. Results: The time for LMP-1 regression showed a statistically significant influence on NPC local control both univariately (p < 0.0001) and multivariately (p = 0.004). In multivariate analysis, the administration of chemotherapy conferred a significantly more favorable local control (p = 0.03). Advanced T status ({>=} T2b), overall treatment time of external photon radiotherapy longer than 55 days, and older age showed trends toward being poor prognosticators. The time for LMP-1 regression was very heterogeneous. According to the quartiles of the time for LMP-1 regression, we defined the pattern of LMP-1 regression as late regression if it required 40 days or more. Kaplan-Meier plots indicated that the patients with late regression had a significantly worse local control than those with intermediate or early regression (p 0.0129). Conclusion: Among the potential prognostic factors examined in this study, the time for LMP-1 regression was the most independently significant factor that was inversely associated with NPC local control.
Communication between inertial observers with partially correlated reference frames
NASA Astrophysics Data System (ADS)
Ahmadi, Mehdi; Smith, Alexander R. H.; Dragan, Andrzej
2015-12-01
In quantum communication protocols the existence of a shared reference frame between two spatially separated parties is normally presumed. However, in many practical situations we are faced with the problem of misaligned reference frames. In this paper, we study communication between two inertial observers who have partial knowledge about the Lorentz transformation that relates their frames of reference. Since every Lorentz transformation can be decomposed into a pure boost followed by a rotation, we begin by analyzing the effects on communication when the parties have partial knowledge about the transformation relating their frames, when the transformation is either a rotation or a pure boost. This then enables us to investigate how the efficiency of communication is affected due to partially correlated inertial reference frames related by an arbitrary Lorentz transformation. Furthermore, we show how the results of previous studies where reference frames are completely uncorrelated are recovered from our results in appropriate limits.
Physics of Non-Inertial Reference Frames
NASA Astrophysics Data System (ADS)
Kamalov, Timur F.
2010-12-01
Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate of its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.
Physics of Non-Inertial Reference Frames
Kamalov, Timur F.
2010-12-22
Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate of its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.
ERIC Educational Resources Information Center
DiLella, Carol Ann
This paper presents "popcorn story frames"--holistic outlines that facilitate comprehension when reading and writing stories, useful for outlining stories read and for creating outlines for original student stories--that are particularly useful for elementary and intermediate school students. "Popcorn" pops in a horizontal manner rather than in a…
Aluminum space frame technology
Birch, S.
1994-01-01
This article examines the increased application of aluminum to the construction of automobile frames. The topics of the article include a joint venture between Audi and Alcoa, forms in which aluminum is used, new alloys and construction methods, meeting rigidity and safety levels, manufacturing techniques, the use of extrusions, die casting, joining techniques, and pollution control during manufacturing.
Framing Evolution Discussion Intellectually
ERIC Educational Resources Information Center
Oliveira, Alandeom W.; Cook, Kristin; Buck, Gayle A.
2011-01-01
This study examines how a first-year biology teacher facilitates a series of whole-class discussions about evolution during the implementation of a problem-based unit. A communicative theoretical perspective is adopted wherein evolution discussions are viewed as social events that the teacher can frame intellectually (i.e., present or organize as…
Target activated frame capture
NASA Astrophysics Data System (ADS)
Roberts, G. Marlon; Fitzgerald, James; McCormack, Michael; Steadman, Robert
2008-04-01
Over the past decade, technological advances have enabled the use of increasingly intelligent systems for battlefield surveillance. These systems are triggered by a combination of external devices including acoustic and seismic sensors. Such products are mainly used to detect vehicles and personnel. These systems often use infra-red imagery to record environmental information, but Textron Defense Systems' Terrain Commander is one of a small number of systems which analyze these images for the presence of targets. The Terrain Commander combines acoustic, infrared, magnetic, seismic, and visible spectrum sensors to detect nearby targets in military scenarios. When targets are detected by these sensors, the cameras are triggered and images are captured in the infrared and visible spectrum. In this paper we discuss a method through which such systems can perform target tracking in order to record and transmit only the most pertinent surveillance images. This saves bandwidth which is crucial because these systems often use communication systems with throughputs below 2400bps. This method is expected to be executable on low-power processors at frame rates exceeding 10HZ. We accomplish this by applying target activated frame capture algorithms to infra-red video data. The target activated frame capture algorithms combine edge detection and motion detection to determine the best frames to be transmitted to the end user. This keeps power consumption and bandwidth requirements low. Finally, the results of the algorithm are analyzed.
Framing for Scientific Argumentation
ERIC Educational Resources Information Center
Berland, Leema K.; Hammer, David
2012-01-01
In recent years, research on students' scientific argumentation has progressed to a recognition of nascent resources: Students can and do argue when they experience the need and possibility of persuading others who may hold competing views. Our purpose in this article is to contribute to this progress by applying the perspective of framing to the…
Frame dragging and superenergy
Herrera, L.; Di Prisco, A.; Carot, J.
2007-08-15
We show that the vorticity appearing in stationary vacuum spacetimes is always related to the existence of a flow of superenergy on the plane orthogonal to the vorticity vector. This result, together with the previously established link between vorticity and superenergy in radiative (Bondi-Sachs) spacetimes, strengthens further the case for this latter quantity as the cause of frame dragging.
Expected number of quantum channels in quantum networks
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-01-01
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556
Expected number of quantum channels in quantum networks.
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-01-01
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556
Solid-state framing camera with multiple time frames
Baker, K. L.; Stewart, R. E.; Steele, P. T.; Vernon, S. P.; Hsing, W. W.; Remington, B. A.
2013-10-07
A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.
Frank, A M; Wilkins, P R
2001-01-05
The advent of CCD cameras and computerized data recording has spurred the development of several new cameras and techniques for recording nanosecond images. We have made a side by side comparison of three nanosecond frame cameras, examining them for both performance and operational characteristics. The cameras include; Micro-Channel Plate/CCD, Image Diode/CCD and Image Diode/Film; combinations of gating/data recording. The advantages and disadvantages of each device will be discussed.
Recursive adaptive frame integration limited
NASA Astrophysics Data System (ADS)
Rafailov, Michael K.
2006-05-01
Recursive Frame Integration Limited was proposed as a way to improve frame integration performance and mitigate issues related to high data rate needed for conventional frame integration. The technique applies two thresholds - one tuned for optimum probability of detection, the other to manage required false alarm rate - and allows a non-linear integration process that, along with Signal-to-Noise Ratio (SNR) gain, provides system designers more capability where cost, weight, or power considerations limit system data rate, processing, or memory capability. However, Recursive Frame Integration Limited may have performance issues when single frame SNR is really low. Recursive Adaptive Frame Integration Limited is proposed as a means to improve limited integration performance with really low single frame SNR. It combines the benefits of nonlinear recursive limited frame integration and adaptive thresholds with a kind of conventional frame integration.
Crandall, David L.; Watson, Richard W.
2008-03-04
A firearm frame which is adapted to be disposed in operative relationship as a component part of a firearm, the firearm having disposed in operative relationships each with one or more of the others, a barrel, a receiver, and at least one firing mechanism; wherein the barrel and receiver form operative parts of a movable assembly and the at least one firing mechanism is disposed in a substantially stationary operative relationship therewith; the firearm frame including at least one elongated support structure discrete from the barrel and receiver, the elongated support structure being adapted to directly support the movable assembly in an operative movable relationship therewith; whereby at least one of the barrel and receiver is in direct contact with and movable on the elongated support structure; and, a firing mechanism support structure connected to the at least one elongated support structure, the firing mechanism support structure being adapted to have the firing mechanism connected thereto; the firearm frame also directly supporting the movable assembly and the firing mechanism in corresponding movable and stationary operative relationships each with the other.
Electrically insulating and sealing frame
Guthrie, Robin J.
1983-11-08
A combination gas seal and electrical insulator having a closed frame shape interconnects a fuel cell stack and a reactant gas plenum of a fuel cell generator. The frame can be of rectangular shape including at least one slidable spline connection in each side to permit expansion or contraction consistent with that of the walls of the gas plenum and fuel cell stack. The slidable spline connections in the frame sides minimizes lateral movement between the frame side members and sealing material interposed between the frame and the fuel cell stack or between the frame and the reactant gas plenum.
NASA Astrophysics Data System (ADS)
De Fazio, Dario; de Castro-Vitores, Miguel; Aguado, Alfredo; Aquilanti, Vincenzo; Cavalli, Simonetta
2012-12-01
In this work we critically revise several aspects of previous ab initio quantum chemistry studies [P. Palmieri et al., Mol. Phys. 98, 1835 (2000);, 10.1080/00268970009483387 C. N. Ramachandran et al., Chem. Phys. Lett. 469, 26 (2009)], 10.1016/j.cplett.2008.12.035 of the HeH_2^+ system. New diatomic curves for the H_2^+ and HeH+ molecular ions, which provide vibrational frequencies at a near spectroscopic level of accuracy, have been generated to test the quality of the diatomic terms employed in the previous analytical fittings. The reliability of the global potential energy surfaces has also been tested performing benchmark quantum scattering calculations within the time-independent approach in an extended interval of energies. In particular, the total integral cross sections have been calculated in the total collision energy range 0.955-2.400 eV for the scattering of the He atom by the ortho- and para-hydrogen molecular ion. The energy profiles of the total integral cross sections for selected vibro-rotational states of H_2^+ (v = 0, …,5 and j = 1, …,7) show a strong rotational enhancement for the lower vibrational states which becomes weaker as the vibrational quantum number increases. Comparison with several available experimental data is presented and discussed.
Are Independent Probes Truly Independent?
ERIC Educational Resources Information Center
Camp, Gino; Pecher, Diane; Schmidt, Henk G.; Zeelenberg, Rene
2009-01-01
The independent cue technique has been developed to test traditional interference theories against inhibition theories of forgetting. In the present study, the authors tested the critical criterion for the independence of independent cues: Studied cues not presented during test (and unrelated to test cues) should not contribute to the retrieval…
Conformal frame dependence of inflation
NASA Astrophysics Data System (ADS)
Domènech, Guillem; Sasaki, Misao
2015-04-01
Physical equivalence between different conformal frames in scalar-tensor theory of gravity is a known fact. However, assuming that matter minimally couples to the metric of a particular frame, which we call the matter Jordan frame, the matter point of view of the universe may vary from frame to frame. Thus, there is a clear distinction between gravitational sector (curvature and scalar field) and matter sector. In this paper, focusing on a simple power-law inflation model in the Einstein frame, two examples are considered; a super-inflationary and a bouncing universe Jordan frames. Then we consider a spectator curvaton minimally coupled to a Jordan frame, and compute its contribution to the curvature perturbation power spectrum. In these specific examples, we find a blue tilt at short scales for the super-inflationary case, and a blue tilt at large scales for the bouncing case.
Finite Frames and Graph Theoretic Uncertainty Principles
NASA Astrophysics Data System (ADS)
Koprowski, Paul J.
The subject of analytical uncertainty principles is an important field within harmonic analysis, quantum physics, and electrical engineering. We explore uncertainty principles in the context of the graph Fourier transform, and we prove additive results analogous to the multiplicative version of the classical uncertainty principle. We establish additive uncertainty principles for finite Parseval frames. Lastly, we examine the feasibility region of simultaneous values of the norms of a graph differential operator acting on a function f ∈ l2(G) and its graph Fourier transform.
Sanfilippo, Antonio P.; McGrath, Liam R.; Whitney, Paul D.
2011-11-17
We present a computational approach to radical rhetoric that leverages the co-expression of rhetoric and action features in discourse to identify violent intent. The approach combines text mining and machine learning techniques with insights from Frame Analysis and theories that explain the emergence of violence in terms of moral disengagement, the violation of sacred values and social isolation in order to build computational models that identify messages from terrorist sources and estimate their proximity to an attack. We discuss a specific application of this approach to a body of documents from and about radical and terrorist groups in the Middle East and present the results achieved.
ERIC Educational Resources Information Center
Rodriguez, Lulu; Dimitrova, Daniela V.
2011-01-01
While framing research has centered mostly on the evaluations of media texts, visual news discourse has remained relatively unexamined. This study surveys the visual framing techniques and methods employed in previous studies and proposes a four-tiered model of identifying and analyzing visual frames: (1) visuals as denotative systems, (2) visuals…
Huhn, John M; Potts, Cory Adam; Rosenbaum, David A
2016-06-01
Cognitive framing effects have been widely reported in higher-level decision-making and have been ascribed to rules of thumb for quick thinking. No such demonstrations have been reported for physical action, as far as we know, but they would be expected if cognition for physical action is fundamentally similar to cognition for higher-level decision-making. To test for such effects, we asked participants to reach for a horizontally-oriented pipe to move it from one height to another while turning the pipe 180° to bring one end (the "business end") to a target on the left or right. From a physical perspective, participants could have always rotated the pipe in the same angular direction no matter which end was the business end; a given participant could have always turned the pipe clockwise or counter-clockwise. Instead, our participants turned the business end counter-clockwise for left targets and clockwise for right targets. Thus, the way the identical physical task was framed altered the way it was performed. This finding is consistent with the hypothesis that cognition for physical action is fundamentally similar to cognition for higher-level decision-making. A tantalizing possibility is that higher-level decision heuristics have roots in the control of physical action, a hypothesis that accords with embodied views of cognition. PMID:26970853
Quantum Griffiths Inequalities
NASA Astrophysics Data System (ADS)
Miyao, Tadahiro
2016-07-01
We present a general framework of Griffiths inequalities for quantum systems. Our approach is based on operator inequalities associated with self-dual cones and provides a consistent viewpoint of the Griffiths inequality. As examples, we discuss the quantum Ising model, quantum rotor model, Bose-Hubbard model, and Hubbard model. We present a model-independent structure that governs the correlation inequalities.
Quantum Griffiths Inequalities
NASA Astrophysics Data System (ADS)
Miyao, Tadahiro
2016-06-01
We present a general framework of Griffiths inequalities for quantum systems. Our approach is based on operator inequalities associated with self-dual cones and provides a consistent viewpoint of the Griffiths inequality. As examples, we discuss the quantum Ising model, quantum rotor model, Bose-Hubbard model, and Hubbard model. We present a model-independent structure that governs the correlation inequalities.
Spin in stationary gravitational fields and rotating frames
NASA Astrophysics Data System (ADS)
Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.
2010-03-01
A spin motion of particles in stationary spacetimes is investigated in the framework of the classical gravity and relativistic quantum mechanics. We bring the Dirac equation for relativistic particles in nonstatic spacetimes to the Hamiltonian form and perform the Foldy-Wouthuysen transformation. We show the importance of the choice of tetrads for description of spin dynamics in the classical gravity. We derive classical and quantum mechanical equations of motion of the spin for relativistic particles in stationary gravitational fields and rotating frames and establish the full agreement between the classical and quantum mechanical approaches.
Frame architecture for video servers
NASA Astrophysics Data System (ADS)
Venkatramani, Chitra; Kienzle, Martin G.
1999-11-01
Video is inherently frame-oriented and most applications such as commercial video processing require to manipulate video in terms of frames. However, typical video servers treat videos as byte streams and perform random access based on approximate byte offsets to be supplied by the client. They do not provide frame or timecode oriented API which is essential for many applications. This paper describes a frame-oriented architecture for video servers. It also describes the implementation in the context of IBM's VideoCharger server. The later part of the paper describes an application that uses the frame architecture and provides fast and slow-motion scanning capabilities to the server.
Random subspaces for encryption based on a private shared Cartesian frame
Bartlett, Stephen D.; Hayden, Patrick; Spekkens, Robert W.
2005-11-15
A private shared Cartesian frame is a novel form of private shared correlation that allows for both private classical and quantum communication. Cryptography using a private shared Cartesian frame has the remarkable property that asymptotically, if perfect privacy is demanded, the private classical capacity is three times the private quantum capacity. We demonstrate that if the requirement for perfect privacy is relaxed, then it is possible to use the properties of random subspaces to nearly triple the private quantum capacity, almost closing the gap between the private classical and quantum capacities.
Shah, Anuj K; Shafir, Eldar; Mullainathan, Sendhil
2015-04-01
Economic models of decision making assume that people have a stable way of thinking about value. In contrast, psychology has shown that people's preferences are often malleable and influenced by normatively irrelevant contextual features. Whereas economics derives its predictions from the assumption that people navigate a world of scarce resources, recent psychological work has shown that people often do not attend to scarcity. In this article, we show that when scarcity does influence cognition, it renders people less susceptible to classic context effects. Under conditions of scarcity, people focus on pressing needs and recognize the trade-offs that must be made against those needs. Those trade-offs frame perception more consistently than irrelevant contextual cues, which exert less influence. The results suggest that scarcity can align certain behaviors more closely with traditional economic predictions. PMID:25676256
ERIC Educational Resources Information Center
Jarrell, Andrea
2009-01-01
St. Paul's School in New Hampshire, the Orchard School in Indiana, Chestnut Hill Academy in Pennsylvania, and Dana Hall School in Massachusetts are like most independent schools--they have qualities that are distinctive and extraordinary. Line up their mission statements, however, and the schools sound almost interchangeable. They're all on a…
NASA Astrophysics Data System (ADS)
Fraser, Gordon
2009-01-01
In his kind review of my biography of the Nobel laureate Abdus Salam (December 2008 pp45-46), John W Moffat wrongly claims that Salam had "independently thought of the idea of parity violation in weak interactions".
Determination of the inner planet frame tie using VLBI data
NASA Technical Reports Server (NTRS)
Mcelrath, Timothy P.; Bhat, Ramachandra S.
1988-01-01
The problem of connecting the independent reference frames formed by the planetary ephemeris and the radio source catalog is one of growing importance to spacecraft navigation. Using quasar-relative VLBI delay data collected by the Deep Space Network, and Soviet coherent data from the Venus flyby of the Soviet Vega 1 and 2 spacecraft, a self-consistent estimate of the frame tie offset has been found, along with its uncertainty.
Quantum information causality.
Pitalúa-García, Damián
2013-05-24
How much information can a transmitted physical system fundamentally communicate? We introduce the principle of quantum information causality, which states the maximum amount of quantum information that a quantum system can communicate as a function of its dimension, independently of any previously shared quantum physical resources. We present a new quantum information task, whose success probability is upper bounded by the new principle, and show that an optimal strategy to perform it combines the quantum teleportation and superdense coding protocols with a task that has classical inputs. PMID:23745844
Reference Frames in Earth Rotation Theories
NASA Astrophysics Data System (ADS)
Ferrándiz, José M.; Belda, Santiago; Heinkelmann, Robert; Getino, Juan; Schuh, Harald; Escapa, Alberto
2015-04-01
Nowadays the determination of the Earth Orientation Parameters (EOP) and the different Terrestrial Reference Frames (TRF) are not independent. The available theories of Earth rotation aims at providing the orientation of a certain reference system linked somehow to the Earth with respect to a given celestial system, considered as inertial. In the past years a considerable effort has been dedicated to the improvement of the TRF realizations, following the lines set up in the 1980's. However, the reference systems used in the derivation of the theories have been rather considered as something fully established, not deserving a special attention. In this contribution we review the definitions of the frames used in the main theoretical approaches, focusing on those used in the construction of IAU2000, and the extent to which their underlying hypotheses hold. The results are useful to determine the level of consistency of the predicted and determined EOP.
Virtual Frame Buffer Interface Program
NASA Technical Reports Server (NTRS)
Wolfe, Thomas L.
1990-01-01
Virtual Frame Buffer Interface program makes all frame buffers appear as generic frame buffer with specified set of characteristics, allowing programmers to write codes that run unmodified on all supported hardware. Converts generic commands to actual device commands. Consists of definition of capabilities and FORTRAN subroutines called by application programs. Developed in FORTRAN 77 for DEC VAX 11/780 or DEC VAX 11/750 computer under VMS 4.X.
Backreaction of frame dragging
Herdeiro, Carlos A. R.; Rebelo, Carmen; Warnick, Claude M.
2009-10-15
The backreaction on black holes due to dragging heavy, rather than test, objects is discussed. As a case study, a five-dimensional regular black Saturn system where the central black hole has vanishing intrinsic angular momentum, J{sup BH}=0, is considered. It is shown that there is a correlation between the sign of two response functions. One is interpreted as a moment of inertia of the black ring in the black Saturn system. The other measures the variation of the black ring horizon angular velocity with the central black hole mass, for fixed ring mass and angular momentum. The two different phases defined by these response functions collapse, for small central black hole mass, to the thin and fat ring phases. In the fat phase, the zero area limit of the black Saturn ring has reduced spin j{sup 2}>1, which is related to the behavior of the ring angular velocity. Using the 'gravitomagnetic clock effect', for which a universality property is exhibited, it is shown that frame dragging measured by an asymptotic observer decreases, in both phases, when the central black hole mass increases, for fixed ring mass and angular momentum. A close parallelism between the results for the fat phase and those obtained recently for the double Kerr solution is drawn, considering also a regular black Saturn system with J{sup BH}{ne}0.
Optical characterization of frame grabbers
NASA Astrophysics Data System (ADS)
Pozo, A. M.; Rubiño, M.
2013-04-01
Today, video cameras connected to frame grabbers are used in many applications such as traffic control, surveillance, medical systems or machine vision. In this work, we present an optical characterization of frame grabbers in terms of their spatial-frequency responses. This characterization is based on the modulation transfer function (MTF) determination from speckle patterns using a low-cost experimental setup. We have characterized and compared three different frame grabbers. The three frame grabbers produce an amplification (boost) in the horizontal MTF in different spatial-frequency ranges and having different maximum amplification values.
Advanced Wall Framing; BTS Technology Fact Sheet
Southface Energy Institute; Tromly, K.
2000-11-07
Advanced framing techniques for home construction have been researched extensively and proven effective. Both builders and home owners can benefit from advanced framing. Advanced framing techniques create a structurally sound home that has lower material and labor costs than a conventionally framed house. This fact sheet describes advanced framing techniques, design considerations, and framing.
Quantum Bundle Description of Quantum Projective Spaces
NASA Astrophysics Data System (ADS)
Ó Buachalla, Réamonn
2012-12-01
We realise Heckenberger and Kolb's canonical calculus on quantum projective ( N - 1)-space C q [ C p N-1] as the restriction of a distinguished quotient of the standard bicovariant calculus for the quantum special unitary group C q [ SU N ]. We introduce a calculus on the quantum sphere C q [ S 2 N-1] in the same way. With respect to these choices of calculi, we present C q [ C p N-1] as the base space of two different quantum principal bundles, one with total space C q [ SU N ], and the other with total space C q [ S 2 N-1]. We go on to give C q [ C p N-1] the structure of a quantum framed manifold. More specifically, we describe the module of one-forms of Heckenberger and Kolb's calculus as an associated vector bundle to the principal bundle with total space C q [ SU N ]. Finally, we construct strong connections for both bundles.
FRAMES and Other IEM Technologies
A presentation package is developed that describes the FRAMES software technology system. The philosophy of FRAMES is discussed; its components and editors are reviewed; its relationship to integrated environmental modeling technologies; such as D4EM and SuperMUSE, are described;...
Interference of light from independent sources
Pegg, David T.
2006-12-15
We extend and generalize previous work on the interference of light from independent cavities that began with the suggestion of Pfleegor and Mandel [Phys. Rev. 159, 1084 (1967)] that their observed interference of laser beams should not be associated too closely with particular states of the beams but more with the detection process itself. In particular we examine how the detection of interference induces a nonrandom-phase difference between internal cavity states with initial random phases for a much broader range of such states than has previously been considered. We find that a subsequent interference measurement should give results consistent with the induced phase difference. The inclusion of more cavities in the interference measurements enables the construction in principle of a laboratory in the sense used by Aharonov and Susskind, made up of cavity fields that can serve as frames of phase reference. We also show reasonably simply how intrinsic phase coherence of a beam of light leaking from a single cavity arises for any internal cavity state, even a photon number state. Although the work presented here may have some implications for the current controversy over whether or not a typical laboratory laser produces a coherent state, it is not the purpose of this paper to enter this controversy; rather it is to examine the interesting quantum physics that arises for cavities with more general internal states.
NASA Astrophysics Data System (ADS)
Annan, James; Hargreaves, Julia
2016-04-01
In order to perform any Bayesian processing of a model ensemble, we need a prior over the ensemble members. In the case of multimodel ensembles such as CMIP, the historical approach of ``model democracy'' (i.e. equal weight for all models in the sample) is no longer credible (if it ever was) due to model duplication and inbreeding. The question of ``model independence'' is central to the question of prior weights. However, although this question has been repeatedly raised, it has not yet been satisfactorily addressed. Here I will discuss the issue of independence and present a theoretical foundation for understanding and analysing the ensemble in this context. I will also present some simple examples showing how these ideas may be applied and developed.