Science.gov

Sample records for freely dissolved concentration

  1. Passive sampling methods for contaminated sediments: Scientific rationale supporting use of freely dissolved concentrations

    PubMed Central

    Mayer, Philipp; Parkerton, Thomas F; Adams, Rachel G; Cargill, John G; Gan, Jay; Gouin, Todd; Gschwend, Philip M; Hawthorne, Steven B; Helm, Paul; Witt, Gesine; You, Jing; Escher, Beate I

    2014-01-01

    Passive sampling methods (PSMs) allow the quantification of the freely dissolved concentration (Cfree) of an organic contaminant even in complex matrices such as sediments. Cfree is directly related to a contaminant's chemical activity, which drives spontaneous processes including diffusive uptake into benthic organisms and exchange with the overlying water column. Consequently, Cfree provides a more relevant dose metric than total sediment concentration. Recent developments in PSMs have significantly improved our ability to reliably measure even very low levels of Cfree. Application of PSMs in sediments is preferably conducted in the equilibrium regime, where freely dissolved concentrations in the sediment are well-linked to the measured concentration in the sampler via analyte-specific partition ratios. The equilibrium condition can then be assured by measuring a time series or a single time point using passive samplers with different surface to volume ratios. Sampling in the kinetic regime is also possible and generally involves the application of performance reference compounds for the calibration. Based on previous research on hydrophobic organic contaminants, it is concluded that Cfree allows a direct assessment of 1) contaminant exchange and equilibrium status between sediment and overlying water, 2) benthic bioaccumulation, and 3) potential toxicity to benthic organisms. Thus, the use of PSMs to measure Cfree provides an improved basis for the mechanistic understanding of fate and transport processes in sediments and has the potential to significantly improve risk assessment and management of contaminated sediments. Integr Environ Assess Manag 2014;10:197–209. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:24288295

  2. Field testing of equilibrium passive samplers to determine freely dissolved native polycyclic aromatic hydrocarbon concentrations.

    PubMed

    Cornelissen, Gerard; Pettersen, Arne; Broman, Dag; Mayer, Philipp; Breedveld, Gijs D

    2008-03-01

    Equilibrium passive samplers are promising tools to determine freely dissolved aqueous concentrations (C(W,free)) of hydrophobic organic compounds. Their use in the field, however, remains a challenge. In the present study on native polycyclic aromatic hydrocarbons (PAHs) in Oslo Harbor, Norway, two different passive sampler materials, polyoxymethylene (POM; thickness, 55 microm [POM-55] and 500 microm [POM-500]) and polydimethylsiloxane (PDMS; thickness, 200 microm), were used to determine in the laboratory C(W,free) in sediment pore water (C(PW,free)), and the suitability of five passive samplers for determination of C(W,free) in overlying surface water was tested under field conditions. For laboratory determinations of C(PW,free), both POM-55 and PDMS turned out to be suitable. In the field, the shortest equilibrium times (approximately one month) were observed for POM-55 and PDMS (thickness, 28 microm) coatings on solid-phase microextraction fibers, with PDMS tubing as a good alternative. Low-density polyethylene (thickness, 100 microm) and POM-500 did not reach equilibrium within 119 d in the field. Realistic values were obtained for dissolved organic carbon-water partition coefficients in the field (approximately one log unit under log K(OW)), which strengthened the conclusion that equilibrium was established in field-exposed passive samplers. At all four stations, chemical activity ratios between pore water and overlying water were greater than one for all PAHs, indicating that the sediment was a PAH diffusion source and that sediment remediation may be an appropriate treatment for PAH contamination in Oslo Harbor. PMID:18516795

  3. Review of polyoxymethylene passive sampling methods for quantifying freely dissolved porewater concentrations of hydrophobic organic contaminants.

    PubMed

    Arp, Hans Peter H; Hale, Sarah E; Elmquist Krus, Marie; Cornelissen, Gerard; Grabanski, Carol B; Miller, David J; Hawthorne, Steven B

    2015-04-01

    Meth ods involving polyoxymethylene (POM) as a passive sampler are increasing in popularity to assess contaminant freely dissolved porewater concentrations in soils and sediments. These methods require contaminant-specific POM-water partition coefficients, KPOM . Certain methods for determining KPOM perform reproducibly (within 0.2 log units). However, other methods can give highly varying KPOM values (up to 2 log units), especially for polycyclic aromatic hydrocarbons (PAHs). To account for this variation, the authors tested the influence of key methodological components in KPOM determinations, including POM thickness, extraction procedures, and environmental temperature and salinity, as well as uptake kinetics in mixed and static systems. All inconsistencies in the peer-reviewed literature can be accounted for by the likelihood that thick POM materials (500??m or thicker) do not achieve equilibrium (causing negative biases up to 1 log unit), or that certain POM extraction procedures do not ensure quantitative extraction (causing negative biases up to 2 log units). Temperature can also influence KPOM , although all previous literature studies were carried out at room temperature. The present study found that KPOM values at room temperature are independent (within 0.2 log units) of POM manufacture method, of thickness between 17??m and 80??m, and of salinity between 0% and 10%. Regarding kinetics, monochloro- to hexachloro-polychlorinated biphenyls (PCBs) were within 0.2 log units of equilibrium after 28?d in the mixed system, but only dichloro-PCBs achieved near equilibrium after 126?d in the static system. Based on these insights, recommended methods and KPOM values to facilitate interlaboratory reproducibility are presented. PMID:25702935

  4. Freely dissolved concentrations and sediment-water activity ratios of PCDD/Fs and PCBs in the open Baltic Sea.

    PubMed

    Cornelissen, Gerard; Wiberg, Karin; Broman, Dag; Arp, Hans Peter H; Persson, Ylva; Sundqvist, Kristina; Jonsson, Per

    2008-12-01

    Aqueous concentrations of polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) as well as polychlorinated biphenyls (PCBs) in the open sea have heretofore been measured by filtering and extracting large amounts of water. Measurement of freely dissolved concentrations with this technique is difficult because of corrections for sorption to dissolved organic matter. In this study we use a novel, more economic technique using equilibrium passive samplers consisting of 17-microm thin polyoxymethylene (POM-17), capable of measuring freely dissolved aqueous concentrations (Cw) in pristine (i.e., background) locations. POM-17 was employed in an extensive field campaign at five stations in the open Baltic sea to obtain Cw at two depths (1 m above the seafloor and 25 m below the surface). Median Cw in the overlying water was 2.3 pg toxic equivalents (TEQ)/m3 PCDD/Fs and 15 pg/L sum 7-PCB, with generally less than a factor two variation among sites and depths. Also freely dissolved concentrations of native compounds in the surface sediment porewater (C(PW)) were determined in laboratory batch experiments. The data were used to derive sediment-water activity ratios, which indicate the diffusive flux direction. It was found that the PCDD/Fs and PCBs were in close equilibrium between the sediment porewater and the overlying water. Comparison of C(PW) with total sediment concentrations indicated that more than 90% of the compounds were sorbed to sedimentary black carbon. PMID:19192790

  5. Measuring low picogram per liter concentrations of freely dissolved polychlorinated biphenyls in sediment pore water using passive sampling with polyoxymethylene.

    PubMed

    Hawthorne, Steven B; Miller, David J; Grabanski, Carol B

    2009-11-15

    Studies into bioaccumulation of polychlorinated biphenyls (PCBs) have increasingly focused on congeners that are freely dissolved in sediment interstitial pore water. Because of their low water solubilities and their tendency to persist and concentrate as they progress in the food chain, interest has grown in methods capable of measuring individual PCB congeners at low part-per-quadrillion (picogram per liter) concentrations. Obtaining large volumes of pore water is difficult (or impossible), which makes conventional analytical approaches incapable of attaining suitable detection limits. In the present study, nondepletive sampling is used to achieve very low detection limits of freely dissolved PCBs, while requiring no separation of the sediment and water slurry. Commercially available 76 microm thick polyoxymethylene (POM) coupons were placed directly into wet sediments and left to reach equilibrium with the pore water and sediment PCBs for up to 84 days, with 28 days found to be sufficient. Freely dissolved concentrations were then calculated by dividing the PCB concentration found in the POM by its POM/water partitioning coefficient (K(POM)). The K(POM) values required for determining water concentrations were measured using two spiked sediments and two historically contaminated sediments for all 62 PCB congeners that are present at greater than trace concentrations in commercial Aroclors. Log K(POM) values ranged from ca. 4.6 for dichloro-congeners to ca. 7.0 for octachloro-congeners and correlate well with octanol/water coefficients (K(OW)) (r(2) = 0.947) so that a simple linear equation can be used to calculate dissolved concentrations within a factor of 2 or better for congeners having no measured K(POM) value. Detection limits for freely dissolved PCBs ranged from ca. 20 pg/L (part-per-quadrillion) for dichloro-congeners down to ca. 0.2 pg/L for higher-molecular-weight congeners. Sorption isotherms were found to be linear (r(2) > 0.995) over at least 3 orders of magnitude for all congeners, demonstrating good quantitative linearity of the method for determining freely dissolved PCB concentrations at environmentally relevant levels. PMID:19908907

  6. Measuring picogram per liter concentrations of freely dissolved parent and alkyl PAHs (PAH-34), using passive sampling with polyoxymethylene.

    PubMed

    Hawthorne, Steven B; Jonker, Michiel T O; van der Heijden, Stephan A; Grabanski, Carol B; Azzolina, Nicholas A; Miller, David J

    2011-09-01

    Passive sampling with nondepletive sorbents is receiving increasing interest because of its potential to measure freely dissolved concentrations of hydrophobic organic compounds (HOCs) at very low concentrations, as well as its potential for both laboratory use and field deployment. However, consistent approaches have yet to be developed for the majority of HOCs of environmental and regulatory interest. In the present study, a passive sampling method was developed which allows the freely dissolved concentrations of 18 parent and 16 groups of alkyl polycyclic aromatic hydrocarbons (PAHs) on the U.S. Environmental Protection Agency (USEPA)'s "PAH-34" target compound list to be measured. Commercially available 76-?m-thick polyoxymethylene (POM) was placed in sediment/water slurries and exposed for up to 126 days, with 28 days found to be sufficient to obtain equilibrium among the sediment, water, and POM phases for the target 2- to 6-ring PAHs. The POM/water partition coefficients (K(POM)) necessary to calculate freely dissolved concentrations for parent PAHs were determined in two separate laboratories (one using pure standards, and the other using coal tar/petroleum-contaminated sediments) and agreed very well. Since the so-called "16" alkyl PAHs on the PAH-34 list actually include several hundreds of isomers for which no standards exist, sediments impacted by coal tar, or spiked with a coal tar/petroleum nonaqueous phase liquid (NAPL) were also used to measure K(POM) values for each alkyl PAH cluster. The log K(POM) values ranged from ca. 3.0 to 6.2 for 2- to 6-ring parent PAHs, and correlated well with SPARC octanol/water coefficients (K(OW)) (correlation coefficient of r(2) = 0.986). However, log K(POM) values for alkyl PAHs deviated increasingly from SPARC log K(OW) values with increasing degree of alkylation. A simple empirical model that incorporates the number of carbon atoms in a PAH gave a better fit to the experimental log K(POM) values, and was used to estimate log K(POM) for alkyl PAHs that could not be directly measured. Detection limits (as freely dissolved concentrations) ranged from ca. 1 part per trillion (ng/L) for the 2-ring PAH naphthalene, down to <1 pg/L (part per quadrillion) for the 5- and 6-ring PAHs. Sorption isotherms were linear (r(2) > 0.99) over at least 4 orders of magnitude. PMID:21755996

  7. A DFT-based toxicity QSAR study of aromatic hydrocarbons to Vibrio fischeri: Consideration of aqueous freely dissolved concentration.

    PubMed

    Wang, Ying; Yang, Xianhai; Wang, Juying; Cong, Yi; Mu, Jingli; Jin, Fei

    2016-05-01

    In the present study, quantitative structure-activity relationship (QSAR) techniques based on toxicity mechanism and density functional theory (DFT) descriptors were adopted to develop predictive models for the toxicity of alkylated and parent aromatic hydrocarbons to Vibrio fischeri. The acute toxicity data of 17 aromatic hydrocarbons from both literature and our experimental results were used to construct QSAR models by partial least squares (PLS) analysis. With consideration of the toxicity process, the partition of aromatic hydrocarbons between water phase and lipid phase and their interaction with the target biomolecule, the optimal QSAR model was obtained by introducing aqueous freely dissolved concentration. The high statistical values of R(2) (0.956) and QCUM(2) (0.942) indicated that the model has good goodness-of-fit, robustness and internal predictive power. The average molecular polarizability (α) and several selected thermodynamic parameters reflecting the intermolecular interactions played important roles in the partition of aromatic hydrocarbons between the water phase and biomembrane. Energy of the highest occupied molecular orbital (EHOMO) was the most influential descriptor which dominated the toxicity of aromatic hydrocarbons through the electron-transfer reaction with biomolecules. The results demonstrated that the adoption of freely dissolved concentration instead of nominal concentration was a beneficial attempt for toxicity QSAR modeling of hydrophobic organic chemicals. PMID:26812082

  8. Measurement of freely dissolved PAH concentrations in sediment beds using passive sampling with low-density polyethylene strips.

    PubMed

    Fernandez, Loretta A; MacFarlane, John K; Tcaciuc, Alexandra P; Gschwend, Philip M

    2009-03-01

    To assess hydrophobic organic chemical (HOC) contamination in sediments, a method was developed using polyethylene (PE) passive samplers inserted directly in the intact sediment beds to measure freely dissolved HOC concentrations. Performance reference compounds (PRCs: d10-phenanthrene, d10-pyrene, and d12-chrysene), impregnated into the PE before use, allowed porewater concentrations to be deduced after exposure times much shorter than would be required for sampler equilibration (days instead of months). Three diverse sediments were used in the laboratory, and PE-deduced porewater concentrations of six native PAHs (phenanthrene, anthracene, fluoranthene, pyrene, benz(a)anthracene, and chrysene) matched results from air-bridge testing and from direct porewater extractions after correcting for colloid effects. PE strips, deployed from a boat in Boston Harbor, yielded concentrations that were like those measured in porewaters from a sediment core collected nearby. Notably, equilibrium partitioning (EqP) estimates were always much higher (up to 100x) than those measured using the other methods, suggesting the large inaccuracy of that approach. Hence, PE passive sampling appears to greatly improve the accuracy of assessing the hazards posed by compounds like PAHs in sediment beds. PMID:19350915

  9. A passive sampler based on solid phase microextraction (SPME) for sediment-associated organic pollutants: Comparing freely-dissolved concentration with bioaccumulation.

    PubMed

    Maruya, Keith A; Lao, Wenjian; Tsukada, David; Diehl, Dario W

    2015-10-01

    The elevated occurrence of hydrophobic organic chemicals (HOCs) such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCBs) and legacy organchlorine pesticides (e.g. chlordane and DDT) in estuarine sediments continues to poses challenges for maintaining the health of aquatic ecosystems. Current efforts to develop and apply protective, science-based sediment quality regulations for impaired waterbodies are hampered by non-concordance between model predictions and measured bioaccumulation and toxicity. A passive sampler incorporating commercially available solid phase microextraction (SPME) fibers was employed in lab and field studies to measure the freely dissolved concentration of target HOCs (Cfree) and determine its suitability as a proxy for bioaccumulation. SPME deduced Cfree for organochlorines was highly correlated with tissue concentrations (Cb) of Macoma and Nereis spp. co-exposed in laboratory microcosms containing both spiked and naturally contaminated sediments. This positive association was also observed in situ for endemic bivalves, where SPME samplers were deployed for up to 1 month at an estuarine field site. The concordance between Cb and Cfree for PAH was more variable, in part due to likely biotransformation by model invertebrates. These results indicate that SPME passive samplers can serve as a proxy for bioaccumulation of sediment-associated organochlorines in both lab and field studies, reducing the uncertainty associated with model predictions that do not adequately account for differential bioavailability. PMID:26246043

  10. Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Procedures for the Determination of the Freely Dissolved Interstitial Water Concentrations of Nonionic Organics

    EPA Science Inventory

    This document describes procedures to determine the concentrations of nonionic organic chemicals in sediment interstitial waters. In previous ESB documents, the general equilibrium partitioning (EqP) approach was chosen for the derivation of sediment benchmarks because it account...

  11. Evaluation of passive samplers with neutral or ion-exchange polymer coatings to determine freely dissolved concentrations of the basic surfactant lauryl diethanolamine: Measurements of acid dissociation constant and organic carbon-water sorption coefficient.

    PubMed

    Wang, Fang; Chen, Yi; Hermens, Joop L M; Droge, Steven T J

    2013-11-01

    A passive sampler tool (solid-phase microextraction, SPME) was optimized to measure freely dissolved concentrations (Cw,free) of lauryl diethanolamine (C12-DEA). C12-DEA can be protonated and act as a cationic surfactant. From the pH-dependent sorption to neutral SPME coatings (polyacrylate and PDMS), a pKa of 8.7 was calculated, which differs more than two units from the value of 6.4 reported elsewhere. Polyacrylate coated SPME could not adequately sample largely protonated C12-DEA in humic acid solutions of pH 6. A new hydrophobic SPME coating with cation-exchange properties (C18/SCX) sorbed C12-DEA 100 fold stronger than polyacrylate, because it specifically sorbs protonated C12-DEA species. The C18/SCX-SPME fiber showed linear calibration isotherms in a concentration range of <1 nM-1 μM (well below the CMC). Using the C18/SCX-SPME fibers, linear sorption isotherms to Aldrich humic acid at pH 6 (ionic strength 0.015 M) were measured over a broad concentration range with a sorption coefficient of 10(5.3). PMID:24094752

  12. The total and freely dissolved polycyclic aromatic hydrocarbons content in residues from biogas production.

    PubMed

    Stefaniuk, Magdalena; Oleszczuk, Patryk

    2016-01-01

    In the situation of increasing agricultural utilization of residues from biogas production (RBP) it is important to determine the concentration of contaminants, which could occur in these materials. The group of contaminants that requires special attention are polycyclic aromatic hydrocarbons (PAH). The objective of the study was to determine the total and freely dissolved (Cfree) of PAHs in RBP from 6 different biogas plants operating under various temperature conditions and without or with the separation into the solid and liquid fractions. The freely dissolved PAHs were determined using polyoxymethylene (POM method). The total content of the ?16 PAHs in RBP varied from 449 to 6147?g/kgdw, while that of Cfree PAHs was at the level from 57 to 653ng/L. No significant differences were noted in the content of the ?16 PAHs (total) between the solid and the liquid fractions. This indicates that in the course of the separation, the PAHs are distributed proportionally between the fractions. However in the case of Cfree, PAHs content in the solid fraction was over twice as high as in the liquid fraction. This was probably due to the greater affinity of the particles present in the liquid fraction to the analysed PAHs than to the particles of the solid fraction. Higher affinity to liquid fraction was also confirmed by the distribution coefficients KTOC determined on the basis of Cfree. PMID:26586628

  13. Spatial and temporal variation of freely dissolved PAHs in an urban river undergoing Superfund remediation

    PubMed Central

    Sower, GJ; Anderson, K.A.

    2014-01-01

    Urban rivers with a history of industrial use can exhibit spatial and temporal variations in contaminant concentrations that may significantly affect risk evaluations and even the assessment of remediation efforts. Concentrations of 15 biologically available priority pollutant polycyclic aromatic hydrocarbons (PAHs) were measured over five years along 18.5 miles of the lower Willamette River using passive sampling devices and HPLC. The study area includes the Portland Harbor Superfund megasite with several PAH sources including remediation operations for coal tar at RM 6.3 west and an additional Superfund site, McCormick and Baxter, at RM 7 east consisting largely of creosote contamination. Study results show that organoclay capping at the McCormick and Baxter Superfund Site reduced PAHs from a pre-cap average of 440 422 ng/L to 8 3 ng/L post-capping. Results also reveal that dredging of submerged coal tar nearly tripled nearby freely dissolved PAH concentrations. For apportioning sources, fluoranthene/ pyrene and phenanthrene/anthracene diagnostic ratios from passive sampling devices were established for creosote and coal tar contamination and compared to published sediment values. PMID:19174872

  14. Spatial and temporal variation of freely dissolved polycyclic aromatic hydrocarbons in an urban river undergoing Superfund remediation.

    PubMed

    Sower, Gregory James; Anderson, Kim A

    2008-12-15

    Urban rivers with a history of industrial use can exhibit spatial and temporal variations in contaminant concentrations that may significantly affect risk evaluations and even the assessment of remediation efforts. Concentrations of 15 biologically available priority pollutant polycyclic aromatic hydrocarbons (PAHs) were measured over five years along 18.5 miles of the lower Willamette River using passive sampling devices and HPLC. The study area includes the Portland Harbor Superfund megasite with several PAH sources including remediation operations for coal tar at RM 6.3 west and an additional Superfund site, McCormick and Baxter, at RM 7 east consisting largely of creosote contamination. Study results show that organoclay capping at the McCormick and Baxter Superfund Site reduced PAHs from a precap average of 440 +/- 422 ng/L to 8 +/- 3 ng/L postcapping. Results also reveal that dredging of submerged coal tar nearly tripled nearby freely dissolved PAH concentrations. For apportioning sources, fluoranthene/pyrene and phenanthrene/anthracene diagnostic ratios from passive sampling devices were established for creosote and coal tar contamination and compared to published sediment values. PMID:19174872

  15. Spatial and temporal variation of freely dissolved polycyclic aromatic hydrocarbons in an urban river undergoing Superfund remediation

    SciTech Connect

    Aregory James Sower; Kim A. Anderson

    2008-12-15

    Urban rivers with a history of industrial use can exhibit spatial and temporal variations in contaminant concentrations that may significantly affect risk evaluations and even the assessment of remediation efforts. Concentrations of 15 biologically available priority pollutant polycyclic aromatic hydrocarbons (PAHs) were measured over five years along 18.5 miles of the lower Willamette River using passive sampling devices and HPLC. The study area includes the Portland Harbor Superfund megasite with several PAH sources including remediation operations for coal tar at RM 6.3 west and an additional Superfund site, McCormick and Baxter, at RM 7 east consisting largely of creosote contamination. Study results show that organoclay capping at the McCormick and Baxter Superfund Site reduced PAHs from a precap average of 440 {+-} 422 ng/L to 8 {+-} 3 ng/L postcapping. Results also reveal that dredging of submerged coal tar nearly tripled nearby freely dissolved PAH concentrations. For apportioning sources, fluoranthene/pyrene and phenanthrene/anthracene diagnostic ratios from passive sampling devices were established for creosote and coal tar contamination and compared to published sediment values. 29 refs., 3 figs., 3 tabs.

  16. Determining air-water exchange, spatial and temporal trends of freely dissolved PAHs in an urban estuary using passive polyethylene samplers.

    PubMed

    Lohmann, Rainer; Dapsis, Meredith; Morgan, Eric J; Dekany, Victoria; Luey, Pamela J

    2011-04-01

    Passive polyethylene (PE) samplers were deployed at six locations within Narragansett Bay (RI, USA) to determine sources and trends of freely dissolved and gas-phase polycyclic aromatic hydrocarbons (PAHs) from May to November 2006. Freely dissolved aqueous concentrations of PAHs were dominated by fluoranthene, pyrene, and phenanthrene, at concentrations ranging from tens to thousands of pg/L. These were also the dominant PAHs in the gas phase, at hundreds to thousands of pg/m3. All stations mostly followed the same temporal trends, with highest concentrations (up to 7300 pg/L for sum PAHs) during the second of 11 deployments, coinciding with a major rainstorm. Strong correlations of sum PAHs with river flows and wastewater treatment plant discharges highlighted the importance of rainfall in mobilizing PAHs from a combination of runoff and atmospheric washout. PAH concentrations declined through consecutive deployments III to V, which could be explained by an exponential decay due to flushing with cleaner ocean water during tides. The estimated residence time (tres) of the PAH pulse was 24 days, close to an earlier estimate of tres of 26 days for freshwater in the Bay. Air-water exchange gradients indicated net volatilization of most PAHs closest to Providence. Further south in the Bay, gradients had changed to mostly net uptake of the more volatile PAHs, but net volatilization for the less volatile PAHs. Based on characteristic PAH ratios, freely dissolved PAHs at most sites originated from the combustion of fossil fuels; only two sites were at times affected by fuel spill-derived PAHs. PMID:21351793

  17. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). However, historically a...

  18. Application of Passive Sampling for Measuring Dissolved Concentrations of Organic Contaminants in the Water Column at Three U.S. EPA Marine Superfund Sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). Historically acquiring ...

  19. Application of Passive Sampling for Measuring Dissolved Concentrations of Organic Contaminants in the Water Column at Three U.S. EPA Marine Superfund Sites.

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). Historically, acquiring...

  20. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect

    NA

    2004-11-22

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  1. Estimation of Freely-Dissolved Concentrations of Polychlorinated Biphenyls, 2,3,7,8-Substituted Congeners and Homologs of Polychlorinated dibenzo-p-dioxins and Dibenzofurans in Water for Development of Total Maximum Daily Loadings for the Bluestone River Watershed, Virginia and West Virginia

    USGS Publications Warehouse

    Gale, Robert W.

    2007-01-01

    The Commonwealth of Virginia Department of Environmental Quality, working closely with the State of West Virginia Department of Environmental Protection and the U.S. Environmental Protection Agency is undertaking a polychlorinated biphenyl source assessment study for the Bluestone River watershed. The study area extends from the Bluefield area of Virginia and West Virginia, targets the Bluestone River and tributaries suspected of contributing to polychlorinated biphenyl, polychlorinated dibenzo-p-dioxin and dibenzofuran contamination, and includes sites near confluences of Big Branch, Brush Fork, and Beaver Pond Creek. The objectives of this study were to gather information about the concentrations, patterns, and distribution of these contaminants at specific study sites to expand current knowledge about polychlorinated biphenyl impacts and to identify potential new sources of contamination. Semipermeable membrane devices were used to integratively accumulate the dissolved fraction of the contaminants at each site. Performance reference compounds were added prior to deployment and used to determine site-specific sampling rates, enabling estimations of time-weighted average water concentrations during the deployed period. Minimum estimated concentrations of polychlorinated biphenyl congeners in water were about 1 picogram per liter per congener, and total concentrations at study sites ranged from 130 to 18,000 picograms per liter. The lowest concentration was 130 picograms per liter, about threefold greater than total hypothetical concentrations from background levels in field blanks. Polychlorinated biphenyl concentrations in water fell into three groups of sites: low (130-350 picogram per liter); medium (640-3,500 picogram per liter; and high (11,000-18,000 picogram per liter). Concentrations at the high sites, Beacon Cave and Beaverpond Branch at the Resurgence, were about four- to sixfold higher than concentrations estimated for the medium group of sites. Minimum estimated concentrations of polychlorinated dibenzo-p-dioxin and dibenzofuran congeners in water were about 0.2 to 1 femtograms per liter. Estimated total concentrations of 2,3,7,8-substituted congeners in water at study sites ranged from less than 1 to 22,000 femtograms per liter and less than 1 to 2,300 femtograms per liter for polychlorinated dibenzo-p-dioxin and dibenzofuran congeners, respectively. Total concentrations of 2,3,7,8-substituted congeners in water were comprised largely of octachlorodibenzo-p-dioxin and dibenzofuran, with less than 10 percent of the total contributed by concentrations of other congeners, mainly 2,3,7,8-heptachlorodibenzo-p-dioxin and dibenzofuran. Of special interest for this study was 2,3,7,8-tetrachlorodibenzo-p-dioxin with a regulatory surface water-quality criterion of 1,200 femtograms per liter. Estimated concentrations in water ranged from 0.5 to 41 femtograms per liter. Concentrations in water were less than 5 femtograms per liter at all study sites, except the Bluefield Westside Sewage Treatment Plan, with an estimated concentration of 41 femtograms per liter. Estimated total concentrations of homologs of polychlorinated dibenzo-p-dioxins and dibenzofurans in water at the study sites ranged from 3,200 to 36,000 femtograms per liter and 210-4,800 femtograms per liter, respectively. Again, homologs of polychlorinated dibenzo-p-dioxins and dibenzofurans in water were comprised largely of octachlorodibenzo-p-dioxin and dibenzofuran.

  2. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect

    P. Bernot

    2005-07-13

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  3. Dissolved Concentration Limits of Radioactive Elements

    SciTech Connect

    Y. Chen; E.R. Thomas; F.J. Pearson; P.L. Cloke; T.L. Steinborn; P.V. Brady

    2003-06-20

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, and measurements made in laboratory experiments and field work. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 radioactive elements (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium), which are important to calculated dose. Model outputs are mainly in the form of look-up tables plus one or more uncertainty terms. The rest are either in the form of distributions or single values. The results of this analysis are fundamental inputs for total system performance assessment to constrain the release of these elements from waste packages and the engineered barrier system. Solubilities of plutonium, neptunium, uranium, americium, actinium, thorium, protactinium, lead, and radium have been re-evaluated using the newly updated thermodynamic database (Data0.ymp.R2). For all of the actinides, identical modeling approaches and consistent environmental conditions were used to develop solubility models in this revision. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, activity coefficients, and selection of solubility controlling phase have been quantified or otherwise addressed. Moreover, a new blended plutonium solubility model has been developed in this revision, which gives a mean solubility that is three orders of magnitude lower than the plutonium solubility model used for the Total System Performance Assessment for the Site Recommendation. Two alternative neptunium solubility models have also been developed in this revision. The base-case models have been validated to the level of confidence required by their relative importance to the potential performance of the repository system. The plutonium and neptunium solubility models have been validated to a higher level of confidence than the rest.

  4. PAL SPME Arrow-evaluation of a novel solid-phase microextraction device for freely dissolved PAHs in water.

    PubMed

    Kremser, Andreas; Jochmann, Maik A; Schmidt, Torsten C

    2016-01-01

    After more than 25years, solid-phase microextraction (SPME) has gained widespread acceptance as a well-automatable and flexible microextraction technique, while its instrumental basis remained mostly unchanged. The novel PAL (Prep And Load solution) SPME Arrow combines the advantages of SPME with the benefits of extraction techniques providing larger sorption phase volumes such as stir bar sorptive extraction (SBSE). It thereby avoids the inherent drawbacks of both techniques such as limitations in method automation in the case of SBSE, as well as the small sorption phase volumes and the lacking fiber robustness of classical SPME fibers. This new design is based on a robust stainless steel backbone, carrying, the screw connection to the PAL sampler, the enlarged sorption phase, and an arrow-shaped tip for conservative penetration of septa (hence the name). An outer capillary encloses this phase apart from enrichment and desorption processes and rests against the tip during transfer and penetrations, resulting in a homogeneously closed device. Here, we present an evaluation and a comparison of the novel PAL SPME Arrow with classical SPME fibers, extracting polycyclic aromatic hydrocarbons (PAHs) as model analytes, from the freely dissolved fraction in lab water and groundwater via direct immersion using polydimethylsiloxane (PDMS) as common sorption phase material. Limits of detection, repeatabilities, and extraction yields were determined for the PAL SPME Arrow and compared to data of classical SPME fibers and SBSE bars. Results indicate a significant benefit in extraction efficiency due to the larger sorption phase volume. It is accompanied by faultless mechanical robustness and thus better reliability, especially in case of prolonged, unattended, and automated operation. As an exemplary application, the water-soluble fraction of PAHs and derivatives in a roofing felt sample was quantified. Graphical Abstract Picture of a PAL SPME Arrow during extraction of a stirred water sample. PMID:26677018

  5. Concentration of frequencies of trapped waves in problems on freely floating bodies

    SciTech Connect

    Nazarov, Sergei A

    2012-09-30

    It is shown that by choosing the shape of two identical bodies floating freely in a channel with symmetric cross-section it is possible to form any pre-assigned number of linearly independent trapped waves (localized solutions). Bibliography: 27 titles.

  6. The effect of membrane filtration on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.

    1996-01-01

    The almost universally accepted operational definition for dissolved constituents is based on processing whole-water samples through a 0.45-??m membrane filter. Results from field and laboratory experiments indicate that a number of factors associated with filtration, other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample), can produce substantial variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. These variations result from the inclusion/exclusion of colloidally- associated trace elements. Thus, 'dissolved' concentrations quantitated by analyzing filtrates generated by processing whole-water through similar pore- sized membrane filters may not be equal/comparable. As such, simple filtration through a 0.45-??m membrane filter may no longer represent an acceptable operational definition for dissolved chemical constituents. This conclusion may have important implications for environmental studies and regulatory agencies.

  7. Effect of membrane filtration artifacts on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, Arthur J.; Elrick, Kent A.; Colberg, Mark R.

    1992-01-01

    Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one; only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

  8. Dissolved oxygen concentration affects hybrid striped bass growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of dissolved oxygen (DO) concentration in ponds at night during the growing season is important because fish growth and yield are greater in ponds with higher nightly DO concentrations. Three studies were conducted to quantify performance traits and metabolic responses of hybrid striped b...

  9. Dissolved carbon dioxide in basaltic glasses: concentrations and speciation

    NASA Astrophysics Data System (ADS)

    Fine, Gerald; Stolper, Edward

    1986-01-01

    Carbon dioxide dissolved in both synthetic Ca±Mg-bearing silicate glasses and natural basaltic glasses has been characterized using infrared spectroscopy. CO 2 is inferred to be dissolved in these glasses as distorted Ca or Mg carbonate ionic complexes that result in unique infrared absorption bands at 1515 cm -1 and 1435 cm -1. This speciation contrasts with the case of CO 2-bearing sodium aluminosilicate glasses, which contain both dissolved molecular CO 2 and dissolved Na-carbonate ionic-complexes. The difference in speciation in Ca±Mg-bearing melts may result in part from a higher activity of oxygens that react with CO 2 molecules to produce carbonate. Dissolved CO 2 contents of natural basaltic glasses can be determined from the intensities of the carbonate absorption bands at 1515 cm -1 and 1435 cm -1. The uncertainty of the method is estimated to be ± 15% of the amount present. The infrared technique is a powerful tool for the measurement of dissolved CO 2 contents in natural basaltic glasses since it is non-destructive, can be aimed at regions of glass a few tens of microns in size, and can discriminate between dissolved carbonate and carbon present as carbonate alteration, contained in fluid inclusions, or adsorbed on the glass. A set of submarine basaltic glasses dredged from a variety of locations contain 0-400 ppm dissolved CO 2, measured using the infrared technique. These concentrations are lower than most previous reports for similar basaltic glasses. No general relationship is observed between dissolved CO 2 content and depth of magmatic eruption, although some correlation might be present in restricted geographic locales.

  10. Investigating Factors that Affect Dissolved Oxygen Concentration in Water

    ERIC Educational Resources Information Center

    Jantzen, Paul G.

    1978-01-01

    Describes activities that demonstrate the effects of factors such as wind velocity, water temperature, convection currents, intensity of light, rate of photosynthesis, atmospheric pressure, humidity, numbers of decomposers, presence of oxidizable ions, and respiration by plants and animals on the dissolved oxygen concentration in water. (MA)

  11. Measurement of Relative Dissolved Gas Concentrations Using Underwater Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bell, R. J.; Toler, S.; van Amerom, F. H.; Wenner, P.; Hall, M.; Edkins, J.; Gassig, S.; Short, R.; Byrne, R.

    2004-12-01

    The deployment of underwater mass spectrometer (UMS) systems in marine and lacustrine environments has provided chemical data of exceptional temporal and spatial resolution. UMS instruments operate moored, tethered, remotely, or autonomously, allowing users to customize deployments to suit a wide variety of situations. The ability to collect and analyze real-time data enables prompt, intelligent sampling decisions based on observed analyte distributions. UMS systems can simultaneously detect a wide variety of analytes generated by biological, chemical, physical, geothermal and anthropogenic activities. A polydimethylsiloxane (PDMS) membrane separates the sample-stream from the spectrometer's vacuum chamber. This membrane is selective against water and charged species, yet highly permeable to volatile organic compounds (VOC) and simple gases. Current detection limits for dissolved gases and VOCs are on the order of ppm and ppb respectively. Semi-quantitative proof-of-concept applications have included horizontal mapping of gas gradients, characterization of geothermal vent water, and observation of dissolved gas profiles. Horizontal gradients in dissolved gas concentrations were determined in Lake Maggiore, St Petersburg, Florida. The UMS was positioned on a remotely-guided surface vehicle, and real-time gas concentration data were transmitted to shore via wireless ethernet. Real-time observations allowed intensive sampling of areas with strong gas gradients. Oxygen and CO2 exhibited patchy distributions and their concentrations varied inversely, presumably in response to biological activity. The UMS signal for methane depended on the instrument's proximity to organic rich sediments. Geothermal vent water was characterized while the UMS was deployed in Yellowstone Lake, Wyoming, on a tethered Eastern Oceanics remotely operated vehicle (ROV). Observations of dissolved vent-gas compositions were obtained to depths of 30m. Distinct differences in dissolved vent-gas compositions at different sites point to diverse geothermal conditions beneath the lake. Oxygen concentrations were low at most vents, while hydrogen sulfide, methane and carbon dioxide concentrations were highly variable. Dissolved gas depth profiles were obtained using the UMS system in Saanich Inlet, Canada. Due to degradation of organic material, the inlet's deep water is typically anoxic, and rich in methane, carbon dioxide, and reduced sulfur compounds. Relative gas concentrations were obtained between the surface and 200m. A thermocline was detected as the instrument entered anoxic bottom water at 100m. Below this depth oxygen signal intensity declined sharply to background levels. In contrast, carbon dioxide increased sharply below 100m until a reproducible maximum was observed at 120m. Methane and hydrogen sulfide increased steadily with depth below 100 m, and exhibited no local maxima. Fully quantitative UMS measurements require characterization of the influence of salinity, and especially temperature and pressure, on the performance of the internal PDMS membrane. Temperature exerts a strong influence on gas diffusion across the PDMS membrane and the behavior of residual gases in the vacuum chamber; therefore, precise thermostating methods must be adopted. Other technical issues being examined in the laboratory include variations in UMS response attributable to pressure-induced membrane compression, and variable hydrodynamic conditions at the sample/membrane boundary. Experiments are being developed to address the issue of calibrating the ion signal intensity for dissolved gas concentrations.

  12. Variations in dissolved organic carbon concentrations across peatland hillslopes

    NASA Astrophysics Data System (ADS)

    Boothroyd, I. M.; Worrall, F.; Allott, T. E. H.

    2015-11-01

    Peatlands are important terrestrial carbon stores and dissolved organic carbon (DOC) is one of the most important contributors to carbon budgets in peatland systems. Many studies have investigated factors affecting DOC concentration in peatland systems, yet hillslope position has been thus far overlooked as a variable that could influence DOC cycling. This study investigates the importance of hillslope position with regard to DOC cycling. Two upland peat hillslopes were studied in the Peak District, UK, to determine what impact, if any, hillslope position had upon DOC concentration. Hillslope position was found to be a significant factor affecting variation in soil pore water DOC concentration, with bottom-slope positions having significantly lower DOC concentrations than up-slope because of dilution of DOC as water moves down-slope and is flushed out of the system via lateral throughflow. Water table drawdown on steeper mid-slopes increased DOC concentrations through increased DOC production and extended residence times allowing a build-up of humic-rich DOC compounds. Hillslope position did not significantly affect DOC concentrations in surface runoff water because of the dilution of near-surface soil pore water by precipitation inputs, while stream water had similar water chemistry properties to soil pore water under low-flow conditions.

  13. Dissolved Neodymium Isotopes and Concentrations in the South Pacific

    NASA Astrophysics Data System (ADS)

    Basak, C.; Pahnke, K.

    2013-12-01

    The isotopic composition of dissolved Neodymium (expressed as ?Nd) in seawater is becoming increasingly established as a tracer for present and past water mass structure and flow paths. The South Pacific represents the largest sector of the Southern Ocean and harbors major areas of bottom and intermediate water mass formation and is therefore a key area for understanding present and past deep ocean circulation. While more dissolved Nd data are becoming available from different ocean basins, the South Pacific is still understudied with respect to the distribution of Nd isotopes and concentrations. In this study we have analyzed dissolved Nd isotopes and concentrations from 11 water column profiles across the South Pacific between 46S and 69S that sample all water masses. Our data show that the bottom water in the vicinity of the Ross Sea (Ross Sea Bottom water, RSBW) is represented by an ?Nd value of ~ -7, while the overlying Circumpolar Deep Water (CDW) carries a signature of ?Nd = -8 to -9. The characteristic Nd isotopic signal of RSBW can be tracked along its flow path into the southeast Pacific where it progressively looses its signal through interaction with ambient CDW. The easternmost stations, closer to South America, exhibit an excursion towards radiogenic ?Nd at ?2000 m water depth. This change towards more positive ?Nd coincides with low oxygen and high phosphate concentrations representing Pacific Deep Water (PDW) and possibly indicates water mass mixing of CDW with more radiogenic PDW. While the Nd isotopic composition shows apparent variations between stations and different water masses, the concentration profiles show a rather uniform and gradual increase with depth, a pattern typical for open ocean settings. Spatial and vertical contrasts in Nd isotopic values throughout the South Pacific indicate that Nd isotopes can be used as a water mass tracer in this region. It is reasonable to infer that local lithology in the Ross Sea influenced the Nd isotopic signature of newly formed RSBW, thereby tagging it with an ?Nd signal distinct from other water masses in the South Pacific. This suggests that ?Nd can be used in downcore studies to better understand past fluctuations of deep water advection in the South Pacific.

  14. Using Performance Reference Compounds (PRCs) to measure dissolved water concentrations (Cfree) in the water column: Assessing equilibrium models

    EPA Science Inventory

    Equilibrium-based passive sampling methods are often used in aquatic environmental monitoring to measure hydrophobic organic contaminants (HOCs) and in the subsequent evaluation of their effects on ecological and human health. HOCs freely dissolved in water (Cfree) will partition...

  15. Dissolved Organic Matter Concentration and Composition in Hot Spring Ecosystems

    NASA Astrophysics Data System (ADS)

    Hartnett, H.; Alexander, K.; Shock, E.; Klonowski, S.; Windman, T.

    2006-12-01

    Hot springs host dynamic ecosystems with wide ranges in temperature, pH, major and minor element content, as well as diverse microbial communities. As temperatures decrease from boiling, chemolithotrophic communities give way to phototrophic communities that include heterotrophs. As a consequence, the cycling of carbon is likely to undergo dramatic changes over fairly narrow spatial and temporal ranges. It may, therefore, not be surprising that hot springs exhibit broad ranges in dissolved organic carbon (DOC) concentrations. As an example, water samples collected in July 2005 from Yellowstone National Park hot spring ecosystems have DOC concentrations that range from less than 0.5 mg C/kg to greater than 75 mg C/kg. There are no obvious relationships between pH and DOC concentration, or temperature and DOC concentration for these systems. DOC concentrations generally decrease by 10 to 90% from the source hot spring down outflow channels, presumably due to heterotrophic activity. New results using electrospray ionization mass spectrometry (ESI-MS) indicate that hot spring DOC compounds range in molecular weight from 30 up to 1500 amu, with the most abundant peaks occurring at <400 amu. The DOC in hot springs exhibits predominantly positive-mode detected (basic-type) compounds and negative-mode detected (acidic- type) compounds. ESI-MS provides a molecular-level fingerprint of the DOC from hot springs, outflow channels and surface water sources that suggest the composition of the hot spring DOC is the result of multiple organic matter sources and a variety of biogeochemical processes. ESI-MS results allow us to begin to assess which fraction (molecular weight and general chemical character) of the DOC pool is bioavailable to heterotrophs, and how the bioavailable pool of DOC varies among hot spring systems.

  16. An advanced passive diffusion sampler for the determination of dissolved gas concentrations

    NASA Astrophysics Data System (ADS)

    Gardner, P.; Solomon, D. K.

    2009-06-01

    We have designed and tested a passive headspace sampler for the collection of noble gases that allows for the precise calculation of dissolved gas concentrations from measured gas mixing ratios. Gas permeable silicon tubing allows for gas exchange between the headspace in the sampler volume and the dissolved gases in the adjacent water. After reaching equilibrium, the aqueous-phase concentration is related to the headspace concentration by Henry's law. Gas exchange between the water and headspace can be shut off in situ, preserving the total dissolved gas pressure upon retrieval. Gas samples are then sealed in an all metal container, retaining even highly mobile helium. Dissolved noble gas concentrations measured in these diffusion samplers are in good agreement with traditional copper tube aqueous-phase samples. These significantly reduce the laboratory labor in extracting the gases from a water sample and provide a simple and robust method for collecting dissolved gas concentrations in a variety of aqueous environments.

  17. DISTRIBUTION OF FINGERLING BROOK TROUT, SALVELINUS FONTINALIS (MITCHELL), IN DISSOLVED OXYGEN CONCENTRATION GRADIENTS

    EPA Science Inventory

    A self-recording linear gradient tank and procedures are described in which individual brook trout fingerlings unstressed by recent transfer, unaccustomed surroundings or the presence of an observer could move freely in 16 oxygen concentration gradients within the limits of 1 and...

  18. DISSOLVED ORGANIC CARBON (DOC) CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    Dissolved organic matter (DOM) supports microbial activity and contributes to transport of N and P in streams. We have studied the impact of land uses on dissolved organic carbon (DOC) concentrations in 17 Georgia Piedmont headwater streams since January 2001. We classified the w...

  19. Dissolved-solids concentrations of ground water in the Sacramento Valley, California

    USGS Publications Warehouse

    Fogelman, Ronald P.

    1982-01-01

    The general quality of the ground water in the Sacramento Valley , Calif., in terms of dissolved-solids concentration is considered good for irrigation, domestic, and most other uses. This map shows the distribution of dissolved-solids concentrations and is based on about 1,330 chemical analyses collected from about 900 wells between 1974 and 1978. On the west side of the valley some of the smaller streams contribute water of higher dissolved-solids concentrations to the ground water. The sources of these waters are thought to be the upper Cretaceous Chico Formation or marine deposits of Early Cretaceous age that are exposed in the Coast Ranges. (USGS)

  20. [Concentrations and Speciation of Dissolved Heavy Metal in Rainwater in Guiyang, China].

    PubMed

    Zhu, Zhao-zhou; Li, Jun; Wang, Zhi-ru

    2015-06-01

    In order to understand the pollution situation, as well as seasonal changes in characteristics and speciation of dissolved heavy metals in acid rain control zone, the concentrations of dissolved heavy metals in rainwater collected at Guiyang were measured using inductively coupled plasma mass spectrometry (ICP-MS). And the speciation of dissolved heavy metals was further simulated by PHREEQC model. The results showed that the dissolved Co, Ni, Cu, Zn and Cd concentrations were low and not higher than the national standards for drinking water quality in China. The dissolved Pd concentrations were high in fall and winter and higher than the national standards for drinking water quality in China. The Co and Ni in rainwater mainly came from the crust and there was almost no human impact. The Cu, Zn, Cd and Pd pollutions in rainwater were affected by human activity with different levels. The degrees of contamination in autumn and winter were more serious than those in spring and summer. The free metal ion species was the dominant form of dissolved heavy metal, accounting for 47.27%-95.28% of the dissolved metal in rainwater from Guiyang city. The free metal ion species was followed in abundance by Metal-Oxalate and Metal-sulfate complexes that accounted for 0.72% -51.87% and 0.50%-7.66%, respectively. The acidity of rainwater, acid type as well as content of ligand more likely controlled the distribution of dissolved heavy metal in precipitation. PMID:26387294

  1. COEUR D'ALENE LAKE, IDAHO. HYPOLIMNETIC CONCENTRATIONS OF DISSOLVED OXYGEN, NUTRIENTS, AND TRACE ELEMENTS, 1987

    EPA Science Inventory

    A reconnaissance study of Coeur dAlene Lake, Idaho (17010303) done from May through November 1987 assessed water quality throughout the lake. Particular emphasis was on hypolimnetic concentrations of dissolved oxygen, nutrients, and trace elements. Study results enabled refinem...

  2. The measurement of dissolved and gaseous carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Zosel, J.; Oelner, W.; Decker, M.; Gerlach, G.; Guth, U.

    2011-07-01

    In this review the basic principles of carbon dioxide sensors and their manifold applications in environmental control, biotechnology, biology, medicine and food industry are reported. Electrochemical CO2 sensors based on the Severinghaus principle and solid electrolyte sensors operating at high temperatures have been manufactured and widely applied already for a long time. Besides these, nowadays infrared, non-dispersive infrared and acoustic CO2 sensors, which use physical measuring methods, are being increasingly used in some fields of application. The advantages and drawbacks of the different sensor technologies are outlined. Electrochemical sensors for the CO2 measurement in aqueous media are pointed out in more detail because of their simple setup and the resulting low costs. A detailed knowledge of the basic detection principles and the windows for their applications is necessary to find an appropriate decision on the technology to be applied for measuring dissolved CO2. In particular the pH value and the composition of the analyte matrix exert important influence on the results of the measurements.

  3. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    USGS Publications Warehouse

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  4. Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream

    USGS Publications Warehouse

    Nimick, D.A.; Cleasby, T.E.; McCleskey, R.B.

    2005-01-01

    Substantial diel (24-h) cycles in dissolved (0.1-??m filtration) metal concentrations were observed during summer low flow, winter low flow, and snowmelt runoff in Prickly Pear Creek, Montana. During seven diel sampling episodes lasting 34-61.5 h, dissolved Mn and Zn concentrations increased from afternoon minimum values to maximum values shortly after sunrise. Dissolved As concentrations exhibited the inverse timing. The magnitude of diel concentration increases varied in the range 17-152% for Mn and 70-500% for Zn. Diel increases of As concentrations (17-55%) were less variable. The timing of minimum and maximum values of diel streamflow cycles was inconsistent among sampling episodes and had little relation to the timing of metal concentration cycles, suggesting that geochemical rather than hydrological processes are the primary control of diel metal cycles. Diel cycles of dissolved metal concentrations should be assumed to occur at any time of year in any stream with dissolved metals and neutral to alkaline pH. ?? Springer-Verlag 2005.

  5. Dissolved volatile concentrations in an ore-forming magma

    USGS Publications Warehouse

    Lowenstern, J. B.

    1994-01-01

    Infrared spectroscopic measurements of glass inclusions within quartz phenocrysts from the Plinian fallout of the 22 Ma tuff of Pine Grove show that the trapped silicate melt contained high concentrations of H2O and CO2. Intrusive porphyries from the Pine Grove system are nearly identical in age, composition, and mineralogy to the tephra, and some contain high-grade Mo mineralization. Assuming that the porphyry magmas originally contained similar abundances of volatile components as the erupted rocks, they would have been saturated with fluid at pressures far greater than those at which the porphyries were emplaced and mineralized. The data are consistent with formation of Climax-type Mo porphyry deposits by prolonged fluid flux from a large volume of relatively Mo-poor (1-5 ppm) magma. -from Author

  6. Hypolimnetic concentrations of dissolved oxygen, nutrients, and trace elements in Coeur d'Alene Lake, Idaho

    USGS Publications Warehouse

    Woods, P.F.

    1989-01-01

    A reconnaissance study of Coeur d'Alene Lake, Idaho done from May through November 1987 assessed water quality throughout the lake. Particular emphasis was on hypolimnetic concentrations of dissolved oxygen, nutrients, and trace elements. Study results enabled refinement of the sampling protocol in a U.S. Geological Survey research proposal for a large-scale investigation of nutrient enrichment and trace element contamination problems affecting the 129.5 sq kilometer lake in northern Idaho. Hypolimnetic dissolved-oxygen concentrations as low as 4.1 mg/L in November and the frequent occurrence of supersaturated dissolved-oxygen concentrations during June through August indicated nutrient enrichment. Secchi-disc depths in the lake 's central and southern areas were typical of mesotrophic conditions, whereas oligotrophic conditions prevailed in the northern area. Throughout the study, hypolimnetic concentrations of total recoverable zinc exceeded chronic and acute toxicity criteria for freshwater aquatic life. (USGS)

  7. The effect of membrane filtration artifacts on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Colberg, M.R.

    1992-01-01

    Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally-associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

  8. Seasonality of Diel Cycles of Dissolved Trace-Metal Concentrations in a Rocky Mountain Stream

    NASA Astrophysics Data System (ADS)

    Nimick, D. A.; Cleasby, T. E.; McCleskey, R. B.

    2004-12-01

    Substantial diel (24-hour) cycles in dissolved (0.1-? m filtration) metal concentrations were observed during summer low flow, winter low flow, and snowmelt runoff in Prickly Pear Creek in southwestern Montana. The stream was alkaline (pH of 7.65-9.06), and dissolved metal concentrations were relatively low (1.8-7.1 ? g/L for As, 18-57 ? g/L for Mn, and 12-123 ? g/L for Zn). The metals are derived from abandoned mine lands in the stream's headwaters; As also is derived from geothermal sources. During seven diel sampling episodes, each lasting 34-61.5 hours, concentrations of dissolved Mn and Zn increased from minimum values in the afternoon to maximum values shortly after sunrise. The timing of diel cycles of dissolved As concentrations exhibited the inverse pattern. The magnitude of concentration increases during individual 24-hour periods ranged from 17-152% for Mn and 70-500% for Zn, and correlated positively with the magnitude of diel increases of pH and temperature, indicating that geochemical processes involving reactive inorganic and organic surfaces on and in the streambed probably control these diel metal cycles. Diel increases of As concentrations (17-55%) were proportionally smaller and less variable among the seasonal sampling episodes than for Mn and Zn, and they correlated poorly with diel increases of pH and temperature. Streamflow among the seven sampling episodes ranged from 0.35-3.3 m3/s. The timing of minimum and maximum values of diel streamflow cycles was inconsistent among sampling episodes and had little relation to the timing of metal concentration cycles, indicating that hydrological processes are not a primary control of diel metal cycles. Diel cycles of dissolved metal concentrations may occur at any time of year and during various hydrologic conditions in all streams with dissolved metals and neutral to alkaline pH.

  9. Production Responses of Channel Catfish to Minimum Daily Dissolved Oxygen Concentrations in Earthen Ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to determine the effects of the minimum daily dissolved oxygen (DO) concentration on production parameters of channel catfish Ictalurus punctatus in earthen ponds. Fifteen one-acre ponds (5 ponds per treatment) were managed as High Oxygen (minimum DO concentrations aver...

  10. INCREASED TOXICITY OF AMMONIA TO RAINBOW TROUT 'SALMO GAIRDNERI' RESULTING FROM REDUCED CONCENTRATIONS OF DISSOLVED OXYGEN

    EPA Science Inventory

    The median lethal concentration (LC50) of aqueous ammonia at reduced dissolved oxygen (D.O.) concentrations was tested in acute toxicity tests with rainbow trout (Salmo gairdneri) fingerlings. Fifteen 96-h flow-through tests were conducted over the D.O. range 2.6-8.6 mg/L, the fo...

  11. Effect of Dissolved Oxygen Concentration on Development and Hatching of Channel Catfish Ictalurus punctatus Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recommendations on required dissolved oxygen (DO) concentrations in channel catfish hatcheries vary widely. This study was conducted to determine effects of DO concentration on development and hatching success of channel catfish eggs. Five channel catfish spawns were collected from a pond at the T...

  12. Effect of daily minimum pond dissolved oxygen concentration on hybrid striped bass fingerling yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of dissolved oxygen (DO) concentration in ponds at night during the growing season is important because fish growth and yield are greater in ponds with higher nightly DO concentrations. The purpose of this study was to quantify the production and water quality responses of hybrid striped ...

  13. Effect of dissolved oxygen concentration on growth of fingerling hybrid striped bass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of dissolved oxygen (DO) concentration in production ponds is important because fish growth and yield are greater in ponds with higher DO concentrations. The purpose of this study was to evaluate growth and metabolic responses of hybrid striped bass (Morone chrysops x M. saxatilis; HSB) f...

  14. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites.

    PubMed

    Burgess, Robert M; Lohmann, Rainer; Schubauer-Berigan, Joseph P; Reitsma, Pamela; Perron, Monique M; Lefkovitz, Lisa; Cantwell, Mark G

    2015-08-01

    Currently, there is an effort under way to encourage remedial project managers at contaminated sites to use passive sampling to collect freely dissolved concentrations (Cfree ) of hydrophobic organic contaminants to improve site assessments. The objective of the present study was to evaluate the use of passive sampling for measuring water column Cfree for several hydrophobic organic contaminants at 3 US Environmental Protection Agency Superfund sites. Sites investigated included New Bedford Harbor (New Bedford, MA, USA), Palos Verdes Shelf (Los Angeles, CA, USA), and Naval Station Newport (Newport, RI, USA); and the passive samplers evaluated were polyethylene, polydimethylsiloxane-coated solid-phase microextraction fibers, semipermeable membrane devices, and polyoxymethylene. In general, the different passive samplers demonstrated good agreement, with Cfree values varying by a factor of 2 to 3. Further, at New Bedford Harbor, where conventional water sample concentrations were also measured (i.e., grab samples), passive sampler-based Cfree values agreed within a factor of 2. These findings suggest that all of the samplers were experiencing and measuring similar Cfree during their respective deployments. Also, at New Bedford Harbor, a strong log-linear, correlative, and predictive relationship was found between polyethylene passive sampler accumulation and lipid-normalized blue mussel bioaccumulation of polychlorinated biphenyls (r(2)  = 0.92, p < 0.05). The present study demonstrates the utility of passive sampling for generating scientifically accurate water column Cfree values, which is critical for making informed environmental management decisions at contaminated sediment sites. PMID:26039657

  15. Diel Variation in Dissolved Trace-Element Concentrations in Streams Draining Abandoned Mine Lands

    NASA Astrophysics Data System (ADS)

    Nimick, D. A.

    2001-12-01

    Substantial diel (24-hour) variations in dissolved trace-element concentrations have been measured during 20 different hourly sampling episodes at 14 sites on 9 streams draining historical mining areas in Montana. At all sites, concentrations of dissolved (0.1-um filtration) Cd, Mn, and Zn increased during the night, reaching maximum values shortly after sunrise; concentrations then decreased to minimum values during mid to late afternoon. Dissolved As concentrations exhibited the opposite temporal pattern, while variations in dissolved Cu concentrations were small and displayed no consistent pattern. Most sites were sampled during low-flow conditions, but two sampling episodes during snowmelt runoff at one site showed that similar diel variations occur during high flow. All sites had near neutral to slightly alkaline pH. Diel variations did not occur in two other acidic (pH of 4.0-5.5) streams. The magnitude of change during diel concentration cycles varied for each trace element. Zn and Mn concentrations exhibited the largest variation, with maximum concentrations ranging from 120 to 590 percent higher than minimum concentrations. Cd maximum concentrations were about 200 percent higher than minimum concentrations, whereas As maximum concentrations were 115 to 155 percent higher. Diel trace-element cycles appear to be independent of concentration magnitude, occurring over a wide range of concentrations: 5-44 ug/L As; 1-7 ug/L Cd, 18-609 ug/L Mn, and 2-4,940 ug/L Zn. Several chemical, physical, and biological processes potentially can explain diel dissolved-trace-element cycles. Temperature- and pH-dependent sorption reactions occurring on streambed material in the channel and hyporheic zone are considered the most likely mechanisms because of the strong similarity in the symmetry and magnitude of temporal plots of concentration, temperature, and pH. In addition, sorption processes can explain the simultaneous decrease in divalent metal concentrations during the day (when pH and temperature increase) and increase in anion concentrations such as arsenate. Many sorption studies have documented the importance of pH, but the role of temperature has been largely overlooked. Diel cycles are robust and reproducible and are sufficiently widespread and of sufficient magnitude that our understanding of trace-element mobility needs reconsideration. Consequently, diel cycles are a very important consideration when developing or interpreting trace-element studies designed to identify trace-element sources, long-term trends, or effectiveness of remediation activities.

  16. Problems associated with using filtration to define dissolved trace element concentrations in natural water samples

    USGS Publications Warehouse

    Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.

    1996-01-01

    Field and laboratory experiments indicate that a number of factors associated with filtration other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample) can produce significant variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. The bulk of these variations result from the inclusion/exclusion of colloidally associated trace elements in the filtrate, although dilution and sorption/desorption from filters also may be factors. Thus, dissolved trace element concentrations quantitated by analyzing filtrates generated by processing whole water through similar pore-sized filters may not be equal or comparable. As such, simple filtration of unspecified volumes of natural water through unspecified 0.45-??m membrane filters may no longer represent an acceptable operational definition for a number of dissolved chemical constituents.

  17. Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration.

    PubMed

    Newton, Kim M; Puppala, Hema L; Kitchens, Christopher L; Colvin, Vicki L; Klaine, Stephen J

    2013-10-01

    The most persistent question regarding the toxicity of silver nanoparticles (AgNPs) is whether this toxicity is due to the nanoparticles themselves or the silver ions (Ag(+)) they release. The present study investigates the role of surface coating and the presence of dissolved organic carbon on the toxicity of AgNPs to Daphnia magna and tests the hypothesis that the acute toxicity of AgNPs is a function of dissolved Ag produced by nanoparticle dissolution. Toxicity of silver nitrate (AgNO3) and AgNPs with surface coatings-gum arabic (AgGA), polyethylene glycol (AgPEG), and polyvinylpyrrolidone (AgPVP)-at 48 h was assessed in US Environmental Protection Agency moderately hard reconstituted water alone and augmented with Suwannee River dissolved organic carbon (DOC). As expected, AgNO3 was the most toxic to D. magna and AgPVPs were the least toxic. In general, Suwannee River DOC presence reduced the toxicity of AgNO3, AgGAs, and AgPEG, while the toxicity of AgPVPs was unaffected. The measured dissolved Ag concentrations for all AgNPs and AgNO3 at the 48-h median lethal concentration in moderately hard reconstituted water were similar. The presence of Suwannee River DOC decreased the ratio of measured dissolved Ag to measured total Ag concentration. These results support the hypothesis that toxicity of AgNPs to D. magna is a function of dissolved Ag concentration from these particles. PMID:23761010

  18. User's manual for estimation of dissolved-solids concentrations and loads in surface water

    USGS Publications Warehouse

    Liebermann, T.D.; Middelburg, R.F.; Irvine, S.A.

    1987-01-01

    Dissolved solids in surface water are an important indicator of overall water quality. Ordinarily, dissolved-solids concentrations and loads are estimated by indirect methods that are based on periodic chemical analyses. Three computer programs , FLAGIT, DVCOND, and SLOAD, were developed to provide a consistent and accurate method of estimating dissolved-solids concentrations and loads. FLAGIT retrieves daily values of specific conductance and discharge and periodic water quality analyses from the U.S. Geologic Survey 's National Water Data Storage and Retrieval System data base, deletes incomplete data, and flags possible data errors. DVCOND fills in missing daily values of specific conductance, when appropriate, by linear interpolation. Using water quality data, SLOAD computes 3 yr moving regressions of dissolved-solids loads as a function of specific conductance and discharge. SLOAD then applies the regression coefficients to the daily values data to estimate daily dissolved-solids loads that are summed by month and by year. Separate regressions are used to estimate the mass fractions of six major ions. The theoretical basis and underlying assumptions of the procedures are presented, with documentation of the programs and their use. (USGS)

  19. Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.

    2013-12-01

    Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other pollutants. Finally, the system was deployed shipboard, and field deployment data will also be presented.

  20. Occurrence and concentration of dissolved silver in rivers in England and Wales.

    PubMed

    Peters, A; Simpson, P; Merrington, G; Rothenbacher, K; Sturdy, L

    2011-06-01

    There is a paucity of monitoring data for silver in freshwater environments in Europe. There are several reasons for this, including the relatively low levels of silver in the aquatic environment and the requirement for commensurately low levels of detection (<100 ng l?), which are generally not routinely achieved in analytical laboratories. In this study 425 separate analytical determinations for dissolved (<0.45 ?m) silver from 84 Environment Agency monitoring stations were carried out. Sampling was carried out on a monthly basis over a period of 6 months. Of the 425 samples, 346 were reported as having dissolved silver concentrations below the limit of quantification (6.6 ng l?) and, of these, 280 samples were reported as below the reporting limit of detection (3 ng l?). The mean of the maximum dissolved silver concentrations reported at each station was calculated as 6.1 ng l? using a statistical extrapolation technique to allow for the high level of censorship in the dataset. The maximum mean dissolved silver concentration recorded at a station was 19.8 ng l?. A freshwater Predicted No Effect Concentration (PNEC) of 40 ng l? was used in this study. PMID:21516451

  1. ACUTE SENSITIVITY OF JUVENILE SHORTNOSE STURGEON TO LOW DISSOLVED OXYGEN CONCENTRATIONS

    EPA Science Inventory

    Campbell, Jed G. and Larry R. Goodman. 2004. Acute Sensitivity of Juvenile Shortnose Sturgeon to Low Dissolved Oxygen Concentrations. EPA/600/J-04/175. Trans. Am. Fish. Soc. 133(3):772-776. (ERL,GB 1155).

    There is considerable concern that factors such as eutrophication, ...

  2. Estimation of dissolved uranium and radon concentrations in some natural water systems of himachal pradesh, india

    NASA Astrophysics Data System (ADS)

    Singh, Jaspal; Singh, Lakhwant; Singh, Surinder

    1994-12-01

    The fission track technique has been used to estimate the U concentrations in water samples collected from the Hamirpur, Una, Bilaspur and Kangra districts of Himachal Pradesh, India. The sources comprise wells, springs, a municipal supply (tap water) and drains. The smallest U concentration of 0.06 0.01 ppb has been found in the spring water of Palampur city and the highest concentration 20.94 0.14 ppb was in the drain water of Samurkalan village. A comparison of the U concentrations in nearby sources, and the time variation in a particular source, have been assessed. The dissolved Rn-222 content in some of these sources has also been estimated in situ by radon emanometery. The risk of health hazard due to ingestion of the dissolved radon has been assessed. The problem of optimization of the thermal neutron dose in order to obtain a countable track density for experimental purposes is discussed.

  3. Fluoride, Nitrate, and Dissolved-Solids Concentrations in Ground Waters of Washington

    USGS Publications Warehouse

    Lum, W. E., II; Turney, Gary L.

    1984-01-01

    This study provides basic data on ground-water quality throughout the State. It is intended for uses in planning and management by agencies and individuals who have responsibility for or interest in, public health and welfare. It also provides a basis for directing future studies of ground-water quality toward areas where ground-water quality problems may already exist. The information presented is a compilation of existing data from numerous sources including: the Washington Departments of Ecology and Social and Health Services, the Environmental Protection Agency, as well as many other local, county, state and federal agencies and private corporations. Only data on fluoride, nitrate, and dissolved-solids concentrations in ground water are presented, as these constituents are among those commonly used to determine the suitability of water for drinking or other purposes. They also reflect both natural and man-imposed effects on water quality and are the most readily available water-quality data for the State of Washington. The percentage of wells with fluoride, nitrate, or dissolved-solids concentrations exceeding U.S. Environmental Protection Agency Primary and Secondary Drinking Water Regulations were about 1, about 3, and about 3, respectively. Most high concentrations occurred in widely separated wells. Two exceptions were: high concentrations of nitrate and dissolved solids in wells on the Hanford Department of Energy Facility and high concentrations of nitrate in the lower Yakima River basin. (USGS)

  4. Impact of localised dissolved iron concentrations on the biofouling of environmental wells.

    PubMed

    Stuetz, R M; McLaughlan, R G

    2004-01-01

    Iron biofouling of wells can significantly impact the performance of a groundwater extraction system. A subsurface drainage scheme (Wakool, Australia) designed to reduce waterlogging was used to identify some of the relationships between aquifer properties and well biofouling. Piezometers drilled radially one metre from two biofouled wells showed that during normal well operation the concentration of dissolved iron (Fe2+) entering the groundwater well was highly localised around the site and with depth. CCTV survey of the biofouling on the well screens supported these findings of localised iron concentrations. Dissolved oxygen (DO) measured during pumping and under non-pumping conditions (aquifer DO) showed that oxygen was not a limiting factor, whereas stalked bacteria (Gallionella sp.) were only found in the biofouled wells. The wellhead water therefore represents only a composite of all the waters entering the well and does not indicate the possibility of localised iron concentrations in a shallow aquifer. The degree of iron biofouling within a groundwater well is therefore related directly to the presence of dissolved iron in the groundwater, as well as various oxidative processes occurring as the groundwater enters the well screen and its subsequent extraction. The distribution of iron biofilms on the well screen reflects these processes; however, the presence of well biofouling cannot always be linked to a decrease in well screen performance, but can have an impact on the overall performance of the groundwater extraction system. PMID:14982170

  5. Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions

    NASA Astrophysics Data System (ADS)

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2015-08-01

    To maintain local pH levels near the electrode during electrochemical reactions, the use of buffer solutions is effective. Nevertheless, the critical effects of the buffer concentration on electrocatalytic performances have not been discussed in detail. In this study, two fundamental electrochemical reactions, oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR), on a platinum rotating disk electrode are chosen as model gas-related aqueous electrochemical reactions at various phosphate concentrations. Our detailed investigations revealed that the kinetic and limiting diffusion current densities for both the ORR and HOR logarithmically decrease with increasing solute concentration (log |jORR | = - 0.39 c + 0.92 , log |jHOR | = - 0.35 c + 0.73) . To clarify the physical aspects of this phenomenon, the electrolyte characteristics are addressed: with increasing phosphate concentration, the gas solubility decrease, the kinematic viscosity of the solution increase and the diffusion coefficient of the dissolved gases decrease. The simulated limiting diffusion currents using the aforementioned parameters match the measured ones very well (log |jORR | = - 0.43 c + 0.99 , log |jHOR | = - 0.40 c + 0.54) , accurately describing the consequences of the electrolyte concentration. These alterations of the electrolyte properties associated with the solute concentration are universally applicable to other aqueous gas-related electrochemical reactions because the currents are purely determined by mass transfer of the dissolved gases.

  6. Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States

    USGS Publications Warehouse

    Anning, David W.; Flynn, Marilyn E.

    2014-01-01

    Recent studies have shown that excessive dissolved-solids concentrations in water can have adverse effects on the environment and on agricultural, domestic, municipal, and industrial water users. Such effects motivated the U.S. Geological Survey’s National Water Quality Assessment Program to develop a SPAtially-Referenced Regression on Watershed Attributes (SPARROW) model that has improved the understanding of sources, loads, yields, and concentrations of dissolved solids in streams of the conterminous United States. Using the SPARROW model, long-term mean annual dissolved-solids loads from 2,560 water-quality monitoring stations were statistically related to several spatial datasets that are surrogates for dissolved-solids sources and land-to-water delivery processes. Specifically, sources in the model included variables representing geologic materials, road deicers, urban lands, cultivated lands, and pasture lands. Transport of dissolved solids from these sources was modulated by land-to-water delivery variables that represent precipitation, streamflow, soil, vegetation, terrain, population, irrigation, and artificial drainage characteristics. Where appropriate, the load estimates, source variables, and transport variables were statistically adjusted to represent conditions for the base year 2000. The nonlinear least-squares estimated SPARROW model was used to predict long-term mean annual conditions for dissolved-solids sources, loads, yields, and concentrations in a digital hydrologic network representing nearly 66,000 stream reaches and their corresponding incremental catchments that drain the Nation. Nationwide, the predominant source of dissolved solids yielded from incremental catchments and delivered to local streams is geologic materials in 89 percent of the catchments, road deicers in 5 percent of the catchments, pasture lands in 3 percent of the catchments, urban lands in 2 percent of the catchments, and cultivated lands in 1 percent of the catchments. Whereas incremental catchments with dissolved solids that originated predominantly from geologic sources or from urban lands are found across much of the Nation, incremental catchments with dissolved solids yields that originated predominantly from road deicers are largely found in the Northeast, and incremental catchments with dissolved solids that originated predominantly from cultivated or pasture lands are largely found in the West. The total amount of dissolved solids delivered to the Nation’s streams is 271.9 million metric tons (Mt) annually, of which 194.2 million Mt (71.4%) come from geologic sources, 37.7 million Mt (13.9%) come from road deicers, 18.2 million Mt (6.7%) come from pasture lands, 13.9 million Mt (5.1%) come from urban lands, and 7.9 million Mt (2.9%) come from cultivated lands. Nationwide, the median incremental-catchment yield delivered to local streams is 26 metric tons per year per square kilometer [(Mt/yr)/km2]. Ten percent of the incremental catchments yield less than 4 (Mt/yr)/km2, and 10 percent yield more than 90 (Mt/yr)/km2. Incremental-catchment yields greater than 50 (Mt/yr)/km2 mostly occur along the northern part of the West Coast and in a crescent shaped band south of the Great Lakes. For example, the median incremental-catchment yield is 81 (Mt/yr)/km2 for the Great Lakes, 78 (Mt/yr)/km2 for the Ohio, and 74 (Mt/yr)/km2 for the Upper Mississippi water-resources regions. Incremental-catchment yields less than 10 (Mt/yr)/km2 mostly occur in a wide band across the arid lowland of the interior West that excludes areas along the coast and the extensive, higher mountain ranges. For example, the median incremental-catchment yield is 3 (Mt/yr)/km2 for the Lower Colorado, 5 (Mt/yr)/km2 for the Rio Grande, and 8 (Mt/yr)/km2 for the Great Basin water-resources regions. Predicted incremental loads were cascaded down through the reach network, with loads accumulating from reach to reach. For most stream reaches, the entire incremental load of dissolved solids delivered to the reach was transported to either the ocean or to one of the large streams flowing along the U.S. international boundary without losses occurring along the way. The exceptions to this include streams in the southwestern part of the country, such as the Colorado River, Rio Grande, and streams of internally drained drainages in the Great Basin, where dissolved-solids loads decreased through streamflow diversion for off-stream use, or by infiltration through the streambed. Long-term mean annual flow-weighted concentrations were derived from the predicted accumulated-load and stream-discharge data. Widespread low concentrations, generally less than 100 milligrams per liter (mg/L), occur in many reaches of the New England, South Atlantic-Gulf, and Pacific Northwest water-resources regions as a result of moderate dissolved-solids yields and high runoff rates. Widespread moderate concentrations, generally between 100 and 500 mg/L, occur in many reaches of the Great Lakes, Ohio, and Upper Mississippi River water-resources regions. Whereas dissolved-solids yields are generally high in these regions, runoff rates are also high, which helps moderate concentrations in these regions. Widespread higher concentrations, generally greater than 500 mg/L, occur across a belt of reaches that extends almost continuously from Canada to Mexico in the Midwest, cutting through the Souris-Red-Rainy, Missouri, Arkansas-White-Red, Texas-Gulf, and Rio Grande water-resources regions. Although dissolved-solids yields are moderate to low in these areas, low runoff rates result in the high concentrations for these areas. In 12.6 percent of the Nation’s stream reaches, predicted concentrations of dissolved solids exceed 500 mg/L, the U.S. Environmental Protection Agency’s secondary, nonenforceable drinking water standard. While this standard provides a metric for evaluating predicted concentrations in the context of drinking-water supplies, it should be noted that it only applies to drinking water actually served to customers by water utilities, and it does not apply to all stream reaches in the Nation nor does it apply during times when water is not being withdrawn for use. Exceedance of 500 mg/L is more pronounced in certain water-resources regions than others. For example, about half of the reaches in the Souris-Red-Rainy region have concentrations predicted to exceed 500 mg/L, and between 25 and 37 percent of the reaches in the Missouri, Arkansas-White-Red, Texas-Gulf, Rio Grande, and Lower Colorado regions are predicted to exceed 500 mg/L. Development of stream-load data for use in the SPARROW model also provided long-term temporal trend information in dissolved-solids concentrations at the monitoring stations for their period of record, which was constrained between 1980 and 2009. For the 2,560 monitoring stations used in this study, long-term trends in flow-adjusted dissolved-solids concentrations increased over time at 23 percent of the stations, decreased at 18 percent of the stations, and did not change over time at 59 percent of the stations. Long-term trends show a strong regional spatial pattern where from the western parts of the Great Plains to the West Coast, concentrations mostly either did not change or decreased over time, and from the eastern parts of the Great Plains to the East Coast, concentrations mostly either did not change or increased over time. Results from the trend analysis and from the SPARROW model indicate that, compared to monitoring stations with no trends or decreasing trends, stations with increasing trends are associated with a smaller percentage of the predicted dissolved-solids load originating from geologic sources, and a larger percentage originating from urban lands and road deicers. Conversely, compared to stations with increasing trends or no trends, stations with decreasing trends have a larger percentage of the predicted dissolved-solids load originating from geologic sources and a smaller percentage originating from urban lands and road deicers. Stations with decreasing trends also have larger percentages of predicted dissolved-solids load originating from cultivated lands and pasture lands, compared to stations with increasing trends or no trends.

  7. Diel cycles in dissolved metal concentrations in streams: Occurrence and possible causes

    USGS Publications Warehouse

    Nimick, D.A.; Gammons, C.H.; Cleasby, T.E.; Madison, J.P.; Skaar, D.; Brick, C.M.

    2003-01-01

    Substantial diel (24-hour) cycles in dissolved (0.1-??m filtration) metal concentrations were observed during low flow for 18 sampling episodes at 14 sites on 12 neutral and alkaline streams draining historical mining areas in Montana and Idaho. At some sites, concentrations of Cd, Mn, Ni, and Zn increased as much as 119, 306, 167, and 500%, respectively, from afternoon minimum values to maximum values shortly after sunrise. Arsenic concentrations exhibited the inverse temporal pattern with increases of up to 54%. Variations in Cu concentrations were small and inconsistent. Diel metal cycles are widespread and persistent, occur over a wide range of metal concentrations, and likely are caused primarily by instream geochemical processes. Adsorption is the only process that can explain the inverse temporal patterns of As and the divalent metals. Diel metal cycles have important implications for many types of water-quality studies and for understanding trace-metal mobility.

  8. Assessing time-integrated dissolved concentrations and predicting toxicity of metals during diel cycling in streams.

    PubMed

    Balistrieri, Laurie S; Nimick, David A; Mebane, Christopher A

    2012-05-15

    Evaluating water quality and the health of aquatic organisms is challenging in systems with systematic diel (24 h) or less predictable runoff-induced changes in water composition. To advance our understanding of how to evaluate environmental health in these dynamic systems, field studies of diel cycling were conducted in two streams (Silver Bow Creek and High Ore Creek) affected by historical mining activities in southwestern Montana. A combination of sampling and modeling tools was used to assess the toxicity of metals in these systems. Diffusive Gradients in Thin Films (DGT) samplers were deployed at multiple time intervals during diel sampling to confirm that DGT integrates time-varying concentrations of dissolved metals. Site specific water compositions, including time-integrated dissolved metal concentrations determined from DGT, a competitive, multiple-toxicant biotic ligand model, and the Windemere Humic Aqueous Model Version 6.0 (WHAM VI) were used to determine the equilibrium speciation of dissolved metals and biotic ligands. The model results were combined with previously collected toxicity data on cutthroat trout to derive a relationship that predicts the relative survivability of these fish at a given site. This integrative approach may prove useful for assessing water quality and toxicity of metals to aquatic organisms in dynamic systems and evaluating whether potential changes in environmental health of aquatic systems are due to anthropogenic activities or natural variability. PMID:22481055

  9. Assessing time-integrated dissolved concentrations and predicting toxicity of metals during diel cycling in streams

    USGS Publications Warehouse

    Balistrieri, Laurie S.; Nimick, David A.; Mebane, Christopher A.

    2012-01-01

    Evaluating water quality and the health of aquatic organisms is challenging in systems with systematic diel (24 h) or less predictable runoff-induced changes in water composition. To advance our understanding of how to evaluate environmental health in these dynamic systems, field studies of diel cycling were conducted in two streams (Silver Bow Creek and High Ore Creek) affected by historical mining activities in southwestern Montana. A combination of sampling and modeling tools was used to assess the toxicity of metals in these systems. Diffusive Gradients in Thin Films (DGT) samplers were deployed at multiple time intervals during diel sampling to confirm that DGT integrates time-varying concentrations of dissolved metals. Site specific water compositions, including time-integrated dissolved metal concentrations determined from DGT, a competitive, multiple-toxicant biotic ligand model, and the Windemere Humic Aqueous Model Version 6.0 (WHAM VI) were used to determine the equilibrium speciation of dissolved metals and biotic ligands. The model results were combined with previously collected toxicity data on cutthroat trout to derive a relationship that predicts the relative survivability of these fish at a given site. This integrative approach may prove useful for assessing water quality and toxicity of metals to aquatic organisms in dynamic systems and evaluating whether potential changes in environmental health of aquatic systems are due to anthropogenic activities or natural variability.

  10. Spatial variation in concentrations of dissolved nitrogen species in an upland blanket peat catchment.

    PubMed

    Cundill, A P; Chapman, P J; Adamson, J K

    2007-02-01

    The concentration of nitrogen (N), particularly as nitrate (NO3-N), in upland streams, lakes and rivers is frequently used as a diagnostic of the vulnerability of upland ecosystems to increased atmospheric nitrogen deposition and N saturation. The N content of running waters, however, is generally assessed on the basis of sampling at a limited number of points in space and time within the catchment under investigation. The current study was conducted at Trout Beck, an 11.5 km2 blanket peat-dominated catchment in the North Pennine uplands of the UK. Results from sampling at 33 sites within this catchment demonstrated that the concentrations of all dissolved N species were highly variable, even over short distances. Statistical relationships between the concentrations of NO3-N and dissolved organic nitrogen (DON) and percentage catchment cover of Calluna/Eriophorum and Eriophorum vegetation were found. However, it was also noted that in catchments containing limestone outcrops, NO3-N concentration was much higher than in catchments where runoff was sourced directly from the blanket peat surface. It is possible that NH4-N and DON leached from the blanket peat are mineralised and nitrified, providing a source for the NO3-N found in the river channels. Overall, the current study suggests that interpretations of N-saturation based on river water chemistry measurements at a single point must be treated cautiously, and that the influence of catchment-scale physical factors, such as vegetation and geology cover on the concentration of dissolved N species in upland river waters should not be ignored. PMID:17182088

  11. Naturally dissolved arsenic concentrations in the Alpine/Mediterranean Var River watershed (France).

    PubMed

    Barats, Aurélie; Féraud, Gilbert; Potot, Cécile; Philippini, Violaine; Travi, Yves; Durrieu, Gaël; Dubar, Michel; Simler, Roland

    2014-03-01

    A detailed study on arsenic (As) in rocks and water from the Var River watershed was undertaken aiming at identifying (i) the origin and the distribution of As in this typical Alpine/Mediterranean basin, and (ii) As input into the Mediterranean Sea. Dissolved As concentrations in the Var River range from 0.1 to 4.5 μg⋅L(-1), due to high hydrological variability and the draining through different geological formations. In the upper part of the Var drainage basin, in the Tinée and the Vésubie valleys, high levels of dissolved As concentrations occur (up to 263 μg⋅L(-1)). The two main sources of As in rocks are the Hercynian metamorphic rocks and the Permian argilites. Highly heterogeneous distribution of As in waters draining through metamorphic rocks is probably related to ore deposits containing arsenopyrite. As, U, W and Mo concentrations in water and rocks correspond to the formation of As-rich ore deposits around Argentera granite by hydrothermal fluids deposited at the end of the Hercynian chain formation, which occurred about 300 My ago. In 2009, weekly monitoring was performed on the Var River (15 km upstream of the mouth), highlighting an average dissolved As concentration (<0.45 μm) of 2.7 ± 0.9 μg⋅L(-1), which is significantly higher than the world-average baseline for river water (0.83 μg⋅L(-1)). Taking the average annual discharge (49.4 m(3)⋅s(-1)) into account and the As levels in the dissolved phase and in deposits of the Var River, dissolved As input into the Mediterranean Sea would be 4. 2± 1.4 tons⋅year(-1) which represents 59% of the total As flux. This study also reveals a probable non-conservative As behaviour, i.e., possible transfer between aqueous and solid phases, during the mixing of the Var River with a tributary. PMID:24388820

  12. New method for the direct determination of dissolved Fe(III) concentration in acid mine waters

    USGS Publications Warehouse

    To, T.B.; Nordstrom, D.K.; Cunningham, K.M.; Ball, J.W.; McCleskey, R.B.

    1999-01-01

    A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II) >> Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), AI(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2 ??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II)???Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), Al(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2/??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.

  13. The impact of seasonality and elevation on dissolved greenhouse gas concentrations in a northeastern Wyoming watershed

    NASA Astrophysics Data System (ADS)

    Kuhn, C.; Bettigole, C.; Raymond, P. A.; Glick, H.; Seegmiller, L.; Oliver, C.; Khadka, A.; Routh, D.

    2014-12-01

    Quantification of river and stream contributions to global carbon emission budgets using field-based measurements is key to understanding how freshwater streams act as conduits between terrestrial and atmospheric carbon pools. In order to better characterize drivers of this process, this study quantifies: a) emissions of carbon dioxide and methane from a semi-arid, high plains riverine system with montaine headwaters in order to establish baseline data for the watershed; b) the impact of stream order, seasonality and elevation on dissolved gas concentrations to better understand the spatial and temporal heterogeneity of dissolved carbon gases. To achieve the latter objective, we conducted field surveys in first and second order streams in the Clear Creek drainage of the Powder River Basin watershed. We took direct measurements of stream gases using headspace sampling at thirty sites along an elevation gradient ranging from 1,203-3,346 meters. We also intensely monitored five transects throughout the descending limb of spring runoff (June 8th-August 12th) to investigate how temperature and discharge volume impact greenhouse gas concentrations. Clear Creek, located in northeastern Wyoming, is approximately 118.4 km long with a drainage area of 2,968 km2. The creek flows east out of Bighorn National Forest where it turns northeast to converge with the Powder River about ten miles before the Montana border. The stream straddles the Middle Rockies and Northwestern Great Plains ecoregions and experiences an abrupt shift in soil type, riparian vegetation, underlying geology and stream geometry as the stream exits the mountains and enters the agricultural alluvial floodplain. These site specific biological and physical changes along the elevation gradient affect dissolved greenhouse gas concentrations.

  14. Frequency-duration analysis of dissolved-oxygen concentrations in two southwestern Wisconsin streams

    USGS Publications Warehouse

    Greb, Steven R.; Graczyk, David J.

    2007-01-01

    Historically, dissolved-oxygen (DO) data have been collected in the same manner as other water-quality constituents, typically at infrequent intervals as a grab sample or an instantaneous meter reading. Recent years have seen an increase in continuous water-quality monitoring with electronic dataloggers. This new technique requires new approaches in the statistical analysis of the continuous record. This paper presents an application of frequency-duration analysis to the continuous DO records of a cold and a warm water stream in rural southwestern Wisconsin. This method offers a quick, concise way to summarize large time-series data bases in an easily interpretable manner. Even though the two streams had similar mean DO concentrations, frequency-duration analyses showed distinct differences in their DO-concentration regime. This type of analysis also may be useful in relating DO concentrations to biological effects and in predicting low DO occurrences.

  15. Influence of land use on total suspended solid and dissolved ion concentrations: Baton Rouge, Louisiana area

    NASA Astrophysics Data System (ADS)

    Carlson, D.

    2015-03-01

    Past studies in the Baton Rouge, Louisiana area considered streamwater quality during storm events but ignored water quality during low flow periods. This study includes determination of streamwater quality during low flow time periods for none watersheds in East Baton Rouge Parish, Louisiana. These samples were collected during dry-low flow periods as indicated by water levels at USGS stream gauging sites for each stream. Chemical analysis for ions was completed using colorimeters and gravimetric analysis for total dissolved solids (TDS) and total suspended solids (TSS). Land use appears to impact concentrations of ions, TDS and TSS in a variety of ways during periods of low flow. The two most rural watersheds, which are mainly underdeveloped, have higher concentrations of Fe and Mn. By contrast the three most urban watersheds, that are mainly commercial, industrial or residential, have higher concentrations of Si, SO4 and TDS.

  16. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    NASA Astrophysics Data System (ADS)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  17. Influence of low dissolved oxygen concentration in body fluid on corrosion fatigue behaviors of implant metals.

    PubMed

    Morita, M; Sasada, T; Nomura, I; Wei, Y Q; Tsukamoto, Y

    1992-01-01

    In their previous study, the authors carried out a fatigue test for AISI 316, 316L stainless steels and COP1 alloy in a living animal body and observed a remarkable deterioration in the fatigue durability of these metals. In that study, it was concluded that the reason the corrosion resistance of the metals was reduced in the living body was that the low concentration of dissolved oxygen gas in the body fluid (the partial pressure pO2; 28-78 mmHg) was insufficient to form the chromium oxide passivation film on the metal surface, and the base metal (iron) was released into the environmental fluid in ionic form. In this paper, with the concentration of dissolved oxygen gas in a physiological normal saline solution being set equivalent to that of living body fluid, fatigue tests on AISI 316 were made to simulate the stress corrosion behavior of the metal in the living body. As a result, remarkable deterioration of fatigue strength was observed in the low O2 concentrated normal saline solution, which was the same as that in the living animal body. PMID:1416288

  18. Concentrations of dissolved oxygen in the lower Puyallup and White rivers, Washington, August and September 2000 and 2001

    USGS Publications Warehouse

    Ebbert, J.C.

    2002-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians conducted a study in August and September 2001 to assess factors affecting concentrations of dissolved oxygen in the lower Puyallup and White Rivers, Washington. The study was initiated because observed concentrations of dissolved oxygen in the lower Puyallup River fell to levels ranging from less than 1 milligram per liter (mg/L) to about 6 mg/L on several occasions in September 2000. The water quality standard for the concentration of dissolved oxygen in the Puyallup River is 8 mg/L.This study concluded that inundation of the sensors with sediment was the most likely cause of the low concentrations of dissolved oxygen observed in September 2000. The conclusion was based on (1) knowledge gained when a dissolved-oxygen sensor became covered with sediment in August 2001, (2) the fact that, with few exceptions, concentrations of dissolved oxygen in the lower Puyallup and White Rivers did not fall below 8 mg/L in August and September 2001, and (3) an analysis of other mechanisms affecting concentrations of dissolved oxygen.The analysis of other mechanisms indicated that they are unlikely to cause steep declines in concentrations of dissolved oxygen like those observed in September 2000. Five-day biochemical oxygen demand ranged from 0.22 to 1.78 mg/L (mean of 0.55 mg/L), and river water takes only about 24 hours to flow through the study reach. Photosynthesis and respiration cause concentrations of dissolved oxygen in the lower Puyallup River to fluctuate as much as about 1 mg/L over a 24-hour period in August and September. Release of water from Lake Tapps for the purpose of hydropower generation often lowered concentrations of dissolved oxygen downstream in the White River by about 1 mg/L. The effect was smaller farther downstream in the Puyallup River at river mile 5.8, but was still observable as a slight decrease in concentrations of dissolved oxygen caused by photosynthesis and respiration. The upper limit on oxygen demand caused by the scour of anoxic bed sediment and subsequent oxidation of reduced iron and manganese is less than 1 mg/L. The actual demand, if any, is probably negligible.In August and September 2001, concentrations of dissolved oxygen in the lower Puyallup River did not fall below the water-quality standard of 8 mg/L, except at high tide when the saline water from Commencement Bay reached the monitor at river mile 2.9. The minimum concentration of dissolved oxygen (7.6 mg/L) observed at river mile 2.9 coincided with the maximum value of specific conductance. Because the dissolved-oxygen standard for marine water is 6.0 mg/L, the standard was not violated at river mile 2.9. The concentration of dissolved oxygen at river mile 1.8 in the White River dropped below the water-quality standard on two occasions in August 2001. The minimum concentration of 7.8 mg/L occurred on August 23, and a concentration of 7.9 mg/L was recorded on August 13. Because there was some uncertainty in the monitoring record for those days, it cannot be stated with certainty that the actual concentration of dissolved oxygen in the river dropped below 8 mg/L. However, at other times when the quality of the monitoring record was good, concentrations as low as 8.2 mg/L were observed at river mile 1.8 in the White River.

  19. Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics.

    PubMed

    Goto, E; Both, A J; Albright, L D; Langhans, R W; Leed, A R

    1996-12-01

    Lettuce (Lactuca sativa L., cv. Ostinata) growth experiments were carried out to study the effect of dissolved oxygen (DO) concentration on plant growth in a floating hydroponic system. Pure O2 and N2 gas were supplied to the hydroponic system for precise DO control. This system made it easy to increase the DO concentration beyond the maximum (or saturation) concentration possible when bubbling air into water. Eleven day old lettuce seedlings were grown for 24 days under various DO concentrations: sub-saturated, saturated, and super-saturated. There was no significant difference in fresh weight, shoot and root dry weights among the DO concentrations: 2.1 (25% of saturated at 24 degrees C), 4.2 (50%), 8.4 (saturated), and 16.8 (200%) mg/L. The critical DO concentration for vigorous lettuce growth was considered to be lower than 2.1 mg/L. Neither root damage nor delay of shoot growth was observed at any of the studied DO concentrations. PMID:11541573

  20. Adaptive predictive control of dissolved oxygen concentration in a laboratory-scale bioreactor.

    PubMed

    Diaz, C; Dieu, P; Feuillerat, C; Lelong, P; Salom, M

    1995-11-21

    We present an algorithm for the adaptive control of dissolved oxygen concentration in a bioreactor, based on the agitation rate. The dynamics are represented by an incremental first-order model with variable dead-time and parameters. These are estimated on-line by a recursive least-squares identification method with a forgetting factor and a constant sensitivity. The model is employed to predict the behaviour of the dissolved oxygen concentration over a finite horizon, using an original method which requires little computation. Then, a Generalized Predictive Control optimisation strategy computes the agitation rate from the predictions and the desired set point, while gradually updating the controller smoothness. This algorithm, which requires little preliminary knowledge, has been implemented on a laboratory-scale fed-batch bioreactor for which the use of conventional controllers showed limited performance, due to the unpredictable and evolutive nature of the dynamics. The new controller proved to be robust and effective over a wide range of operating conditions, while requiring no operator adjustments. PMID:8573319

  1. Seasonal variations in concentration and lability of dissolved organic carbon in Tokyo Bay

    NASA Astrophysics Data System (ADS)

    Kubo, A.; Yamamoto-Kawai, M.; Kanda, J.

    2015-01-01

    Concentrations of recalcitrant and bioavailable dissolved organic carbon (DOC) and their seasonal variations were investigated at three stations in Tokyo Bay, Japan, and in two freshwater sources flowing into the bay. On average, recalcitrant DOC (RDOC), as a remnant of DOC after 150 days of bottle incubation, accounted for 78% of the total DOC in Shibaura sewage treatment plant (STP) effluent, 67% in the upper Arakawa River water, 66% in the lower Arakawa River water, and 78% in surface bay water. Bioavailable DOC (BDOC) concentrations, defined as DOC minus RDOC, were lower than RDOC at all stations. In freshwater environments, RDOC concentrations were almost constant throughout the year. In the bay, RDOC was higher during spring and summer than in autumn and winter because of freshwater input and biological production. The relative concentration of RDOC in the bay derived from phytoplankton, terrestrial, and open-oceanic waters was estimated to be 8-10, 21-32, and 59-69%, respectively, based on multiple regression analysis of RDOC, salinity, and chl a. In addition, comparison with previous data from 1972 revealed that concentrations of RDOC and BDOC have decreased by 33 and 74% at freshwater sites and 39 and 76% in Tokyo Bay, while the ratio of RDOC to DOC has increased. The change in DOC concentration and composition was probably due to increased amounts of STP effluent entering the system. Tokyo Bay exported mostly RDOC to the open ocean because of the remineralization of BDOC.

  2. Variations in dissolved organic nitrogen concentration in biofilters with different media during drinking water treatment.

    PubMed

    Zhang, Huining; Zhang, Kefeng; Jin, Huixia; Gu, Li; Yu, Xin

    2015-11-01

    Dissolved organic nitrogen (DON) is potential precursor of disinfection byproducts (DBPs), especially nitrogenous DBPs. In this study, we investigated the impact of biofilters on DON concentration changes in a drinking water plant. A small pilot plant was constructed next to a sedimentation tank in a drinking water plant and included activated carbon, quartz sand, anthracite, and ceramsite biofilters. As the biofilter layer depth increased, the DON concentration first decreased and then increased, and the variation in DON concentration differed among the biofilters. In the activated carbon biofilter, the DON concentration was reduced by the largest amount in the first part of the column and increased by the largest amount in the second part of the column. The biomass in the activated carbon filter was less than that in the quartz sand filter in the upper column. The heterotrophic bacterial proportion among bacterial flora in the activated carbon biofilter was the largest, which might be due to the significant reduction in DON in the first part of the column. Overall, the results indicate that the DON concentration in biofiltered water can be controlled via the selection of appropriate biofilter media. We propose that a two-layer biofilter with activated carbon in the upper layer and another media type in the lower layer could best reduce the DON concentration. PMID:25576130

  3. Temporal Variability of Stemflow Dissolved Organic Carbon (DOC) Concentrations and Quality from Morphologically Contrasting Deciduous Canopies

    NASA Astrophysics Data System (ADS)

    van Stan, J. T.; Levia, D. F.; Inamdar, S. P.; Mitchell, M. J.; Mage, S. M.

    2010-12-01

    Dissolved organic carbon (DOC) inputs from canopy-derived hydrologic fluxes play a significant role in the terrestrial carbon budgets of forested ecosystems. However, no studies known to the authors have examined the variability of both DOC concentrations and quality for stemflow across time scales, nor has any study to date evaluated the effects of canopy structure on stemflow DOC characteristics. This investigation seeks to rectify this knowledge gap by examining the variability of stemflow DOC concentrations and quality across contrasting canopy morphologies and time scales (seasonal, storm and intrastorm). Bulk and intrastorm stemflow samples from a less dense, rough-barked, more plagiophile (Liriodendron tulipifera L. (tulip poplar)) and a denser, thin-barked, more erectophile (Fagus grandifolia Ehrh. (American beech)) canopy were collected and analyzed for DOC quality using metrics derived from UV-vis spectroscopy (E2:E3 ratio, SUVA254, select spectral slope (S), and spectral slope ratios (SR)). Our results suggest that stemflow DOC concentrations and quality change as crown architectural traits enhance or diminish hydrologic retention time within the canopy. The architecture of L. tulipifera canopies likely retards the flow of intercepted water, increasing chemical exchange with bark and foliar surfaces. UV-vis metrics indicated that this increased chemical exchange, particularly with bark surfaces, generally enhanced aromatic hydrocarbon content and increased molecular weight. Because leaf presence influenced DOC quality, stemflow DOC characteristics also varied seasonally in response to canopy condition. At the inter- and intrastorm scale, stemflow DOC concentration and quality varied with meteorological and antecedent canopy conditions. Since recent studies have linked stemflow production to preferential subsurface transport of dissolved chemistries, trends in DOC speciation and fluxes described in this study may impact soil environments within wooded ecosystems.

  4. Factors Controlling Dissolved Oxygen Concentration in the Hyporheic Zone Induced by Fish Egg Nests

    NASA Astrophysics Data System (ADS)

    Ford, A.; Cardenas, M. B.; Kaufman, M.; Zheng, L.; Kessler, A. J.

    2014-12-01

    There is currently limited research on the effects of bed depressions, such as those associated with fish nests, on hyporheic flow and biogeochemistry. A series of flume experiments are in progress, with the aim of understanding the effects of bed depressions on the hyporheic flow of oxygenated water. This study focuses on fish nests, also called redds, which represent a typical depression or scour feature. Previous research has shown that redd topography induces hyporheic circulation, but experiments regarding the oxygen concentration in and around the redds have not been conducted. We are determining the ways in which redds affect dissolved oxygen distribution and how this is controlled by hyporheic flow. The oxygen concentration across the cross-sectional plane of a fish nest is measured using a planar optode and microsensors. Hydraulic measurements include pressure measurements along the sediment-water interface and dye visualization. The redd design is based on a salmonid redd, which consists of a scour feature and a tailspin. The salmonid eggs are found in the tailspin. We hypothesize that the oxygen concentration will be greatest in close proximity to the gravel base of the redd and concentration will decrease with increasing depth and distance from the redd. Higher oxygen concentrations in the tailspin supports the placement of fish eggs within that area as opposed to a less oxygenated area of the streambed. Thus, fish nests are likely bio-engineered to optimize hyporheic flow and biogeochemistry to improve egg viability.

  5. Seasonal variations in concentration and composition of dissolved organic carbon in Tokyo Bay

    NASA Astrophysics Data System (ADS)

    Kubo, A.; Yamamoto-Kawai, M.; Kanda, J.

    2014-07-01

    Concentrations of recalcitrant and bioavailable dissolved organic carbon (DOC) and their seasonal variations were investigated at three stations in Tokyo Bay, Japan, and in two freshwater sources flowing into the bay to evaluate the significance of DOC degradation for the carbon budget in coastal waters and carbon export to the open ocean. Recalcitrant DOC (RDOC) was differentiated from bioavailable DOC (BDOC) as a remnant of DOC after 150 days of bottle incubation. On average, RDOC accounted for 78% of the total DOC in Shibaura sewage treatment plant (STP) effluent, 67% in the upper Arakawa River water, 66% in the lower Arakawa River water, and 78% in surface bay water. RDOC concentrations were higher than BDOC at all stations. In freshwater environments, RDOC concentrations were almost constant throughout the year. In the bay, RDOC was higher during spring and summer than during autumn and winter. The relative abundance of RDOC in the bay derived from phytoplankton, terrestrial, and open oceanic waters was estimated to be 9%, 33%, and 58%, respectively, by multiple regression analysis of RDOC, salinity, and chl a. In addition, comparison with previous data from 1972 revealed that concentrations of RDOC and BDOC have decreased by 33% and 74% at freshwater sites and 39% and 76% at Tokyo Bay, while the ratio of RDOC to DOC has increased. The change in DOC concentration and composition was probably due to increased amounts of sewage treatment plant effluent entering the system. Tokyo Bay exported DOC, mostly RDOC, to the open ocean because of remineralization of BDOC.

  6. Dissolved and particulate organic carbon in the North Inlet estuary, South Carolina: what controls their concentrations

    SciTech Connect

    Wolaver, T.G.; Hutchinson, S.; Marozas, M.

    1986-03-01

    Water samples have been taken daily at 1030 EST from three locations within North Inlet (South Carolina) since June of 1980 in order to evaluate the tidal, seasonal, and eventually annual variability in carbon concentrations within this system and generate hypotheses explaining the observed trends. Dissolved organic carbon (DOC) concentrations within North Inlet (South Carolina) vary inversely with salinity (r/sup 2/ = 0.65), suggesting the main source of DOC in North Inlet is freshwater entering from the adjacent forested watershed. This assertion is supported by an observed decrease of tidal water salinity with the onset of streamflow. DOC variability is also associated with (1) groundwater advection and/or runoff and seepage from the marsh surface; (2) removal from tidal water via either physical sorption or biological uptake; (3) sampling location; and (4) origin of water mass. Particulate organic carbon (POC) concentrations vary seasonally, higher values found during the summer. POC variability is controlled by a series of physical and biological factors. Evidence suggests that in the smaller tidal creeks, POC concentrations are associated with (1) rain events scouring the marsh surface, (2) phytoplankton concentrations varying as a function of tidal stage, and (3) removal of particulate material from the marsh surface on the ebb tide. In the larger tidal creeks tidal water velocity appears to be the main factor influencing POC values. 20 references, 5 figures, 2 table.

  7. High variability in dissolved iron concentrations in the vicinity of the Kerguelen Islands (Southern Ocean)

    NASA Astrophysics Data System (ADS)

    Qurou, F.; Sarthou, G.; Planquette, H. F.; Bucciarelli, E.; Chever, F.; van der Merwe, P.; Lannuzel, D.; Townsend, A. T.; Cheize, M.; Blain, S.; d'Ovidio, F.; Bowie, A. R.

    2015-06-01

    Dissolved Fe (dFe) concentrations were measured in the upper 1300 m of the water column in the vicinity of the Kerguelen Islands as part of the second KErguelen Ocean Plateau compared Study (KEOPS2). Concentrations ranged from 0.06 nmol L-1 in offshore, Southern Ocean waters to 3.82 nmol L-1 within Hillsborough Bay, on the north-eastern coast of the Kerguelen Islands. Direct island runoff, glacial melting and resuspended sediments were identified as important inputs of dFe that could potentially fertilise the northern part of the plateau. A significant deep dFe enrichment was observed over the plateau with dFe concentrations increasing up to 1.30 nmol L-1 close to the seafloor, probably due to sediment resuspension and pore water release. Biological uptake was shown to induce a significant decrease in dFe concentrations between two visits (28 days apart) at a station above the plateau. Our work also considered other processes and sources, such as lateral advection of enriched seawater, remineralisation processes, and the influence of the polar front (PF) as a vector for Fe transport. Overall, heterogeneous sources of Fe over and off the Kerguelen Plateau, in addition to strong variability in Fe supply by vertical or horizontal transport, may explain the high variability in dFe concentrations observed during this study.

  8. High variability of dissolved iron concentrations in the vicinity of Kerguelen Island (Southern Ocean)

    NASA Astrophysics Data System (ADS)

    Qurou, F.; Sarthou, G.; Planquette, H. F.; Bucciarelli, E.; Chever, F.; van der Merwe, P.; Lannuzel, D.; Townsend, A. T.; Cheize, M.; Blain, S.; d'Ovidio, F.; Bowie, A. R.

    2015-01-01

    Dissolved Fe (dFe) concentrations were measured in the upper 1300 m of the water column in the vicinity of Kerguelen Island as part of the second Kerguelen Ocean Plateau compared Study (KEOPS2). Concentrations ranged from 0.06 nmol L-1 in offshore, Southern Ocean waters, to 3.82 nmol L-1 within Hillsborough Bay, on the north-eastern coast of Kerguelen Island. Direct island runoff, glacial melting and resuspended sediments were identified as important inputs of dFe that could potentially fertilize the northern part of the plateau. A significant deep dFe enrichment was observed over the plateau with dFe concentrations increasing up to 1.30 nmol L-1 close to the seafloor, probably due to sediment resuspension and pore water release. Biological uptake was identified as a likely explanation for the decrease in dFe concentrations between two visits (28 days apart) at a station above the plateau. Our results allowed studying other processes and sources, such as atmospheric inputs, lateral advection of enriched seawater, remineralization processes and the influence of the Polar Front (PF) as a vector for Fe transport. Overall, heterogeneous sources of Fe over and off the Kerguelen Plateau, in addition to strong variability in Fe supply by vertical or horizontal transport, may explain the high variability in dFe concentrations observed during this study.

  9. Impact of environmental factors on dissolved organic carbon concentrations in German bogs under grassland

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Tiemeyer, Brbel; Freibauer, Annette

    2013-04-01

    Peatlands cover about 5% of Germany's land area. Agricultural use combined with drainage increases the greenhouse gas emissions and alters the dissolved organic carbon (DOC) concentrations in the soil- and groundwater of these ecosystems. Cycling of DOC is influenced by a complex interaction of environmental factors such as peat characteristics, groundwater level, meteorological conditions, pH-value and ionic strength. Reasons for elevated DOC concentrations are debated in literature, but only a few studies on the dynamic of DOC in raised bogs in Germany have been conducted so far. In Germany, raised bogs are mainly used as grassland. Therefore, five grassland study sites and one natural reference have been selected. The bog "Ahlenmoor" has a deep, medium to weakly decomposed peat layer. There, three study sites represent different land use intensities with a corresponding groundwater table (intensive grassland, extensive grassland, natural reference). The bog relict "Groes Moor" is characterised by a shallow amorphous peat layer, which is partly mixed with sand. There, three sites in an extensive grassland were chosen to study the effects of soil carbon concentrations (9 to 48 %) and groundwater levels. At each site, nine suction plates (three replicates in each depth) and three tensiometers were installed in 15, 30 and 60 cm. Soil water was sampled fortnightly from June 2011 to December 2012 and analysed for electrical conductivity, pH-value and DOC concentration. Compared to most literature values, DOC concentrations at our study sites were very high (on average, 197 to 55 mg/L). At the "Ahlenmoor", an increase in agricultural intensity and a lower groundwater table increases both the DOC concentrations and their variability in the soil water in order intensive grassland > extensive grassland > natural site. Surprisingly, soil carbon concentration and groundwater table gradients as investigated in the "Groes Moor" did only lead to minor differences in the DOC concentrations. At these sites, the highest DOC concentrations were measured in the zone of transition between peat and mineral layer. No consistent relationship between DOC concentrations and electrical conductivity or pH-value could be found. In the "Ahlenmoor", seasonal variations of temperature and water table position influence DOC concentrations. The highest values were measured in late summer after warm and dry periods. At the study sites of the "Groes Moor", the seasonal variation of temperature and groundwater table had no impact on DOC concentrations. Our results show that while it is difficult to unravel all factors controlling DOC concentrations, drainage and physical disturbance clearly increase DOC concentrations.

  10. Factors affecting total dissolved solids concentration of ?-ray-irradiated aqueous hexamethylenetetramine solution: a dosimetric study.

    PubMed

    Sife-Eldeen, Kh A

    2014-12-01

    A new ?-ray-radiation dosimetric system (TDS-HMTA), comprising a 'total dissolved solids (TDS)' meter and 0.02M aqueous hexamethylenetetramine (HMTA) solution, is introduced for medical and biological applications. Gamma-ray radiolysis of aqueous HTMA solutions increases the concentrations (ppm) of TDS, which is measured by the TDS meter. The effects of HMTA concentration, absorbed radiation dose, absorbed dose rate, and storage time on the TDS concentration of irradiated HMTA solutions were studied. It was found that 0.02M aqueous HMTA solution yields the highest sensitivity to ?-ray-radiation according to TDS concentration measurements. The effect of absorbed radiation dose was studied in the range 1.64-435.5kGy. The TDS concentration increases linearly up to the maximum of the studied absorbed radiation dose range (R(2)=0.9965). The overall coefficient of variation (CV %) associated with TDS concentration measurements of 0.02M HMTA solution as a function of absorbed dose was found to be 0.732%. The effect of dose rate on the TDS concentration was studied in the range 0.33-3.31kGy/h. It was found, also, that the TDS concentration is relatively stable over a storage period of 144h after irradiation with different doses. The tissue equivalency of 0.02M aqueous HMTA solutions allow it to be used for radiation dose measurement during sterilization in human tissue banks. Therefore, this system (TDS-HMTA) could be considered as a promising candidate for ?-ray radiation dosimetry in technical, medical and research fields. PMID:25288526

  11. Trace metal concentrations in post-hatching cuttlefish Sepia officinalis and consequences of dissolved zinc exposure.

    PubMed

    Le Pabic, Charles; Caplat, Christelle; Lehodey, Jean-Paul; Milinkovitch, Thomas; Koueta, Noussithé; Cosson, Richard Philippe; Bustamante, Paco

    2015-02-01

    In this study, we investigated the changes of 13 trace metal and metalloid concentrations (i.e. Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, V, Zn) and their subcellular fractionation in juvenile cuttlefish Sepia officinalis reared in controlled conditions between hatching and 2 months post-hatching. In parallel, metallothionein concentrations were determined. Our results highlighted contrasting changes of studied metals. Indeed, As and Fe concentrations measured in hatchlings suggested a maternal transfer of these elements in cuttlefish. The non-essential elements Ag and Cd presented the highest accumulation during our study, correlated with the digestive gland maturation. During the 6 first weeks of study, soluble fractions of most of essential trace metals (i.e. Co, Cr, Cu, Fe, Se, Zn) slowly increased consistently with the progressive needs of cuttlefish metabolism during this period. In order to determine for the first time in a cephalopod how metal concentrations and their subcellular distributions are impacted when the animals are trace metal-exposed, we studied previously described parameters in juveniles exposed to dissolved Zn at environmental (i.e. 50 μg l(-1)) and sublethal (i.e. 200 μg l(-1)) levels. Moreover, oxidative stress (i.e. glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase activities, and lipid peroxidation (LPO)) was assessed in digestive gland and gills after 1 and 2 months exposures. Our results highlighted no or low ability of this stage of life to regulate dissolved Zn accumulation during the studied period, consistently with high sensitivity of this organism. Notably, Zn exposures caused a concentration-dependent Mn depletion in juvenile cuttlefish, and an increase of soluble fraction of Ag, Cd, Cu without accumulation modifications, suggesting substitution of these elements (i.e. Mn, Ag, Cd, Cu) by Zn. In parallel, metallothionein concentrations decreased in individuals most exposed to Zn. Finally, no perturbations in oxidative stress management were detected in gills, whereas modifications of GST, SOD and catalase activity levels were recorded in digestive gland, resulting in an increase of LPO content after a 6-week exposure to low Zn concentration. Altogether, these perturbations are consistent with previously described high sensitivity of juvenile cuttlefish towards Zn. Our results underlined the need to study deeply contamination impact on this animal at this stage of life. PMID:25500620

  12. Hydrologic control of dissolved organic matter concentration and quality in a semiarid artificially drained agricultural catchment

    NASA Astrophysics Data System (ADS)

    Bellmore, Rebecca A.; Harrison, John A.; Needoba, Joseph A.; Brooks, Erin S.; Kent Keller, C.

    2015-10-01

    Agricultural practices have altered watershed-scale dissolved organic matter (DOM) dynamics, including in-stream concentration, biodegradability, and total catchment export. However, mechanisms responsible for these changes are not clear, and field-scale processes are rarely directly linked to the magnitude and quality of DOM that is transported to surface water. In a small (12 ha) agricultural catchment in eastern Washington State, we tested the hypothesis that hydrologic connectivity in a catchment is the dominant control over the concentration and quality of DOM exported to surface water via artificial subsurface drainage. Concentrations of dissolved organic carbon (DOC) and humic-like components of DOM decreased while the Fluorescence Index and Freshness Index increased with depth through the soil profile. In drain discharge, these characteristics were significantly correlated with drain flow across seasons and years, with drain DOM resembling deep sources during low-flow and shallow sources during high flow, suggesting that DOM from shallow sources bypasses removal processes when hydrologic connectivity in the catchment is greatest. Assuming changes in streamflow projected for the Palouse River (which contains the study catchment) under the A1B climate scenario (rapid growth, dependence on fossil fuel, and renewable energy sources) apply to the study catchment, we project greater interannual variability in annual DOC export in the future, with significant increases in the driest years. This study highlights the variability in DOM inputs from agricultural soil to surface water on daily to interannual time scales, pointing to the need for a more nuanced understanding of agricultural impacts on DOM dynamics in surface water.

  13. Technical Note: Comparison between a direct and the standard, indirect method for dissolved organic nitrogen determination in freshwater environments with high dissolved inorganic nitrogen concentrations

    NASA Astrophysics Data System (ADS)

    Graeber, D.; Gelbrecht, J.; Kronvang, B.; Gcker, B.; Pusch, M. T.; Zwirnmann, E.

    2012-11-01

    Research on dissolved organic nitrogen (DON) in aquatic systems with high dissolved inorganic nitrogen (DIN, the sum of NO3-, NO2- and NH4+) concentrations is often hampered by high uncertainties regarding the determined DON concentration. The reason is that DON is determined indirectly as the difference between total dissolved nitrogen (TDN) and DIN. In this standard approach to determine DON concentrations, even small relative measurement errors of the DIN and TDN concentrations propagate into high absolute errors of DON concentrations at high DIN : TDN ratios. To improve the DON measurement accuracy at high DIN : TDN ratios, we investigated the DON measurement accuracy of this standard approach according to the DIN : TDN ratio and compared it to the direct measurement of DON by size-exclusion chromatography (SEC) for freshwater systems. For this, we used standard compounds and natural samples with and without DIN enrichment. We show that for the standard approach, large errors of the determined DON concentrations at DIN : TDN ratios >0.6 occur for both standard compounds and natural samples. In contrast, measurements of DON by SEC always gave low errors at high DIN : TDN ratios due to the successful separation of DON from DIN. For SEC, DON recovery rates were 91-108% for five pure standard compounds and 89-103% for two standard compounds, enriched with DIN. Moreover, SEC resulted in 93-108% recovery rates for DON concentrations of natural samples at a DIN : TDN ratio of 0.8 and the technique was successfully applied to a range of samples from waste water treatment plants to forest and agricultural streams. With 2.5 h of measurement time per sample, SEC is slower, but more accurate than the standard approach for determination of DON concentrations in freshwaters with DIN : TDN ratios >0.6. To sum up, the direct DON measurement by SEC enables better understanding of the nitrogen cycle of urban and agricultural freshwater systems.

  14. Long term in situ monitoring of total dissolved iron concentrations on the MoMAR observatory

    NASA Astrophysics Data System (ADS)

    Laes-Huon, Agathe; Legrand, Julien; Tanguy, Virginie; Cathalot, Cecile; Blandin, Jérôme; Rolin, Jean-Francois; Sarradin, Pierre-Marie

    2015-04-01

    Nowadays the scientific community wants relevant monitoring with an increase in spatial and temporal distribution of key chemicals. The hydrothermal ecosystems characterized by strong physico-chemical gradients are also of particular interest as they present an unique fauna, sustained by microbial chemosynthesis. The characterization of the chemical environment in the hydrothermal vent ecosystems implies the use of in situ instrumentation which is a serious challenge in the marine environment (Prien et al. 2007). The CHEMINI (CHEmical MINIaturised analyser), presented here, is a chemical in situ analyser specialized for deep sea uses (Vuillemin et al. 2007). It was first deployed on the autonomous deep sea observatory MoMAR (Monitoring of the Mid-Atlantic Ridge, FIXO3, Fixed point Open Ocean Observatories) in 2010. The first part of the presentation will focus on the description of the CHEMINI, then on the results obtained on the MoMAR observatory during the last 4 years. CHEMINI, implemented on the TEMPO ecological module determined total dissolved iron concentrations associated with an optode and a temperature probe. Several months of total iron concentrations, of T°C and videos were recorded permitting the study of the temporal dynamics of faunal assemblages and their habitat on the Lucky strike vent (-1700m, Cuvelier et al. 2011). Long term in situ analysis of total dissolved iron (31st of August 2013 - 23rd of February 2014, [DFe] = 7.12 +- 2.11 µmol L-1, n = 519) at the Eiffel Tower edifice is presented in details. The daily analyzed in situ standard (25µmol.L-1) showed an excellent reproducibility (1.07%, n=522). CHEMINI was reliable, robust over time for in situ analysis. The averaged total dissolved iron concentrations for the 6 months period remain low but they correlated significantly with temperature showing a spectra frequency with a maximal contribution around 4-5 days for both variables. The analytical results will be commented and the future technical challenges will be discussed in this presentation. References: Cuvelier, D, Sarrazin,J, Colaco A. Copley J.T., Glover A.G. Paul, A. Tyler, Serrao Santos R., Desbruyères D. (2011), Community dynamics over 14 years at the Eiffel Tower hydrothermal edifice on the Mid-Atlantic Ridge, Limnol. Oceanogr., 56(5), 1624-1640 Prien, R. (2007), The future of chemical in situ sensors, Mar. Chem., 107 (3), 422-432. Vuillemin, R., Le Roux, D., Dorval, P., Bucas, K., Sudreau, J.P., Hamon, M., Le Gall, C., Sarradin, P.M., 2009. CHEMINI: A new in situ CHEmical MINIaturized analyzer. Deep Sea Res. Part Oceanogr. Res. Pap. 56, 1391-1399.

  15. Regulation of the dissolved phosphate concentration of a mountainous stream, Kitakyushu, southwestern Japan.

    PubMed

    Koga, Masaaki; Yoshimura, Kazuhisa

    2012-07-01

    The phosphate concentration in mountainous stream water can be a measure of the forest condition, because its concentration will be low when the biomass in the forest is increasing and vice versa when the forest is declining. To investigate the seasonal change in the dissolved phosphate concentration of the mountainous stream water of the Yamakami River, Kitakyushu, from June 2009 to August 2010, and the regulation mechanism of the phosphate concentration, solid-phase spectrophotometry, which can be applicable to natural water without any pretreatment procedures, was employed for the determination of phosphate at μg P L(-1) levels in natural water. The phosphate concentrations in the mountainous stream waters at 6 sites ranged from 2.2 to 13 μg P L(-1), and those from the catchment area of the steady state forest were 5.3 ± 1.6 (±1 SD) μg P L(-1). Changes in the concentration were fairly small even during a storm runoff. The average phosphate concentration of rain was 2.8 ± 0.7 μg P L(-1), about half of the concentration in the stream water. The rate of runoff in forest areas is generally considered to be about 50% of the total precipitation. For a forest under a climax condition, the phosphate concentration is estimated to be regulated by the fallout and evapotranspiration (α = 0.05). At one of the sites, an upstream tributary, where a fairly big landslide occurred before July in 2009, the phosphate concentration was the highest, suggesting that the biomass may still be decreasing. For all of the six sites examined, a characteristic seasonal change in phosphate concentration was observed, reflecting the local budget between the biological decomposition of plant matter and the consumption by the biomass. The increase in the phosphate concentration during late spring and early summer may result from the extensive decomposition of plant litter mainly supplied in autumn and of plant matter relating to spring blooming such as fallen flowers, pollen and immature fruits. The proposed method using the phosphate concentration in surface stream waters without the period of the seasonal change mentioned above is expected to be very helpful in diagnosing the condition of forests. PMID:22673628

  16. Raising and controlling study of dissolved oxygen concentration in closed-type aeration tank.

    PubMed

    Chen, C K; Lo, S L

    2005-07-01

    This study investigated the promotion and control of dissolved oxygen (DO) concentration of the closed-type aeration tank via practical experiments in the wastewater treatment system of a 5-star hotel in Taipei. As with limited and treasured space in Taiwan, before the completion of the sewer system construction in cities, to utilize the mat foundation under large buildings as the space of sewage treatment plant still has been one of the alternatives of those sewage treatments. However, aeration tanks constructed in the mat foundation of buildings have smaller effective water depth, which will cause a lower total transfer amount of DO. Controlling the total exhaust gas flow rate can increase the pressure on such closed-type aeration tanks. The DO concentration thus may increase according to Henry's Law. Furthermore, it may enable operators to adjust the DO concentration of the aeration tank more precisely and thus sustain optimal operating conditions in these treatment facilities. Practical experiments indicated that the DO concentration of aeration tank maintains an average of 3.8 mg l(-1), obtaining the optimum operating conditions. The efficiency of the biological treatment facilities in the mat foundation could be markedly improved. PMID:16080335

  17. Quantifying dissolved organic carbon concentrations in upland catchments using phenolic proxy measurements

    NASA Astrophysics Data System (ADS)

    Peacock, Mike; Burden, Annette; Cooper, Mark; Dunn, Christian; Evans, Chris D.; Fenner, Nathalie; Freeman, Chris; Gough, Rachel; Hughes, David; Hughes, Steve; Jones, Tim; Lebron, Inma; West, Mike; Zieli?ski, Piotr

    2013-01-01

    SummaryConcentrations of dissolved organic carbon (DOC) in soil and stream waters in upland catchments are widely monitored, in part due to the potential of DOC to form harmful by-products when chlorinated during treatment of water for public supply. DOC can be measured directly, though this is expensive and time-consuming. Light absorbance in the UV-vis spectrum is often used as a surrogate measurement from which a colour-carbon relationship between absorbance and DOC can be derived, but this relationship can be confounded by numerous variables. Through the analysis of data from eight sites in England and Wales we investigate the possibility of using the concentration of phenolic compounds in water samples as a proxy for DOC concentration. A general model using data from all the sites allowed DOC to be calculated from phenolics at an accuracy of 81-86%. A detailed analysis at one site revealed that a site-specific calibration was more accurate than the general model, and that this compared favourably with a colour-carbon calibration. We therefore recommend this method for use where estimates of DOC concentration are needed, but where time and money are limiting factors, or as an additional method to calculate DOC alongside colour-carbon calibrations. Tests demonstrated only small amounts of phenolic degradation over time; a loss of 0.92 mg L-1 after 8 months in storage, and so this method can be used on older samples with limited loss of accuracy.

  18. Variation of dissolved organic nitrogen concentration during the ultrasonic pretreatment to Microcystis aeruginosa.

    PubMed

    Liu, Cheng; Wang, Jie; Cao, Zhen; Chen, Wei; Bi, Hongkai

    2016-03-01

    Algae cells were the main sources of dissolved organic nitrogen (DON) in raw water with plenty of algae, and ultrasonic pretreatment was one of the algae-controlling methods through the damage of algae cells. However, the variation of DON concentration during the ultrasonic treatment process was not confirmed. Variation of DON concentration during the processes of low frequency ultrasound treatment of Microcystis aeruginosa was investigated. In addition, the effect of sonication on the metabolite concentration, algae cellar activity and the subsequent coagulation performance were discussed. The results showed that after a long duration of ultrasonic (60 s), nearly 90% of the algal cells were damaged and the maximum concentration of DON attained more than 3 mg/L. In order to control the leakage extent of DON, the sonication time should be less than 30 s with power intensity of more than 1.0 W/cm(3). In the mean time, ultrasonic treatment could inhibit the reactivation and the proliferation of algal, keep the algae cell wall integrity and enhance coagulation effectively under the same condition. However, ultrasound frequency had little effect on DON at the frequency range used in this study (20-150 kHz). PMID:26585003

  19. Landscape Controls Over Seasonal Dissolved Organic Matter Concentrations in a Northern Michigan, USA Watershed

    NASA Astrophysics Data System (ADS)

    Lamberti, G. A.; Bridgham, S. D.; Cherrier, C.; Frost, P. C.; Johnston, C. A.; Larson, J. H.

    2006-12-01

    We examined dissolved organic matter (DOM) concentrations seasonally over two years in 35 sub-watersheds of the 3600 km2 Ontonagon River watershed in the Upper Peninsula of Michigan, USA. A comprehensive set of landscape predictors were examined, including overall wetland area, area of different wetland types, watershed topography, stream geomorphology, upland vegetation type, land use, soil carbon and nitrogen content, and surficial geology. Classification and regression trees (CART) and Akaike Information Criterion (AIC) were used to examined multivariate relationships among the variables. DOM concentrations within this watershed were explained by a complex set of landscape variables. Despite the substantial area of wetlands in this watershed, the percentage of wetlands in a sub-watershed explained only about 25% of the variation in DOM concentration, much less than many previous studies. Using CART, we explained ~ 70% of the variation in DOM concentration, with particularly important variables being wetland area, slope and elevation, percent agriculture, and soil C:N ratios. Total wetland area was as effective as using the area of different wetland types in predicting DOM concentrations, although individual wetland types had very different individual correlation coefficients (and even different signs). Discharge was not an overall effective predictor of DOM concentration, as the slope of this relationship varied from positive, to non-significant, to negative depending on the sub-watershed. However, using AIC we could explain over 90% of the variation in the discharge-DOM concentration relationship, with the most important landscape predictors being % development, soil C:N ratio, stream density, and elevation, with a number of surficial geology variable also entering the models but being of lesser importance.

  20. Freely floating smectic films.

    PubMed

    May, Kathrin; Harth, Kirsten; Trittel, Torsten; Stannarius, Ralf

    2014-05-19

    We have investigated the dynamics of freely floating smectic bubbles using high-speed optical imaging. Bubbles in the size range from a few hundred micrometers to several centimeters were prepared from collapsing catenoids. They represent ideal model systems for the study of thin-film fluid dynamics under well-controlled conditions. Owing to the internal smectic layer structure, the bubbles combine features of both soap films and vesicles in their unique shape dynamics. From a strongly elongated initial shape after pinch-off, they relax towards the spherical equilibrium, first by a slow redistribution of the smectic layers, and finally by weak, damped shape oscillations. In addition, we describe the rupture of freely floating smectic bubbles, and the formation and stability of smectic filaments. PMID:24692347

  1. Evaluation of Electrodialysis as Part of an Improved Method to Concentrate Dissolved Organic Matter from Seawater

    NASA Astrophysics Data System (ADS)

    Chang, V.; Koprivnjak, J.; Ingall, E.; Pfromm, P.; Perdue, E. M.

    2004-12-01

    A major obstacle in the study of marine dissolved organic matter (DOM) has been isolating from seawater sufficient quantities for analysis of this highly dilute and chemically complex material. This research explores the application of electrodialysis (ED) in combination with reverse osmosis (RO) as a method to concentrate DOM from seawater. RO methods recover a significant fraction (90%) of DOM from fresh waters with little physical or chemical alteration, and similar high recoveries of DOM have been observed in preliminary tests using estuarine waters of varying salinity. Unfortunately, the extent to which DOM in saline waters can be concentrated by RO is very limited, because RO membranes co-concentrate inorganic salts with DOM. At an early stage of processing, osmotic pressures become too high and/or inorganic salts precipitate from solution and foul the RO membrane. To realize the potentially high recoveries of DOM from saline waters, RO must be coupled with an independent method for removal of inorganic salts. Electrodialysis, which is a well-established process for removal of inorganic salts from aqueous solutions, is such a method. In ED, a feed stream of the sample to be de-ionized and a receiving stream of a solution that will accept the removed ions are pumped through adjacent layers of a membrane stack, which consists of several layers of alternating anion and cation exchange membranes. The membranes are made from highly crosslinked polymers and are non-porous. The direction and velocity of diffusion of the cations and anions are further mediated by a DC electrical current that flows through the membrane stack. In the first stage of testing of the ED process, samples of near-seawater salinity (28 ppt) containing 4 ppm of dissolved organic carbon were collected at the Skidaway Institute of Oceanography in Savannah Georgia. Using ED, salinity was reduced by 87% in these samples with retention of more than 95% of the DOM. These experiments indicate that ED can significantly reduce salt concentrations in saline waters with little or no loss of DOM, thus making it possible to use efficient RO methods to concentrate marine DOM.

  2. Diminished Stream Nitrate Concentrations Linked to Dissolved Organic Carbon Dynamics After Leaf Fall

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Doctor, D. H.; Kendall, C.

    2004-05-01

    Thermodynamic coupling of the nitrogen and carbon cycles has broad implications for controls on catchment nutrient fluxes. In the northeast US, leaf fall occurs in early October and the availability of organic carbon increases as the leaves decompose. At the Sleepers River Research Watershed in northeastern Vermont (USA), we sampled stream chemistry from seven nested catchments to determine how stream dissolved organic carbon (DOC) and nitrate vary as a function of flow conditions, land-use, and basin size in response to leaf fall. Following leaf fall, nitrate concentration patterns were quantitatively different from other times of the year. Under baseflow conditions, stream and soil water DOC concentrations were higher than normal, whereas nitrate concentrations declined sharply at the five smallest catchments and more modestly at the two largest catchments. Under high flow conditions, flushing of nitrate was observed, as is typical for stormflow response at Sleepers River. Our field data suggest that in-stream processing of nitrate is likely thermodynamically and kinetically favorable under baseflow but not at higher flow conditions when expanding variable source areas make hydrological connections between nitrate source areas and streams. We are working to evaluate this hypothesis with isotopic and other monitoring data, and to model the coupled interactions of water, DOC, and nitrate fluxes in these nested catchments.

  3. Effect of dissolved oxygen concentration on the bioflocculation process in high loaded MBRs.

    PubMed

    Faust, L; Temmink, H; Zwijnenburg, A; Kemperman, A J B; Rijnaarts, H H M

    2014-12-01

    High-loaded membrane bioreactors (HL-MBRs), i.e. MBRs which are operated at extremely short sludge and hydraulic retention times, can be applied to flocculate and concentrate sewage organic matter. The concentrated organics can be used for energy recovery, or for the production of more valuable organic chemicals. Little is known about the effect of the dissolved oxygen concentration (DO) on this bioflocculation process. To examine this effect, two HL-MBRs were operated, respectively at a low (1mgL(-1)) and a higher (4mgL(-1)) DO. The higher DO resulted in a better flocculation efficiency, i.e. 92% of the colloidal COD in the sewage flocculated compared to 69% at the lower DO. The difference was attributed to a higher microbial production of extracellular polymeric substances at a DO of 4mgL(-1) and to more multivalent cations (calcium, iron and aluminium) being distributed to the floc matrix. In addition, the HL-MBR that was operated at a DO of 4mgL(-1) gave a bigger mean floc size, a lower supernatant turbidity, better settleability and better membrane filterability than the HL-MBR that was operated at a DO of 1mgL(-1). PMID:25213685

  4. Concentrations of dissolved radon-222 in water from selected wells and springs in Idaho, 1989-91

    SciTech Connect

    Cecil, L.D.; Parliman, D.J.; Edwards, D.D.; Young, H.W.

    1994-11-01

    Concentrations of dissolved radon-222, a naturally occurring radioactive gas, are found in water in Idaho. The U.S. Geological Survey collected water samples for radon-222 analyses from 338 Idaho wells and springs during 1989-91. These water samples were collected as part of ongoing monitoring programs with the Idaho Department of Water Resources and the U.S. Department of Energy. Concentrations of dissolved radon-222 in 372 of the water samples ranged from -58{+-}30 to 5,715{+-}66 picocuries per liter; the mean and median concentrations were 446{+-}35 and 242{+-}25 picocuries per liter, respectively.

  5. Effects of Dissolved Oxygen Concentration on Oxygen Consumption and Development of Channel Catfish Eggs and Fry: Implications for Hatchery Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channel catfish spawns were incubated under controlled conditions to determine the effect of dissolved oxygen (DO) concentration on development and survival. Routine metabolic rate and limiting oxygen concentration were determined on eggs, sac fry and swim-up fry. Eight channel catfish spawns were s...

  6. Salicylhydroxamic Acid (SHAM) Inhibition of the Dissolved Inorganic Carbon Concentrating Process in Unicellular Green Algae.

    PubMed

    Goyal, A; Tolbert, N E

    1990-03-01

    Rates of photosynthetic O(2) evolution, for measuring K(0.5)(CO(2) + HCO(3) (-)) at pH 7, upon addition of 50 micromolar HCO(3) (-) to air-adapted Chlamydomonas, Dunaliella, or Scenedesmus cells, were inhibited up to 90% by the addition of 1.5 to 4.0 millimolar salicylhydroxamic acid (SHAM) to the aqueous medium. The apparent K(1)(SHAM) for Chlamydomonas cells was about 2.5 millimolar, but due to low solubility in water effective concentrations would be lower. Salicylhydroxamic acid did not inhibit oxygen evolution or accumulation of bicarbonate by Scenedesmus cells between pH 8 to 11 or by isolated intact chloroplasts from Dunaliella. Thus, salicylhydroxamic acid appears to inhibit CO(2) uptake, whereas previous results indicate that vanadate inhibits bicarbonate uptake. These conclusions were confirmed by three test procedures with three air-adapted algae at pH 7. Salicylhydroxamic acid inhibited the cellular accumulation of dissolved inorganic carbon, the rate of photosynthetic O(2) evolution dependent on low levels of dissolved inorganic carbon (50 micromolar Na-HCO(3)), and the rate of (14)CO(2) fixation with 100 micromolar [(14)C] HCO(3) (-). Salicylhydroxamic acid inhibition of O(2) evolution and (14)CO(2)-fixation was reversed by higher levels of NaHCO(3). Thus, salicylhydroxamic acid inhibition was apparently not affecting steps of photosynthesis other than CO(2) accumulation. Although salicylhydroxamic acid is an inhibitor of alternative respiration in algae, it is not known whether the two processes are related. PMID:16667326

  7. Concentration dynamics and biodegradability of dissolved organic matter in wetland soils subjected to experimental warming.

    PubMed

    Wang, Hang; Holden, Joseph; Zhang, Zhijian; Li, Meng; Li, Xia

    2014-02-01

    Dissolved organic matter (DOM) is the most bioavailable soil organic pool. Understanding how DOM responds to elevated temperature is important for forecasting soil carbon (C) dynamics under climate warming. Here a 4.5-year field microcosm experiment was carried out to examine temporal DOM concentration dynamics in soil pore-water from six different subtropical wetlands. Results are compared between control (ambient temperature) and warmed (+5C) treatments. UV-visible and fluorescence spectroscopy was performed to reveal DOM structural complexity at the end of the warming incubation. Elevated temperature resulted in initially (1 to 2.5 years) high pore-water DOM concentrations in warmed samples. These effects gradually diminished over longer time periods. Of the spectral indices, specific UV absorbance at 280 nm and humification index were significantly higher, while the signal intensity ratio of the fulvic-like to humic-like fluorescence peak was lower in warmed samples, compared to the control. Fluorescence regional integration analysis further suggested that warming enhanced the contribution of humic-like substances to DOM composition for all tested wetlands. These spectral fingerprints implied a declined fraction of readily available substrates in DOM allocated to microbial utilization in response to 4.5 years of warming. As a negative feedback, decreased DOM biodegradability may have the potential to counteract initial DOM increases and alleviate C loss in water-saturated wetland soils. PMID:24239698

  8. Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater

    USGS Publications Warehouse

    Meliker, J.R.; Slotnick, M.J.; Avruskin, G.A.; Haack, S.K.; Nriagu, J.O.

    2009-01-01

    Arsenic concentrations exceeding 10 ??g/l, the United States maximum contaminant level and the World Health Organization guideline value, are frequently reported in groundwater from bedrock and unconsolidated aquifers of southeastern Michigan. Although arsenic-bearing minerals (including arsenian pyrite and oxide/hydroxide phases) have been identified in Marshall Sandstone bedrock of the Mississippian aquifer system and in tills of the unconsolidated aquifer system, mechanisms responsible for arsenic mobilization and subsequent transport in groundwater are equivocal. Recent evidence has begun to suggest that groundwater recharge and characteristics of well construction may affect arsenic mobilization and transport. Therefore, we investigated the relationship between dissolved arsenic concentrations, reported groundwater recharge rates, well construction characteristics, and geology in unconsolidated and bedrock aquifers. Results of multiple linear regression analyses indicate that arsenic contamination is more prevalent in bedrock wells that are cased in proximity to the bedrock-unconsolidated interface; no other factors were associated with arsenic contamination in water drawn from bedrock or unconsolidated aquifers. Conditions appropriate for arsenic mobilization may be found along the bedrock-unconsolidated interface, including changes in reduction/oxidation potential and enhanced biogeochemical activity because of differences between geologic strata. These results are valuable for understanding arsenic mobilization and guiding well construction practices in southeastern Michigan, and may also provide insights for other regions faced with groundwater arsenic contamination. ?? Springer-Verlag 2008.

  9. Effect of dissolved oxygen concentration on iron efficiency: Removal of three chloroacetic acids.

    PubMed

    Tang, Shun; Wang, Xiao-mao; Mao, Yu-qin; Zhao, Yu; Yang, Hong-wei; Xie, Yuefeng F

    2015-04-15

    The monochloroacetic, dichloroacetic and trichloroacetic acid (MCAA, DCAA and TCAA) removed by metallic iron under controlled dissolved oxygen conditions (0, 0.75, 1.52, 2.59, 3.47 or 7.09 mg/L DO) was investigated in well-mixed batch systems. The removal of CAAs increased first and then decreased with increasing DO concentration. Compared with anoxic condition, the reduction of MCAA and DCAA was substantially enhanced in the presence of O2, while TCAA reduction was significantly inhibited above 2.59 mg/L. The 1.52 mg/L DO was optimum for the formation of final product, acetic acid. Chlorine mass balances were 69-102%, and carbon mass balances were 92-105%. With sufficient mass transfer from bulk to the particle surface, the degradation of CAAs was limited by their reduction or migration rate within iron particles, which were dependent on the change of reducing agents and corrosion coatings. Under anoxic conditions, the reduction of CAAs was mainly inhibited by the available reducing agents in the conductive layer. Under low oxic conditions, the increasing reducing agents and thin lepidocrocite layer were favorable for CAA dechlorination. Under high oxic conditions, the redundant oxygen competing for reducing agents and significant lepidocrocite growth became the major restricting factors. Various CAA removal mechanisms could be potentially applied to explaining the effect of DO concentration on iron efficiency for contaminant reduction in water and wastewater treatment. PMID:25697696

  10. The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton.

    PubMed

    Clark, D R; Flynn, K J

    2000-05-22

    A range of marine phytoplankton was grown in closed systems in order to investigate the kinetics of dissolved inorganic carbon (DIC) use and the influence of the nitrogen source under conditions of constant pH. The kinetics of DIC use could be described by a rectangular hyperbolic curve, yielding estimations of KG(DIC) (the half saturation constant for carbon-specific growth, i.e. C mu) and mu max (the theoretical maximum C mu). All species attained a KG(DIC) within the range of 30-750 microM DIC. For most species, NH4+ use enabled growth with a lower KG(DIC) and/or, for two species, an increase in mu max. At DIC concentrations of > 1.6 mM, C mu was > 90% saturated for all species relative to the rate at the natural seawater DIC concentration of 2.0 mM. The results suggest that neither the rate nor the extent of primary productivity will be significantly limited by the DIC in the quasi-steady-state conditions associated with oligotrophic oceans. The method needs to be applied in the conditions associated with dynamic coastal (eutrophic) systems for clarification of a potential DIC rate limitation where cells may grow to higher densities and under variable pH and nitrogen supply. PMID:10874743

  11. Novel method for online monitoring of dissolved N2O concentrations through a gas stripping device.

    PubMed

    Mampaey, Kris E; van Dongen, Udo G J M; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2015-01-01

    Nitrous oxide emissions from wastewater treatment plants are currently measured by online gas phase analysis or grab sampling from the liquid phase. In this study, a novel method is presented to monitor the liquid phase N2O concentration for aerated as well as non-aerated conditions/reactors, following variations both in time and in space. The monitoring method consists of a gas stripping device, of which the measurement principle is based on a continuous flow of reactor liquid through a stripping flask and subsequent analysis of the N2O concentration in the stripped gas phase. The method was theoretically and experimentally evaluated for its fit for use in the wastewater treatment context. Besides, the influence of design and operating variables on the performance of the gas stripping device was addressed. This method can easily be integrated with online off-gas measurements and allows to better investigate the origin of the gas emissions from the treatment plant. Liquid phase measurements of N2O are of use in mitigation of these emissions. The method can also be applied to measure other dissolved gasses, such as methane, being another important greenhouse gas. PMID:25573615

  12. The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton.

    PubMed Central

    Clark, D R; Flynn, K J

    2000-01-01

    A range of marine phytoplankton was grown in closed systems in order to investigate the kinetics of dissolved inorganic carbon (DIC) use and the influence of the nitrogen source under conditions of constant pH. The kinetics of DIC use could be described by a rectangular hyperbolic curve, yielding estimations of KG(DIC) (the half saturation constant for carbon-specific growth, i.e. C mu) and mu max (the theoretical maximum C mu). All species attained a KG(DIC) within the range of 30-750 microM DIC. For most species, NH4+ use enabled growth with a lower KG(DIC) and/or, for two species, an increase in mu max. At DIC concentrations of > 1.6 mM, C mu was > 90% saturated for all species relative to the rate at the natural seawater DIC concentration of 2.0 mM. The results suggest that neither the rate nor the extent of primary productivity will be significantly limited by the DIC in the quasi-steady-state conditions associated with oligotrophic oceans. The method needs to be applied in the conditions associated with dynamic coastal (eutrophic) systems for clarification of a potential DIC rate limitation where cells may grow to higher densities and under variable pH and nitrogen supply. PMID:10874743

  13. Effect of catchment land use and soil type on the concentration, quality, and bacterial degradation of riverine dissolved organic matter.

    PubMed

    Autio, Iida; Soinne, Helena; Helin, Janne; Asmala, Eero; Hoikkala, Laura

    2016-04-01

    We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5-9 % of the DOC and 45 % of the DON were degraded by the bacterial communities within 2-3 months. Simultaneously, the proportion of humic-like compounds in the DOM pool increased. Bioavailable DON accounted for approximately one-third of the total bioavailable dissolved nitrogen, and thus, terrestrial DON can markedly contribute to the coastal plankton dynamics and support the heterotrophic food web. PMID:26596969

  14. Direct measurement of local dissolved oxygen concentration spatial profiles in a cell culture environment.

    PubMed

    Kagawa, Yuki; Matsuura, Katsuhisa; Shimizu, Tatsuya; Tsuneda, Satoshi

    2015-06-01

    Controlling local dissolved oxygen concentration (DO) in media is critical for cell or tissue cultures. Various biomaterials and culture methods have been developed to modulate DO. Direct measurement of local DO in cultures has not been validated as a method to test DO modulation. In the present study we developed a DO measurement system equipped with a Clark-type oxygen microelectrode manipulated with 1??m precision in three-dimensional space to explore potential applications for tissue engineering. By determining the microelectrode tip position precisely against the bottom plane of culture dishes with rat or human cardiac cells in static monolayer culture, we successfully obtained spatial distributions of DO in the medium. Theoretical quantitative predictions fit the obtained data well. Based on analyses of the variance between samples, we found the data reflected "local" oxygen consumption in the vicinity of the microelectrode and the detection of temporal changes in oxygen consumption rates of cultured cells was limited by the diffusion rate of oxygen in the medium. This oxygen measuring system monitors local oxygen consumption and production with high spatial resolution, and can potentially be used with recently developed oxygen modulating biomaterials to design microenvironments and non-invasively monitor local DO dynamics during culture. PMID:25565074

  15. Hydrologically Driven Dynamics of Dissolved Organic Carbon Concentration and Composition in a Headwater Stream Ecosystem

    NASA Astrophysics Data System (ADS)

    Kaplan, L. A.; McLaughlin, C.; Hogan, K. R.; Newbold, J. D.

    2011-12-01

    A 34-year record of dissolved organic carbon (DOC) concentrations and compositions was used to assess the role of hydrologic variability in the carbon cycle of a headwater stream. The DOC concentration record is characterized by sharply increasing values during storms and annual minima associated with soil freezing in winter (Fig. 1). Baseflow discharge accounts for approximately 67% of the total runoff in this 3rd-order stream in the Pennsylvania Piedmont but storm flows transport approximately 75% of the DOC flux. The annual DOC flux varies as much as 3-fold and this variability is driven by unusual events such as major storms and prolonged droughts. During storms DOC quality changes as water moves to the stream through organic matter-rich upper soil horizons, by passing terrestrial controls on DOC content. The pool of biodegradable DOC (BDOC) as a percentage of total DOC increases from 33% to 73% with the most labile BDOC class increasing 4-fold while the semi-labile BDOC pool increases 2-fold. Storms also alter the structure and productivity of benthic bacterial communities that metabolize DOC in streams, though the impacts are tempered by stability of streambed substrata. For example, a February storm reduced the biomass and productivity of bacteria attached to sediments by 48% and 90%, respectively, while reducing the biomass of bacteria attached to rocks by 21% but increasing bacterial productivity by 22%. Molecular fingerprints of community compositions revealed a stable "climax community" whose alteration is influenced by the magnitude of the storm flows and eventually returns to its original composition. Actual measurements of carbon cycling based on whole-stream releases and sampling the stream bed microbial community are not feasible during storms, but we argue that for headwater streams it is the post-disturbance condition rather than any processing which occurs during storm flows that shapes the magnitude and dynamics of carbon cycling.

  16. Using dissolved oxygen concentrations to determine mixed layer depths in the Bellingshausen Sea

    NASA Astrophysics Data System (ADS)

    Castro-Morales, K.; Kaiser, J.

    2011-06-01

    Concentrations of oxygen (O2) and other dissolved gases in the oceanic mixed layer are often used to calculate air-sea gas exchange fluxes; for example, in the context of net and gross biological production estimates. The mixed layer depth (zmix) may be defined using criteria based on temperature or density differences to a reference depth near the ocean surface. However, temperature criteria fail in regions with strong haloclines such as the Southern Ocean where heat, freshwater and momentum fluxes interact to establish mixed layers. Moreover, the time scales of air-sea exchange differ for gases and heat, so that zmix defined using O2 may be different to zmix defined using temperature or density. Here, we propose to define an O2-based mixed layer depth, zmix(O2), as the depth where the relative difference between the O2 concentration and a reference value at a depth equivalent to 10 dbar equals 0.5 %. This definition was established by numerical analysis of O2 profiles in coastal areas of the Southern Ocean and corroborated by visual inspection. Comparisons of zmix(O2) with zmix based on potential temperature differences, i.e. zmix(?? = 0.2 C) and zmix(?? = 0.5 C), and potential density differences, i.e. zmix(??? = 0.03 kg m-3) and zmix(??? = 0.125 kg m-3), showed that zmix(O2) closely follows zmix(??? = 0.03 kg m-3). Further comparisons with published zmix climatologies and zmix derived from World Ocean Atlas 2005 data were also performed. To establish zmix for use with biological production estimates in the absence of O2 profiles, we suggest using zmix(??? = 0.03 kg m-3), which is also the basis for the climatology by de Boyer Montgut et al. (2004).

  17. Using dissolved oxygen concentrations to determine mixed layer depths in the Bellingshausen Sea

    NASA Astrophysics Data System (ADS)

    Castro-Morales, K.; Kaiser, J.

    2012-01-01

    Concentrations of oxygen (O2) and other dissolved gases in the oceanic mixed layer are often used to calculate air-sea gas exchange fluxes. The mixed layer depth (zmix) may be defined using criteria based on temperature or density differences to a reference depth near the ocean surface. However, temperature criteria fail in regions with strong haloclines such as the Southern Ocean where heat, freshwater and momentum fluxes interact to establish mixed layers. Moreover, the time scales of air-sea exchange differ for gases and heat, so that zmix defined using oxygen may be different than zmix defined using temperature or density. Here, we propose to define an O2-based mixed layer depth, zmix(O2), as the depth where the relative difference between the O2 concentration and a reference value at a depth equivalent to 10 dbar equals 0.5 %. This definition was established by analysis of O2 profiles from the Bellingshausen Sea (west of the Antarctic Peninsula) and corroborated by visual inspection. Comparisons of zmix(O2) with zmix based on potential temperature differences, i.e., zmix(0.2 C) and zmix(0.5 C), and potential density differences, i.e., zmix(0.03 kg m-3) and zmix(0.125 kg m-3), showed that zmix(O2) closely follows zmix(0.03 kg m-3). Further comparisons with published zmix climatologies and zmix derived from World Ocean Atlas 2005 data were also performed. To establish zmix for use with biological production estimates in the absence of O2 profiles, we suggest using zmix(0.03 kg m-3), which is also the basis for the climatology by de Boyer Montgut et al. (2004).

  18. Comparative production of channel catfish and channel x blue hybrid catfish subjected to two minimum dissolved oxygen concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of daily minimum dissolved oxygen concentration on growth and yield (kg/ha) of the channel catfish (Ictalurus punctatus) and the channel x blue hybrid catfish (I. punctatus female x I. furcatus male), which shared the Jubilee strain of channel catfish as the maternal parent, was evaluated...

  19. Short-term variability of dissolved trace element concentrations in the Marne and Seine rivers near Paris.

    PubMed

    Elbaz-Poulichet, Franoise; Seidel, Jean-Luc; Casiot, Corinne; Tusseau-Vuillemin, Marie-Hlne

    2006-08-15

    The concentrations of dissolved trace elements (Li, B, Mn, Cu, As, Rb, Sr, Mo, Cd, Ba, Pb) in the Marne and Seine rivers in the Paris urban area were monitored over a 2-year period. The resulting data indicated moderate contamination of waters by the most toxic elements (Cu, As, Cd and Pb). The River Marne upstream and the River Seine downstream of the city of Paris displayed similar concentrations. However higher fluxes of trace elements were observed in the Seine than in the Marne due to their different discharges. Li, B, Rb, Sr and Ba concentrations were correlated with river discharge and concentrations were higher during high river flow. This was interpreted as a dilution by discharge from a major natural or anthropogenic source. Mn, Cu, Mo, Cd and Pb concentrations were not correlated with discharge. Dissolved Mn, Cu and Cd increased rapidly in summer, whereas the concentration of Mo decreased. These variations were attributed to redox processes. During summer when the dissolved oxygen concentrations decrease, Mn, Cu, Cd and Pb are released into solution whereas Mo is immobilised. Like metals, variations in arsenic contents were not linked with discharge. Its similarity with phosphate distribution suggests similar controls involving phytoplankton uptake and release from sediments through organic matter mineralization. PMID:16356535

  20. Use of dissolved H2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater

    USGS Publications Warehouse

    Lovley, D.R.; Chapelle, F.H.; Woodward, J.C.

    1994-01-01

    The potential for using concentrations of dissolved H2 to determine the distribution of redox processes in anoxic groundwaters was evaluated. In pristine aquifers in which standard geochemical measurements indicated that Fe-(III) reduction, sulfate reduction, or methanogenesis was the terminal electron accepting process (TEAP), the H2 concentrations were similar to the H2 concentrations that have previously been reported for aquatic sediments with the same TEAPs. In two aquifers contaminated with petroleum products, it was impossible with standard geochemical analyses to determine which TEAPs predominated in specific locations. However, the TEAPs predicted from measurements of dissolved H2 were the same as those determined directly through measurements of microbial processes in incubated aquifer material. These results suggest that H2 concentrations may be a useful tool for analyzing the redox chemistry of nonequilibrium groundwaters.

  1. Dissolved Rare Earth Element Concentrations in the Upwelling area off Peru

    NASA Astrophysics Data System (ADS)

    Grasse, P.; Plass, A.; Hathorne, E. C.; Frank, M.

    2012-12-01

    Rare earth elements (REEs) are powerful tracers of continental input, particle exchange and scavenging processes, as well as for water mass transport in the ocean. We present a first data set of dissolved REE distributions in filtered seawater covering the major gradients of bio-productivity and oxygen concentrations in the upwelling area off Peru. A total of 22 stations were analyzed along a shelf, a nearshore and an offshore transect to investigate the influence of local inputs versus water mass mixing. The Peruvian coastal upwelling area is a highly dynamic system characterized by intense upwelling of nutrient-rich subsurface water and therefore high productivity that leads to one of the globally largest Oxygen Minimum Zones (OMZ). The upwelling area off Peru is of particular interest for understanding the biogeochemical cycling of REEs and other redox-sensitive metals because anoxic conditions are expected to release of REEs from the shelf, whereas high particle densities and fluxes efficiently remove the REEs from the water column. Despite their high potential as tracers few systematic investigations of seawater REEs have been carried out so far because the low concentrations of REEs (pM) are difficult to measure. In this study an online preconcentration (OP) system (seaFast, Elemental Scientific Inc.) was used with a technique slightly modified from Hathorne et al. (2012). The OP system efficiently separates seawater matrix elements from the REEs and elutes the preconcentrated sample directly into the spray chamber of the ICP-MS instrument. Repeated measurements of a seawater reference sample (n= 20) during this study gave a reproducibility of between 5% and 15% (2?), with the worst reproducibility for Sm, Eu, and Gd (12% to 15%). In general, the REEs, except Ce, show a nutrient-like behavior in seawater increasing in concentration with water depth. However, such distributions were not observed for some stations on the shelf where the highest concentrations, especially of the light REEs, were found in surface waters. Shelf locations show an enrichment in light REEs with higher (La/Yb)PAAS ratios (~0.7) in comparison to offshore stations (~0.3), likely reflecting continental input from the shelf sediments. Compared to North Pacific Deep Water (Alibo and Nozaki, 1999) the shelf samples are depleted in REEs, except for La and Ce, revealing that in addition to shelf inputs and dissolution of lithogenic particles, particle scavenging processes in the highly productive shelf area exert a major control on the REE concentrations. Interestingly there is no clear correlation between oxygen concentration and the Ce anomaly (Ce*) as in waters with oxygen concentrations below 5 ?mol/kg the Ce* ranged between 0.2 and 1.0. References: Hathorne, E. C., Haley, B., Stichel, T., Grasse, P., Zieringer, M., & Frank, M. (2012). Online preconcentration ICP-MS analysis of rare earth elements in seawater. Geochemistry Geophysics Geosystems, 13(1), 1-12. doi:10.1029/2011GC003907 Alibo, D. S., & Nozaki, Y. (1999). Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63(3/4), 363-372.

  2. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations (+57% upper limit) in response to increasing NO 3- in soil solution, but there was no significant change in DOC concentration. In contrast to these patterns, increasing soil solution NO3- in the SMBW soil resulted in significantly greater phenol oxidase activity (+700% upper limit) and a trend toward lower DOC production (-52% lower limit). Nitrate concentration had no effect on microbial respiration or ??-glucosidase or N-acetyl-glucosaminidase activities. Fungal abundance and basidiomycete diversity tended to be highest in the BOWO soil and lowest in the SMBW, but neither displayed a consistent response to NO 3- additions. Taken together, our results demonstrate that oxidative enzyme production by microbial communities responds directly to NO3- deposition, controlling extracellular enzyme activity and DOC flux. The regulation of oxidative enzymes by different microbial communities in response to NO3- deposition highlights the fact that the composition and function of soil microbial communities directly control ecosystem-level responses to environmental change. ?? 2006 Springer Science+Business Media, Inc.

  3. Dissolved-solids concentrations and hydrochemical facies in water of the Edwards-Trinity aquifer system, west-central Texas

    USGS Publications Warehouse

    Bush, P.W.; Ulery, R.L.; Rittmaster, R.L.

    1994-01-01

    Much of the Edwards-Trinity aquifer system contains freshwater, but sizable parts contain marginally fresh or slightly saline water. The predominant water type in the aquifer system is calcium bicarbonate; however, one of seven other hydrochemical facies characterizes the water in places. The median dissolved-solids concentration of water samples from the Edwards aquifer in the Balcones fault zone is 297 mg/L (milligrams per liter); the interquartile range is 93 mg/L. In the freshwater zone of the Edwards aquifer updip of a freshwater/saline-water transition zone, the water is almost exclusively calcium bicarbonate. The median dissolved-solids concentration of water samples from the Trinity aquifer in the Hill Country is 537 mg/L and the interquartile range is 573 mg/L. Four bicarbonate and sulfate facies, spread vertically throughout the saturated section, characterize most of the Hill Country analyses; calcium bicarbonate predominates. The median concentration of dissolved solids in water samples from the Edwards-Trinity aquifer in the Edwards Plateau is 379 mg/L and the interquartile range is 547 mg/L. Freshwater is nearly everywhere in the southern and northeastern parts of the aquifer, and mostly slightly saline water is in the northwestern part. The distribution of hydrochemical facies shows a similar pattern to dissolved-solids concentration, with bicarbonate water nearly everywhere in the southern and northeastern parts of the aquifer. Sulfate and chloride facies characterize the northwestern part of the Edwards Plateau. The median concentration of dissolved solids among water samples from the Edwards-Trinity aquifer in the Trans-Pecos is 929 mg/L and the interquartile range is 1,626 mg/L. Fresh, calcium bicarbonate water predominates in the southern part, and more saline mixed and sulfate waters are the most common in the northwestern part.

  4. Tracing water and suspended matter in Raritan and Lower New York Bays using dissolved and particulate elemental concentrations

    USGS Publications Warehouse

    Paulson, A.J.

    2005-01-01

    Geochemical tracers were used to examine the mixing of water and particles in Lower New York and Raritan Bays in August 1999 during low-flow conditions. Four brackish water masses (20 ??? S ??? 28) originating in the Raritan and Shrewsbury Rivers, Arthur Kill, and Upper New York Bay were characterized by their dissolved metals concentrations. The mixing lines of dissolved Cu, Ni, and Pb in Lower New York Bay were similar to those in Upper New York Bay, the source of most of the freshwater to the system. Dissolved Cd and Mn seemed to have been removed by particles in several regions of the study. Dissolved Cu, Ni and Pb in the Raritan River fell below the mixing lines of the Lower New York Bay. In contrast, the concentrations of dissolved Co and Mn in the Raritan River were distinctly higher than those in the Lower New York Bay, while dissolved Cu and Ni were elevated in the Arthur Kill. A plot of dissolved Co versus dissolved Ni clearly differentiated among three water masses: (1) Upper and Lower New York Bays and Sandy Hood Bay, (2) the Raritan River, and (3) Arthur Kill-Raritan Bay-Shrewsbury River. The concentrations of 22 elements also were measured in the suspended matter of Raritan and Lower New York Bays and brackish water sources. The elemental composition of the suspended matter in surface and bottom waters was correlated with Fe concentrations, which ranged between 50 and 900 ??mol g- 1. Statistical differences among the geographical regions were detected in the relationships of Ti, Ni, Co, As, and U with Fe, with particulate As being an especially strong geochemical indicator of Raritan River particles. The geochemical signatures of Lower New York Bay particles were similar to those of Upper New York Bay. The geochemical signatures of Raritan River particles were distinctly different than those of the Upper New York Bay, but the influence of Raritan River particles appeared to be limited to only inner Raritan Bay. This study illustrates the utility of trace elements for characterization of physical processes in complex estuaries.

  5. A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D; Anning, David W.

    2014-01-01

    The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

  6. Evaluation of planning alternatives for maintaining desirable dissolved-oxygen concentrations in the Willamette River, Oregon

    USGS Publications Warehouse

    Rickert, David A.; Rinella, F.A.; Hines, W.G.; McKenzie, S.W.

    1980-01-01

    For nearly half a century the Willamette River in Oregon experienced severe dissolved-oxygen problems related to large loads of organically rich waste waters from industries and municipalities. Since the mid-1950 's dissolved oxygen quality has gradually improved owing to low-flow augmentation, the achievement of basinwide secondary treatment, and the use of other waste-management practices. As a result, summer dissolved-oxygen levels have increased, salmon runs have returned, and the overall effort is widely regarded as a singular water-quality success. To document the improved dissolved-oxygen regimen, the U.S. Geological Survey conducted intensive studies of the Willamette during the summer low-flow seasons of 1973 and 1974. During each summer the mean daily dissolved-oxygen levels were found to be higher than 5 milligrams per liter throughout the river. Because of the basinwide secondary treatment, carbonaceous deoxygenation rates were low. In addition, almost half of the biochemical oxygen demand entering the Willamette was from diffuse (nonpoint) sources rather than outfalls. These results indicated that point-source biochemical oxygen demand was no longer the primary cause of dissolved-oxygen depletion. Instead, the major causes of deoxygenation were nitrification in a shallow ' surface active ' reach below Salem and an anomalous oxygen demand (believed to be primarily of benthal origin) in Portland Harbor. (Woodard-USGS)

  7. Glucose concentration alters dissolved oxygen levels in liquid cultures of Beauveria bassiana and affects formation and bioefficacy of blastospores.

    PubMed

    Mascarin, Gabriel Moura; Jackson, Mark A; Kobori, Nilce Naomi; Behle, Robert W; Dunlap, Christopher A; Delalibera Jnior, talo

    2015-08-01

    The filamentous fungus Beauveria bassiana is an economically important pathogen of numerous arthropod pests and is able to grow in submerged culture as filaments (mycelia) or as budding yeast-like blastospores. In this study, we evaluated the effect of dissolved oxygen and high glucose concentrations on blastospore production by submerged cultures of two isolates of B. bassiana, ESALQ1432 and GHA. Results showed that maintaining adequate dissolved oxygen levels coupled with high glucose concentrations enhanced blastospore yields by both isolates. High glucose concentrations increased the osmotic pressure of the media and coincided with higher dissolved oxygen levels and increased production of significantly smaller blastospores compared with blastospores produced in media with lower concentrations of glucose. The desiccation tolerance of blastospores dried to less than 2.6 % moisture was not affected by the glucose concentration of the medium but was isolate dependent. Blastospores of isolate ESALQ1432 produced in media containing 140 g glucose L(-1) showed greater virulence toward whitefly nymphs (Bemisia tabaci) as compared with blastospores produced in media containing 40 g glucose L(-1). These results suggest a synergistic effect between glucose concentration and oxygen availability on changing morphology and enhancing the yield and efficacy of blastospores of B. bassiana, thereby facilitating the development of a cost-effective production method for this blastospore-based bioinsecticide. PMID:25947245

  8. Dissolved Pesticide and Organic Carbon Concentrations Detected in Surface Waters, Northern Central Valley, California, 2001-2002

    USGS Publications Warehouse

    Orlando, James L.; Jacobson, Lisa A.; Kuivila, Kathryn M.

    2004-01-01

    Field and laboratory studies were conducted to determine the effects of pesticide mixtures on Chinook salmon under various environmental conditions in surface waters of the northern Central Valley of California. This project was a collaborative effort between the U.S. Geological Survey (USGS) and the University of California. The project focused on understanding the environmental factors that influence the toxicity of pesticides to juvenile salmon and their prey. During the periods January through March 2001 and January through May 2002, water samples were collected at eight surface water sites in the northern Central Valley of California and analyzed by the USGS for dissolved pesticide and dissolved organic carbon concentrations. Water samples were also collected by the USGS at the same sites for aquatic toxicity testing by the Aquatic Toxicity Laboratory at the University of California Davis; however, presentation of the results of these toxicity tests is beyond the scope of this report. Samples were collected to characterize dissolved pesticide and dissolved organic carbon concentrations, and aquatic toxicity, associated with winter storm runoff concurrent with winter run Chinook salmon out-migration. Sites were selected that represented the primary habitat of juvenile Chinook salmon and included major tributaries within the Sacramento and San Joaquin River Basins and the Sacramento?San Joaquin Delta. Water samples were collected daily for a period of seven days during two winter storm events in each year. Additional samples were collected weekly during January through April or May in both years. Concentrations of 31 currently used pesticides were measured in filtered water samples using solid-phase extraction and gas chromatography-mass spectrometry at the U.S. Geological Survey's organic chemistry laboratory in Sacramento, California. Dissolved organic carbon concentrations were analyzed in filtered water samples using a Shimadzu TOC-5000A total organic carbon analyzer.

  9. Diatom stratigraphy and long-term dissolved silica concentrations in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Olli, Kalle; Clarke, Annemarie; Danielsson, sa; Aigars, Juris; Conley, Daniel J.; Tamminen, Timo

    2008-10-01

    In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy. To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 mol L - 1 ) during a relatively well defined time period from 1991-1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 mol L - 1 ) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991-1992; up to 5.5 mg ww L - 1 ). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981-1983 (up to 8 mg L - 1 ), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975-1985.

  10. Maximizing biomass concentration in baker's yeast process by using a decoupled geometric controller for substrate and dissolved oxygen.

    PubMed

    Chopda, Viki R; Rathore, Anurag S; Gomes, James

    2015-11-01

    Biomass production by baker's yeast in a fed-batch reactor depends on the metabolic regime determined by the concentration of glucose and dissolved oxygen in the reactor. Achieving high biomass concentration in turn is dependent on the dynamic interaction between the glucose and dissolved oxygen concentration. Taking this into account, we present in this paper the implementation of a decoupled input-output linearizing controller (DIOLC) for maximizing biomass in a fed-batch yeast process. The decoupling is based on the inversion of 22 input-output matrix resulting from global linearization. The DIOLC was implemented online using a platform created in LabVIEW employing a TCP/IP protocol via the reactor's built-in electronic system. An improvement in biomass yield by 23% was obtained compared to that using a PID controller. The results demonstrate superior capability of the DIOLC and that the cumulative effect of smoother control action contributes to biomass maximization. PMID:26233328

  11. Understanding and modelling the variability in Dissolved Organic Carbon concentrations in catchment drainage

    NASA Astrophysics Data System (ADS)

    Coleman, Martin; Waldron, Susan; Scott, Marian; Drew, Simon

    2013-04-01

    Our knowledge of dynamic natural habitats could be improved through the deployment of automated sensor technology. Dissolved organic carbon concentrations, [DOC], are of interest to water companies as purification removes this pool and currently in environmental science, due in part to rising DOC levels and also as respiration of this C pool can lead to an increased CO2 efflux. Manual sampling of catchment drainage systems has revealed seasonal patterns in DOC (Williams, P.J.L., 1995) and that hydrological events export most DOC(Raymond, P.A. and J.E. Saiers, 2010). However, manual sampling precludes detailed characterisation of the dynamic fluctuation of DOC over shorter but important time periods e.g. immediately prior to an event; the transition from base flow to a surface run-off dominated system as surface flow pathways defrost. Such insight is only gained through deployment of continuous-monitoring equipment. Since autumn 2010 we have deployed an S::CAN Spectrolyser (which from absorbance gives a measurement of [DOC]) in a 7.5 kilometre squared peaty catchment draining Europe's largest windfarm, Whitelee. Since autumn 2011, we have an almost complete time series of [DOC] every 30. Here [DOC] has ranged from 12.2 to 58.4 mg/l C and during event flow DOC had a maximum variation of 23.5 mg/l within a single day. Simultaneously with the Spectrolyser, we have logged stage height, pH and conductivity using an In-Situ Inc MD Troll 9000. Generally there is an inverse relationship between [DOC] and both pH and conductivity, but a positive relationship (albeit with seasonal differences) with [DOC] and stage height, from which we can infer hydrological changes in the source of the DOC. Here, in addition to presenting the time series of the data, and a more accurate export budget estimate, I will explore statistical methods for the handling of large datasets. Trends in the data of such large and dynamic data sets are challenging to model. Simple relationships with stage height or conductivity generally are not maintained over extended time periods and thus more complex statistical approaches are needed to understand trend and detail. For example wavelet analysis is being used to assess if periodicity in [DOC] occurs other than seasonally. Raymond, P.A. and J.E. Saiers (2010), Event controlled DOC export from forested watersheds. Biogeochemistry, 100,1-3, 197-209. Williams, P.J.L. (1995), Evidence for the seasonal accumulation of carbon-rich dissolved organic material, its scale in comparison with changes in particulate material and the consequential effect on net C/N assimilation ratios. Marine Chemistry, 51,1, 17-29.

  12. Design of a system for the control of low dissolved oxygen concentrations: critical oxygen concentrations for Azotobacter vinelandii and Escherichia coli.

    PubMed

    Chen, J; Tannahill, A L; Shuler, M L

    1985-02-01

    The physiological activity of microorganisms in environments with low dissolved oxygen concentrations often differs from the metabolic activity of the same cells growing under fully aerobic or anaerobic conditions. This article describes a laboratory-scale system for the control of dissolved oxygen at low levels while maintaining other parameters, such as agitator speed, gas flowrate, position of sparger outlet, and temperature at fixed values. Thus, it is possible to attribute in dilute nonviscous fermentations all physiologic changes solely to changes in dissolved oxygen. Experiments were conducted with Azotobacter vinelandii and Escherichia coli. Critical oxygen concentrations for growth (that value of oxygen allowing growth at 97% of mu max) were measured as 0.35 +/- 0.03 mg/L for A. vinelandii and 0.12 +/- 0.03 mg/L for E. coli. These values are significantly different from the commonly quoted values for critical oxygen concentrations based on respiration rates. Because of the superior dissolved oxygen control system and an improved experimental protocol preventing CO2 limitation, we believe that the values reported in this work more closely represent reality. PMID:11540938

  13. Analysis of environmental issues related to small-scale hydroelectric development. VI. Dissolved oxygen concentrations below operating dams

    SciTech Connect

    Cada, G.F.; Kumar, K.D.; Solomon, J.A.; Hildebrand, S.G.

    1982-01-01

    Results are presented of an effort aimed at determining whether or not water quality degradation, as exemplified by dissolved oxygen concentrations, is a potentially significant issue affecting small-scale hydropower development in the US. The approach was to pair operating hydroelectric sites of all sizes with dissolved oxygen measurements from nearby downstream US Geological Survey water quality stations (acquired from the WATSTORE data base). The USGS data were used to calculate probabilities of non-compliance (PNCs), i.e., the probabilities that dissolved oxygen concentrations in the discharge waters of operating hydroelectric dams will drop below 5 mg/l. PNCs were estimated for each site, season (summer vs remaining months), and capacity category (less than or equal to 30 MW vs >30 MW). Because of the low numbers of usable sites in many states, much of the subsequent analysis was conducted on a regional basis. During the winter months (November through June) all regions had low mean PNCs regardless of capacity. Most regions had higher mean PNCs in summer than in winter, and summer PNCs were greater for large-scale than for small-scale sites. Among regions, the highest mean summer PNCs were found in the Great Basin, the Southeast, and the Ohio Valley. To obtain a more comprehensive picture of the effects of season and capacity on potential dissolved oxygen problems, cumulative probability distributions of PNC were developed for selected regions. This analysis indicates that low dissolved oxygen concentrations in the tailwaters below operating hydroelectric projects are a problem largely confined to large-scale facilities.

  14. Dissolved Hydrocarbons and Related Microflora in a Fjordal Seaport: Sources, Sinks, Concentrations, and Kinetics

    PubMed Central

    Button, D. K.; Robertson, Betsy R.; Craig, Kathleen S.

    1981-01-01

    The continuous addition of toluene as a solute of treated ballast water from oil tankers into a well-defined estuary facilitated the study of the dynamics of dissolved hydrocarbon metabolism in seawater. Most rates of toluene oxidation were in the range of 1 to 30 pg/liter per h at 0.5 ?g of toluene per liter. Near the ballast water injection point, a layer of warm ballast water, rich in bacteria, that was trapped below the less-dense fresh surface water was located. Toluene residence times were approximately 2 weeks in this layer, 2 years elsewhere in Port Valdez, and 2 decades in the surface water of a more oceanic receiving estuary adjacent. Mixing was adequate for a steady-state treatment which showed that 98% of the toluene was flushed from Port Valdez before metabolism and gave a steady-state concentration of 0.18 ?g/liter. Total bacterial biomass from direct counts and organism size data was usually near 0.1 mg/liter, but ranged up to 0.8 mg/liter in the bacteria-rich layer. The origin of bacteria in this layer was traced to growth in oil tanker ballast during shipments. The biomass of toluene oxidizers in water samples was estimated from the average affinity of pure-culture isolates for toluene (28 liters per g of cells per h) and observed toluene oxidation kinetics. Values ranged from nearly all of the total bacterial biomass within the bacteria-rich layer down to 0.2% at points far removed. Because the population of toluene oxidizers was large with respect to the amount of toluene consumed and because water from a nearby nonpolluted estuary was equally active in facilitating toluene metabolism, we searched for an additional hydrocarbon source. It was found that terpenes could be washed from spruce trees by simulated rainfall, which suggested that riparian conifers provide an additional and significant hydrocarbon source to seawater. Images PMID:16345870

  15. Effect of daily minimum dissolved oxygen concentration on production of channel x blue hybrid catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the channel x blue hybrid catfish is stocked by an increasing number of catfish farmers, it is important to quantify the production response of this fish to pond dissolved oxygen management strategies. The purpose of this study was to quantify the production and water quality responses of the cha...

  16. Optimum concentration of dissolved oxygen for the survival of virulent Treponema pallidum under conditions of low oxidation-reduction potential.

    PubMed Central

    Graves, S; Billington, T

    1979-01-01

    A maintenance medium with a low oxidation-reduction (redox) potential, when gently bubbled with 5% oxygen in nitrogen or with air for various periods of time, gave a range of dissolved oxygen concentrations between 1.6 and 5.8 micrograms/l. Virulent Treponema pallidum (Nichols strain) inoculated into these media were assayed 24 and 48 hours later for motility and virulence and were compared with samples taken at zero time. Virulent T. pallidum survived best in the presence of 2.4 micrograms/l dissolved oxygen over a 48-hour period, which corresponded to a gaseous mixture of 3% oxygen in nitrogen. Higher concentrations of oxygen did not give significantly different results from anaerobic conditions over this period. Thus, until it can be grown in vitro, T. pallidum would appear to be a microaerophilic bacterium. PMID:393360

  17. Dissolved-solids concentration in water from the upper permeable zone of the Tertiary limestone aquifer system, southeastern United States

    USGS Publications Warehouse

    Sprinkle, Craig L.

    1982-01-01

    The Tertiary limestone aquifer system of the southeastern United States is a thick sequence of carbonate rocks that range from Paleocene to Miocene in age and are hydraulically connected in varying degrees. The upper permeable zone of the aquifer system consists of the Tampa, Suwannee, Ocala, and Avon Park Limestones. Based on analyses of water samples from 591 selected wells, a map is presented which shows dissolved-solids concentration in ranges of 0-250, 251-500, 501-1,000, and greater than 1,000 mg/. Dissolved-solids concentrations and hydrochemical facies developed within the aquifer system are related to the predevelopment and modern-day ground-water flow system. (USGS)

  18. Effect of water hardness and dissolved-solid concentration on hatching success and egg size in bighead carp

    USGS Publications Warehouse

    Chapman, Duane C.; Deters, Joseph E.

    2009-01-01

    Bighead carp Hypophthalmichthys nobilis is an Asian species that has been introduced to the United States and is regarded as a highly undesirable invader. Soft water has been said to cause the bursting of Asian carp eggs and thus has been suggested as a factor that would limit the spread of this species. To evaluate this, we subjected fertilized eggs of bighead carp to waters with a wide range of hardness and dissolved-solid concentrations. Hatching rate and egg size were not significantly affected by the different water qualities. These results, combined with the low hardness (28–84 mg/L) of the Yangtze River (the primary natal habitat of Hypophthalmichthys spp.), suggest that managers and those performing risk assessments for the establishment of Hypophthalmichthys spp. should be cautious about treating low hardness and dissolved-solid concentrations as limiting factors.

  19. Decadal-scale changes in dissolved-solids concentrations in groundwater used for public supply, Salt Lake Valley, Utah

    USGS Publications Warehouse

    Thiros, Susan; Spangler, Larry

    2010-01-01

    Basin-fill aquifers are a major source of good-quality water for public supply in many areas of the southwestern United States and have undergone increasing development as populations have grown over time. During 2005, the basin-fill aquifer in Salt Lake Valley, Utah, provided approximately 75,000 acre-feet, or about 29 percent of the total amount of water used by a population of 967,000. Groundwater in the unconsolidated basin-fill deposits that make up the aquifer occurs under unconfined and confined conditions. Water in the shallow unconfined part of the groundwater system is susceptible to near-surface contamination and generally is not used as a source of drinking water. Groundwater for public supply is withdrawn from the deeper unconfined and confined parts of the system, termed the principal aquifer, because yields generally are greater and water quality is better (including lower dissolved-solids concentrations) than in the shallower parts of the system. Much of the water in the principal aquifer is derived from recharge in the adjacent Wasatch Range (mountain-block recharge). In many areas, the principal aquifer is separated from the overlying shallow aquifer by confining layers of less permeable, fine-grained sediment that inhibit the downward movement of water and any potential contaminants from the surface. Nonetheless, under certain hydrologic conditions, human-related activities can increase dissolved-solids concentrations in the principal aquifer and result in groundwater becoming unsuitable for consumption without treatment or mixing with water having lower dissolved-solids concentrations. Dissolved-solids concentrations in areas of the principal aquifer used for public supply typically are less than 500 milligrams per liter (mg/L), the U.S. Environmental Protection Agency (EPA) secondary (nonenforceable) drinking-water standard. However, substantial increases in dissolved-solids concentrations in the principal aquifer have been documented in some areas used for public supply, raising concerns as to the source(s) and cause(s) of the higher concentrations and the potential long-term effects on groundwater quality.

  20. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors.

    PubMed

    Rongsayamanont, Chaiwat; Limpiyakorn, Tawan; Khan, Eakalak

    2014-07-01

    An entrapment of nitrifiers into gel matrix is employed as a tool to fulfill partial nitrification under non-limiting dissolved oxygen (DO) concentrations in bulk solutions. This study aims to clarify which of these two attributes, inoculum type and DO concentration in bulk solutions, is the decisive factor for partial nitrification in an entrapped-cell based system. Four polyvinyl alcohol entrapped inocula were prepared to have different proportions of nitrite-oxidizing bacteria (NOB) and nitrite-oxidizing activity. At a DO concentration of 3 mg l(-1), the number of active NOB cells in an inoculum was the decisive factor for partial nitrification enhancement. However, when the DO concentration was reduced to 2 mg l(-1), all entrapped cell inocula showed similar degrees of partial nitrification. The results suggested that with the lower bulk DO concentration, the preparation of entrapped cell inocula is not useful as the DO level becomes the decisive factor for achieving partial nitrification. PMID:24862001

  1. Analysis of dissolved organic carbon concentration and 13C isotopic signature by TOC-IRMS - assessment of analytical performance

    NASA Astrophysics Data System (ADS)

    Kirkels, Frdrique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten

    2013-04-01

    Stable carbon isotopes provide a powerful tool to assess carbon pools and their dynamics. Dissolved organic carbon (DOC) has been recognized to play an important role in ecosystem functioning and carbon cycling and has therefore gained increased research interest. However, direct measurement of 13C isotopic signature of carbon in the dissolved phase is technically challenging particularly using high temperature combustion. Until recently, mainly custom-made systems existed which were modified for coupling of TOC instruments with IRMS for simultaneous assessment of C content and isotopic signature. The variety of coupled systems showed differences in their analytical performances. For analysis of DOC high temperature combustion is recognized as best performing method, owing to its high efficiency of conversion to CO2 also for highly refractory components (e.g. humic, fulvic acids) present in DOC and soil extracts. Therefore, we tested high temperature combustion TOC coupled to IRMS (developed by Elementar Group) for bulk measurements of DOC concentration and 13C signature. The instruments are coupled via an Interface to exchange the carrier gas from O2 to He and to concentrate the derived CO2 for the isotope measurement. Analytical performance of the system was assessed for a variety of organic compounds characterized by different stability and complexity, including humic acid and DOM. We tested injection volumes between 0.2-3 ml, thereby enabling measurement of broad concentration ranges. With an injection volume of 0.5 ml (n=3, preceded by 1 discarded injection), DOC and 13C signatures for concentrations between 5-150 mg C/L were analyzed with high precision (standard deviation (SD) predominantly <0.1), good accuracy and linearity (overall SD <0.9). For the same settings, slightly higher variation in precision was observed among the lower concentration range and depending upon specific system conditions. Differences in 13C signatures of about 50 among samples did not affect the precision of the analysis of natural abundance and labeled samples. Natural DOM, derived from different soils and assessed at various concentrations, was measured with similar good analytical performance, and also tested for the effect of freezing and re-dissolving. We found good performance of TOC-IRMS in comparison with other systems capable of determining C concentration and isotopic signatures. We recognize the advantages of this system providing: - High sample throughput, short measurement time (15 minutes), flexible sample volume - Easy maintenance, handling, rapid sample preparation (no pretreatment) This preliminary assessment highlights wide-ranging opportunities for further research on concentrations and isotopic signatures by TOC-IRMS to elucidate the role of dissolved carbon in terrestrial and aquatic systems.

  2. A procedure for predicting concentrations of dissolved solids and sulfate ion in streams draining areas strip mined for coal

    USGS Publications Warehouse

    Bevans, H.E.

    1980-01-01

    Current trends in increased coal production necessitate the development of techniques to appraise the environmental degradation resulting from strip mining. A procedure is introduced for the prediction of dissolved-solids and sulfate-ion concentrations in streams draining strip-mined areas. Concentrations are a function of the percentage of the drainage area that has been strip mined. These relationships are expressed by regression equations computed from data collected in streams draining strip-mined areas of Cherokee and Crawford Counties in southeast Kansas. High correlation coefficients indicate that the relationships may be useful in the evaluation of present or future strip-mining operations. (USGS)

  3. Dissolved Concentrations of PAHs and PCBs Are Often Over-predicted Using Sediment Concentrations and Literature Koc Values

    EPA Science Inventory

    There is an increasing amount of chemical and biological evidence that using sediment concentrations and commonly applied Koc values frequently overpredicts interstitial water concentrations of HOCs, and thereby overestimates uptake and/or effects of those chemicals on exposed or...

  4. Development of a pre-concentration system and auto-analyzer for dissolved methane, ethane, propane, and butane concentration measurements with a GC-FID

    NASA Astrophysics Data System (ADS)

    Chepigin, A.; Leonte, M.; Colombo, F.; Kessler, J. D.

    2014-12-01

    Dissolved methane, ethane, propane, and butane concentrations in natural waters are traditionally measured using a headspace equilibration technique and gas chromatograph with flame ionization detector (GC-FID). While a relatively simple technique, headspace equilibration suffers from slow equilibration times and loss of sensitivity due to concentration dilution with the pure gas headspace. Here we present a newly developed pre-concentration system and auto-analyzer for use with a GC-FID. This system decreases the time required for each analysis by eliminating the headspace equilibration time, increases the sensitivity and precision with a rapid pre-concentration step, and minimized operator time with an autoanalyzer. In this method, samples are collected from Niskin bottles in newly developed 1 L plastic sample bags rather than glass vials. Immediately following sample collection, the sample bags are placed in an incubator and individually connected to a multiport sampling valve. Water is pumped automatically from the desired sample bag through a small (6.5 mL) Liqui-Cel® membrane contactor where the dissolved gas is vacuum extracted and directly flushed into the GC sample loop. The gases of interest are preferentially extracted with the Liqui-Cel and thus a natural pre-concentration effect is obtained. Daily method calibration is achieved in the field with a five-point calibration curve that is created by analyzing gas standard-spiked water stored in 5 L gas-impermeable bags. Our system has been shown to substantially pre-concentrate the dissolved gases of interest and produce a highly linear response of peak areas to dissolved gas concentration. The system retains the high accuracy, precision, and wide range of measurable concentrations of the headspace equilibration method while simultaneously increasing the sensitivity due to the pre-concentration step. The time and labor involved in the headspace equilibration method is eliminated and replaced with the immediate and automatic analysis of a maximum of 13 sequential samples. The elapsed time between sample collection and analysis is reduced from approximately 12 hrs to < 10 min, enabling dynamic and highly resolved sampling plans.

  5. Impact of dissolved oxygen concentration on acetate accumulation and physiology of E. coli BL21, evaluating transcription levels of key genes at different dissolved oxygen conditions.

    PubMed

    Phue, Je-Nie; Shiloach, Joseph

    2005-01-01

    High density growth of Escherichia coli especially in large bioreactors may temporarily expose the cells to oxygen limitation as a result of a local inadequate oxygen supply or intermittently high concentrations of cells and nutrients. Although short, these periods can potentially alter bacterial metabolism, affecting both growth and recombinant proteins production capability, and thus lowering process productivity. When E. coli B (BL21), a lower acetate producing strain, was grown aerobically on high glucose, acetate accumulation was found to be inversely correlated to the dissolved oxygen (DO) levels, reaching 10 g/L at 1%, 4 g/L at 6%, and zero at 30% DO concentration at stationary growth phase. Time-course transcription analysis of several genes involved in glucose and acetate metabolism indicated that the enhanced acetate production at lower DO levels is the result of altered transcription of several key genes. These genes are: the acetate producing gene (poxB), the glyoxylate shunt gene (aceA), the acetate uptake gene (acs), the gluconeogensis and anaplerotic pathways genes, (pckA, ppsA, ppc, and sfcA), the TCA cycle gene (gltA), and the sigma factors 70 and S (rpoD and rpoS). It is suggested that the catabolic repressor/activator Cra is responsible for the bacterial response to different oxygen levels. Oxygen limitation seems to repress the constitutive expression of the glyoxylate shunt and gluconeognesis. In this work, the concept of transition state is proposed to describe the bacterial response to the lower DO concentration. PMID:16099189

  6. Behavior of dissolved and total phosphorus concentration and stream discharge: The form of hysteresis during storm events

    NASA Astrophysics Data System (ADS)

    Pradhanang, S. M.; Samal, N. R.; Pierson, D. C.; Schneiderman, E. M.; Zion, M. S.

    2013-12-01

    The forms, rotational patterns and trends of hysteretic loops of dissolved and total phosphorus were investigated in the watershed of a New York City drinking water reservoir. We evaluated two biogeochemical parameters summarizing the changes in solute concentrations and the overall dynamics of each hysteretic loop and seven hydrological parameters that characterize the hydrograph formation of particular storm events. The objectives of this study are: (1) to examine whether the characteristics of solute hysteretic loops monitored during the summer, winter and spring seasons followed a consistent and recurring pattern, (2) to identify hydrological parameters which could potentially influence features of dissolved and total phosphorus hysteresis. Relationships between hysteresis features and hydrological parameters at the watershed outlet were explored using multivariate redundancy analysis (RDA).

  7. Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest

    USGS Publications Warehouse

    Sebestyen, S.D.; Boyer, E.W.; Shanley, J.B.; Kendall, C.; Doctor, D.H.; Aiken, G.R.; Ohte, N.

    2008-01-01

    We explored catchment processes that control stream nutrient concentrations at an upland forest in northeastern Vermont, USA, where inputs of nitrogen via atmospheric deposition are among the highest in the nation and affect ecosystem functioning. We traced sources of water, nitrate, and dissolved organic matter (DOM) using stream water samples collected at high frequency during spring snowmelt. Hydrochemistry, isotopic tracers, and end-member mixing analyses suggested the timing, sources, and source areas from which water and nutrients entered the stream. Although stream-dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) both originated from leaching of soluble organic matter, flushing responses between these two DOM components varied because of dynamic shifts of hydrological flow paths and sources that supply the highest concentrations of DOC and DON. High concentrations of stream water nitrate originated from atmospheric sources as well as nitrified sources from catchment soils. We detected nitrification in surficial soils during late snowmelt which affected the nitrate supply that was available to be transported to streams. However, isotopic tracers showed that the majority of nitrate in upslope surficial soil waters after the onset of snowmelt originated from atmospheric sources. A fraction of the atmospheric nitrogen was directly delivered to the stream, and this finding highlights the importance of quick flow pathways during snowmelt events. These findings indicate that interactions among sources, transformations, and hydrologic transport processes must be deciphered to understand why concentrations vary over time and over space as well as to elucidate the direct effects of human activities on nutrient dynamics in upland forest streams. Copyright 2008 by the American Geophysical Union.

  8. Concentration and characterization of dissolved organic matter in the surface microlayer and subsurface water of the Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yang, Gui-Peng; Wu, Guan-Wei; Gao, Xian-Chi; Xia, Qing-Yan

    2013-01-01

    A total of 19 sea-surface microlayer and corresponding subsurface samples collected from the Bohai Sea, China in April 2010 were analyzed for chlorophyll a, dissolved organic carbon (DOC) and its major compound classes including total dissolved carbohydrates (TDCHO, including monosaccharides, MCHO, and polysaccharides, PCHO) and total hydrolysable amino acids (THAA, including dissolved free, DFAA, and combined fraction, DCAA). The concentrations of DOC in the subsurface water ranged from 130.2 to 407.7 ?M C, with an average of 225.975.4 ?M C, while those in the surface microlayer varied between 140.1 and 330.9 ?M C, with an average of 217.856.8 ?M C. The concentrations of chlorophyll a, DOC, TDCHO and THAA in the microlayer were, respectively correlated with their subsurface water concentrations, implying that there was a strong exchange effect between the microlayer and subsurface water. The concentrations of DOC and TDCHO were negatively correlated with salinity, respectively, indicating that water mixing might play an important role in controlling the distribution of DOC and TDCHO in the water column. Major constituents of DCAA and DFAA present in the study area were glycine, alanine, glutamic acid, serine and histidine. Principal component analysis (PCA) was applied to examine the complex compositional differences that existed among the sampling sites. Our results showed that DFAA had higher mole percentages of glycine, valine and serine in the microlayer than in the subsurface water, while DCAA tended to have higher mole percentages of glutamic acid, aspartic acid, threonine, arginine, alanine, tyrosine, phenylalanine and leucine in the microlayer. The yields of TDCHO and THAA exhibited similar trends between the microlayer and subsurface water. Carbohydrate species displayed significant enrichment in the microlayer, whereas the DFAA and DCAA exhibited non-uniform enrichment in the microlayer.

  9. Dissolved, particulate and acid-leachable trace metal concentrations in North Atlantic precipitation collected on the Global Change Expedition

    SciTech Connect

    Lim, B.; Jickells, T.D. )

    1990-12-01

    Atmospheric inputs of trace metals into surface waters are an important pathway for the oceanic biogeochemical cycling of many trace constituents. Rainwater samples from six precipitation events were collected on board ship during legs 3 and 4 of the Global Change Expedition over the North Atlantic Ocean and analyzed for dissolved, particulate (Al and Pb), and acid-leachable trace metals (Al, Fe, Mn, Cd, Cu, Pb, Zn). Acid-leachable concentrations of the elements were similar to reported values from the North Atlantic and Pacific Oceans which were measured using comparable acidification procedures. Concentrations of dissolved and particulate Al and Pb were determined in rain events acid-leachable and total trace metal concentrations suggest that the acid-leachable fraction of metals can significantly underestimate total concentrations of crustal elements in rain. The solubilities of Al and Pb in precipitation were variable and mean solubilities of the elements were 13% and 45%, respectively. Recycled sea salt components were less than 14% for Al, Fe, Mn, Pb, Cd, Cu, and Zn, indicating that the net trace metal flux is from the atmosphere to the oceans. Deep sea particle fluxes for these metals through the western tropical North Atlantic exceed atmospheric deposition fluxes by a factor of 18 to 41. 57 refs., 2 figs., 12 tabs.

  10. Modelling the migration opportunities of diadromous fish species along a gradient of dissolved oxygen concentration in a European tidal watershed

    NASA Astrophysics Data System (ADS)

    Maes, J.; Stevens, M.; Breine, J.

    2007-10-01

    The relationship between poor water quality and migration opportunities for fish remains poorly documented, although it is an essential research step in implementing EU water legislation. In this paper, we model the environmental constraints that control the movements of anadromous and catadromous fish populations that migrate through the tidal watershed of River Scheldt, a heavily impacted river basin in Western Europe. Local populations of sturgeon, sea lamprey, sea trout, Atlantic salmon, houting and allis shad were essentially extirpated around 1900. For remaining populations (flounder, three-spined stickleback, twaite shad, thinlip mullet, European eel and European smelt), a data driven logistic model was parameterized. The presence or absence of fish species in samples taken between 1995 and 2004 was modelled as a function of temperature, dissolved oxygen concentration, river flow and season. Probabilities to catch individuals from all diadromous species but three-spined stickleback increased as a function of the interaction between temperature and dissolved oxygen. The hypoxic zone situated in the freshwater tidal part of the estuary was an effective barrier for upstream migrating anadromous spawners since it blocked the entrance to historical spawning sites upstream. Similarly, habitat availability for catadromous fish was greatly reduced and restricted to lower brackish water parts of the estuary. The model was applied to infer preliminary dissolved oxygen criteria for diadromous fish, to make qualitative predictions about future changes in fish distribution given anticipated changes in water quality and to suggest necessary measures with respect to watershed management.

  11. Tolerance of Oncomelania hupensis quadrasi to varying concentrations of dissolved oxygen and organic pollution*

    PubMed Central

    Garcia, Rolando G.

    1972-01-01

    Ecological investigations were made of habitats containing natural populations of the snail Oncomelania hupensis quadrasi and of habitats free from the snail in the island of Leyte, Philippines. This species of snail is a vector of Schistosoma japonicum in the Philippines. Snail-infested habitats had dissolved oxygen levels of 3.8-9.85 ppm but snail-free habitats had levels of only 0.08-3.6 ppm. Snail-infested habitats were less polluted by organic matter than habitats that were snail-free. Larger numbers of chlorophyll-bearing algae were present in both the water and the soil of snail-infested habitats. Other factors, including temperature, pH, hydrogen carbonate alkalinity, and relative humidity, were also investigated. PMID:4538906

  12. Adaptive predictive expert control of dissolved oxygen concentration in a wastewater treatment plant.

    PubMed

    Kandare, G; Nevado Reviriego, A

    2011-01-01

    In this paper we present the application of adaptive predictive expert controllers to dissolved oxygen (DO) control in the aerobic reactors of a wastewater treatment plant. The control system described in this paper consists of adaptive predictive expert control loops complemented by optimisation logic. The controllers successfully cope with nonlinearity and changing operating conditions of the process by predicting the evolution of the controlled variable and adapting to changes in the process dynamics. This results in more precise and stable DO control, offering many benefits. The complementary optimisation logic maintains the air pressure in the common collector at the lowest possible level, enabling adequate DO control and thus considerably reducing energy consumption. PMID:22214061

  13. How do changes in dissolved oxygen concentration influence microbially-controlled phosphorus cycling in stream biofilms?

    NASA Astrophysics Data System (ADS)

    Saia, S. M.; Locke, N. A.; Regan, J. M.; Carrick, H. J.; Buda, A. R.; Walter, M. T.

    2014-12-01

    Advances in molecular microbiology techniques (e.g. epi-fluorescent microscopy and PCR) are making it easier to study the influence of specific microorganisms on nutrient transport. Polyphosphate accumulating organisms (PAOs) are commonly used in wastewater treatment plants to remove excess phosphorus (P) from effluent water. PAOs have also been identified in natural settings but their ecological function is not well known. In this study, we tested the hypothesis that PAOs in natural environments would release and accumulate P during anaerobic and aerobic conditions, respectively. We placed stream biofilms in sealed, covered tubs and subjected them to alternating air (aerobic conditions) and N2 gas (anaerobic condition) bubbling for 12 hours each. Four treatments investigated the influence of changing dissolved oxygen on micribially-controlled P cycling: (1) biofilms bubbled continuously with air, (2) biofilms bubbled alternatively with air and N2, (3) biocide treated biofilms bubbled continuously with air, and (4) biocide treated biofilms bubbled alternatively with air and N2. Treatments 3 and 4 serve as abiotic controls to treatments 1 and 2. We analyzed samples every 12 hours for soluble reactive P (SRP), temperature, dissolved oxygen, and pH. We also used fluorescent microscopy (i.e. DAPI staining) and PCR to verify the presence of PAOs in the stream biofilms. SRP results over the course of the experiment support our hypothesis that anaerobic and aerobic stream conditions may impact PAO mediated P release and uptake, respectively in natural environments. The results of these experiments draw attention to the importance of microbiological controls on P mobility in freshwater ecosystems.

  14. Dissolved greenhouse gas concentrations as proxies for emissions: First results from a survey of 43 Alpine lakes

    NASA Astrophysics Data System (ADS)

    Pighini, Sylvie; Wohlfahrt, Georg; Miglietta, Franco

    2015-04-01

    Up to very recently, freshwater ecosystems were neglected in assessments of the global carbon cycle and considered merely as passive 'pipes' which transport carbon from the land to the oceans. This view has been challenged by an increasing number of studies showing that freshwater ecosystems may negate a substantial fraction of the carbon sink through carbon dioxide (CO2) and in particular methane (CH4) emissions and thus rather should be viewed as 'reactors' which process a large fraction of the terrigenous carbon. Most of our knowledge on freshwater CO2 and CH4 emissions to date derives from studies in tropical and boreal regions, while temperate freshwater ecosystems are understudied. This study is focused on lakes from the Alpine area and their content in dissolved greenhouse gases, CH4 and CO2. We mostly aim to assess the content of dissolved methane and carbon dioxide from the Alpine lakes in order to understand whether Alpine lakes could be potential CH4 and CO2 emitters. We also would like to relate concentrations to lake characteristics and potential biotic and abiotic driving forces. A diverse set of 43 lakes, from Trentino, South Tirol (Italy) and North Tirol (Austria), was selected resulting in a gradient with respect to elevation (from 240 to 1700 m a.s.l.) and latitude (from 45.52 to 47.38). Complementary to dissolved CH4 and CO2 surface water samples, dissolved oxygen and temperature were measured. Only water surface samples were considered. Analyses were done with a gas chromatographer equipped with a flame ionization detector (FID) for CH4 and a thermal conductivity detector (TCD) for CO2 determination. The first results show that all the sampled lakes were super-saturated in dissolved methane and carbon dioxide concentrations, at least partly to a degree that in the literature has been shown to result in substantial emissions to the atmosphere. To estimate emissions, CO2 and CH4 fluxes will be quantified using the eddy covariance and floating chamber technique on a subset of the investigated lakes in a next step. Results will indicate which parameters lead to greenhouse gases emissions in the Alpine area.

  15. Benthic fluxes and porewater concentration profiles of dissolved organic carbon in sediments from the North Carolina continental slope

    SciTech Connect

    Alperin, M.J.; Martens, C.S.; Albert, D.B.; Suayah, I.B.; Benninger, L.K.; Blair, N.E.; Jahnke, R.A.

    1999-02-01

    Numerous studies of marine environments show that dissolved organic carbon (DOC) concentrations in sediments are typically tenfold higher than in the overlying water. Large concentration gradients near the sediment-water interface suggest that there may be a significant flux of organic carbon from sediments to the water column. Furthermore, accumulation of DOC in the porewater may influence the burial and preservation of organic matter by promoting geopolymerization and/or adsorption reactions. The authors measured DOC concentration profiles (for porewater collected by centrifugation and sipping) and benthic fluxes (with in situ and shipboard chambers) at two sites on the North Carolina continental slope to better understand the controls on porewater DOC concentrations and quantify sediment-water exchange rates. The authors also measured a suite of sediment properties (e.g., sediment accumulation and bioturbation rates, organic carbon content, and mineral surface area) that allow us to examine the relationship between porewater DOC concentrations and organic carbon preservation. Sediment depth-distributions of DOC from a downslope transect (300--1000 m water depth) follow a trend consistent with other porewater constituents ({summation}CO{sub 2} and SO{sub 4}{sup 2{minus}}) and a tracer of modern, fine-grained sediment, suggesting that DOC levels are regulated by organic matter remineralization. However, remineralization rates appear to be relatively uniform across the sediment transect. A simple diagenetic model illustrates that variations in DOC profiles at this site may be due to differences in the depth of the active remineralization zone, which in turn is largely controlled by the intensity of bioturbation. Comparison of porewater DOC concentrations, organic carbon burial efficiency, and organic matter sorption suggest that DOC levels are not a major factor in promoting organic matter preservation or loading on grain surfaces. The DOC benthic fluxes are difficult to detect, but suggest that only 2% of the dissolved organic carbon escapes remineralization in the sediments by transport across the sediment-water interface.

  16. [Effect of the change in sulphate and dissolved oxygen mass concentration on metal release in old cast iron distribution pipes].

    PubMed

    Wu, Yong-li; Shi, Bao-you; Sun, Hui-fang; Zhang, Zhi-huan; Gu, Jun-nong; Wang, Dong-sheng

    2013-09-01

    To understand the processes of corrosion by-product release and the consequent "red water" problems caused by the variation of water chemical composition in drinking water distribution system, the effect of sulphate and dissolved oxygen (DO) concentration on total iron release in corroded old iron pipe sections historically transporting groundwater was investigated in laboratory using small-scale pipe section reactors. The release behaviors of some low-level metals, such as Mn, As, Cr, Cu, Zn and Ni, in the process of iron release were also monitored. The results showed that the total iron and Mn release increased significantly with the increase of sulphate concentration, and apparent red water occurred when sulphate concentration was above 400 mg x L(-1). With the increase of sulfate concentration, the effluent concentrations of As, Cr, Cu, Zn and Ni also increased obviously, however, the effluent concentrations of these metals were lower than the influent concentrations under most circumstances, which indicated that adsorption of these metals by pipe corrosion scales occurred. Increasing DO within a certain range could significantly inhibit the iron release. PMID:24288993

  17. Prediction of dissolved actinide concentrations in concentrated electrolyte solutions: a conceptual model and model results for the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Novak, C.F.; Moore, R.C.; Bynum, R.V.

    1996-10-25

    The conceptual model for WIPP dissolved concentrations is a description of the complex natural and artificial chemical conditions expected to influence dissolved actinide concentrations in the repository. By a set of physical and chemical assumptions regarding chemical kinetics, sorption substrates, and waste-brine interactions, the system was simplified to be amenable to mathematical description. The analysis indicated that an equilibrium thermodynamic model for describing actinide solubilities in brines would be tractable and scientifically supportable. This paper summarizes the conceptualization and modeling approach and the computational results as used in the WIPP application for certification of compliance with relevant regulations for nuclear waste repositories. The WIPP site contains complex natural brines ranging from sea water to 10x more concentrated than sea water. Data bases for predicting solubility of Am(III) (as well as Pu(III) and Nd(III)), Th(IV), and Np(V) in these brines under potential repository conditions have been developed, focusing on chemical interactions with Na, K, Mg, Cl, SO{sub 4}, and CO{sub 3} ions, and the organic acid anions acetate, citrate, EDTA, and oxalate. The laboratory and modeling effort augmented the Harvie et al. parameterization of the Pitzer activity coefficient model so that it could be applied to the actinides and oxidation states important to the WIPP system.

  18. Dissolved organic carbon concentration controls benthic primary production: results from in situ chambers in north-temperate lakes

    USGS Publications Warehouse

    Godwin, Sean C.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.

    2014-01-01

    We evaluated several potential drivers of primary production by benthic algae (periphyton) in north-temperate lakes. We used continuous dissolved oxygen measurements from in situ benthic chambers to quantify primary production by periphyton at multiple depths across 11 lakes encompassing a broad range of dissolved organic carbon (DOC) and total phosphorous (TP) concentrations. Light-use efficiency (primary production per unit incident light) was inversely related to average light availability (% of surface light) in 7 of the 11 study lakes, indicating that benthic algal assemblages exhibit photoadaptation, likely through physiological or compositional changes. DOC alone explained 86% of the variability in log-transformed whole-lake benthic production rates. TP was not an important driver of benthic production via its effects on nutrient and light availability. This result is contrary to studies in other systems, but may be common in relatively pristine north-temperate lakes. Our simple empirical model may allow for the prediction of whole-lake benthic primary production from easily obtained measurements of DOC concentration.

  19. Freely oriented portable superconducting magnet

    DOEpatents

    Schmierer, Eric N. (Los Alamos, NM); Prenger, F. Coyne (Los Alamos, NM); Hill, Dallas D. (Los Alamos, NM)

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  20. Spatial and Seasonal Variation of dissolved organic carbon (DOC) concentrations in Irish streams: importance of soil and topography characteristics.

    PubMed

    Liu, Wen; Xu, Xianli; McGoff, Nicola M; Eaton, James M; Leahy, Paul; Foley, Nelius; Kiely, Gerard

    2014-05-01

    Dissolved organic carbon (DOC) concentrations have increased in many sites in Europe and North America in recent decades. High DOC concentrations can damage the structure and functions of aquatic ecosystems by influencing water chemistry. This study investigated the spatial and seasonal variation of DOC concentrations in Irish streams across 55 sites at seven time occasions over 1year (2006/2007). The DOC concentrations ranged from 0.9 to 25.9mg/L with a mean value of 6.8 and a median value of 5.7mg/L and varied significantly over the course of the year. The DOC concentrations from late winter (February: 5.23.0mg/L across 55 sites) and early spring (April: 4.53.5mg/L) had significantly lower DOC concentrations than autumn (October: mean 8.35.6mg/L) and early winter (December: 8.35.1mg/L). The DOC production sources (e.g., litterfall) or the accumulation of DOC over dry periods might be the driving factor of seasonal change in Irish stream DOC concentrations. Analysis of data using stepwise multiple linear regression techniques identified the topographic index (TI, an indication of saturation-excess runoff potential) and soil conditions (organic carbon content and soil drainage characteristics) as key factors in controlling DOC spatial variation in different seasons. The TI and soil carbon content (e.g., soil organic carbon; peat occurrence) are positively related to DOC concentrations, while well-drained soils are negatively related to DOC concentrations. The knowledge of spatial and seasonal variation of DOC concentrations in streams and their drivers are essential for optimum riverine water resources management. PMID:24643296

  1. Spatial and Seasonal Variation of Dissolved Organic Carbon (DOC) Concentrations in Irish Streams: Importance of Soil and Topography Characteristics

    NASA Astrophysics Data System (ADS)

    Liu, Wen; Xu, Xianli; McGoff, Nicola M.; Eaton, James M.; Leahy, Paul; Foley, Nelius; Kiely, Gerard

    2014-05-01

    Dissolved organic carbon (DOC) concentrations have increased in many sites in Europe and North America in recent decades. High DOC concentrations can damage the structure and functions of aquatic ecosystems by influencing water chemistry. This study investigated the spatial and seasonal variation of DOC concentrations in Irish streams across 55 sites at seven time occasions over 1 year (2006/2007). The DOC concentrations ranged from 0.9 to 25.9 mg/L with a mean value of 6.8 and a median value of 5.7 mg/L and varied significantly over the course of the year. The DOC concentrations from late winter (February: 5.2 3.0 mg/L across 55 sites) and early spring (April: 4.5 3.5 mg/L) had significantly lower DOC concentrations than autumn (October: mean 8.3 5.6 mg/L) and early winter (December: 8.3 5.1 mg/L). The DOC production sources (e.g., litterfall) or the accumulation of DOC over dry periods might be the driving factor of seasonal change in Irish stream DOC concentrations. Analysis of data using stepwise multiple linear regression techniques identified the topographic index (TI, an indication of saturation-excess runoff potential) and soil conditions (organic carbon content and soil drainage characteristics) as key factors in controlling DOC spatial variation in different seasons. The TI and soil carbon content (e.g., soil organic carbon; peat occurrence) are positively related to DOC concentrations, while well-drained soils are negatively related to DOC concentrations. The knowledge of spatial and seasonal variation of DOC concentrations in streams and their drivers are essential for optimum riverine water resources management.

  2. Response of estuarine biofilm microbial community development to changes in dissolved oxygen and nutrient concentrations.

    PubMed

    Nocker, Andreas; Lepo, Joe Eugene; Martin, Linda Lin; Snyder, Richard Allan

    2007-10-01

    The information content and responsiveness of microbial biofilm community structure, as an integrative indicator of water quality, was assessed against short-term changes in oxygen and nutrient loading in an open-water estuarine setting. Biofilms were grown for 7-day periods on artificial substrates in the Pensacola Bay estuary, Florida, in the vicinity of a wastewater treatment plant (WWTP) outfall and a nearby reference site. Substrates were deployed floating at the surface and near the benthos in 5.4 m of water. Three sampling events covered a 1-month period coincident with declining seasonal WWTP flow and increasing dissolved oxygen (DO) levels in the bottom waters. Biomass accumulation in benthic biofilms appeared to be controlled by oxygen rather than nutrients. The overriding effect of DO was also seen in DNA fingerprints of community structure by terminal restriction fragment length polymorphism (T-RFLP) of amplified 16S rRNA genes. Ribotype diversity in benthic biofilms at both sites dramatically increased during the transition from hypoxic to normoxic. Terminal restriction fragment length polymorphism patterns showed pronounced differences between benthic and surface biofilm communities from the same site in terms of signal type, strength, and diversity, but minor differences between sites. Sequencing of 16S rRNA gene clone libraries from benthic biofilms at the WWTP site suggested that low DO levels favored sulfate-reducing prokaryotes (SRP), which decreased with rising oxygen levels and increasing overall diversity. A 91-bp ribotype in the CfoI-restricted 16S rRNA gene T-RFLP profiles, indicative of SRP, tracked the decrease in relative SRP abundance over time. PMID:17351811

  3. Dissolved organic carbon concentrations and compositions, and trihalomethane formation potentials in waters from agricultural peat soils, Sacramento-San Joaquin Delta, California; implications for drinking-water quality

    USGS Publications Warehouse

    Fujii, Roger; Ranalli, Anthony J.; Aiken, George R.; Bergamaschi, Brian A.

    1998-01-01

    Water exported from the Sacramento-San Joaquin River delta (Delta) is an important drinking-water source for more than 20 million people in California. At times, this water contains elevated concentrations of dissolved organic carbon and bromide, and exceeds the U.S. Environmental Protection Agency's maximum contaminant level for trihalomethanes of 0.100 milligrams per liter if chlorinated for drinking water. About 20 to 50 percent of the trihalomethane precursors to Delta waters originates from drainage water from peat soils on Delta islands. This report elucidates some of the factors and processes controlling and affecting the concentration and quality of dissolved organic carbon released from peat soils and relates the propensity of dissolved organic carbon to form trihalomethanes to its chemical composition.Soil water was sampled from near-surface, oxidized, well-decomposed peat soil (upper soil zone) and deeper, reduced, fibrous peat soil (lower soil zone) from one agricultural field in the west central Delta over 1 year. Concentrations of dissolved organic carbon in the upper soil zone were highly variable, with median concentrations ranging from 46.4 to 83.2 milligrams per liter. Concentrations of dissolved organic carbon in samples from the lower soil zone were much less variable and generally slightly higher than samples from the upper soil zone, with median concentrations ranging from 49.3 to 82.3 milligrams per liter. The dissolved organic carbon from the lower soil zone had significantly higher aromaticity (as measured by specific ultraviolet absorbance) and contained significantly greater amounts of aromatic humic substances (as measured by XAD resin fractionation and carbon-13 nuclear magnetic resonance analysis of XAD isolates) than the dissolved organic carbon from the upper soil zone. These results support the conclusion that more aromatic forms of dissolved organic carbon are produced under anaerobic conditions compared to aerobic conditions. Dissolved organic carbon concentration, trihalomethane formation potential, and ultraviolet absorbance were all highly correlated, showing that trihalomethane precursors increased with increasing dissolved organic carbon and ultraviolet absorbance for whole water samples. Contrary to the generally accepted conceptual model for trihalomethane formation that assumes that aromatic forms of carbon are primary precursors to trihalomethanes, results from this study indicate that dissolved organic carbon aromaticity appears unrelated to trihalomethane formation on a carbon-normalized basis. Thus, dissolved organic carbon aromaticity alone cannot fully explain or predict trihalomethane precursor content, and further investigation of aromatic and nonaromatic forms of carbon will be needed to better identify trihalomethane precursors.

  4. Concentrations of dissolved and suspended particulate Cd, Cu, Mn, Ni, Pb and Zn in surface waters around the coasts of England and Wales and in adjacent seas

    NASA Astrophysics Data System (ADS)

    Laslett, R. E.

    1995-01-01

    Trace metal concentrations in British coastal waters were determined during the summers of 1991 and 1992. The measured concentrations of Cd, Cu, Ni, Pb and Zn are in general agreement with those previously reported in the literature. Higher offshore dissolved Mn concentrations (mean = 12 ?g l -1) are attributed to summertime increases in benthic Mn fluxes to the water column. Concentrations of all determinands were generally higher in the Irish Sea and North Sea than in the English Channel. This reflects the larger riverine component of the North and Irish Seas, and the stronger influence of North Atlantic water in the English Channel. Elevated dissolved and suspended particulate Pb concentrations in the Dogger Bank region are tentatively attributed to atmospheric inputs, and reduced removal by the lower concentrations of suspended particulate matter at these stations. Of the six major estuaries sampled, the Tweed was regarded as a reference site since it has a sparsely populated catchment area with little industry. Dissolved Mn concentrations in the Tweed were generally lower than those in the other estuaries, although the highest suspended particulate Mn (6600 ?g g -1) and Ni (69 ?g g -1) concentrations were found there. These high particulate concentrations are attributed to the oxidation of Mn(II) and the subsequent scavenging of Ni by the newly precipitated Mn-oxyhydroxides. Highest suspended particulate Cd (61 ?g g -1), Cu (200 ?g g -1), Pb (650 ?g g -1) and Zn (1400 ?g g -1), and dissolved Pb (11 ?g g -1) and Zn (25 ?g l -1) concentrations were observed in the Tyne. The Tees had the highest dissolved Cu (10 ?g l -1) concentration, while the Humber and Mersey had the highest dissolved Cd (220 ng l -1) and Ni concentrations (94 ?g l -1), respectively. The high concentrations are attributed to anthropogenic inputs.

  5. An Analysis of Dissolved Oxygen Concentrations in Tail Waters of Hydroelectric Dams and the Implications for Small-Scale Hydropower Development

    NASA Astrophysics Data System (ADS)

    Cada, Glenn F.; Kumar, K. D.; Solomon, Jean A.; Hildebrand, Stephen G.

    1983-08-01

    One of the environmental issues affecting small-scale hydropower development in the United States is water quality degradation. The extent of this potential problem, as exemplified by low dissolved oxygen concentrations in reservoir tail waters, was analyzed by pairing operating hydroelectric sites with dissolved oxygen measurements from nearby downstream U.S. Geological Survey water quality stations. These data were used to calculate probabilities of noncompliance (PNC's), that is, the probabilities that dissolved oxygen concentrations in the discharge waters of operating hydroelectric dams will drop below 5 mg/l. The continental states were grouped into eight regions based on geographic and climatic similarities. Most regions had higher mean PNC's in summer than in winter, and summer PNC's were greater for large-scale than for small-scale hydropower facilities. Cumulative probability distributions of PNC also indicated that low dissolved oxygen concentrations in the tail waters of operating hydroelectric dams are phenomena largely confined to sites with large-scale facilities.

  6. Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios

    PubMed Central

    Byrne, Robert H

    2002-01-01

    Assessments of inorganic elemental speciation in seawater span the past four decades. Experimentation, compilation and critical review of equilibrium data over the past forty years have, in particular, considerably improved our understanding of cation hydrolysis and the complexation of cations by carbonate ions in solution. Through experimental investigations and critical evaluation it is now known that more than forty elements have seawater speciation schemes that are strongly influenced by pH. In the present work, the speciation of the elements in seawater is summarized in a manner that highlights the significance of pH variations. For elements that have pH-dependent species concentration ratios, this work summarizes equilibrium data (S = 35, t = 25C) that can be used to assess regions of dominance and relative species concentrations. Concentration ratios of complex species are expressed in the form log[A]/[B] = pH - C where brackets denote species concentrations in solution, A and B are species important at higher (A) and lower (B) solution pH, and C is a constant dependent on salinity, temperature and pressure. In the case of equilibria involving complex oxy-anions (MOx(OH)y) or hydroxy complexes (M(OH)n), C is written as pKn = -log Kn or pKn* = -log Kn* respectively, where Kn and Kn* are equilibrium constants. For equilibria involving carbonate complexation, the constant C is written as pQ = -log(K2lKn [HCO3-]) where K2l is the HCO3 - dissociation constant, Kn is a cation complexation constant and [HCO3-] is approximated as 1.9 10-3 molar. Equilibrium data expressed in this manner clearly show dominant species transitions, ranges of dominance, and relative concentrations at any pH.

  7. Variations in concentrations and fluxes of dissolved inorganic nutrients related to catchment scale human interventions in Pamba River, Kerala, India

    NASA Astrophysics Data System (ADS)

    David, S. E.; Jennerjahn, T. C.; Chattopadhyay, S.

    2012-12-01

    River basins are geo-hydrological units. Water flowing out of the basin bears the imprint of natural factors such as geology, soil, vegetation and rainfall along with anthropogenic factors including the type and degree of human intervention within the basin. Pamba, a small mountainous river in the SW coast of India with a population density of ~1,400 persons km-2 was studied for its varying land use and human interventions as the global database are biased towards temperate regions while little is know about the smaller catchments from tropical regions. Land use comprised of dense forest in the highland region together with forest plantation and the human impacted Sabarimala temple- the second largest pilgrim, settlement with mixed tree crop (smt) in the midland and lowland paddy cultivated region. 50-60 million devotees visiting Sabarimala during November to January every year associated with the ritual bathing, discharge of human wastes emanating from the influx of millions of pilgrims due to inadequate number of sanitary latrines and the lack of facilities for sewage collection and treatment caused several ecological variations during pilgrim season. In order to asses the effect of land use and pilgrims in combination with seasonal variations in hydrology we investigated the seasonal and spatial variations in physicochemical and nutrient concentrations. Samples were collected from March 2010 to February 2012 during premonsoon (January-May), SW(June to September) and NE monsoon(October to December), from sites varying in land use. Nutrient budgets (load and yield) were calculated to quantify the inputs from various land use segments. Spatio-temporal variations in the physicochemical and dissolved nutrient concentrations were observed along the course of the river. Upstream forest region had highest dissolved oxygen(DO) and pH together with lowest dissolved inorganic nitrogen(DIN) values indicating almost pristine conditions. DIN in the temple region had the maximum value during the pre and NE monsoon. Highest DIN with ammonium(NH4+) as the major component in January were observed during the peak pilgrim season. Except for the temple locations NH4+ values were low in the rest of the catchment. Nitrate(NO3-) was dominant during SW monsoon in the midland and low land regions due to the various agricultural practices displaying variability along the course of the river. Maximum values for phosphate (PO43-) and silicate (Si(OH)4) were in the temple area during the premonsoon months. Average NPK fertilizer use in the basin was 80.2 kg ha-1.When compared to the average of all India (72 kg.ha-1) usage is high but lower than Western Europe and U.S (250 kg.ha-1).Yield calculated were 7186.6 kg km-2yr-1for DIN, 453.2 kg km-2yr-1for PO43--P and 17728.9 kg km-2yr- for dissolved Si. NH4+-N and dissolved Si yield were maximum in the temple and forest dominated regions, NO3--N and PO43--P in smt regions respectively. When compared to other tropical rivers, nutrient yield from the Pamba River found to be higher points to the significant hydrological and land use practices. To conclude, land use activities in the basin are the key factor contributing to varying water quality and nutrient concentrations and loading in the Pamba catchment the main being pilgrim event and agriculture in our study.

  8. PHOTOCHEMICAL ALTERATION OF DISSOLVED ORGANIC MATTER: EFFECTS ON THE CONCENTRATION AND ACIDITIES OF IONIZABLE SITES IN DISSOLVED ORGANIC MATTER IN THE SATILLA RIVER OF GEORGIA, USA

    EPA Science Inventory

    The acid-base properties of humic substances, the major component of dissolved organic matter (DOM), area major control on the alkalinity, or acid neutralizing capacity of freshwater systems. Alkalinity is one of the fundamental parameters measured in aquatic sciences, and is an ...

  9. In situ Raman-based measurements of high dissolved methane concentrations in hydrate-rich ocean sediments

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Hester, Keith C.; Ussler, William; Walz, Peter M.; Peltzer, Edward T.; Brewer, Peter G.

    2011-04-01

    Ocean sediment dissolved CH4 concentrations are of interest for possible climate-driven venting from sea floor hydrate decomposition, for supporting the large-scale microbial anaerobic oxidation of CH4 that holds the oceanic CH4 budget in balance, and for environmental issues of the oil and gas industry. Analyses of CH4 from recovered cores near vent locations typically show a maximum of 1 mM, close to the 1 atmosphere equilibrium value. We show from novel in situ measurement with a Raman-based probe that geochemically coherent profiles of dissolved CH4 occur rising to 30 mM (pCH4 = 3 MPa) or an excess pressure 3 greater than CO2 in a bottle of champagne. Normalization of the CH4 Raman ?1 peak to the ubiquitous water ?2 bending peak provides a fundamental internal calibration. Very large losses of CH4 and fractions of other gases (CO2, H2S) must typically occur from recovered cores at gas rich sites. The new data are consistent with observations of microbial biomass and observed CH4 oxidation rates at hydrate rich sites and support estimates of a greatly expanded near surface oceanic pore water CH4 reservoir.

  10. Wetland types and wetland maps differ in ability to predict dissolved organic carbon concentrations in streams.

    PubMed

    Johnston, Carol A; Shmagin, Boris A; Frost, Paul C; Cherrier, Christine; Larson, James H; Lamberti, Gary A; Bridgham, Scott D

    2008-10-15

    Three categories of digital wetland maps widely available in the United States were used to develop models relating wetlands to DOC: (1) wetlands mapped by the U.S. National Wetlands Inventory (NWI) (2) wetland vegetation cover mapped by the U.S. National Land Cover Dataset (NLCD), and (3) maps of hydric soils. Data extracted from these maps for 27 headwater catchments of the Ontonagon River in northern Michigan, USA were used with DOC concentrations measured in catchment streams to develop stepwise multiple regressions based on wetland area and type. The catchments of the 27 tributaries ranged in area from 2 to 66 km(2) and wetlands constituted 10 to 53% of their area. Although all three databases provided regressions that were highly significant (p<0.001), the variance explained was greater for NWI maps (R(2)=0.75) than for NLCD (R(2)=0.61) or soil maps (R(2)=0.60). Wetland-stream relationships were strongest during September 2002, but were significant for nine out of ten dates sampled during subsequent seasons. The individual wetland type most highly correlated (r>0.62) with stream DOC concentrations was conifer peatland, represented on the NWI maps as Palustrine Needle-leaved Forest, the NLCD maps as woody wetland, and the soil maps as organic soils. For the NWI dataset, DOC was negatively correlated with area of palustrine emergent wetlands (i.e., sedge meadows and graminoid fens) and bog shrubs, inferring that these wetland types may be sinks for DOC. Because of the different effects of wetland vegetation types on DOC, a GIS data source such as the NWI which depicts those wetland types is superior for predicting landscape contributions to stream DOC concentrations. PMID:18054999

  11. [Concentration and Source of Dissolved Organic Carbon in Snowpits of the Tibetan Plateau].

    PubMed

    Yan, Fang-ping; Kang, Shi-chang; Chen, Peng-fei; Bai, Jian-kun; Li, Yang; Hu, Zhao-fu; Li, Chao-liu

    2015-08-01

    Snowpit samples of three glaciers (Laohugou NO. 12 Glacier (LHG), Small Dongkemadi Glacier on Mount Tanggula (TGL) and East Ronghuk Glacier on Mount Everest (ZF)) in the Tibetan Plateau were collected. Concentrations of DOC and major ions were analyzed. The results showed that average DOC concentrations of the snowpits of LHG, TGL and ZF were (250.30 +/- 157.10), (216.92 +/- 142.82) and (152.50 +/- 56.11) microg x L(-1), respectively. DOC of TGL and ZF accounted for large parts of total values of DOC and ions. Correspondingly, DOC of LHG accounted for small part (only 5%), because LHG was located at north China and intensively influenced by natural mineral dust, which caused high concentrations of Ca2+ (the highest value could reach 5299.18 microg x L(-1)) and consequently low percentage of DOC of snowpit samples. Correlation and PCA analyses were used to study the sources of DOC. DOC was significantly correlated with Ca2+, Mg2+, K+ and SO4(2-). Additionally, PCA further indicated that the main potential source of DOC was the natural source of mineral dust. Meanwhile, anthropogenic pollutants (e.g., biomass, fossil combustion and agricultural related pollutants) could also not be ignored. Moreover, the carbon depositional fluxes of three snowpits were roughly estimated, and the values of LHG, TGL and ZF snowpits were 189.23, 132.76 and 128.44 mg (m2 x a)(-1), respectively, which played a significant role in the carbon cycle in this region and was also helpful for the study of glaciers fluctuation. PMID:26592009

  12. Evaluation of capillary electrophoresis for determining the concentration of dissolved silica in geothermal brines.

    PubMed

    Santoyo, E; Garca, R; Aparicio, A; Verma, Surendra P; Verma, M P

    2005-04-15

    The determination of silica concentrations in geothermal brines is widely recognized as a difficult analytical task due to its complex chemical polymerization kinetics that occurs during sample collection and chemical analysis. Capillary electrophoresis (CE) has been evaluated as a new reliable analytical method to measure silica (as silicates) in geothermal brines. Synthetic and geothermal brine samples were used to evaluate CE methodology. A capillary electrophoresis instrument, Quanta 4000 (Waters-Millipore) coupled with a Waters 820 workstation was used to carry out the experimental work. The separation of silicates was completed in approximately 5.5 min using a conventional fused-silica capillary (75 microm i.d. x 375 microm o.d. x 60 cm total length). A hydrostatic injection (10 cm for 20 s at 25 degrees C) was employed for introducing the samples. The carrier electrolyte consisted of 10 mM sodium chromate, 3 mM tetradecyltrimethyl-ammonium hydroxide (TTAOH), 2 mM sodium carbonate, and 1 mM sodium hydroxide, adjusted to a pH 11.0 +/- 0.1. Silicates were determined using an indirect UV detection at a wavelength of 254 nm with a mercury lamp and with a negative power supply (-15 kV). A good reproducibility in the migration times (%R.S.D. approximately 1.6%) based on six non-consecutive injections of synthetic brine solutions was obtained. A linear response between silica concentration and corrected peak area was observed. Ordinary (OLR) and weighted (WLR) linear regression models were used for calculating silica concentrations in all samples using the corresponding fitted calibration curves. The analytical results of CE were finally compared with the most probable values of synthetic reference standards of silica using the Student's t-test. No significant differences were found between them at P = 0.01. Similarly, the atomic absorption spectrometry (AAS) results were also compared with the most probable concentrations of the same reference standards, finding significant differences at P = 0.01. PMID:15865194

  13. One year of Seaglider dissolved oxygen concentration profiles at the PAP site

    NASA Astrophysics Data System (ADS)

    Binetti, Umberto; Kaiser, Jan; Heywood, Karen; Damerell, Gillian; Rumyantseva, Anna

    2015-04-01

    Oxygen is one of the most important variables measured in oceanography, influenced both by physical and biological factors. During the OSMOSIS project, 7 Seagliders were used in 3 subsequent missions to measure a multidisciplinary suite of parameters at high frequency in the top 1000 m of the water column for one year, from September 2012 to September 2013. The gliders were deployed at the PAP time series station (nominally at 49° N 16.5° W) and surveyed the area following a butterfly-shaped path. Oxygen concentration was measured by Aanderaa optodes and calibrated using ship CTD O2 profiles during 5 deployment and recovery cruises, which were in turn calibrated by Winkler titration of discrete samples. The oxygen-rich mixed layer deepens in fall and winter and gets richer in oxygen when the temperature decreases. The spring bloom did not happen as expected, but instead the presence of a series of small blooms was measured throughout spring and early summer. During the summer the mixed layer become very shallow and oxygen concentrations decreased. A Deep Oxygen Maximum (DOM) developed along with a deep chlorophyll maximum during the summer and was located just below the mixed layer . At this depth, phytoplankton had favourable light and nutrient conditions to grow and produce oxygen, which was not subject to immediate outgassing. The oxygen concentration in the DOM was not constant, but decreased, then increased again until the end of the mission. Intrusions of oxygen rich water are also visible throughout the mission. These are probably due to mesoscale events through the horizontal transport of oxygen and/or nutrients that can enhance productivity, particularly at the edge of the fronts. We calculate net community production (NCP) by analysing the variation in oxygen with time. Two methods have been proposed. The classical oxygen budget method assumes that changes in oxygen are due to the sum of air-sea flux, isopycnal advection, diapycnal mixing and NCP. ERA-Interim provides climatological data to calculate air-sea gas exchange fluxes based on wind-speed parameterisations of the gas exchange coefficient. The second method exploits the high frequency of the measurements to determine the increment of oxygen over time during daylight hours to measure NCP. Together with the O2 concentration decrease during the night (due to community respiration), this method also allows us to derive gross oxygen production rates. The results of these two methods are compared.

  14. A simplified coulometric method for multi-sample measurements of total dissolved inorganic carbon concentration in marine waters.

    PubMed

    Amornthammarong, Natchanon; Ortner, Peter B; Hendee, James; Woosley, Ryan

    2014-10-21

    A new system requiring greatly reduced operator intervention has been developed for the determination of dissolved inorganic carbon concentration in marine waters. Based on a coulometric method, the system has an accuracy and precision comparable to more complex and expensive methods currently employed. A syringe pump equipped with a 12-port distribution valve is used to precisely dispense an acid solution and sample into a gas stripper. The system can autonomously measure eight discrete samples in duplicate or triplicate with no operator input. The best precision (%RSD) obtained was 0.022% (n = 14) or less than 1.0 ?mol kg(-1). The system is calibrated against a certified reference material (CRM). Average offset from the CRM was 1.2 ?mol kg(-1). Sample throughput was 4 samples per h. Carryover effects are negligible but field sample analyses suggest that prefiltering may be necessary in highly turbid waters. PMID:25136787

  15. The role of phytoplankton in the modulation of dissolved and oyster cadmium concentrations in Deep Bay, British Columbia, Canada.

    PubMed

    Cassis, David; Lekhi, Priyanka; Pearce, Christopher M; Ebell, Nadene; Orians, Kristin; Maldonado, Maria T

    2011-09-15

    We previously identified dissolved cadmium (Cd(diss)) as the main source of this metal in cultured Pacific oysters, Crassostrea gigas, in Deep Bay, British Columbia, Canada (Lekhi et al., 2008). Total suspended particulate Cd (Cd(part)) was not found to be a significant source of oyster Cd (Cd(oys)), with Cd(part) >20 ?m negatively correlated with Cd(oys) concentration. High phytoplankton abundance in spring and summer was hypothesized to reduce Cd(oys) indirectly by drawing down Cd(diss) and increasing oyster growth. In the present study we expanded on these results by examining specifically how the phytoplankton community composition modulates both Cd(diss) and Cd(oys) concentrations in Deep Bay. Based on calculations of nutrients and Cd(diss) drawdown, phytoplankton accounted for approximately 90% of the overall summer reduction in Cd(diss) in the bay. Diatoms were the dominant phytoplankton group, being correlated negatively with Cd(oys) and positively with Cd(part). This suggests that diatom growth mediates the transfer of Cd from the dissolved to the particulate phase, resulting in lower Cd(oys). Spring blooms and sporadic harmful algal blooms may mediate a large flux of Cd(part) to the sediments. Thus, phytoplankton act as a sink, rather than a source, of Cd to oysters in Deep Bay and have a crucial role in the seasonality of Cd(oys) by reducing the concentration of Cd(diss) during the summer. Based on environmental variables, two descriptive models for annual Cd(oys) concentrations were developed using multiple linear regression. The first model (R(2)=0.870) was created to explain the maximum variability in Cd(oys) concentrations throughout the year, while the second (R(2)=0.806) was based on parameters that could be measured easily under farm conditions. Oyster age heavily affected both models, with the first model being secondarily affected by temperature and the second one being more sensitive to changes in salinity. PMID:21820696

  16. Direct analysis of ?13C and concentration of dissolved organic carbon (DOC) in environmental samples by TOC-IRMS

    NASA Astrophysics Data System (ADS)

    Kirkels, Frdrique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten

    2014-05-01

    Dissolved organic carbon (DOC) plays an important role in carbon cycling in terrestrial and aquatic systems. Stable isotope analysis (delta 13C) of DOC could provide valuable insights in its origin, fluxes and environmental fate. Precise and routine analysis of delta 13C and DOC concentration are therefore highly desirable. A promising, new system has been developed for this purpose, linking a high-temperature combustion TOC analyzer trough an interface with a continuous flow isotope ratio mass spectrometer (Elementar group, Hanau, Germany). This TOC-IRMS system enables simultaneous stable isotope (bulk delta 13C) and concentration analysis of DOC, with high oxidation efficiency by high-temperature combustion for complex mixtures as natural DOC. To give delta 13C analysis by TOC-IRMS the necessary impulse for broad-scale application, we present a detailed evaluation of its analytical performance for realistic and challenging conditions inclusive low DOC concentrations and environmental samples. High precision (standard deviation, SD predominantly < 0.15 permil) and accuracy (R2 = 0.9997, i.e. comparison TOC-IRMS and conventional EA-IRMS) were achieved by TOC-IRMS for a broad diversity of DOC solutions. This precision is comparable or even slightly better than that typically reported for EA-IRMS systems, and improves previous techniques for ?13C analysis of DOC. Simultaneously, very good precision was obtained for DOC concentration measurements. Assessment of natural abundance and slightly 13C enriched DOC, a wide range of concentrations (0.2-150 mgC/L) and injection volumes (0.05-3 ml), demonstrated good analytical performance with negligible memory effects, no concentration/volume effects and a wide linearity. Low DOC concentrations (< 2 mgC/L), were correctly analyzed without any pre-concentration. Moreover, TOC-IRMS was successfully applied to analyze DOC from diverse terrestrial, freshwater and marine environments (SD < 0.23 permil). In summary, the TOC-IRMS performs fast and reliable analysis of DOC concentration and ?13C in aqueous samples, without any pre-concentration/freeze-drying. Flexible usage is highlighted by automated, online analysis, a variable injection volume, high throughput and no extensive maintenance. Sample analysis is simple, using small aliquots and with minimal sample preparation. Further investigations should focus on complex, saline matrices and very low DOC concentrations, to achieve a potential lower limit of 0.2 mgC/L. High-resolution, routine delta 13C analysis of DOC by TOC-IRMS offers opportunities for wide-scale application in terrestrial, freshwater and marine research to elucidate the role of DOC in biogeochemical processes and ecosystem functioning.

  17. Generalised Additive Models to understand long-term trends of dissolved organic carbon concentrations in surface waters

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Tittel, Jrg

    2014-05-01

    In the literature, several causes of recently increasing dissolved organic carbon (DOC) concentrations in surface waters across eastern North America and northern and central Europe have been debated. One of the most likely drivers of the widespread increase of DOC concentrations since the early to mid 1990s were decreasing atmospheric acid depositions. More specifically, it was observed that the spatial distribution of linear trends between DOC and sulphate concentrations was consistent for surface waters in Canada, Finland, Norway, Sweden, the UK and the USA. However, to the best of our knowledge, non-linear methods have not been applied to examine temporal trends of DOC and surrogates of acid deposition such as sulphate concentrations and pH. This type of analysis could provide a refined understanding of how deceasing acid deposition affected DOC concentrations over time. In this study, we used Generalised Additive Models (GAM) to detect non-linear trends of DOC and pH during the last 20 years for three streams draining forested headwater catchments of the Mulde River in the Ore Mountains, East Germany. The analysis accounted for both seasonal patterns and the influence of stream flow on DOC. We found consistent temporal non-linear trends for DOC and pH. Furthermore, trends of DOC and pH may be decoupled during the last 5 years. While DOC concentrations were still increasing, pH tended to level off. Overall, our GAM analysis appeared to be a promising tool to gain further insight into potential drivers of increasing DOC trends in surface waters.

  18. Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA

    USGS Publications Warehouse

    Balistrieri, L.S.; Seal, R.R., II; Piatak, N.M.; Paul, B.

    2007-01-01

    The authors determine the composition of a river that is impacted by acid-mine drainage, evaluate dominant physical and geochemical processes controlling the composition, and assess dissolved metal speciation and toxicity using a combination of laboratory, field and modeling studies. Values of pH increase from 3.3 to 7.6 and the sum of dissolved base metal (Cd + Co + Cu + Ni + Pb + Zn) concentrations decreases from 6270 to 100 ??g/L in the dynamic mixing and reaction zone that is downstream of the river's confluence with acid-mine drainage. Mixing diagrams and PHREEQC calculations indicate that mixing and dilution affect the concentrations of all dissolved elements in the reach, and are the dominant processes controlling dissolved Ca, K, Li, Mn and SO4 concentrations. Additionally, dissolved Al and Fe concentrations decrease due to mineral precipitation (gibbsite, schwertmannite and ferrihydrite), whereas dissolved concentrations of Cd, Co, Cu, Ni, Pb and Zn decrease due to adsorption onto newly formed Fe precipitates. The uptake of dissolved metals by aquatic organisms is dependent on the aqueous speciation of the metals and kinetics of complexation reactions between metals, ligands and solid surfaces. Dissolved speciation of Cd, Cu, Ni and Zn in the mixing and reaction zone is assessed using the diffusive gradients in thin films (DGT) technique and results of speciation calculations using the Biotic Ligand Model (BLM). Data from open and restricted pore DGT units indicate that almost all dissolved metal species are inorganic and that aqueous labile or DGT available metal concentrations are generally equal to total dissolved concentrations in the mixing zone. Exceptions occur when labile metal concentrations are underestimated due to competition between H+ and metal ions for Chelex-100 binding sites in the DGT units at low pH values. Calculations using the BLM indicate that dissolved Cd and Zn species in the mixing and reaction zone are predominantly inorganic, which is consistent with the DGT results. Although the DGT method indicates that the majority of aqueous Cu species are inorganic, BLM calculations indicate that dissolved Cu is inorganic at pH 5.5. Integrated dissolved labile concentrations of Cd, Cu and Zn in the mixing and reaction zone are compared to calculated acute toxicity concentrations (LC50 values) for fathead minnows (Pimephales promelas) (Cd, Cu and Zn) and water fleas (Ceriodaphnia dubia) (Cd and Cu) using the BLM, and to national recommended water quality criteria [i.e., criteria maximum concentration (CMC) and criterion continuous concentration (CCC)]. Observed labile concentrations of Cd and Zn are below LC50 values and CMC for Cd, but above CCC and CMC for Zn at sites <30 m downstream of the confluence. In contrast, labile Cu concentrations exceed LC50 values for the organisms as well as CCC and CMC at sites <30 m downstream of the confluence. These results suggest that environmental conditions at sites closest to the confluence of the river and acid-mine drainage should not support healthy aquatic organisms. ?? 2007 Elsevier Ltd. All rights reserved.

  19. Evaluating Function of a Constructed Fen in Alberta's Oil Sands Region Using Dissolved Organic Carbon Concentration and Chemistry

    NASA Astrophysics Data System (ADS)

    Strack, M.; Khadka, B.

    2014-12-01

    Peatlands, mainly fens, account for close to 65% of the landscape in the oil sands region near Fort McMurray, Alberta. Since mine closure plans require landscape reclamation, methods for fen construction are being investigated. As reclamation goals include the return of ecosystem function, criteria for evaluation must be developed. In this study we compare soil concentrations and spectrophometric properties of dissolved organic carbon (DOC) from a constructed fen during its first growing season with that collected from three diverse, undisturbed reference fens in the region. The constructed fen had lower DOC concentration than all the reference fens. Based on E2/E3, E4/E6 and specific UV absorbance of the DOC, the constructed fen had DOC with significantly greater humic content, aromatic nature, and larger molecular size than the reference fens. Results from laboratory DOC production studies indicate that these patterns are likely due to the limited DOC contribution from the newly planted vegetation at the constructed fen, resulting in DOC largely derived from humified peat placed during construction. These preliminary results suggest that DOC concentration and chemistry provide information about the ecological development of the constructed system that could be useful for evaluating reclamation success through time.

  20. Dissolved Concentrations, Sources, and Risk Evaluation of Selected Metals in Surface Water from Mangla Lake, Pakistan

    PubMed Central

    Saleem, Muhammad; Iqbal, Javed; Shah, Munir H.

    2014-01-01

    The present study is carried out for the assessment of water quality parameters and selected metals levels in surface water from Mangla Lake, Pakistan. The metal levels (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, and Zn) were determined by flame atomic absorption spectrophotometry. Average levels of Cd, Co, Cr, Ni, and Pb were higher than the allowable concentrations set by national and international agencies. Principal component analysis indicated significant anthropogenic contributions of Cd, Co, Cr, Ni, and Pb in the water reservoir. Noncarcinogenic risk assessment was then evaluated using Hazard Quotient (HQing/derm) and Hazard Index (HIing/derm) following USEPA methodology. For adults and children, Cd, Co, Cr, and Pb (HQing > 1) emerged as the most important pollutants leading to noncarcinogenic concerns via ingestion route, whereas there was no risk via dermal contact of surface water. This study helps in establishing pollutant loading reduction goal and the total maximum daily loads, and consequently contributes to preserve public health and develop water conservation strategy. PMID:24744690

  1. Estimation of Suspended and Dissolved Matter Concentration In Sea Water On Shelves By Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Pelevin, V.; Rostovtseva, V.

    Falling of rivers into the seas or surging in shallow aquatoria cause the violation of the balance between living and dead matter occurring in the open ocean ( Pelevin and Rostovtseva, 2001). That means in littoral arias the one-parameter model of sea waters optical properties developed for the open ocean (Pelevin and Rostovtseva, 1997) is not valid. We suggest to use the three-parameters model of light scattering and absorbing prop- erties of sea water for the most arias on shelves. The three parameters are: the coeffi- cient of light absorption by coloured matter at 500 nm (coloured matter includes both chlorophyll pigments and "yellow substance"), the coefficient of light absorption by suspended matter and the coefficient of light backscattering by suspended matter. For some specific shelf arias with coloured suspended matter we suggest to add the fourth parameter taking into account the spectral dependence of backscattering by suspended matter. The method of such type arias determination is also given. The algorithm of solution of the inverse problem of these parameters estimation using optical remote sensing data obtained from satellites is developed. It consists of two steps: the rough determination of the parameters values by some spectral characteris- tics and then the minimization of real and model spectra discrepancy. The suggested algorithm was used for spectral distribution of upward radiation mea- sured in the Black, Marmora and Baltic Seas. Comparison of the obtained results with some data of direct measurements carried out in these aquatoria proved the validity of the model for these shelf waters and showed the efficiency of the suggested approach. V.N.Pelevin and V.V.Rostovtseva , 1997, Estimation of lightscattering and lightabsorb- ing admixture concentration in open ocean waters of different types.- Atmospheric and Oceanic Optics, 10(9), 989-995. V.N.Pelevin and V.V.Rostovtseva, 2001, Modelling of optic- biological parameters of open ocean waters. - OCEANOLOGIA, 43(4).

  2. Dissolved Oxygen Concentration Profiles in the Hyporheic Zone Through the Use of a High-Density Fiber Optic Measurement Network

    NASA Astrophysics Data System (ADS)

    Reeder, William Jeffrey; Quick, Annika; Farrell, Tiffany B.; Benner, Shawn G.; Feris, Kevin P.; Tonina, Daniele

    2015-04-01

    The majority of chemical reactions in riverine systems occur within the hyporheic zone (HZ). Hyporheic exchange, flow into and out of the hyporheic zone, represents a primary control over those reactions because the flow rate will determine the residence time and amount of chemical constituents in the HZ. Hyporheic flow can be conceptualized as discreet streamlines that collectively represent a broad distribution of residence times. Within this context, dissolved oxygen (DO) concentration becomes a primary indicator of the redox and biochemical state of the HZ including, for example, the fate of carbon, contaminant behavior, nutrient cycling, stream DO levels and nitrous oxide (N2O) production. River systems have been identified as a significant source of N2O emissions, contributing an estimated 10% of anthropogenically generated N2O. The primary biochemical transformations that lead to N2O production are nitrification (NH4+ to NO3-) and denitrification (NO3- to N2) reactions that are mediated by microbes living in the HZ. Current theory describes a process in which DO enters the stoss side of the HZ and is consumed by respiration and nitrification in the upstream, oxic portion of the streamlines leading to a progressive partitioning of the HZ from oxic to anoxic. This conceptualization, however, has not been well validated in a physical sense, due to inherent difficulties associated with measuring chemical concentrations in the HZ. To test current theory, we measured HZ DO concentrations, in a large-scale flume experiment, almost continuously for five months using a multiplexed optical network and a precision robotic surface probe system. We were able to measure DO at higher spatial and temporal resolution than has been previously demonstrated. These measurements, coupled with detailed numerical modeling of HZ flowlines, allowed us to map HZ DO concentrations spatially and over time. Our findings validate the models that describe the consumption of DO through microbial processes. Additionally, our results show that residence time is a strong predictor of DO concentration within the HZ.

  3. Impacts of dust deposition on dissolved trace metal concentrations (Mn, Al and Fe) during a mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Wuttig, K.; Wagener, T.; Bressac, M.; Dammshuser, A.; Streu, P.; Guieu, C.; Croot, P. L.

    2013-04-01

    The deposition of atmospheric dust is the primary process supplying trace elements abundant in crustal rocks (e.g. Al, Mn and Fe) to the surface ocean. Upon deposition, the residence time in surface waters for each of these elements differs according to their chemical speciation and biological utilization. Presently, however, the chemical and physical processes occurring after atmospheric deposition are poorly constrained, principally because of the difficulty in following natural dust events in situ. In the present work we examined the temporal changes in the biogeochemistry of crustal metals (in particular Al, Mn and Fe) after an artificial dust deposition event. The experiment was contained inside trace metal clean mesocosms (0-12.5 m depths) deployed in the surface waters of the northwestern Mediterranean, close to the coast of Corsica within the frame of the DUNE project (a DUst experiment in a low Nutrient, low chlorophyll Ecosystem). Two consecutive artificial dust deposition events, each mimicking a wet deposition of 10 g m-2 of dust, were performed during the course of this DUNE-2 experiment. The changes in dissolved manganese (Mn), iron (Fe) and aluminum (Al) concentrations were followed immediately after the seeding with dust and over the following week. The Mn, Fe and Al inventories and loss or dissolution rates were determined. The evolution of the inventories after the two consecutive additions of dust showed distinct behaviors for dissolved Mn, Al and Fe. Even though the mixing conditions differed from one seeding to the other, Mn and Al showed clear increases directly after both seedings due to dissolution processes. Three days after the dust additions, Al concentrations decreased as a consequence of scavenging on sinking particles. Al appeared to be highly affected by the concentrations of biogenic particles, with an order of magnitude difference in its loss rates related to the increase of biomass after the addition of dust. In the case of dissolved Fe, it appears that the first dust addition resulted in a decrease as it was scavenged by sinking dust particles, whereas the second seeding induced dissolution of Fe from the dust particles due to the excess Fe binding ligand concentrations present at that time. This difference, which might be related to a change in Fe binding ligand concentration in the mesocosms, highlights the complex processes that control the solubility of Fe. Based on the inventories at the mesocosm scale, the estimations of the fractional solubility of metals from dust particles in seawater were 1.44 0.19% and 0.91 0.83% for Al and 41 9% and 27 19% for Mn for the first and the second dust addition. These values are in good agreement with laboratory-based estimates. For Fe no fractional solubility was obtained after the first seeding, but 0.12 0.03% was estimated after the second seeding. Overall, the trace metal dataset presented here makes a significant contribution to enhancing our knowledge on the processes influencing trace metal release from Saharan dust and the subsequent processes of bio-uptake and scavenging in a low nutrient, low chlorophyll area.

  4. Changes in Dissolved Carbon and Nitrogen Concentrations Along a Hill Slope Flow Path in Siberian Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Theberge, J.; Schade, J. D.; Fiske, G. J.; Loranty, M. M.; Zimov, N.

    2014-12-01

    Permafrost soils contain a large pool of carbon that has accumulated for thousands of years, and remains frozen in organic form. As climate warms, permafrost thaw will lead to active cycling of old organic materials, possibly leading to release of carbon to the atmosphere or to export of organic carbon to the oceans. Organic matter breakdown may also release reactive forms of nitrogen, which may significantly impact ecosystem processes. We currently have limited understanding of where in Arctic landscapes breakdown of organic materials will occur, or whether this will influence the strength and direction of feedback loops that may occur in response to changes in C and N cycling. In this work, we studied changes in dissolved forms of C and N in water moving down a hillslope linking upland terrestrial environments to lowland floodplains within the Kolyma River watershed in the East Siberian Arctic tundra in July, 2014. The hill slope consisted of a mosaic of dry and saturated soils, generally with drier soils on the periphery and saturated soils in and around pools or short reaches of flowing surface water. We established transects at regular intervals downslope, installing wells in the center of the flow path and 5 meters laterally north and south. We analyzed pore-water from wells and surface water from pools at each transect for dissolved organic carbon (DOC) and total dissolved nitrogen (TDN). We used patterns in water chemistry to develop a conceptual model for biogeochemical changes as water moved downslope through soils, pools and runs. Pore-water analysis showed significantly higher DOC in lateral wells than in surface water and pore water in the center of the flow path, suggesting possible processing of C as water moves laterally towards the valley bottom. In contrast, DOC increased modestly down the center of the flow path, suggesting either higher hydrologic inputs or production of new DOC downslope. TDN concentration decreased downslope, suggesting processing by microbes or uptake by grasses which dominated the valley bottom. Together these patterns suggest N limitated microbial processes or plant production, which may increase organic C export to downstream ecosystems. If general, this pattern would have significant implications for future climate feedbacks from C released as permafrost thaws.

  5. Seasonal Control of Surface-Water Dissolved Iron Concentrations by Suspended Particle Concentrations on the Northern Gulf of Alaska Continental Shelf and Slope

    NASA Astrophysics Data System (ADS)

    Crusius, J.; Schroth, A. W.; Campbell, R.; Cullen, J. T.; Dillman, D.; Resing, J.

    2012-12-01

    The continental shelf region of the northern Gulf of Alaska (GoA) supports a productive ecosystem including an important commercial fishery. Downwelling winds during most of the year imply that some mechanism other than upwelling must be supplying the essential nutrients iron and nitrate. Although it is well known that iron limits productivity offshore in the GoA, we have a poor understanding of the controls on Fe supply. Data from cruises from 2010 provide some new insight into the mechanisms of Fe supply. Cruises were carried out along a transect extending from the mouth of the Copper River to ~40 km beyond the shelf break three times per year including early April, early May, and late July. High-resolution surface-water sampling was carried out, as well as bottle casts at 5 stations. High, fairly uniform concentrations of "total dissolvable iron" (TDFe; unfiltered sample acidified to pH=1.7) as well as "dissolved" Fe (dFe) were observed spanning the shelf in April, suggesting sediment resuspension is an important source of dFe to surface waters at that time. By contrast, high dFe and TDFe concentrations in late July coincide with low-salinity surface water, which in this location indicates a glacial meltwater source. Throughout spring and summer high particle concentrations across much of the shelf appear to "buffer" dFe concentrations to ~3 nmol/kg, which are close to those observed by Lippiatt et al (2010) in the region. This is consistent with dFe concentrations being determined by the organic ligand concentrations that, in turn, are fairly constant. In late July, surface water dFe concentrations are ~0.5 nmol/kg on the outer shelf and up to ~50 km further offshore. These dFe concentrations on the outer shelf are much lower in July than earlier in the year, owing to Fe removal by phytoplankton uptake and by scavenging, as well as by the lack of particulate Fe sources to surface waters in July. However, the high surface-water dFe observed ~50 km beyond the shelf break suggest offshore transport of Fe in this location. These outer shelf and slope Fe concentrations are substantially higher than observed on the outer shelf and slope along the GAK line (offshore of Seward, AK) by Wu et al 2009 and Lippiatt et al, 2010. We suggest that the higher concentrations over the outer shelf and slope region in our work are due to offshore transport, whereas the GAK line experienced Ekman-induced onshore transport. We will explore possible mechanisms for offshore transport of Fe in surface waters in in our work. All of these studies have in common the suggestion that particles from the continental shelf exert an important control on dFe concentrations both over and beyond the shelf. Understanding the processes of cross-shelf transport will be important for understanding the high productivity in the region.

  6. An Isotope Dilution Method for High-frequency Measurements of Dissolved Inorganic Carbon concentration in the Surface Ocean

    NASA Astrophysics Data System (ADS)

    Huang, K.; Bender, M. L.; Wanninkhof, R. H.; Cassar, N.

    2013-12-01

    Dissolved inorganic carbon (DIC) is one of the most important species in the ocean carbon system. An autonomous system using isotope dilution as its core method has been developed to obtain high-frequency measurements of dissolved inorganic carbon (DIC) concentrations in the surface ocean. This system accurately mixes a seawater sample and a 13C-labeled sodium bicarbonate solution (spike). The mixed solution is then acidified and sent through a gas permeable membrane contactor. CO2 derived from DIC in the mixture is extracted by a CO2-free gas stream, and is sent to a cavity ring-down spectrometer to analyze its 13C/12C ratio. [DIC] of the seawater can then be derived from the measured 13C/12C, the known mixing ratio and the [DI13C] of the spike. The method has been tested under a wide [DIC] range (1800-2800 ?mol/kg) in the laboratory. It has also been deployed on a cruise that surveyed ocean waters to the south of Florida. At a sampling resolution of 4 minutes (15 samples per hour), the relative standard deviation of DIC determined from the laboratory tests and the field deployment is 0.07% and 0.09%, respectively. The accuracy of the method is better than 0.1% except where [DIC] varies faster than 5 ?mol/kg per minute. Based on the laboratory and field evaluations, we conclude that this method can provide accurate underway [DIC] measurements at high resolution in most oceanic regions. Schematic illustration of the work flow.

  7. Dissolved trace element concentrations in the East River-Long Island Sound system: relative importance of autochthonous versus allochthonous sources.

    PubMed

    Buck, Nathaniel J; Gobler, Christopher J; Saudo-Wilhelmy, Sergio A

    2005-05-15

    Dissolved trace metal (Ag, Cd, Cu, Fe, Ni, Pb, and Zn), inorganic nutrient (NO3, NH4, PO4, H4SiO4), and DOC concentrations were measured at 43 stations during low (July 2000) and high (April 2001) river discharge conditions in surface waters of Long Island Sound (LIS). To evaluate the impact of fluvial sources to the total metal budget of the sound, samples were collected from major tributaries discharging into LIS (Thames, Quinnipiac, Housatonic, Connecticut, and East Rivers). To compare LIS with other coastal embayments, samples were also collected from five LIS coastal embayments (Manhassett Bay, Huntington Harbor, Oyster Bay, Hempstead Harbor, and Port Jefferson Harbor), which are monitored by the U.S. National Status and Trends Program. Metal and nutrient distributions identified two biogeochemical regimes within LIS: an area of relatively high nutrient and metal concentrations in the East River/Narrows region in western LIS and an area in the eastern region of the sound that had comparatively lower concentrations. Mass balance estimates indicated that, during low flow conditions, the East River was the dominant allochthonous source of most trace metals (Ag, Cd, Cu, Ni, Zn) and inorganic nutrients (NO3 and PO4); during high flow conditions, the most influential source of these constituents was the Connecticut River. Mass balance estimates also evidenced a large autochthonous source of Cu, Ni, and Zn, as their spatial distributions displayed elevated concentrations away from point sources such as the East River. Principal component analysis suggested that metal and nutrient distributions in the LIS system were influenced by different seasonal processes: remobilization from contaminated sediments, anthropogenic inputs from sewage discharges and phytoplankton scavenging during the spring freshet, and benthic remobilization during summer conditions. PMID:15952355

  8. Binding of mercury(II) to dissolved organic matter: The role of the mercury-to-DOM concentration ratio

    USGS Publications Warehouse

    Haitzer, M.; Aiken, G.R.; Ryan, J.N.

    2002-01-01

    The binding of Hg(II) to dissolved organic matter (DOM; hydrophobic acids isolated from the Florida Everglades by XAD-8 resin) was measured at a wide range of Hg-to-DOM concentration ratios using an equilibrium dialysis ligand exchange method. Conditional distribution coefficients (KDOM???) determined by this method were strongly affected by the Hg/DOM concentration ratio. At Hg/DOM ratios below approximately 1 ??g of Hg/mg of DOM, we observed very strong interactions (KDOM??? = 1023.2??1.0 L kg-1 at pH = 7.0 and I = 0.1), indicative of mercury-thiol bonds. Hg/DOM ratios above approximately 10 ??g of Hg/mg of DOM, as used in most studies that have determined Hg-DOM binding constants, gave much lower KDOM??? values (1010.7??1.0 L kg-1 at pH = 4.9-5.6 and I = 0.1), consistent with Hg binding mainly to oxygen functional groups. These results suggest that the binding of Hg to DOM under natural conditions (very low Hg/DOM ratios) is controlled by a small fraction of DOM molecules containing a reactive thiol functional group. Therefore, Hg/DOM distribution coefficients used for modeling the biogeochemical behavior of Hg in natural systems need to be determined at low Hg/DOM ratios.

  9. Effect of low dissolved oxygen concentration on planktonic foraminifera: results from laboratory culture experiments and implications for oceanic anoxic events

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, A.; da Rocha, R. E.; Bijma, J.; Spero, H. J.; Russell, A. D.; Eggins, S. M.; Kawahata, H.

    2013-12-01

    During Cretaceous oceanic anoxic events (OAEs), substantial turnover of planktonic foraminiferal species occurred, however, the direct effects of the dissolved oxygen (DO) concentration on planktonic foraminifera remain obscure. Althogh culture experiments conducted under controlled conditions can quantify the relationships between foraminiferal ecology and environmental parameters, experiments controlling DO have yet to be conducted because it is difficult to maintain a stable oxygen concentration. In this study, we cultured two subtropical-transitional planktonic foraminifer species (one symbiotic species, Orbulina universa, and one nonsymbiotic species, Globigerina bulloides) under six different DO conditions (between 10% and 100% saturation). In both species, the gametogenesis rate was more than 60% even at a DO of 10%, suggesting that at least 'dysoxic' conditions (~0.7 mg O2 L-1) could not have directly caused the extinction of planktonic foraminifera during OAEs. Planktonic foraminifera originated from benthic lineages, and this origin is one possible explanation for their high tolerance to extremely low DO levels. Although the number of days to gametogenesis did not differ significantly among treatments in either species, final shell weight increased with increasing DO, suggesting that fossil foraminiferal shell weight could vary with past DO conditions. Our results suggest that the extinction of many planktonic foraminiferal species during OAEs may have been due to anoxic or euxinic conditions in the euphotic zone. The occurrence of these conditions can be explained either by the oxygen minimum layer model or by the stagnant ocean model combined with elevated riverine P input.

  10. Concentrations and fluxes of dissolved uranium in the Yellow River estuary: seasonal variation and anthropogenic (Water-Sediment Regulation Scheme) impact.

    PubMed

    Juanjuan, Sui; Zhigang, Yu; Bochao, Xu; Wenhua, Dong; Dong, Xia; Xueyan, Jiang

    2014-02-01

    The Water-Sediment Regulation Scheme (WSRS) of the Yellow River is a procedure implemented annually from June to July to expel sediments deposited in Xiaolangdi and other large middle-reach reservoirs and to scour the lower reaches of the river, by controlling water and sediment discharges. Dissolved uranium isotopes were measured in river waters collected monthly as well as daily during the 2010 WSRS (June 19-July 16) from Station Lijin (a hydrologic station nearest to the Yellow River estuary). The monthly samples showed dissolved uranium concentrations of 3.85-7.57?gl(-1) and (234)U/(238)U activity ratios of 1.24-1.53. The concentrations were much higher than those reported for other global major rivers, and showed seasonal variability. Laboratory simulation experiments showed significant uranium release from bottom and suspended sediment. The uranium concentrations and activity ratios differed during the two stages of the WSRS, which may reflect desorption/dissolution of uranium from suspended river sediments of different origins. An annual flux of dissolved uranium of 1.04נ10(8)gy(-1) was estimated based on the monthly average water discharge and dissolved uranium concentration in the lower reaches of the Yellow River. The amount of dissolved uranium (2.65נ10(7)g) transported from the Yellow River to the sea during the WSRS constituted about 1/4 of the annual flux. PMID:24292394

  11. Hydroclimatic Controls on the Seasonal and Inter-Annual Variability of Dissolved Phosphorus Concentration in a Lowland Agricultural Catchment

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Gascuel-odoux, C.; Grimaldi, C.; Gruau, G.

    2014-12-01

    We investigated soluble reactive phosphorus (SRP) at the outlet of a lowland agricultural catchment (Kervidy-Naizin, France) to identify the hydroclimatic controls on the seasonal and inter-annual variability in concentrations. Six years of stream data have been used, including a regular 6-daily sampling and high-frequency monitoring of 52 floods. Both on an annual basis and during flood events, distinct export dynamics for SRP and particulate phosphorus (PP) revealed that SRP transport mechanism was independent from PP (Dupas et al., submitted). During most flood events, discharge-SRP hystereses were anticlockwise, which suggests that SRP was transferred to the stream via subsurface flow. Groundwater rise in wetland soils was likely the cause of this transfer, through the hydrological connectivity it created between the stream and P-rich soil horizons. SRP concentrations were highest in the beginning of the hydrological year (period A), when the stream started to flow again after the dry summer season and water table fluctuated in the wetland domain. Thus, wetland soils seemed to be a major source of SRP. Concentrations during period A were higher after a long summer period than after a short one, which suggest that a pool of labile P was constituted in soils during the dry summer period. During winter (period B), SRP concentration generally decreased compared to period A, both during floods and interflood. This could be due to depletion of a soil P pool in the wetland domain and/or dilution by deep groundwater with low P concentration from the upland domain. Concentration during period B barely decreased compared to A during wet years, probably due to increased connectivity with soils from the upland domain in wet conditions. During spring (period C), SRP concentration increased during baseflow periods. The possible mechanisms causing the release of SRP could involve reduction of Fe oxide-hydroxides in wetland soils or in-stream processes. At the same time, SRP and PP export during floods were synchronised and caused by erosion and overland flow. In-situ monitoring of soil solution and batch experiments are currently been performed to confirm hypotheses on biogeochemical mechanisms. Dupas R et al. Distinct export dynamics for dissolved and particulate phosphorus reveal independent transport mechanisms (subm.)

  12. An in situ method to quantitatively determine dissolved free drug concentrations in vitro in the presence of polymer excipients using pulsatile microdialysis (PMD).

    PubMed

    Vejani, Charchil; Bellantone, Robert A

    2015-12-30

    In drug formulations containing polymer excipients, the effects of the polymer on the dissolved free drug concentration and resulting dissolution or release can be important, especially for poorly soluble drugs. In this study, an in vitro method based on pulsatile microdialysis (PMD) was developed to quantitatively determine dissolved free concentrations of drugs in the presence of polymers in aqueous media in situ (e.g., in place within the system being characterized). Formulations were made by dissolving various ratios of the drug griseofulvin and polymer PVP K30 in water and allowing the mix to equilibrate. A PMD probe was immersed in each mixture and the dissolved free drug concentrations were determined in the PMD samples. The experimental procedure and the equations used for data analysis are presented. To assess the consistency of data, a binding model was fit to the data obtained using PMD by calculating the dissolved free drug fraction fD for each drug-polymer ratio in solution, and obtaining the product of the binding stoichiometry and binding constant (νK per mole of polymer) from the slope of a plot of (1-fD)/fD vs. the molar polymer concentration. For comparison, equilibrium binding experiments were also performed at 23C, and the determined value of νK was similar to the value found using PMD. Experiments were performed at three temperatures, and a plot of ln (νK) vs. 1/T was linear and a binding enthalpy of -110.9±4.4J/mol of monomer was calculated from its slope. It was concluded that PMD can be used to determine the dissolved free drug concentrations in situ, which allows characterization of the drug-polymer interaction, even for low drug concentrations. This information may be important in modeling the dissolution or release of drugs from formulations containing polymers. PMID:26319635

  13. Influence of increasing dissolved inorganic carbon concentrations and decreasing pH on chemolithoautrophic bacteria from oxic-sulfidic interfaces

    NASA Astrophysics Data System (ADS)

    Mammitzsch, K.; Jost, G.; Jrgens, K.

    2012-12-01

    Increases in the dissolved inorganic carbon (DIC) concentration are expected to cause a decrease in the pH of ocean waters, a process known as ocean acidification. In oxygen-deficient zones this will add to already increased DIC and decreased pH values. It is not known how this might affect microbial communities and microbially mediated processes. In this study, the potential effects of ocean acidification on chemolithoautotrophic prokaryotes of marine oxic-anoxic transition zones were investigated, using the chemoautotrophic denitrifying ?-proteobacterium "Sulfurimonas gotlandica" strain GD1 as a model organism. This and related taxa use reduced sulfur compounds, e.g. sulfide and thiosulfate, as electron donors and were previously shown to be responsible for nitrate removal and sulfide detoxification in redox zones of the Baltic Sea water column but occur also in other oxygen-deficient marine systems. Bacterial cell growth within a broad range of DIC concentrations and pH values was monitored and substrate utilization was determined. The results showed that the DIC saturation concentration for growth was already reached at 800 ?M, which is well below in situ DIC levels. The pH optimum was between 6.6 and 8.0. Within a pH range of 6.6-7.1 there was no significant difference in substrate utilization; however, at lower pH values cell growth decreased sharply and cell-specific substrate consumption increased. These findings suggest that a direct effect of ocean acidification, with the predicted changes in pH and DIC, on chemolithoautotrophic bacteria such as "S. gotlandica" str. GD1 is generally not very probable.

  14. Measuring In situ Dissolved Methane Concentrations in Gas Hydrate-Rich Systems. Part 2: Investigating Mechanisms Controlling Hydrate Dissolution

    NASA Astrophysics Data System (ADS)

    Wilson, R. M.; Lapham, L.; Riedel, M.; Chanton, J.

    2010-12-01

    Methane is a potent greenhouse gas, twenty times more infrared-active than CO2, and an important energy source. For these reasons, methane hydrate, one of the largest potential reservoirs of methane on earth, is of considerable interest to scientists and industry alike. In particular, questions relating to the stability of methane hydrate are becoming more important as concern about the release of methane into overlying ocean (and eventually the atmosphere) and interest in the recovery of methane from this resource increase. Three primary factors control hydrate stability: pressure (P), temperature (T), and the gas concentration in the surrounding environment. Pressure and temperature govern the stability of the hydrate structure. When hydrate is exposed to P/T regimes outside of the stability zone (HSZ), the hydrate decomposes by dissociation, a relatively fast process resulting in the release of gaseous phase methane (CH4(g)). However, if the P/T regime is within the HSZ, but the concentration of the guest gas (typically CH4) in the surroundings is below saturation, the hydrate will decompose by dissolution resulting in a phase change between hydrate and the dissolved gas phase (CH4(aq)). OsmoSamplers were deployed at a methane hydrate outcrop in Barkley Canyon, Northern Cascadia Margin, collecting porewater samples in a gradient at 1cm increments away from the hydrate surface. Methane, ethane, and propane concentrations in the porewater samples were measured at 6-day resolution over a period of 9 months. At three centimeters from the hydrate face, methane concentrations were significantly lower than predicted saturation for conditions at this site. Curiously, in situ observations of natural hydrate dissolution are up to two orders of magnitude lower than predicted diffusion-controlled dissolution based on surrounding methane concentrations. Since diffusion of methane away from the hydrate surface has been implicated as the dominant control of hydrate dissolution, natural components may act to increase the diffusive boundary layer, thereby slowing dissolution in observed natural systems. Potential dissolution inhibiting components include oils or microbial biofilms which may “armor” (increase the diffusive boundary layer thickness) the hydrate surface slowing dissolution. We hypothesized that the presence of mixed-gas hydrates may be stabilizing these structures. To test this, we used laboratory measurements of methane concentration gradients near artificial hydrate to evaluate the dissolution rates of mixed-gas hydrate and pure methane hydrate. Our second hypothesis was that the presence of microbial biofilms or oil may be slowing methane hydrate dissolution in natural environments by increasing the boundary layer. We will present the results of our mixed-gas and methane hydrate dissolution rate observations and report on experiments examining the influence of protective oils on artificial hydrate stability.

  15. Water quality in the Fort Cobb Watershed, USA: Spatial and temporal patterns of dissolved P stream concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved phosphorus (P) has often been identified as the nutrient of concern in lakes, reservoirs and streams especially where there is evidence of eutrophication. The objective of this work is to identify spatial and temporal patterns in dissolved P [soluble reactive P (SRP) and bioavailable P (B...

  16. Dissolved oxygen concentration profiles in the hyporheic zone through the use of a high density fiber optic measurement network

    NASA Astrophysics Data System (ADS)

    Reeder, W. J.; Quick, A. M.; Farrell, T. B.; Benner, S. G.; Feris, K. P.; Tonina, D.

    2013-12-01

    The hyporheic zone (HZ) is a potentially important source of the potent greenhouse gas, nitrous oxide (N2O); stream processes may account for up to 10% of global anthropogenic N2O emissions. However, mechanistic understanding and predictive quantification of this gas flux is hampered by complex temporally and spatially variable interactions between flow dynamics and biogeochemical processes. Reactive inorganic nitrogen (Nr) is typically present at low concentrations in natural stream waters, but many rural and urban streams suffer from an excess of Nr, typically in the form of ammonium (NH4+) and nitrate (NO3-). These reactive species are either assimilated by living biomass or transformed by microbial processes. The two primary microbial transformations of Nr are nitrification (NH4+ to NO3-) and denitrification (NO3- to N2). Denitrification, which occurs almost exclusively in the anoxic zone of the HZ, permanently removes between 30-70% of all Nr entering streams, other mechanisms may retain nitrogen. The mass transport of reactive species (i.e. O2, NO3- and N2O) by hyporheic flow strongly influences reaction rates, residence times, and subsequent N2O flux. By extension, stream flow and channel morphology presumably control, and may be effective predictors of, N2O generation rates. By recreating the stream processes in the University of Idaho flume, we are able to control the bed morphology, fluxes and residence times through the HZ and concentrations of Nr from exogenous (stream water) and endogenous (organic material in the streambed) sources. For the present experiment, the flume was divided into three streams, each with different morphologies (3, 6 and 9cm dunes) and all using the same source water. Stream water for this first experimental phase had no significant loading of Nr. As such, all reaction products were the result of endogenous sources of Nr. To measure dissolved oxygen (DO) concentrations we deployed 120 channels of a novel, fiber-optic optode system which was coupled with an advanced optical multiplexer that allowed us to cycle continuously through all 120 channels. Using this approach, we were able to accurately map the evolution and extent of the anoxic regions within the HZ and demonstrate that bed morphology exhibits significant control over residence times and the spatial temporal evolution of the anoxic region. In addition to the DO measurements, we deployed 240 Rhizon water samplers to extract pore water, which we used to measure Nr and N2O concentrations, and an ion Clark-type electrode sensor to measure N2O concentrations at the streambed surface (results discussed separately). Integrating these various results will allow us to refine the existing models for N2O emissions from urban and rural streams.

  17. Diurnal variations in, and influences on, concentrations of particulate and dissolved arsenic and metals in the mildly alkaline Wallkill River, New Jersey, USA

    USGS Publications Warehouse

    Barringer, J.L.; Wilson, T.P.; Szabo, Z.; Bonin, J.L.; Fischer, J.M.; Smith, N.P.

    2008-01-01

    Diurnal variations in particulate and dissolved As and metal concentrations were observed in mildly alkaline water from a wetlands site on the Wallkill River in northwestern New Jersey. The site, underlain by glacial sediments over dolomite bedrock, is 10 km downstream from a mined area of the Franklin Marble, host to Zn ores, also As and Mn minerals. In mid-September 2005, maxima and minima in dissolved-oxygen-concentration and pH, typically caused by photosynthesis and respiration, occurred at 2000 and 0800 hours. Concentrations of dissolved As (1.52-1.95 ??g/L) peaked at dusk (2000 hours), whereas dissolved Mn and Zn concentrations (76.5-96.9 and 8.55-12.8 ??g/L, respectively) were lowest at dusk and peaked at 1000 hours. These opposing cycles probably reflect sorption and desorption of As (an anion), and Mn and Zn (cations) as pH varied throughout the 24-h period. Doubly-peaked cycles of B, Cl, SO4, and nutrients also were observed; these may result from upstream discharges of septic-system effluent. Both recoverable amd particulate Al, Fe, Mn, and Zn concentrations peaked between 0200 and 0600 hours. The particulate metals cycle, with perturbations at 0400 hours, may be influenced by biological activity. ?? 2007 Springer-Verlag.

  18. Trends in chloride, dissolved-solids, and nitrate concentrations in ground water, Carson Valley and Topaz Lake Areas, Douglas County, Nevada, 1959-88

    USGS Publications Warehouse

    Thodal, C.E.

    1996-01-01

    Rapid population growth in Douglas County, an area of approximately 750 square miles in west-central Nevada, has led to concern about the present and future effects of development on ground water. This report describes the results of two nonparametric statistical procedures applied to detect trends in concentrations of chloride, dissolved solids, and nitrate in ground water. The water-quality data consist of analytical results from ground-water samples collected and analyzed by the U. S. Geological Survey and ground-water-quality data provided by the Nevada Bureau of Health Protection Services for the Carson Valley and Topaz Lake areas of Douglas County, Nevada. For purposes of this study, statistical significance, expressed as the p-value, was set at 0.1. The Mann-Whitney-Wilcoxan rank-sum test detected increasing step-trends for nitrate in one of seven residential areas and for dissolved-solids concentrations throughout the study area. Decreasing step-trends for chloride and dissolved-solids concentrations were detected in the west Carson Valley area. Kendall's Tau detected monotonic trends for increasing nitrate concentrations at four domestic wells and for increasing dissolved-solids concentrations at two domestic wells. No other statistically significant trends were indicated by either test. Land-use relations to areas where increasing trends were detected suggest that the density of individual wastewater-treatment systems may exceed the capacity of soils to treat wastewater leachate.

  19. Dissolved Trace Metal Concentrations over the Peru Shelf and in the Subsurface Oxygen Minimum Zone Off Peru

    NASA Astrophysics Data System (ADS)

    Parker, C.; Bruland, K. W.

    2014-12-01

    The Peru coast is the site of one of the largest fisheries in the world, and home to some of the highest f-ratios ever recorded. As a result of this highly productive surface water, an intense subsurface oxygen minimum zone (OMZ) persists. Despite the import of the effect of OMZs due to their predicted increase with global warming, there is very little trace metal data from this region. Here we present dissolved trace metal data from the U.S. GEOTRACES Eastern Pacific Zonal Transect over the Peru shelf and through the OMZ. Results suggest a sink of Pb, Cd, Sc, Cu and Ga in the suboxic region of the shelf, and a shelf source of Co and Fe. Trace metal concentrations within the OMZ will also be discussed. As many of these metals have not been analyzed in this region previously, this work can serve as a baseline for future comparison and adds to the understanding of global trace metal distributions.

  20. Water uptake and growth of cucumber plants (Cucumis sativus L.) under control of dissolved O2 concentration in hydroponics.

    PubMed

    Yoshida, S; Kitano, M; Eguchi, H

    1996-12-01

    Dissolved O2 concentration ([O2]) in nutrient solution was controlled at 0.01, 0.10 and 0.20 mM with accuracy of +/- 0.005 mM in a newly developed hydroponic system, and the effects of [O2] on water uptake and growth of cucumber plants (Cucumis sativus L.) were analyzed. For evaluating water uptake rate under the control of [O2], water flux at the stem base was measured on-line with +/-5% in accuracy, 1 mg s-1 in resolution and 1 min in time constant by heat flux control (HFC) method. Water uptake rate was drastically increased by lighting to the plant at each [O2], and water uptake per day was depressed in proportion to decrease in [O2]. In the plants grown for 10 days, leaf area, fresh weight and dry weight of leaves decreased at lower [O2], while stem length and number of leaves were scarcely affected. These facts suggest that membrane permeability of root cells reduces at lower [O2] through respiration-dependent processes, and growth is inhibited through leaf turgor loss caused by the depressed water uptake of roots in O2-deficient nutrient solution in hydroponics. PMID:11541572

  1. Application of high-resolution spectral absorbance measurements to determine dissolved organic carbon concentration in remote areas

    NASA Astrophysics Data System (ADS)

    Avagyan, Armine; Runkle, Benjamin R. K.; Kutzbach, Lars

    2014-09-01

    Accurate quantification of dissolved organic carbon (DOC) in surface and soil pore waters is crucial for understanding changes in water resources under the influence of climate and land use changes. Sampling and laboratory analysis of DOC content at a sufficient temporal frequency are especially difficult to achieve for natural DOC sources like the extensive boreal and arctic mire landscapes due to their remoteness. Therefore, the goals of this paper are (1) to investigate the performance of a portable, high-resolution ultraviolet-visible light spectroscopic method for determining the DOC content of surface and soil pore water samples from a boreal mire complex and (2) to compare the spectroscopic method with other DOC measurement techniques, e.g., the wet heated persulfate oxidation method and a laboratory, expulsion-based spectrophotometric method and (3) to assess different multivariate models that relate absorbance measurements with DOC contents. The study indicates that high-resolution spectroscopic measurements provide a simple, robust and non-destructive method for measuring DOC content. These measurements are of short duration (<1 min) and the sample analysis is portable, rendering this method particularly advantageous for in situ investigations at remote field locations. The study also demonstrates that if absorbances at specific wavelengths are used as proxies for DOC concentration, it is recommended to create site-specific calibration models that include more than one wavelength to achieve the optimal accuracy of the proxy-based DOC quantification.

  2. Contribution of groundwater discharge to the coastal dissolved nutrients and trace metal concentrations in Majorca Island: karstic vs detrital systems.

    PubMed

    Tovar-Snchez, Antonio; Basterretxea, Gotzon; Rodellas, Valent; Snchez-Quiles, David; Garca-Orellana, Jordi; Masqu, Pere; Jordi, Antoni; Lpez, Jos M; Garcia-Solsona, Ester

    2014-10-21

    Submarine groundwater discharge (SGD) and derived nutrient (NO2(-), NO3(-), NH4(+), PO4(3-), and SiO2) and trace element (Cd, Co, Cu, Fe, Mo, Ni, Pb, V and Zn) loadings to the coastal sea were systematically assessed along the coast of Majorca Island, Spain, in a general survey around the island and in three representative coves during 2010. We estimated that brackish water discharges through the shoreline are important contributors to the DIN, SiO2, Fe, and Zn budgets of the nearshore waters. Furthermore, our results showed that SGD-derived elements are conditioned by the hydrogeological formations of the aquifer and discharge type. Thus, while rapid discharges through karstic conduits are enriched in SiO2 and Zn, the large detrital aquifers of the island typically present enhanced concentrations of Fe. The estimated total annual inputs of chemicals constituents discharged by SGD to the coastal waters were as follows: DIN: 610 10(3) kg yr(-1), SiO2: 1400 10(3) kg yr(-1), Fe: 3.2 10(3) kg yr(-1), and Zn: 2.0 10(3) kg yr(-1). Our results provide evidence that SGD is a major contributor to the dissolved pool of inorganic nutrients and trace metals in the nearshore waters of Majorca. PMID:25215451

  3. Temporal control on concentration, character, and export of dissolved organic carbon in two hemiboreal headwater streams draining contrasting catchments

    NASA Astrophysics Data System (ADS)

    Wallin, Marcus B.; Weyhenmeyer, Gesa A.; Bastviken, David; Chmiel, Hannah E.; Peter, Simone; Sobek, Sebastian; Klemedtsson, Leif

    2015-05-01

    Although lateral carbon (C) export from terrestrial to aquatic systems is known to be an important component in landscape C balances, most existing global studies are lacking empirical data on the soil C export. In this study, the concentration, character, and export of dissolved organic carbon (DOC) were studied during 2 years in two hemiboreal headwater streams draining catchments with different soil characteristics (mineral versus peat soils). The streams exposed surprisingly similar strong air temperature controls on the temporal variability in DOC concentration in spite of draining such different catchments. The temporal variability in DOC character (determined by absorbance metrics, specific ultraviolet absorbance 254 (SUVA254) as a proxy for aromaticity and a254/a365 ratio as a proxy for mean molecular weight) was more complex but related to stream discharge. While the two streams showed similar ranges and patterns in SUVA254, we found a significant difference in median a254/a354, suggesting differences in the DOC character. Both streams responded similarly to hydrological changes with higher a254/a365 at higher discharge, although with rather small differences in a254/a365 between base flow and high flow (<0.3). The DOC exports (9.6-25.2 g C m-2 yr-1) were among the highest reported so far for Scandinavia and displayed large interannual and intraannual variability mainly driven by irregular precipitation/discharge patterns. Our results show that air temperature and discharge affect the temporal variability in DOC quantity and character in different ways. This will have implications for the design of representative sampling programs, which in turn will affect the reliability of future estimates of landscape C budgets.

  4. Characterization of the structure, clean-sand percentage, dissolved-solids concentrations, and estimated quantity of groundwater in the Upper Cretaceous Nacatoch Sand and Tokio Formation, Arkansas

    USGS Publications Warehouse

    Gillip, Jonathan A.

    2014-01-01

    The West Gulf Coastal Plain, Mississippi embayment, and underlying Cretaceous aquifers are rich in water resources; however, large parts of the aquifers are largely unusable because of large concentrations of dissolved solids. Cretaceous aquifers are known to have large concentrations of salinity in some parts of Arkansas. The Nacatoch Sand and the Tokio Formation of Upper Cretaceous age were chosen for investigation because these aquifers produce groundwater to wells near their outcrops and have large salinity concentrations away from their outcrop areas. Previous investigations have indicated that dissolved-solids concentrations of groundwater within the Nacatoch Sand, 2–20 miles downdip from the outcrop, render the groundwater as unusable for purposes requiring freshwater. Groundwater within the Tokio Formation also exhibits large concentrations of dissolved solids downdip. Water-quality data showing elevated dissolved-solids concentrations are limited for these Cretaceous aquifers because other shallower aquifers are used for water supply. Although not suitable for many uses, large, unused amounts of saline groundwater are present in these aquifers. Historical borehole geophysical logs were used to determine the geologic and hydrogeologic properties of these Cretaceous aquifers, as well as the quality of the groundwater within the aquifers. Based on the interpretation of borehole geophysical logs, in Arkansas, the altitude of the top of the Nacatoch Sand ranges from more than 200 to less than -4,000 feet; the structural high occurs in the outcrop area and the structural low occurs in southeastern Arkansas near the Desha Basin structural feature. The thickness of the Nacatoch Sand ranges from 0 to over 550 feet. The minimum thickness occurs where the formation pinches out in the outcrop area, and the maximum thickness occurs in the southwestern corner of Arkansas. Other areas of large thickness include the area of the Desha Basin structural feature in southeastern Arkansas and in an area on the border of Cross and St. Francis Counties in eastern Arkansas. The clean-sand percentage of the total Nacatoch Sand thickness ranges from less than 20 percent to more than 60 percent and generally decreases downdip. The Nacatoch Sand contains more than 120.5 million acre-feet of water with a dissolved-solids concentration between 1,000 and 10,000 milligrams per liter (mg/L), more than 57.5 million acre-feet of water with a dissolved-solids concentration between 10,000 and 35,000 mg/L, and more than 122.5 million acre-feet of water with a dissolved-solids concentration more than 35,000 mg/L. The altitude of the top of the Tokio Formation, in Arkansas, ranges from more than 200 feet to less than -4,400 feet; the structural high occurs in the outcrop area and the structural low occurs in southeastern Arkansas near the Desha Basin structural feature. The thickness of the Tokio Formation, in Arkansas, ranges from 0 to over 400 feet. The minimum thickness occurs where the formation pinches out in the outcrop area, and the maximum thickness occurs in the southwestern corner of Arkansas. The clean-sand percentage of the total Tokio Formation thickness ranges from less than 20 percent to more than 60 percent and generally decreases away from the outcrop area. The Tokio Formation contains more than 2.5 million acre-feet of water with a dissolved-solids concentration between 1,000 and 10,000 mg/L, more than 12.5 million acre-feet of water with a dissolved-solids concentration between 10,000 and 35,000 mg/L, and nearly 43.5 million acre-feet of water with a dissolved-solids concentration more than 35,000 mg/L.

  5. Dissolved carbon dioxide and oxygen concentrations in purge of vacuum-packaged pork chops and the relationship to shelf life and models for estimating microbial populations.

    PubMed

    Adams, K R; Niebuhr, S E; Dickson, J S

    2015-12-01

    The objectives of this study were to determine the dissolved CO2 and O2 concentrations in the purge of vacuum-packaged pork chops over a 60 day storage period, and to elucidate the relationship of dissolved CO2 and O2 to the microbial populations and shelf life. As the populations of spoilage bacteria increased, the dissolved CO2 increased and the dissolved O2 decreased in the purge. Lactic acid bacteria dominated the spoilage microflora, followed by Enterobacteriaceae and Brochothrix thermosphacta. The surface pH decreased to 5.4 due to carbonic acid and lactic acid production before rising to 5.7 due to ammonia production. A mathematical model was developed which estimated microbial populations based on dissolved CO2 concentrations. Scanning electron microscope images were also taken of the packaging film to observe the biofilm development. The SEM images revealed a two-layer biofilm on the packaging film that was the result of the tri-phase growth environment. PMID:26143235

  6. Distribution of dissolved-solids concentrations and temperature in ground water of the gulf coast aquifer systems, south-central United States

    USGS Publications Warehouse

    Pettijohn, Robert A.; Weiss, Jonathan S.; Williamson, Alex K.

    1988-01-01

    The distribution of dissolved-solids concentrations and temperature in waters of 10 of the aquifers comprising the gulf coast aquifer systems of the Gulf Mexico Coastal Plain are mapped at a scale of 1:3,500,000. Dissolved solids concentration in the aquifers of the Tertiary System ranges from less than 500 mg/L at the outcrop and subcrop areas to as much as 150,000 mg/L at the downdip extent of these aquifers. A distinct band of sharply increasing concentration of dissolved-solids occurs at about middip of each aquifer of the Tertiary System. Dissolved-solids concentration in younger aquifers ranges from less than 500 mg/L in outcrop and subcrop areas to about 70,000 mg/L at the downdip extent of these aquifers. Temperature of waters in permeable Tertiary deposits ranges from about 18 C at the outcrop and subcrop areas to 90 C at the downdip extent of these aquifers. Temperature of waters in younger deposits ranges from about 14 C at the outcrop and subcrop areas to 30 C at their downdip extent. (USGS)

  7. Dissolved methane concentration and flux in the coastal zone of the Southern California Bight-Mexican sector: Possible influence of wastewater

    EPA Science Inventory

    We measured dissolved methane concentrations ([CH4]) in the coastal zone of the Southern California Bight-Mexican sector (SCBMex) during two cruises: S1 in the USA–Mexico Border Area (BA) during a short rainstorm and S2 in the entire SCBMex during a drier period a few days later....

  8. Dissolved methane concentration and flux in the coastal zone of the Southern California Bight-Mexican sector: Possible influence of wastewater

    EPA Science Inventory

    We measured dissolved methane concentrations ([CH4]) in the coastal zone of the Southern California Bight-Mexican sector (SCBMex) during two cruises: S1 in the USAMexico Border Area (BA) during a short rainstorm and S2 in the entire SCBMex during a drier period a few days later....

  9. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    USGS Publications Warehouse

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-01-01

    Following coagulation, but prior to passage through the wetland cells, coagulation treatments transferred dissolved mercury and carbon to the particulate fraction relative to untreated source water: at the wetland cell inlets, the coagulation treatments decreased concentrations of filtered total mercury by 59–76 percent, filtered monomethyl mercury by 40–70 percent, and dissolved organic carbon by 65–86 percent. Passage through the wetland cells decreased the particulate fraction of mercury in wetland cells that received coagulant-treated water. Changes in total mercury, monomethyl mercury, and dissolved organic carbon concentrations resulting from wetland passage varied both by treatment and season. Despite increased monomethyl mercury in the filtered fraction during wetland passage between March and August, the coagulation-wetland systems generally decreased total mercury (filtered plus particulate) and monomethyl mercury (filtered plus particulate) concentrations relative to source water. Coagulation—either alone or in association with constructed wetlands—could be an effective way to decrease concentrations of mercury and dissolved organic carbon in surface water as well as the bioavailability of mercury in the Sacramento–San Joaquin Delta.

  10. Evaporation from freely falling droplets

    NASA Astrophysics Data System (ADS)

    Spillman, J. J.

    1984-05-01

    Improvements in experimental techniques for studying the behavior of freely falling droplets are reported. The Re has a significant effect on the evaporation rate of a droplet. Above a Re of 24, the flow detaches and a viscous, slow region forms over the rear of the droplet, thus enhancing the evaporation rate. The vortex region elongates above a Re of 30 and extends 0.8 diam to the rear at a Re of 100. Adding a nonvolatile fluid to the water (molasses was used in experiments) results in a lowered evaporation rate. The technique gives a better simulation to actual aircraft spraying conditions, where the toroidal motion of the fluid will produce a small 'skin' of nonvolatile fluid around the droplet.

  11. Contrasting distributions of dissolved gaseous mercury concentration and evasion in the North Pacific Subarctic Gyre and the Subarctic Front

    NASA Astrophysics Data System (ADS)

    Kim, Hyunji; Rhee, Tae Siek; Hahm, Doshik; Hwang, Chung Yeon; Yang, Jisook; Han, Seunghee

    2016-04-01

    The distribution of dissolved gaseous mercury (DGM) and the oxidation-reduction processes of mercury (Hg) in the surface and subsurface ocean are currently understudied despite their importance in ocean-atmosphere interactions. We investigated the Hg(0) evasion and the DGM distribution at water depths of 2-500 m in the Subarctic Front, Western Subarctic Gyre, and Bering Sea of the Northwestern Pacific. The mean DGM concentration in the surface mixed water (<10 m) and the mean Hg(0) evasion flux were significantly higher in the Subarctic Front (125±5.0 fM and 15 pmol m-2 h-1, respectively), which typically has lower nutrient levels and higher primary production, than in the Western Subarctic Gyre and the Bering Sea (74±18 fM and 3.2±1.2 pmol m-2 h-1, respectively). The variation in the chlorophyll-a concentration and extracellular protease activity predicted 54% and 48% of the DGM variation, respectively, in the euphotic zone (2-50 m). The DGM concentration in aphotic intermediate water (415±286 fM) was positively correlated to the apparent oxygen utilization (AOU; r2=0.94 and p<0.001 for the Western Subarctic Gyre and the Bering Sea; r2=0.61 and p=0.01 for the Subarctic Front), emphasizing the importance of microbial oxidation of organic matter. The DGM-to-AOU ratio in aphotic water was significantly (p<0.05, ANCOVA) higher at the Western Subarctic Gyre and Bering Sea sites (2.5±0.14) than the ratio at the Subarctic Front sites (0.89±0.27) that mainly consisted of newly formed North Pacific Intermediate Water. The overall results imply that variation of DGM and Hg(0) evasion is closely linked to primary production in euphotic water and organic remineralization in aphotic intermediate water. The oceanic alterations in these factors may induce significant modification in Hg redox speciation in the Northwestern Pacific.

  12. Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions.

    PubMed

    Nittami, Tadashi; Oi, Hiroshi; Matsumoto, Kanji; Seviour, Robert J

    2011-12-15

    Previous research has suggested that enhanced biological phosphorus removal (EBPR) from wastewater can be achieved under continuous aerobic conditions over the short term. However, little is known how environmental conditions might affect aerobic EBPR performance. Consequently we have investigated the impact of temperature, pH and dissolved oxygen (DO) concentrations on EBPR performance under strictly aerobic conditions. A sequencing batch reactor (SBR) was operated for 108 days on a six-hour cycle (four cycles a day). The SBR ran under alternating anaerobic-aerobic conditions as standard and then operated under strictly aerobic conditions for one cycle every three or four days. SBR operational temperature (10, 15, 20, 25 and 30C), pH (6, 7, 8 and 9) and DO concentration (0.5, 2.0 and 3.5mg/L) were changed consecutively during the aerobic cycle. Recorded increases in mixed liquor phosphorus (P) concentrations during aerobic carbon source uptake (P release) were affected by the biomass P content rather than the imposed changes in the operational conditions. Thus, P release levels increased with biomass P content. By contrast, subsequent aerobic P assimilation (P uptake) levels were both affected by changes in operational temperature and pH, and peaked at 20-25C and pH 7-8. Highest P uptake detected under these SBR operating conditions was 15.4 mg Pg-MLSS(-1) (at 25C, pH 7 and DO 2.0mg/L). The ability of the community for linked aerobic P release and P uptake required the presence of acetate in the medium, a finding which differs from previous data, where these are reported to occur in the absence of any exogenous carbon source. Fluorescence in situ hybridization was performed on samples collected from the SBR, and Candidatus 'Accumulibacter phosphatis' cells were detected with PAOmix probes through the operational periods. Thus, Candidatus 'Accumulibacter phosphatis' seemed to perform P removal in the SBR as shown in previous studies on P removal under strictly aerobic conditions. PMID:21718809

  13. Effects of Land Use on Stable Carbon Isotopic Composition and Concentration of Dissolved Organic Carbon (DOC) and Dissolved Inorganic Carbon (DIC) in Southeastern US Piedmont Headwater Streams

    EPA Science Inventory

    Stable carbon isotopic composition (delta 13C) and concentrations of DOC and DIC were measured in stream water samples collected monthly in 15 headwater streams from an area with extensive poultry and cattle production and a rapidly growing human population. Linear regression te...

  14. Factors affecting dissolved phosphorus and nitrate concentrations in ground and surface water for a valley dairy farm in the northeastern United States.

    PubMed

    Flores-Lpez, Francisco; Easton, Zachary M; Geohring, Larry D; Steenhuis, Tammo S

    2011-02-01

    Agriculture often is considered to be a contributor of soluble reactive phosphorus (SRP) and nitrate-N (NO3- -N) to surface waters. This research analyzed SRP and NO3- -N concentrations in groundwater and in a creek fed by groundwater on a valley dairy farm in the Cannonsville basin of the New York City (NYC) watershed. A total of 37 groundwater piezometers were installed to depths of 0.3 to 1.5 m. Water-table depth and concentrations of SRP, NO3- -N, dissolved organic carbon (DOC), and dissolved oxygen were measured at regular intervals over a three-year period. A multivariate mixed model analysis of variance indicated that the SRP and NO3- -N concentrations were controlled primarily by three classes of variables: environmental variables, including precipitation and water table depth; source variables, including manure applied and crop type; and chemical variables, including DOC and dissolved oxygen concentrations in groundwater. The highest groundwater concentrations of N03- -N and SRP were found at the shallowest water-table depths, which has implications for agricultural nutrient management in areas with shallow groundwater. PMID:21449473

  15. B/Ca in coccoliths and relationship to calcification vesicle pH and dissolved inorganic carbon concentrations

    NASA Astrophysics Data System (ADS)

    Stoll, Heather; Langer, Gerald; Shimizu, Nobumichi; Kanamaru, Kinuyo

    2012-03-01

    Coccolithophorid algae are microscopic but prolific calcifiers in modern and ancient oceans. When the pH of seawater is modified, as may occur in the future due to ocean acidification, different species and strains of coccolithophorids have exhibited diverse calcification responses in laboratory culture. Since their biomineralization is a completely intracellular process, it is unclear why their response should be affected by extracellular seawater pH. Variations in the B/Ca in coccoliths are potential indicators of pH shifts in the intracellular coccolith vesicle where calcification occurs, because B/Ca in abiogenic calcites increases at higher pH due to the greater abundance of borate ions, the only B species incorporated into calcite. We used a SIMS ion probe to measure B/Ca of coccoliths from three different strains of Emiliania huxleyi and one strain of Coccolithus braarudii braarudii cultured under different seawater pH conditions to ascertain if the B/Ca can be used to elucidate how coccolithophorids respond to changing ocean pH. These data are interpreted with the aid of a conceptual model of cellular boron acquisition by coccolithophorids. Based on uptake in other plants, we infer that boron uptake by coccolithophorid cells is dominated by passive uptake of boric acid across the lipid bilayer. Subsequently, in the alkaline coccolith vesicle (C.V.), boron speciates according to the C.V. pH, and borate is incorporated into the coccolith. At increasing seawater pH, the relative abundance of the neutral boric acid in seawater decreases, lowering the potential B flux into the cell. Homeostasis or constant pH of the coccolith vesicle results in a decrease of the B/Ca in the coccolith with increasing seawater pH. In contrast, if coccolith vesicle pH increases with increasing seawater pH, then the B/Ca will increase as the fraction of borate in the coccolith vesicle increases. The coccolith B/Ca is also expected to depend inversely on the dissolved inorganic carbon (DIC) concentration in the coccolith vesicle. The B/Ca in cultured coccoliths is much lower than that of foraminifera or corals and limits precision in the analysis. Modest variations in DIC or pH of the coccolith vesicle can account for the observed trends in B/Ca in cultured coccoliths. The model shows that paired measurements of B/Ca and B isotopic composition of the calcite could distinguish between regulation of pH or DIC in the coccolith vesicle.

  16. Land Use Controls on Stream and Lake Dissolved Silica Concentrations: A Case Study from the Finger Lakes, Central New York State, USA.

    NASA Astrophysics Data System (ADS)

    Halfman, J. D.

    2014-12-01

    Bedrock geology, climate and time are important controls on chemical weathering and release of dissolved silica. Forested land vs. other land uses was recently hypothesized as another control. The Finger Lakes region is an ideal natural laboratory to test this hypothesis as local watersheds vary in area, bedrock and agricultural to forested land cover in this rural setting. Annual mean dissolved silica data from 11 watersheds in our ongoing monitoring program ranged from 100 to 4,000 μg/L Si, analyzing filtered (0.45 μm) samples by spectrophotometer (molybdate indicator with metol/oxalic acid reagents). Like earlier work, only forested land use (12 to 73%) correlated to the mean silica concentrations (r2 = 0.3), which improves (r2 = 0.6) when a small, primarily (24%) developed watershed is excluded from the correlation. Bedrock (Devonian carbonates, 0 to 8% and clastics, 0 to 99% covered by till) and basin area (10 to 500 km2) did not correlate (r2 <= 0.1). Event and base flow samples of an agricultural (64%) watershed revealed peak to base flow fluctuations in silica concentrations that more closely mimic nitrates and other groundwater solutes than suspended particles, phosphates and other runoff signature parameters. Annual mean epilimnion and hypolimnion dissolved silica data from the 8 easternmost Finger Lakes in our ongoing monitoring program ranged from 250 to 1,500 μg/L Si. Forested cover (30 to 75%) positively correlated to epilimnion silica concentrations (r2 = 0.6). Lake water residence time (1 to 17 yr) negatively correlated to hypolimnion silica concentrations (r2 = 0.5). Agricultural land use, bedrock, and productivity indicators (chlorophyll-a, total phosphate, and secchi disk depth) lacked correlation (r2 <= 0.1). It suggested that land use impacts stream and, surprisingly, lake dissolved silica chemistry. Biogeochemical processes in the lakes like diatom uptake appears to increasingly decrease silica concentrations in lakes with longer residence times.

  17. Viral Lysis of Cells Influences The Concentration and Compostion of Dissolved Organic Matter and The Formation of Organic Aggregates (marine Snow)

    NASA Astrophysics Data System (ADS)

    Weinbauer, M. G.; Peduzzi, P.

    The effect of moderately (ca. 2.5 fold) increasing the concentration of the virus-size fraction (VSF) of seawater on the chemical composition of the dissolved organic mat- ter (DOM) pool during the formation of organic aggregates (marine snow) was tested experimentally with seawater samples collected in the Northern Adriatic Sea. The VSF enrichment did not significantly change the concentration of selected DOM com- pounds, whereas viral abundance was ca. 2-fold higher. During long-term experiments (40 - 200 hrs), bacterial abundance was on average 25% lower in the VSF amended than in the control incubations, and the frequency of visibly infected cells was stimu- lated by ca. 50%. VSF delayed the development of phytoplankton blooms (diatoms), but in the end of the experiments, Chl a concentrations in the VSF amended incuba- tions exceeded those in the control incubations. The VSF enrichment caused an enrich- ment of Serine and Threonine in the dissolved hydrolysable amino acid (AA) fraction indicative of viral lysis of diatoms. Bulk dissolved free AA acid and monomeric car- bohydrate (CHO) concentrations were repressed, whereas bulk dissolved hydrolysable AA and CHO concentrations were stimulated in the VSF enriched incubations. Viral lysis was likely the major reason for the stimulation of hydrolysable DOM. The for- mation of organic aggregates was repressed by the VSF enrichment, but the aggregates were larger and more persistent in the VSF amended than in the control incubations. Stimulation of hydrolysable DOM and sticky viral lysis products might be the reason for the larger and more persistent aggregates. This demonstrates that bioactive mate- rial in the VSF of seawater can have major implications for primary production and the cycling of organic carbon in the ocean.

  18. Production of channel catfish and channel x blue hybrid catfish subjected to two minimum dissolved oxygen concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the channel x blue hybrid catfish is stocked by an increasing number of catfish farmers, it is important to quantify the production response of this fish to dissolved oxygen management strategies. The purpose of this study was to compare the production and water quality responses of the channel x...

  19. Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor.

    PubMed

    Su, Yiming; Zhang, Yalei; Zhou, Xuefei; Jiang, Ming

    2013-09-01

    This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO(3-)-N/g SS. PMID:24520715

  20. [Effect of the first water-sediment regulation on the variations of dissolved inorganic nutrients' concentrations and fluxes in the lower main channel of the Yellow River].

    PubMed

    Yao, Qing-zheng; Yu, Zhi-gang; Wang, Ting; Chen, Hong-tao; Mi, Tie-zhu

    2009-12-01

    The variations and fluxes of dissolved inorganic nutrients were studied, based on continuously monitored data in the lower main channel of Yellow River (Lijin) during the period of water-sediment regulation in July 2002. Concentrations rang from 169.3 to 273.2 micromol x dm(-3) for NO3- -N, 0.08 to 0.84 micromol x dm(-3) for NO2- -N, 1.39 to 5.04 micromol x dm(-3) for NH4+ -N, with average of 218.6, 0.16, 2.27 micromol x dm(-3), respectively. Concentrations rang from 0.36 to 0.56 micromol x dm(-3) for PO4(3-) -P, 161.4 to 195.8 micromol x dm(-3) for SiO3(2-) -Si, with average of 0.48, 166.7 micromol x dm(-3), respectively. No significant relationship was found between nitrate, phosphate and water discharge during the period of water-sediment regulation, while silicate correlated well with suspended sediment discharge. Water-sediment regulation has no significant effect on the variation of dissolved inorganic nutrients concentrations during 2002 to 2003. But the fluxes proportion of dissolved inorganic nutrients during water-sediment regulation to the whole year is about 50%. PMID:20187383

  1. Influence of in-stream diel concentration cycles of dissolved trace metals on acute toxicity to one-year-old cutthroat trout (Oncorhynchus clarki lewisi)

    USGS Publications Warehouse

    Nimick, D.A.; Harper, D.D.; Farag, A.M.; Cleasby, T.E.; MacConnell, E.; Skaar, D.

    2007-01-01

    Extrapolating results of laboratory bioassays to streams is difficult, because conditions such as temperature and dissolved metal concentrations can change substantially on diel time scales. Field bioassays conducted for 96 h in two mining-affected streams compared the survival of hatchery-raised, metal-nai??ve westslope cutthroat trout (Oncorhynchus clarki lewisi) exposed to dissolved (0.1-??m filtration) metal concentrations that either exhibited the diel variation observed in streams or were controlled at a constant value. Cadmium and Zn concentrations in these streams increased each night by as much as 61 and 125%, respectively, and decreased a corresponding amount the next day, whereas Cu did not display a diel concentration cycle. In High Ore Creek (40 km south of Helena, MT, USA), survival (33%) after exposure to natural diel-fluctuating Zn concentrations (range, 214-634 ??g/L; mean, 428 ??g/L) was significantly (p = 0.008) higher than survival (14%) after exposure to a controlled, constant Zn concentration (422 ??g/L). Similarly, in Dry Fork Belt Creek (70 km southeast of Great Falls, MT, USA), survival (75%) after exposure to diel-fluctuating Zn concentrations (range, 266-522 ??g/L; mean, 399 ??g/L) was significantly (p = 0.022) higher than survival (50%) in the constant-concentration treatment (392 ??g/L). Survival likely was greater in these diel treatments, both because the periods of lower metal concentrations provided some relief for the fish and because toxicity during periods of higher metal concentrations was lessened by the simultaneous occurrence each night of lower water temperatures, which reduce the rate of metal uptake. Based on the present study, current water-quality criteria appear to be protective for streams with diel concentration cycles of Zn (and, perhaps, Cd) for the hydrologie conditions tested. ?? 2007 SETAC.

  2. Influence of domestic pets on soil concentrations of dissolved organic carbon, nitrogen, and phosphorus under turfgrass in apartment complexes of Central Texas, USA

    NASA Astrophysics Data System (ADS)

    Steele, M.; Aitkenhead-Peterson, J. A.

    2009-12-01

    High nitrogen (N) and phosphorus (P) watershed loading rates increases the concentration and loads present in urban streams and rivers, resulting in eutrophication and degradation of surface water quality. Domestic pet animal feed may represent a significant proportion of nitrogen loading in urban watersheds, and because it is deposited directly on the watershed surface may have a large effect on N loads in urban surface waters (Baker et al. 2001). Animal manure has long been used to increase soil N and phosphorus concentrations for the purpose of growing agricultural crops; however, little is known about unintentional urban manuring resulting from a high density of domesticated pets. The purpose of this study is to determine if the presence of domesticated animals in high density urban developments results in increased concentrations of soil dissolved organic carbon (DOC), N, and P and the potential to contribute to loading of urban streams. Composite soil samples from the 0 to 5 cm and 5 to 10 cm soil depth were collected from apartment complexes in Bryan/College Station (BCS) and San Antonio, Texas during August, 2009. Apartment complexes were randomly located around the city and were chosen based on their rules regarding pet ownership. Four apartment complexes that allowed all domestic pets were compared to four that did not allow any domestic pets on the property. A 10:1 water extraction of field moist soil was conducted immediately after sampling. Soil water extracts were analyzed for DOC, total dissolved nitrogen (TDN), nitrate-N, ammonium-N, dissolved organic N, and orthophosphate-P. Results indicated significantly increased concentrations of DOC and N species at both depths in BCS apartments that allowed pets compared to those that did not; however, opposite trends were found in San Antonio. There is a trend for increased concentrations of orthophosphate-P at both locations. Baker, L.A., D. Hope, Y. Xu, et al. 2001. Nitrogen balance for the central Arizona-Phoenix (CAP) ecosystem. Ecosystems 4: 582-602.

  3. Development of a continuous process for adjusting nitrate, zirconium, and free hydrofluoric acid concentrations in zirconium fuel dissolver product

    SciTech Connect

    Cresap, D.A.; Halverson, D.S.

    1993-04-01

    In the Fluorinel Dissolution Process (FDP) upgrade, excess hydrofluoric acid in the dissolver product must be complexed with aluminum nitrate (ANN) to eliminate corrosion concerns, adjusted with nitrate to facilitate extraction, and diluted with water to ensure solution stability. This is currently accomplished via batch processing in large vessels. However, to accommodate increases in projected throughput and reduce water production in a cost-effective manner, a semi-continuous system (In-line Complexing (ILC)) has been developed. The major conclusions drawn from tests demonstrating the feasibility of this concept are given in this report.

  4. An extensive study of the concentrations of particulate/dissolved radiocaesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in various river systems and their relationship with catchment inventory.

    PubMed

    Yoshimura, Kazuya; Onda, Yuichi; Sakaguchi, Aya; Yamamoto, Masayoshi; Matsuura, Yuki

    2015-01-01

    An extensive investigation of particulate radiocaesium in suspended solids and dissolved radiocaesium in river water was undertaken at 30 sites in Fukushima and Miyagi Prefectures in December 2012, and their relationships with catchment inventory and the solid/liquid distribution coefficient (Kd) were evaluated. Rivers located in the coastal region on the north side of the Fukushima Dai-ichi Nuclear Power Plant exhibited relatively higher particulate radiocaesium concentrations. Significant correlations were found between concentrations of particulate/dissolved radiocaesium and average catchment inventories, indicating that the concentrations of particulate/dissolved radiocaesium could be approximated from the catchment inventory. Particulate radiocaesium concentration was significantly correlated with dissolved radiocaesium concentration (with the exception of concentrations measured in estuaries), and the geometric mean Kd was calculated as 3.6נ10(5) with a 95% confidence interval of 2.6-5.1נ10(5). PMID:25242014

  5. Seasonal changes in concentrations of dissolved pesticides and organic carbon in the Sacramento-San Joaquin delta, California, 1994-1996

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn M.

    2006-01-01

    The Sacramento-San Joaquin Delta (Delta) of California is an ecologically rich and hydrologically complex region that receives runoff from nearly one-quarter of the state. Water-quality studies of surface water in the region have found dissolved pesticides in winter storm runoff at concentrations toxic to some aquatic invertebrates. However, scientists have little information on pesticide concentrations in the Delta on a seasonal timescale or the importance of pesticide contributions from within-Delta sources. Consequently, the U.S. Geological Survey conducted a study from 1994 to 1996 during which water samples were collected seasonally from 31 sites located within the Delta and on major tributaries to the Delta. Water samples were analyzed for 20 current-use pesticides and dissolved organic carbon. During the study, 11 current-use pesticides were detected; maximum concentrations ranging from 17 ng/L (for trifluralin) to 1,160 ng/L (for metolachlor). The highest concentrations of five pesticides (carbaryl, carbofuran, metolachlor, molinate, and simazine) were greater than 900 ng/L. The greatest number of pesticides was detected in the summer of 1994, whereas the least number were detected in the winter of 1994. The herbicides metolachlor and simazine were the most frequently detected pesticides and were detected in five of the six sampling seasons. The herbicides molinate and EPTC were detected only during the three summer sampling seasons. A comparison of pesticides detected during the spring and summer of 1995 showed some seasonal variability. Comparison of the three summer seasons sampled showed that a larger number of pesticides were detected, and with generally higher maximum concentrations, in 1994 than in 1995 or 1996. Dissolved organic carbon (DOC) concentrations ranged, over the course of the study, from 1.4 mg/L to 10.4 mg/L, and had a median concentration of 3.8 mg/L. On a seasonal basis, the lowest maximum DOC concentrations occurred during the summer and winter of 1994. The highest median DOC concentration on a seasonal basis occurred in the spring of 1995. This previously unreported data is being published now to provide historical information on pesticide concentrations in the Delta to water managers and the scientific community.

  6. Concentrations of total dissolved organic carbon and humic and hydrophilic sub-fractions extracted from major Dutch soil types and their relation with soil properties

    NASA Astrophysics Data System (ADS)

    Comans, Rob N. J.; van Zomeren, Andre; Groenenberg, Jan E.

    2013-04-01

    Measurements of the concentrations of dissolved organic carbon (DOC) and its humic and hydrophilic sub-fractions in different soil types, and our understanding of the underlying processes, are still limited. This knowledge gap strongly hampers adequate modelling of the speciation, mobility and bioavailability of trace elements in soils, the reactive DOC concentration being a major controlling parameter, as well as assessments of carbon cycling between soil and water. In this study, we have analysed the concentration of DOC and its humic and hydrophilic sub-fractions in 10-3M CaCl2 extractions of approximately 100 top- and sub-soil samples from major Dutch soil types (sand, peat and clay). A rapid batch fractionation procedure (van Zomeren & Comans, 2007) was used to distinguish the concentrations of dissolved humic acids (HA), fulvic acids (FA), hydrophobic neutrals (HON) and hydrophilic acids (Hy). Field-moist samples were used, as well as dried samples from the archive of samples collected for the realisation of the recently published geochemical soil atlas of The Netherlands (Mol et al., 2012). The latter samples have been incubated for one month, after being re-moisturised to field capacity, prior to the extraction and fractionation procedure, in order to limit previously observed effects of soil-drying on DOC concentration and composition. Substantial differences in the concentration and composition of DOC between dried, re-moisturised and field-moist samples were indeed observed and will be discussed. In addition, and as a first step towards a model for the partitioning of DOC and its humic sub-fractions, empirical partition functions have been derived, which relate their dissolved concentrations to potentially controlling soil properties such as pH, total soil organic matter (SOM) and the reactive surface area of iron- and aluminium(hydr)oxides, as estimated from selective extractions. The resulting empirical functions are discussed in light of current mechanistic views on chemical processes contributing to the solid/liquid partitioning of humic substances in soils. References van Zomeren, A. & Comans, R.N.J. (2007) Measurement of humic and fulvic acid concentrations and dissolution properties by a rapid batch procedure. Environ. Sci. Technol. 41, 6755-6761. Mol, G., Spijker, J., van Gaans, P. & Rmkens, P. (eds.). Geochemische bodematlas van Nederland. Wageningen Academic Publishers, 2012, 276 p (in Dutch).

  7. A Synthesis of Light Absorption Properties of the Arctic Ocean: Application to Semi-analytical Estimates of Dissolved Organic Carbon Concentrations from Space

    NASA Technical Reports Server (NTRS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Belanger, S.; Bricaud, A.

    2014-01-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean [e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012], the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher 74 than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained 75 by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian 76 side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off 77 North America. In contrast, the relationship between the phytoplankton absorption (a()) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific a() values [Matsuoka et al., 2013], this result indirectly suggests that CDOM absorption can be appropriately erived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  8. A synthesis of light absorption properties of the Arctic Ocean: application to semianalytical estimates of dissolved organic carbon concentrations from space

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Blanger, S.; Bricaud, A.

    2014-06-01

    In addition to scattering coefficients, the light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean (e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012), the data sets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database of the Arctic Ocean by pooling the majority of published data sets and merging new data sets. Our results show that the total nonwater absorption coefficients measured in the eastern Arctic Ocean (EAO; Siberian side) are significantly higher than in the western Arctic Ocean (WAO; North American side). This higher absorption is explained by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off North America. In contrast, the relationship between the phytoplankton absorption (aϕ(?)) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semianalytical CDOM absorption algorithm is based on chl a-specific aϕ(?) values (Matsuoka et al., 2013), this result indirectly suggests that CDOM absorption can be appropriately derived not only for the WAO but also for the EAO using ocean color data. Based on statistics, derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semianalytical algorithm for estimating DOC concentrations for river-influenced coastal waters of the Arctic Ocean is presented and applied to satellite ocean color data.

  9. Effect of Fenton oxidation on biodegradability, biotoxicity and dissolved organic matter distribution of concentrated landfill leachate derived from a membrane process.

    PubMed

    He, Ruo; Tian, Bao-Hu; Zhang, Qi-Qi; Zhang, Hong-Tao

    2015-04-01

    The treatment of concentrated landfill leachate from membrane process is a troublesome issue due to high concentrations of biorecalcitrant pollutants. In this study, the effect of Fenton process on dissolved organic matter (DOM) distribution (i.e. humic acid (HA), fulvic acid (FA) and hydrophilic fraction (HyI)), chemical forms of toxic organic compounds and metals, and their biotoxicity were investigated. In the concentrated leachate, toluene, ethylbenzene and chlorobenzene predominated in the HyI fraction, while phthalate esters (PAEs) were mainly absorbed on the HA and FA fractions. PAEs were more readily removed from the HA and FA fractions than that from the HyI fraction in the Fenton process. The complexing abilities of DOM varied with types of metal in the concentrated leachate. The biotoxicities of the DOM fractions to luminescent bacteria (Photobacterium phosphoreum T3 mutation) were HA > FA > - HyI. The biotoxicities of the hydrophobic organic contaminants to luminescent bacteria were not obvious in the concentrated leachate due to their low concentrations. Metals might be the main contributor to the biotoxicity to luminous bacteria in the concentrated leachate. These results indicated that Fenton process could influence the pollutants distribution in DOM and their biotoxicities through the breakdown of HA and FA in the concentrated leachate. PMID:25660905

  10. Recovering/concentrating of hemicellulosic sugars and acetic acid by nanofiltration and reverse osmosis from prehydrolysis liquor of kraft based hardwood dissolving pulp process.

    PubMed

    Ahsan, Laboni; Jahan, M Sarwar; Ni, Yonghao

    2014-03-01

    This work investigated the feasibility of recovering and concentrating sugars and acetic acid (HAc) from prehydrolysis liquor (PHL) of the kraft-based dissolving pulp process prior to fermentation of hemicellulosic sugars, by the combination of activated carbon adsorption, nanofiltration (NF) and reverse osmosis (RO) processes. To reduce the fouling PHL was subjected to adsorption on activated carbon, then the treated PHL (TPHL) passed through a nanofiltration (NF DK) membrane to retain the sugars, and the permeate of acetic acid rich solution was passed through a reverse osmosis membrane (RO SG). It was found that for NF process sugars were concentrated from 48 to 227g/L at a volume reduction factor (VRF) of 5 while 80 to 90% of acetic acid was permeated. For the reverse osmosis process, 68% of acetic acid retention was achieved at pH 4.3 and 500 psi pressure and the HAc concentration increased from 10 to 50g/L. PMID:24434701

  11. Water Temperature, Specific Conductance, pH, and Dissolved-Oxygen Concentrations in the Lower White River and the Puyallup River Estuary, Washington, August-October 2002

    USGS Publications Warehouse

    Ebbert, James C.

    2003-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1oC (degrees Celsius) at river mile 4.9 and 19.6oC at river mile 1.8 exceeded the water-quality standard of 18oC at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River. Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The lower limit allowed by the water-quality standard is 8 mg/L. Concentrations of dissolved oxygen measured in a cross section of the Puyallup River estuary at high tide on September 12, 2002, ranged from 9.9 to 10.2 mg/L in fresh water at the surface and from 8.1 to 8.4 mg/L in salt water near the riverbed. These values were within limits set by Washington State water-quality standards for dissolved oxygen of 8 mg/L in fresh water and 6 mg/L in marine water.

  12. Chemical characteristics of dissolved organic matter (DOM) in relation to heavy metal concentrations in soil water from boreal peatlands after clear-cut harvesting

    NASA Astrophysics Data System (ADS)

    Kiikkilä, O.; Nieminen, T.; Starr, M.; Ukonmaanaho, L.

    2012-04-01

    Boreal peatlands form an important terrestrial carbon reserve and are a major source of dissolved organic matter (DOM) to surface waters, particularly when disturbed through forestry practices such as draining or timber harvesting. Heavy metals show a strong affinity to organic matter and so, along with DOM, heavy metals can be mobilized and transported from the soil to surface waters and sediments where they may become toxic to aquatic organisms and pass up the food chain. The complexation of heavy metals with DOM can be expected to be related and determined by the chemical characteristics of DOM and oxidation/reducing conditions in the peat. We extracted interstitial water from peat samples and determined the concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and Al, Cu, Zn and Fe in various fractions of DOM isolated by adsorption properties (XAD-8 fractionation) and molecular-weight (ultrafiltration). The peat samples were taken from 0-30 and 30-50 cm depth in drained peatland catchments two years after whole-tree or stem-only clear-cut harvesting (Scots pine or Norway spruce) had been carried out. The samples from the upper layer had been subject to alternating saturation/aeration conditions while the deeper layer had been continuously under the water table. The fractionation of DOC and DON according to both adsorption properties and molecular-weight fractions clearly differed between the upper and lower peat layers. While the hydrophobic acid fraction contained proportionally more DOC and DON than the hydrophilic acid fraction in the upper peat layer the results were vice versa in the lower peat layer. High-molecular-weight compounds (> 100 kDa) were proportionally more abundant in the upper and low-molecular-weight compounds (< 1 kDa) in the lower peat layer. These differences are assumed to reflect differences in the aerobic/ anaerobic conditions and degree of decomposition between the two layers. The concentrations of Zn, Al, Fe and DON correlated positively with DOC concentrations whereas the concentration Cu did not correlate with DOC concentrations. Heavy metal concentrations in different molecular-weight fractions indicated that Al, Cu, Zn and Fe were mostly associated with high-molecular-weight compounds and only a small fraction existed as free metal ions in solution. There were no clear differences in the chemical characteristics of DOC or DON or heavy metal concentrations between the two harvesting treatments.

  13. Relationships between 222Rn dissolved in ground water supplies and indoor 222Rn concentrations in some Colorado front range houses

    USGS Publications Warehouse

    Folger, P.F.; Nyberg, P.; Wanty, R.B.; Poeter, E.

    1994-01-01

    Indoor 222Rn concentrations were measured in 37 houses with alpha track detectors placed in water-use rooms near water sources (bathrooms, laundry rooms, and kitchens) and in non-water-use living rooms, dining rooms, and bedrooms away from water sources. Results show that relative contributions of 222Rn to indoor air from water use are insignificant when soil-gas concentrations are high but become increasingly important as the ratio of 222Rn-in-water:222Rn-in-soil gas increases. High soil-gas 222Rn concentrations may mask 222Rn contributions from water even when waterborne 222Rn concentrations are as high as 750 kBq m-3. Ground water in Precambrian Pikes Peak granite averages 340 kBq m-3222Rn, vs. 170 kBq m-3 in Precambrian migmatite, but average 222Rn concentrations in soil gas are also lower in migmatite. Because the ratio of 222Rn-in- water:222Rn-in-soil gas may be consistently higher for houses in migmatite than in Pikes Peak granite, indoor air in houses built on migmatite may have a greater relative contribution from water use even though average 222Rn concentrations in the water are lower. Continuous monitoring of 222Rn concentrations in air on 15-min intervals also indicates that additions to indoor concentrations from water use are significant and measurable only when soil-gas concentrations are low and concentrations in water are high. When soil-gas concentrations were mitigated to less than 150 Bq m-3 in one house, water contributes 20-40% of the annual indoor 222Rn concentration in the laundry room (222Rn concentration in water of 670 kBq m-3). Conversely, when the mitigation system is inactive, diurnal fluctuations and other variations in the soil-gas 222Rn contribution swamp the variability due to water use in the house. Measurable variations in indoor concentrations from water use were not detected in one house despite a low soil-gas contribution of approximately 150 Bq m-3 because waterborne 222Rn concentrations also are low (80 kBq m-3). This result suggests that 222Rn concentrations in water near the recommended EPA limit in drinking water of 11 kBq m-3 may not contribute measurable amounts of 222Rn to indoor air in most houses.

  14. An empirical method for estimating instream pre-mining pH and dissolved Cu concentration in catchments with acidic drainage and ferricrete

    USGS Publications Warehouse

    Nimick, D.A.; Gurrieri, J.T.; Furniss, G.

    2009-01-01

    Methods for assessing natural background water quality of streams affected by historical mining are vigorously debated. An empirical method is proposed in which stream-specific estimation equations are generated from relationships between either pH or dissolved Cu concentration in stream water and the Fe/Cu concentration ratio in Fe-precipitates presently forming in the stream. The equations and Fe/Cu ratios for pre-mining deposits of alluvial ferricrete then were used to reconstruct estimated pre-mining longitudinal profiles for pH and dissolved Cu in three acidic streams in Montana, USA. Primary assumptions underlying the proposed method are that alluvial ferricretes and modern Fe-precipitates share a common origin, that the Cu content of Fe-precipitates remains constant during and after conversion to ferricrete, and that geochemical factors other than pH and dissolved Cu concentration play a lesser role in determining Fe/Cu ratios in Fe-precipitates. The method was evaluated by applying it in a fourth, naturally acidic stream unaffected by mining, where estimated pre-mining pH and Cu concentrations were similar to present-day values, and by demonstrating that inflows, particularly from unmined areas, had consistent effects on both the pre-mining and measured profiles of pH and Cu concentration. Using this method, it was estimated that mining has affected about 480 m of Daisy Creek, 1.8 km of Fisher Creek, and at least 1 km of Swift Gulch. Mean values of pH decreased by about 0.6 pH units to about 3.2 in Daisy Creek and by 1-1.5 pH units to about 3.5 in Fisher Creek. In Swift Gulch, mining appears to have decreased pH from about 5.5 to as low as 3.6. Dissolved Cu concentrations increased due to mining almost 40% in Daisy Creek to a mean of 11.7 mg/L and as much as 230% in Fisher Creek to 0.690 mg/L. Uncertainty in the fate of Cu during the conversion of Fe-precipitates to ferricrete translates to potential errors in pre-mining estimates of as much as 0.25 units for pH and 22% for dissolved Cu concentration. The method warrants further testing in other mined and unmined watersheds. Comparison of pre-mining water-quality estimates derived from the ferricrete and other methods in single watersheds would be particularly valuable. The method has potential for use in monitoring remedial efforts at mine sites with ferricrete deposits. A reasonable remediation objective might be realized when the downstream pattern of Fe/Cu ratios in modern streambed Fe-precipitates corresponds to the pattern in pre-mining alluvial ferricrete deposits along a stream valley.

  15. The study of neural network-based controller for controlling dissolved oxygen concentration in a sequencing batch reactor.

    PubMed

    Azwar; Hussain, M A; Ramachandran, K B

    2006-03-01

    The design and development of the neural network (NN)-based controller performance for the activated sludge process in sequencing batch reactor (SBR) is presented in this paper. Here we give a comparative study of various neural network (NN)-based controllers such as the direct inverse control, internal model control (IMC) and hybrid NN control strategies to maintain the dissolved oxygen (DO) level of an activated sludge system by manipulating the air flow rate. The NN inverse model-based controller with the model-based scheme represents the controller, which relies solely upon the simple NN inverse model. In the IMC, both the forward and inverse models are used directly as elements within the feedback loop. The hybrid NN control consists of a basic NN controller in parallel with a proportional integral (PI) controller. Various simulation tests involving multiple set-point changes, disturbances rejection and noise effects were performed to review the performances of these various controllers. From the results it can be seen that hybrid controller gives the best results in tracking set-point changes under disturbances and noise effects. PMID:16622910

  16. Lab-scale fermentation tests of microchip with integrated electrochemical sensors for pH, temperature, dissolved oxygen and viable biomass concentration.

    PubMed

    Krommenhoek, Erik E; van Leeuwen, Michiel; Gardeniers, Han; van Gulik, Walter M; van den Berg, Albert; Li, Xiaonan; Ottens, Marcel; van der Wielen, Luuk A M; Heijnen, Joseph J

    2008-03-01

    This article shows the development and testing of a microchip with integrated electrochemical sensors for measurement of pH, temperature, dissolved oxygen and viable biomass concentration under yeast cultivation conditions. Measurements were done both under dynamic batch conditions as well as under prolonged continuous cultivation conditions. The response of the sensors compared well with conventional measurement techniques. The biomass sensor was based on impedance spectroscopy. The results of the biomass sensor matched very well with dry weight measurements and showed a limit of detection of approximately 1 g/L. The dissolved oxygen concentration was monitored amperometrically using an ultra-microelectrode array, which showed an accuracy of approximately 0.2 mg/L and negligible drift. pH was monitored using an ISFET with an accuracy well below 0.1 pH unit. The platinum thin-film temperature resistor followed temperature changes with approximately 0.1 degrees C accuracy. The dimensions of the multi sensor chip are chosen as such that it is compatible with the 96-well plate format. PMID:17929319

  17. Concentration and flux of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids for monitored tributaries of Lake Champlain, 1990-2012

    USGS Publications Warehouse

    Medalie, Laura

    2014-01-01

    Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.

  18. [Comparison on concentrations and quality of dissolved organic matter in throughfall and stemflow in a secondary forest of Castanopsis carlesii and Cunninghamia lanceolata plantation].

    PubMed

    L, Mao-Kui; Xie, Jin-Sheng; Jiang, Miao-Hua; Luo, Shui-Jin; Zeng, Shao-Juan; Ji, Shu-Rong; Wan, Jing-Juan; Yang, Yu-Sheng

    2014-08-01

    In this paper, monthly variation of dissolved organic matter (DOM) concentrations as well as humification and aromaticity indices in throughfall and stemflow from secondary broadleaved Castanopsis carlesii (BF) forest and Cunninghamia lanceolata plantation (CP) were measured. The DOC concentrations in throughfall were significantly higher with greater variation in BF than in CP. The concentrations of DOC in throughfall were averagely 7.2 and 3.2 times of those in rainfall in BF and CP forests, respectively. The DOC concentrations of stemflow in CP were averagely 2.5 times as much as those in BF, and the DOC concentrations in stemflow tended to be greater in dry season than in rain season for the two forests. A significantly negative relationship was' found between the DOC concentrations in stemflow and the amounts of stemflow for both BF and CP. Moreover, the humification and aromaticity indices of DOM in throughfall in BF was significantly greater than in CP. In contrast, the humification and aromaticity indices of DOM from stemflow of CP were significantly greater than those of BF. This result indicated that the structure of DOM from throughfall was more complex in BF than in CP, and the structure of DOM from stemflow was vice versa. These results indicated that DOM in stemflow and throughfall showed significant variations in quantity and quality between BF and CP and may greatly impact the accumulation of soil organic carbon. PMID:25509068

  19. Dramatic changes in the dissolved 230Th concentration of seawater in Canada Basin between 1995 and 2009: a transient Arctic circulation signal?

    NASA Astrophysics Data System (ADS)

    Francois, Roger; Soon, Maureen

    2010-05-01

    A dissolved 230Th profile measured in the Arctic Ocean in 1983 under permanent ice cover (Alpha Ridge; 8550'N, 10850'W) documented concentrations substantially higher than in any other ocean basins, reflecting very low particle flux and scavenging intensity (Bacon et al., 1989). In contrast, similar measurements closer to the ice edge conducted in Canada Basin in 1995 (7232'N, 14350'W, 3500 m) found much lower concentrations, reflecting higher rates of particle flux and particle scavenging (Edmonds et al, 1998). In November 2007, we measured dissolved 230Th at two Canada Basin stations (KC2000; 7144'N, 13530'W, 1925m; KC2700; 7228'N, 13656'W, 2490m) and compared these profiles to that obtained in 1995. While the earlier 230Th profile displayed a linear increase in concentration with depth, as predicted by a simple reversible absorption model which neglects water mass transport, the 2007 profile obtained at KC2700 documented very large deviations from linearity, with a prominent maximum centered within the Atlantic Water. The profile taken closer to the shelf (KC2000) did not show this feature. These observations suggested that the prominent maximum in 230Th concentration at KC2700 could have been produced by entrainment of water from the permanently ice-covered Arctic interior into the warm Atlantic Water which is slowly penetrating into the eastern sector of Canada Basin and as such could provide information on the path of Atlantic Water intrusion. New data obtained from the same area in September 2009 during the Canadian IPY-GEOTRACES program documents the evolution of this signal. Reference: Bacon et al. (1989), Earth and Planet. Sci. Letters, 95, 15-22. Edmonds et al. (1998), Science, 280, 405-407.

  20. High-frequency in situ optical measurements during a storm event: Assessing relationships between dissolved organic matter, sediment concentrations, and hydrologic processes

    NASA Astrophysics Data System (ADS)

    Saraceno, John Franco; Pellerin, Brian A.; Downing, Bryan D.; Boss, Emmanuel; Bachand, Philip A. M.; Bergamaschi, Brian A.

    2009-12-01

    Dissolved organic matter (DOM) dynamics during storm events has received considerable attention in forested watersheds, but the extent to which storms impart rapid changes in DOM concentration and composition in highly disturbed agricultural watersheds remains poorly understood. In this study, we used identical in situ optical sensors for DOM fluorescence (FDOM) with and without filtration to continuously evaluate surface water DOM dynamics in a 415 km2 agricultural watershed over a 4 week period containing a short-duration rainfall event. Peak turbidity preceded peak discharge by 4 h and increased by over 2 orders of magnitude, while the peak filtered FDOM lagged behind peak turbidity by 15 h. FDOM values reported using the filtered in situ fluorometer increased nearly fourfold and were highly correlated with dissolved organic carbon (DOC) concentrations (r2 = 0.97), providing a highly resolved proxy for DOC throughout the study period. Discrete optical properties including specific UV absorbance (SUVA254), spectral slope (S290-350), and fluorescence index (FI) were also strongly correlated with in situ FDOM and indicate a shift toward aromatic, high molecular weight DOM from terrestrially derived sources during the storm. The lag of the peak in FDOM behind peak discharge presumably reflects the draining of watershed soils from natural and agricultural landscapes. Field and experimental evidence showed that unfiltered FDOM measurements underestimated filtered FDOM concentrations by up to 60% at particle concentrations typical of many riverine systems during hydrologic events. Together, laboratory and in situ data provide insights into the timing and magnitude of changes in DOM quantity and quality during storm events in an agricultural watershed, and indicate the need for sample filtration in systems with moderate to high suspended sediment loads.

  1. Gust effects on a freely falling plate

    NASA Astrophysics Data System (ADS)

    Wan, Hui; Dong, Haibo; Liang, Zongxian; FSRG Team

    2011-11-01

    Depending on the Reynolds number and the Froude number, a freely falling plate usually performs one of the following four types of motion, flutter, tumble, steady or chaos fall. It is interesting to know that if and how a gust changes the falling status of a plate. In this work, Direct Numerical Simulations (DNS) will be conducted to study the effects of gust on the freely falling plate by varying the gust amplitude, frequency, and phase relative to the falling plate. Especially, for a plate lies in the chaotic (transitional) region, how its motion be affected as a response to the gust will be discussed. NSF CBET-1055949.

  2. Kinks in experimental diffusion profiles of a dissolving semi-crystalline polymer explained by a concentration-dependent diffusion coefficient.

    PubMed

    Hermes, Helen E; Sitta, Christoph E; Schillinger, Burkhard; Löwen, Hartmut; Egelhaaf, Stefan U

    2015-06-28

    The dissolution of polyethylene oxide (PEO) tablets in water has been followed in situ by neutron radiography. When in contact with water, the crystalline phase of semi-crystalline PEO melts once a certain water content is attained. Polymer concentration profiles obtained from the neutron transmission images exhibited a pronounced kink which corresponds to a sharp front in the images and which is related to the melting transition. Sharp diffusion fronts and phase transitions are often linked to non-Fickian behaviour. However, by considering the time evolution of the complete concentration profiles in detail it is shown that the dissolution process can be explained using Fickian diffusion equations with a concentration-dependent diffusion coefficient. PMID:26018995

  3. Variovorax sp.-mediated biodegradation of the phenyl urea herbicide linuron at micropollutant concentrations and effects of natural dissolved organic matter as supplementary carbon source.

    PubMed

    Horemans, Benjamin; Vandermaesen, Johanna; Vanhaecke, Lynn; Smolders, Erik; Springael, Dirk

    2013-11-01

    In nature, pesticides are often present as micropollutants with concentrations too low for efficient biodegradation and growth of heterotrophic pollutant-degrading bacteria. Instead, organic carbon present in environmental dissolved organic matter (eDOM) constitutes the main carbon source in nature. Information on how natural organic carbon affects degradation of pollutants and micropollutants, in particular, is however poor. Linuron-degrading Variovorax sp. strains SRS16, WDL1, and PBLH6 and a triple-species bacterial consortium, from which WDL1 originated, were examined for their ability to degrade linuron at micropollutant concentrations and the effect hereon of different eDOM formulations of varying biodegradability as supplementary C-source was explored. Individual strains and the consortium degraded linuron at initial concentrations as low as 1 μg L(-1) till concentrations below 4 ng L(-1). Degradation kinetics differed among strains with rates that differed up to 70-fold at the lowest linuron concentrations and with lag phases ranging from 0 to 7 days. Linuron biodegradation by the individual strains was inhibited by an easily biodegradable compound such as citrate but stimulated by eDOM at a linuron concentration of 10 mg L(-1). Effects were strongly reduced or became non-existent at micropollutant linuron concentrations. Effects of eDOM on degradation at 10 mg L(-1) linuron by WDL1 were reduced when WDL1 was incubated together with its original consortium members. This is the first report on eDOM effects on degradation of pesticides at micropollutant concentrations and indicates these effects are limited and depend on linuron and eDOM concentrations, eDOM quality, and the bacterial culture. PMID:23339013

  4. Electrolytic dissolver

    DOEpatents

    Wheelwright, E.J.; Fox, R.D.

    1975-08-26

    This patent related to an electrolytic dissolver wherein dissolution occurs by solution contact including a vessel of electrically insulative material, a fixed first electrode, a movable second electrode, means for insulating the electrodes from the material to be dissolved while permitting a free flow of electrolyte therebetween, means for passing a direct current between the electrodes and means for circulating electrolyte through the dissolver. (auth)

  5. In situ measurements of dissolved gases (CO2 and CH4) in a wide range of concentrations in a tropical reservoir using an equilibrator.

    PubMed

    Abril, Gwenaël; Richard, Sandrine; Guérin, Frédéric

    2006-02-01

    An equilibrator system connected to an infrared photo acoustic gas analyzer was used in order to measure directly in situ the concentrations of dissolved CO2 and CH4 in waters of a tropical reservoir (Petit Saut, French Guiana). The performance of the system was tested both on a vertical profile in the stratified water body of the reservoir and in the surface waters of the river downstream the dam. Results agreed with conventional GC analysis at +/-15% in a wide range of concentrations (CO2:50-400 micromol l-1 and CH4:0.5-350 micromol l-1 corresponding to gas partial pressures of respectively 1700-13,000 and 12-8800 microatm). The time needed for in situ measurements was equivalent to water sampling, time for GC analysis in the laboratory being suppressed. The continuous monitoring of gas concentrations for 24 h in the reservoir surface waters revealed rapid changes in concentrations highly significant in the daily emission budget. The system opens new perspectives for the monitoring of gas concentrations in highly dynamic systems like tropical reservoirs. PMID:16398998

  6. Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    van Pinxteren, Dominik; Wadinga Fomba, Khanneh; Mertes, Stephan; Müller, Konrad; Spindler, Gerald; Schneider, Johannes; Lee, Taehyoung; Collett, Jeffrey L.; Herrmann, Hartmut

    2016-03-01

    Cloud water samples were taken in September/October 2010 at Mt. Schmücke in a rural, forested area in Germany during the Lagrange-type Hill Cap Cloud Thuringia 2010 (HCCT-2010) cloud experiment. Besides bulk collectors, a three-stage and a five-stage collector were applied and samples were analysed for inorganic ions (SO42-,NO3-, NH4+, Cl-, Na+, Mg2+, Ca2+, K+), H2O2 (aq), S(IV), and dissolved organic carbon (DOC). Campaign volume-weighted mean concentrations were 191, 142, and 39 µmol L-1 for ammonium, nitrate, and sulfate respectively, between 4 and 27 µmol L-1 for minor ions, 5.4 µmol L-1 for H2O2 (aq), 1.9 µmol L-1 for S(IV), and 3.9 mgC L-1 for DOC. The concentrations compare well to more recent European cloud water data from similar sites. On a mass basis, organic material (as DOC × 1.8) contributed 20-40 % (event means) to total solute concentrations and was found to have non-negligible impact on cloud water acidity. Relative standard deviations of major ions were 60-66 % for solute concentrations and 52-80 % for cloud water loadings (CWLs). The similar variability of solute concentrations and CWLs together with the results of back-trajectory analysis and principal component analysis, suggests that concentrations in incoming air masses (i.e. air mass history), rather than cloud liquid water content (LWC), were the main factor controlling bulk solute concentrations for the cloud studied. Droplet effective radius was found to be a somewhat better predictor for cloud water total ionic content (TIC) than LWC, even though no single explanatory variable can fully describe TIC (or solute concentration) variations in a simple functional relation due to the complex processes involved. Bulk concentrations typically agreed within a factor of 2 with co-located measurements of residual particle concentrations sampled by a counterflow virtual impactor (CVI) and analysed by an aerosol mass spectrometer (AMS), with the deviations being mainly caused by systematic differences and limitations of the approaches (such as outgassing of dissolved gases during residual particle sampling). Scavenging efficiencies (SEs) of aerosol constituents were 0.56-0.94, 0.79-0.99, 0.71-98, and 0.67-0.92 for SO42-, NO3-, NH4+, and DOC respectively when calculated as event means with in-cloud data only. SEs estimated using data from an upwind site were substantially different in many cases, revealing the impact of gas-phase uptake (for volatile constituents) and mass losses across Mt. Schmücke likely due to physical processes such as droplet scavenging by trees and/or entrainment. Drop size-resolved cloud water concentrations of major ions SO42-, NO3-, and NH4+ revealed two main profiles: decreasing concentrations with increasing droplet size and "U" shapes. In contrast, profiles of typical coarse particle mode minor ions were often increasing with increasing drop size, highlighting the importance of a species' particle concentration size distribution for the development of size-resolved solute concentration patterns. Concentration differences between droplet size classes were typically < 2 for major ions from the three-stage collector and somewhat more pronounced from the five-stage collector, while they were much larger for minor ions. Due to a better separation of droplet populations, the five-stage collector was capable of resolving some features of solute size dependencies not seen in the three-stage data, especially sharp concentration increases (up to a factor of 5-10) in the smallest droplets for many solutes.

  7. Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Fomba, K. W.; Mertes, S.; Müller, K.; Spindler, G.; Schneider, J.; Lee, T.; Collett, J.; Herrmann, H.

    2015-09-01

    Cloud water samples were taken in September/October 2010 at Mt. Schmücke in a rural, forested area in Germany during the Lagrange-type Hill Cap Cloud Thuringia 2010 (HCCT-2010) cloud experiment. Besides bulk collectors, a 3-stage and a 5-stage collector were applied and samples were analysed for inorganic ions (SO42-, NO3-, NH4+, Cl-, Na+, Mg2+, Ca2+, K+), H2O2 (aq), S(IV), and dissolved organic carbon (DOC). Campaign volume-weighted mean concentrations were 191, 142, and 39 μmol L-1 for ammonium, nitrate, and sulfate, respectively, between 4 and 27 μmol L-1 for minor ions, 5.4 μmol L-1 for H2O2 (aq), 1.9 μmol L-1 for S(IV), and 3.9 mgC L-1 for DOC. The concentrations compare well to more recent European cloud water data from similar sites. On a mass basis, organic material (as DOC · 1.8) contributed 20-40 % (event means) to total solute concentrations and was found to have non-negligible impact on cloud water acidity. Relative standard deviations of major ions were 60-66 % for solute concentrations and 52-80 % for cloud water loadings (CWLs). Contrary to some earlier suggestions, the similar variability of solute concentrations and CWLs together with the results of back trajectory analysis and principal component analysis, suggests that concentrations in incoming air masses (i.e. air mass history), rather than cloud liquid water content (LWC) was the main factor controlling bulk solute concentrations at Mt. Schmücke. Droplet effective radius was found to be a somewhat better predictor for cloud water total ionic content (TIC) than LWC, even though no single explanatory variable can fully describe TIC (or solute concentration) variations in a simple functional relation due to the complex processes involved. Bulk concentrations typically agreed within a factor of 2 with co-located measurements of residual particle concentrations sampled by a counterflow virtual impactor (CV) and analysed by an aerosol mass spectrometer (AMS), with the deviations being mainly caused by systematic differences and limitations of the approaches (such as outgassing of dissolved gases during residual particle sampling). Scavenging efficiencies (SEs) of aerosol constituents were 0.56-0.94, 0.79-0.99, 0.71-98, and 0.67-0.92 for SO42-, NO3-, NH4+, and DOC, respectively, when calculated as event means with in-cloud data only. SEs estimated using data from an upwind site were substantially different in many cases, revealing the impact of gas-phase uptake (for volatile constituents) and mass losses across Mt. Schmücke likely due to physical processes such as droplet scavenging by trees and/or entrainment. Drop size-resolved cloud water concentrations of major ions SO42-, NO3-, and NH4+ revealed two main profiles: decreasing concentrations with increasing droplet size and "U"-shapes. In contrast, profiles of typical coarse particle mode minor ions were often increasing with increasing drop size, highlighting the importance of a species' particle concentration size distribution for the development of size-resolved solute concentration patterns. Concentration differences between droplet size classes were typically < 2 for major ions from the 3-stage collector and somewhat more pronounced from the 5-stage collector, while they were much larger for minor ions. Due to a better separation of droplet populations, the 5-stage collector was capable of resolving some features of solute size dependencies not seen in the 3-stage data, especially sharp concentration increases (up to a factor of 5-10) in the smallest droplets for many solutes.

  8. [Non-filamentous sludge bulking caused by low concentration of dissolved oxygen and phosphorus deficiency and its control].

    PubMed

    Wang, Jian-Fang; Zhao, Qing-Liang; Lin, Ji-Kan; Jin, Wen-Biao; Xiao, Ben-Yi

    2007-03-01

    Non-filamentous sludge bulking occurred during sludge acclimation in lab-scale bio-reactors and the characteristics, properties and degrading pollutants capability of non-filamentous sludge were analyzed. Both low DO concentration (0 - 0.7 mg/L) and low ratio of P/BOD5 (0.78/100) resulted in excessive proliferation of viscous zoogloea and sludge bulking. SVI was directly proportional to extracellular polysaccharides and was inversely proportional to hydrophobicity of sludge. The sludge bulking could be effectively controlled by increasing DO concentration and P/BOD5 ratio. Besides, adding some porous padding into viscous bulking sludge was a useful method which might avoid the deterioration of sludge settlement and maintain good performance in the system. The viscous bulking sludge could not be controlled by addition of NaC1O. PMID:17633631

  9. Dissolved pesticide concentrations in the Sacramento-San Joaquin Delta and Grizzly Bay, California, 2011-12

    USGS Publications Warehouse

    Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle

    2013-01-01

    Surface-water samples were collected from sites within the Sacramento-San Joaquin Delta and Grizzly Bay, California, during the spring in 2011 and 2012, and they were analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected and analyzed as part of a collaborative project studying the occurrence and characteristics of phytoplankton in the San Francisco Estuary. Samples were analyzed by two separate laboratory methods employing gas chromatography/mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). Eighteen pesticides were detected in samples collected during 2011, and the most frequently detected compounds were the herbicides clomazone, diuron, hexazinone and metolachlor, and the diuron degradates 3,4-dichloroaniline and N-(3,4-dichlorophenyl)-N’-methylurea (DCPMU). Concentrations for all compounds were less than 75 ng/L, except for the rice herbicide clomazone and the fungicide tetraconazole, which had maximum concentrations of 535 and 511 ng/L, respectively. In samples collected in 2012, a total of 16 pesticides were detected. The most frequently detected compounds were the fungicides azoxystrobin and boscalid and the herbicides diuron, hexazinone, metolachlor, and simazine. Maximum concentrations for all compounds detected in 2012 were less than 75 ng/L, except for the fungicide azoxystrobin and the herbicides hexazinone and simazine, which were detected at up to 188, 134, and 140 ng/L, respectively.

  10. Changes in the Dissolved Organic Carbon Concentrations of Stream and Soil Water in Response to a Watershed-Scale Calcium Addition and Recovery from Acidification

    NASA Astrophysics Data System (ADS)

    Fuss, C. B.; Driscoll, C. T.; Ard, G. R.

    2014-12-01

    Positive trends in surface water dissolved organic carbon (DOC) concentrations have been observed in recent decades across many, but not all, surface water monitoring sites in eastern North America and northern Europe. The drivers of these trends are not necessarily clear, although declining acidic deposition is often cited as a likely cause for increased DOC mobilization. Here we used long-term records (16-31 years) of monthly streamwater and soil solution chemistry data from two headwater catchments at the Hubbard Brook Experimental Forest (NH, USA) to evaluate DOC trends in response to the recovery from acidification. We compared the concentrations and trends of DOC in Hubbard Brook's Watershed 6 (W6) and Watershed 1 (W1). W6 is the biogeochemical reference watershed and W1 underwent a treatment with calcium silicate in 1999 to mitigate the effects of long-term acid deposition. Streamwater DOC in W6 initially decreased through the 1980s and 1990s, but has leveled over the past 10-15 years, coincident with a period of modest pH increase. In contrast, W1 streamwater DOC concentrations have significantly increased since the calcium treatment which has led to more marked increases in pH. Greater mobilization of DOC in soil solution in W1 appears to be driving the higher streamwater DOC concentrations. We are analyzing these trends spatially within the watersheds and in conjunction with major solute chemistry to further explain the observed changes in DOC.

  11. Sensitivity analysis of calculated exposure concentrations and dissipation of DEHP in a topsoil compartment: the influence of the third phase effect and dissolved organic matter (DOM).

    PubMed

    Fauser, Patrik; Thomsen, Marianne

    2002-09-16

    The fate and risk assessment of hydrophobic substances in the terrestrial environment can be associated with large errors. These can be attributed to the partitioning and process coefficients derived in experimental studies and to the model set-up that is designed to calculate the exposure concentrations. In many cases, the concentration of xenobiotics are low in the environment, which gives the aqueous phase the characteristics of a true solution, which are in accordance with the thermodynamic description of dilute solutions. Under these circumstances, the conventional equilibrium coefficients, such as Kd, Henry's Law constant H and the bioconcentration factor, BCF, are independent of the activity coefficient of the partitioning compound in the respective phases. However, for hydrophobic substances, these coefficients are often measured in laboratory experiments, where the nominal concentration levels are above the substance saturation point within the bulk water phase. In the case of the phthalates, the hydrophobic effect induces the formation of microdroplets (third phase) in the bulk water phase, by which the system is characterised as a heterogeneous mixture. Consequently, the linearity between dissolved and sorbed concentration is no longer true. Furthermore, in the terrestrial and aquatic environment, the presence of natural Dissolved Organic Matter (DOM) will have an influence on the fate and effects of hydrophobic substances. Hydrophobic compounds show large affinity for sorption to DOM, and contrary to Fixed Organic Matter (FOM), DOM is mobile and can be transported through the soil pores with the advective flow. It is therefore crucial that dispersed or emulsified phases within the continuous aqueous phase, e.g. DOM and microemulsions of phthalates, are distinguished from true solutions in the experimental measurements of partitioning coefficients, e.g. in order not to underestimate the mobility of sorbed substance. These aspects are treated in this study, where the exposure concentration, vertical transport and microbial degradation of Di-(2-ethylhexyl)-phthalate (DEHP) is modelled in an organic rich topsoil compartment, using experimental partitioning coefficients and degradation rates from the literature. Two model set-ups are derived for the topsoil compartment, i.e. (1) a system with dilute solution of substance and (2) a system with the presence of a third phase of microdroplets. In both models, the presence of DOM is incorporated. The first model shows that the error in the calculated exposure concentration, by using partitioning coefficients derived under unfavourable experimental conditions, compared to realistic conditions, amounts to 1400%. A comparison between the two models shows that when emulsion formation is not incorporated in the model, the calculated flux will be overestimated by a factor of 60. PMID:12398329

  12. Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years

    NASA Astrophysics Data System (ADS)

    Jasper, John P.; Hayes, J. M.; Mix, A. C.; Prahl, F. G.

    1994-12-01

    Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C (? ?p) in a central equatorial Pacific sediment core that spans the last 255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70-90 m in the central equatorial Pacific. A record of the isotopic compostion of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70-90 m in the same region. Values of ?p, derived by comparison of the organic and inorganic ? values, were transformed to yield concentrations of dissolved CO2 (? ce) based on a new, site-specific calibration of the relationship between ?p and ce. The calibration was based on reassessment of existing ?p versus ce data, which support a physiologically based model in which ?p is inversely related to ce. Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index U37K'. Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between ?p and 1/ce. These are discussed in detail and it is concluded that the observed record of ?p most probably reflects significant variations in ?pCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from 110 atm during glacial intervals (ocean > atmosphere) to 60 atm during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial intervals. If this were characteristic of large areas of the equatorial Pacific, then greater glacial sinks for the equatorially evaded CO2 must have existed elsewhere. Statistical analysis of air-sea pCO2 differences and other parameters revealed significant (p < 0.01) inverse correlations of ?pCO2 with sea surface temperature and with the mass accumulation rate of opal. The former suggests response to the strength of upwelling, the latter may indicate either drawdown of CO2 by siliceous phytoplankton or variation of [CO2]/[Si(OH)4] ratios in upwelling waters.

  13. Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years

    NASA Technical Reports Server (NTRS)

    Jasper, J. P.; Hayes, J. M.; Mix, A. C.; Prahl, F. G.

    1994-01-01

    Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C [is equivalent to epsilon(p)] in a central equatorial Pacific sediment core that spans the last approximately 255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70-90 m in the central equatorial Pacific. A record of the isotopic composition of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70-90 m in the same region. Values of epsilon(p), derived by comparison of the organic and inorganic delta values, were transformed to yield concentrations of dissolved CO2 [is equivalent to c(e)] based on a new, site-specific calibration of the relationship between epsilon(p) and c(e). The calibration was based on reassessment of existing epsilon(p) versus c(e) data, which support a physiologically based model in which epsilon(p) is inversely related to c(e). Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index U(K/37). Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between epsilon(p) and 1/c(e). These are discussed in detail and it is concluded that the observed record of epsilon(p) most probably reflects significant variations in delta pCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from approximately 110 microatmospheres during glacial intervals (ocean > atmosphere) to approximately 60 microatmospheres during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial intervals. If this were characteristic of large areas of the equatorial Pacific, then greater glacial sinks for the equatorially evaded CO2 must have existed elsewhere. Statistical analysis of air-sea pCO2 differences and other parameters revealed significant (p<0.01) inverse correlations of delta pCO2 with sea surface temperature and with the mass accumulation rate of opal. The former suggests response to the strength of upwelling, the latter may indicate either drawdown of CO2 by siliceous phytoplankton or variation of [CO2]/[Si(OH)4] ratios in upwelling waters.

  14. Nitritating-anammox biomass tolerant to high dissolved oxygen concentration and C/N ratio in treatment of yeast factory wastewater.

    PubMed

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Seiman, Andrus; Loorits, Liis; Kroon, Kristel; Tomingas, Martin; Vabame, Priit; Tenno, Taavo

    2014-01-01

    Maintaining stability of low concentration (< 1 g L(-1)) floccular biomass in the nitritation-anaerobic ammonium oxidation (anammox) process in the sequencing batch reactor (SBR) system for the treatment of high COD (> 15,000 mg O2 L(-1)) to N (1680 mg N L(-1)) ratio real wastewater streams coming from the food industry is challenging. The anammox process was suitable for the treatment of yeast factory wastewater containing relatively high and abruptly increased organic C/N ratio and dissolved oxygen (DO) concentrations. Maximum specific total inorganic nitrogen (TIN) loading and removal rates applied were 600 and 280 mg N g(-1) VSS d(-1), respectively. Average TIN removal efficiency over the operation period of 270 days was 70%. Prior to simultaneous reduction of high organics (total organic carbon > 600mg L(-1)) and N concentrations > 400 mg L(-1), hydraulic retention time of 15 h and DO concentrations of 3.18 (+/- 1.73) mg O2 L(-1) were applied. Surprisingly, higher DO concentrations did not inhibit the anammox process efficiency demonstrating a wider application of cultivated anammox biomass. The SBR was fed rapidly over 5% of the cycle time at 50% volumetric exchange ratio. It maintained high free ammonia concentration, suppressing growth of nitrite-oxidizing bacteria. Partial least squares and response surface modelling revealed two periods of SBR operation and the SBR performances change at different periods with different total nitrogen (TN) loadings. Anammox activity tests showed yeast factory-specific organic N compound-betaine and inorganic N simultaneous biodegradation. Among other microorganisms determined by pyrosequencing, anammox microorganism (uncultured Planctomycetales bacterium clone P4) was determined by polymerase chain reaction also after applying high TN loading rates. PMID:24701957

  15. The biogeochemical effect of seaweeds upon close-to natural concentrations of dissolved iodate and iodide in seawater Preliminary study with Laminaria digitata and Fucus serratus

    NASA Astrophysics Data System (ADS)

    Truesdale, Victor W.

    2008-06-01

    Toward assessing the biogeochemical significance of seaweeds in relation to dissolved iodine in seawater, the effect of whole seaweeds ( Laminaria digitata and Fucus serratus) upon iodide and iodate, at essentially natural concentrations, has been studied. The weeds were carefully removed from the sub-littoral zone of the Menai Straits and exposed to iodide and iodate at their natural temperature (6 C), but under continuous illumination. Laminaria digitata was found to decrease the concentration of iodate with an exponential rate constant of 0.008-0.24 h -1. This is a newly discovered process which, if substantiated, will require an entirely new mechanism. Generally, apparent iodide concentration increased except in a run with seawater augmented with iodide, where it first decreased. The rate constant for loss of iodide was 0.014-0.16 h -1. Meanwhile, F. serratus was found not to decrease iodate concentrations, as did L. digitata. Indeed, after 30 h iodate concentrations increased, suggesting that the weed may take in iodide before oxidising and releasing it. If substantiated, this finding may offer a way into one of the most elusive of processes within the iodine cycle - iodide oxidation. With both seaweeds sustained long-term increases of apparent iodide concentration are most easily explained as a secretion by the weeds of organic matter which is capable of reducing the Ce(IV) reagent used in determination of total iodine. Modelling of the catalytic method used is provided to support this contention. The possibility of developing this to measure the strain that seaweeds endure in this kind of biogeochemical flux experiment is discussed. A Chemical Oxygen Demand type of approach is applied using Ce(IV) as oxidant. The results of the iodine experiments are contrasted with the several investigations of 131I interaction with seaweeds, which have routinely used discs of weed cut from the frond. It is argued that experiments conducted with stable iodine may measure a different variable to that measured in radio-iodine experiments.

  16. Silicic magma accumulation beneath Mount Mazama, Oregon, 71 ka to 24 ka constrained by SHRIMP measurements of dissolved volatile concentrations in melt inclusions

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Bacon, C. R.; Vazquez, J. A.; Sisson, T. W.

    2010-12-01

    Dissolved volatile contents of melt inclusions trapped in pyroxene and plagioclase crystals from 7 silicic eruptions preceding the climactic ~7.7 ka Mazama eruption were measured by SIMS with the Stanford-USGS SHRIMP-RG. Melt inclusions in crystals were intersected, polished, and crystals were mounted in indium in Al mounts. A 1.2-3.0 nA (depending on the session), O2- primary beam was accelerated and focused to a 15-25 ?m spot on the sample surface, which generated positive secondary ions of analyzed Li, Be, B, C, OH, F, Mg, Si, SiH, S, Cl, Ca, AlO, KO, Rb, and Sr. Measurements were made at high mass resolution (6000-7000). Trace element and volatile concentrations were calculated using a best-fit regression to count rate ratios (normalized to 30Si) vs. variable known concentrations in experimental and natural rhyolite glass standards. Pumiceous samples were chosen from dacitic to rhyodacitic eruptive deposits, consisting of the 71ka dacite of Pumice Castle, 70ka dacite below Llao Rock, 50ka dacite of the Watchman, 35ka dacite of Munson Valley, 35ka Williams Crater tephra, 27ka Redcloud Cliff rhyodacite, and 24ka andesite S of Bear Bluff. Melt inclusions are abundant in spongy, mineral-inclusion-rich interiors of pyroxene crystals in early (71-35ka) eruptive deposits and are less abundant throughout pyroxenes from later eruptions (35-24ka) and in plagioclase crystals. Over the entire time interval, most trace element and volatile concentrations remain approximately constant between melt inclusion populations. However, there are some variations in water and carbon dioxide concentration. A large proportion of inclusions in the smaller eruptive deposits (0.003-0.4 km3) of the dacite of the Watchman, dacite of Munson Valley, and Williams Crater tephra have low water contents, ~1 wt% H2O, corresponding to a saturation pressure of 25MPa, or ~1km depth (at 870, approximate average temperature for these deposits, e.g., Druitt and Bacon, Contrib Mineral Petrol 1989; with 2200 kg/m3 overburden density), potentially reflecting shallow storage immediately preceding eruption. Furthermore, compositional differences between melt inclusions hosted in orthopyroxene, clinopyroxene, and plagioclase crystals are small, with the exception of lower water content in plagioclase than pyroxene from some, but not all, deposits, which we attribute to diffusive water loss during decompression. The largest cluster of high-water-content volatile data lies at ~4 wt% H2O, with maximum water contents at 6 wt%. CO2 concentrations range from below detection to almost 800 ppm. The combined dissolved H2O and CO2 data indicate dominant saturation pressures between 75 and 150 MPa, ~3.5-7 km depth, similar to saturation pressures calculated for the climactic and pre-climactic Llao and Cleetwood eruptive products. Further, calculated CO2 concentrations are higher in early eruptive products than late. We interpret these water and CO2 data to reflect a limited range of storage depths (with similar water contents), with a progressive increase in the extent of passive degassing, culminating in a climactic chamber that contained no dissolved CO2 (Bacon et al., Amer Mineral 1992; Mandeville et al., Geochim Cosmochim Acta 2009).

  17. Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: A two-dimensional flow cell study.

    PubMed

    Wu, Bin; Li, Huiying; Du, Xiaoming; Zhong, Lirong; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng

    2016-02-01

    During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well. PMID:26583297

  18. A freely-moving monkey treadmill model

    NASA Astrophysics Data System (ADS)

    Foster, Justin D.; Nuyujukian, Paul; Freifeld, Oren; Gao, Hua; Walker, Ross; Ryu, Stephen I.; Meng, Teresa H.; Murmann, Boris; Black, Michael J.; Shenoy, Krishna V.

    2014-08-01

    Objective. Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement. Approach. We have established a freely-moving rhesus monkey model employing technology that transmits neural activity from an intracortical array using a head-mounted device and records behavior through computer vision using markerless motion capture. We demonstrate the flexibility and utility of this new monkey model, including the first recordings from motor cortex while rhesus monkeys walk quadrupedally on a treadmill. Main results. Using this monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase of walking and that the average firing rate of the threshold crossings covaries with the speed of individual steps. On a population level, we find that neural state-space trajectories of walking at different speeds have similar rotational dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by speed in other state-space dimensions. Significance. Freely-moving animal models may allow neuroscientists to examine a wider range of behaviors and can provide a flexible experimental paradigm for examining the neural mechanisms that underlie movement generation across behaviors and environments. For BMIs, freely-moving animal models have the potential to aid prosthetic design by examining how neural encoding changes with posture, environment and other real-world context changes. Understanding this new realm of behavior in more naturalistic settings is essential for overall progress of basic motor neuroscience and for the successful translation of BMIs to people with paralysis.

  19. Bioaccumulation of 2,2{prime},5,5{prime}-tetrachlorobiphenyl and pyrene by picoplankton (Synechococcus leopoliensis, Cyanophyceae): Influence of variable humic acid concentrations and pH

    SciTech Connect

    Twiss, M.R.; Granier, L.; Lafrance, P.; Campbell, P.G.C.

    1999-09-01

    Natural dissolved organic matter (DOM) controls the aqueous phase partitioning of hydrophobic organic contaminants (HOCs), where the sum of aqueous HOCs is distributed between the bound and free forms of HOCs, that is [HOC-DOM] {leftrightarrow} [HOC] + [DOM]. The hypothesis that the bioavailability of aqueous HOCs can be attributed solely to the concentration of the free form of HOCs was tested. Bioavailability was measured as accumulation of [{sup 14}C]-PCB (IUPAC 52) and [{sup 14}C]-pyrene over 48 h by the phytoplanktonic cyanobacterium Synechococcus leopoliensis. The phytoplankton were exposed within dialysis sacs to freely dissolved HOC at concentrations that were similar in all sacs. However, humic acid concentrations were varied among the sacs. The experiment was designed to vary the concentrations of HOC-HA and HA while keeping the concentration of freely dissolved HOCs at the same levels in all the sacs. Sorption mechanism were probed by manipulating the pH of the exposure medium; the hydrophobicities of the cell surface and the humic acid are pH-sensitive, whereas the freely dissolved concentration of HOCs is pH-invariant. Bioaccumulation was predominantly controlled by the freely dissolved concentration of HOC and was greater at pH 4.3 than at pH 7.3. Although sorption of the PCB-HA and pyrene-HA complexes by S. leopoliensis occurred, this mechanism did not contribute significantly to the total accumulation of PCB of pyrene. These results suggest that the accumulation of HOCs by planktonic microorganisms can be predicted on the basis of the concentration of freely dissolved HOC molecules.

  20. Computed solid phases limiting the concentration of dissolved constituents in basalt aquifers of the Columbia Plateau in eastern Washington. Geochemical modeling and nuclide/rock/groundwater interaction studies

    SciTech Connect

    Deutsch, W.J.; Jenne, E.A.; Krupka, K.M.

    1982-08-01

    A speciation-solubility geochemical model, WATEQ2, was used to analyze geographically-diverse, ground-water samples from the aquifers of the Columbia Plateau basalts in eastern Washington. The ground-water samples compute to be at equilibrium with calcite, which provides both a solubility control for dissolved calcium and a pH buffer. Amorphic ferric hydroxide, Fe(OH)/sub 3/(A), is at saturation or modestly oversaturated in the few water samples with measured redox potentials. Most of the ground-water samples compute to be at equilibrium with amorphic silica (glass) and wairakite, a zeolite, and are saturated to oversaturated with respect to allophane, an amorphic aluminosilicate. The water samples are saturated to undersaturated with halloysite, a clay, and are variably oversaturated with regard to other secondary clay minerals. Equilibrium between the ground water and amorphic silica presumably results from the dissolution of the glassy matrix of the basalt. The oversaturation of the clay minerals other than halloysite indicates that their rate of formation lags the dissolution rate of the basaltic glass. The modeling results indicate that metastable amorphic solids limit the concentration of dissolved silicon and suggest the same possibility for aluminum and iron, and that the processes of dissolution of basaltic glass and formation of metastable secondary minerals are continuing even though the basalts are of Miocene age. The computed solubility relations are found to agree with the known assemblages of alteration minerals in the basalt fractures and vesicles. Because the chemical reactivity of the bedrock will influence the transport of solutes in ground water, the observed solubility equilibria are important factors with regard to chemical-retention processes associated with the possible migration of nuclear waste stored in the earth's crust.

  1. Influence of aeration-homogenization system in stirred tank bioreactors, dissolved oxygen concentration and pH control mode on BHK-21 cell growth and metabolism.

    PubMed

    Nez, Eutimio Gustavo Fernndez; Leme, Jaci; de Almeida Parizotto, Letcia; Chagas, Wagner Antonio; de Rezende, Alexandre Gonalves; da Costa, Bruno Labate Vale; Monteiro, Daniela Cristina Ventini; Boldorini, Vera Lucia Lopes; Jorge, Soraia Attie Calil; Astray, Renato Mancini; Pereira, Carlos Augusto; Caricati, Celso Pereira; Tonso, Aldo

    2014-08-01

    This work focused on determining the effect of dissolved oxygen concentration (DO) on growth and metabolism of BHK-21 cell line (host cell for recombinant proteins manufacturing and viral vaccines) cultured in two stirred tank bioreactors with different aeration-homogenization systems, as well as pH control mode. BHK-21 cell line adapted to single-cell suspension was cultured in Celligen without aeration cage (rotating gas-sparger) and Bioflo 110, at 10, 30 and 50% air saturation (impeller for gas dispersion from sparger-ring). The pH was controlled at 7.2 as far as it was possible with gas mixtures. In other runs, at 30 and 50% (DO) in Bioflo 110, the cells grew at pH controlled with CO2 and NaHCO3 solution. Glucose, lactate, glutamine, and ammonium were quantified by enzymatic methods. Cell concentration, size and specific oxygen consumption were also determined. When NaHCO3 solution was not used, the optimal DOs were 10 and 50% air saturation for Celligen and Bioflo 110, respectively. In this condition maximum cell concentrations were higher than 4נ10(6) cell/mL. An increase in maximum cell concentration of 36% was observed in batch carried out at 30% air saturation in a classical stirred tank bioreactor (Bioflo 110) with base solution addition. The optimal parameters defined in this work allow for bioprocess developing of viral vaccines, transient protein expression and viral vector for gene therapy based on BHK-21 cell line in two stirred tank bioreactors with different agitation-aeration systems. PMID:23846480

  2. Modelling the effects of climate on long-term patterns of dissolved organic carbon concentrations in the surface waters of a boreal catchment

    NASA Astrophysics Data System (ADS)

    Futter, M. N.; Starr, M.; Forsius, M.; Holmberg, M.

    2008-03-01

    Dissolved organic carbon concentrations ([DOC]) in surface waters are increasing in many regions of Europe and North America. These increases are likely driven by a combination of changing climate, recovery from acidification and change in severity of winter storms in coastal areas. INCA-C, a process-based model of climate effects on surface water [DOC], was used to explore the mechanisms by which changing climate controls seasonal to inter-annual patterns of [DOC] in the lake and outflow stream of a small Finnish catchment between 1990 and 2003. Both production in the catchment and mineralization in the lake controlled [DOC] in the lake. Concentrations in the catchment outflow were controlled by rates of DOC production in the surrounding organic soils. The INCA-C simulation results were compared to those obtained using artificial neural networks (ANN). In general, "black box" ANN models provide better fits to observed data but process-based models can identify the mechanism responsible for the observed pattern. A statistically significant increase was observed in both INCA-C modelled and measured annual average [DOC] in the lake. This suggests that some of the observed increase in surface water [DOC] is caused by climate-related processes operating in the lake and catchment. However, a full understanding of surface water [DOC] dynamics can only come from catchment-scale process-based models linking the effects of changing climate and deposition on aquatic and terrestrial environments.

  3. Modelling the effects of climate on long-term patterns of dissolved organic carbon concentrations in the surface waters of a boreal catchment

    NASA Astrophysics Data System (ADS)

    Futter, M. N.; Starr, M.; Forsius, M.; Holmberg, M.

    2007-09-01

    Dissolved organic carbon concentrations ([DOC]) in surface waters are increasing in many regions of Europe and North America. These increases are likely driven by a combination of changing climate, recovery from acidification and change in severity of winter storms in coastal areas. INCA-C, a process-based model of climate effects on surface water [DOC], was used to explore the mechanisms by which changing climate controls seasonal to inter-annual patterns of [DOC] in the lake and outflow stream of a small Finnish catchment between 1990 and 2003. Both production in the catchment and mineralization in the lake controlled [DOC] in the lake. Concentrations in the catchment outflow were controlled by rates of DOC production in the surrounding organic soils. The INCA-C simulation results were compared to those obtained using artificial neural networks (ANN). In general, "black box" ANN models provide better fits to observed data but process-based models can identify the mechanism responsible for the observed pattern. A statistically significant increase was observed in both INCA-C modelled and measured annual average [DOC] in the lake. This suggests that some of the observed increase in surface water [DOC] is caused by climate-related processes operating in the lake and catchment. However, a full understanding of surface water [DOC] dynamics can only come from catchment-scale process-based models linking the effects of changing climate and deposition on aquatic and terrestrial environments.

  4. Dissolved pesticide concentrations detected in storm-water runoff at selected sites in the San Joaquin River basin, California, 2000-2001

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn M.; Whitehead, Andrew

    2003-01-01

    As part of a collaborative study involving the United States Geological Survey Toxics Substances Hydrology Project (Toxics Project) and the University of California, Davis, Bodega Marine Laboratory (BML), water samples were collected at three sites within the San Joaquin River Basin of California and analyzed for dissolved pesticides. Samples were collected during, and immediately after, the first significant rainfall (greater than 0.5 inch per day) following the local application of dormant spray, organophosphate insecticides during the winters of 2000 and 2001. All samples were collected in conjunction with fish-caging experiments conducted by BML researchers. Sites included two locations potentially affected by runoff of agricultural chemicals (San Joaquin River near Vernalis, California, and Orestimba Creek at River Road near Crows Landing, California, and one control site located upstream of pesticide input (Orestimba Creek at Orestimba Creek Road near Newman, California). During these experiments, fish were placed in cages and exposed to storm runoff for up to ten days. Following exposure, the fish were examined for acetylcholinesterase concentrations and overall genetic damage. Water samples were collected throughout the rising limb of the stream hydrograph at each site for later pesticide analysis. Concentrations of selected pesticides were measured in filtered water samples using solid-phase extraction (SPE) and gas chromatography-mass spectrometry (GC/MS) at the U.S. Geological Survey organic chemistry laboratory in Sacramento, California. Results of these analyses are presented.

  5. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    PubMed

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants. PMID:23863442

  6. Concentrations of total and dissolved Hg in snow and vapor deposition collected during Atmospheric Mercury Depletion Events (AMDEs) in Barrow, Alaska during the BROMEX campaign

    NASA Astrophysics Data System (ADS)

    Obrist, D.; Moore, C. W.; Douglas, T. A.; Steffen, A.; Staebler, R. M.; Pearson, C.

    2012-12-01

    During the Bromine, Ozone, and Mercury Experiment (BROMEX) in March and April 2012, we characterized surface snow concentrations of mercury and major ions near Barrow, Alaska, in order to assess effects of Atmospheric Mercury Depletion Events (AMDE) on surface snow chemistry. During AMDEs, gaseous elemental mercury is oxidized to divalent Hg forms which, due to their high deposition velocities, can lead to increased Hg deposition to snow and ice surfaces. Daily collections of surface snow (top 2 cm) analyzed for total Hg (THg) showed average concentrations of 14 ppt at both an Out-On-The-Ice (OOTI) site on Arctic Ocean first year sea ice 2 km from the shore and at a terrestrial site on tussock tundra 5 km inland. Both sites showed similar concentration variability (THg ranging from 3.9 to 29.3 ppt). The OOTI site, however, showed substantially higher percentages of Hg that was in the dissolved phase (DHg; filtered by 0.45 ?m filter), averaging 68% versus 27% at the inland site. These differences were unlikely linked to atmospheric Hg dynamics as both sites showed similar concentrations and temporal patterns of gaseous and oxidized atmospheric Hg. A higher DHg fraction may indicate a different behavior of snow on land versus snow on sea ice snow in regards to accumulating, retaining, or re-emitting mercury. Overall, surface snow Hg concentrations at both sites were weakly and inversely correlated with the daily average atmospheric elemental Hg concentration, showing that depletions of atmospheric Hg and their associated formation of divalent Hg may translate into small surface snow Hg enhancements. A snow transect collected between 2 km out on the sea ice and 6 km inland also showed no inherent differences in THg between inland and sites on the sea ice and confirmed the higher DHg fraction in snow on sea ice. To collect vapor phase ice samples from the lower atmosphere- snow surface interface we designed and deployed a novel "cold plate" sampler that allowed for daily collection of vapor phase (condensate) deposition through cooling of a clean stainless-steel surface to ~20 below ambient air temperature. Collected deposition averaged 12.0 and 15.6 ppt, which was similar to THg levels observed in surface snow. This indicates that water directly extracted from the atmosphere showed surprisingly similar THg concentrations to surface snow nearby.

  7. Characterizing dissolved organic carbon concentrations and export in a boreal forest-peatland landscape under the influence of rapidly degrading discontinuous permafrost

    NASA Astrophysics Data System (ADS)

    Hanisch, J.; Connon, R.; Templeton, M.; Quinton, W. L.; Olefeldt, D.; Moore, T. R.; Roulet, N. T.; Sonnentag, O.

    2014-12-01

    Our current understanding of peatland energy, water and carbon (C) cycles implies that northern peatlands are vulnerable to projected climate change, and that the perturbation of these cycles might cause a strong positive or negative net feedback to the climate system. About one third of Canada's northern peatlands contain contain perennialy frozen ground (permafrost). Boreal forest-peatland ecosystems in the discontinuous permafrost zone (50-90% of frozen ground) are especially vulnerable to rising temperatures as permafrost is ice-rich, relatively warm and thin, and thus susceptible to complete disappearance causing ground surface subsidence and a decline in forest cover in response to water-logging. Several recent studies have substantially improved our understanding of northern peatland's role in the climate system by quantifying their net ecosystem C balance which includes atmospheric and aqueous C fluxes generally dominated by the export of dissolved organic C (DOC). We characterize seasonal and diurnal variations in DOC export from five catchments (0.02-0.05 km2) at Scotty Creek, a 152 km2-watershed under the influence of rapidly degrading and disappearing discontinuous permafrost near Fort Simpson, Northwest Territories, Canada. The five catchments are characterized by different fractions of forested peat plateaus with permafrost (38-73%) and permafrost-free collapse bogs (27-62%). Dissolved organic carbon concentrations at Scotty Creek appear to be higher in catchments where the percentage of peat plateaus is higher compared to bogs, independent of catchment size. Average DOC concentration for catchments with a lower percentage of peat plateaus is lower (~43 mg/l) than for those with a higher percentage of plateaus (~60 mg/l). These preliminary results suggest that lateral C losses from this rapidly changing landscape are at least partly controlled by the peat plateau-bog ratio. Over the year, DOC export from the five catchments is limited to around a week due to the relatively dry conditions at Scotty Creek over the hot summer months: only one of the catchments produces continuous measurable surface runoff. However, as indicated through water level recordings, additional unaccounted DOC export may occur through diffuse subsurface flow.

  8. The effect of feed water dissolved organic carbon concentration and composition on organic micropollutant removal and microbial diversity in soil columns simulating river bank filtration.

    PubMed

    Bertelkamp, C; van der Hoek, J P; Schoutteten, K; Hulpiau, L; Vanhaecke, L; Vanden Bussche, J; Cabo, A J; Callewaert, C; Boon, N; Löwenberg, J; Singhal, N; Verliefde, A R D

    2016-02-01

    This study investigated organic micropollutant (OMP) biodegradation rates in laboratory-scale soil columns simulating river bank filtration (RBF) processes. The dosed OMP mixture consisted of 11 pharmaceuticals, 6 herbicides, 2 insecticides and 1 solvent. Columns were filled with soil from a RBF site and were fed with four different organic carbon fractions (hydrophilic, hydrophobic, transphilic and river water organic matter (RWOM)). Additionally, the effect of a short-term OMP/dissolved organic carbon (DOC) shock-load (e.g. quadrupling the OMP concentrations and doubling the DOC concentration) on OMP biodegradation rates was investigated to assess the resilience of RBF systems. The results obtained in this study imply that - in contrast to what is observed for managed aquifer recharge systems operating on wastewater effluent - OMP biodegradation rates are not affected by the type of organic carbon fraction fed to the soil column, in case of stable operation. No effect of a short-term DOC shock-load on OMP biodegradation rates between the different organic carbon fractions was observed. This means that the RBF site simulated in this study is resilient towards transient higher DOC concentrations in the river water. However, a temporary OMP shock-load affected OMP biodegradation rates observed for the columns fed with the river water organic matter (RWOM) and the hydrophilic fraction of the river water organic matter. These different biodegradation rates did not correlate with any of the parameters investigated in this study (cellular adenosine triphosphate (cATP), DOC removal, specific ultraviolet absorbance (SUVA), richness/evenness of the soil microbial population or OMP category (hydrophobicity/charge). PMID:26432535

  9. Correlation Between Surface Area and Dissolving Properties of Lead - A Step in the Investigation of Higher than Standard Lead Concentration in Drinking Water in Washington, D.C.

    NASA Astrophysics Data System (ADS)

    Hua, M.; Garduno, L.; Mondragon, J. D.; Cuff, K. E.

    2004-12-01

    Several recently published articles by the Washington Post exposing the alarming concentration of lead in drinking water from schools and homes in the Washington D.C. area sparked our interest in the correlation between lead-containing materials used in plumbing and rate of lead solubility. Elementary children who attend schools in various regions of the District were contacted by San Francisco Bay Area- based high school students who are participants in the NSF-sponsored Environmental Science Information Technology Activities (ESITA) project. After receiving a thorough explanation of required sampling procedures, the elementary school children sent 500 ml water samples from their homes and schools to Berkeley along with information on the locations from which the water samples were collected. These water samples were analyzed for lead content at the Environmental Science Research Program laboratory at Lawrence Hall of Science. The majority of the samples contained more than 15 ppb of lead, which is the EPA action level. We hypothesize that there are three possible sources of lead in the drinking water: 1) lead pipes in the water main; 2) lead pipes in the service main; and 3) lead soldering that was often previously used to connect piping. We chose to investigate the effect of lead-based solder on the overall lead concentration in water. Using a soldering iron, we melted lead solder to create discs ranging from one to five centimeter diameter and one to thirty-six grams of mass. These discs were then placed into a beaker with 500 ml of 7.1pH distilled water and allowed to stand for 48 hours. At the end of 48 hours, the water samples were prepared for analysis using the EPA approved lead-dithizone procedure. Results showed an exponential relationship between disc surface area and the concentration of dissolved lead measured in the sample. Therefore, lead-based solder can represent a possible major source of lead contamination.

  10. A SIMPLE PHOTOMETER FOR PRECISE DETERMINATION OF DISSOLVED OXYGEN CONCENTRATION BY THE WINKLER METHOD WITH RECOMMENDATIONS FOR IMPROVING RESPIRATION RATE MEASUREMENTS IN AQUATIC ORGANISMS

    EPA Science Inventory

    A simple inexpensive photometer designed for Winkler titration end-point detection is described. The precision of replicate dissolved oxygen measurements using this instrument was 0.06-0.22%. This high precision is needed to measure the small changes in dissolved oxygen concentra...

  11. Dissolved and labile concentrations of Cd, Cu, Pb, and Zn in the South Fork Coeur d'Alene River, Idaho: Comparisons among chemical equilibrium models and implications for biotic ligand models

    USGS Publications Warehouse

    Balistrieri, L.S.; Blank, R.G.

    2008-01-01

    In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.

  12. A long-term simulation of the effects of acidic deposition and climate change on surface water dissolved organic carbon concentrations in a boreal catchment

    NASA Astrophysics Data System (ADS)

    Futter, M.; Forsius, M.; Holmberg, M.; Starr, M.

    2009-04-01

    Concentrations of dissolved organic carbon (DOC) are increasing in surface waters across Europe and North America. Two of the main mechanisms proposed to explain this increase are declines in sulphate (SO42-) deposition and changes in climate. Many of the reductions in SO42- have already occurred. Climate change-related effects are occurring now and will continue in the future. Here we present the first application of a simple process-based model which simulates the effects of both climate and deposition on surface water [DOC]. The model was applied to Valkea-Kotinen, a small headwater catchment in Finland, where it was able to simulate present day (1990-2007) trends in [DOC] in the lake and catchment outflow as functions of observed climate and EMEP modelled SO42- deposition. Using a parameter set derived from a present-day calibration, the model was run with two SRES climate scenarios and three deposition scenarios to simulate surface water [DOC] between 1960 and 2100. Preliminary modelling results show that much of the historical increase in [DOC] can be explained as a result of historical declines in modelled SO42- deposition. It appears that [DOC] will continue to increase as climate changes. These findings should be corroborated by applying the model to other sites.

  13. Fast measurement of dissolved inorganic carbon concentration for small-volume interstitial water by acid extraction and nondispersive infrared gas analysis.

    PubMed

    Noguchi, Takuroh; Hatta, Mayumi; Yamanaka, Toshiro; Okamura, Kei

    2013-01-01

    We developed a system for measuring the total dissolved inorganic carbon (DIC) concentrations in interstitial water and hydrothermal fluid, which are hard to obtain in large volumes. The system requires a sample volume of only 500 ?L, and it takes only 150 s per one sample. The detection limit of this system was estimated to be 66.6 ?mol/kg with repeated analysis of CO(2)-free ultrapure water (n = 9). The precision of this nondispersive infrared (NDIR) system was 3.1% of the relative standard deviations (2?) by repeated CRM batch 104 (n = 10). This result is much larger than the required precision for oceanographic studies, but is comparable to a previous result of interstitial water analysis. An on-site trial showed a significant DIC enrichment in interstitial water of hydrothermally altered sediment, and is considered to occur by the mixing of hydrothermal fluid. This procedure will achieve carbon dioxide flux calculations from hydrothermal activities, and will bring a more accurate feature on the global carbon cycle. PMID:23303077

  14. Concentrations of dissolved solids and nutrients in water sources and selected streams of the Santa Ana Basin, California, Octoger 1998 - September 2001

    USGS Publications Warehouse

    Kent, Robert; Belitz, Kenneth

    2004-01-01

    Concentrations of total dissolved solids (TDS) and nutrients in selected Santa Ana Basin streams were examined as a function of water source. The principal water sources are mountain runoff, wastewater, urban runoff, and stormflow. Rising ground water also enters basin streams in some reaches. Data were collected from October 1998 to September 2001 from 6 fixed sites (including a mountain site), 6 additional mountain sites (including an alpine indicator site), and more than 20 synoptic sites. The fixed mountain site on the Santa Ana River near Mentone appears to be a good representative of reference conditions for water entering the basin. TDS can be related to water source. The median TDS concentration in base-flow samples from mountain sites was 200 mg/L (milligrams per liter). Base-flow TDS concentrations from sites on the valley floor typically ranged from 400 to 600 mg/L; base flow to most of these sites is predominantly treated wastewater, with minor contributions of rising ground water and urban runoff. Sparse data suggest that TDS concentrations in urban runoff are about 300 mg/L. TDS concentrations appear to increase on a downstream gradient along the main stem of the Santa Ana River, regardless of source inputs. The major-ion compositions observed in samples from the different sites can be related to water source, as well as to in-stream processes in the basin. Water compositions from mountain sites are categorized into two groups: one group had a composition close to that of the alpine indicator site high in the watershed, and another group had ionic characteristics closer to those in tributaries on the valley floor. The water composition at Warm Creek, a tributary urban indicator site, was highly variable but approximately intermediate to the compositions of the upgradient mountain sites. Water compositions at the Prado Dam and Imperial Highway sites, located 11 miles apart on the Santa Ana River, were similar to one another and appeared to be a mixture of the waters of the upstream sites, Santa Ana River at MWD Crossing, Cucamonga Creek, and Warm Creek. Rainfall usually dilutes stream TDS concentrations. The median TDS concentration in all storm-event discrete samples was 260 mg/L. The median flow-weighted average TDS concentration for stormflow, based on continuous measurement of specific conductance and hydrograph separation of the continuous discharge record, was 190 mg/L. However, stormflow TDS concentrations were variable, and depended on whether the storm was associated with a relatively small or large rainfall event. TDS concentrations in stormflow associated with relatively small events ranged from about 50 to 600 mg/L with a median of 220 mg/L, whereas concentrations in stormflow associated with relatively large events ranged from about 40 to 300 mg/L with a median of 100 mg/L. From the perspective of water managers, the nutrient species of highest concern in Santa Ana Basin streams is nitrate. Most mountain streams had median base-flow concentrations of nitrate below 0.3 mg/L as nitrogen. Nitrate concentrations in both urban runoff and stormflow were near 1 mg/L, which is close to the level found in rainfall for the region. In fact, results from this study suggest that much of the nitrate load in urban storm runoff comes from rainwater. Nitrate concentrations in the Santa Ana River and its major tributaries are highest downstream from wastewater inputs, where median base-flow concentrations of nitrite+nitrate ranged from about 5 to 7 mg/L. About 4 percent of samples collected from sites receiving treated wastewater had nitrate concentrations greater than 10 mg/L. Rising ground water also appears to have high nitrate concentrations (greater than 10 mg/L) in some reaches of the river. Concentrations of other nitrogen species were much lower than nitrate concentrations in base-flow samples. However, storm events increased concentrations and the proportion of organic nitro

  15. An Assessment of Habitat Quality Using Dissolved Oxygen Concentrations in Floodplain Water Bodies in Relation to River Flow and Mainstem Connectivity

    NASA Astrophysics Data System (ADS)

    Stofleth, J.; Andrews, E. S.; White, J. Q.

    2011-12-01

    The floodplains of the Apalachicola River, Florida include an intricate network of sloughs, lakes and wetlands. These floodplain water bodies provide essential spawning and nursery areas for a diverse array of aquatic organisms. The frequency and duration of Apalachicola River flows sufficient to hydraulically connect and thereby activate these floodplain features has decreased over time due to upstream dams, diversions, and modification to the channel geometry (incision and widening). The main objective of this study is to characterize the relationship between a key water quality parameter, dissolved oxygen (DO), to the hydraulic connectivity of the ecologically-important large slough systems within the Apalachicola River floodplain over a range of flow conditions. When DO concentrations drop, the quality of habitat for fish, invertebrates and other aquatic organisms are impacted. Hydraulic connection between the river and the floodplain sloughs contributes markedly to DO levels in the sloughs. To characterize the relationship between hydraulic connectivity and water quality, water level, DO, and temperature data were continuously monitored within four (4) major floodplain sloughs, one (1) oxbow lake, and mainstem (control) from August 2009 to January 2011. A comparison was made between statistically representative DO concentrations (daily mean, diurnal range, daily minimum and maximum) for each site and in the river. River discharge was estimated at each site from nearby gages. By examining distinct changes in DO signatures with increasing flow, it was possible to determine the approximate flow at which the sloughs and oxbow lakes begin to become activated or hydraulically connected (flowing condition) to the mainstem of the Apalachicola River, and at what flow rates these floodplain wetlands become fully connected. Based on this data, we drew conclusions about the availability of suitable habitat for native fish species in these slough systems across a range of Apalachicola River flow conditions. We also reviewed the historic flow record to infer how habitat availability has likely changed over time in response to a decline in the frequency of hydraulic connection between the river and its floodplain sloughs.

  16. Temporal and spatial changes in dissolved organic carbon concentration and fluorescence intensity of fulvic acid like materials in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Terajima, Tomomi; Moriizumi, Mihoko

    2013-02-01

    SummaryDissolved organic carbon (DOC) such as humic substances are key to understanding the aquatic environment in catchments, because they, containing a large number of phenolic and carboxylic acid groups, adsorb many kinds of inorganic materials and also affect nutrition and carbon transport in catchments. To understand the detailed DOC dynamics, we conducted hydrological observations at mountainous headwater catchments dominated by different vegetation types (planted evergreen coniferous forest of 1.29 ha and natural deciduous broadleaf forest of 1.28 ha). The relationship between DOC concentrations and fluorescence intensity of fulvic acid-like materials (F-FAM) were positively correlated in both catchments but different between soil extracts, baseflow, and near surface flow represented by biomat flow. The ratios of change in F-FAM to that in DOC concentration (F-FAM/DOC) were higher in the baseflow (about 6 in both catchments) and lower in the soil extracts (about 4.5 in both catchments, respectively). However, the relationship in stormflow was distributed between the trends of baseflow and soil extracts. The higher F-FAM/DOC in baseflow may thus indicate that DOC (and FAM) in groundwater discharge mainly contributed to the stream flow, and the stormflow mainly reflect subsurface flow through soil during most rainstorms. In contrast, a high F-FAM/DOC ratio (>6) appeared in the stormflow of both catchments especially during large storms of short duration and high intensity following a dry antecedent period. The F-FAM/DOC in biomat flow developing distinctly in the coniferous catchment was high (about 6.5). Thus, rapid shallow subsurface flow through the biomat or near-surface of slopes might explain the unique transport dynamics of DOC and FAM in stormflows with the high F-FAM/DOC ratio. These results imply that the DOC and FAM relationship responds variably depending on both the distribution of soil organic matter and rainwater flow paths in steep slopes as well as on storm size and characteristics.

  17. Characterizing the production and retention of dissolved iron as Fe(II) across a natural gradient in chlorophyll concentrations in the Southern Drake Passage - Final Technical Report

    SciTech Connect

    Katherine Barbeau

    2007-04-10

    Recent mesoscale iron fertilization studies in the Southern Ocean (e.g. SOIREE, EisenEx, SOFeX) have demonstrated the importance of iron as a limiting factor for phytoplankton growth in these high nutrient, low-chlorophyll (HNLC) waters. Results of these experiments have demonstrated that factors which influence the biological availability of the iron supplied to phytoplankton are crucial in bloom development, longevity, and generation of carbon export flux. These findings have important implications for the future development of iron fertilization protocols to enhance carbon sequestration in high-latitude oceans. In particular, processes which lead to the mobilization and retention of iron in dissolved form in the upper ocean are important in promoting continued biological availability of iron. Such processes can include photochemical redox cycling, which leads to the formation of soluble reduced iron, Fe(II), within iron-enriched waters. Creation of effective fertilization schemes will thus require more information about Fe(II) photoproduction in Southern Ocean waters as a means to retain new iron within the euphotic zone. To contribute to our knowledge base in this area, this project was funded by DOE with a goal of characterizing the production and retention of dissolved Fe as Fe(II) in an area of the southern Drake Passage near the Shackleton Transverse Ridge, a region with a strong recurrent chlorophyll gradient which is believed to be a site of natural iron enrichment in the Southern Ocean. This area was the focus of a multidisciplinary NSF/OPP-funded investigation in February 2004 (OPP02-30443, lead PI Greg Mitchell, SIO/UCSD) to determine the influence of mesoscale circulation and iron transport with regard to the observed patterns in sea surface chlorophyll in the region near the Shackleton Transverse Ridge. A number of parameters were assessed across this gradient in order to reveal interactions between plankton community structure and iron distributions. As a co-PI in the NSF/OPP-funded project, I was responsible for iron addition incubation and radiotracer experiments, and analysis of iron chemistry, including iron-organic speciation. This final technical report describes the results of my DOE funded project to analyse reduced iron species using an FeLume flow injection analysis chemiluminescence system as an extension of my work on the NSF/OPP project. On the cruise in 2004, spatial and temporal gradients in Fe(II) were determined, and on-board incubations were conducted to study Fe(II) lifetime and production. Following the cruise a further series of experiments was conducted in my laboratory to study Fe(II) lifetimes and photoproduction under conditions typical of high latitude waters. The findings of this study suggest that, in contrast to results observed during mesoscale iron addition experiments, steady-state levels of Fe(II) are likely to remain low (below detection) even within a significant gradient in dissolved Fe concentrations produced as a result of natural iron enrichment processes. Fe(II) is likely to be produced, however, as a reactive intermediate associated with photochemical reactions in surface waters. While Fe(II) lifetimes measured in the field in this study were commensurate with those determined in previously published Southern Ocean work, Fe(II) lifetimes reflective of realistic Southern Ocean environmental conditions have proven difficult to determine in a laboratory setting, due to contamination by trace levels of H2O2. Laboratory experiments demonstrated that direct ligand-to-metal charge transfer reactions of strong Fe(III)-organic complexes do appear to be a viable source of available Fe(II) in Antarctic waters, and further studies are needed to characterize the temperature dependence of this phenomenon.

  18. Importance of Dissolved Neutral Hg-Sulfides, Energy Rich Organic Matter and total Hg Concentrations for Methyl Mercury Production in Sediments

    NASA Astrophysics Data System (ADS)

    Drott, A.; Skyllberg, U.

    2007-12-01

    Methyl mercury (MeHg) is the mercury form that biomagnifies to the greatest extent in aquatic food webs. Therefore information about factors determining MeHg concentrations is critical for accurate risk assessment of contaminated environments. The concentration of MeHg in wetlands and sediments is the net result of: 1) methylation rates, 2) demethylation rates, and 3) input/output processes. In this study, the main controls on Hg methylation rates and total concentrations of MeHg, were investigated at eight sites in Sweden with sediments that had been subjected to local Hg contamination either as Hg(0), or as phenyl-Hg. Sediments were selected to represent a gradient in total Hg concentration, temperature climate, salinity, primary productivity, and organic C content and quality. Most sediments were high in organic matter content due to wood fibre efflux from pulp and paper industry. The pore water was analysed for total Hg, MeHg, DOC, H2S(aq), pH, DOC, Cl and Br. The chemical speciation of Hg(II) and MeHg in pore water was calculated using equilibrium models. Potential methylation and demethylation rates in sediments were determined in incubation experiments at 23 C under N2(g) for 48 h, after addition of isotopically enriched 201Hg(II) and Me204Hg. In all surface (0-20 cm) sediments there was a significant (p<0.001) positive relationship between the experimentally determined specific potential methylation rate constant (Km, day-1) and % MeHg (concentrations of MeHg normalized to total Hg) in the sediment. This indicates that MeHg production overruled degradation and input/output processes of MeHg in surface sediments, and that % MeHg in surface sediments may be used as a proxy for net production of MeHg. To our knowledge, these are the first data showing significant positive relationships between short term (48 h) MeHg production and longer term accumulation of MeHg, across a range of sites with different properties (1). If MeHg was not normalized to total Hg, the relationship was not significant. For sub-sets of brackish waters (p<0.001, n=23), southern, high-productivity freshwaters (p<0.001, n=20) as well as northern, low-productivity freshwater (p=0.048, n=6), the sum of neutral Hg-sulfides [Hg(SH)20 (aq)] and [HgS0 (aq)] in the sediment pore water was significantly, positively correlated with both the potential methylation rate constant (Km) and total MeHg concentrations (2). This indicates that methylating sulphate reducing bacteria passively take up neutral Hg-sulfides, which are transformed to MeHg. Differences in slopes of the relationships were explained by differences in primary productivity and availability of energy-rich organic matter to methylating bacteria. High primary productivity at southern freshwater sites, reflected by a low C/N ratio (large contribution from free living algae and bacteria) in the sediment and a high annual temperature sum, resulted in high methylation rates. In conclusion, concentrations of neutral Hg-sulfides and availability of energy rich organic matter, but also total Hg concentrations in sediments are important factors behind net production and accumulation of MeHg . References: (1) Drott et. al. submitted, (2) Drott, A.; Lambertsson, L.; Bjrn, E.; Skyllberg, U. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environmental Science & Technology 2007, 41, 2270-2276.

  19. Evaluation of high-frequency mean streamwater transit-time estimates using groundwater age and dissolved silica concentrations in a small forested watershed

    USGS Publications Warehouse

    Peters, Norman E.; Burns, Douglas A.; Aulenbach, Brent T.

    2014-01-01

    Many previous investigations of mean streamwater transit times (MTT) have been limited by an inability to quantify the MTT dynamics. Here, we draw on (1) a linear relation (r 2 = 0.97) between groundwater 3H/3He ages and dissolved silica (Si) concentrations, combined with (2) predicted streamwater Si concentrations from a multiple-regression relation (R 2 = 0.87) to estimate MTT at 5-min intervals for a 23-year time series of streamflow [water year (WY) 1986 through 2008] at the Panola Mountain Research Watershed, Georgia. The time-based average MTT derived from the 5-min data was ~8.4 ± 2.9 years and the volume-weighted (VW) MTT was ~4.7 years for the study period, reflecting the importance of younger runoff water during high flow. The 5-min MTTs are normally distributed and ranged from 0 to 15 years. Monthly VW MTTs averaged 7.0 ± 3.3 years and ranged from 4 to 6 years during winter and 8–10 years during summer. The annual VW MTTs averaged 5.6 ± 2.0 years and ranged from ~5 years during wet years (2003 and 2005) to >10 years during dry years (2002 and 2008). Stormflows are composed of much younger water than baseflows, and although stormflow only occurs ~17 % of the time, this runoff fraction contributed 39 % of the runoff during the 23-year study period. Combining the 23-year VW MTT (including stormflow) with the annual average baseflow for the period (~212 mm) indicates that active groundwater storage is ~1,000 mm. However, the groundwater storage ranged from 1,040 to 1,950 mm using WY baseflow and WY VW MTT. The approach described herein may be applicable to other watersheds underlain by granitoid bedrock, where weathering is the dominant control on Si concentrations in soils, groundwater, and streamwater.

  20. Augmented rates of respiration and efficient nitrogen fixation at nanomolar concentrations of dissolved O2 in hyperinduced Azoarcus sp. strain BH72.

    PubMed Central

    Hurek, T; Reinhold-Hurek, B; Turner, G L; Bergersen, F J

    1994-01-01

    Azoarcus sp. strain BH72 is an aerobic diazotrophic bacterium that was originally found as an endophyte in Kallar grass. Anticipating that these bacteria are exposed to dissolved O2 concentrations (DOCs) in the nanomolar range during their life cycle, we studied the impact of increasing O2 deprivation on N2 fixation and respiration. Bacteria were grown in batch cultures, where they shifted into conditions of low pO2 upon depletion of O2 by respiration. During incubation, specific rates of respiration (qO2) and efficiencies of carbon source utilization for N2 reduction increased greatly, while the growth rate did not change significantly, a phenomenon that we called "hyperinduction." To evaluate this transition from high- to low-cost N2 fixation in terms of respiratory kinetics and nitrogenase activities at nanomolar DOC, bacteria which had shifted to different gas-phase pO2s in batch cultures were subjected to assays using leghemoglobin as the O2 carrier. As O2 deprivation in batch cultures proceeded, respiratory Km (O2) decreased and Vmax increased. Nitrogenase activity at nanomolar DOC increased to a specific rate of 180 nmol of C2H4 min-1 mg of protein-1 at 32 nM O2. Nitrogenase activity was proportional to respiration but not to DOC in the range of 12 to 86 nM O2. Respiration supported N2 fixation more efficiently at high than at low respiratory rates, the respiratory efficiency increasing from 0.14 to 0.47 mol of C2H4 mol of O2 consumed-1. We conclude that (i) during hyperinduction, strain BH72 used an increasing amount of energy generated by respiration for N2 fixation, and (ii) these bacteria have a high respiratory capacity, enabling them to develop ecological niches at very low pO2, in which they may respire actively and fix nitrogen efficiently at comparatively high rates. PMID:8045903

  1. Flow-adjusted trends in dissolved selenium load and concentration in the Gunnison and Colorado Rivers near Grand Junction, Colorado, water years 1986--2008

    USGS Publications Warehouse

    Mayo, John W.; Leib, Kenneth J.

    2012-01-01

    As a result of elevated selenium concentrations, many western Colorado rivers and streams are on the U.S. Environmental Protection Agency 2010 Colorado 303(d) list, including the main stem of the Colorado River from the Gunnison River confluence to the Utah border. Selenium is a trace metal that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other adverse impacts in birds and fish, including several threatened and endangered fish species. Salinity in the upper Colorado River has been the focus of source-control efforts for many years. Although salinity loads and concentrations have been previously characterized at the U.S. Geological Survey (USGS) streamflow-gaging stations at the Gunnison River near Grand Junction, Colo., and at the Colorado River near the Colorado-Utah State line, trends in selenium load and concentration at these two stations have not been studied. The USGS, in cooperation with the Bureau of Reclamation and the Colorado River Water Conservation District, evaluated dissolved selenium (herein referred to as "selenium") load and concentration trends at these two sites to inform decision makers on the status and trends of selenium. This report presents results of the evaluation of trends in selenium load and concentration for two USGS streamflow-gaging stations: the Gunnison River near Grand Junction, Colo. ("Gunnison River site"), USGS site 09152500, and the Colorado River near Colorado-Utah State line ("Colorado River site"), USGS site 09163500. Flow-adjusted selenium loads were estimated for the beginning water year (WY) of the study, 1986, and the ending WY of the study, 2008. The difference between flow-adjusted selenium loads for WY 1986 and WY 2008 was selected as the method of analysis because flow adjustment removes the natural variations in load caused by changes in mean-daily streamflow, emphasizing human-caused changes in selenium load and concentration. Overall changes in human-caused effects in selenium loads and concentrations during the period of study are of primary interest to the cooperators. Selenium loads for each of the 2 water years were calculated by using normalized mean-daily streamflow, measured selenium concentration, standard linear regression techniques, and data previously collected at the two study sites. Mean-daily streamflow was normalized for each site by averaging the daily streamflow for each day of the year over the 23-year period of record. Thus, for the beginning and ending water years, estimations could be made of loads that would have occurred without the effect of year-to-year streamflow variation. The loads thus calculated are illustrative of the change in loads between water years 1986 and 2008, and are not the actual loads that occurred in those 2 water years. The estimated 50th and 85th percentile selenium concentrations associated with the selenium loads were also calculated for WY 1986 and WY 2008 at each site. Time-trends in selenium concentration at the two sites were charted by using regression techniques for partial residuals for the entire study period (WY 1986 through WY 2008). Annual selenium load for the Gunnison River site was estimated to be 23,196 pounds for WY 1986 and 16,560 pounds for WY 2008, a 28.6 percent decrease. Lower and upper 95-percent confidence levels for WY 1986 annual load were 22,360 and 24,032 pounds. Lower and upper 95-percent confidence levels for WY 2008 annual load were 15,724 and 17,396 pounds. Estimated 50th percentile daily selenium concentrations decreased from 6.41 to 4.57 micrograms/liter from WY 1986 to WY 2008, whereas estimated 85th percentile daily selenium concentrations decreased from 7.21 to 5.13 micrograms/liter from WY 1986 to WY 2008. Annual selenium load for the Colorado River site was estimated to be 56,587 pounds for WY 1986 and 34,344 pounds for WY 2008, a 39.3 percent decrease. Lower and upper 95-percent confidence levels for WY 1986 annual load were 53,785 and 59,390 pounds. Lower and upper 95-percent confidence levels for WY 2008 annual load were 31,542 and 3

  2. The Measurement of Dissolved Oxygen

    ERIC Educational Resources Information Center

    Thistlethwayte, D.; And Others

    1974-01-01

    Describes an experiment in environmental chemistry which serves to determine the dissolved oxygen concentration in both fresh and saline water. Applications of the method at the undergraduate and secondary school levels are recommended. (CC)

  3. Vegetation, soil property and climatic controls over pore water dissolved organic carbon concentrations in a blanket peatland hosting a wind farm

    NASA Astrophysics Data System (ADS)

    Armstrong, Alona; Waldron, Susan; Whitaker, Jeanette; Ostle, Nick

    2013-04-01

    Rising dissolved organic carbon concentrations ([DOC]) in surface waters have prompted much research to elucidate the cause(s). Given that increases in [DOC] may indicate a destabalisation of carbon stores, increase water treatment costs and affect rates of primary production and respiration in aquatic ecosystems, identifying the causes of the increase is important. Research has demonstrated that [DOC] in peatlands are influenced by vegetation, soil property and climatic controls, including water table height, temperature and plant functional type (PFT). In this paper we present data from Black Law Wind Farm, Scotland, where we examined the effect of a predicted wind turbine-induced microclimatic gradient and PFT on pore water [DOC]. Moreover, we determined the role of vegetation, soil property and climatic variables as predictors of the variation in [DOC]. We measured [DOC] at 48 plots within Black Law Wind Farm at monthly intervals from May 2011 to April 2012. Four sampling sites were located along a predicted wind turbine-induced microclimatic gradient. At each site four blocks were established each with plots in areas dominated by mosses, sedges and shrubs. Plant biomass and PFT (vegetation factors); soil moisture, water table height, peat depth, C content, nitrogen (N) content and C:N (soil properties); and soil temperature and photosynthetically active radiation (PAR) (climatic variables) were measured. An analysis of variance (ANOVA) model based on the microclimatic gradient site, season, site*season and PFT*season explained 55 % of the variation in [DOC]. [DOC] generally increased along the predicted microclimatic gradient and increased from winter through to autumn. A parsimonious ANOVA model using the vegetation, soil property and climatic explanatory data explained 53 % of the variation in [DOC]. Published studies (Baidya Roy and Traiteur 2010; Zhou, Tian et al. 2012) and preliminary results from this study suggest that a wind turbine-induced microclimatic effect may exist. Consequently, given that the climatic variables, factors influenced by changes in the climate, and their interactions affect [DOC] fluxes, the operational effects of wind farms on peatland ecosystems may need to be taken into account when considering their full life cycle carbon budget. Baidya Roy, S. and J. J. Traiteur (2010). Impacts of wind farms on surface air temperatures, Proceedings of the National Academy of Sciences, 109: 15679-15684. Limpens, J. et al. (2008). Peatlands and the carbon cycle: from local processes to global implications - a synthesis, Biogeosciences, 5(5): 1475-1491. Zhou, L., et al. (2012). Impacts of wind farms on land surface temperature, Nature Climate Change, 2: 539-543.

  4. Assessment of the Impact of Climate Change and Land Management Change on Soil Organic Carbon Content, Leached Carbon Rates and Dissolved Organic Carbon Concentrations

    NASA Astrophysics Data System (ADS)

    Stergiadi, Maria; de Nijs, Ton; van der Perk, Marcel; Bonten, Luc

    2014-05-01

    Climate change is projected to significantly affect the concentrations and mobility of contaminants, such as metals and pathogens, in soil, groundwater and surface water. Climate- and land management-induced changes in soil organic carbon and dissolved organic carbon levels may promote the transport of toxic substances, such as copper and cadmium, and pathogenic microorganisms, ultimately affecting the exposure of humans and ecosystems to these contaminants. In this study, we adopted the Century model to simulate past (1900 - 2010), present, and future (2010 - 2100) SOC and DOC levels for a sandy and a loamy soil typical for Central and Western European conditions under three land use types (forest, grassland and arable land) and several future scenarios addressing climate change and land management change. The climate scenarios were based on the KNMI'06 G+ and W+ scenarios from the Royal Dutch Meteorological Institute. The simulated current SOC levels were compared to observed SOC values derived from various Dutch soil databases, taking into account the different soil depths the simulated and observed values refer to. The simulated SOC levels were generally in line with the observed values for the different kinds of soil and land use types. Climate change scenarios resulted in a decrease in both SOC and DOC for the grassland systems, whereas in the arable land (on sandy soil) and in the forest systems, SOC was found to increase and DOC to decrease. A sensitivity analysis of the individual effects of changes in temperature and precipitation showed that the effect of temperature predominates over the effect of precipitation. A reduction in the application rates of artificial fertilizers leads to a decrease in the SOC stocks and the leached carbon rates in the arable land systems, but has a negligible effect on SOC and DOC levels of the grassland systems. This study demonstrated the ability of the Century model to simulate climate change and agricultural management effects on SOC dynamics. The following step of this study will involve the translation of the soil organic matter pools as simulated with Century model, into pools of different metal binding capacity to be used for the metal partitioning and leaching modelling.

  5. Impact of minimum daily dissolved oxygen concentration on performance of hybrid female channel catfish Ictalurus punctatus x male blue catfish I. furcatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid Catfish (female Channel Catfish Ictalurus punctatus X male Blue Catfish I. furcatus) were reared during two years as single-batch crops under two different dissolved oxygen (DO) regimes each year; a high-DO (control) treatment in which the minimum daily DO was maintained above 3.8 ppm during ...

  6. Comparison of the activity of immobilised and freely suspended Streptomyces coelicolor A3(2).

    PubMed

    Ozergin-Ulgen, K; Mavituna, F

    1994-04-01

    Streptomyces coelicolor was immobilised "naturally" in porous support materials and its growth, glucose uptake and actinorhodin production were compared with freely suspended culture using defined and complex media. When the defined medium was used, the most pronounced difference between the two cultures was the accumulation of actinorhodin extracellularly in freely suspended and intracellularly in immobilised cultures. In the complex medium, however, actinorhodin was excreted by both cultures. In addition, the complex medium yielded 50 times as much actinorhodin compared to the defined medium. Further increases in product concentration were obtained by repeated batches of immobilised culture, which showed stability for at least 3 months. PMID:7764831

  7. Application of isotope dilution method for measuring bioavailability of organic contaminants sorbed to dissolved organic matter (DOM).

    PubMed

    Delgado-Moreno, Laura; Wu, Laosheng; Gan, Jay

    2015-08-01

    Natural waters such as surface water and sediment porewater invariably contain dissolved organic matter (DOM). Association of strongly hydrophobic contaminants (HOCs) with DOM leads to decreased toxicity and bioavailability, but bioavailability of DOM-sorbed HOCs is difficult to measure. Current methods to estimate bioavailability of HOCs in water are based on only the freely dissolved concentration (Cfree). The ignorance of the exchangeable fraction of HOCs sorbed on DOM may result in an underestimation of the toxicity potential of HOCs to aquatic organisms. Here we explore the applicability of an isotope dilution method (IDM) to measuring the desorption fraction of DOM-sorbed pyrene and bifenthrin and determining their exchangeable pool (E) as an approximation of bioavailability. E values, expressed as percentage of the total concentration, ranged between 0.80 and 0.92% for pyrene and 0.74 and 0.85% for bifenthrin, depending primarily on the amount of chemical in the freely dissolved form. However, between 34 and 78% of the DOM-sorbed pyrene was exchangeable. This fraction ranged between 23% and 82% for bifenthrin. The ability of IDM to predict bioavailability was further shown from a significant relationship (r(2)>0.72, P<0.0001) between E and bioaccumulation into Daphnia magna. Therefore, IDM may be used to improve the bioavailability measurement and risk assessment of HOCs in aquatic systems. PMID:26037097

  8. METHOD OF DISSOLVING URANIUM METAL

    DOEpatents

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  9. Predicting Polycyclic Aromatic Hydrocarbon Concentrations in Resident Aquatic Organisms Using Passive Samplers and Partial Least-Squares Calibration

    PubMed Central

    2015-01-01

    The current work sought to develop predictive models between time-weighted average polycyclic aromatic hydrocarbon (PAH) concentrations in the freely dissolved phase and those present in resident aquatic organisms. We deployed semipermeable membrane passive sampling devices (SPMDs) and collected resident crayfish (Pacifastacus leniusculus) at nine locations within and outside of the Portland Harbor Superfund Mega-site in Portland, OR. Study results show that crayfish and aqueous phase samples collected within the Mega-site had PAH profiles enriched in high molecular weight PAHs and that freely dissolved PAH profiles tended to be more populated by low molecular weight PAHs compared to crayfish tissues. Results also show that of several modeling approaches, a two-factor partial least-squares (PLS) calibration model using detection limit substitution provided the best predictive power for estimating PAH concentrations in crayfish, where the model explained ?72% of the variation in the data set and provided predictions within ?3 of measured values. Importantly, PLS calibration provided a means to estimate PAH concentrations in tissues when concentrations were below detection in the freely dissolved phase. The impact of measurements below detection limits is discussed. PMID:24800862

  10. Freely propagating open premixed turbulent flames stabilized by swirl

    SciTech Connect

    Chan, C.K.; Lau, K.S.; Chin, W.K. ); Cheng, R.K. )

    1991-12-01

    A novel means has been developed for using weak swirl to stabilize freely propagating open premixed turbulent flames (swirl numbers between 0.05 to 0.3). By injecting a small amount of air tangentially into the co-flow of a concentric burner, stationary flames can be maintained above the burner exit for a large range of mixture, turbulence and flow conditions. The absence of physical surfaces in the vicinity of the flame provides free access to laser diagnostics. Laser Doppler anemometry and laser Mie scattering measurements of four flames with and without incident turbulence show that their features are typical of wrinkled laminar flames. The most distinct characteristics is that flame stabilization does not rely on flow recirculation. Centrifugal force induced by swirl causes flow divergence, and the flame is maintained at where the local mass flux balances the burning rate. The flame speeds can be estimated based on the centerline velocity vector, which is locally normal to the flame brush. This flame geometry is the closest approximation to the 1-D planar flame for determining fundamental properties to advance turbulent combustion theories. 18 refs.

  11. Bioavailability of benzo(a)pyrene and dehydroabietic acid from a few lake waters containing varying dissolved organic carbon concentrations to Daphnia magna

    SciTech Connect

    Oikari, A.; Kukkonen, J. )

    1990-07-01

    Dissolved organic carbon (DOC) in natural waters consists of a great variety of organic molecules. Some of these molecules have been identified but most of them cannot be identified. This unidentified group of heterogeneous organic macromolecules is considered as humic substances. The role of humic substances in water chemistry and in aquatic toxicology is receiving increasing attention. The effects of DOC on the bioavailability of organic pollutants have been demonstrated in several studies. A decreased bioavailability has been demonstrated in most cases. Both the quantity and the quality of DOC are suggested determinants of this apparent ecotoxicological buffer of inland waters worldwide. In this study, the authors measured the bioaccumulation of benzo(a)pyrene (BaP) and dehydroabietic acid (DHAA) in Daphnia magna using a wide range of naturally occurring DOC levels. Another objective was to associate the reduced bioavailability with the chemical characteristics of water and DOC.

  12. Fluctuation of dissolved heavy metal concentrations in the leachate from anaerobic digestion of municipal solid waste in commercial scale landfill bioreactors: The effect of pH and associated mechanisms.

    PubMed

    Xie, S; Ma, Y; Strong, P J; Clarke, W P

    2015-12-15

    Heavy metals present in landfill leachate have infrequently been related to complete anaerobic degradation municipal solid waste (MSW) due to discrete ages of deposited MSW layers and leachate channelling in landfills. In this study, anaerobic digestion of MSW was performed in two enclosed 1000 tonne bioreactors using a unique flood and drain process. Leachates were characterised in terms of pH, soluble chemical oxygen demand, volatile fatty acids (VFAs), ammonium nitrogen and heavy metals over the entire course of digestion. All parameters, including pH, fluctuated during acidogenesis, acetogenesis and methanogenesis, which strongly impacted on the dynamics of dissolved heavy metal concentrations. The simulation of dissolution and precipitation processes indicated that metal sulphide precipitation was not a factor as metal concentrations exceeded solubility limits. The correlation of pH and dissolved heavy metal concentrations indicated that other, mechanisms were involved in the homogenised conditions within the bioreactors. Beside dissolution and precipitation, the main processes most likely involved in metal distributions were adsorption (Zn, Cu, Ni, Pb and Cd), complexation (Cr) or combinations of both process (As and Co). PMID:26259097

  13. Documentation of hydrochemical-facies data and ranges of dissolved-solids concentrations for the northern Atlantic Coastal Plain aquifer system, New Jersey, Delaware, Maryland, Virginia and North Carolina supplement to Professional paper 1404-L

    USGS Publications Warehouse

    Meisler, Harold; Knobel, L.L.

    1994-01-01

    Hydrochemical-facies data and ranges of dissolved- solids concentrations used to construct hydrochemical-facies maps and sections for U.S. Geological Survey Professional Paper 1404-L have not been previously published. In this report, the data are contained on a 3-1/2 high-density diskette in a file presented in American International Standard Code for Information Exchange (ASCII) format. The file requires about 0.2 megabyte of disk space on an IBM-compatible microcomputer using the MS-DOS operating system.

  14. Variability of the dissolved nutrient (N, P, Si) concentrations in the Bay of Annaba in relation to the inputs of the Seybouse and Mafragh estuaries.

    PubMed

    Ounissi, Makhlouf; Ziouch, Omar-Ramzi; Aounallah, Ouafia

    2014-03-15

    Dissolved inorganic nitrogen (DIN), phosphate (PO?) and silicic acid (Si(OH)?) loads from the Seybouse and the Mafragh estuaries into the Bay of Annaba, Algeria, were assessed at three stations of the Bay over three years. The Seybouse inputs had high levels of DIN and PO?, in contrast to the Mafragh estuary's near-pristine inputs; Si(OH)? levels were low in both estuaries. The DIN:PO? molar ratios were over 30 in most samples and the Si(OH)4:DIN ratio was less than 0.5 in the Seybouse waters, but nearly balanced in the Mafragh. The specific fluxes of Si-Si(OH)? (400-540 kg Si km? yr?) were comparable in the two catchments, but those of DIN were several-fold higher in the Seybouse (373 kg N km? yr?). The inner Bay affected by the Seybouse inputs had high levels of all nutrients, while the Mafragh plume and the outer marine station were less enriched. PMID:24486043

  15. Plant induced changes in concentrations of caesium, strontium and uranium in soil solution with reference to major ions and dissolved organic matter.

    PubMed

    Takeda, Akira; Tsukada, Hirofumi; Takaku, Yuichi; Akata, Naofumi; Hisamatsu, Shun'ichi

    2008-06-01

    For a better understanding of the soil-to-plant transfer of radionuclides, their behavior in the soil solution should be elucidated, especially at the interface between plant roots and soil particles, where conditions differ greatly from the bulk soil because of plant activity. This study determined the concentration of stable Cs and Sr, and U in the soil solution, under plant growing conditions. The leafy vegetable komatsuna (Brassica rapa L.) was cultivated for 26 days in pots, where the rhizosphere soil was separated from the non-rhizosphere soil by a nylon net screen. The concentrations of Cs and Sr in the rhizosphere soil solution decreased with time, and were controlled by K+NH(4)(+) and Ca, respectively. On the other hand, the concentration of U in the rhizosphere soil solution increased with time, and was related to the changes of DOC; however, this relationship was different between the rhizosphere and non-rhizosphere soil. PMID:18164108

  16. Extracellular wire tetrode recording in brain of freely walking insects.

    PubMed

    Guo, Peiyuan; Pollack, Alan J; Varga, Adrienn G; Martin, Joshua P; Ritzmann, Roy E

    2014-01-01

    Increasing interest in the role of brain activity in insect motor control requires that we be able to monitor neural activity while insects perform natural behavior. We previously developed a technique for implanting tetrode wires into the central complex of cockroach brains that allowed us to record activity from multiple neurons simultaneously while a tethered cockroach turned or altered walking speed. While a major advance, tethered preparations provide access to limited behaviors and often lack feedback processes that occur in freely moving animals. We now present a modified version of that technique that allows us to record from the central complex of freely moving cockroaches as they walk in an arena and deal with barriers by turning, climbing or tunneling. Coupled with high speed video and cluster cutting, we can now relate brain activity to various parameters of the movement of freely behaving insects. PMID:24747699

  17. Extracellular Wire Tetrode Recording in Brain of Freely Walking Insects

    PubMed Central

    Guo, Peiyuan; Pollack, Alan J.; Varga, Adrienn G.; Martin, Joshua P.; Ritzmann, Roy E.

    2014-01-01

    Increasing interest in the role of brain activity in insect motor control requires that we be able to monitor neural activity while insects perform natural behavior. We previously developed a technique for implanting tetrode wires into the central complex of cockroach brains that allowed us to record activity from multiple neurons simultaneously while a tethered cockroach turned or altered walking speed. While a major advance, tethered preparations provide access to limited behaviors and often lack feedback processes that occur in freely moving animals. We now present a modified version of that technique that allows us to record from the central complex of freely moving cockroaches as they walk in an arena and deal with barriers by turning, climbing or tunneling. Coupled with high speed video and cluster cutting, we can now relate brain activity to various parameters of the movement of freely behaving insects. PMID:24747699

  18. Passive Sampling to Measure Baseline Dissolved Persistent Organic Pollutant Concentrations in the Water Column of the Palos Verdes Shelf Superfund Site

    EPA Science Inventory

    Passive sampling was used to deduce water concentrations of persistent organic pollutants (POPs) in the vicinity of a marine Superfund site on the Palos Verdes Shelf, California, USA. Pre-calibrated solid phase microextraction (SPME) fibers and polyethylene (PE) strips that were...

  19. Passive sampling to measure baseline dissolved persistent organic pollutant concentrations in the water column of the Palos Verdes Shelf Superfund site.

    PubMed

    Fernandez, Loretta A; Lao, Wenjian; Maruya, Keith A; White, Carmen; Burgess, Robert M

    2012-11-01

    Passive sampling was used to deduce water concentrations of persistent organic pollutants (POPs) in the vicinity of a marine Superfund site on the Palos Verdes Shelf, California, USA. Precalibrated solid phase microextraction (SPME) fibers and polyethylene (PE) strips that were preloaded with performance reference compounds (PRCs) were codeployed for 32 d along an 11-station gradient at bottom, surface, and midwater depths. Retrieved samplers were analyzed for DDT congeners and their breakdown products (DDE, DDD, DDMU, and DDNU) and 43 PCB congeners using GC-EI- and NCI-MS. PRCs were used to calculate compound-specific fractional equilibration achieved in situ for the PE samplers, using both an exponential approach to equilibrium (EAE) and numerical integration of Fickian diffusion (NI) models. The highest observed concentrations were for p,p'-DDE, with 2200 and 990 pg/L deduced from PE and SPME, respectively. The difference in these estimates could be largely attributed to uncertainty in equilibrium partition coefficients, unaccounted for disequilibrium between samplers and water, or different time scales over which the samplers average. The concordance between PE and SPME estimated concentrations for DDE was high (R(2) = 0.95). PCBs were only detected in PE samplers, due to their much larger size. Near-bottom waters adjacent to and down current from sediments with the highest bulk concentrations exhibited aqueous concentrations of DDTs and PCBs that exceeded Ambient Water Quality Criteria (AWQC) for human and aquatic health, indicating the need for future monitoring to determine the effectiveness of remedial activities taken to reduce adverse effects of contaminated surface sediments. PMID:23062073

  20. Surface traps for freely rotating ion ring crystals

    NASA Astrophysics Data System (ADS)

    Wang, Po-Jen; Li, Tongcang; Noel, C.; Chuang, A.; Zhang, Xiang; Hffner, H.

    2015-10-01

    Rings of trapped ions are an attractive system to study quantum-many body dynamics with closed boundary conditions as well as symmetry breaking. One of the biggest challenges towards such experiments is to sufficiently suppress rotational imperfections of the trapping potential and to allow for instance freely rotating ring structures. We show how to overcome this challenge with a surface trap design and perform numerical calculations to analyze the consequences of various imperfections in detail. We conclude that trap electrode imperfections, external stray electric fields, and local charging of the trap electrodes can be controlled sufficiently well to allow ion rings to rotate freely even near their rotational ground state.

  1. Corona patterns around inclusions in freely suspended smectic films.

    PubMed

    Harth, K; Stannarius, R

    2009-03-01

    We discuss the structure and physical origin of corona patterns observed around solid or liquid spherical inclusions in freely suspended smectic films. Such patterns are observed when droplets or solid beads of micrometer size are sprayed onto the films. They are found in the smectic C phase and in the smectic A phase above such a smectic C phase, but disappear, for example, at the transition into a lower-temperature smectic B phase. We show that these structures are equivalent to splay domains found in the meniscus of freely suspended films, originating from surface-induced spontaneous splay. PMID:19169722

  2. Energy decay in three-dimensional freely cooling granular gas.

    PubMed

    Pathak, Sudhir N; Jabeen, Zahera; Das, Dibyendu; Rajesh, R

    2014-01-24

    The kinetic energy of a freely cooling granular gas decreases as a power law t(-?) at large times t. Two theoretical conjectures exist for the exponent ?. One based on ballistic aggregation of compact spherical aggregates predicts ?=2d/(d+2) in d dimensions. The other based on Burgers equation describing anisotropic, extended clusters predicts ?=d/2 when 2?d?4. We do extensive simulations in three dimensions to find that while ? is as predicted by ballistic aggregation, the cluster statistics and velocity distribution differ from it. Thus, the freely cooling granular gas fits to neither the ballistic aggregation or a Burgers equation description. PMID:24484165

  3. Acute toxicity of the cationic surfactant C12-benzalkonium in different bioassays: how test design affects bioavailability and effect concentrations.

    PubMed

    Chen, Yi; Geurts, Marc; Sjollema, Sascha B; Kramer, Nynke I; Hermens, Joop L M; Droge, Steven T J

    2014-03-01

    Using an ion-exchange-based solid-phase microextraction (SPME) method, the freely dissolved concentrations of C12-benzalkonium were measured in different toxicity assays, including 1) immobilization of Daphnia magna in the presence or absence of dissolved humic acid; 2) mortality of Lumbriculus variegatus in the presence or absence of a suspension of Organisation for Economic Co-Operation and Development (OECD) sediment; 3) photosystem II inhibition of green algae Chlorella vulgaris; and 4) viability of in vitro rainbow trout gill cell line (RTgill-W1) in the presence or absence of serum proteins. Furthermore, the loss from chemical adsorption to the different test vessels used in these tests was also determined. The C12-benzalkonium sorption isotherms to the different sorbent phases were established as well. Our results show that the freely dissolved concentration is a better indicator of the actual exposure concentration than the nominal or total concentration in most test assays. Daphnia was the most sensitive species to C12-benzalkonium. The acute Daphnia and Lumbriculus tests both showed no enhanced toxicity from possible ingestion of sorbed C12-benzalkonium in comparison with water-only exposure, which is in accordance with the equilibrium partitioning theory. Moreover, the present study demonstrates that commonly used sorbent phases can strongly affect bioavailability and observed effect concentrations for C12-benzalkonium. Even stronger effects of decreased actual exposure concentrations resulting from sorption to test vessels, cells, and sorbent phases can be expected for more hydrophobic cationic surfactants. PMID:24273010

  4. Isotopic Study of the Sources and Cycling of Nitrate and Algae Associated with Low Dissolved Oxygen Concentrations in the San Joaquin River, California

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Wankel, S. D.; Bergamaschi, B.; Fram, M.; Kratzer, C. R.

    2003-12-01

    Fish migration through the deep-water channel in the San Joaquin River near the city of Stockton is inhibited by periodic low oxygen concentrations during the summer and fall. The cause of this condition appears to be decomposition of algae with attendant oxygen consumption. Development of a successful remediation plan requires knowledge of the source areas of algal production, and of the nutrient sources upon which they thrive. To identify the sources of nutrients and algae, samples of seston and water were collected monthly at several river sites during the summers of 2000 and 2001, and along a transect of the entire river-delta-bay system in 2002. These samples were analyzed for major chemical constituents, nitrate d15N, d18O, seston d15N, d13C, and water d18O. Chlorophyll-a and C:N ratios indicate that the seston consisted largely of plankton. The d15N of the plankton usually tracked the d15N of the associated nitrate with about a 5 per mil fractionation in areas of high nitrate concentrations and little or no fractionation in areas of low concentration, as expected for algae using nitrate as a primary nutrient. The d15N of the nitrate was generally between +10 and +15 per mil, which could indicate either denitrification or a nitrate source of animal waste and/or sewage. A multi-isotope approach suggested that the high d15N values were only rarely caused by denitrification, implicating animal waste/sewage as a significant source of nitrate.

  5. Assessing the multisite binding properties of multiple sources of dissolved organic matter at nanomolar copper concentrations using piecewise linear regression and parallel factor analysis of fluorescence quenching.

    PubMed

    Cuss, C W; Guguen, C

    2014-01-01

    This study reports on the development and application of a piecewise linear model for the determination of copper-binding parameters at concentrations in the nanomolar range using fluorescence quenching. L-Tyrosine, Suwannee River natural organic matter, and two leaf leachates with similar fluorescence signatures were used as test compounds, and results were compared with those of the standard Ryan-Weber model. The piecewise model was also applied to and compared with data from an earlier study. Parallel factor analysis (PARAFAC) was used to identify three to five independent fluorophores in each test compound, and copper-binding parameters were estimated for one to three binding sites for each fluorophore. The binding properties of similar and different fluorophores were also compared. The conditional binding strengths (log K') estimated using the piecewise approach were similar to those obtained using the Ryan-Weber approach (p?>?0.05); however, the piecewise linear model provided superior results compared to models based on the Ryan-Weber equation in several ways, including (1) capable of distinguishing more binding sites for a single fluorophore, (2) capable of extracting binding parameters at environmentally relevant, nanomolar concentrations of copper, where fluorescence changes are often observed as enhancement, (3) greater precision over repeated titrations, and (4) no severe underestimation of complexing capacities. Finally, the copper-binding properties of PARAFAC components with similar optical signatures were found to be similar, both in sources with dramatically different and similar total fluorescence signatures. PMID:24327077

  6. Three-phase modeling of polycyclic aromatic hydrocarbon association with pore-water-dissolved organic carbon

    SciTech Connect

    Mitra, S. ); Dickhut, R.M. )

    1999-06-01

    Log-log plots of measured organic carbon-normalized sediment pore-water distribution coefficients (K[prime][sub OC]s) for several polycyclic aromatic hydrocarbons (PAHs) versus their octanol-water partition coefficients (K[prime][sub OW]s) at two sites in the Elizabeth River, Virginia, show large deviations from linearity. Organic-carbon normalized distribution coefficients for these PAHs between sediments and pore waters decreased by more than two orders of magnitude with depth as well. To determine to what extent pore water dissolved and colloidal organic carbon (DOC) was responsible for the observed nonlinearity and decrease in K[prime][sub OC], a three-phase model was used to estimate pore-water PAH-DOC binding coefficients (K[sub DOC]). Partitioning of PAHs to pore-water DOC (i.e., K[sub DOC])enhances the observed dissolved phase PAH concentration, especially for high-K[sub OW] compounds, contributing to the nonlinearity in K[prime][sub OC]-K[sub OW] plots. However, the application of the three-phase partitioning model to these data indicate that, at most, pore-water PAH-DOC binding accounts for one order of magnitude of the observed decrease in K[prime][sub OC] with depth in the sediment bed. The results of this study are consistent with three-phase partitioning theory for hydrophobic organic compounds between sediment organic matter, pore-water DOC, and freely dissolved aqueous phases in natural systems.

  7. Suspended sediments in river ecosystems: Photochemical sources of dissolved organic carbon, dissolved organic nitrogen, and adsorptive removal of dissolved iron

    NASA Astrophysics Data System (ADS)

    Riggsbee, J. Adam; Orr, Cailin H.; Leech, Dina M.; Doyle, Martin W.; Wetzel, Robert G.

    2008-09-01

    We generated suspended sediment solutions using river sediments and river water at concentrations similar to those observed during 1.5 year floods (Q1.5) and a dam removal (˜325 mg L-1) on the Deep River, North Carolina. Suspended sediment solutions were exposed to simulated solar radiation, equivalent to one clear, summer day at the study site (35°N). Concentrations of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), total dissolved nitrogen (TDN), dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), soluble reactive phosphorus (SRP) and total dissolved iron (Fed) were measured before and after exposure. Total dissolved carbon (TDC) budgets for each experiment were produced using DOC and DIC data. Sediment suspensions in the presence of simulated solar radiation were significant sources of dissolved C (119 ± 11 μmol C L-1 d-1; ± values indicate 1 standard error) and DON (1.7 ± 0.5 μmol N L-1 d-1) but not DIN or SRP. Extrapolations through the Deep River water column suggest that suspended sediments in the presence of light represent dissolved organic matter fluxes of 3.92 mmol C m-2 d-1 and 40 μmol N m-2 d-1. Additionally, sediment suspensions lowered river water Fed concentrations immediately (˜24%) and progressively (˜40-90%) in both light and dark treatments. Our research suggests suspended sediments in river ecosystems are potential sources of dissolved organic C and dissolved organic N while effectively removing Fed from the water column.

  8. Regulation of stream water dissolved organic carbon concentrations ([DOC]) during snowmelt in forest streams; the role of discharge, winter climate and memory effects

    NASA Astrophysics Data System (ADS)

    gren, A.; Haei, M.; quist, M.; Buffam, I.; Ottosson-Lfvenius, M.; Kohler, S.; Bishop, K.; Blomkvist, P.; Laudon, H.

    2011-12-01

    Using 15 year stream records from two forested northern boreal catchments, coupled with soil frost experiments in the riparian zone, we demonstrate the complex inter-annual control on [DOC] and export during snowmelt. Stream [DOC] varied by a factor of 2 during those 15 years with no consistent trend. Based on our long-term analysis, we demonstrate, for the first time, that stream water [DOC] is strongly linked to the climatic conditions during the preceding winter, but that there is also a long-term memory effect in the catchment soils, related to the extent of the previous export from the catchment. Hydrology had a first order control on the inter-annual variation in concentrations, and the length of the winter was more important than the memory effect. By removing the effect of discharge on [DOC], using a conceptual hydrological model, we could detect processes that would otherwise have been overshadowed. A short and intense snowmelt gave higher [DOC] in the stream. During a prolonged snowmelt, one soil layer at the time might have been "flushed" from easily exported DOC, resulting in slightly lower stream [DOC] during such years. We found that longer and colder winters resulted in higher [DOC] during the subsequent snowmelt. A soil frost manipulation experiment in the riparian soils of the study catchment showed that the DOC concentrations in the soil water increased with the duration of the soil frost. A high antecedent DOC export during the preceding summer and autumn resulted in lower concentrations during the following spring, indicating a long-term "memory effect" of the catchment soils. In a nearby stream draining mire, we found a different response to hydrology but similar response to climate and memory effect. The inter-annual variation in snowmelt DOC exports was mostly controlled by the amount of runoff, but the variability in [DOC] also exerted a significant control on the exports, accounting for 15% of the variance in exports. We conclude that winter climatic conditions can play a substantial role in controlling stream [DOC] in ways not previously understood. These findings are especially important for northern latitude regions expected to be most affected by climate change. It's difficult to directly translate this to a future climate change prediction. If warmer winters with less insulating snow cover increase the soil frost, the results from the soil frost manipulation experiment then suggest increasing [DOC] in a future climate. At the same time the statistical analysis of the stream records suggest that a shorter and warmer winter would decrease the [DOC]. Our results do, however, highlight the role of winter climate for regulating DOC in areas with seasonally frozen soils which should be considered when resolving the sensitivity of stream [DOC] to global environmental change.

  9. Dissolved pesticide concentrations entering the Sacramento-San Joaquin Delta from the Sacramento and San Joaquin Rivers, California, 2012-13

    USGS Publications Warehouse

    Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle

    2014-01-01

    Surface-water samples were collected from the Sacramento and San Joaquin Rivers where they enter the Sacramento–San Joaquin Delta, and analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected twice per month from May 2012 through July 2013 and from May 2012 through April 2013 at the Sacramento River at Freeport, and the San Joaquin River near Vernalis, respectively. Samples were analyzed by two separate laboratory methods by using gas chromatography with mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). A total of 37 pesticides and degradates were detected in water samples collected during the study (18 herbicides, 11 fungicides, 7 insecticides, and 1 synergist). The most frequently detected pesticides overall were the herbicide hexazinone (detected in 100 percent of the samples); 3,4-dichloroaniline (97 percent), which is a degradate of the herbicides diuron and propanil; the fungicide azoxystrobin (83 percent); and the herbicides diuron (72 percent), simazine (66 percent), and metolachlor (64 percent). Insecticides were rarely detected during the study. Pesticide concentrations varied from below the method detection limits to 984 ng/L (hexazinone). Twenty seven pesticides and (or) degradates were detected in Sacramento River samples, and the average number of pesticides per sample was six. The most frequently detected compounds in these samples were hexazinone (detected in 100 percent of samples), 3,4-dichloroaniline (97 percent), azoxystrobin (88 percent), diuron (56 percent), and simazine (50 percent). Pesticides with the highest detected maximum concentrations in Sacramento River samples included the herbicide clomazone (670 ng/L), azoxystrobin (368 ng/L), 3,4-dichloroaniline (364 ng/L), hexazinone (130 ng/L), and propanil (110 ng/L), and all but hexazinone are primarily associated with rice agriculture. In addition to the twice monthly sampling, surface-water samples were collected from the Sacramento River on 5 consecutive days following a rainfall event in the Sacramento urban area. Samples collected following this event contained an average of 11 pesticides. The insecticides carbaryl, fipronil, and imidacloprid; the herbicide DCPA; and the fungicide imazalil were only detected in the Sacramento River during this storm-runoff event, and two detections of fipronil during this period exceeded the U.S. Environmental Protection Agency Aquatic Life Benchmark (11 ng/L) for chronic toxicity to invertebrates in freshwater. In San Joaquin River samples, 26 pesticides and (or) degradates were detected, and the average number detected per sample was 9. The most frequently detected compounds in these samples were hexazinone and metolachlor (detected in 100 percent of samples); diuron (96 percent); the fungicide boscalid (96 percent); the degradates 3,4-dicloroaniline (92 percent) and NN-(3,4-Dichlorophenyl)-N’-methylurea (DCPMU; 83 percent); simazine (83 percent); and azoxystrobin (75 percent). The pesticides with the highest detected maximum concentrations were hexazinone (984 ng/L), diuron (695 ng/L), simazine (524 ng/L), the herbicide prometryn (155 ng/L), metolachlor (127 ng/L), boscalid (112 ng/L), DCPMU (111 ng/L), and the herbicide pendimethalin (108 ng/L).

  10. Pore water dating by 129I: What do 36Cl/Cl ratio, dissolved 4He concentration, δ37Cl and 129I/127I ratio suggest in the Mobara Gas field, Japan?

    NASA Astrophysics Data System (ADS)

    Mahara, Y.; Ohta, T.; Tokunaga, T.

    2010-12-01

    Total 24-brine samples were collected from hot springs and the Mobara gas wells in the Southern Kanto Gas field, where is not only the major production area for dissolved natural gas in Japan but for iodine in the world. Isotopic ratios of 129I/127I and 36Cl/Cl, and noble gases concentration dissolved into pore water were measured for estimating residence time of brine. Iodine concentration in brines increases from 10 mg/L in the northern Kanto plain to more than 100 mg/L in the south edge of the gas field, and finally reaches 170 mg/L. In contrast, the isotopic ratio of 129I/127I decreases 5×10-13 in north to 1.7×10-13 in south. Both distributions were presumably controlled by the thickness of the Kazusa group as natural gas reservoirs. The average 129I/127I ratio was estimated to be 2.33 ± 0.11×10-13 at the Mobara area. Average ages of brines are estimated to be 42 Ma by using the initial 129I/127I ratio (1.5×10-12), if the origin of 129I were cosmogenic. On the other hand, we deduced 0.2 - 0.9 Ma as the residence time of brine from comparison with the secular equilibrium 36Cl/Cl ratio (6.46 ± 2.24×10-15) for the reservoir formation of Pleistocene. The concentration of 4He dissolved in pore water in the bored rock core suggests that residence time of brines vertically ranges 0.12 - 1.05 Ma and it is also harmonized with the formation age (of 0.45 - 2.5 Ma). Furthermore, δ37Cl (- 0.14±0.13 ~ + 0.45±0.07 ‰) in pore water were measured under the chloride concentration increasing 5000 mg/L to 17000 mg/L at the depth from 642 m to 1902 m below the ground surface. The simulating analyses of δ37Cl was conducted under the boundary conditions of washing out by freshwater at the depth of 600 m below the ground surface, chloride concentration gradient of 17000/500 (mg/L/m) and diffusion alone without advection flow during the past 0.12 Ma. The fractionation factor for 35Cl and 37Cl was 1.0012 (Desauliniers et al., 1986). The analyses indicated that the variation of δ37Cl was significantly happened by diffusion alone. This suggested that pore water was such stagnant that 35Cl atoms were slightly separated from 37Cl atoms by diffusion. The origin of brines at Mobara was estimated to be connate seawater left in pore of sediments thickly depositing on the deep sea floor. Consequently, iodine in brine at Mobara was not transported from long distant other places or deep stratum, but was released into pore water from the deposited sediments that iodine was retained with a high concentration under a strong reducing condition. In conclusion, we cannot simply date pore water by using 129I/127I ratio, without deeply considering the origin of iodine and enrichment process. Reference D. E. Desaulniers, R. S. Kaufmann, J. A. Cherry and H. W. Bentley (1986) 37Cl-35Cl variations in a diffusion-controlled groundwater system.

  11. Measuring in situ dissolved methane concentrations in gas hydrate-rich systems, Part 1: Investigating the correlation between tectonics and methane release from sediments

    NASA Astrophysics Data System (ADS)

    Lapham, L.; Wilson, R. M.; Paull, C. K.; Chanton, J.; Riedel, M.

    2010-12-01

    In 2009, an area of extended methane venting at 1200 meters water depth was found with high resolution AUV bathymetry scans on the Northern Cascadia Margin that was previously unknown. When visited by ROV, we found seafloor cracks with active bubble streams and thin bacterial mats suggesting shallow gas and possible pore-fluid saturation. Upon coring into the cracks, a hard-substrate (carbonate or gas hydrate) was punctured and gas flows began. With these observations, we asked the question is this shallow gas released from the seafloor from regional tectonic activity, and, if so, what is the temporal variability of such release events? To answer this, we deployed a long term pore-water collection device at one of these gas crack sites, informally named bubbly gulch, for 9 months. The device is made up of 4 OsmoSamplers that were each plumbed to a port along a 1-meter probe tip using small diameter tubing. By osmosis, the samplers collected water samples slowly through the ports and maintained them within a 300 meter-long copper tubing coil. Because of the high methane concentrations anticipated, in situ pressures were maintained within the coil by the addition of a high pressure valve. Water samples were collected from the overlying water, at the sediment-water interface, and 6 and 10 cm into the sediments. Bottom water temperatures were also measured over the time series to determine pumping rates of the samplers but also to look for any temporal variability. In May 2010, the samplers were retrieved by ROV during efforts to install seafloor instruments for Neptune Canada. In a land-based lab, the coils were sub-sampled by cutting every 4 meters of tubing. With a pumping rate of 0.5 mL/day, this allowed a temporal resolution of 6 days. To date, one sampler coil has been sub-sampled and measured for methane concentrations and stable carbon isotopes. Preliminary results from this coil show pore-fluids nearly saturated with respect to methane, ~45 mM, over most of the 9 month record. Mid-record, there is also a 2-week increase of methane to 55 mM. The stable isotopic composition shows some temporal variability, but for the most part, suggests this methane is of biogenic origin. This methane record will be extended to other sample depths and all data correlated to temperature changes, local tectonic activity, and concurrent methane sensor data obtained as part of Neptune Canada at a nearby site (Bullseye Vent). This novel data set expands our understanding of how shallow gas deposits respond to pressure, temperature, and tectonic changes.

  12. Effect of seasonal variation in seawater dissolved mercury concentrations on mercury accumulation in the muscle of red sea bream (Pagrus major) held in Minamata Bay, Japan.

    PubMed

    Matsuyama, Akito; Yokoyama, Saichiro; Kindaichi, Michiaki; Sonoda, Ikuko; Koyama, Jiro

    2013-09-01

    Japanese stingfish (Sebastiscus marmoratus) and Bambooleaf wrasse (Pseudolabrus japonicas) are monitored annually for mercury pollution in Minamata Bay, Japan. The average total mercury concentration in the muscle of these two species in Minamata Bay was 0.36 mg kg(-1) wet weight and 0.20 kg(-1) wet weigh, respectively, between 2008 and 2010. This is higher than levels elsewhere in Japan (0.125 mg kg(-1) wet weight and 0.038 mg kg(-1) wet weight, respectively). The FDA (2001) and EPA (2004) suggested that a proportion of mercury accumulated in fish is derived from seawater. We reared young red sea bream (Pagrus major) over a 2-year period in Minamata Bay and Nagashima (control) to evaluate the uptake of mercury from seawater and dietary sources. Fish were fed a synthesized diet that did not contain mercury. There was no difference in mercury accumulation in the muscle of red sea bream between Minamata Bay and Nagashima. Thus, our results suggest that the majority of mercury accumulated in fish muscle is not from seawater. PMID:23397539

  13. A 17-year record of environmental tracers in spring discharge, Shenandoah National Park, Virginia, USA: use of climatic data and environmental conditions to interpret discharge, dissolved solutes, and tracer concentrations

    USGS Publications Warehouse

    Busenberg, Eurybiades; Plummer, L. Niel

    2014-01-01

    A 17-year record (1995–2012) of a suite of environmental tracer concentrations in discharge from 34 springs located along the crest of the Blue Ridge Mountains in Shenandoah National Park (SNP), Virginia, USA, reveals patterns and trends that can be related to climatic and environmental conditions. These data include a 12-year time series of monthly sampling at five springs, with measurements of temperature, specific conductance, pH, and discharge recorded at 30-min intervals. The monthly measurements include age tracers (CFC-11, CFC-12, CFC-113, CFC-13, SF6, and SF5CF3), dissolved gases (N2, O2, Ar, CO2, and CH4), stable isotopes of water, and major and trace inorganic constituents. The chlorofluorocarbon (CFC) and sulfur hexafluoride (SF6) concentrations (in pptv) in spring discharge closely follow the concurrent monthly measurements of their atmospheric mixing ratios measured at the Air Monitoring Station at Big Meadows, SNP, indicating waters 0–3 years in age. A 2-year (2001–2003) record of unsaturated zone air displayed seasonal deviations from North American Air of ±10 % for CFC-11 and CFC-113, with excess CFC-11 and CFC-113 in peak summer and depletion in peak winter. The pattern in unsaturated zone soil CFCs is a function of gas solubility in soil water and seasonal unsaturated zone temperatures. Using the increase in the SF6 atmospheric mixing ratio, the apparent (piston flow) SF6 age of the water varied seasonally between about 0 (modern) in January and up to 3 years in July–August. The SF6 concentration and concentrations of dissolved solutes (SiO2, Ca2+, Mg2+, Na+, Cl−, and HCO3−) in spring discharge demonstrate a fraction of recent recharge following large precipitation events. The output of solutes in the discharge of springs minus the input from atmospheric deposition per hectare of watershed area (mol ha−1 a−1) were approximately twofold greater in watersheds draining the regolith of Catoctin metabasalts than that of granitic gneisses and granitoid crystalline rocks. The stable isotopic composition of water in spring discharge broadly correlates with the Oceanic Niño Index. Below normal precipitation and enriched stable isotopic composition were observed during El Niño years.

  14. Methods to Identify Changes in Background Water-Quality Conditions Using Dissolved-Solids Concentrations and Loads as Indicators, Arkansas River and Fountain Creek, in the Vicinity of Pueblo, Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.

    2004-01-01

    Effective management of existing water-storage capacity in the Arkansas River Basin is anticipated to help satisfy the need for water in southeastern Colorado. A strategy to meet these needs has been developed, but implementation could affect the water quality of the Arkansas River and Fountain Creek in the vicinity of Pueblo, Colorado. Because no known methods are available to determine what effects future changes in operations will have on water quality, the U.S. Geological Survey, in cooperation with the Southeastern Colorado Water Activity Enterprise, began a study in 2002 to develop methods that could identify if future water-quality conditions have changed significantly from background (preexisting) water-quality conditions. A method was developed to identify when significant departures from background (preexisting) water-quality conditions occur in the lower Arkansas River and Fountain Creek in the vicinity of Pueblo, Colorado. Additionally, the methods described in this report provide information that can be used by various water-resource agencies for an internet-based decision-support tool. Estimated dissolved-solids concentrations at five sites in the study area were evaluated to designate historical background conditions and to calculate tolerance limits used to identify statistical departures from background conditions. This method provided a tool that could be applied with defined statistical probabilities associated with specific tolerance limits. Drought data from 2002 were used to test the method. Dissolved-solids concentrations exceeded the tolerance limits at all four sites on the Arkansas River at some point during 2002. The number of exceedances was particularly evident when streamflow from Pueblo Reservoir was reduced, and return flows and ground-water influences to the river were more prevalent. No exceedances were observed at the site on Fountain Creek. These comparisons illustrated the need to adjust the concentration data to account for varying streamflow. As such, similar comparisons between flow-adjusted data were done. At the site Arkansas River near Avondale, nearly all the 2002 flow-adjusted concentration data were less than the flow-adjusted tolerance limit which illustrated the effects of using flow-adjusted concentrations. Numerous exceedances of the flow-adjusted tolerance limits, however, were observed at the sites Arkansas River above Pueblo and Arkansas River at Pueblo. These results indicated that the method was able to identify a change in the ratio of source waters under drought conditions. Additionally, tolerance limits were calculated for daily dissolved-solids load and evaluated in a similar manner. Several other mass-load approaches were presented to help identify long-term changes in water quality. These included comparisons of cumulative mass load at selected sites and comparisons of mass load contributed at the Arkansas River near Avondale site by measured and unmeasured sources.

  15. Magnetic tracking of eye position in freely behaving chickens

    PubMed Central

    Schwarz, Jason S.; Sridharan, Devarajan; Knudsen, Eric I.

    2013-01-01

    Research on the visual system of non-primates, such as birds and rodents, is increasing. Evidence that neural responses can differ dramatically between head-immobilized and freely behaving animals underlines the importance of studying visual processing in ethologically relevant contexts. In order to systematically study visual responses in freely behaving animals, an unobtrusive system for monitoring eye-in-orbit position in real time is essential. We describe a novel system for monitoring eye position that utilizes a head-mounted magnetic displacement sensor coupled with an eye-implanted magnet. This system is small, lightweight, and offers high temporal and spatial resolution in real time. We use the system to demonstrate the stability of the eye and the stereotypy of eye position during two different behavioral tasks in chickens. This approach offers a viable alternative to search coil and optical eye tracking techniques for high resolution tracking of eye-in-orbit position in behaving animals. PMID:24312023

  16. Concentration, flux, and the analysis of trends of total and dissolved phosphorus, total nitrogen, and chloride in 18 tributaries to Lake Champlain, Vermont and New York, 1990–2011

    USGS Publications Warehouse

    Medalie, Laura

    2013-01-01

    Annual concentration, flux, and yield for total phosphorus, dissolved phosphorus, total nitrogen, and chloride for 18 tributaries to Lake Champlain were estimated for 1990 through 2011 using a weighted regression method based on time, tributary streamflows (discharges), and seasonal factors. The weighted regression method generated two series of daily estimates of flux and concentration during the period of record: one based on observed discharges and a second based on a flow-normalization procedure that removes random variation due to year-to-year climate-driven effects. The flownormalized estimate for a given date is similar to an average estimate of concentration or flux that would be made if all of the observed discharges for that date were equally likely to have occurred. The flux bias statistic showed that 68 of the 72 flux regression models were minimally biased. Temporal trends in the concentrations and fluxes were determined by calculating percent changes in flow-normalized annual fluxes for the full period of analysis (1990 through 2010) and for the decades 1990–2000 and 2000–2010. Basinwide, flow-normalized total phosphorus flux decreased by 42 metric tons per year (t/yr) between 1990 and 2010. This net result reflects a basinwide decrease in flux of 21 metric tons (t) between 1990 and 2000, followed by a decrease of 20 t between 2000 and 2010; both results were largely influenced by flux patterns in the large tributaries on the eastern side of the basin. A comparison of results for total phosphorus for the two separate decades of analysis found that more tributaries had decreasing concentrations and flux rates in the second decade than the first. An overall reduction in dissolved phosphorus flux of 0.7 t/yr was seen in the Lake Champlain Basin during the full period of analysis. That very small net change in flux reflects substantial reductions between 1990 and 2000 from eastern tributaries, especially in Otter Creek and the LaPlatte and Winooski Rivers that largely were offset by increases in the Missisquoi and Saranac Rivers in the second decade (between 2000 and 2010). The number of tributaries that had increases in dissolved phosphorus concentrations stayed constant at 13 or 14 during the period of analysis. Total nitrogen concentration and flux for most of the monitored tributaries in the Lake Champlain Basin have decreased since 1990. Between 1990 and 2010, flow-normalized total nitrogen flux decreased by 386 t/yr, which reflects an increase of 440 t/yr between 1990 and 2000 and a decrease of 826 t/yr between 2000 and 2010. All individual tributaries except the Winooski River had decreases in total nitrogen concentration and flux between 2000 and 2010. The decrease in total nitrogen flux over the period of record could be related to the decrease in nitrogen from atmospheric deposition observed in Vermont or to concurrent benefits realized from the implementation of agricultural best-management practices in the Lake Champlain Basin that were designed primarily to reduce phosphorus runoff. For chloride, large increases in flow-normalized concentrations and flux between 1990 and 2000 for 17 of the 18 tributaries diminished to small increases or decreases between 2000 and 2010. Between 1990 and 2010, flow-normalized flux increased by 32,225 t/yr, 78 percent of which (25,163 t) was realized during the first decade, from 1990 through 2000. The five tributaries that had decreasing concentration and flux of chloride between 2000 and 2010 were all on the eastern side of Lake Champlain, possibly related to reductions since 1999 in winter road salt application in Vermont. Positive correlations of phosphorus flux and changes in phosphorus concentration and flux in tributaries with phosphorus inputs to basins from point sources, suggest that point sources have an effect on stream phosphorus chemistry. Several measures of changes in agricultural statistics, such as agricultural land use, acres of land in farms, acres of cropland, and acres of corn for grain or seed, are positively correlated with changes in phosphorus concentration or flux in the tributaries. Negative correlations of the amount of money spent on agricultural best-management practices with changes in phosphorus concentration or flux in the tributaries, suggest that best-management practices may be an effective tool, along with point-source reductions, in making progress towards management goals for phosphorus reductions in Lake Champlain.

  17. Eye-movement recording in freely moving animals.

    PubMed

    Rodrguez, F; Salas, C; Vargas, J P; Torres, B

    2001-03-01

    A new method is described for precise recording of eye movements in freely moving animals using Hall-effect devices. This inexpensive system, of small size and low weight, allows the analysis of horizontal and vertical components of saccadic eye movements, optokinetic nystagmus, slow tracking movements, eye vergence, etc., in unrestrained animals. A set of Hall-effect devices mounted in the skull is used to sense variations in the position of high-power miniature magnets fixed to the eye sclera. The output of the Hall-effect devices is amplified by operational amplifiers and collected through an analog-to-digital converter to be displayed on-line in a personal computer and stored for later analysis by specific software. Some examples of simultaneous body- and eye-movement recordings obtained in freely moving goldfish in different experimental situations are presented. This method would be useful in the recording of eye and gaze movements under natural conditions and for behavioural studies in freely moving animals. PMID:11282128

  18. Pore-water mobility: Distribution of ?37Cl, 36Cl/Cl, 129I/127I and dissolved 4He concentration in the core drilled in the Mobara gas field, Japan

    NASA Astrophysics Data System (ADS)

    Mahara, Yasunori; Ohta, Tomoko; Tokunaga, Tomochika; Matsuzaki, Hiroyuki; Nagao, Keisuke; Nakata, Eiji; Miyamoto, Yuki; Kubota, Takumi

    2013-01-01

    We measured 36Cl/Cl and 129I/127I isotope ratios, dissolved 4He concentrations, and ?37Cl to estimate the residence time and flow characteristics of pore water in rocks of the Kazusa Group in the Mobara gas field, Japan. We deduced a residence time of 0.28-0.85 Ma for the pore water, based on a secular equilibrium value of 7.05 1.58 10-15 for the 36Cl/Cl ratio in Pleistocene strata of the gas field. Furthermore, the concentration of 4He corrected by the solubility equilibrium model in the pore water indicated that residence times varied from 0.09 to 0.62 Ma from the depth of 642 to the depth of 1742 m in the core drilled in the gas field. The pore-water dating results have insignificant differences between the ages of the Kazusa Group formations, compared with the iodine ages from 129I/127I ratio. Variations of ?37Cl in the pore water suggested that mass transport in rocks of the Kazusa Group was dominantly controlled by diffusion.

  19. Testing the sensitivity of boreal headwaters using a forest clear-cutting experiment: The impact of changing flow-pathways and soil warming on dissolved organic carbon concentrations in streams

    NASA Astrophysics Data System (ADS)

    Schelker, J.; Grabs, T.; Bishop, K. H.; Laudon, H.

    2014-12-01

    Forest disturbance such as clear-cutting has been identified as an important factor for increasing dissolved organic carbon (DOC) concentrations in boreal streams. We used a long-term dataset of soil temperature, soil moisture, shallow ground water (GW) levels and stream DOC concentrations from three boreal first-order streams to investigate mechanisms causing these increases. Clear-cutting was found to alter soil conditions with warmer and wetter soils during summer. The application of a riparian flow concentration integration model (RIM) explained a major part of variation in stream [DOC] arising from changing flow-pathways in riparian soils during the pre-treatment period (r2= 0.4-0.7), but less well after the harvest. Model residuals were highly sensitive to changes in soil temperature. The linear regression models for the temperature dependence of [DOC] in soils were not different in the disturbed and undisturbed catchments, whereas a non-linear response to soil moisture was found. Overall these results suggest that the increased DOC mobilization after forest disturbance is caused by (i) increased GW levels leading to increased water fluxes in shallow flow-path in riparian soils and (ii) increased soil temperature increasing the DOC availability in soils during summer. These relationships indicate that the mechanisms of DOC mobilization after forest disturbance are not different to those of undisturbed catchments, but that catchment soils respond to the higher hydro-climatic variation observed after clear-cutting. This highlights the sensitivity of boreal streams to changes in the energy and water balance, which may be altered as a result of both land management and climate change.

  20. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    PubMed

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling. PMID:24705953

  1. Velocity measurements around a freely swimming fish using PIV

    NASA Astrophysics Data System (ADS)

    Kamran Siddiqui, M. H.

    2007-01-01

    Two-dimensional velocity fields around a freely swimming goldfish in a vertical plane have been measured using the particle image velocimetry (PIV) technique. A novel scheme has been developed to detect the fish body in each PIV image. The scheme is capable of detecting the bodies of fish and other aquatic animals with multicolour skin and different patterns. In this scheme, the body portions brighter and darker than the background are extracted separately and then combined together to construct the entire body. The velocity fields show that the fins and tail produce jets. Vortices are also observed in the wake region.

  2. Flagellar waveform dynamics of freely swimming algal cells

    NASA Astrophysics Data System (ADS)

    Kurtuldu, H.; Tam, D.; Hosoi, A. E.; Johnson, K. A.; Gollub, J. P.

    2013-07-01

    We present quantitative measurements of time-dependent flagellar waveforms for freely swimming biflagellated algal cells, for both synchronous and asynchronous beating. We use the waveforms in conjunction with resistive force theory as well as a singularity method to predict a cell's time-dependent velocity for comparison with experiments. While net propulsion is thought to arise from asymmetry between the power and recovery strokes, we show that hydrodynamic interactions between the flagella and cell body on the return stroke make an important contribution to enhance net forward motion.

  3. Concentration of Mn and separation from Fe in sediments—I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10°C

    NASA Astrophysics Data System (ADS)

    Postma, Dieke

    1985-04-01

    Redox reactions between Fe 2+ in solution and Mn-oxides are proposed as a mechanism for concentration of Mn in sediments both during weathering and diagenesis in marine sediments, e.g. the formation of Mn-nodules. If such a mechanism is to be effective, then reaction rates between Fe 2+ and Mn-oxides should be fast. The kinetics and stoichiometry of the reaction between dissolved Fe 2+ and synthetically prepared birnessite (Mn 7O 13·5H 2O) were studied experimentally in the pH range 3-6. Results show a stoichiometry which at pH < 4 conforms to a simple reaction between Fe 2+ and birnessite, releasing Mn 2+ and Fe 3+ to the solution. At pH > 4 FeOOH is precipitated and excess Fe 2+ consumption compared to the theoretical stoichiometry is observed. The excess Fe 2+ consumption is not due to a formation of a quantitative MnOOH layer but rather to adsorption. Reaction kinetics are very fast at pH < 4 and change at pH 4 to a slower mechanism. At pH > 4 the reaction is fast initially until 17% of the bimessite has dissolved and changes then to a slower stage. The later stage can be described by the equation: J = km 0(H +) -0.45[Fe 2+] γ( m/m 0) β where J is the overall rate of Mn 2+ release, m0 and m the mass of birnessite at time t = 0 and t > 0, β = 6.76-0.94 pH and γ has values of 0.76 at pH 5 and 0.39 at pH 6. The rate constant k is 7.2·10 -7 moles s -1 g -1 (moles/1) -0.31 at pH 5 and 9.6·10 -8 moles s -1 g -1 (moles/1) 0.06 at pH 6. Diffusion calculations show that the rate is controlled by surface reaction and it is tentatively proposed that the availability of vacancies in octahedral [MnO 6]sheets of the birnessite surface could be rate controlling. It is concluded that reactions between Fe(II) and birnessite, and probably other Mn-oxides, are fast enough to be important in natural environments at the earth surface.

  4. Dissolver vessel bottom assembly

    DOEpatents

    Kilian, Douglas C.

    1976-01-01

    An improved bottom assembly is provided for a nuclear reactor fuel reprocessing dissolver vessel wherein fuel elements are dissolved as the initial step in recovering fissile material from spent fuel rods. A shock-absorbing crash plate with a convex upper surface is disposed at the bottom of the dissolver vessel so as to provide an annular space between the crash plate and the dissolver vessel wall. A sparging ring is disposed within the annular space to enable a fluid discharged from the sparging ring to agitate the solids which deposit on the bottom of the dissolver vessel and accumulate in the annular space. An inlet tangential to the annular space permits a fluid pumped into the annular space through the inlet to flush these solids from the dissolver vessel through tangential outlets oppositely facing the inlet. The sparging ring is protected against damage from the impact of fuel elements being charged to the dissolver vessel by making the crash plate of such a diameter that the width of the annular space between the crash plate and the vessel wall is less than the diameter of the fuel elements.

  5. Optogenetic Control of Targeted Peripheral Axons in Freely Moving Animals

    PubMed Central

    Iyer, Shrivats M.; Deisseroth, Karl; Delp, Scott L.

    2013-01-01

    Optogenetic control of the peripheral nervous system (PNS) would enable novel studies of motor control, somatosensory transduction, and pain processing. Such control requires the development of methods to deliver opsins and light to targeted sub-populations of neurons within peripheral nerves. We report here methods to deliver opsins and light to targeted peripheral neurons and robust optogenetic modulation of motor neuron activity in freely moving, non-transgenic mammals. We show that intramuscular injection of adeno-associated virus serotype 6 enables expression of channelrhodopsin (ChR2) in motor neurons innervating the injected muscle. Illumination of nerves containing mixed populations of axons from these targeted neurons and from neurons innervating other muscles produces ChR2-mediated optogenetic activation restricted to the injected muscle. We demonstrate that an implanted optical nerve cuff is well-tolerated, delivers light to the sciatic nerve, and optically stimulates muscle in freely moving rats. These methods can be broadly applied to study PNS disorders and lay the groundwork for future therapeutic application of optogenetics. PMID:23991144

  6. A freely falling magneto-optical trap drop tower experiment

    NASA Astrophysics Data System (ADS)

    Knemann, T.; Brinkmann, W.; Gkl, E.; Lmmerzahl, C.; Dittus, H.; van Zoest, T.; Rasel, E. M.; Ertmer, W.; Lewoczko-Adamczyk, W.; Schiemangk, M.; Peters, A.; Vogel, A.; Johannsen, G.; Wildfang, S.; Bongs, K.; Sengstock, K.; Kajari, E.; Nandi, G.; Walser, R.; Schleich, W. P.

    2007-12-01

    We experimentally demonstrate the possibility of preparing ultracold atoms in the environment of weightlessness at the earth-bound short-term microgravity laboratory Drop Tower Bremen, a facility of ZARM - University of Bremen. Our approach is based on a freely falling magneto-optical trap (MOT) drop tower experiment performed within the ATKAT collaboration (Atom-Catapult) as a preliminary part of the QUANTUS pilot project (Quantum Systems in Weightlessness) pursuing a Bose-Einstein condensate (BEC) in microgravity at the drop tower [1, 2]. Furthermore we give a complete account of the specific drop tower requirements to realize a compact and robust setup for trapping and cooling neutral rubidium 87Rb atoms in microgravity conditions. We also present the results of the first realized freely falling MOT and further accomplished experiments during several drops. The goal of the preliminary ATKAT pilot project is to initiate a basis for extended atom-optical experiments which aim at realizing, observing and investigating ultracold quantum matter in microgravity.

  7. Wireless Neural Stimulation in Freely Behaving Small Animals

    PubMed Central

    Arfin, Scott K.; Long, Michael A.; Fee, Michale S.; Sarpeshkar, Rahul

    2009-01-01

    We introduce a novel wireless, low-power neural stimulation system for use in freely behaving animals. The system consists of an external transmitter and a miniature, implantable wireless receiverstimulator. The implant uses a custom integrated chip to deliver biphasic current pulses to four addressable bipolar electrodes at 32 selectable current levels (10 ?A to 1 mA). To achieve maximal battery life, the chip enters a sleep mode when not needed and can be awakened remotely when required. To test our device, we implanted bipolar stimulating electrodes into the songbird motor nucleus HVC (formerly called the high vocal center) of zebra finches. Single-neuron recordings revealed that wireless stimulation of HVC led to a strong increase of spiking activity in its downstream target, the robust nucleus of the arcopallium. When we used this device to deliver biphasic pulses of current randomly during singing, singing activity was prematurely terminated in all birds tested. Thus our device is highly effective for remotely modulating a neural circuit and its corresponding behavior in an untethered, freely behaving animal. PMID:19386759

  8. Nonlinear fluctuation effects in dynamics of freely suspended films

    NASA Astrophysics Data System (ADS)

    Kats, E. I.; Lebedev, V. V.

    2015-03-01

    Long-scale dynamic fluctuation phenomena in freely suspended films is analyzed. We consider isotropic films that, say, can be pulled from bulk smectic-A liquid crystals. The key feature of such objects is possibility of bending deformations of the film. The bending (also known as flexular) mode turns out to be anomalously weakly attenuated. In the harmonic approximation there is no viscous-like damping of the bending mode, proportional to q2 (q is the wave vector of the mode), since it is forbidden by the rotational symmetry. Therefore, the bending mode is strongly affected by nonlinear dynamic fluctuation effects. We calculate the dominant fluctuation contributions to the damping of the bending mode due to its coupling to the inplane viscous mode, which restores the viscous-like q2 damping of the bending mode. Our calculations are performed in the framework of the perturbation theory where the coupling of the modes is assumed to be small, then the bending mode damping is relatively weak. We discuss our results in the context of existing experiments and numeric simulations of the freely suspended films and propose possible experimental observations of our predictions.

  9. Structure and Dynamics of Freely Suspended Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Clark, Noel A.

    2004-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1 D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline or quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enables the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new LC physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and Kosterlitz Thouless phase transition has been observed and 2D XY quasi long range order verified. Smectic films have enabled the precise determination of smectic layer electron density and positional fluctuation profiles and have been used to show that the interlayer interactions in antiferroelectric tilted smectics do not extend significantly beyond nearest neighbors. Freely suspended films played a pivotal role in the recent discovery of macroscopic chiral-polar ordering in fluids of achiral molecules. The interactions which are operative in liquid crystals are generally weak in comparison to those in crystalline phases, leading to the facile manipulation of the order in liquid crystals by external agents such as applied fields and surfaces. Effects arising from weak ordering are significantly enhanced in ultrathin free films and filaments, in which the intermolecular coupling is effectively further reduced by loss of neighbors. Over the past four years this research, which we now detail, has produced a host of exciting new discoveries and unexpected results, maintaining the study of freely suspended liquid crystal structures as one of most exciting and fruitful areas of complex fluid physics. In addition, a class of experiments on the behavior of 1D interfaces in 2D films have been pursued with results that point to potentially quite interesting effects in microgravity.

  10. Enhanced glucose tolerance by intravascularly administered piceatannol in freely moving healthy rats.

    PubMed

    Oritani, Yukihiro; Okitsu, Teru; Nishimura, Eisaku; Sai, Masahiko; Ito, Tatsuhiko; Takeuchi, Shoji

    2016-02-12

    Piceatannol is a phytochemical in the seeds of passion fruit that has a hypoglycemic effect when orally administered. To elucidate the contribution of intact and metabolites of piceatannol after gastro-intestinal absorption to hypoglycemic effect, we examined the influence of piceatannol and isorhapontigenin on blood glucose concentrations during fasting and glucose tolerance tests by administering them intravascularly to freely moving healthy rats. We found that intravascularly administered piceatannol reduced the blood glucose concentrations during both fasting and glucose tolerance tests, but isorhapontigenin did not during either of them. Furthermore, we found that piceatannol increased the insulinogenic index during glucose tolerance tests and that piceatannol had no influence on insulin sensitivity by performing hyperinsulinemic euglycemic clamping tests. These results suggest that piceatannol orally intaken may enhance glucose tolerance by the effect of intact piceatannol through enhanced early-phase secretion of insulin. Therefore, oral intake of piceatannol might contribute to proper control of postprandial glycemic excursions in healthy subjects. PMID:26773506

  11. Influence of Dissolved Organic Matter on Tetracycline Bioavailability to an Antibiotic-Resistant Bacterium.

    PubMed

    Chen, Zeyou; Zhang, Yingjie; Gao, Yanzheng; Boyd, Stephen A; Zhu, Dongqiang; Li, Hui

    2015-09-15

    Complexation of tetracycline with dissolved organic matter (DOM) in aqueous solution could alter the bioavailability of tetracycline to bacteria, thereby alleviating selective pressure for development of antibiotic resistance. In this study, an Escherichia coli whole-cell bioreporter construct with antibiotic resistance genes coupled to green fluorescence protein was exposed to tetracycline in the presence of DOM derived from humic acids. Complexation between tetracycline and DOM diminished tetracycline bioavailability to E. coli, as indicated by reduced expression of antibiotic resistance genes. Increasing DOM concentration resulted in decreasing bioavailability of tetracycline to the bioreporter. Freely dissolved tetracycline (not complexed with DOM) was identified as the major fraction responsible for the rate and magnitude of antibiotic resistance genes expressed. Furthermore, adsorption of DOM on bacterial cell surfaces inhibited tetracycline diffusion into the bioreporter cells. The magnitude of the inhibition was related to the amount of DOM adsorbed and tetracycline affinity for the DOM. These findings provide novel insights into the mechanisms by which the bioavailability of tetracycline antibiotics to bacteria is reduced by DOM present in water. Agricultural lands receiving livestock manures commonly have elevated levels of both DOM and antibiotics; the DOM could suppress the bioavailability of antibiotics, hence reducing selective pressure on bacteria for development of antibiotic resistance. PMID:26370618

  12. Dissolving Bubbles in Glass

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Oronato, P. I.; Uhlmann, D. R.

    1984-01-01

    Analytical expression used to calculate time it takes for stationary bubbles of oxygen and carbon dioxide to dissolve from glass melt. Technique based on analytical expression for bubble radius as function time, with consequences of surface tension included.

  13. Single-molecule-sensitive fluorescence resonance energy transfer in freely-diffusing attoliter droplets

    NASA Astrophysics Data System (ADS)

    Rahmanseresht, Sheema; Milas, Peker; Ramos, Kieran P.; Gamari, Ben D.; Goldner, Lori S.

    2015-05-01

    Fluorescence resonance energy transfer (FRET) from individual, dye-labeled RNA molecules confined in freely-diffusing attoliter-volume aqueous droplets is carefully compared to FRET from unconfined RNA in solution. The use of freely-diffusing droplets is a remarkably simple and high-throughput technique that facilitates a substantial increase in signal-to-noise for single-molecular-pair FRET measurements. We show that there can be dramatic differences between FRET in solution and in droplets, which we attribute primarily to an altered pH in the confining environment. We also demonstrate that a sufficient concentration of a non-ionic surfactant mitigates this effect and restores FRET to its neutral-pH solution value. At low surfactant levels, even accounting for pH, we observe differences between the distribution of FRET values in solution and in droplets which remain unexplained. Our results will facilitate the use of nanoemulsion droplets as attoliter volume reactors for use in biophysical and biochemical assays, and also in applications such as protein crystallization or nanoparticle synthesis, where careful attention to the pH of the confined phase is required.

  14. Single-molecule-sensitive fluorescence resonance energy transfer in freely-diffusing attoliter droplets

    SciTech Connect

    Rahmanseresht, Sheema; Ramos, Kieran P.; Gamari, Ben D.; Goldner, Lori S.; Milas, Peker

    2015-05-11

    Fluorescence resonance energy transfer (FRET) from individual, dye-labeled RNA molecules confined in freely-diffusing attoliter-volume aqueous droplets is carefully compared to FRET from unconfined RNA in solution. The use of freely-diffusing droplets is a remarkably simple and high-throughput technique that facilitates a substantial increase in signal-to-noise for single-molecular-pair FRET measurements. We show that there can be dramatic differences between FRET in solution and in droplets, which we attribute primarily to an altered pH in the confining environment. We also demonstrate that a sufficient concentration of a non-ionic surfactant mitigates this effect and restores FRET to its neutral-pH solution value. At low surfactant levels, even accounting for pH, we observe differences between the distribution of FRET values in solution and in droplets which remain unexplained. Our results will facilitate the use of nanoemulsion droplets as attoliter volume reactors for use in biophysical and biochemical assays, and also in applications such as protein crystallization or nanoparticle synthesis, where careful attention to the pH of the confined phase is required.

  15. Simulation of hydrodynamics, temperature, and dissolved oxygen in Bull Shoals Lake, Arkansas, 1994-1995

    USGS Publications Warehouse

    Galloway, Joel M.; Green, W. Reed

    2003-01-01

    and dissolved-oxygen concentration through time. However, results from both scenarios for water temperature and dissolved-oxygen concentration were within the boundaries of the error between measured and simulated water column profile values.

  16. Use of Passive Samplers to Measure Dissolved Organic Contaminants in a Temperate Estuary

    EPA Science Inventory

    Measuring dissolved concentrations of organic contaminants can be challenging given their low solubilities and high particle association. However, to perform accurate risk assessments of these chemicals, knowing the dissolved concentration is critical since it is considered to b...

  17. Statistical properties of freely decaying two-dimensional hydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. N.; Kuznetsov, E. A.; Sereshchenko, E. V.

    2013-02-01

    Statistical characteristics of freely decaying two-dimensional hydrodynamic turbulence at high Reynolds numbers are numerically studied. In particular, numerical experiments (with resolution up to 8192 × 8192) provide a Kraichnan-type turbulence spectrum E k ˜ k -3. By means of spatial filtration, it is found that the main contribution to the spectrum comes from sharp vorticity gradients in the form of quasi-shocks. Such quasi-singularities are responsible for a strong angular dependence of the spectrum owing to well-localized (in terms of the angle) jets with minor and/or large overlapping. In each jet, the spectrum decreases as k -3. The behavior of the third-order structure function accurately agrees with the Kraichnan direct cascade concept corresponding to a constant enstrophy flux. It is shown that the power law exponents ξ n for higher structure functions grow with n more slowly than the linear dependence, thus indicating turbulence intermittency.

  18. The near wake of a freely flying European starling

    NASA Astrophysics Data System (ADS)

    Kirchhefer, Adam J.; Kopp, Gregory A.; Gurka, Roi

    2013-05-01

    The wake of a freely flying European starling (Sturnus vulgaris) has been measured using high speed, time-resolved, particle image velocimetry, simultaneously with high speed cameras which imaged the bird. These have been used to generate vector maps that can be associated with the bird's location and wing configuration in the wind tunnel. Time series of measurements have been expressed as composite wake plots which depict segments of the wing beat cycle for various spanwise locations in the wake. Measurements indicate that downwash is not produced during the upstroke, suggesting that the upstroke does not generate lift. As well, the wake velocities imply the presence of streamwise vortical structures, in addition to tip vortices. These two characteristics indicate similarities between the wake of a bird and the wake of a bat, which may be general features of the wakes of flapping wings.

  19. Structure, Hydrodynamics, and Phase Transition of Freely Suspended Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Clark, Noel A.

    2000-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enable the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable condensed phase fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new liquid crystal physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and Kosterlitz Thouless phase transition has been observed and 2D XY quasi long range order verified. Smectic films have enabled the precise determination of smectic layer electron density and positional fluctuation profile and have been used to show that the interlayer interactions in anti-ferroelectric tilted smectics do not extend significantly beyond nearest neighbors. The interactions which are operative in liquid crystals are generally weak in comparison to those in crystalline phases, leading to the facile manipulation of the order in liquid crystals by external agents such as applied fields and surfaces. Effects arising from weak ordering are significantly enhanced in ultrathin free films and filaments wherein the intermolecular coupling is effectively reduced by loss of neighbors. Over the past four years this research, which we now detail, has produced a host of exciting new discoveries and unexpected results, maintaining the position of the study of freely suspended liquid crystal structures as one of most exciting and fruitful areas of complex fluid physics. In addition, several potentially interesting microgravity free film experiments have been identified.

  20. Chronic detachable headphones for acoustic stimulation in freely moving animals

    PubMed Central

    Nodal, Fernando R.; Keating, Peter; King, Andrew J.

    2010-01-01

    A growing number of studies of auditory processing are being carried out in awake, behaving animals, creating a need for precisely controlled sound delivery without restricting head movements. We have designed a system for closed-field stimulus presentation in freely moving ferrets, which comprises lightweight, adjustable headphones that can be consistently positioned over the ears via a small, skull-mounted implant. The invasiveness of the implant was minimized by simplifying its construction and using dental adhesive only for attaching it to the skull, thereby reducing the surgery required and avoiding the use of screws or other anchoring devices. Attaching the headphones to a chronic implant also reduced the amount of contact they had with the head and ears, increasing the willingness of the animals to wear them. We validated sound stimulation via the headphones in ferrets trained previously in a free-field task to localize stimuli presented from one of two loudspeakers. Noise bursts were delivered binaurally over the headphones and interaural level differences (ILDs) were introduced to allow the sound to be lateralized. Animals rapidly transferred from the free-field task to indicate the perceived location of the stimulus presented over headphones. They showed near perfect lateralization with a 5dB ILD, matching the scores achieved in the free-field task. As expected, the ferrets performance declined when the ILD was reduced in value. This closed-field system can easily be adapted for use in other species, and provides a reliable means of presenting closed-field stimuli whilst monitoring behavioral responses in freely moving animals. PMID:20346981

  1. Predicting pore water EPA-34 PAH concentrations and toxicity in pyrogenic-impacted sediments using pyrene content.

    PubMed

    Arp, Hans Peter H; Azzolina, Nicholas A; Cornelissen, Gerard; Hawthorne, Steven B

    2011-06-15

    Sediment and freely dissolved pore water concentrations of the U.S. Environmental Protection Agency's list of 34 alkyl and parent PAHs (EPA-34) were measured in 335 sediment samples from 19 different sites impacted by manufactured gas plants, aluminum smelters and other pyrogenic sources. The total EPA-34 freely dissolved pore water concentration, C(pw,EPA-34), expressed as toxic units (TU) is currently considered one of the most accurate measures to assess risk at such sites; however, it is very seldom measured. With this data set, we address how accurately C(pw,EPA-34) can be estimated using limited 16 parent PAH data (EPA-16) commonly available for such sites. An exhaustive statistical analysis of the obtained data validated earlier observations that PAHs with more than 3 rings are present in similar relative abundances and their partitioning behavior typically follows Raoult's law and models developed for coal tar. As a result, sediment and freely dissolved pore water concentrations of pyrene and other 3- and 4-ring PAHs exhibit good log-log correlations (r² > 0.8) to most individual EPA-34 PAHs and also to C(pw,EPA-34). Correlations improve further by including the ratio of high to low molecular weight PAHs, as 2-ring PAHs exhibit the most variability in terms of their relative abundance. The most practical result of the current work is that log C(pw,EPA-34) estimated by the recommended pyrene-based estimation techniques was similarly well correlated to % survival of the benthic amphipods Hyalella azteca and Leptocheirus plumulosus as directly measured log C(pw,EPA-34) values (n = 211). Incorporation of the presented C(pw,EPA-34) estimation techniques could substantially improve risk assessments and guidelines for sediments impacted by pyrogenic residues, especially when limited data are available, without requiring any extra data or measurement costs. PMID:21595462

  2. ADDING REALISM TO NUCLEAR MATERIAL DISSOLVING ANALYSIS

    SciTech Connect

    Williamson, B.

    2011-08-15

    Two new criticality modeling approaches have greatly increased the efficiency of dissolver operations in H-Canyon. The first new approach takes credit for the linear, physical distribution of the mass throughout the entire length of the fuel assembly. This distribution of mass is referred to as the linear density. Crediting the linear density of the fuel bundles results in using lower fissile concentrations, which allows higher masses to be charged to the dissolver. Also, this approach takes credit for the fact that only part of the fissile mass is wetted at a time. There are multiple assemblies stacked on top of each other in a bundle. On average, only 50-75% of the mass (the bottom two or three assemblies) is wetted at a time. This means that only 50-75% (depending on operating level) of the mass is moderated and is contributing to the reactivity of the system. The second new approach takes credit for the progression of the dissolving process. Previously, dissolving analysis looked at a snapshot in time where the same fissile material existed both in the wells and in the bulk solution at the same time. The second new approach models multiple consecutive phases that simulate the fissile material moving from a high concentration in the wells to a low concentration in the bulk solution. This approach is more realistic and allows higher fissile masses to be charged to the dissolver.

  3. Natural versus wastewater derived dissolved organic carbon: implications for the environmental fate of organic micropollutants.

    PubMed

    Neale, Peta A; Antony, Alice; Gernjak, Wolfgang; Leslie, Greg; Escher, Beate I

    2011-08-01

    The interaction of organic micropollutants with dissolved organic carbon (DOC) can influence their transport, degradation and bioavailability. While this has been well established for natural organic carbon, very little is known regarding the influence of DOC on the fate of micropollutants during wastewater treatment and water recycling. Dissolved organic carbon-water partition coefficients (K(DOC)) for wastewater derived and reference DOC were measured for a range of micropollutants using a depletion method with polydimethylsiloxane disks. For micropollutants with an octanol-water partition coefficient (log K(OW)) greater than 4 there was a significant difference in K(DOC) between reference and wastewater derived DOC, with partitioning to wastewater derived DOC over 1000 times lower for the most hydrophobic micropollutants. The interaction of nonylphenol with wastewater derived DOC from different stages of a wastewater and advanced water treatment train was studied, but little difference in K(DOC) was observed. Organic carbon characterisation revealed that reference and wastewater derived DOC had very different properties due to their different origins. Consequently, the reduced sorption capacity of wastewater derived DOC may be related to their microbial origin which led to reduced aromaticity and lower molecular weight. This study suggests that for hydrophobic micropollutants (log K(OW) > 4) a higher concentration of freely dissolved and thus bioavailable micropollutants is expected in the presence of wastewater derived DOC than predicted using K(DOC) values quantified using reference DOC. The implication is that naturally derived DOC may not be an appropriate surrogate for wastewater derived DOC as a matrix for assessing the fate of micropollutants in engineered systems. PMID:21703657

  4. Polyethylene devices: passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments.

    PubMed

    Adams, Rachel G; Lohmann, Rainer; Fernandez, Loretta A; MacFarlane, John K; Gschwend, Philip M

    2007-02-15

    We demonstrate the use of polyethylene devices (PEDs) for assessing hydrophobic organic compounds (HOCs) in aquatic environments. Like semipermeable membrane devices (SPMDs) and solid-phase microextraction (SPME), PEDs passively accumulate HOCs in proportion to their freely dissolved concentrations. Polyethylene-water partition constants (K(PEW)S) were measured in the laboratory for eight polycyclic aromatic hydrocarbons (PAHs), five polychlorinated biphenyls (PCBs), and one polychlorinated dibenzop-dioxin (PCDD), and these were found to correlate with octanol-water partition constants (K(OW)s; log K(PEW) = 1.13 log K(OW) - 0.86, R2 = 0.89). Temperature and salinity dependencies of K(PEW) values for the HOCs tested were well predicted with excess enthalpies of solution in water and Setschenow constants, respectively. We also showed that standards, impregnated in the PED before deployment, can be used to correct for incomplete equilibrations. Using PEDs, we measured phenanthrene and pyrene at ng/L concentrations and 2,2',5,5'-tetrachlorobiphenyl at pg/L concentrations in Boston Harbor seawater, consistent with our findings using traditional procedures. PEDs are cheap and robust samplers, competent to accomplish in situ, time-averaged passive sampling with fast equilibration times (approximately days) and simplified laboratory analyses. PMID:17593736

  5. On the contribution of natural and restored wetlands to changes in the concentration and composition of dissolved organic material in the Sacramento-San Joaquin Delta and San Francisco Estuary.

    NASA Astrophysics Data System (ADS)

    Bergamaschi, B.; Stepanauskas, R.; Fram, M.; Hollibaugh, J.; Fujii, R.

    2002-12-01

    The amount and quality of wetland-derived dissolved organic material (DOM) entering delta and estuary environments remains poorly characterized even though DOM has two roles of societal significance: 1) it supports estuarine foodwebs, commonly habitat for endangered species, and 2) it presents problems when it occurs in drinking water supplies, forming carcinogenic byproducts on treatment. The Sacramento-San Joaquin Delta is a source of drinking water for over 20 million people and contributes 80% of the DOM entering the San Francisco Estuary, nearly doubling the concentration of DOM in the influent river water. The majority of the Delta is composed of below-sea level peat islands maintained in agricultural production by continuous pumping of DOM-rich drain water into Delta channels. Previous studies have shown that changes in the composition of the DOM in water that passes through the Delta are not consistent with addition of peat island drain water, and are more consistent with addition of wetland-derived material, suggesting that wetlands may contribute substantially to DOM export to the Estuary. Although wetlands currently contribute only 14% of the Delta, restoration is planned that would more than double this area, potentially altering DOM quality and content in the Delta and Estuary waters. Over the past several years we have examined the seasonal variation in the quality of DOM added by a variety of wetland types and island drains within the Delta and Estuary. In the current study, thirteen sites were each sampled five times. To date, we have analyzed the samples to determine the content of hydrophobic DOM, characterize the UV absorbance and fluorescence properties, and quantify the susceptibility to biodegradation both before and after photo-exposure. Samples were humic-rich, averaging over 75% hydrophobic content and varying from 74 to 86% with the variation in hydrophobic content between samples corresponding to changes in the optical properties. Samples typically were refractory with respect to biodegradation, with an average of 11% of the DOM susceptible to biodegradation prior to photoexposure, but the range was from 1% to 48%. Following photoexposure, samples were generally more refractory rather than more labile. Wetland DOM was found to react to form more drinking water disinfection byproducts than influent waters, but some wetland types appeared to contribute fewer precursors. Seasonal variation in biodegradation and chemical parameters was much greater than variation among wetland types, and the peak of biodegradeability was not related to the seasonal peak in DOM. This suggests addition of DOM through the Delta is controlled by changes in the nature of the source material rather than changes in efficiency or extent of remineralization.

  6. The Contribution of Natural and Restored Wetlands to Changes in the Concentration and Composition of Dissolved Organic Material in the Sacramento-San Joaquin Delta and San Francisco Estuary

    NASA Astrophysics Data System (ADS)

    Bergamaschi, B. A.; Stepanauskas, R.; Fram, M.; Hollibaugh, J. T.; Fujii, R.

    2002-12-01

    The quantity and quality of wetland-derived dissolved organic material (DOM) entering delta and estuary environments remains poorly characterized, even though DOM has two roles of societal significance: 1) it supports estuarine foodwebs, which commonly are a habitat for endangered species, and 2) it presents problems when it occurs in drinking water supplies, because it forms carcinogenic byproducts when treated. The Sacramento-San Joaquin Delta is a source of drinking water for more than 20 million people and contributes 80% of the DOM entering the San Francisco estuary, nearly doubling the concentration of DOM in the influent river water. The majority of the Delta is composed of below-sea-level peat islands that are maintained in agricultural production by continuous pumping of DOM-rich drain water into Delta channels. Previous studies indicate that changes in DOM composition in water passing through the Delta are not consistent with the addition of peat island drain water, and are more consistent with the addition of wetland-derived material. Therefore, wetlands may contribute substantially to DOM export to the estuary. Although wetlands currently constitute only 14% of the Delta, restoration is planned that would more than double this wetland area, potentially altering DOM quality and content in the Delta and estuary waters. During the past several years, the seasonal variation in the quality of DOM added by a variety of wetland types and island drains within the Delta and estuary has been examined. In this study, 13 sites were sampled 5 times. As of September 2002, the samples have been analyzed to determine the content of hydrophobic DOM, characterize the ultraviolet absorbance and fluorescence properties, and quantify the susceptibility to biodegradation before and after photoexposure. Samples were humic-rich, averaging more than 75% hydrophobic content and varying from 74 to 86%, with the variation in hydrophobic content between samples corresponding to changes in the optical properties. Samples typically were refractory with respect to biodegradation, having an average of 11% of the DOM being susceptible to biodegradation prior to photoexposure, but the range was from 1% to 48%. Following photoexposure, samples generally were more refractory rather than more labile. Wetland DOM reacted to form more drinking water disinfection byproducts than influent waters, but some wetland types seemed to contribute fewer precursors. Seasonal variation in biodegradation and chemical parameters was much greater than variation among wetland types, and the peak of biodegradability was not related to the seasonal peak in DOM. Therefore, the addition of DOM through the Delta is controlled by changes in the nature of the source material rather than changes in efficiency or extent of remineralization.

  7. Wastewater treatment with zero dissolved oxygen

    SciTech Connect

    Hirl, P.J.

    1998-07-01

    Many wastewater treatment plants operate their biological reactors inefficiently because the aeration is not adjusted so that the oxygen supply rate equals the microbial oxygen demand in real times. Tapered aeration systems vary aeration based on the oxygen demand profile but these systems are static. Dynamic oxygen control systems have been successful but do not operate at low dissolved oxygen concentrations. The purpose of the research described is to develop a control system and reactor operating strategies to dynamically change the aeration rate to match the oxygen uptake rate while maintaining the dissolve oxygen concentration less than 0.5 mg/L. Though, low dissolved oxygen operation can reduce the rate of carbon degradation and/or promote filamentous bulking, it also maximizes the oxygen transfer rate and can promote simultaneous nitrification and denitrification. Development and testing of a control system and operating strategies at the bench scale is in progress.

  8. Intersegmental coupling and recovery from perturbations in freely running cockroaches.

    PubMed

    Couzin-Fuchs, Einat; Kiemel, Tim; Gal, Omer; Ayali, Amir; Holmes, Philip

    2015-01-15

    Cockroaches are remarkably stable runners, exhibiting rapid recovery from external perturbations. To uncover the mechanisms behind this important behavioral trait, we recorded leg kinematics of freely running animals in both undisturbed and perturbed trials. Functional coupling underlying inter-leg coordination was monitored before and during localized perturbations, which were applied to single legs via magnetic impulses. The resulting transient effects on all legs and the recovery times to normal pre-perturbation kinematics were studied. We estimated coupling architecture and strength by fitting experimental data to a six-leg-unit phase oscillator model. Using maximum-likelihood techniques, we found that a network with nearest-neighbor inter-leg coupling best fitted the data and that, although coupling strengths vary among preparations, the overall inputs entering each leg are approximately balanced and consistent. Simulations of models with different coupling strengths encountering perturbations suggest that the coupling schemes estimated from our experiments allow animals relatively fast and uniform recoveries from perturbations. PMID:25609786

  9. Hydrodynamics of Inclusions in Freely Suspended Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Qi, Zhiyuan

    Hydrodynamic interaction of pairs of circular inclusions in two-dimensional (2D), fluid smectic membranes suspended in air has been studied systematically. By analyzing their Brownian motion, it is found that the radial mutual mobilities of identical inclusions are independent of their size but that the angular coupling becomes strongly size-dependent when their radius exceeds a characteristic hydrodynamic length. These observations are described well for arbitrary inclusion separations by a model that generalizes the Levine/MacKintosh theory of point-force response functions and uses a boundary-element approach to calculate the mobility matrix for inclusions of finite extent. Beyond that, 2D flow fields generated by a rigid, oscillating post inserted in the film have been measured by analyzing the motion of tracer particles and provide a detailed understanding of the hydrodynamic behavior in the film/gas system. The Brownian diffusion of micron-scale inclusions in freely suspended smectic A liquid crystal films a few nanometers thick and several millimeters in diameter depends strongly on the air surrounding the film. Near atmospheric pressure, the three-dimensionally coupled film/gas system is well described by Hughes/Pailthorpe/White hydrodynamic theory but at lower pressure, the diffusion coefficient increases substantially, tending in high vacuum toward the two-dimensional limit where it is determined by film size. In the absence of air, the films are found to be a nearly ideal physical realization of a two-dimensional, incompressible Newtonian fluid.

  10. Monitoring pulse oximetry via radiotelemetry in freely-moving lambs.

    PubMed

    Reix, Philippe; Dumont, Sylvain; Duvareille, Charles; Cyr, Jonathan; Moreau-Bussire, Franois; Arsenault, Julie; Praud, Jean-Paul

    2005-05-12

    This study was aimed at validating the use of a custom-made wireless pulse oximeter in freely moving lambs, using radiotelemetry transmission. First, measurements obtained simultaneously using the new, wireless oximeter and a standard commercially-available pulse oximeter (Nonin 8500) were compared in five lambs during 5min episodes of normoxia, hypoxia and hyperoxia. Correlation between the two oximeters for both SpO(2) and heart rate was very good, regardless of oxygenation conditions. Secondly, the capabilities of our device were assessed during more than 45h of polysomnographic recordings in seven lambs. According to the plethysmographic pulse waveform, reliable SpO(2) values were obtained in more than 85% of recording time. Multiple decreases in SpO(2) were readily observed after spontaneous apneas in preterm lambs. It is concluded that our wireless pulse oximeter performs as reliably as a standard pulse oximeter for monitoring SpO(2) variations in lambs, and offers new perspectives for researchers interested in continuous monitoring of oxygenation throughout sleep stages and wakefulness. PMID:15848124

  11. Freely Decaying Turbulence in Force-free Electrodynamics

    NASA Astrophysics Data System (ADS)

    Zrake, Jonathan; East, William E.

    2016-02-01

    Freely decaying, relativistic force-free turbulence is studied for the first time. We initiate the magnetic field at a short wavelength and simulate its relaxation toward equilibrium on two- and three-dimensional periodic domains in both helical and nonhelical settings. Force-free turbulent relaxation is found to exhibit an inverse cascade in all settings and in three dimensions to have a magnetic energy spectrum consistent with the Kolmogorov 5/3 power law. Three-dimensional relaxations also obey the Taylor hypothesis; they settle promptly into the lowest-energy configuration allowed by conservation of the total magnetic helicity. However, in two dimensions, the relaxed state is a force-free equilibrium whose energy greatly exceeds the Taylor minimum and that contains persistent force-free current layers and isolated flux tubes. We explain this behavior in terms of additional topological invariants that exist only in two dimensions, namely the helicity enclosed within each level surface of the magnetic potential function. The speed and completeness of turbulent magnetic free-energy discharge could help account for rapidly variable gamma-ray emission from the Crab Nebula, gamma-ray bursts, blazars, and radio galaxies.

  12. 3-D Worm Tracker for Freely Moving C. elegans

    PubMed Central

    Kwon, Namseop; Pyo, Jaeyeon; Lee, Seung-Jae; Je, Jung Ho

    2013-01-01

    The manner in which the nervous system regulates animal behaviors in natural environments is a fundamental issue in biology. To address this question, C. elegans has been widely used as a model animal for the analysis of various animal behaviors. Previous behavioral assays have been limited to two-dimensional (2-D) environments, confining the worm motion to a planar substrate that does not reflect three-dimensional (3-D) natural environments such as rotting fruits or soil. Here, we develop a 3-D worm tracker (3DWT) for freely moving C. elegans in 3-D environments, based on a stereoscopic configuration. The 3DWT provides us with a quantitative trajectory, including the position and movement direction of the worm in 3-D. The 3DWT is also capable of recording and visualizing postures of the moving worm in 3-D, which are more complex than those in 2-D. Our 3DWT affords new opportunities for understanding the nervous system function that regulates animal behaviors in natural 3-D environments. PMID:23437394

  13. Intersegmental coupling and recovery from perturbations in freely running cockroaches

    PubMed Central

    Couzin-Fuchs, Einat; Kiemel, Tim; Gal, Omer; Ayali, Amir; Holmes, Philip

    2015-01-01

    Cockroaches are remarkably stable runners, exhibiting rapid recovery from external perturbations. To uncover the mechanisms behind this important behavioral trait, we recorded leg kinematics of freely running animals in both undisturbed and perturbed trials. Functional coupling underlying inter-leg coordination was monitored before and during localized perturbations, which were applied to single legs via magnetic impulses. The resulting transient effects on all legs and the recovery times to normal pre-perturbation kinematics were studied. We estimated coupling architecture and strength by fitting experimental data to a six-leg-unit phase oscillator model. Using maximum-likelihood techniques, we found that a network with nearest-neighbor inter-leg coupling best fitted the data and that, although coupling strengths vary among preparations, the overall inputs entering each leg are approximately balanced and consistent. Simulations of models with different coupling strengths encountering perturbations suggest that the coupling schemes estimated from our experiments allow animals relatively fast and uniform recoveries from perturbations. PMID:25609786

  14. Functional Brain Mapping in Freely Moving Rats During Treadmill Walking

    PubMed Central

    Holschneider, D. P.; Maarek, J.-M. I.; Yang, J.; Harimoto, J.; Scremin, O. U.

    2014-01-01

    Summary A dilemma in functional neuroimaging is that immobilization of the subject, necessary to avoid movement artifact, extinguishes all but the simplest behaviors. Recently, we developed an implantable microbolus infusion pump (MIP) that allows bolus injection of radiotracers by remote activation in freely moving, nontethered animals. The MIP is examined as a tool for brain mapping in rats during a locomotor task. Cerebral blood flowrelated tissue radioactivity (CBF-TR) was measured using [14C]-iodoantipyrine with an indicator-fractionation method, followed by autoradiography. Rats exposed to walking on a treadmill, compared to quiescent controls, showed increases in CBF-TR in motor circuits (primary motor cortex, dorsolateral striatum, ventrolateral thalamus, midline cerebellum, copula pyramis, paramedian lobule), in primary somatosensory cortex mapping the forelimbs, hindlimbs and trunk, as well as in secondary visual cortex. These results support the use of implantable pumps as adjunct tools for functional neuroimaging of behaviors that cannot be elicited in restrained or tethered animals. PMID:12902836

  15. Lap-Dissolve Slides

    ERIC Educational Resources Information Center

    Fine, Leonard W.; And Others

    1977-01-01

    Discusses the use of lap-dissolve projection to give students pre-laboratory instruction on an upcoming experiment. In this technique, two slide projectors are operated alternately so that one visual image fades away while the next appears on the same screen area. (MLH)

  16. Numerical simulation of dissolved oxygen in Jakarta Bay

    NASA Astrophysics Data System (ADS)

    Nurdjaman, Susanna; Radjawane, Ivonne M.; Jamelina, Sripardi

    2014-03-01

    In this paper, an ecosystem model is proposed to study interaction between ecosystem compartment such as nutrient, phytoplankton, zooplankton and detritus on dissolved oxygen (DO) in Jakarta Bay. Three-Dimensional NPZD model with adding DO compartment is applied in this region. The average of current circulation in west and east season is used as input in the model. It is assumed that the nutrients are discharged into water body with constant rates. The analysis of the model shows that the concentration of dissolved oxygen was distributed with range value 3 - 4 ppm in the bay. The air-sea interaction plays important role in decrease of dissolved oxygen than the nutrient discharge from the river. Over all the decrease of dissolved oxygen mainly due to decrease of saturated dissolved oxygen which is caused by high water temperature. There is no significant variation of dissolved oxygen concentration in west and east seasons.

  17. Method for dissolving plutonium oxide with HI and separating plutonium

    DOEpatents

    Vondra, Benedict L.; Tallent, Othar K.; Mailen, James C.

    1979-01-01

    PuO.sub.2 -containing solids, particularly residues from incomplete HNO.sub.3 dissolution of irradiated nuclear fuels, are dissolved in aqueous HI. The resulting solution is evaporated to dryness and the solids are dissolved in HNO.sub.3 for further chemical reprocessing. Alternatively, the HI solution containing dissolved Pu values, can be contacted with a cation exchange resin causing the Pu values to load the resin. The Pu values are selectively eluted from the resin with more concentrated HI.

  18. Modeling Fish Growth in Low Dissolved Oxygen

    ERIC Educational Resources Information Center

    Neilan, Rachael Miller

    2013-01-01

    This article describes a computational project designed for undergraduate students as an introduction to mathematical modeling. Students use an ordinary differential equation to describe fish weight and assume the instantaneous growth rate depends on the concentration of dissolved oxygen. Published laboratory experiments suggest that continuous

  19. Modeling Fish Growth in Low Dissolved Oxygen

    ERIC Educational Resources Information Center

    Neilan, Rachael Miller

    2013-01-01

    This article describes a computational project designed for undergraduate students as an introduction to mathematical modeling. Students use an ordinary differential equation to describe fish weight and assume the instantaneous growth rate depends on the concentration of dissolved oxygen. Published laboratory experiments suggest that continuous…

  20. Urine collection in the freely moving rat: reliability for measurement of short-term renal effects.

    PubMed

    Haas, M; Kluppel, A C; Moolenaar, F; Meijer, D K; de Jong, P E; de Zeeuw, D

    1997-09-01

    Studies on short-term renal responses to (pharmacological) intervention require accurate and multiple collection of urine samples. Several invasive techniques have been described for frequent urine collection of the conscious rat, each having their own limitations. No data are available about the feasibility of the spontaneously voiding, freely moving rat for this purpose. In the present study, bladder voidings of six rats were time-registered and collected separately for several days. The data show a considerable 24-h variation coefficient of both the voided volume and the bladder collection time with a poor correlation between the two parameters. Forced diuresis induced by continuous i.v. infusion (2 ml/h) increased the frequency of urine voiding and thus the time-resolution of the urine-production pattern. However, this method failed to reduce the variation coefficient of the voided volume, the collection time, and the correlation between the two parameters. The fact that variations in creatinine excretion paralleled the variation in urinary flow suggests that both phenomena are likely be due to incomplete bladder emptying. Correction for this incomplete bladder collection, using the creatinine excretion, indeed reduced the variation coefficient of sodium excretion successfully from 61 +/- 17% to 29 +/- 5% during normal diuresis and from 56 +/- 19% to 22 +/- 6% during forced diuresis. In conclusion, the spontaneously voiding, freely moving rat can be used for short-term renal response studies if the collected urine samples are corrected for incomplete bladder emptying using urinary creatinine concentrations. This procedure allows the detection of changes in a urinary parameter if this exceeds a 40% deviation of the normal value. PMID:9339416

  1. Chronic measurement of left ventricular pressure in freely moving rats.

    PubMed

    Stehlin, Ellyce; Malpas, Simon C; Budgett, David M; Barrett, Carolyn J; McCormick, Daniel; Whalley, Gillian; Fu, Fumin; Beil, Michael; Rigel, Dean F; Guild, Sarah-Jane

    2013-12-01

    Measurements of left ventricular pressure (LVP) in conscious freely moving animals are uncommon, yet could offer considerable opportunity for understanding cardiovascular disease progression and treatment. The aim of this study was to develop surgical methods and validate the measurements of a new high-fidelity, solid-state pressure-sensor telemetry device for chronically measuring LVP and dP/dt in rats. The pressure-sensor catheter tip (2-Fr) was inserted into the left ventricular chamber through the apex of the heart, and the telemeter body was implanted in the abdomen. Data were measured up to 85 days after implant. The average daytime dP/dt max was 9,444 ± 363 mmHg/s, ranging from 7,870 to 10,558 mmHg/s (n = 7). A circadian variation in dP/dt max and heart rate (HR) was observed with an average increase during the night phase in dP/dt max of 918 ± 84 mmHg/s, and in HR of 38 ± 3 bpm. The β-adrenergic-agonist isoproterenol, β1-adrenergic agonist dobutamine, Ca(2+) channel blocker verapamil, and the calcium sensitizer levosimendan were administered throughout the implant period, inducing dose-dependent time course changes and absolute changes in dP/dt max of -6,000 to +13,000 mmHg/s. The surgical methods and new technologies demonstrated long-term stability, sensitivity to circadian variation, and the ability to measure large drug-induced changes, validating this new solution for chronic measurement of LVP in conscious rats. PMID:24114699

  2. Satellite Meteorology Education Resources Freely Available from COMET

    NASA Astrophysics Data System (ADS)

    Abshire, W. E.; Dills, P. N.

    2011-12-01

    The COMET Program (www.comet.ucar.edu) receives funding from NOAA NESDIS, EUMETSAT, and the Meteorological Service of Canada to support education and training efforts in satellite meteorology. These partnerships enable COMET to create educational materials of global interest on the application of products from geostationary and polar-orbiting remote sensing platforms. Recently, COMET's satellite education programs have focused on both current and next generation satellites and their relevance to operational forecasters and other communities. By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and its Cooperative Institutes, MSC, and other user communities, COMET stimulates greater utilization of satellite data and products. COMET also continues to broaden the scope of its training to include materials on the EUMETSAT Polar-orbiting System (EPS) and Meteosat geostationary satellites. EPS represents an important contribution to the Initial Joint Polar System between NOAA and EUMETSAT, while Meteosat Second Generation imaging capabilities provide an authentic proving ground for the next-generation GOES-R imager. This presentation provides an overview of COMET's recent satellite education efforts including courses and publications that focus on topics like multispectral RGB products, detecting atmospheric dust, and climate monitoring from satellites. Over 50 satellite-focused self-paced online materials are freely available via the Satellite Topic area of the MetEd Web site (www.meted.ucar.edu/topics/modules/satellite) and COMET's Environmental Satellite Resource Center (ESRC)(www.meted.ucar.edu/esrc). The ESRC, another important resource developed for use by the geosciences and education communities, is a searchable, database driven Web site that provides easy access to a wide range of useful information and training materials on Earth-observing satellites. Simple free online registration is required to access all training materials and the ESRC.

  3. Variability of swallowing performance in intact, freely feeding Aplysia

    PubMed Central

    Lum, Cecilia S.; Zhurov, Yuriy; Cropper, Elizabeth C.; Weiss, Klaudiusz R.; Brezina, Vladimir

    2005-01-01

    Variability in nervous systems is often taken to be merely noise. Yet in some cases it may play a positive, active role in the production of behavior. The central pattern generator (CPG) that drives the consummatory feeding behaviors of Aplysia generates large, quasi-random variability in the parameters of the feeding motor programs from one cycle to the next; the variability then propagates through the firing patterns of the motor neurons to the contractions of the feeding muscles. We have proposed that, when the animal is faced with a new, imperfectly known feeding task in each cycle, the variability implements a trial-and-error search through the space of possible feeding movements. Although this strategy will not be successful in every cycle, over many cycles it may be the optimal strategy for feeding in an uncertain and changing environment. To play this role, however, the variability must actually appear in the feeding movements and, presumably, in the functional performance of the feeding behavior. Here we have tested this critical prediction. We have developed a technique to measure, in intact, freely feeding animals, the performance of Aplysia swallowing behavior, by continuously recording with a length transducer the movement of the seaweed strip being swallowed. Simultaneously, we have recorded with implanted electrodes activity at each of the internal levels, the CPG, motor neurons, and muscles, of the feeding neuromusculature. Statistical analysis of a large dataset of these recordings suggests that functional performance is not determined strongly by one or a few parameters of the internal activity, but weakly by many. Most importantly, the internal variability does emerge in the behavior and its functional performance. Even when the animal is swallowing a long, perfectly regular seaweed strip, remarkably, the length swallowed from cycle to cycle is extremely variable, as variable as the parameters of the activity of the CPG, motor neurons, and muscles. PMID:15944235

  4. 34 CFR 300.701 - Outlying areas, freely associated States, and the Secretary of the Interior.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Secretary of the Interior. 300.701 Section 300.701 Education Regulations of the Offices of the Department of..., freely associated States, and the Secretary of the Interior. (a) Outlying areas and freely associated... the Interior. From the amount appropriated for any fiscal year under section 611(i) of the Act,...

  5. Dissolved P in streams in dry years and wet years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved phosphorus (P) has often been identified as the nutrient of concern in lakes, reservoirs, and streams especially where there is evidence of eutrophication. We analyzed contiguous-spatial and temporal variability of dissolved P [soluble reactive P (SRP)] stream concentrations during times ...

  6. Effects of quantity, quality, and contact time of dissolved organic matter on bioconcentration of benzo[a]pyrene in the nematode Caenorhabditis elegans

    SciTech Connect

    Haitzer, M.; Hoess, S. |; Burnison, B.K.; Traunspurger, W.; Steinberg, C.E.W.

    1999-03-01

    Quantity and quality of dissolved organic matter (DOM) and the time allowed for DOM to interact with organic contaminants can influence their bioavailability. The authors studied the effect of natural aquatic DOM that had been in contact with benzo[a]pyrene (B[a]P) for 1 to 12 d on the bioconcentration of B[a]P in the nematode Caenorhabditis elegans. Dissolved organic matter quality and quantity was varied by using DOM from three different sources, each in three different concentrations. A model, based on the assumption that only freely dissolved B[a]P is bioavailable, was employed to estimate biologically determined partition coefficients [K{sub p}(biol.)]. Expressing the data for each combination of DOM source and contact time in a single K{sub p} (biol.) value allowed a direct comparison of the effects of different DOM qualities and contact times. The results show that the effect of DOM from a specific source was dependent on DOM quantity, but they also observed a distinct effect of DOM quality (represented by different sampling locations) on the bioconcentration of B[a]P. Contact time had no significant influence for the effects of two DOM sources on the bioconcentration of B[a]P. However, the third DOM source was significantly more effective with increased contact time, leading to lower B[a]P bioconcentration in the nematodes.

  7. Taste responses of cortical neurons in freely ingesting rats.

    PubMed

    Yamamoto, T; Matsuo, R; Kiyomitsu, Y; Kitamura, R

    1989-06-01

    1. Activities of 35 taste-responsive neurons in the cortical gustatory area were recorded with chronically implanted fine wires in freely ingesting Wistar rats. Quantitative analyses were performed on responses to distilled water, food solution, and four taste stimuli: sucrose, NaCl, HCl, and quinine hydrochloride. 2. Taste-responsive neurons were classified into type-1 and type-2 groups according to the response patterns to licking of the six taste stimuli. Type-1 neurons (n = 29) responded in excitatory or inhibitory directions to one or more of the taste stimuli. Type-2 neurons (n = 6) showed responses in different directions depending upon palatability of the liquids to rats: neurons showing excitatory (or inhibitory) responses to palatable stimuli exhibited inhibitory (or excitatory) responses to unpalatable stimuli. 3. Correlation coefficients of responses to pairs of stimuli across neurons suggested that palatable stimuli (water, food solution, sucrose, and NaCl) and unpalatable stimuli (HCl and quinine) elicited reciprocal (excitatory vs. inhibitory) responses in type-2 neurons, whereas type-1 neurons showed positively correlated responses to specific combinations of stimuli such as food solution and NaCl, sucrose and HCl, NaCl and quinine, and HCl and quinine. 4. A tendency toward equalization of effectiveness in eliciting responses among the four basic taste stimuli was detected on the cortex. The ratios of mean evoked responses in 29 type-1 neurons in comparison with spontaneous rate (4.4 spikes/s) were 1.7, 1.9, 1.8, and 1.9 for sucrose, NaCl, HCl, and quinine, respectively. 5. The breadth of responsiveness to the four basic taste stimuli was quantified by means of the entropy measure introduced by Smith and Travers (33). The mean entropy value was 0.540 for 29 type-1 neurons, which was similar to 0.588 previously reported for rat chorda tympani fibers, suggesting that breadth of tuning is not more narrowly tuned in a higher level of the gustatory system in the rat. 6. Convergent inputs of other sensory modalities were detected exclusively in type-1 neurons. Thirteen (45%) of 29 type-1 neurons also responded to cold and/or warm water, but none of 6 type-2 neurons responded to thermal stimuli. Two (7%) of 29 type-1 neurons responded to almond and acetic acid odors, but the 6 type-2 neurons did not. Two (13%) of 16 type-1 neurons responded to interperitoneal injection of LiCl, which is known to induce gastrointestinal disorders, with a latency of approximately 5 min, but 4 type-2 neurons tested were not responsive to this stimulation.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2746324

  8. Structural Defects and Instabilities in Freely Suspended Liquid Crystal Films.

    NASA Astrophysics Data System (ADS)

    Pang, Jinzhong

    1995-01-01

    Ultrathin freely suspended liquid crystal films (FSLCFs) are layered two-dimensional (2D) systems which are ideal for the study of 2D physics because of their rich phase and symmetry breaking behavior and almost exclusively internal interactions. We have studied structural defects and instabilities in tilted smectic FSLCFs of many different materials over a wide range of layer numbers. Our observations show that the range of possible phases, structural defects and instabilities in these films is considerably broader than previously realized. Here, we report our studies of string defects, twist-bend instabilities and splay instabilities in FSLCFs. Until now, the defects identified in tilted smectic films are point topological defects of unit topological charge, in which the tilt orientation changes by +/-2pi upon traveling once around the defect point. We have discovered a variety of new defects in 2D tilted smectic systems (the "string" defects) in which there is discontinuity in tilt orientation along a line. We also find associated fractionally charged topological point defect structures. Our observations indicate the presence of additional stabilization mechanisms for 2D line defects and open the way for study of line defects in 2D systems. Some of the most interesting structures in liquid crystals arise as a result of internal frustration. These are situations in which the local energetically ideal configuration cannot be extended to fill space, but must be accommodated by the appearance of defects, often in periodic arrays. We have discovered two new frustrated phases in FSLCFs: the twist-bend stripe phase and the splay stripe phase. The twist-bend stripe phase is formed in an achiral compound with one aliphatic and one perfluoroalkyl chain and is a novel example of spontaneous chiral-symmetry breaking. This phase transition is mainly driven by the interior twist field generated by the steric interaction of molecules in non-polar films. The splay stripe phase, on the other hand, arises as a result of a polar ordering phase separation, and the instability of the ensuing domain boundaries.

  9. Dissolved organic nitrogen regulation in freshwaters.

    PubMed

    Willett, V B; Reynolds, B A; Stevens, P A; Ormerod, S J; Jones, D L

    2004-01-01

    Dissolved organic nitrogen (DON) has been hypothesized to play a major role in N cycling in a variety of ecosystems. Our aim was to assess the seasonal and concentration relationships between dissolved organic carbon (DOC), DON, and NO3- within 102 streams and 16 lakes within catchments of differing complexity situated in Wales. Further, we aimed to assess whether patterns of land use, soil type, and vegetation gave consistent trends in DON and dissolved inorganic nitrogen (DIN) relationships over a diverse range of catchments. Our results reinforce that DON constitutes a significant component of the total dissolved N pool typically representing 40 to 50% of the total N in streams and lakes but sometimes representing greater than 85% of the total dissolved N. Generally, the levels of DON were inversely correlated with the concentration of DIN. In contrast to DIN concentrations, which showed distinct seasonality, DON showed no consistent seasonal trend. We hypothesize that this reflects differences in the bioavailability of these two N types. The amount of DON, DOC, and DIN was significantly related to soil type with higher DON export from Histosol-dominated catchments in comparison with Spodosol-dominated watersheds. Vegetation cover also had a significant effect on DON concentrations independent of soil type with a nearly twofold decrease in DON export from forested catchments in comparison with nonforested watersheds. Due to the diversity in catchment DON behavior, we speculate that this will limit the adoption of DON as a broad-scale indicator of catchment condition for use in monitoring and assessment programs. PMID:14964375

  10. D4 Receptor Activation Differentially Modulates Hippocampal Basal and Apical Dendritic Synapses in Freely Moving Mice.

    PubMed

    Li, Shi-Bin; Du, Dan; Hasan, Mazahir T; Khr, Georg

    2016-02-01

    Activation of D4 receptors (D4Rs) has been shown to improve cognitive performance, potentially affecting synaptic strength. We investigated the D4R agonist PD 168077 (PD) in hippocampal CA1 of freely moving mice. We electrically stimulated in stratum oriens (OR) or radiatum (RAD) and evoked local field potentials (LFPs). Intraperitoneally injected PD dose-dependently and reversibly attenuated LFPs for longer time in basal (OR) than apical (RAD) dendrites. High-frequency stimulation induced LTP that was stronger and more stable in OR than RAD. LTP lasted at least 4 h during which the paired-pulse ratio remained reduced. A PD concentration not affecting synaptic transmission was sufficient to reduce LTP in OR but not in RAD. A PD concentration reducing synaptic transmission reduced the early phase LTP in OR additionally and the late phase LTP in RAD exclusively. Furthermore, cell type-specific expression of mCherry in DATCre mice generated fluorescence in dorsal CA1 that was highest in lacunosum moleculare and similar in OR/RAD, indicating that midbrain dopaminergic fibers distribute evenly in OR/RAD. Together, the D4R-mediated modulation of hippocampal synaptic transmission and plasticity is stronger in OR than RAD. This could affect information processing in CA1 neurons, since signals arriving via basal and apical afferents are distinct. PMID:25270308

  11. DISSOLVED OXYGEN, TEMPERATURE, SURVIVAL OF YOUNG AT FISH SPAWNING SITES

    EPA Science Inventory

    Fluctuations of dissolved oxygen concentrations and water temperatures in their natural spawning sites were measured during embryo through larva stages of northern pike (Esox lucius), and during embryo and sac larva stages of bluegills (Lepomis macrochirus) and pumpkinseeds (Lepo...

  12. EFFECTS OF TEMPERATURE VARIATION ON CRITICAL STREAM DISSOLVED OXYGEN

    EPA Science Inventory

    The classical assumption that the lowest dissolved oxygen (DO) occurs at the highest temperature may not always hold. The DO saturation concentration decreases monotonically with increasing temperature, lowering the DO, but the reaeration coefficient increases monotonically with ...

  13. Chapter A6. Section 6.2. Dissolved Oxygen

    USGS Publications Warehouse

    Revised by Lewis, Michael Edward

    2006-01-01

    Accurate data for the concentration of dissolved oxygen in surface and ground waters are essential for documenting changes in environmental water resources that result from natural phenomena and human activities. Dissolved oxygen is necessary in aquatic systems for the survival and growth of many aquatic organisms and is used as an indicator of the health of surface-water bodies. This section of the National Field Manual (NFM) includes U.S. Geological Survey (USGS) guidance and protocols for four methods to determine dissolved-oxygen concentrations: the amperometric, luminescent-sensor, spectrophotometric, and iodometric (Winkler) methods.

  14. Effect of cascade remnants on freely migrating defects in Cu-1%Au alloys

    SciTech Connect

    Iwase, A.; Rehn, L.E.; Baldo, P.M.; Funk, L.

    1996-12-31

    The effects of cascade remnants on Freely Migrating Defects (FMD) were studied by measuring Radiation-Induced Segregation (RIS) in Cu-1% Au at 400 C during simultaneous irradiation with 1.5-MeV He and (400--800)-keV heavy ions (Ne, Ar or Cu). The large RIS observed during 1.5-MeV He-only irradiation was dramatically suppressed under simultaneous heavy ion irradiation. For Cu simultaneous irradiation, the suppression disappeared immediately after the Cu irradiation ceased, while for simultaneous inert gas (Ne or Ar) irradiation, the suppression persisted after the ion beam was turned off. These results demonstrate that the displacement cascades created by heavy ions introduce additional annihilation sites, which reduce the steady-state FMD concentrations. As the cascade remnants produced by Cu ions are thermally unstable at 400 C, the RIS suppression occurs only during simultaneous irradiation. On the other hand, the inert gas atoms which accumulate in the specimen apparently stabilize the cascade remnants, allowing the suppression to persist.

  15. View of a stone age adze cutting tool floating freely in the flight deck.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    View of a stone age adze cutting tool floating freely in the forward flight deck and framed by the forward and side windows. On the Earth below, the big island of Hawaii can be seen through the window.

  16. An implantable CMOS device for blood-flow imaging during experiments on freely moving rats

    NASA Astrophysics Data System (ADS)

    Haruta, Makito; Kitsumoto, Chikara; Sunaga, Yoshinori; Takehara, Hironari; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2014-01-01

    An observation technique for animal brain activity under freely moving conditions is important to understand brain functions because brain activity under an anesthetized condition is different from that under a nonanesthetized condition. We have developed an ultrasmall CMOS imaging device for brain activity observation under freely moving conditions. This device is composed of a CMOS image sensor chip and nine LEDs for illumination. It weighs only 0.02 g and its small size enables experiments to be performed without restricting animal movement. This feature is advantageous for brain imaging, particularly in freely moving situations. In this study, we have demonstrated blood-flow imaging using the device for the stable observation of brain activity over a long period. The blood flow can be observed without staining the brain during optical imaging. We have successfully estimated the blood-flow velocity under freely moving conditions.

  17. Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals

    SciTech Connect

    Ramos, E.U.; Meijer, S.N.; Vaes, W.H.J.; Verhaar, H.J.M.; Hermens, J.L.M.

    1998-11-01

    In the current study, the suitability of negligible depletion solid-phase microextraction (nd-SPME) to determine free fractions of chemicals in aquatic environments was explored. The potential interferences of the dissolved matrix (i.e., humic acids) with the SPME measurements were tested. Results show that nd-SPME measures only the freely dissolved fraction and that the measurements are not disturbed by the humic acids. In addition, nd-SPME was used to determine partition coefficients between dissolved organic carbon and water for four hydrophobic chemicals. Obtained values are in excellent agreement with previously reported data. Finally, the bioaccumulation of hexachlorobenzene and PCB 77 to Daphnia magna was determined in the presence and absence of humic acids. The bioconcentration factors (BCF) were calculated based on total as well as on free concentration. Lower BCF values are obtained in the presence of humic acids using total concentrations, whereas equal BCFs are found using free concentrations measured with nd-SPME. Therefore, the authors can conclude that negligible depletion SPME is a good technique to determine bioavailable concentrations of hydrophobic chemicals in aquatic environments.

  18. Total dissolvable and dissolved iron isotopes in the water column of the Peru upwelling regime

    NASA Astrophysics Data System (ADS)

    Chever, Fanny; Rouxel, Olivier J.; Croot, Peter L.; Ponzevera, Emmanuel; Wuttig, Kathrin; Auro, Maureen

    2015-08-01

    Vertical distributions of iron (Fe) concentrations and isotopes were determined in the total dissolvable and dissolved pools in the water column at three coastal stations located along the Peruvian margin, in the core of the Oxygen Minimum Zone (OMZ). The shallowest station 121 (161 m total water depth) was characterized by lithogenic input from the continental plateau, yielding concentrations as high as 456 nM in the total dissolvable pool. At the 2 other stations (stations 122 and 123), Fe concentrations of dissolved and total dissolvable pools exhibited maxima in both surface and deep layers. Fe isotopic composition (δ56Fe) showed a fractionation toward lighter values for both physical pools throughout the water column for all stations with minimum values observed for the surface layer (between -0.64 and -0.97‰ at 10-20 m depth) and deep layer (between -0.03 and -1.25‰ at 160-300 m depth). An Fe isotope budget was established to determine the isotopic composition of the particulate pool. We observed a range of δ56Fe values for particulate Fe from +0.02 to -0.87‰, with lightest values obtained at water depth above 50 m. Such light values in the both particulate and dissolved pools suggest sources other than atmospheric dust deposition in the surface ocean, including lateral transport of isotopically light Fe. Samples collected at station 122 closest to the sediment show the lightest isotope composition in the dissolved and the particulate pools (-1.25 and -0.53‰ respectively) and high Fe(II) concentrations (14.2 ± 2.1 nM) consistent with a major reductive benthic Fe sources that is transferred to the ocean water column. A simple isotopic model is proposed to link the extent of Fe(II) oxidation and the Fe isotope composition of both particulate and dissolved Fe pools. This study demonstrates that Fe isotopic composition in OMZ regions is not only affected by the relative contribution of reductive and non-reductive shelf sediment input but also by seawater-column processes during the transport and oxidation of Fe from the source region to open seawater.

  19. Knowledge and understanding of dissolved solids in the Rio Grande–San Acacia, New Mexico, to Fort Quitman, Texas, and plan for future studies and monitoring

    USGS Publications Warehouse

    Moyer, Douglas; Anderholm, Scott K.; Hogan, James F.; Phillips, Fred M.; Hibbs, Barry J.; Witcher, James C.; Matherne, Anne Marie; Falk, Sarah E.

    2013-01-01

    -Focused Hydrogeology Studies at Inflow Sources: Map dissolved-solids concentrations in the Rio Grande and underlying alluvial aquifer; perform hydrogeologic characterization of subsurface areas containing unusually high concentrations of dissolved solids. -Modeling of Dissolved Solids: Develop models to simulate the transport and storage of dissolved solids in both surface-water and groundwater systems.

  20. Chemical characterization of dissolvable tobacco products promoted to reduce harm.

    PubMed

    Rainey, Christina L; Conder, Paige A; Goodpaster, John V

    2011-03-23

    In 2009, the R. J. Reynolds Tobacco Co. released a line of dissolvable tobacco products that are marketed as an alternative to smoking in places where smoking is prohibited. These products are currently available in Indianapolis, IN, Columbus, OH, and Portland, OR. This paper describes the chemical characterization of four such products by gas chromatography-mass spectrometry (GC-MS). The dissolvable tobacco products were extracted and prepared by ultrasonic extraction using acetone, trimethylsilyl derivatization, and headspace solid phase microextraction (SPME). The following compounds were identified in the dissolvables using either ultrasonic extractions or trimethylsilyl derivatization: nicotine, ethyl citrate, palmitic acid, stearic acid, sorbitol, glycerol, and xylitol. The following compounds were identified in the dissolvables using headspace SPME: nicotine, ethyl citrate, cinnamaldehyde, coumarin, vanillin, and carvone. With the exception of nicotine, the compounds identified thus far in the dissolvables are either flavoring compounds or binders. The concentration of free nicotine in the dissolvables was determined from the Henderson-Hasselbalch equation and by measuring the pH and nicotine concentration by GC-MS. The results presented here are the first to reveal the complexity of dissolvable tobacco products and may be used to assess potential oral health effects. PMID:21332188

  1. Superhydrophobic porous surfaces: dissolved oxygen sensing.

    PubMed

    Gao, Yu; Chen, Tao; Yamamoto, Shunsuke; Miyashita, Tokuji; Mitsuishi, Masaya

    2015-02-18

    Porous polymer films are necessary for dissolved gas sensor applications that combine high sensitivity with selectivity. This report describes a greatly enhanced dissolved oxygen sensor system consisting of amphiphilic acrylamide-based polymers: poly(N-(1H, 1H-pentadecafluorooctyl)-methacrylamide) (pC7F15MAA) and poly(N-dodecylacrylamide-co-5- [4-(2-methacryloyloxyethoxy-carbonyl)phenyl]-10,15,20-triphenylporphinato platinum(II)) (p(DDA/PtTPP)). The nanoparticle formation capability ensures both superhydrophobicity with a water contact angle greater than 160 and gas permeability so that molecular oxygen enters the film from water. The film was prepared by casting a mixed solution of pC7F15MAA and p(DDA/PtTPP) with AK-225 and acetic acid onto a solid substrate. The film has a porous structure comprising nanoparticle assemblies with diameters of several hundred nanometers. The film shows exceptional performance as the oxygen sensitivity reaches 126: the intensity ratio at two oxygen concentrations (I0/I40) respectively corresponding to dissolved oxygen concentration 0 and 40 (mg L(-1)). Understanding and controlling porous nanostructures are expected to provide opportunities for making selective penetration/separation of molecules occurring at the superhydrophobic surface. PMID:25659178

  2. Isolation and chemical characterization of dissolved and colloidal organic matter

    USGS Publications Warehouse

    Aiken, G.; Leenheer, J.

    1993-01-01

    Commonly used techniques for the concentration and isolation of organic matter from water, such as preparative chromatography, ultrafiltration and reverse osmosis, and the methods used to analyze the organic matter obtained by these methods are reviewed. The development of methods to obtain organic matter that is associated with fractions of the dissolved organic carbon other than humic substances, such as organic bases, hydrophilic organic acids and colloidal organic matter are discussed. Methods specifically used to study dissolved organic nitrogen and dissolved organic phosphorous are also discussed. -from Authors

  3. Fast dissolving films: a review.

    PubMed

    Chaturvedi, Ankita; Srivastava, Pranati; Yadav, Sunita; Bansal, Mayank; Garg, Garima; Sharma, Pramod Kumar

    2011-07-01

    Fast-dissolving drug delivery systems have been developed as an alternative to conventional dosage form as an oral means of drug delivery in case of chronic conditions. Now a day's fast dissolving films are preferred over conventional tablets and capsules for masking the taste of bitter drugs to increase the patient compliance. Fast dissolving films consist of a very thin oral strip which dissolves in less than one minute when placed on the tongue. Dissolvable oral thin films are in the market since past few years in the form of breath strips and are widely accepted by consumers for delivering vitamins, vaccines and other drug products. The various manufacturing techniques for the preparation of films have also been detailed in the review. The present review details most of the patents on such fast dissolving films in recent years. A brief study has been made on various parameters which are used to evaluate such films. In case of chronic disorders these fast dissolving films are better for delivering drugs and obtaining faster therapeutic blood levels and superior in comparison to other oral conventional dosage forms. PMID:21453260

  4. Distribution of dissolved silver in marine waters

    NASA Astrophysics Data System (ADS)

    Barriada, J. L.; Achterberg, E. P.; Tappin, A.; Truscott, J.

    2003-04-01

    Silver is one of the most toxic heavy metals, surpassed only by mercury [1-3]. Monitoring of dissolved silver concentrations in natural waters is therefore of great importance. The determination of dissolved silver in waters is not without challenges, because of its low (picomolar) concentrations. Consequently, there are only a few reported studies in marine waters, which have been performed in USA [4-6] and Japan [7]. The analytical techniques used in the reported studies for the determination of silver in seawater were Graphite Furnace Atomic Absorption Spectroscopy (GFAAS) after solvent extraction [2,4,5], and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) after solvent extraction or solid phase extraction [7,8]. In this contribution, we will present an optimised Magnetic Sector (MS) ICP-MS technique for the determination of dissolved silver in marine waters. The MS-ICP-MS method used anion exchange column to preconcentrate silver from saline waters, and to remove the saline matrix. The ICP-MS method has been used successfully to determine total dissolved silver in estuarine and oceanic samples. Bibliography 1. H. T. Ratte, Environ. Toxicol. Chem. 1999, 18: p. 89-108. 2. R. T. Herrin, A. W. Andren and D. E. Armstrong, Environ. Sci. Technol. 2001, 35: 1953-1958. 3. D. E. Schildkraut, P. T. Dao, J. P. Twist, A. T. Davis and K. A. Robillard, Environ. Toxicol. Chem. 1998, 17: 642-649. 4. E. Breuer, S. A. Sanudo-Wilhelmy and R. C. Aller, Estuaries. 1999, 22:603-615. 5. A. R. Flegal, S. A. Sanudowilhelmy and G. M. Scelfo, Mar. Chem. 1995, 49: 315-320. 6. S. N. Luoma, Y. B. Ho and G. W. Bryan, Mar. Pollut. Bull. 1995, 31: 44-54. 7. Y. Zhang, H. Amakawa and Y. Nozaki, Mar. Chem. 2001, 75: 151-163. 8. L. Yang and R. E. Sturgeon, J. Anal. At. Spectrom. 2002, 17: 88-93.

  5. A Wearable Multi-Channel fNIRS System for Brain Imaging in Freely Moving Subjects

    PubMed Central

    Piper, Sophie K.; Krueger, Arne; Koch, Stefan P.; Mehnert, Jan; Habermehl, Christina; Steinbrink, Jens; Obrig, Hellmuth; Schmitz, Christoph H.

    2013-01-01

    Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N = 8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ?HbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans. PMID:23810973

  6. A wearable multi-channel fNIRS system for brain imaging in freely moving subjects.

    PubMed

    Piper, Sophie K; Krueger, Arne; Koch, Stefan P; Mehnert, Jan; Habermehl, Christina; Steinbrink, Jens; Obrig, Hellmuth; Schmitz, Christoph H

    2014-01-15

    Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N=8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ?HbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans. PMID:23810973

  7. Single occupancy spectroelectrochemistry of freely diffusing flavin mononucleotide in zero-dimensional nanophotonic structures.

    PubMed

    Zaino, Lawrence P; Grismer, Dane A; Han, Donghoon; Crouch, Garrison M; Bohn, Paul W

    2015-12-12

    Zero-mode waveguides (ZMW) have the potential to be powerful confinement tools for studying electron transfer dynamics at single molecule occupancy conditions. Flavin mononucleotide contains an isoalloxazine chromophore, which is fluorescent in the oxidized state (FMN) while the reduced state (FMNH2) exhibits dramatically lower light emission, i.e. a dark-state. This allows fluorescence emission to report the redox state of single FMN molecules, an observation that has been used previously to study single electron transfer events in surface-immobilized flavins and flavoenzymes, e.g. sarcosine oxidase, by direct wide-field imaging of ZMW arrays. Single molecule electron transfer dynamics have now been extended to the study of freely diffusing molecules using fluorescence measurements of Au ZMWs under single occupancy conditions. The Au in the ZMW serves both as an optical cladding layer and as the working electrode for potential control, thereby accessing single molecule electron transfer dynamics at ?M concentrations. Consistent with expectations, the probability of observing single reduced molecules increases as the potential is scanned negative, Eappl < Eeq, and the probability of observing emitting oxidized molecules increases at Eappl > Eeq. Different single molecules exhibit different electron transfer properties as reflected in the position of Eeq and the distribution of Eeq among a population of FMN molecules. Two types of actively-controlled electroluminescence experiments were used: chronofluorometry experiments, in which the potential is alternately stepped between oxidizing and reducing potentials, and cyclic potential sweep fluorescence experiments, analogous to cyclic voltammetry, these latter experiments exhibiting a dramatic scan rate dependence with the slowest scan rates showing distinct intermediate states that are stable over a range of potentials. These states are assigned to flavosemiquinone species that are stabilized in the special environment of the ZMW nanopore. PMID:26406924

  8. Direct Imaging of Hippocampal Epileptiform Calcium Motifs Following Kainic Acid Administration in Freely Behaving Mice

    PubMed Central

    Berdyyeva, Tamara K.; Frady, E. Paxon; Nassi, Jonathan J.; Aluisio, Leah; Cherkas, Yauheniya; Otte, Stephani; Wyatt, Ryan M.; Dugovic, Christine; Ghosh, Kunal K.; Schnitzer, Mark J.; Lovenberg, Timothy; Bonaventure, Pascal

    2016-01-01

    Prolonged exposure to abnormally high calcium concentrations is thought to be a core mechanism underlying hippocampal damage in epileptic patients; however, no prior study has characterized calcium activity during seizures in the live, intact hippocampus. We have directly investigated this possibility by combining whole-brain electroencephalographic (EEG) measurements with microendoscopic calcium imaging of pyramidal cells in the CA1 hippocampal region of freely behaving mice treated with the pro-convulsant kainic acid (KA). We observed that KA administration led to systematic patterns of epileptiform calcium activity: a series of large-scale, intensifying flashes of increased calcium fluorescence concurrent with a cluster of low-amplitude EEG waveforms. This was accompanied by a steady increase in cellular calcium levels (>5 fold increase relative to the baseline), followed by an intense spreading calcium wave characterized by a 218% increase in global mean intensity of calcium fluorescence (n = 8, range [114–349%], p < 10−4; t-test). The wave had no consistent EEG phenotype and occurred before the onset of motor convulsions. Similar changes in calcium activity were also observed in animals treated with 2 different proconvulsant agents, N-methyl-D-aspartate (NMDA) and pentylenetetrazol (PTZ), suggesting the measured changes in calcium dynamics are a signature of seizure activity rather than a KA-specific pathology. Additionally, despite reducing the behavioral severity of KA-induced seizures, the anticonvulsant drug valproate (VA, 300 mg/kg) did not modify the observed abnormalities in calcium dynamics. These results confirm the presence of pathological calcium activity preceding convulsive motor seizures and support calcium as a candidate signaling molecule in a pathway connecting seizures to subsequent cellular damage. Integrating in vivo calcium imaging with traditional assessment of seizures could potentially increase translatability of pharmacological intervention, leading to novel drug screening paradigms and therapeutics designed to target and abolish abnormal patterns of both electrical and calcium excitation. PMID:26973444

  9. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    PubMed Central

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%30.91%, 83.29%90.51%, and 61.5468.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444

  10. Occurrence and potential combined toxicity of dissolved organic contaminants in the Forth estuary and Firth of Forth, Scotland assessed using passive samplers and an algal toxicity test.

    PubMed

    Emelogu, Emmanuel S; Pollard, Pat; Dymond, Peter; Robinson, Craig D; Webster, Lynda; McKenzie, Craig; Dobson, Judy; Bresnan, Eileen; Moffat, Colin F

    2013-09-01

    As an alternative procedure to conventional water quality assessment, the presence and combined toxicity of dissolved organic contaminants in water at five sites in the Forth estuary and the Firth of Forth, Scotland, United Kingdom was investigated using silicone rubber passive sampling devices (SR-PSDs) and an algal growth inhibition bioassay. SR-PSDs were deployed in water at the five sites for ~2 months. Following retrieval, extracts from the deployed SR-PSDs were assessed for both algal growth inhibition and the occurrence of a wide range of organic contaminants, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and a variety of plant protection products (PPPs; commonly referred to collectively as 'pesticides'). The 72 h algal growth inhibition test was performed using a native marine phytoplankton (Diacronema lutheri) in 24 well microplates. Freely dissolved (e.g. bioavailable) concentrations of PAHs and PCBs were determined using performance reference compounds (PRCs). The algal toxicity tests exhibited varied effects at the five sites indicating the presence of, and exposure to, phytotoxic compounds and their potential toxicity in the Forth. The individual and total dissolved concentrations of 40 PAHs and 32 PCBs measured in the study were relatively low and showed input of petrogenic, atmospheric and sewage related sources. Several pesticides of diverse polarities were identified in the water suggesting sources from both riverine input and direct discharges. The study thus illustrates the value of combining bioassays and chemical analysis (with effective sampling technique) for a realistic and rapid assessment of organic contaminants in the aquatic environment. PMID:23728064

  11. Friction-based stabilization of juxtacellular recordings in freely moving rats

    PubMed Central

    Herfst, Lucas; Haskic, Kurt; Tukker, John J.; Schmidt, Martin; Brecht, Michael

    2012-01-01

    Virtually nothing is known about the activity of morphologically identified neurons in freely moving mammals. Here we describe stabilization and positioning techniques that allow juxtacellular recordings from labeled single neurons in awake, freely moving animals. This method involves the use of a friction-based device that allows stabilization of the recording pipette by friction forces. Friction is generated by a clamplike mechanism that tightens a sliding pipette holder to a preimplanted pipette guide. The interacting surfaces are smoothed to optical quality (<5-nm roughness) to enable micrometer stepping precision of the device during operation. Our method allows recordings from identified neurons in freely moving animals, and thus opens new perspectives for analyzing the role of identified neurons in the control of behavior. PMID:22514297

  12. Real-time imaging of brain activity in freely moving rats using functional ultrasound.

    PubMed

    Urban, Alan; Dussaux, Clara; Martel, Guillaume; Brunner, Clment; Mace, Emilie; Montaldo, Gabriel

    2015-09-01

    Innovative imaging methods help to investigate the complex relationship between brain activity and behavior in freely moving animals. Functional ultrasound (fUS) is an imaging modality suitable for recording cerebral blood volume (CBV) dynamics in the whole brain but has so far been used only in head-fixed and anesthetized rodents. We designed a fUS device for tethered brain imaging in freely moving rats based on a miniaturized ultrasound probe and a custom-made ultrasound scanner. We monitored CBV changes in rats during various behavioral states such as quiet rest, after whisker or visual stimulations, and in a food-reinforced operant task. We show that fUS imaging in freely moving rats could efficiently decode brain activity in real time. PMID:26192084

  13. FIELD MEASUREMENT OF DISSOLVED OXYGEN: A COMPARISON OF METHODS

    EPA Science Inventory

    The ability to confidently measure the concentration of dissolved oxygen (D.O.) in ground water is a key aspect of remedial selection and assessment. Presented here is a comparison of the commonly practiced methods for determining D.O. concentrations in ground water, including c...

  14. Laser speckle contrast imaging of cerebral blood flow in freely moving animals

    NASA Astrophysics Data System (ADS)

    Miao, Peng; Lu, Hongyang; Liu, Qi; Li, Yao; Tong, Shanbao

    2011-09-01

    We designed a miniature laser speckle imager that weighs ~20 g and is 3.1-cm high for full-field high-resolution imaging of cerebral blood flow (CBF) in freely moving animals. Coherent laser light illuminates the cortex through a multimode optical fiber bundle fixed onto the supporting frame of the imager. The reflected lights are then collected by a miniature macrolens system and imaged by a high-resolution CMOS camera at a high frame rate (50 fps). Using this miniature imager, we achieve high spatiotemporal resolution laser speckle contrast imaging of CBF in freely moving animals in real time.

  15. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals.

    PubMed

    Takmakov, Pavel; McKinney, Collin J; Carelli, Regina M; Wightman, R Mark

    2011-07-01

    Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals. PMID:21806203

  16. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals

    PubMed Central

    Takmakov, Pavel; McKinney, Collin J.; Carelli, Regina M.; Wightman, R. Mark

    2011-01-01

    Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals. PMID:21806203

  17. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals

    NASA Astrophysics Data System (ADS)

    Takmakov, Pavel; McKinney, Collin J.; Carelli, Regina M.; Wightman, R. Mark

    2011-07-01

    Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals.

  18. Predicting Diel Dissolved Oxygen Dynamics in the Carson River, Nevada

    NASA Astrophysics Data System (ADS)

    Latham, Z. B.; Warwick, J. J.; Fritsen, C. H.

    2005-12-01

    The Carson River originates in eastern Alpine County California, flows northeast into western Nevada through Carson City, and terminates in the Carson Sink. Elevated nutrient levels from agricultural return flows allow for excess attached algal (periphyton) growth. Periods of low flow, coupled with an abundance of periphyton, harbor an environment capable of producing dissolved oxygen concentrations less than 5 mg L-1. Algal biomass sampling, water quality constituent sampling, and YSI Sonde deployments were performed during low flow months of 2003 and 2004 to investigate dissolved oxygen dynamics and relative amounts of periphyton present in a 33 kilometer reach of the Carson River. A significantly augmented version of the Water Quality Analysis and Simulation Program (WASP5) was calibrated and verified. Preliminary results from this version of WASP5 track observed periphyton biomass and dissolved oxygen data fairly consistently throughout both the temporal and spatial model domains. Dissolved oxygen calibration was constrained through the use of observed periphyton biomass, water quality constituents, and temperature data. Finally, the calibrated input file will also be used as an input file for an updated version of the EPA water quality model, WASP7, and a comparison of the simulated periphyton biomass and dissolved oxygen dynamics from these models will be accomplished. The uniqueness of this study stems from the coupling of algal biomass, water quality constituents, temperature, dissolved oxygen field data and the comparison of results from two water quality simulation models, in order to understand the underlying reasons for observed dissolved oxygen variations.

  19. Cruise summary for P-1-02-SC: acoustic imaging of natural oil and gas seeps and measurement of dissolved methane concentration in coastal waters near Pt. Conception, California

    USGS Publications Warehouse

    Lorenson, T.D.; Dougherty, Jennifer A.; Ussler, William, III; Paull, Charles K.

    2003-01-01

    Water-column acoustic anomalies and methane concentrations were documented in coastal waters surrounding Pt. Conception, California, in March 2002. The purpose of this survey, supported by the Minerals Management Service, was to locate active oil and gas seeps in the area as a background for further studies to determine hydrocarbon flux, mainly oil, into the environment. Objectives in reaching this goal are to (1) document the locations and geochemically fingerprint natural seeps within the offshore southern Santa Maria Basin; (2) geochemically fingerprint coastal tar residues and potential sources, both onshore and offshore, in this region; (3) establish chemical correlations between offshore active seeps and coastal residues thus linking seep sources to oil residues; (4) measure the rate of natural seepage of individual seeps and attempt to assess regional natural oil and gas seepage rates; (5) attempt to predict transport pathways of oil from seep sources to the coastline and; (6) interpret the petroleum system history for the natural seeps. This survey, addressing objective 1, focused on the area from offshore Surf Beach to the north and Gaviota to the south in water depths ranging from 20 to 500m. In addition, nine stations were sampled outside this area to provide a regional context. Water-column methane concentrations were measured in water samples collected from the R/V Point Sur with Niskin bottles from various depths. A total of 724 water samples from 94 stations were collected.

  20. Speaking Freely

    ERIC Educational Resources Information Center

    Watson, Jamal Eric

    2012-01-01

    Ask Princeton University's Dr. Cornel West about his views on Black History Month, and somehow the conversation ends up with a sharp critique of the Obama administration. This article profiles West who pulls no punches when it comes to his advocacy for impoverished Americans. For more than three decades, the 58-year-old philosopher has combined

  1. Speaking Freely

    ERIC Educational Resources Information Center

    Watson, Jamal Eric

    2012-01-01

    Ask Princeton University's Dr. Cornel West about his views on Black History Month, and somehow the conversation ends up with a sharp critique of the Obama administration. This article profiles West who pulls no punches when it comes to his advocacy for impoverished Americans. For more than three decades, the 58-year-old philosopher has combined…

  2. On the losses of dissolved CO(2) during champagne serving.

    PubMed

    Liger-Belair, Grard; Bourget, Marielle; Villaume, Sandra; Jeandet, Philippe; Pron, Herv; Polidori, Guillaume

    2010-08-11

    Pouring champagne into a glass is far from being consequenceless with regard to its dissolved CO(2) concentration. Measurements of losses of dissolved CO(2) during champagne serving were done from a bottled Champagne wine initially holding 11.4 +/- 0.1 g L(-1) of dissolved CO(2). Measurements were done at three champagne temperatures (i.e., 4, 12, and 18 degrees C) and for two different ways of serving (i.e., a champagne-like and a beer-like way of serving). The beer-like way of serving champagne was found to impact its concentration of dissolved CO(2) significantly less. Moreover, the higher the champagne temperature is, the higher its loss of dissolved CO(2) during the pouring process, which finally constitutes the first analytical proof that low temperatures prolong the drink's chill and helps it to retain its effervescence during the pouring process. The diffusion coefficient of CO(2) molecules in champagne and champagne viscosity (both strongly temperature-dependent) are suspected to be the two main parameters responsible for such differences. Besides, a recently developed dynamic-tracking technique using IR thermography was also used in order to visualize the cloud of gaseous CO(2) which flows down from champagne during the pouring process, thus visually confirming the strong influence of champagne temperature on its loss of dissolved CO(2). PMID:20681665

  3. Emotions in freely varying and mono-pitched vowels, acoustic and EGG analyses.

    PubMed

    Waaramaa, Teija; Palo, Pertti; Kankare, Elina

    2015-12-01

    Vocal emotions are expressed either by speech or singing. The difference is that in singing the pitch is predetermined while in speech it may vary freely. It was of interest to study whether there were voice quality differences between freely varying and mono-pitched vowels expressed by professional actors. Given their profession, actors have to be able to express emotions both by speech and singing. Electroglottogram and acoustic analyses of emotional utterances embedded in expressions of freely varying vowels [a:], [i:], [u:] (96 samples) and mono-pitched protracted vowels (96 samples) were studied. Contact quotient (CQEGG) was calculated using 35%, 55%, and 80% threshold levels. Three different threshold levels were used in order to evaluate their effects on emotions. Genders were studied separately. The results suggested significant gender differences for CQEGG 80% threshold level. SPL, CQEGG, and F4 were used to convey emotions, but to a lesser degree, when F0 was predetermined. Moreover, females showed fewer significant variations than males. Both genders used more hypofunctional phonation type in mono-pitched utterances than in the expressions with freely varying pitch. The present material warrants further study of the interplay between CQEGG threshold levels and formant frequencies, and listening tests to investigate the perceptual value of the mono-pitched vowels in the communication of emotions. PMID:24998780

  4. Three representative UK moorland soils show differences in decadal release of dissolved organic carbon in response to environmental change

    NASA Astrophysics Data System (ADS)

    Stutter, M. I.; Lumsdon, D. G.; Rowland, A. P.

    2011-08-01

    Moorland carbon reserves in organo-mineral soils may be crucial to predicting landscape-scale variability in soil carbon losses, an important component of which is dissolved organic carbon (DOC). Surface water DOC trends are subject to a range of scaling, transport and biotic processes that disconnect them from signals in the catchment's soils. Long-term soil datasets are vital to identify changes in DOC release at source and soil C depletion. Here we show, that moorland soil solution DOC concentrations at three key UK Environmental Change Network sites increased between 1993-2007 in both surface- and sub- soil of a freely-draining Podzol (48 % and 215 % increases in O and Bs horizons, respectively), declined in a gleyed Podzol and showed no change in a Peat. Our principal findings were that: (1) considerable heterogeneity in DOC response appears to exist between different soils that is not apparent from the more consistent observed trends for streamwaters, and (2) freely-draining organo-mineral Podzol showed increasing DOC concentrations, countering the current scientific focus on soil C destabilization in peats. We discuss how the key solubility controls on DOC associated with coupled physico-chemical factors of ionic strength, acid deposition recovery, soil hydrology and temperature cannot readily be separated. Yet, despite evidence that all sites are recovering from acidification the soil-specific responses to environmental change have caused divergence in soil DOC concentration trends. The study shows that the properties of soils govern their specific response to an approximately common set of broad environmental drivers. Key soil properties are indicated to be drainage, sulphate and DOC sorption capacity. Soil properties need representation in process-models to understand and predict the role of soils in catchment to global C budgets. Catchment hydrological (i.e. transport) controls may, at present, be governing the more ubiquitous rises in river DOC concentration trends, but soil (i.e. source) controls provide the key to prediction of future C loss to waters and the atmosphere.

  5. Three representative UK moorland soils show differences in decadal release of dissolved organic carbon in response to environmental change

    NASA Astrophysics Data System (ADS)

    Stutter, M. I.; Lumsdon, D. G.; Rowland, A. P.

    2011-12-01

    Moorland carbon reserves in organo-mineral soils may be crucial to predicting landscape-scale variability in soil carbon losses, an important component of which is dissolved organic carbon (DOC). Surface water DOC trends are subject to a range of scaling, transport and biotic processes that disconnect them from signals in the catchment's soils. Long-term soil datasets are vital to identify changes in DOC release at source and soil C depletion. Here we show, that moorland soil solution DOC concentrations at three key UK Environmental Change Network sites increased between 1993-2007 in both surface- and sub- soil of a freely-draining Podzol (48 % and 215 % increases in O and Bs horizons, respectively), declined in a gleyed Podzol and showed no change in a Peat. Our principal findings were that: (1) considerable heterogeneity in DOC response appears to exist between different soils that is not apparent from the more consistent observed trends for streamwaters, and (2) freely-draining organo-mineral Podzol showed increasing DOC concentrations, countering the current scientific focus on soil C destabilization in peats. We discuss how the key solubility controls on DOC associated with coupled physico-chemical factors of ionic strength, acid deposition recovery, soil hydrology and temperature cannot readily be separated. Yet, despite evidence that all sites are recovering from acidification the soil-specific responses to environmental change have caused divergence in soil DOC concentration trends. The study shows that the properties of soils govern their specific response to an approximately common set of broad environmental drivers. Key soil properties are indicated to be drainage, sulphate and DOC sorption capacity. Soil properties need representation in process-models to understand and predict the role of soils in catchment to global C budgets. Catchment hydrological (i.e. transport) controls may, at present, be governing the more ubiquitous rises in river DOC concentration trends, but soil (i.e. source) controls provide the key to prediction of future C loss to waters and the atmosphere.

  6. Solid-Phase Speciation of Arsenic As the Primary Control on Dissolved As Concentrations in a Glacial Aquifer System: Quantifying Speciation of Arsenic in Glacial Aquifer Solids with μXAS Mapping.

    NASA Astrophysics Data System (ADS)

    Nicholas, S. L.; Gowan, A. S.; Knaeble, A. R.; Erickson, M. L.; Woodruff, L. G.; Marcus, M.; Toner, B. M.

    2014-12-01

    Western Minnesota, USA, is a regional locus of drinking-water wells with high arsenic (As) (As>10µgL-1). Arsenic concentrations vary widely among neighboring wells with otherwise similar water chemistry [1,2]. As(III) should be the most mobile As species in Minnesota well waters (median Eh in As affected wells is -50mV). This As is geogenic, sourced from glacial deposits derived from Cretaceous sedimentary bedrock (dolostone, limestone, shale). Our hypothesis is that As speciation in the solid phase is the important factor controlling the introduction of As to groundwater—more significant in this region than absolute As concentrations or landscape variability. Our previous research used micro-X-ray absorption spectroscopy (µXAS) speciation mapping [3] on archived glacial tills (stored dry at room temperature in air). µXAS results from this material showed that As in a reduced chemical state within the till aquitard is spatially correlated with iron sulfide at the micron scale. Conversley, As in aquifer sediments was mainly oxidized As(V). At the aquifer-aquitard contact As was observed as a mixture of both reduced and oxidized forms. This suggests that the aquifer-aquitard contact is a geochemically active zone in which reduced As species present within glacial till are converted to As(V) through complex redox processes, and subsequently release into aquifer sediments. Our current research applies the same methods to describe As speciation in samples collected from fresh cores of glacial sediment and frozen under argon in the field. Preliminary results are similar to our previous work in that As is, in general, more reduced in aquitard sediments, and more oxidized at the contact and in aquifer sediments. Arsenic(III) was preserved as a minor consitutent in ambient archived cores but is a more significant constituent in fresh, anaerobically preserved cores. Results will be presented comparing anaerobic samples with ambient-air aliquots of the same sample to document changes in the relative abundance of As species depending on sample preservation. This work was supported by LBNL-ALS, ANL-APS, USGS-MNWSC, MGS, and CURA. [1]Berndt & Soule (1999) Minnesota Arsenic Research Study: Report on Geochemistry. [2] Erickson & Barnes (2005) Water Research 39 4029-4039. [3] Toner et al. (2014) Env. Chem. 11 4-9.

  7. Reducing emissions from uranium dissolving

    SciTech Connect

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2} which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  8. Reducing emissions from uranium dissolving

    SciTech Connect

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO[sub x] emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO[sub x] fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO[sub x] emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO[sub 2] which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  9. Fate of polychlorinated biphenyls in a contaminated lake ecosystem: Combining equilibrium passive sampling of sediment and water with total concentration measurements of biota.

    PubMed

    Menp, Kimmo; Leppnen, Matti T; Figueiredo, Kaisa; Mayer, Philipp; Gilbert, Dorothea; Jahnke, Annika; Gil-Allu, Carmen; Akkanen, Jarkko; Nybom, Inna; Herve, Sirpa

    2015-11-01

    Equilibrium sampling devices can be applied to study and monitor the exposure and fate of hydrophobic organic chemicals on a thermodynamic basis. They can be used to determine freely dissolved concentrations and chemical activity ratios and to predict equilibrium partitioning concentrations of hydrophobic organic chemicals in biota lipids. The authors' aim was to assess the equilibrium status of polychlorinated biphenyls (PCBs) in a contaminated lake ecosystem and along its discharge course using equilibrium sampling devices for measurements in sediment and water and by also analyzing biota. The authors used equilibrium sampling devices (silicone rubber and polyethylene [PE]) to determine freely dissolved concentrations and chemical activities of PCBs in the water column and sediment porewater and calculated for both phases the corresponding equilibrium concentrations and chemical activities in model lipids. Overall, the studied ecosystem appeared to be in disequilibrium for the studied phases: sediment, water, and biota. Chemical activities of PCBs were higher in sediment than in water, which implies that the sediment functioned as a partitioning source of PCBs and that net diffusion occurred from the sediment to the water column. Measured lipid-normalized PCB concentrations in biota were generally below equilibrium lipid concentrations relative to the sediment (CLip ?Sed ) or water (CLip ?W ), indicating that PCB levels in the organisms were below the maximum partitioning levels. The present study shows the application versatility of equilibrium sampling devices in the field and facilitates a thermodynamic understanding of exposure and fate of PCBs in a contaminated lake and its discharge course. Environ Toxicol Chem 2015;34:2463-2474. 2015 SETAC. PMID:26053463

  10. Dissolving Polymers in Ionic Liquids.

    NASA Astrophysics Data System (ADS)

    Hoagland, David; Harner, John

    2009-03-01

    Dissolution and phase behavior of polymers in ionic liquids have been assessed by solution characterization techniques such as intrinsic viscosity and light scattering (static and dynamic). Elevated viscosity proved the greatest obstacle. As yet, whether principles standard to conventional polymer solutions apply to ionic liquid solutions is uncertain, especially for polymers such as polyelectrolytes and hydrophilic block copolymers that may specifically interact with ionic liquid anions or cations. For flexible polyelectrolytes (polymers releasing counterions into high dielectric solvents), characterization in ionic liquids suggests behaviors more typical of neutral polymer. Coil sizes and conformations are approximately the same as in aqueous buffer. Further, several globular proteins dissolve in a hydrophilic ionic liquid with conformations analogous to those in buffer. General principles of solubility, however, remain unclear, making predictions of which polymer dissolves in which ionic liquid difficult; several otherwise intractable polymers (e.g., cellulose, polyvinyl alcohol) dissolve and can be efficiently functionalized in ionic liquids.

  11. INFLUENCE OF PH, DISSOLVED OXYGEN, SUSPENDED SOLIDS OR DISSOLVED SOLIDS UPON VENTILATORY AND COUGH FREQUENCIES IN THE BLUEGILL 'LEPOMIS MACROCHIRUS' AND BROOK TROUT 'SALVELINUS FONTINALIS'

    EPA Science Inventory

    Conservative no-effect concentration ranges were estimated for ventilatory and coughing responses of bluegill sunfish Lepomis macrochirus and brook trout Salvelinus fontinalis exposed to altered pH, or to changes in dissolved oxygen (DO), suspended solids, or dissolved solids con...

  12. Reducing Emissions from Uranium Dissolving

    SciTech Connect

    Griffith, W.L.

    1992-01-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. The trays are steam coil heated. The process has operated satisfactorily, with few difficulties, for decades. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. Because NO{sub x} is hazardous, fumes should be suppressed whenever the electric blower system is inoperable. Because the tray dissolving process has worked well for decades, as much of the current capital equipment and operating procedures as possible were preserved. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2}, which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  13. Dynamics of freely suspended lyotropic films. I. An inelastic light scattering study of thermal surface fluctuations

    NASA Astrophysics Data System (ADS)

    Young, Charles Y.; Clark, Noel A.

    1981-04-01

    We have studied the spectrum and intensity of light scattered by thermal surface displacement fluctuations on freely suspended lyotropic films. Films consisted of a liquid core and surface soap layers and were drawn from solution containing water, glycerol, NaCl, and the ionic surfactant hexadecyltrimethyl ammonium bromide (HTAB). Two modes were observed: a propagating undulation mode in which the film surfaces move together and a damped peristaltic mode having oppositely moving surface soap layers. Dispersion relations for these modes, obtained from the dependence of the scattered light intensity correlation function on film thickness h and wave vector k, confirm the macroscopic hydrodynamic description of film motion. In particular, the overdamped peristaltic mode is shown to involve Poiseuille flow of the fluid core with the flow velocity zero within 2 of the surfactant-solution interface, indicating no significant slip or rigid interfacial water layer. No evidence of dispersion in the effective viscosity of the fluid core h(k,w) over the range 0concentration of NaCl used and the attractive part of R could be fitted equally well by the simple nonretarded van der Waals form for a uniform dielectric slab, or the Ninham-Parsegian form for a three layer hydrocarbon-water-hydrocarbon slab.

  14. Sensitized photooxidation of dissolved sulfides in water

    SciTech Connect

    Brewer, T.F.; Curtis, J.G.; Marchand, E.A.; Adams, V.D.; Middlebrooks, E.J.

    1994-12-31

    A byproduct of the enhanced recovery of petroleum is flood water that is often contaminated with soluble sulfides. The ability of methylene blue (MB) and riboflavin (RF) to sensitize dissolved sulfides for photooxidation was investigated. Both MB and RF were found to be effective sensitizers for the oxidation of sulfide in water. MB-dosed batch reactors consistently reduced initial sulfide concentrations of 100 mg/l to less than 10--15 mg/l in less than one hour under artificial lighting (91% sunlight corrected fluorescent tubes) at a pH = 10 and MB = 1mg/l. Preliminary experiments have shown approximately 80--85% of the removed sulfide is accounted for as accumulated sulfate. RF is also effective at enhancing the removal of sulfide, but experiments similar to those conducted for NM revealed that RF-dosed reactors required approximately 2--3 times longer to achieve sulfide removal comparable to MB (1mg/l), even with an RF concentration of 20 mg/l. The primary product in RF-sensitized photooxidation of dissolved sulfides is also sulfate, with approximately 75-80% of removed sulfide recovered as sulfate. First order plots of experimental data yield reaction rate constants of k = 0.0097 min{sup {minus}1} for RF, and k = 0.0273 min{sup {minus}1} for MB.

  15. Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments

    NASA Astrophysics Data System (ADS)

    Hernes, Peter J.; Benner, Ronald

    2003-09-01

    Molecular level characterizations of dissolved lignin were conducted in Mississippi River plume waters to study the impact of various removal mechanisms (photooxidation, microbial degradation, and flocculation) on dissolved organic material (DOM) concentrations and compositions. Prior to analysis, dissolved (<0.2-?m pore size) samples were size fractionated by ultrafiltration into high molecular weight (HMW; >1 kDalton) and low molecular weight (LMW; <1 kDalton) components. At salinities <25 psu, flocculation and microbial degradation were the primary factors affecting lignin concentrations. At salinities >25 psu, photooxidation was a dominant factor influencing lignin compositions and concentrations. Diagnostic indicators of photooxidation include a sharp decrease in the percentage of lignin in the HMW size fraction, changes in ratios of syringyl to vanillyl phenols, and increases in LMW acid:aldehyde ratios for both vanillyl and syringyl phenols. A 10-day incubation experiment with plume water indicated rates of microbial degradation of dissolved lignin that were 30% of photooxidation rates in surface waters. These results highlight the importance of microbial as well as photochemical processes in the cycling of terrigenous DOM in coastal waters. Neither flocculation nor microbial degradation significantly altered lignin composition, suggesting that composition is primarily determined by source and photochemical transformation. Overall, high removal rates indicate the potential importance of terrigenous DOM as a carbon and nutrient source in the coastal ocean. Strong correlations between absorption coefficients at 350 nm and dissolved lignin demonstrate the potential for using absorption to trace terrigenous DOM in coastal environments with significant riverine input.

  16. Modeling and Understanding Combination pMDI Formulations with Both Dissolved and Suspended Drugs.

    PubMed

    Stein, Stephen W; Sheth, Poonam; Younis, Usir S; Mogalian, Erik; Myrdal, Paul B

    2015-09-01

    A simulation model has been established to predict the residual aerodynamic particle size distribution (APSD) of dual-component pressurized metered dose inhalers (pMDIs). More specifically, this model estimates the APSD of pMDI formulations containing dissolved and suspended compounds for various formulations, and has been verified experimentally. Simulated and experimental data illustrate that APSDs of the dissolved and suspended components of the pMDI are influenced by concentrations of the dissolved and micronized suspended drugs, along with suspended drug size. Atomized droplets from such combination formulations may contain varying number of suspended drug particles and a representative concentration of dissolved drug. These sub-populations of atomized droplets may explain the residual APSDs. The suspended drug follows a monomodal, lognormal distribution and is more greatly impacted by the size and concentration of the suspended drug in comparison to the concentration of dissolved drug. On the other hand, dissolved drug illustrates a bimodal, lognormal residual particle size distribution both theoretically and experimentally. The smaller mode consists of residual particles made of dissolved drug only, while the larger mode consists of residual particles that contain both dissolved and suspended drugs. The model effectively predicted the size distributions of both the dissolved and suspended components of combination formulations (r(2) value of 0.914 for the comparison of simulated versus experimental MMAD values for the formulations examined). The results demonstrate that this model is a useful tool that may be able to expedite the development of combination pMDI formulation. PMID:26258647

  17. Dissolving pulp from jute stick.

    PubMed

    Matin, Mhafuza; Rahaman, M Mostafizur; Nayeem, Jannatun; Sarkar, Mamon; Jahan, M Sarwar

    2015-01-22

    Jute stick is woody portion of jute plant, which remain as leftover after extracting bast fibre. Presently, it is being used for fencing in the rural area. In this investigation, biorefinery concept was initiated in producing dissolving pulp from jute stick by pre-hydrolysis kraft process. At 170C for 1h of pre-hydrolysis, 70% of hemicelluloses was dissolved with negligible loss of ?-cellulose. At this condition, 75% of dissolved sugars in the pre-hydrolysis liquor were in the oligomeric form. The pre-hydrolysed jute stick was subsequently pulped by kraft process with the variation of active alkali. The pulp yield was 36.2% with kappa number 18.5 at the conditions of 16% active alkali for 2h of cooking at 170C. Final pulp was produced with 92% ?-cellulose and 89% brightness after D0EpD1EpD1 bleaching. The produced dissolving pulp can be used in rayon production. PMID:25439866

  18. DISSOLVED OXYGEN DIURNAL FLUX STUDY

    EPA Science Inventory

    Stream monitoring study of a 24 Western Corn Belt Plains streams designed to assess any correlation of nutrient loads and the level of dissolved oxygen in wadeable streams and any subsequent affect on aquatic life. Study currently being conducted under a cooperative agreement be...

  19. Dissolved aluminium in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Middag, R.; van Slooten, C.; de Baar, H. J. W.; Laan, P.

    2011-12-01

    Dissolved aluminium (Al) occurs in a wide range of concentrations in the world oceans. The concentrations of Al in the Southern Ocean are among the lowest ever observed. An all-titanium CTD sampling system makes it possible to study complete deep ocean sections of Al and other trace elements with the same high vertical resolution of 24 depths as normal for traditional CTD/Rosette sampling. Overall, 470 new data points of Al are reported for 22 full depth stations and 24 surface sampling positions along one transect. This transect consisted of 18 stations on the zero meridian proper from 51°57' S until 69°24'S, and 4 stations somewhat to the northeast towards Cape Town from 42°20'S, 09°E to 50°17'S, 01°27'E. The actual concentrations of Al in the Southern Ocean were lower than previously reported. The concentration of Al in the upper 25 m was relatively elevated with an average concentration of 0.71 nM ( n=22; S.D.=0.43 nM), most likely due to atmospheric input by a suggested combination of direct atmospheric (wet and dry) input and indirect atmospheric input via melting sea ice. Below the surface waters there was a distinct Al minimum with an average concentration of 0.33 nM ( n=22; S.D.=0.13 nM) at an average depth of 120 m. In the deep southernmost Weddell Basin the concentration of Al increased with depth to ˜0.8 nM at 4000 m, and a higher concentration of ˜1.5 nM in the ˜4500-5200 m deep Weddell Sea Bottom Water. Over the Bouvet triple junction region, where three deep ocean ridges meet, the concentration of Al increased to ˜1.4 nM at about 2000 m depth over the ridge crest. In the deep basin north of the Bouvet region the concentration of Al increased to higher deep values of 4-6 nM due to influence of North Atlantic Deep Water. In general the intermediate and deep distribution of Al results from the mixing of water masses with different origins, the formation of deep water and additional input from sedimentary sources at sea floor elevations. No significant correlation between Al and silicate (Si) was observed. This is in contrast to some other ocean regions. In the Southern Ocean the supply of Al is extremely low and any signal from Al uptake and dissolution with biogenic silica is undetectable against the high dissolved Si and low dissolved Al concentrations. Here the Al-Si relation in the deep ocean is uncoupled. This is due to the scavenging and subsequent loss of the water column of Al, whereas the concentration of Si increases in the deep ocean due to its input from deep dissolution of biogenic diatom frustules settling from the surface layer.

  20. Novel System for Continuous Measurements of Dissolved Gases in Liquids

    NASA Astrophysics Data System (ADS)

    Baer, D. S.; Liem, J.; Owano, T. G.; Gupta, M.

    2014-12-01

    Measurements of dissolved gases in lakes, rivers and oceans may be used to quantify underwater greenhouse gas generation, air-surface exchange, and pollution migration. Studies involving quantification of dissolved gases typically require obtaining water samples (from streams, lakes, or ocean water) and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line, discrete-sample methodology is time consuming and labor intensive, and thus severely inhibits detailed spatial and temporal mapping of dissolved gases. In this work, we describe the commercial development of a new portable membrane-based gas extraction system (18.75" x 18.88" x 10.69", 16 kg, 85 watts) that interfaces directly to our cavity enhanced laser absorption based (or Off-Axis ICOS) gas analyzers to continuously and quickly measure concentrations and isotope ratios of dissolved gases. By accurately controlling the water flow rate through the membrane contactor, gas pressure on the outside and water pressure on the inside of the membrane, the system can generate precise and highly reproducible results. Furthermore, the gas-phase mole fractions (parts per million, ppm) may be converted into dissolved gas concentrations (nM), by accurately measuring the gas flow rates in and out of the extraction system. We will present detailed laboratory test data that quantifies the performance (linearity, precision, and dynamic range) of the system for measurements of the concentrations and isotope ratios of dissolved greenhouse gases (methane, carbon dioxide, and nitrous oxide) continuously and in real time.

  1. Long-term Potentiation of Perforant Pathway-dentate Gyrus Synapse in Freely Behaving Mice

    PubMed Central

    Blaise, J. Harry

    2013-01-01

    Studies of long-term potentiation of synaptic efficacy, an activity-dependent synaptic phenomenon having properties that make it attractive as a potential cellular mechanism underlying learning and information storage, have long been used to elucidate the physiology of various neuronal circuits in the hippocampus, amygdala, and other limbic and cortical structures. With this in mind, transgenic mouse models of neurological diseases represent useful platforms to conduct long-termpotentiation (LTP) studies to develop a greater understanding of the role of genes in normal and abnormal synaptic communication in neuronal networks involved in learning, emotion and information processing. This article describes methodologies for reliably inducing LTP in the freely behaving mouse. These methodologies can be used in studies of transgenic and knockout freelybehaving mouse models of neurodegenerative diseases. PMID:24327052

  2. Between soap bubbles and vesicles: The dynamics of freely floating smectic bubbles

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf; May, Kathrin; Harth, Kirsten; Trittel, Torsten

    2013-03-01

    The dynamics of droplets and bubbles, particularly on microscopic scales, are of considerable importance in biological, environmental, and technical contexts. We introduce freely floating bubbles of smectic liquid crystals and report their unique dynamic properties. Smectic bubbles can be used as simple models for dynamic studies of fluid membranes. In equilibrium, they form minimal surfaces like soap films. However, shape transformations of closed smectic membranes that change the surface area involve the formation and motion of molecular layer dislocations. These processes are slow compared to the capillary wave dynamics, therefore the effective surface tension is zero like in vesicles. Freely floating smectic bubbles are prepared from collapsing catenoid films and their dynamics is studied with optical high-speed imaging. Experiments are performed under normal gravity and in microgravity during parabolic flights. Supported by DLR within grant OASIS-Co.

  3. Dual-modal (OIS/LSCI) imager of cerebral cortex in freely moving animals

    NASA Astrophysics Data System (ADS)

    Lu, Hongyang; Miao, Peng; Liu, Qi; Li, Yao; Tong, Shanbao

    2012-03-01

    Optical intrinsic signals (OIS) and laser speckle contrast imaging (LSCI) have been used for years in the study of the cerebral blood flow (CBF) and hemodynamic responses to the neural activity under functional stimulation. So far, most in vivo rodent experiments are based on the anesthesia model when the animals are in unconscious and restrained conditions. The influences of anesthesia on the neural activity have been documented in literature. In this study, we designed a miniature head-mounted dual-modal imager in freely moving animals that could monitor in real time the coupling of local oxygen consumption and blood perfusion of CBF by integrating different imaging modalities of OIS and LSCI. The system facilitates the study the cortical hemodynamics and neural-hemodynamic coupling in real time in freely moving animals.

  4. Dual-modal (OIS/LSCI) imager of cerebral cortex in freely moving animals

    NASA Astrophysics Data System (ADS)

    Lu, Hongyang; Miao, Peng; Liu, Qi; Li, Yao; Tong, Shanbao

    2011-11-01

    Optical intrinsic signals (OIS) and laser speckle contrast imaging (LSCI) have been used for years in the study of the cerebral blood flow (CBF) and hemodynamic responses to the neural activity under functional stimulation. So far, most in vivo rodent experiments are based on the anesthesia model when the animals are in unconscious and restrained conditions. The influences of anesthesia on the neural activity have been documented in literature. In this study, we designed a miniature head-mounted dual-modal imager in freely moving animals that could monitor in real time the coupling of local oxygen consumption and blood perfusion of CBF by integrating different imaging modalities of OIS and LSCI. The system facilitates the study the cortical hemodynamics and neural-hemodynamic coupling in real time in freely moving animals.

  5. Multiple leading edge vortices of unexpected strength in freely flying hawkmoth

    NASA Astrophysics Data System (ADS)

    Johansson, L. Christoffer; Engel, Sophia; Kelber, Almut; Heerenbrink, Marco Klein; Hedenström, Anders

    2013-11-01

    The Leading Edge Vortex (LEV) is a universal mechanism enhancing lift in flying organisms. LEVs, generally illustrated as a single vortex attached to the wing throughout the downstroke, have not been studied quantitatively in freely flying insects. Previous findings are either qualitative or from flappers and tethered insects. We measure the flow above the wing of freely flying hawkmoths and find multiple simultaneous LEVs of varying strength and structure along the wingspan. At the inner wing there is a single, attached LEV, while at mid wing there are multiple LEVs, and towards the wingtip flow separates. At mid wing the LEV circulation is ~40% higher than in the wake, implying that the circulation unrelated to the LEV may reduce lift. The strong and complex LEV suggests relatively high flight power in hawmoths. The variable LEV structure may result in variable force production, influencing flight control in the animals.

  6. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2.

    PubMed

    Castellanos-Gomez, Andres; Poot, Menno; Steele, Gary A; van der Zant, Herre Sj; Agrat, Nicols; Rubio-Bollinger, Gabino

    2012-01-01

    We fabricate freely suspended nanosheets of molybdenum disulphide (MoS2) which are characterized by quantitative optical microscopy and high-resolution friction force microscopy. We study the elastic deformation of freely suspended nanosheets of MoS2 using an atomic force microscope. The Young's modulus and the initial pre-tension of the nanosheets are determined by performing a nanoscopic version of a bending test experiment. MoS2 sheets show high elasticity and an extremely high Young's modulus (0.30 TPa, 50% larger than steel). These results make them a potential alternative to graphene in applications requiring flexible semiconductor materials.PACS, 73.61.Le, other inorganic semiconductors, 68.65.Ac, multilayers, 62.20.de, elastic moduli, 81.40.Jj, elasticity and anelasticity, stress-strain relations. PMID:22533903

  7. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2

    NASA Astrophysics Data System (ADS)

    Castellanos-Gomez, Andres; Poot, Menno; Steele, Gary A.; van der Zant, Herre; Agrat, Nicols; Rubio-Bollinger, Gabino

    2012-04-01

    We fabricate freely suspended nanosheets of molybdenum disulphide (MoS2) which are characterized by quantitative optical microscopy and high-resolution friction force microscopy. We study the elastic deformation of freely suspended nanosheets of MoS2 using an atomic force microscope. The Young's modulus and the initial pre-tension of the nanosheets are determined by performing a nanoscopic version of a bending test experiment. MoS2 sheets show high elasticity and an extremely high Young's modulus (0.30 TPa, 50% larger than steel). These results make them a potential alternative to graphene in applications requiring flexible semiconductor materials. PACS, 73.61.Le, other inorganic semiconductors, 68.65.Ac, multilayers, 62.20.de, elastic moduli, 81.40.Jj, elasticity and anelasticity, stress-strain relations.

  8. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.

    PubMed

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Lee, Sung Eun; Jun, Sang Bum; Kim, Sung June

    2013-01-01

    A wireless power delivery system is developed to deliver electrical power to the neuroprosthetic devices that are implanted into animals freely moving inside the cage. The wireless powering cage is designed for long-term animal experiments without cumbersome wires for power supply or the replacement of batteries. In the present study, we propose a novel wireless power transmission system using resonator-based inductive links to increase power efficiency and to minimize the efficiency variations. A columnar transmitter coil is proposed to provide lateral uniformity of power efficiency. Using this columnar transmitter coil, only 7.2% efficiency fluctuation occurs from the maximum transmission efficiency of 25.9%. A flexible polymer-based planar type receiver coil is fabricated and assembled with a neural stimulator and an electrode. Using the designed columnar transmitter coil, the implantable device successfully operates while it moves freely inside the cage. PMID:24110073

  9. Coarse-grained dynamics of the freely cooling granular gas in one dimension.

    PubMed

    Shinde, Mahendra; Das, Dibyendu; Rajesh, R

    2011-09-01

    We study the dynamics and structure of clusters in the inhomogeneous clustered regime of a freely cooling granular gas of point particles in one dimension. The coefficient of restitution is modeled as r(0)<1 or 1, depending on whether the relative speed is greater or smaller than a velocity scale ?. The effective fragmentation rate of a cluster is shown to rise sharply beyond a ?-dependent time scale. This crossover is coincident with the velocity fluctuations within a cluster becoming order ?. Beyond this crossover time, the cluster-size distribution develops a nontrivial power-law distribution, whose scaling properties are related to those of the velocity fluctuations. We argue that these underlying features are responsible for the recently observed nontrivial coarsening behavior in the one-dimensional freely cooling granular gas. PMID:22060364

  10. Chronic, Wireless Recordings of Large Scale Brain Activity in Freely Moving Rhesus Monkeys

    PubMed Central

    Schwarz, David A.; Lebedev, Mikhail A.; Hanson, Timothy L.; Dimitrov, Dragan F.; Lehew, Gary; Meloy, Jim; Rajangam, Sankaranarayani; Subramanian, Vivek; Ifft, Peter J.; Li, Zheng; Ramakrishnan, Arjun; Tate, Andrew; Zhuang, Katie; Nicolelis, Miguel A.L.

    2014-01-01

    Advances in techniques for recording large-scale brain activity contribute to both the elucidation of neurophysiological principles and the development of brain-machine interfaces (BMIs). Here we describe a neurophysiological paradigm for performing tethered and wireless large-scale recordings based on movable volumetric three-dimensional (3D) multielectrode implants. This approach allowed us to isolate up to 1,800 units per animal and simultaneously record the extracellular activity of close to 500 cortical neurons, distributed across multiple cortical areas, in freely behaving rhesus monkeys. The method is expandable, in principle, to thousands of simultaneously recorded channels. It also allows increased recording longevity (5 consecutive years), and recording of a broad range of behaviors, e.g. social interactions, and BMI paradigms in freely moving primates. We propose that wireless large-scale recordings could have a profound impact on basic primate neurophysiology research, while providing a framework for the development and testing of clinically relevant neuroprostheses. PMID:24776634

  11. Multiple leading edge vortices of unexpected strength in freely flying hawkmoth

    PubMed Central

    Johansson, L. Christoffer; Engel, Sophia; Kelber, Almut; Heerenbrink, Marco Klein; Hedenstrm, Anders

    2013-01-01

    The Leading Edge Vortex (LEV) is a universal mechanism enhancing lift in flying organisms. LEVs, generally illustrated as a single vortex attached to the wing throughout the downstroke, have not been studied quantitatively in freely flying insects. Previous findings are either qualitative or from flappers and tethered insects. We measure the flow above the wing of freely flying hawkmoths and find multiple simultaneous LEVs of varying strength and structure along the wingspan. At the inner wing there is a single, attached LEV, while at mid wing there are multiple LEVs, and towards the wingtip flow separates. At mid wing the LEV circulation is ~40% higher than in the wake, implying that the circulation unrelated to the LEV may reduce lift. The strong and complex LEV suggests relatively high flight power in hawmoths. The variable LEV structure may result in variable force production, influencing flight control in the animals. PMID:24253180

  12. Development of implantable optoelectronic module for optical brain tissue stimulation in freely moving mice

    NASA Astrophysics Data System (ADS)

    Rusakov, Konstantin; Czajkowski, Rafał; Kaźmierczak, Andrzej

    2015-09-01

    The research aims to design and manufacture of wireless optogenetics devices for freely moving animals in cages IntelliCage system. The purpose of the device is to stimulate specific brain regions using light. The constructed device consists of a light source and optical fibre structure responsible for delivering light into the corresponding region of the brain of the animal. The size of the animal (mouse) and the fact that it is freely moving imposes substantial limitations with respect to the size and weight of the optoelectronic device. The present paper describes research on optical fibre structure fabrication, assembling it to the small size (less than 500 × 500 μm2 top surface) LED chip and experimental validation of the optoelectronic stimulator.