Science.gov

Sample records for frequency analyzers

  1. Frequency spectrum analyzer with phase-lock

    DOEpatents

    Boland, Thomas J.

    1984-01-01

    A frequency-spectrum analyzer with phase-lock for analyzing the frequency and amplitude of an input signal is comprised of a voltage controlled oscillator (VCO) which is driven by a ramp generator, and a phase error detector circuit. The phase error detector circuit measures the difference in phase between the VCO and the input signal, and drives the VCO locking it in phase momentarily with the input signal. The input signal and the output of the VCO are fed into a correlator which transfers the input signal to a frequency domain, while providing an accurate absolute amplitude measurement of each frequency component of the input signal.

  2. 40 CFR 89.311 - Analyzer calibration frequency.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Analyzer calibration frequency. 89.311 Section 89.311 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Equipment Provisions § 89.311 Analyzer calibration frequency. (a) Prior to initial use and after...

  3. 40 CFR 89.311 - Analyzer calibration frequency.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Analyzer calibration frequency. 89.311 Section 89.311 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Equipment Provisions § 89.311 Analyzer calibration frequency. (a) Prior to initial use and after...

  4. 40 CFR 89.311 - Analyzer calibration frequency.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Analyzer calibration frequency. 89.311 Section 89.311 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Equipment Provisions § 89.311 Analyzer calibration frequency. (a) Prior to initial use and after...

  5. 40 CFR 89.311 - Analyzer calibration frequency.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Analyzer calibration frequency. 89.311 Section 89.311 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Equipment Provisions § 89.311 Analyzer calibration frequency. (a) Prior to initial use and after...

  6. Terahertz spectrum analyzer based on frequency and power measurement.

    PubMed

    Yee, Dae-Su; Jang, Yudong; Kim, Youngchan; Seo, Dae-Cheol

    2010-08-01

    We demonstrate a terahertz (THz) spectrum analyzer based on frequency and power measurement. A power spectrum of a continuous THz wave is measured through optical heterodyne detection using an electromagnetic THz frequency comb and a bolometer and power measurement using a bolometer with a calibrated responsivity. The THz spectrum analyzer has a frequency precision of 1x10(-11), a frequency resolution of 1Hz, a frequency band up to 1.7THz, and an optical noise equivalent power of approximately 1 pW/Hz(1/2). PMID:20680048

  7. Techniques for analyzing frequency selective surfaces - A review

    NASA Technical Reports Server (NTRS)

    Mittra, Raj; Chan, Chi H.; Cwik, Tom

    1988-01-01

    A number of representative techniques for analyzing frequency-selective surfaces (FSSs), which comprise periodic arrays of patches or apertures in a conducting screen and find important applications as filters in microwaves and optics, are discussed. The basic properties of the FSSs are reviewed and several different approaches to predicting their frequency-response characteristics are described. Some recent developments in the treatment of truncated, curved, and doubly periodic screens are mentioned and representative experimental results are included.

  8. Probing a Spray Using Frequency-Analyzed Light Scattering

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard; Lee, Michael H.; Rhys, Noah O.

    2008-01-01

    Frequency-analyzed laser-light scattering (FALLS) is a relatively simple technique that can be used to measure principal characteristics of a sheet of sprayed liquid as it breaks up into ligaments and then the ligaments break up into droplets. In particular, through frequency analysis of laser light scattered from a spray, it is possible to determine whether the laser-illuminated portion of the spray is in the intact-sheet region, the ligament region, or the droplet region. By logical extension, it is possible to determine the intact length from the location of the laser beam at the transition between the intact-sheet and ligament regions and to determine a breakup frequency from the results of the frequency analysis. Hence, FALLS could likely be useful both as a means of performing research on sprays in general and as a means of diagnostic sensing in diverse applications in which liquid fuels are sprayed. Sprays are also used for drying and to deposit paints and other coating materials.

  9. Biasing vector network analyzers using variable frequency and amplitude signals

    NASA Astrophysics Data System (ADS)

    Nobles, J. E.; Zagorodnii, V.; Hutchison, A.; Celinski, Z.

    2016-08-01

    We report the development of a test setup designed to provide a variable frequency biasing signal to a vector network analyzer (VNA). The test setup is currently used for the testing of liquid crystal (LC) based devices in the microwave region. The use of an AC bias for LC based devices minimizes the negative effects associated with ionic impurities in the media encountered with DC biasing. The test setup utilizes bias tees on the VNA test station to inject the bias signal. The square wave biasing signal is variable from 0.5 to 36.0 V peak-to-peak (VPP) with a frequency range of DC to 10 kHz. The test setup protects the VNA from transient processes, voltage spikes, and high-frequency leakage. Additionally, the signals to the VNA are fused to ½ amp and clipped to a maximum of 36 VPP based on bias tee limitations. This setup allows us to measure S-parameters as a function of both the voltage and the frequency of the applied bias signal.

  10. Biasing vector network analyzers using variable frequency and amplitude signals.

    PubMed

    Nobles, J E; Zagorodnii, V; Hutchison, A; Celinski, Z

    2016-08-01

    We report the development of a test setup designed to provide a variable frequency biasing signal to a vector network analyzer (VNA). The test setup is currently used for the testing of liquid crystal (LC) based devices in the microwave region. The use of an AC bias for LC based devices minimizes the negative effects associated with ionic impurities in the media encountered with DC biasing. The test setup utilizes bias tees on the VNA test station to inject the bias signal. The square wave biasing signal is variable from 0.5 to 36.0 V peak-to-peak (VPP) with a frequency range of DC to 10 kHz. The test setup protects the VNA from transient processes, voltage spikes, and high-frequency leakage. Additionally, the signals to the VNA are fused to ½ amp and clipped to a maximum of 36 VPP based on bias tee limitations. This setup allows us to measure S-parameters as a function of both the voltage and the frequency of the applied bias signal. PMID:27587141

  11. Rectennas at optical frequencies: How to analyze the response

    SciTech Connect

    Joshi, Saumil; Moddel, Garret

    2015-08-28

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun.

  12. Analyzing low frequency waves associated with plasma sheet flow channels

    NASA Astrophysics Data System (ADS)

    Xing, X.; Liang, J.; Wang, C. P.; Lyons, L. R.; Angelopoulos, V.

    2014-12-01

    Low frequency (0.006~0.02 Hz) magnetic oscillations are frequently observed to be associated with the substorm-related dipolarization in the near-Earth plasma sheet. It has been suggested that these oscillations are possibly triggered by ballooning instability in the transition region. However, our multi-point observations using THEMIS spacecraft have shown that similar oscillations are observed to be associated with the earthward moving flow channels as they penetrate from middle tail to the transition region. Linear MHD wave analysis suggested that these oscillations ahead of the dipolarization front are magnetosonic waves. For most of the cases, the thermal pressure and magnetic pressures variations are anti-phase, indicating slow mode waves. However, by taking advantage of the spacecraft located very close in X-Y plane and slightly away from the central plasma sheet, we found that for many events the phase relation between the thermal and magnetic pressure variations is Z-dependent, which suggests that the observational evidence for slow mode may not be applicable. In order to further examine these waves, we performed a MHD analysis in inhomogeneous plasma sheet. The calculation shows that for Harris Sheet configuration, the thermal and magnetic pressures variations can be anti-phase for any wave other than slow mode waves where the vertical velocity disturbance reaches its maximum, thus this phase relation may not be used as an identifier of magnetosonic wave modes. We will show the dispersion relation and wave generated disturbances obtained from the numerical calculations.

  13. Analyzing Radio-Frequency Coverage for the ISS

    NASA Technical Reports Server (NTRS)

    Bolen, Steven M.; Sham, Catherine C.

    2007-01-01

    The Interactive Coverage Analysis Tool (iCAT) is an interactive desktop computer program serving to (1) support planning of coverage, and management of usage of frequencies, of current and proposed radio communication systems on and near the International Space Station (ISS) and (2) enable definition of requirements for development of future such systems. The iCAT can also be used in design trade studies for other (both outer-space and terrestrial) communication systems. A user can enter the parameters of a communication-system link budget in a table in a worksheet. The nominal (onaxis) link values for the bit-to-noise-energy ratio, received isotropic power (RIP), carrier-to-noise ratio (C/N), power flux density (PFD), and link margin of the system are calculated and displayed in the table. Plots of field gradients for the RIP, C/N, PFD, and link margin are constructed in an ISS coordinate system, at a specified link range, for both the forward and return link parameters, and are displayed in worksheets. The forward and reverse link antenna gain patterns are also constructed and displayed. Line-of-sight (LOS) obstructions can be both incorporated into the gradient plots and displayed on separate plots.

  14. Analysis of a discrete spectrum analyzer for the detection of radio frequency interference

    NASA Technical Reports Server (NTRS)

    Levitt, B. K.

    1977-01-01

    As the radio frequency spectrum becomes increasingly overcrowded, interference with mission-critical DSN operations is rising at an alarming rate. To alleviate this problem the DSN is developing a wideband surveillance system for on-site detection and identification of potential sources of radio frequency interference (RFI), which will complement the existing frequency coordination activities. The RFI monitoring system is based on a wideband, multi-look discrete spectrum analyzer operating on fast Fourier transform principles. An extensive general statistical analysis is presented of such spectrum analyzers and derives threshold detection performance formulas for signals of interest. These results are then applied to the design of the RFI spectrum analyzer under development.

  15. Retarding field analyzer for ion energy distribution measurements at a radio-frequency biased electrode

    SciTech Connect

    Gahan, D.; Hopkins, M. B.; Dolinaj, B.

    2008-03-15

    A retarding field energy analyzer designed to measure ion energy distributions impacting a radio-frequency biased electrode in a plasma discharge is examined. The analyzer is compact so that the need for differential pumping is avoided. The analyzer is designed to sit on the electrode surface, in place of the substrate, and the signal cables are fed out through the reactor side port. This prevents the need for modifications to the rf electrode--as is normally the case for analyzers built into such electrodes. The capabilities of the analyzer are demonstrated through experiments with various electrode bias conditions in an inductively coupled plasma reactor. The electrode is initially grounded and the measured distributions are validated with the Langmuir probe measurements of the plasma potential. Ion energy distributions are then given for various rf bias voltage levels, discharge pressures, rf bias frequencies - 500 kHz to 30 MHz, and rf bias waveforms - sinusoidal, square, and dual frequency.

  16. 40 CFR 86.319-79 - Analyzer checks and calibrations; frequency and overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Analyzer checks and calibrations; frequency and overview. 86.319-79 Section 86.319-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New...

  17. 40 CFR 86.319-79 - Analyzer checks and calibrations; frequency and overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Analyzer checks and calibrations; frequency and overview. 86.319-79 Section 86.319-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New...

  18. On-wafer vector network analyzer measurements in the 220-325 Ghz frequency band

    NASA Technical Reports Server (NTRS)

    Fung, King Man Andy; Dawson, D.; Samoska, L.; Lee, K.; Oleson, C.; Boll, G.

    2006-01-01

    We report on a full two-port on-wafer vector network analyzer test set for the 220-325 GHz (WR3) frequency band. The test set utilizes Oleson Microwave Labs frequency extenders with the Agilent 8510C network analyzer. Two port on-wafer measurements are made with GGB Industries coplanar waveguide (CPW) probes. With this test set we have measured the WR3 band S-parameters of amplifiers on-wafer, and the characteristics of the CPW wafer probes. Results for a three stage InP HEMT amplifier show 10 dB gain at 235 GHz [1], and that of a single stage amplifier, 2.9 dB gain at 231 GHz. The approximate upper limit of loss per CPW probe range from 3.0 to 4.8 dB across the WR3 frequency band.

  19. Improvements of a spatial frequency analyzer for automated characterization of holographic recording materials.

    PubMed

    Couture, J J; Tanguay, D

    1992-05-10

    A spatial frequency analyzer was designed to simplify characterization studies for new holographic recording materials. Mechanical movements were automated and a complete informational system gave rapid characterization results. A good fringe stabilization unit was improved by adding simple holographic optical beam combiners. Experimental characterization of two different recording materials shows the versatility of this automated apparatus. Also we present modulation-transfer-function curves of dichromated gelatin between 500 and 3500 cycles/mm obtained with polarization volume transmission holograms. PMID:20725176

  20. Generalized Frequency Domain State-Space Models for Analyzing Flexible Rotating Spacecraft

    NASA Astrophysics Data System (ADS)

    Turner, James D.; Elgohary, Tarek A.

    2012-06-01

    The mathematical model for a flexible spacecraft that is rotating about a single axis rotation is described by coupled rigid and flexible body degrees-of-freedom, where the equations of motion are modeled by integro-partial differential equations. Beam-like structures are often useful for analyzing boom-like flexible appendages. The equations of motion are analyzed by introducing generalized Fourier series that transform the governing equations into a system of ordinary differential equations. Though technically straightforward, two problems arise with this approach: (1) the model is frequency-truncated because a finite number of series terms are retained in the model, and (2) computationally intense matrix-valued transfer function calculations are required for understanding the frequency domain behavior of the system. Both of these problems are resolved by: (1) computing the Laplace transform of the governing integro-partial differential equation of motion; and (2) introducing a generalized state space (consisting of the deformational coordinate and three spatial partial derivatives, as well as single and double spatial integrals of the deformational coordinate). The resulting math model is cast in the form of a linear state-space differential equation that is solved in terms of a matrix exponential and convolution integral. The structural boundary conditions defined by Hamilton's principle are enforced on the closed-form solution for the generalized state space. The generalized state space model is then manipulated to provide analytic scalar transfer function models for original integro-partial differential system dynamics. Symbolic methods are used to obtain closed-form eigen decomposition- based solutions for the matrix exponential/convolution integral algorithm. Numerical results are presented that compare the classical series based approach with the generalized state space approach for computing representative spacecraft transfer function models.

  1. Ground penetrating radar data analyzed in frequency and time domain for engineering issues

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; Giampaolo, Valeria; Votta, Mario; Rizzo, Enzo

    2014-05-01

    Non-destructive testing (NDT) allows to analyze reinforced concrete and masonry structures, in order to identify gaps, defects, delaminations, and fracture. In the field of engineering, non-invasive diagnostic is used to test the processes of construction and maintenance of buildings and artifacts of the individual components, to reduce analysis time and costs of intervention (Proto et al., 2010). Ground penetrating radar (GPR) allows to evaluate with a good effectiveness the state of conservation of engineering construction (Mellet 1995)). But there are some uncertainties in GPR data due to the complexity of artificial objects. In this work we try to evaluate the capability of GPR for the characterization of building structures in the laboratory and in-situ. In particular the focus of this research consists in integrate spectral analysis to time domain data to enhance information obtained in a classical GPR processing approach. For this reason we have applied spectral analysis to localize and characterize the presence of extraneous bodies located in a test site rebuilt in laboratory to simulate a part of a typical concrete road. The test site is a segment of a road superimposed on two different layers of sand and gravel of varying thickness inside which were introduced steel rebar, PVC and aluminium pipes. This structure has also been cracked in a predetermined area and hidden internal fractures were investigated. The GPR has allowed to characterize the panel in a non-invasive mode and radargrams were acquired using two-dimensional and three-dimensional models from data obtained with the use of 400, 900, 1500 and 2000 Mhz antennas. We have also studied with 2 GHz antenna a beam of 'to years precast bridge characterized by a high state of decay. The last case study consisted in the characterization of a radiant floor analyzed with an integrated use of GPR and infrared thermography. In the frequency domain analysis has been possible to determine variations in the

  2. High-frequency asymptotic methods for analyzing the EM scattering by open-ended waveguide cavities

    NASA Technical Reports Server (NTRS)

    Burkholder, R. J.; Pathak, P. H.

    1989-01-01

    Four high-frequency methods are described for analyzing the electromagnetic (EM) scattering by electrically large open-ended cavities. They are: (1) a hybrid combination of waveguide modal analysis and high-frequency asymptotics, (2) geometrical optics (GO) ray shooting, (3) Gaussian beam (GB) shooting, and (4) the generalized ray expansion (GRE) method. The hybrid modal method gives very accurate results but is limited to cavities which are made up of sections of uniform waveguides for which the modal fields are known. The GO ray shooting method can be applied to much more arbitrary cavity geometries and can handle absorber treated interior walls, but it generally only predicts the major trends of the RCS pattern and not the details. Also, a very large number of rays need to be tracked for each new incidence angle. Like the GO ray shooting method, the GB shooting method can handle more arbitrary cavities, but it is much more efficient and generally more accurate than the GO method because it includes the fields diffracted by the rim at the open end which enter the cavity. However, due to beam divergence effects the GB method is limited to cavities which are not very long compared to their width. The GRE method overcomes the length-to-width limitation of the GB method by replacing the GB's with GO ray tubes which are launched in the same manner as the GB's to include the interior rim diffracted field. This method gives good accuracy and is generally more efficient than the GO method, but a large number of ray tubes needs to be tracked.

  3. High-frequency asymptotic methods for analyzing the EM scattering by open-ended waveguide cavities

    NASA Astrophysics Data System (ADS)

    Burkholder, R. J.; Pathak, P. H.

    1989-09-01

    Four high-frequency methods are described for analyzing the electromagnetic (EM) scattering by electrically large open-ended cavities. They are: (1) a hybrid combination of waveguide modal analysis and high-frequency asymptotics, (2) geometrical optics (GO) ray shooting, (3) Gaussian beam (GB) shooting, and (4) the generalized ray expansion (GRE) method. The hybrid modal method gives very accurate results but is limited to cavities which are made up of sections of uniform waveguides for which the modal fields are known. The GO ray shooting method can be applied to much more arbitrary cavity geometries and can handle absorber treated interior walls, but it generally only predicts the major trends of the RCS pattern and not the details. Also, a very large number of rays need to be tracked for each new incidence angle. Like the GO ray shooting method, the GB shooting method can handle more arbitrary cavities, but it is much more efficient and generally more accurate than the GO method because it includes the fields diffracted by the rim at the open end which enter the cavity. However, due to beam divergence effects the GB method is limited to cavities which are not very long compared to their width. The GRE method overcomes the length-to-width limitation of the GB method by replacing the GB's with GO ray tubes which are launched in the same manner as the GB's to include the interior rim diffracted field. This method gives good accuracy and is generally more efficient than the GO method, but a large number of ray tubes needs to be tracked.

  4. Sampling Line Heating Improves Frequency Response of Enclosed Eddy Covariance Gas Analyzers

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Fratini, G.; Metzger, S.; Kathilankal, J. C.; Trutna, D.; Luo, H.; Burns, S. P.; Blanken, P.

    2015-12-01

    One of the challenges when measuring eddy-covariance fluxes with closed gas analyzers is high frequency attenuation due to the passage of the sampled air through a gas sampling system (GSS). The problem is particularly relevant for gases that undergo strong sorption processes, such as H2O. Recent "enclosed" analyzer designs (e.g. LI-7200, LI-COR Biosciences Inc.) mitigate the problem by allowing a reduced length of the intake tube (<1 m). Further improvements can come from carefully designed filtering and heating systems that reduce hygroscopic particulates and H2O adsorption on GSS surfaces. Because the sorption processes of H2O increase exponentially with air relative humidity (RH), low-pass filtering effects can be reduced by reducing RH inside the GSS, for example by increasing air temperature via heating. In this work, we evaluate the effects of several heating strategies with the aim of optimizing the LI-7200 performance while limiting the implied increase in power consumption. From field tests we found that 4 W of heating applied uniformly to a rain cap-integrated 2 µm particulate filter (FW-series, Swagelok) and a 700 mm stainless steel tube with 4.8 mm inner diameter reduces the occurrence of problematic RH levels (>60%) in the LI-7200 by ≈50%. As a result, the system half-power frequency increased by ≈1 Hz, and the remaining cospectral correction did not exceed 3%, even at very high ambient RH (95%). While little further improvement was found for increased heating powers, it is possible to optimize the sequence of GSS components and their heating: we found that positioning the particulate filter ≈20 cm downstream of the rain cap and concentrating 2/3 of the heat in this first 20 cm, and 1/3 in the remainder of the tube, provides optimal performances. Using model cospectra and a range of realistic measurement and environmental conditions, we estimated H2O spectral corrections to reduce by ≈50-70%, getting very close to those of CO2 in most

  5. Non-Seismology Seismology: Using QuakeCatchers to Analyze the Frequency of Bridge Vibrations

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Constantin, C.; Wilson, C. F.

    2013-12-01

    We conducted an experiment to test the feasibility of measuring seismic waves generated by traffic near James Madison University. We used QuakeCatcher seismometers (originally designed for passive seismic measurement) to measure vibrations associated with traffic on a wooden bridge as well as a nearby concrete bridge. This experiment was a signal processing exercise for a student research project and did not draw any conclusions regarding bridge safety or security. The experiment consisted of two temporary measurement stations comprised of a laptop computer and a QuakeCatcher - a small seismometer that plugs directly into the laptop via a USB cable. The QuakeCatcher was taped to the ground at the edge of the bridge to achieve good coupling, and vibrational events were triggered repeatedly with a control vehicle to accumulate a consistent dataset of the bridge response. For the wooden bridge, the resulting 'seismograms' were converted to Seismic Analysis Code (SAC) format and analyzed in MATLAB. The concrete bridge did not generate vibrations significant enough to trigger the recording mechanism on the QuakeCatchers. We will present an overview of the experimental design and frequency content of the traffic patterns, as well as a discussion of the instructional benefits of using the QuakeCatcher sensors in this non-traditional setting.

  6. Analyzing mobile WiMAX base station deployment under different frequency planning strategies

    NASA Astrophysics Data System (ADS)

    Salman, M. K.; Ahmad, R. B.; Ali, Ziad G.; Aldhaibani, Jaafar A.; Fayadh, Rashid A.

    2015-05-01

    The frequency spectrum is a precious resource and scarce in the communication markets. Therefore, different techniques are adopted to utilize the available spectrum in deploying WiMAX base stations (BS) in cellular networks. In this paper several types of frequency planning techniques are illustrated, and a comprehensive comparative study between conventional frequency reuse of 1 (FR of 1) and fractional frequency reuse (FFR) is presented. These techniques are widely used in network deployment, because they employ universal frequency (using all the available bandwidth) in their base station installation/configuration within network system. This paper presents a network model of 19 base stations in order to be employed in the comparison of the aforesaid frequency planning techniques. Users are randomly distributed within base stations, users' resource mapping and their burst profile selection are based on the measured signal to interference plus-noise ratio (SINR). Simulation results reveal that the FFR has advantages over the conventional FR of 1 in various metrics. 98 % of downlink resources (slots) are exploited when FFR is applied, whilst it is 81 % at FR of 1. Data rate of FFR has been increased to 10.6 Mbps, while it is 7.98 Mbps at FR of 1. The spectral efficiency is better enhanced (1.072 bps/Hz) at FR of 1 than FFR (0.808 bps/Hz), since FR of 1 exploits all the Bandwidth. The subcarrier efficiency shows how many data bits that can be carried by subcarriers under different frequency planning techniques, the system can carry more data bits under FFR (2.40 bit/subcarrier) than FR of 1 (1.998 bit/subcarrier). This study confirms that FFR can perform better than conventional frequency planning (FR of 1) which made it a strong candidate for WiMAX BS deployment in cellular networks.

  7. A self-analyzing double-loop digital controller in laser frequency stabilization for inter-satellite laser ranging.

    PubMed

    Luo, Yingxin; Li, Hongyin; Yeh, Hsien-Chi; Luo, Jun

    2015-04-01

    We present a digital controller specially designed for laser frequency stabilization in the application of inter-satellite laser ranging. The prototype of controller is developed using field programmable gate arrays programmed with National Instruments LabVIEW software. The controller is flexible, self-analyzing, and easily optimized with build-in system analysis. Application and performance of the controller to a laser frequency stabilization system designed for spaceborne scientific missions are demonstrated. PMID:25933873

  8. Analyzing Idioms and Their Frequency in Three Advanced ILI Textbooks: A Corpus-Based Study

    ERIC Educational Resources Information Center

    Alavi, Sepideh; Rajabpoor, Aboozar

    2015-01-01

    The present study aimed at identifying and quantifying the idioms used in three ILI "Advanced" level textbooks based on three different English corpora; MICASE, BNC and the Brown Corpus, and comparing the frequencies of the idioms across the three corpora. The first step of the study involved searching the books to find multi-word…

  9. Wide bandwidth instantaneous radio frequency spectrum analyzer based on nitrogen vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Chipaux, M.; Toraille, L.; Larat, C.; Morvan, L.; Pezzagna, S.; Meijer, J.; Debuisschert, T.

    2015-12-01

    We propose an original analog method to perform instantaneous and quantitative spectral analysis of microwave signals. An ensemble of nitrogen-vacancy (NV) centers held in a diamond plate is pumped by a 532 nm laser. Its photoluminescence is imaged through an optical microscope and monitored by a digital camera. An incoming microwave signal is converted into a microwave field in the area of the NV centers by a loop shaped antenna. The resonances induced by the magnetic component of that field are detected through a decrease of the NV centers photoluminescence. A magnetic field gradient induces a Zeeman shift of the resonances and transforms the frequency information into spatial information, which allows for the simultaneous analysis of the microwave signal in the entire frequency bandwidth of the device. The time dependent spectral analysis of an amplitude modulated microwave signal is demonstrated over a bandwidth of 600 MHz , associated to a frequency resolution of 7 MHz , and a refresh rate of 4 ms . With such integration time, a field of a few hundreds of μ W can be detected. Since the optical properties of NV centers can be maintained even in high magnetic field, we estimate that an optimized device could allow frequency analysis in a range of 30 GHz , only limited by the amplitude of the magnetic field gradient. In addition, an increase of the NV centers quantity could lead both to an increase of the microwave sensitivity and to a decrease of the minimum refresh rate down to a few μ s .

  10. Study and development of a six port network analyzer in the 1-18 GHz frequency range

    NASA Astrophysics Data System (ADS)

    Bergeault, Eric

    A theoretical and experimental study for the realization of a six port analyzer to calibrate the components of the verification kit, used to evaluate the measurement accuracy of automated network analyzers, is presented. The detection is performed at the frequency of use, and the scattering parameters are determined in magnitude and phase by means of power measurements. The six port accuracy, realized in the 1 to 18 GHz frequency range, is limited by uncertainties in the power measurements. The detection law of the Schottky diodes used as power detectors, that relates the incident power level and the diode output voltage, is performed in situ. The characterization requires only two reference unknown test loads without any power measurement. The procedure is shown to be rather stable with frequency, so that a midband characterization is generally sufficient to provide enough accuracy in the whole frequency range. The measurement uncertainties due to the variation of the detector reflection coefficients with power, are estimated by determining the variations of the six port parameters. The principle of the six port compared to that of the heteordyne network analyzers is simpler, and it makes modeling and correcting systematic errors easier. Good agreement is found between the measurement results obtained with the dual six port and the other operating systems. Generally, the amplitude measurements are within a few thousands, while the phase measurement errors are below or around one degree for the parameters being measured.

  11. Quantitatively analyzing dielectrical properties of resins and mapping permittivity variations in CFRP with high-frequency eddy current device technology

    NASA Astrophysics Data System (ADS)

    Gäbler, Simone; Heuer, Henning; Heinrich, Gert; Kupke, Richard

    2015-03-01

    Eddy current testing is well-established for non-destructive characterization of electrical conductive materials. The development of high-frequency eddy current technology (with frequency ranges up to 100 MHz) made it even possible to extend the classical fields of application towards less conductive materials like CFRP. Maxwell's equations and recent research show that the use of high-frequency eddy current technology is also suitable for non-conductive materials. In that case the change of complex impedance of the probing coil contains information on sample permittivity. This paper shows that even a quantitative measurement of complex permittivity with high-frequency eddy current device technology is possible using an appropriate calibration. Measurement accuracy is comparable to commercial capacitive dielectric analyzers. If the sample material is electrically conductive, both, permittivity and conductivity influence the complex impedance measured with high-frequency eddy current devices. Depending on the measurement setup and the sheet resistance of the sample a parallel characterization of both parameters is possible on isotropic multi-layer materials. On CFRP the permittivity measurement is much more complex due to the capacitive effects between the carbon rovings. However, first results show that at least the local permittivity variations (like those caused by thermal damages) are detectable.

  12. Compact floating ion energy analyzer for measuring energy distributions of ions bombarding radio-frequency biased electrode surfaces

    NASA Astrophysics Data System (ADS)

    Edelberg, Erik A.; Perry, Andrew; Benjamin, Neil; Aydil, Eray S.

    1999-06-01

    A compact floating retarding-field ion energy analyzer and the accompanying electronics have been designed and built to measure the energy distribution of ions bombarding radio-frequency (rf) biased electrodes in high-density plasma reactors. The design consists of two main components, a compact retarding field vacuum probe and an integrated stack of floating electronics for providing output voltages, measuring currents and voltages and transmitting data to a computer. The operation and capabilities of the energy analyzer are demonstrated through ion energy distribution measurements conducted on a 4 MHz rf-biased electrostatic chuck in a 13.56 MHz high-density transformer coupled plasma (TCP) reactor. The analyzer is capable of operating while floating on several hundreds of volts of rf bias and at pressures up to 30 mTorr without differential pumping. The effects of pressure (2-30 mTorr), TCP power (500-1500 W), rf-bias power (0-800 W), gas composition, and ion mass on the ion energy distributions are demonstrated through Ar, Ne, and Ar/Ne discharges.

  13. Frequency-domain flow cytometry: fluorescence-lifetime-based sensing technology for analyzing cells and chromosomes labeled with fluorescent probes

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.; Crissman, Harry A.; Lehnert, Bruce E.; Lehnert, Nancy M.; Deka, Chiranjit

    1997-05-01

    A flow cytometer has been developed that combines flow cytometry (FCM) and fluorescence lifetime spectroscopy measurement principles to provide unique capabilities for making frequency-domain, excited-state lifetime measurements on cells/chromosomes labeled with fluorescent probes, while preserving conventional FCM capabilities. Cells are analyzed as they intersect a high-frequency, intensity-modulated (sine-wave) laser excitation beam. Fluorescence signals are processed by (1) low-pass filtering to obtain conventional FCM dc-excited signals and (2) phase-sensitive detection electronics to resolve heterogeneous fluorescence based on differences in lifetimes expressed as phase-shifts and to quantify fluorescence lifetimes in real time. Processed signals are displayed as frequency distribution histograms and bivariate contour diagrams. Recent examples of biological applications include: (1) lifetime histograms recorded on autofluorescent human lung fibroblasts, murine thymus cells labeled with antibodies conjugated to fluorophores for studying fluorescence quenching as a function of antibody dilution and F/P ratio, and on cultured cells, nuclei, and chromosomes stained with DNA-binding fluorochromes and (2) phase-resolved, fluorescence signal- intensity histograms recorded on autofluorescent HLFs labeled with immunofluorescence markers and on murine thymus cells labeled with Red 613-antiThy 1.2 and propidium iodide (PI positive `dead' cells) to demonstrate the resolution of signals from highly overlapping emission spectra. This technology will increase the number of fluorescent markers usable in multilabeling studies and lifetimes can be used as spectroscopic probes to study the interaction of markers with their targets, each other, and the surrounding microenvironment.

  14. An FPGA-based frequency response analyzer for multisine and stepped sine measurements on stationary and time-varying impedance

    NASA Astrophysics Data System (ADS)

    Sanchez, B.; Fernandez, X.; Reig, S.; Bragos, R.

    2014-01-01

    We report the development of a field programmable gate array (FPGA) based frequency response analyzer (FRA) for impedance frequency response function (FRF) measurements using periodic excitations, i.e. sine waves and multisines. The stepped sine measurement uses two dedicated hardware-built digital embedded multiplier blocks to extract the phase and quadrature components of the output signal. The multisine FRF measurements compute the fast Fourier transform (FFT) of the input/output signals. In this paper, we describe its design, implementation and performance evaluation, performing electrical impedance spectroscopy (EIS) measurements on phantoms. The stepped sine accuracy is 1.21% at 1 kΩ (1%), the precision is 35 mΩ and the total harmonic distortion plus noise (THD+N) is -120 dB. As for the multisine impedance FRF measurements, the magnitude and phase precision are, respectively, 0.23 Ω at 48.828 kHz and 0.021 deg at 8.087 MHz when measuring a resistor 505 Ω (1%). The magnitude accuracy is 0.55% at 8.087 MHz while the phase accuracy is 0.17 deg at 6.54 MHz. In all, the stepped sine signal-to-noise ratio (SNR) is 84 dB and 65 dB at frequencies below and above 1 MHz respectively. The SNR for the multisine FRF measurements is above 65 dB (30 kHz-10 MHz). The FRA bandwidth is 610.4 mHz-12.5 MHz and the maximum FRF measurement rate exciting with multisines starting at 30 kHz is 200 spectra s-1. Based on its technical specifications and versatility, the FRA presented can be used in many applications, e.g. for getting insight quickly into the instantaneous impedance FRF of the time-varying impedance under test.

  15. Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms

    SciTech Connect

    Zhang Yichi; Ma Jie; Li Yuqing; Wu Jizhou; Zhang Linjie; Chen Gang; Wang Lirong; Zhao Yanting; Xiao Liantuan; Jia Suotang

    2012-09-24

    We report on a quantitative experimental determination of the laser-induced frequency shift rate of the ultracold cesium molecules formed via photoassociation (PA) by means of the trap loss measurement of the losses of trapped atoms in a standard magneto-optical trap. The experiment was directly performed by varying the photoassociation laser intensity without any additional frequency monitor technologies. Our experimental method utilized dependences of the losses on the laser-induced frequency shift rate based on the conditions of the identified photoassociation spectral shape. We demonstrated that the method is sensitive enough to determine small frequency shifts of rovibrational levels of ultracold cesium molecules.

  16. Analyzing Relationships Between Stream pH and Watershed Attributes: A Multi-Site Study Using Concentration-Duration-Frequency Curves

    NASA Astrophysics Data System (ADS)

    Mauney, L.; Schwartz, J. S.; Neff, K. J.

    2009-12-01

    Acidic deposition, comprised of sulfuric and nitric acids from emissions of sulfur dioxide and nitrogen oxides, continues to impact stream and forest systems in North America and Europe despite reductions in deposition. The Great Smoky Mountains National Park (GRSM) receives some of the highest rates of atmospheric deposition of acid pollutants in the United States. Continuous (15-minute intervals) pH stream data from 21 sites in the GRSM was collected for a minimum of one year at each site using water quality sondes. Historically, descriptive statistics of chemical parameters have demonstrated important relationships in stream acidification, but have not adequately characterized time-series responses, including those of episodic stream acidification. Concentration frequency histograms have been shown to illuminate less obvious trends in the data, but are limited in that they do not reflect the frequency and intensity of the time-connected durations. To parameterize the episodic nature of stream acidification at each site, continuous stream pH measurements were used to develop concentration-duration-frequency (CDF) curves, which enabled time-connected durations and frequencies of episodic events to be defined. Basin characteristics including area, slope, elevation, geology, and vegetation were determined for 21 subwatersheds corresponding to each study site using ArcGIS 9.3. CDF curve parameters were analyzed with respect to basin GIS characteristics to develop relationships between stream pH and physical watershed attributes. These quantitative relationships may facilitate monitoring strategies, guide future research, and assist resource managers to make informed decisions.

  17. Speech analyzer

    NASA Technical Reports Server (NTRS)

    Lokerson, D. C. (Inventor)

    1977-01-01

    A speech signal is analyzed by applying the signal to formant filters which derive first, second and third signals respectively representing the frequency of the speech waveform in the first, second and third formants. A first pulse train having approximately a pulse rate representing the average frequency of the first formant is derived; second and third pulse trains having pulse rates respectively representing zero crossings of the second and third formants are derived. The first formant pulse train is derived by establishing N signal level bands, where N is an integer at least equal to two. Adjacent ones of the signal bands have common boundaries, each of which is a predetermined percentage of the peak level of a complete cycle of the speech waveform.

  18. Analyzing the properties of acceptor mode in two-dimensional plasma photonic crystals based on a modified finite-difference frequency-domain method

    SciTech Connect

    Zhang, Hai-Feng; Ding, Guo-Wen; Lin, Yi-Bing; Chen, Yu-Qing

    2015-05-15

    In this paper, the properties of acceptor mode in two-dimensional plasma photonic crystals (2D PPCs) composed of the homogeneous and isotropic dielectric cylinders inserted into nonmagnetized plasma background with square lattices under transverse-magnetic wave are theoretically investigated by a modified finite-difference frequency-domain (FDFD) method with supercell technique, whose symmetry of every supercell is broken by removing a central rod. A new FDFD method is developed to calculate the band structures of such PPCs. The novel FDFD method adopts a general function to describe the distribution of dielectric in the present PPCs, which can easily transform the complicated nonlinear eigenvalue equation to the simple linear equation. The details of convergence and effectiveness of proposed FDFD method are analyzed using a numerical example. The simulated results demonstrate that the enough accuracy of the proposed FDFD method can be observed compared to the plane wave expansion method, and the good convergence can also be obtained if the number of meshed grids is large enough. As a comparison, two different configurations of photonic crystals (PCs) but with similar defect are theoretically investigated. Compared to the conventional dielectric-air PCs, not only the acceptor mode has a higher frequency but also an additional photonic bandgap (PBG) can be found in the low frequency region. The calculated results also show that PBGs of proposed PPCs can be enlarged as the point defect is introduced. The influences of the parameters for present PPCs on the properties of acceptor mode are also discussed in detail. Numerical simulations reveal that the acceptor mode in the present PPCs can be easily tuned by changing those parameters. Those results can hold promise for designing the tunable applications in the signal process or time delay devices based on the present PPCs.

  19. The application of low frequency dielectric spectroscopy to analyze the electrorheological behavior of monodisperse yolk-shell SiO2/TiO2 nanospheres.

    PubMed

    Guo, Xiaosong; Chen, Yulu; Li, Dong; Li, Guicun; Xin, Meng; Zhao, Mei; Yang, Chen; Hao, Chuncheng; Lei, Qingquan

    2016-01-14

    Monodisperse SiO2/TiO2 yolk-shell nanospheres (YSNSs) with different SiO2 core sizes were fabricated and adopted as dispersing materials for electrorheological (ER) fluids to investigate the influence of the gradual structural change of disperse particles on ER properties. The results showed that the ER performance of the YSNS-based ER fluid prominently enhanced with the decrease of SiO2 core size, which was attributed to the enhancement of electric field force between YSNSs. Combined with the analysis of dielectric spectroscopy, it was found that the increase of permittivity at low frequency (10(-2)-10(0) Hz) was due to the increase of polarized charges caused by secondary polarization (Psp). Moreover, the number of Psp closely related to the distributing change of polarized particles in ER fluid was a critical factor to assess the ER performance. Additionally, a parameter K (the absolute value of the slope of permittivity curves at 0.01 Hz) could be utilized to characterize the efficiency of structural evolution of polarized particles in ER fluid. Compared with the ER performance, it could be concluded that the value of Δε(100Hz-100kHz)' just demonstrated the initial intensity of the interface polarization in the ER fluid as the electric field was applied, which ignored the distributing evolution of polarized disperse particles in ER fluid. The polarizability Δε(0.01Hz-100kHz)' obtained in the frequency range of 10(-2)-10(5) Hz should be more suitable for analyzing the system of ER fluid. The relationships between polarizability of disperse particles, parameter K and ER properties were discussed in detail. PMID:26497846

  20. Quantitative Understanding of van der Waals Interactions by Analyzing the Adsorption Structure and Low-Frequency Vibrational Modes of Single Benzene Molecules on Silver.

    PubMed

    Yuan, Dingwang; Han, Zhumin; Czap, Gregory; Chiang, Chi-Lun; Xu, Chen; Ho, W; Wu, Ruqian

    2016-06-16

    The combination of a sub-Kelvin scanning tunneling microscope and density functional calculations incorporating van der Waals (vdW) corrections has been used successfully to probe the adsorption structure and low-frequency vibrational modes of single benzene molecules on Ag(110). The inclusion of optimized vdW functionals and improved C6-based vdW dispersion schemes in density functional theory is crucial for obtaining the correct adsorption structure and low-energy vibrational modes. These results demonstrate the emerging capability to quantitatively probe the van der Waals interactions between a physisorbed molecule and an inert substrate. PMID:27232051

  1. DIFFERENTIAL ANALYZER

    DOEpatents

    Sorensen, E.G.; Gordon, C.M.

    1959-02-10

    Improvements in analog eomputing machines of the class capable of evaluating differential equations, commonly termed differential analyzers, are described. In general form, the analyzer embodies a plurality of basic computer mechanisms for performing integration, multiplication, and addition, and means for directing the result of any one operation to another computer mechanism performing a further operation. In the device, numerical quantities are represented by the rotation of shafts, or the electrical equivalent of shafts.

  2. Vibration analyzer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1990-01-01

    The invention relates to monitoring circuitry for the real time detection of vibrations of a predetermined frequency and which are greater than a predetermined magnitude. The circuitry produces an instability signal in response to such detection. The circuitry is particularly adapted for detecting instabilities in rocket thrusters, but may find application with other machines such as expensive rotating machinery, or turbines. The monitoring circuitry identifies when vibration signals are present having a predetermined frequency of a multi-frequency vibration signal which has an RMS energy level greater than a predetermined magnitude. It generates an instability signal only if such a vibration signal is identified. The circuitry includes a delay circuit which responds with an alarm signal only if the instability signal continues for a predetermined time period. When used with a rocket thruster, the alarm signal may be used to cut off the thruster if such thruster is being used in flight. If the circuitry is monitoring tests of the thruster, it generates signals to change the thruster operation, for example, from pulse mode to continuous firing to determine if the instability of the thruster is sustained once it is detected.

  3. Process Analyzer

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The ChemScan UV-6100 is a spectrometry system originally developed by Biotronics Technologies, Inc. under a Small Business Innovation Research (SBIR) contract. It is marketed to the water and wastewater treatment industries, replacing "grab sampling" with on-line data collection. It analyzes the light absorbance characteristics of a water sample, simultaneously detects hundreds of individual wavelengths absorbed by chemical substances in a process solution, and quantifies the information. Spectral data is then processed by ChemScan analyzer and compared with calibration files in the system's memory in order to calculate concentrations of chemical substances that cause UV light absorbance in specific patterns. Monitored substances can be analyzed for quality and quantity. Applications include detection of a variety of substances, and the information provided enables an operator to control a process more efficiently.

  4. Gas Analyzer

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The M200 originated in the 1970's under an Ames Research Center/Stanford University contract to develop a small, lightweight gas analyzer for Viking Landers. Although the unit was not used on the spacecraft, it was further developed by The National Institute for Occupational Safety and Health (NIOSH). Three researchers from the project later formed Microsensor Technology, Inc. (MTI) to commercialize the analyzer. The original version (Micromonitor 500) was introduced in 1982, and the M200 in 1988. The M200, a more advanced version, features dual gas chromatograph which separate a gaseous mixture into components and measure concentrations of each gas. It is useful for monitoring gas leaks, chemical spills, etc. Many analyses are completed in less than 30 seconds, and a wide range of mixtures can be analyzed.

  5. Blood Analyzer

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In the 1970's, NASA provided funding for development of an automatic blood analyzer for Skylab at the Oak Ridge National Laboratory (ORNL). ORNL devised "dynamic loading," which employed a spinning rotor to load, transfer, and analyze blood samples by centrifugal processing. A refined, commercial version of the system was produced by ABAXIS and is marketed as portable ABAXIS MiniLab MCA. Used in a doctor's office, the equipment can perform 80 to 100 chemical blood tests on a single drop of blood and report results in five minutes. Further development is anticipated.

  6. An Ultrahigh Precision, High-Frequency Dissolved Inorganic Carbon Analyzer Based on Dual Isotope Dilution and Cavity Ring-Down Spectroscopy.

    PubMed

    Huang, Kuan; Cassar, Nicolas; Jonsson, Bror; Cai, Wei-jun; Bender, Michael L

    2015-07-21

    We present a novel method for continuous and automated shipboard measurements of dissolved inorganic carbon concentration ([DIC]) in surface water. The method is based on dual isotope dilution and cavity ring-down spectroscopy (DID-CRDS). In this method, seawater is continuously sampled and mixed with a flow of NaH(13)CO3 solution that is also enriched in deuterated water (the spike). The isotopic composition of CO2 (δ(13)C(spiked_sample)) derived from the DIC in the mixture, and the D/H ratio of the mixed water (δD(spiked_sample)), are measured by CRDS analyzers. The D/H of the water in the mixture allows accurate estimates of the mixing ratio of the sample and the spike. [DIC] of the sample is then calculated from the mixing ratio, [DI(13)C] of the spike, and δ(13)C(spiked_sample). In the laboratory, the precision of the method is <0.02% (±0.4 μmol kg(-1) when [DIC] = 2000 μmol kg(-1)). A shipboard test was conducted in the Delaware Bay and Estuary. For 2 min average [DIC], a precision of <0.03% was achieved. Measurements from the DID-CRDS showed good agreement with independent measurements of discrete samples using the well-established coulometric method (mean difference = -1.14 ± 1.68 μmol kg(-1)), and the nondispersive infrared(NDIR)-based methods (mean difference = -0.9 ± 4.73 μmol kg(-1)). PMID:26119512

  7. Process Analyzer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Under a NASA Small Business Innovation Research (SBIR) contract, Axiomatics Corporation developed a shunting Dielectric Sensor to determine the nutrient level and analyze plant nutrient solutions in the CELSS, NASA's space life support program. (CELSS is an experimental facility investigating closed-cycle plant growth and food processing for long duration manned missions.) The DiComp system incorporates a shunt electrode and is especially sensitive to changes in dielectric property changes in materials at measurements much lower than conventional sensors. The analyzer has exceptional capabilities for predicting composition of liquid streams or reactions. It measures concentrations and solids content up to 100 percent in applications like agricultural products, petrochemicals, food and beverages. The sensor is easily installed; maintenance is low, and it can be calibrated on line. The software automates data collection and analysis.

  8. Oxygen analyzer

    DOEpatents

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  9. Oxygen analyzer

    DOEpatents

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  10. Atmosphere Analyzer

    NASA Technical Reports Server (NTRS)

    1982-01-01

    California Measurements, Inc.'s model PC-2 Aerosol Particle Analyzer is produced in both airborne and ground-use versions. Originating from NASA technology, it is a quick and accurate method of detecting minute amounts of mass loadings on a quartz crystal -- offers utility as highly sensitive detector of fine particles suspended in air. When combined with suitable air delivery system, it provides immediate information on the size distribution and mass concentrations of aerosols. William Chiang, obtained a NASA license for multiple crystal oscillator technology, and initially developed a particle analyzer for NASA use with Langley Research Center assistance. Later his company produced the modified PC-2 for commercial applications Brunswick Corporation uses the device for atmospheric research and in studies of smoke particles in Fires. PC-2 is used by pharmaceutical and chemical companies in research on inhalation toxicology and environmental health. Also useful in testing various filters for safety masks and nuclear installations.

  11. MULTICHANNEL ANALYZER

    DOEpatents

    Kelley, G.G.

    1959-11-10

    A multichannel pulse analyzer having several window amplifiers, each amplifier serving one group of channels, with a single fast pulse-lengthener and a single novel interrogation circuit serving all channels is described. A pulse followed too closely timewise by another pulse is disregarded by the interrogation circuit to prevent errors due to pulse pileup. The window amplifiers are connected to the pulse lengthener output, rather than the linear amplifier output, so need not have the fast response characteristic formerly required.

  12. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  13. Metabolic analyzer

    NASA Technical Reports Server (NTRS)

    Lem, J. D.

    1977-01-01

    The metabolic analyzer was designed to support experiment M171. It operates on the so-called open circuit method to measure a subject's metabolic activity in terms of oxygen consumed, carbon dioxide produced, minute volume, respiratory exchange ratio, and tidal volume or vital capacity. The system operates in either of two modes. (1) In Mode I, inhaled respiratory volumes are actually measured by a piston spirometer. (2) In Mode II, inhaled volumes are calculated from the exhaled volume and the measured inhaled and exhaled nitrogen concentrations. This second mode was the prime mode for Skylab. Following is a brief description of the various subsystems and their operation.

  14. Gas Analyzer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A miniature gas chromatograph, a system which separates a gaseous mixture into its components and measures the concentration of the individual gases, was designed for the Viking Lander. The technology was further developed under National Institute for Occupational Safety and Health (NIOSH) and funded by Ames Research Center/Stanford as a toxic gas leak detection device. Three researchers on the project later formed Microsensor Technology, Inc. to commercialize the product. It is a battery-powered system consisting of a sensing wand connected to a computerized analyzer. Marketed as the Michromonitor 500, it has a wide range of applications.

  15. Contamination Analyzer

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Measurement of the total organic carbon content in water is important in assessing contamination levels in high purity water for power generation, pharmaceutical production and electronics manufacture. Even trace levels of organic compounds can cause defects in manufactured products. The Sievers Model 800 Total Organic Carbon (TOC) Analyzer, based on technology developed for the Space Station, uses a strong chemical oxidizing agent and ultraviolet light to convert organic compounds in water to carbon dioxide. After ionizing the carbon dioxide, the amount of ions is determined by measuring the conductivity of the deionized water. The new technique is highly sensitive, does not require compressed gas, and maintenance is minimal.

  16. Analyzing Orientations

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive L. N.

    Archaeoastronomical field survey typically involves the measurement of structural orientations (i.e., orientations along and between built structures) in relation to the visible landscape and particularly the surrounding horizon. This chapter focuses on the process of analyzing the astronomical potential of oriented structures, whether in the field or as a desktop appraisal, with the aim of establishing the archaeoastronomical "facts". It does not address questions of data selection (see instead Chap. 25, "Best Practice for Evaluating the Astronomical Significance of Archaeological Sites", 10.1007/978-1-4614-6141-8_25) or interpretation (see Chap. 24, "Nature and Analysis of Material Evidence Relevant to Archaeoastronomy", 10.1007/978-1-4614-6141-8_22). The main necessity is to determine the azimuth, horizon altitude, and declination in the direction "indicated" by any structural orientation. Normally, there are a range of possibilities, reflecting the various errors and uncertainties in estimating the intended (or, at least, the constructed) orientation, and in more formal approaches an attempt is made to assign a probability distribution extending over a spread of declinations. These probability distributions can then be cumulated in order to visualize and analyze the combined data from several orientations, so as to identify any consistent astronomical associations that can then be correlated with the declinations of particular astronomical objects or phenomena at any era in the past. The whole process raises various procedural and methodological issues and does not proceed in isolation from the consideration of corroborative data, which is essential in order to develop viable cultural interpretations.

  17. Optical analyzer

    DOEpatents

    Hansen, A.D.

    1987-09-28

    An optical analyzer wherein a sample of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter is placed in a combustion tube, and light from a light source is passed through the sample. The temperature of the sample is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample is detected as the temperature is raised. A data processor, differentiator and a two pen recorder provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample. These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample. Additional information is obtained by repeating the run in different atmospheres and/or different rates or heating with other samples of the same particulate material collected on other filters. 7 figs.

  18. Optical analyzer

    DOEpatents

    Hansen, Anthony D.

    1989-02-07

    An optical analyzer (10) wherein a sample (19) of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter (20) is placed in a combustion tube (11), and light from a light source (14) is passed through the sample (19). The temperature of the sample (19) is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample (19) is detected (18) as the temperature is raised. A data processor (23), differentiator (28) and a two pen recorder (24) provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample (19). These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample (19). Additional information is obtained by repeating the run in different atmospheres and/or different rates of heating with other samples of the same particulate material collected on other filters.

  19. Optical analyzer

    DOEpatents

    Hansen, Anthony D.

    1989-01-01

    An optical analyzer (10) wherein a sample (19) of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter (20) is placed in a combustion tube (11), and light from a light source (14) is passed through the sample (19). The temperature of the sample (19) is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample (19) is detected (18) as the temperature is raised. A data processor (23), differentiator (28) and a two pen recorder (24) provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample (19). These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample (19). Additional information is obtained by repeating the run in different atmospheres and/or different rates of heating with other samples of the same particulate material collected on other filters.

  20. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  1. Interpolation Errors in Spectrum Analyzers

    NASA Technical Reports Server (NTRS)

    Martin, J. L.

    1996-01-01

    To obtain the proper measurement amplitude with a spectrum analyzer, the correct frequency-dependent transducer factor must be added to the voltage measured by the transducer. This report examines how entering transducer factors into a spectrum analyzer can cause significant errors in field amplitude due to the misunderstanding of the analyzer's interpolation methods. It also discusses how to reduce these errors to obtain a more accurate field amplitude reading.

  2. Motion detector and analyzer

    DOEpatents

    Unruh, W.P.

    1987-03-23

    Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.

  3. MULTICHANNEL PULSE-HEIGHT ANALYZER

    DOEpatents

    Russell, J.T.; Lefevre, H.W.

    1958-01-21

    This patent deals with electronic computing circuits and more particularly to pulse-height analyzers used for classifying variable amplitude pulses into groups of different amplitudes. The device accomplishes this pulse allocation by by converting the pulses into frequencies corresponding to the amplitudes of the pulses, which frequencies are filtered in channels individually pretuned to a particular frequency and then detected and recorded in the responsive channel. This circuit substantially overcomes the disadvantages of prior annlyzers incorporating discriminators pre-set to respond to certain voltage levels, since small variation in component values is not as critical to satisfactory circuit operation.

  4. Analyzing Aeroelasticity in Turbomachines

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.

    2003-01-01

    ASTROP2-LE is a computer program that predicts flutter and forced responses of blades, vanes, and other components of such turbomachines as fans, compressors, and turbines. ASTROP2-LE is based on the ASTROP2 program, developed previously for analysis of stability of turbomachinery components. In developing ASTROP2- LE, ASTROP2 was modified to include a capability for modeling forced responses. The program was also modified to add a capability for analysis of aeroelasticity with mistuning and unsteady aerodynamic solutions from another program, LINFLX2D, that solves the linearized Euler equations of unsteady two-dimensional flow. Using LINFLX2D to calculate unsteady aerodynamic loads, it is possible to analyze effects of transonic flow on flutter and forced response. ASTROP2-LE can be used to analyze subsonic, transonic, and supersonic aerodynamics and structural mistuning for rotors with blades of differing structural properties. It calculates the aerodynamic damping of a blade system operating in airflow so that stability can be assessed. The code also predicts the magnitudes and frequencies of the unsteady aerodynamic forces on the airfoils of a blade row from incoming wakes. This information can be used in high-cycle fatigue analysis to predict the fatigue lives of the blades.

  5. The Statistical Loop Analyzer (SLA)

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1985-01-01

    The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.

  6. A wideband, high-resolution spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Quirk, M. P.; Wilck, H. C.; Garyantes, M. F.; Grimm, M. J.

    1988-01-01

    A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.

  7. Truck acoustic data analyzer system

    DOEpatents

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  8. Portable automatic blood analyzer

    NASA Technical Reports Server (NTRS)

    Coleman, R. L.

    1975-01-01

    Analyzer employs chemical-sensing electrodes for determination of blood, gas, and ion concentrations. It is rugged, easily serviced, and comparatively simple to operate. System can analyze up to eight parameters and can be modified to measure other blood constituents including nonionic species, such as urea, glucose, and oxygen.

  9. Analyzing Costs of Services.

    ERIC Educational Resources Information Center

    Cox, James O.; Black, Talbot

    A simplified method to gather and analyze cost data is presented for administrators of Handicapped Children's Early Education Programs, and specifically for members of the Technical Assistance Development System, North Carolina. After identifying benefits and liabilities associated with analyzing program costs, attention is focused on the internal…

  10. Analyzing Peace Pedagogies

    ERIC Educational Resources Information Center

    Haavelsrud, Magnus; Stenberg, Oddbjorn

    2012-01-01

    Eleven articles on peace education published in the first volume of the Journal of Peace Education are analyzed. This selection comprises peace education programs that have been planned or carried out in different contexts. In analyzing peace pedagogies as proposed in the 11 contributions, we have chosen network analysis as our method--enabling…

  11. Automatic amino acid analyzer

    NASA Technical Reports Server (NTRS)

    Berdahl, B. J.; Carle, G. C.; Oyama, V. I.

    1971-01-01

    Analyzer operates unattended or up to 15 hours. It has an automatic sample injection system and can be programmed. All fluid-flow valve switching is accomplished pneumatically from miniature three-way solenoid pilot valves.

  12. Generating and Analyzing Data.

    ERIC Educational Resources Information Center

    Stevens, Jill

    1993-01-01

    Presents activities in which students develop and analyze scatterplots on graphing calculators to model corn growth, decay, a box of maximum volume, and weather prediction. Provides reproducible worksheets. (MDH)

  13. Software Design Analyzer System

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1985-01-01

    CRISP80 software design analyzer system a set of programs that supports top-down, hierarchic, modular structured design, and programing methodologies. CRISP80 allows for expression of design as picture of program.

  14. Soil Rock Analyzer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A redesigned version of a soil/rock analyzer developed by Martin Marietta under a Langley Research Center contract is being marketed by Aurora Tech, Inc. Known as the Aurora ATX-100, it has self-contained power, an oscilloscope, a liquid crystal readout, and a multichannel spectrum analyzer. It measures energy emissions to determine what elements in what percentages a sample contains. It is lightweight and may be used for mineral exploration, pollution monitoring, etc.

  15. Microwave transient analyzer

    DOEpatents

    Gallegos, C.H.; Ogle, J.W.; Stokes, J.L.

    1992-11-24

    A method and apparatus for capturing and recording indications of frequency content of electromagnetic signals and radiation is disclosed including a laser light source and a Bragg cell for deflecting a light beam at a plurality of deflection angles dependent upon frequency content of the signal. A streak camera and a microchannel plate intensifier are used to project Bragg cell output onto either a photographic film or a charge coupled device (CCD) imager. Timing markers are provided by a comb generator and a one shot generator, the outputs of which are also routed through the streak camera onto the film or the CCD imager. Using the inventive method, the full range of the output of the Bragg cell can be recorded as a function of time. 5 figs.

  16. Microwave transient analyzer

    DOEpatents

    Gallegos, Cenobio H.; Ogle, James W.; Stokes, John L.

    1992-01-01

    A method and apparatus for capturing and recording indications of frequency content of electromagnetic signals and radiation is disclosed including a laser light source (12) and a Bragg cell (14) for deflecting a light beam (22) at a plurality of deflection angles (36) dependent upon frequency content of the signal. A streak camera (26) and a microchannel plate intensifier (28) are used to project Bragg cell (14) output onto either a photographic film (32) or a charge coupled device (CCD) imager (366). Timing markers are provided by a comb generator (50) and a one shot generator (52), the outputs of which are also routed through the streak camera (26) onto the film (32) or the CCD imager (366). Using the inventive method, the full range of the output of the Bragg cell (14) can be recorded as a function of time.

  17. Total organic carbon analyzer

    NASA Technical Reports Server (NTRS)

    Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.

  18. Analyzing Bilingual Education Costs.

    ERIC Educational Resources Information Center

    Bernal, Joe J.

    This paper examines the particular problems involved in analyzing the costs of bilingual education and suggests that cost analysis of bilingual education requires a fundamentally different approach than that followed in other recent school finance studies. Focus of the discussion is the Intercultural Development Research Association's (IDRA)…

  19. Ultrasonic Transducer Analyzer

    NASA Technical Reports Server (NTRS)

    Grounds, M. K.

    1982-01-01

    Ultrasonic transducer-beam-intensity distributions are determined by analyzing echoes from a spherical ball. Computers control equipment and process data. Important beam characteristics, such as location of best beam focus and beam diameter at focus, can be determined quickly from extensive set of plots generated by apparatus.

  20. Electronic sleep analyzer

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.

    1970-01-01

    Electronic instrument automatically monitors the stages of sleep of a human subject. The analyzer provides a series of discrete voltage steps with each step corresponding to a clinical assessment of level of consciousness. It is based on the operation of an EEG and requires very little telemetry bandwidth or time.

  1. List mode multichannel analyzer

    DOEpatents

    Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  2. Analyzing Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    Interactive controls analysis (INCA) program developed to provide user-friendly environment for design and analysis of linear control systems, primarily feedback control. Designed for use with both small- and large-order systems. Using interactive-graphics capability, INCA user quickly plots root locus, frequency response, or time response of either continuous-time system or sampled-data system. Configuration and parameters easily changed, allowing user to design compensation networks and perform sensitivity analyses in very convenient manner. Written in Pascal and FORTRAN.

  3. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Greenblatt, M.H.

    1958-03-25

    This patent pertains to pulse amplitude analyzers for sorting and counting a serles of pulses, and specifically discloses an analyzer which ls simple in construction and presents the puise height distribution visually on an oscilloscope screen. According to the invention, the pulses are applied to the vertical deflection plates of an oscilloscope and trigger the horizontal sweep. Each pulse starts at the same point on the screen and has a maximum amplitude substantially along the same vertical line. A mask is placed over the screen except for a slot running along the line where the maximum amplitudes of the pulses appear. After the slot has been scanned by a photocell in combination with a slotted rotating disk, the photocell signal is displayed on an auxiliary oscilloscope as vertical deflection along a horizontal time base to portray the pulse amplitude distribution.

  4. Magnetoresistive Emulsion Analyzer

    PubMed Central

    Lin, Gungun; Baraban, Larysa; Han, Luyang; Karnaushenko, Daniil; Makarov, Denys; Cuniberti, Gianaurelio; Schmidt, Oliver G.

    2013-01-01

    We realize a magnetoresistive emulsion analyzer capable of detection, multiparametric analysis and sorting of ferrofluid-containing nanoliter-droplets. The operation of the device in a cytometric mode provides high throughput and quantitative information about the dimensions and magnetic content of the emulsion. Our method offers important complementarity to conventional optical approaches involving ferrofluids, and paves the way to the development of novel compact tools for diagnostics and nanomedicine including drug design and screening. PMID:23989504

  5. Magnetoresistive emulsion analyzer.

    PubMed

    Lin, Gungun; Baraban, Larysa; Han, Luyang; Karnaushenko, Daniil; Makarov, Denys; Cuniberti, Gianaurelio; Schmidt, Oliver G

    2013-01-01

    We realize a magnetoresistive emulsion analyzer capable of detection, multiparametric analysis and sorting of ferrofluid-containing nanoliter-droplets. The operation of the device in a cytometric mode provides high throughput and quantitative information about the dimensions and magnetic content of the emulsion. Our method offers important complementarity to conventional optical approaches involving ferrofluids, and paves the way to the development of novel compact tools for diagnostics and nanomedicine including drug design and screening. PMID:23989504

  6. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Gray, G.W.; Jensen, A.S.

    1957-10-22

    A pulse-height analyzer system of improved design for sorting and counting a series of pulses, such as provided by a scintillation detector in nuclear radiation measurements, is described. The analyzer comprises a main transmission line, a cathode-ray tube for each section of the line with its deflection plates acting as the line capacitance; means to bias the respective cathode ray tubes so that the beam strikes a target only when a prearranged pulse amplitude is applied, with each tube progressively biased to respond to smaller amplitudes; pulse generating and counting means associated with each tube to respond when the beam is deflected; a control transmission line having the same time constant as the first line per section with pulse generating means for each tube for initiating a pulse on the second transmission line when a pulse triggers the tube of corresponding amplitude response, the former pulse acting to prevent successive tubes from responding to the pulse under test. This arrangement permits greater deflection sensitivity in the cathode ray tube and overcomes many of the disadvantages of prior art pulse-height analyzer circuits.

  7. Frequency curves

    USGS Publications Warehouse

    Riggs, H.C.

    1968-01-01

    This manual describes graphical and mathematical procedures for preparing frequency curves from samples of hydrologic data. It also discusses the theory of frequency curves, compares advantages of graphical and mathematical fitting, suggests methods of describing graphically defined frequency curves analytically, and emphasizes the correct interpretations of a frequency curve.

  8. Nonlinear Single Spin Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2014-03-01

    Qubits have been used as linear spectrum analyzers of their environments, through the use of decoherence spectroscopy. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013). Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: NIST, Boulder, CO.

  9. Method for network analyzation and apparatus

    DOEpatents

    Bracht, Roger B.; Pasquale, Regina V.

    2001-01-01

    A portable network analyzer and method having multiple channel transmit and receive capability for real-time monitoring of processes which maintains phase integrity, requires low power, is adapted to provide full vector analysis, provides output frequencies of up to 62.5 MHz and provides fine sensitivity frequency resolution. The present invention includes a multi-channel means for transmitting and a multi-channel means for receiving, both in electrical communication with a software means for controlling. The means for controlling is programmed to provide a signal to a system under investigation which steps consecutively over a range of predetermined frequencies. The resulting received signal from the system provides complete time domain response information by executing a frequency transform of the magnitude and phase information acquired at each frequency step.

  10. Portable Gas Analyzer

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Michromonitor M500 universal gas analyzer contains a series of miniature modules, each of which is a complete gas chromatograph, an instrument which separates a gaseous mixture into its components and measures the concentrations of each gas in the mixture. The system is manufactured by Microsensor Technology, and is used for environmental analysis, monitoring for gas leaks and chemical spills, compliance with pollution laws, etc. The technology is based on a Viking attempt to detect life on Mars. Ames/Stanford miniaturized the system and NIOSH funded further development. Three Stanford researchers commercialized the technology, which can be operated by unskilled personnel.

  11. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  12. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  13. Mineral/Water Analyzer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An x-ray fluorescence spectrometer developed for the Viking Landers by Martin Marietta was modified for geological exploration, water quality monitoring, and aircraft engine maintenance. The aerospace system was highly miniaturized and used very little power. It irradiates the sample causing it to emit x-rays at various energies, then measures the energy levels for sample composition analysis. It was used in oceanographic applications and modified to identify element concentrations in ore samples, on site. The instrument can also analyze the chemical content of water, and detect the sudden development of excessive engine wear.

  14. Fluorescence analyzer for lignin

    DOEpatents

    Berthold, John W.; Malito, Michael L.; Jeffers, Larry

    1993-01-01

    A method and apparatus for measuring lignin concentration in a sample of wood pulp or black liquor comprises a light emitting arrangement for emitting an excitation light through optical fiber bundles into a probe which has an undiluted sensing end facing the sample. The excitation light causes the lignin concentration to produce fluorescent emission light which is then conveyed through the probe to analyzing equipment which measures the intensity of the emission light. Measures a This invention was made with Government support under Contract Number DOE: DE-FC05-90CE40905 awarded by the Department of Energy (DOE). The Government has certain rights in this invention.

  15. RELAPS desktop analyzer

    SciTech Connect

    Beelman, R.J.; Grush, W.H.; Mortensen, G.A.; Snider, D.M.; Wagner, K.L.

    1989-01-01

    The previously mainframe bound RELAP5 reactor safety computer code has been installed on a microcomputer. A simple color-graphic display driver has been developed to enable the user to view the code results as the calculation advances. In order to facilitate future interactive desktop applications, the Nuclear Plant Analyzer (NPA), also previously mainframe bound, is being redesigned to encompass workstation applications. The marriage of RELAP5 simulation capabilities with NPA interactive graphics on a desktop workstation promises to revolutionize reactor safety analysis methodology. 8 refs.

  16. Probability and Relative Frequency

    NASA Astrophysics Data System (ADS)

    Drieschner, Michael

    2016-01-01

    The concept of probability seems to have been inexplicable since its invention in the seventeenth century. In its use in science, probability is closely related with relative frequency. So the task seems to be interpreting that relation. In this paper, we start with predicted relative frequency and show that its structure is the same as that of probability. I propose to call that the `prediction interpretation' of probability. The consequences of that definition are discussed. The "ladder"-structure of the probability calculus is analyzed. The expectation of the relative frequency is shown to be equal to the predicted relative frequency. Probability is shown to be the most general empirically testable prediction.

  17. Multiple capillary biochemical analyzer

    DOEpatents

    Dovichi, Norman J.; Zhang, Jian Z.

    1995-01-01

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibres to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands.

  18. Field Deployable DNA analyzer

    SciTech Connect

    Wheeler, E; Christian, A; Marion, J; Sorensen, K; Arroyo, E; Vrankovich, G; Hara, C; Nguyen, C

    2005-02-09

    This report details the feasibility of a field deployable DNA analyzer. Steps for swabbing cells from surfaces and extracting DNA in an automatable way are presented. Since enzymatic amplification reactions are highly sensitive to environmental contamination, sample preparation is a crucial step to make an autonomous deployable instrument. We perform sample clean up and concentration in a flow through packed bed. For small initial samples, whole genome amplification is performed in the packed bed resulting in enough product for subsequent PCR amplification. In addition to DNA, which can be used to identify a subject, protein is also left behind, the analysis of which can be used to determine exposure to certain substances, such as radionuclides. Our preparative step for DNA analysis left behind the protein complement as a waste stream; we determined to learn if the proteins themselves could be analyzed in a fieldable device. We successfully developed a two-step lateral flow assay for protein analysis and demonstrate a proof of principle assay.

  19. Ring Image Analyzer

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.

    2012-01-01

    Ring Image Analyzer software analyzes images to recognize elliptical patterns. It determines the ellipse parameters (axes ratio, centroid coordinate, tilt angle). The program attempts to recognize elliptical fringes (e.g., Newton Rings) on a photograph and determine their centroid position, the short-to-long-axis ratio, and the angle of rotation of the long axis relative to the horizontal direction on the photograph. These capabilities are important in interferometric imaging and control of surfaces. In particular, this program has been developed and applied for determining the rim shape of precision-machined optical whispering gallery mode resonators. The program relies on a unique image recognition algorithm aimed at recognizing elliptical shapes, but can be easily adapted to other geometric shapes. It is robust against non-elliptical details of the image and against noise. Interferometric analysis of precision-machined surfaces remains an important technological instrument in hardware development and quality analysis. This software automates and increases the accuracy of this technique. The software has been developed for the needs of an R&TD-funded project and has become an important asset for the future research proposal to NASA as well as other agencies.

  20. Plutonium solution analyzer

    SciTech Connect

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded).

  1. Multiple capillary biochemical analyzer

    DOEpatents

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  2. The PDV Velocity History and Shock Arrival Time Analyzer

    Energy Science and Technology Software Center (ESTSC)

    2006-08-29

    This software allows the user to analyze heterodyne beat signals generated when a Doppler-shifted laser light interacts with un-shifted laser light. The software analyzes the data in a joint time frequency domain to extract instantaneous velocity.

  3. PULSE AMPLITUDE ANALYZERS

    DOEpatents

    Gray, G.W.; Jensen, A.S.

    1958-06-01

    An analyzer system incorporating a cathode-ray tube and linearly spaced targets masked by a plate having slits at points corresponding to the location of the targets is described. The advantages of the system include reduction in the required amplified band width and also the reduction in possible double counting of a pulse by striking two targets. The system comprises integrating means for each pulse, the signal from which is applied to a pair of deflection plates, and a control circuit for turning on the electron beam when the pulse has almost reached its maximum value. The mask prevents the beam from overlapping on a target adjacent to the proper one, while a control circuit responsive to the target output signals acts to cut off the beam immediately after the beam strikes a target to permit the beam to impinge on only one target.

  4. Moving particle composition analyzer

    NASA Technical Reports Server (NTRS)

    Auer, S. O. (Inventor)

    1976-01-01

    A mass spectrometry apparatus for analyzing the composition of moving microscopic particles is introduced. The apparatus includes a capacitor with a front electrode upon which the particles impinge, a back electrode, and a solid dielectric sandwiched between the front and back electrodes. In one embodiment, the electrodes and dielectric are arcuately shaped as concentric peripheral segments of different spheres having a common center and different radii. The front electrode and dielectric together have a thickness such that an impinging particle can penetrate them. In a second embodiment, the capacitor has planar, parallel electrodes, in which case the ejected positive ions are deflected downstream of a planar grid by a pair of spaced, arcuate capacitor plates having a region between them through which the ejected ions travel.

  5. Residual gas analyzer calibration

    NASA Technical Reports Server (NTRS)

    Lilienkamp, R. H.

    1972-01-01

    A technique which employs known gas mixtures to calibrate the residual gas analyzer (RGA) is described. The mass spectra from the RGA are recorded for each gas mixture. This mass spectra data and the mixture composition data each form a matrix. From the two matrices the calibration matrix may be computed. The matrix mathematics requires the number of calibration gas mixtures be equal to or greater than the number of gases included in the calibration. This technique was evaluated using a mathematical model of an RGA to generate the mass spectra. This model included shot noise errors in the mass spectra. Errors in the gas concentrations were also included in the valuation. The effects of these errors was studied by varying their magnitudes and comparing the resulting calibrations. Several methods of evaluating an actual calibration are presented. The effects of the number of gases in then, the composition of the calibration mixture, and the number of mixtures used are discussed.

  6. Analyzing Next to Nothing

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2000-04-01

    Analytical techniques have advanced so far that it is possible to slice up a sample only 10 micrometers across (with a mass of only a billionth of a gram) so that a dozen microanalytical techniques can be used to extract fascinating, crucial information about the sample's history. This astonishing ability is useful in analyzing interplanetary dust collected in the stratosphere, tiny interstellar grains in meteorites, sparse and wispy weathering products in Martian meteorites, and samples to be collected and returned to Earth by current and future sample return missions from comets, asteroids, Martian moons, and Mars. The importance of the array of techniques available to cosmochemists has been documented by Michael Zolensky (Johnson Space Center), Carle Pieters (Brown University), Benton Clark (Lockheed Martin Astronautics, Denver), and James Papike (University of New Mexico), with special attention to sample-return missions.

  7. Analyzing geographic clustered response

    SciTech Connect

    Merrill, D.W.; Selvin, S.; Mohr, M.S.

    1991-08-01

    In the study of geographic disease clusters, an alternative to traditional methods based on rates is to analyze case locations on a transformed map in which population density is everywhere equal. Although the analyst's task is thereby simplified, the specification of the density equalizing map projection (DEMP) itself is not simple and continues to be the subject of considerable research. Here a new DEMP algorithm is described, which avoids some of the difficulties of earlier approaches. The new algorithm (a) avoids illegal overlapping of transformed polygons; (b) finds the unique solution that minimizes map distortion; (c) provides constant magnification over each map polygon; (d) defines a continuous transformation over the entire map domain; (e) defines an inverse transformation; (f) can accept optional constraints such as fixed boundaries; and (g) can use commercially supported minimization software. Work is continuing to improve computing efficiency and improve the algorithm. 21 refs., 15 figs., 2 tabs.

  8. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  9. Analyzing a Cometary 'Sneeze'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Analyzing a Cometary 'Sneeze'

    This display shows highly processed images of the outburst of comet Tempel 1 between June 22 and 23, 2005. The pictures were taken by Deep Impact's medium-resolution camera. An average image of the comet has been subtracted from each picture to provide an enhanced view of the outburst. The intensity has also been stretched to show the faintest parts. This processing enables measurement of the outflow speed and the details of the dissipation of the outburst. The left image was taken when the comet was very close to its normal, non-bursting state, so almost nothing is visible.

  10. Analyzing the Acoustic Beat with Mobile Devices

    ERIC Educational Resources Information Center

    Kuhn, Jochen; Vogt, Patrik; Hirth, Michael

    2014-01-01

    In this column, we have previously presented various examples of how physical relationships can be examined by analyzing acoustic signals using smartphones or tablet PCs. In this example, we will be exploring the acoustic phenomenon of small beats, which is produced by the overlapping of two tones with a low difference in frequency ?f. The…

  11. Gradients in analyzability.

    PubMed

    Grotstein, J S

    A discussion of "Some Communicative Properties of the Bipersonal Field" by Robert Langs, M.D. In response to Dr. Langs' delineation of the bipersonal field concept and his clinical elaboration of a triad of disorders which are graded into classifications of descending analyzability: Types A,B, and C fields. I confirm his thesis and endeavor to demonstrate some underlying foundations of his categorical assumptions, namely the conceptions of projective identification, of the intactness of the background object of primary identification, the conception of a dual-track theory of infantile development in order to delineate the parallel between the separated self and the continuation of primary identification, and the postulation of manic and schizoid types of narcissistic character disorders (Types B and C respectively). All of these conceptions are vicissitudes of the varying ways in which patients confront the depressive position of separation-individuation with rapprochement and, thereby, conform to a gradient in which symbolization interpretations can be utilized in analytic treatment. PMID:738806

  12. Analyzing Atmospheric Neutrino Oscillations

    SciTech Connect

    Escamilla, J.; Ernst, D. J.; Latimer, D. C.

    2007-10-26

    We provide a pedagogic derivation of the formula needed to analyze atmospheric data and then derive, for the subset of the data that are fully-contained events, an analysis tool that is quantitative and numerically efficient. Results for the full set of neutrino oscillation data are then presented. We find the following preliminary results: 1.) the sub-dominant approximation provides reasonable values for the best fit parameters for {delta}{sub 32}, {theta}{sub 23}, and {theta}{sub 13} but does not quantitatively provide the errors for these three parameters; 2.) the size of the MSW effect is suppressed in the sub-dominant approximation; 3.) the MSW effect reduces somewhat the extracted error for {delta}{sub 32}, more so for {theta}{sub 23} and {theta}{sub 13}; 4.) atmospheric data alone constrains the allowed values of {theta}{sub 13} only in the sub-dominant approximation, the full three neutrino calculations requires CHOOZ to get a clean constraint; 5.) the linear in {theta}{sub 13} terms are not negligible; and 6.) the minimum value of {theta}{sub 13} is found to be negative, but at a statistically insignificant level.

  13. PULSE HEIGHT ANALYZER

    DOEpatents

    Johnstone, C.W.

    1958-01-21

    An anticoincidence device is described for a pair of adjacent channels of a multi-channel pulse height analyzer for preventing the lower channel from generating a count pulse in response to an input pulse when the input pulse has sufficient magnitude to reach the upper level channel. The anticoincidence circuit comprises a window amplifier, upper and lower level discriminators, and a biased-off amplifier. The output of the window amplifier is coupled to the inputs of the discriminators, the output of the upper level discriminator is connected to the resistance end of a series R-C network, the output of the lower level discriminator is coupled to the capacitance end of the R-C network, and the grid of the biased-off amplifier is coupled to the junction of the R-C network. In operation each discriminator produces a negative pulse output when the input pulse traverses its voltage setting. As a result of the connections to the R-C network, a trigger pulse will be sent to the biased-off amplifier when the incoming pulse level is sufficient to trigger only the lower level discriminator.

  14. Analyzing Spacecraft Telecommunication Systems

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Hanks, David; Gladden, Roy; Wood, Eric

    2004-01-01

    Multi-Mission Telecom Analysis Tool (MMTAT) is a C-language computer program for analyzing proposed spacecraft telecommunication systems. MMTAT utilizes parameterized input and computational models that can be run on standard desktop computers to perform fast and accurate analyses of telecommunication links. MMTAT is easy to use and can easily be integrated with other software applications and run as part of almost any computational simulation. It is distributed as either a stand-alone application program with a graphical user interface or a linkable library with a well-defined set of application programming interface (API) calls. As a stand-alone program, MMTAT provides both textual and graphical output. The graphs make it possible to understand, quickly and easily, how telecommunication performance varies with variations in input parameters. A delimited text file that can be read by any spreadsheet program is generated at the end of each run. The API in the linkable-library form of MMTAT enables the user to control simulation software and to change parameters during a simulation run. Results can be retrieved either at the end of a run or by use of a function call at any time step.

  15. PULSE HEIGHT ANALYZER

    DOEpatents

    Goldsworthy, W.W.

    1958-06-01

    A differential pulse-height discriminator circuit is described which is readily adaptable for operation in a single-channel pulse-height analyzer. The novel aspect of the circuit lies in the specific arrangement of differential pulse-height discriminator which includes two pulse-height discriminators having a comnnon input and an anticoincidence circuit having two interconnected vacuum tubes with a common cathode resistor. Pulses from the output of one discriminator circuit are delayed and coupled to the grid of one of the anticoincidence tubes by a resistor. The output pulses from the other discriminator circuit are coupled through a cathode follower circuit, which has a cathode resistor of such value as to provide a long time constant with the interelectrode capacitance of the tube, to lenthen the output pulses. The pulses are then fed to the grid of the other anticoincidence tube. With such connections of the circuits, only when the incoming pulse has a pesk value between the operating levels of the two discriminators does an output pulse occur from the anticoincidence circuit.

  16. Downhole Fluid Analyzer Development

    SciTech Connect

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  17. Lorentz force particle analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Thess, André; Moreau, René; Tan, Yanqing; Dai, Shangjun; Tao, Zhen; Yang, Wenzhi; Wang, Bo

    2016-07-01

    A new contactless technique is presented for the detection of micron-sized insulating particles in the flow of an electrically conducting fluid. A transverse magnetic field brakes this flow and tends to become entrained in the flow direction by a Lorentz force, whose reaction force on the magnetic-field-generating system can be measured. The presence of insulating particles suspended in the fluid produce changes in this Lorentz force, generating pulses in it; these pulses enable the particles to be counted and sized. A two-dimensional numerical model that employs a moving mesh method demonstrates the measurement principle when such a particle is present. Two prototypes and a three-dimensional numerical model are used to demonstrate the feasibility of a Lorentz force particle analyzer (LFPA). The findings of this study conclude that such an LFPA, which offers contactless and on-line quantitative measurements, can be applied to an extensive range of applications. These applications include measurements of the cleanliness of high-temperature and aggressive molten metal, such as aluminum and steel alloys, and the clean manufacturing of semiconductors.

  18. Analyzing Visibility Configurations.

    PubMed

    Dachsbacher, C

    2011-04-01

    Many algorithms, such as level of detail rendering and occlusion culling methods, make decisions based on the degree of visibility of an object, but do not analyze the distribution, or structure, of the visible and occluded regions across surfaces. We present an efficient method to classify different visibility configurations and show how this can be used on top of existing methods based on visibility determination. We adapt co-occurrence matrices for visibility analysis and generalize them to operate on clusters of triangular surfaces instead of pixels. We employ machine learning techniques to reliably classify the thus extracted feature vectors. Our method allows perceptually motivated level of detail methods for real-time rendering applications by detecting configurations with expected visual masking. We exemplify the versatility of our method with an analysis of area light visibility configurations in ray tracing and an area-to-area visibility analysis suitable for hierarchical radiosity refinement. Initial results demonstrate the robustness, simplicity, and performance of our method in synthetic scenes, as well as real applications. PMID:20498504

  19. Pseudostupidity and analyzability.

    PubMed

    Cohn, L S

    1989-01-01

    This paper seeks to heighten awareness of pseudostupidity and the potential analyzability of patients who manifest it by defining and explicating it, reviewing the literature, and presenting in detail the psychoanalytic treatment of a pseudostupid patient. Pseudostupidity is caused by an inhibition of the integration and synthesis of thoughts resulting in a discrepancy between intellectual capacity and apparent intellect. The patient's pseudostupidity was determined in part by his need to prevent his being more successful than father, i.e., defeating his oedipal rival. Knowing and learning were instinctualized. The patient libidinally and defensively identified with father's passive, masochistic position. He needed to frustrate the analyst as he had felt excited and frustrated by his parents' nudity and thwarted by his inhibitions. He wanted to cause the analyst to feel as helpless as he, the patient, felt. Countertransference frustration was relevant and clinically useful in the analysis. Interpretation of evolving relevant issues led to more anxiety and guilt, less pseudostupidity, a heightened alliance, and eventual working through. Negative therapeutic reactions followed the resolution of pseudostupidity. PMID:2708771

  20. TEAMS Model Analyzer

    NASA Technical Reports Server (NTRS)

    Tijidjian, Raffi P.

    2010-01-01

    The TEAMS model analyzer is a supporting tool developed to work with models created with TEAMS (Testability, Engineering, and Maintenance System), which was developed by QSI. In an effort to reduce the time spent in the manual process that each TEAMS modeler must perform in the preparation of reporting for model reviews, a new tool has been developed as an aid to models developed in TEAMS. The software allows for the viewing, reporting, and checking of TEAMS models that are checked into the TEAMS model database. The software allows the user to selectively model in a hierarchical tree outline view that displays the components, failure modes, and ports. The reporting features allow the user to quickly gather statistics about the model, and generate an input/output report pertaining to all of the components. Rules can be automatically validated against the model, with a report generated containing resulting inconsistencies. In addition to reducing manual effort, this software also provides an automated process framework for the Verification and Validation (V&V) effort that will follow development of these models. The aid of such an automated tool would have a significant impact on the V&V process.

  1. Real time speech formant analyzer and display

    DOEpatents

    Holland, George E.; Struve, Walter S.; Homer, John F.

    1987-01-01

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

  2. Real time speech formant analyzer and display

    DOEpatents

    Holland, G.E.; Struve, W.S.; Homer, J.F.

    1987-02-03

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.

  3. Digital Microfluidics Sample Analyzer

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.

    2010-01-01

    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.

  4. Frequency Combs

    NASA Astrophysics Data System (ADS)

    Hänsch, Theodor W.; Picqué, Nathalie

    Much of modern research in the field of atomic, molecular, and optical science relies on lasers, which were invented some 50 years ago and perfected in five decades of intense research and development. Today, lasers and photonic technologies impact most fields of science and they have become indispensible in our daily lives. Laser frequency combs were conceived a decade ago as tools for the precision spectroscopy of atomic hydrogen. Through the development of optical frequency comb techniques, technique a setup of the size 1 ×1 m2, good for precision measurements of any frequency, and even commercially available, has replaced the elaborate previous frequency-chain schemes for optical frequency measurements, which only worked for selected frequencies. A true revolution in optical frequency measurements has occurred, paving the way for the creation of all-optical clocks clock with a precision that might approach 10-18. A decade later, frequency combs are now common equipment in all frequency metrology-oriented laboratories. They are also becoming enabling tools for an increasing number of applications, from the calibration of astronomical spectrographs to molecular spectroscopy. This chapter first describes the principle of an optical frequency comb synthesizer. Some of the key technologies to generate such a frequency comb are then presented. Finally, a non-exhaustive overview of the growing applications is given.

  5. Regolith Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.; Hedgecock, Jud; Nienaber, Terry; Cooper, Bonnie; Allen, Carlton; Ming, Doug

    2000-01-01

    The Regolith Evolved Gas Analyzer (REGA) is a high-temperature furnace and mass spectrometer instrument for determining the mineralogical composition and reactivity of soil samples. REGA provides key mineralogical and reactivity data that is needed to understand the soil chemistry of an asteroid, which then aids in determining in-situ which materials should be selected for return to earth. REGA is capable of conducting a number of direct soil measurements that are unique to this instrument. These experimental measurements include: (1) Mass spectrum analysis of evolved gases from soil samples as they are heated from ambient temperature to 900 C; and (2) Identification of liberated chemicals, e.g., water, oxygen, sulfur, chlorine, and fluorine. REGA would be placed on the surface of a near earth asteroid. It is an autonomous instrument that is controlled from earth but does the analysis of regolith materials automatically. The REGA instrument consists of four primary components: (1) a flight-proven mass spectrometer, (2) a high-temperature furnace, (3) a soil handling system, and (4) a microcontroller. An external arm containing a scoop or drill gathers regolith samples. A sample is placed in the inlet orifice where the finest-grained particles are sifted into a metering volume and subsequently moved into a crucible. A movable arm then places the crucible in the furnace. The furnace is closed, thereby sealing the inner volume to collect the evolved gases for analysis. Owing to the very low g forces on an asteroid compared to Mars or the moon, the sample must be moved from inlet to crucible by mechanical means rather than by gravity. As the soil sample is heated through a programmed pattern, the gases evolved at each temperature are passed through a transfer tube to the mass spectrometer for analysis and identification. Return data from the instrument will lead to new insights and discoveries including: (1) Identification of the molecular masses of all of the gases

  6. Soft Decision Analyzer

    NASA Technical Reports Server (NTRS)

    Steele, Glen; Lansdowne, Chatwin; Zucha, Joan; Schlensinger, Adam

    2013-01-01

    The Soft Decision Analyzer (SDA) is an instrument that combines hardware, firmware, and software to perform realtime closed-loop end-to-end statistical analysis of single- or dual- channel serial digital RF communications systems operating in very low signal-to-noise conditions. As an innovation, the unique SDA capabilities allow it to perform analysis of situations where the receiving communication system slips bits due to low signal-to-noise conditions or experiences constellation rotations resulting in channel polarity in versions or channel assignment swaps. SDA s closed-loop detection allows it to instrument a live system and correlate observations with frame, codeword, and packet losses, as well as Quality of Service (QoS) and Quality of Experience (QoE) events. The SDA s abilities are not confined to performing analysis in low signal-to-noise conditions. Its analysis provides in-depth insight of a communication system s receiver performance in a variety of operating conditions. The SDA incorporates two techniques for identifying slips. The first is an examination of content of the received data stream s relation to the transmitted data content and the second is a direct examination of the receiver s recovered clock signals relative to a reference. Both techniques provide benefits in different ways and allow the communication engineer evaluating test results increased confidence and understanding of receiver performance. Direct examination of data contents is performed by two different data techniques, power correlation or a modified Massey correlation, and can be applied to soft decision data widths 1 to 12 bits wide over a correlation depth ranging from 16 to 512 samples. The SDA detects receiver bit slips within a 4 bits window and can handle systems with up to four quadrants (QPSK, SQPSK, and BPSK systems). The SDA continuously monitors correlation results to characterize slips and quadrant change and is capable of performing analysis even when the

  7. Crew Activity Analyzer

    NASA Technical Reports Server (NTRS)

    Murray, James; Kirillov, Alexander

    2008-01-01

    The crew activity analyzer (CAA) is a system of electronic hardware and software for automatically identifying patterns of group activity among crew members working together in an office, cockpit, workshop, laboratory, or other enclosed space. The CAA synchronously records multiple streams of data from digital video cameras, wireless microphones, and position sensors, then plays back and processes the data to identify activity patterns specified by human analysts. The processing greatly reduces the amount of time that the analysts must spend in examining large amounts of data, enabling the analysts to concentrate on subsets of data that represent activities of interest. The CAA has potential for use in a variety of governmental and commercial applications, including planning for crews for future long space flights, designing facilities wherein humans must work in proximity for long times, improving crew training and measuring crew performance in military settings, human-factors and safety assessment, development of team procedures, and behavioral and ethnographic research. The data-acquisition hardware of the CAA (see figure) includes two video cameras: an overhead one aimed upward at a paraboloidal mirror on the ceiling and one mounted on a wall aimed in a downward slant toward the crew area. As many as four wireless microphones can be worn by crew members. The audio signals received from the microphones are digitized, then compressed in preparation for storage. Approximate locations of as many as four crew members are measured by use of a Cricket indoor location system. [The Cricket indoor location system includes ultrasonic/radio beacon and listener units. A Cricket beacon (in this case, worn by a crew member) simultaneously transmits a pulse of ultrasound and a radio signal that contains identifying information. Each Cricket listener unit measures the difference between the times of reception of the ultrasound and radio signals from an identified beacon

  8. The 8-million channel narrowband analyzer

    NASA Astrophysics Data System (ADS)

    Horowitz, P.; Forster, J.; Linscott, I.

    An 8.4 million channel narrowband spectrum analyzer is nearing completion, and will be used to expand the frequency coverage of the ongoing search at Oak Ridge by a factor of 200. The new system - project META - will cover 420 kHz at 0.05 Hz resolution, utilizing a swept receiver to cancel the effect of the earth's rotation. The increased bandwidth will permit observation of CW beacons transmitted at magic frequencies in any of three preferred frames: the local standard of rest, the galactic barycenter, and the cosmic blackbody rest frame.

  9. The design of virtual signal analyzer with high cost performance

    NASA Astrophysics Data System (ADS)

    Wang, Ya-nan; Pei, Gui-ling; Xu, Lei

    2013-03-01

    Based on 16bit STEREO AUDIO CODEC and C# this paper introduces a virtual signal analyzer. It mainly describes the system's overall structure, hardware design, PC software framework, etc. With reducing costs dramatically, the system also achieves being a signal generator, oscilloscope, recorder, spectrum analyzer, time-frequency analyzer and so on.

  10. Analyzing the acoustic beat with mobile devices

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik; Hirth, Michael

    2014-04-01

    In this column, we have previously presented various examples of how physical relationships can be examined by analyzing acoustic signals using smartphones or tablet PCs. In this example, we will be exploring the acoustic phenomenon of small beats, which is produced by the overlapping of two tones with a low difference in frequency Δf. The resulting auditory sensation is a tone with a volume that varies periodically. Acoustic beats can be perceived repeatedly in day-to-day life and have some interesting applications. For example, string instruments are still tuned with the help of an acoustic beat, even with modern technology. If a reference tone (e.g., 440 Hz) and, for example, a slightly out-of-tune violin string produce a tone simultaneously, a beat can be perceived. The more similar the frequencies, the longer the duration of the beat. In the extreme case, when the frequencies are identical, a beat no longer arises. The string is therefore correctly tuned. Using the Oscilloscope app,4 it is possible to capture and save acoustic signals of this kind and determine the beat frequency fS of the signal, which represents the difference in frequency Δf of the two overlapping tones (for Android smartphones, the app OsciPrime Oscilloscope can be used).

  11. Droplet actuator analyzer with cartridge

    NASA Technical Reports Server (NTRS)

    Smith, Gregory F. (Inventor); Sturmer, Ryan A. (Inventor); Paik, Philip Y. (Inventor); Srinivasan, Vijay (Inventor); Pollack, Michael G. (Inventor); Pamula, Vamsee K. (Inventor); Brafford, Keith R. (Inventor); West, Richard M. (Inventor)

    2011-01-01

    A droplet actuator with cartridge is provided. According to one embodiment, a sample analyzer is provided and includes an analyzer unit comprising electronic or optical receiving means, a cartridge comprising self-contained droplet handling capabilities, and a wherein the cartridge is coupled to the analyzer unit by a means which aligns electronic and/or optical outputs from the cartridge with electronic or optical receiving means on the analyzer unit. According to another embodiment, a sample analyzer is provided and includes a sample analyzer comprising a cartridge coupled thereto and a means of electrical interface and/or optical interface between the cartridge and the analyzer, whereby electrical signals and/or optical signals may be transmitted from the cartridge to the analyzer.

  12. Soft Decision Analyzer and Method

    NASA Technical Reports Server (NTRS)

    Steele, Glen F. (Inventor); Lansdowne, Chatwin (Inventor); Zucha, Joan P. (Inventor); Schlesinger, Adam M. (Inventor)

    2015-01-01

    A soft decision analyzer system is operable to interconnect soft decision communication equipment and analyze the operation thereof to detect symbol wise alignment between a test data stream and a reference data stream in a variety of operating conditions.

  13. Frequency spirals

    NASA Astrophysics Data System (ADS)

    Ottino-Löffler, Bertrand; Strogatz, Steven H.

    2016-09-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call "frequency spirals." These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  14. The Deep Space Network stability analyzer

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Greenhall, Charles A.; Hamell, Robert L.; Kuhnle, Paul F.

    1995-01-01

    A stability analyzer for testing NASA Deep Space Network installations during flight radio science experiments is described. The stability analyzer provides realtime measurements of signal properties of general experimental interest: power, phase, and amplitude spectra; Allan deviation; and time series of amplitude, phase shift, and differential phase shift. Input ports are provided for up to four 100 MHz frequency standards and eight baseband analog (greater than 100 kHz bandwidth) signals. Test results indicate the following upper bounds to noise floors when operating on 100 MHz signals: -145 dBc/Hz for phase noise spectrum further than 200 Hz from carrier, 2.5 x 10(exp -15) (tau =1 second) and 1.5 x 10(exp -17) (tau =1000 seconds) for Allan deviation, and 1 x 10(exp -4) degrees for 1-second averages of phase deviation. Four copies of the stability analyzer have been produced, plus one transportable unit for use at non-NASA observatories.

  15. Detector verifier for circuit analyzers

    NASA Technical Reports Server (NTRS)

    Pope, D. L.; Wooters, R. L.

    1980-01-01

    Economical tool checks operation of automatic circuit analyzer. Each loop is addressed directly from analyzer console by switching internal analyzer bridge to resistance equal that of connecting cable plus specified limiting test value. Procedure verifies whether detected faults in circuit under test are actually due to analyzer malfunction. Standard-length universal test cables make it possible to shift detector tool from cable to cable without resistance compensation.

  16. Josephson Junction spectrum analyzer for millimeter and submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Larkin, S. Y.; Anischenko, S. E.; Khabayev, P. V.

    1995-01-01

    A prototype of the Josephson-effect spectrum analyzer developed for the millimeter wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.

  17. Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths

    SciTech Connect

    Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V.

    1994-12-31

    A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.

  18. A wide-band high-resolution spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Quirk, Maureen P.; Garyantes, Michael F.; Wilck, Helmut C.; Grimm, Michael J.

    1988-01-01

    A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.

  19. Electro-optic network analyzer

    NASA Technical Reports Server (NTRS)

    Jackson, Todd A.

    1990-01-01

    The bandwidth of frequency domain measurement methods of electrical signals has usually been far greater than the bandwidth of time domain methods. The primary limits of the time domain approach have been the 20 to 30 GHz bandwidth limit for electronic waveform acquisition instrumentation, and the lack of usable electrical pulse generators for excitation of a test device. The bandwidth of frequency domain network analysis appears to have reached a plateau of between 100 to 200 GHz, while time domain measurement have improved markedly in both bandwidth and sensitivity with the introduction of the pulsed laser based electro-optic sampling approach. Network analysis or the measurement of device scattering parameters provides information necessary to the design of electronic network such as high frequency amplifiers, mixers, and phase shifter. The bandwidth of frequency domain network analysis is currently being exceeded by the next generations of high frequency transistors and devices. Thus the electro-optic approach is a natural means of extending network analysis into the range above 100 GHz by employing time domain methods. In this approach, a suitable electrical excitation pulse is generated and propagated along a transmission line toward a test device. In the picosecond domain, laser driven photoconductive switches provide a unique method of generating electrical transients. Several materials were studied for generating short electrical pulses using photoconductive switches. The various semiconductive materials tested for photoconductive switching, and the electro-optic measurement technique used to characterize the material performance are described.

  20. Nonlinear single-spin spectrum analyzer.

    PubMed

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2013-03-15

    Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis. PMID:25166519

  1. Nonlinear Single-Spin Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2013-03-01

    Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.

  2. Using computers to analyze continuous data.

    NASA Technical Reports Server (NTRS)

    Catherines, J. J.; Clevenson, S. A.; Scholl, H. F.

    1973-01-01

    Dynamic field measurements often involve large quantities of continuous data, which must be analyzed and interpreted to obtain meaningful information. The processing can often be accomplished by tape-recording the data in analog form, performing off-line digitalization, and using the result as an input to statistical programs on a digital computer. A time series analysis was used to obtain power spectral density (PSD) curves to identify dominant frequencies. Representative PSD plots were obtained for STOL aircraft during cruise. Vibrational energy was clearly concentrated below 0.1 Hz, and was much higher in the vertical than in the lateral direction.

  3. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power...

  4. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power...

  5. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power...

  6. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power...

  7. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power...

  8. Nuclear fuel microsphere gamma analyzer

    DOEpatents

    Valentine, Kenneth H.; Long, Jr., Ernest L.; Willey, Melvin G.

    1977-01-01

    A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties.

  9. Market study: Whole blood analyzer

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market survey was conducted to develop findings relative to the commercialization potential and key market factors of the whole blood analyzer which is being developed in conjunction with NASA's Space Shuttle Medical System.

  10. Molecular wake shield gas analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1980-01-01

    Techniques for measuring and characterizing the ultrahigh vacuum in the wake of an orbiting spacecraft are studied. A high sensitivity mass spectrometer that contains a double mass analyzer consisting of an open source miniature magnetic sector field neutral gas analyzer and an identical ion analyzer is proposed. These are configured to detect and identify gas and ion species of hydrogen, helium, nitrogen, oxygen, nitric oxide, and carbon dioxide and any other gas or ion species in the 1 to 46 amu mass range. This range covers the normal atmospheric constituents. The sensitivity of the instrument is sufficient to measure ambient gases and ion with a particle density of the order of one per cc. A chemical pump, or getter, is mounted near the entrance aperture of the neutral gas analyzer which integrates the absorption of ambient gases for a selectable period of time for subsequent release and analysis. The sensitivity is realizable for all but rare gases using this technique.

  11. A Categorization of Dynamic Analyzers

    NASA Technical Reports Server (NTRS)

    Lujan, Michelle R.

    1997-01-01

    Program analysis techniques and tools are essential to the development process because of the support they provide in detecting errors and deficiencies at different phases of development. The types of information rendered through analysis includes the following: statistical measurements of code, type checks, dataflow analysis, consistency checks, test data,verification of code, and debugging information. Analyzers can be broken into two major categories: dynamic and static. Static analyzers examine programs with respect to syntax errors and structural properties., This includes gathering statistical information on program content, such as the number of lines of executable code, source lines. and cyclomatic complexity. In addition, static analyzers provide the ability to check for the consistency of programs with respect to variables. Dynamic analyzers in contrast are dependent on input and the execution of a program providing the ability to find errors that cannot be detected through the use of static analysis alone. Dynamic analysis provides information on the behavior of a program rather than on the syntax. Both types of analysis detect errors in a program, but dynamic analyzers accomplish this through run-time behavior. This paper focuses on the following broad classification of dynamic analyzers: 1) Metrics; 2) Models; and 3) Monitors. Metrics are those analyzers that provide measurement. The next category, models, captures those analyzers that present the state of the program to the user at specified points in time. The last category, monitors, checks specified code based on some criteria. The paper discusses each classification and the techniques that are included under them. In addition, the role of each technique in the software life cycle is discussed. Familiarization with the tools that measure, model and monitor programs provides a framework for understanding the program's dynamic behavior from different, perspectives through analysis of the input

  12. Numerical methods for analyzing electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Lo, Y. T.; Chuang, S. L.; Lee, C. S.

    1985-01-01

    Numerical methods to analyze electromagnetic scattering are presented. The dispersions and attenuations of the normal modes in a circular waveguide coated with lossy material were completely analyzed. The radar cross section (RCS) from a circular waveguide coated with lossy material was calculated. The following is observed: (1) the interior irradiation contributes to the RCS much more than does the rim diffraction; (2) at low frequency, the RCS from the circular waveguide terminated by a perfect electric conductor (PEC) can be reduced more than 13 dB down with a coating thickness less than 1% of the radius using the best lossy material available in a 6 radius-long cylinder; (3) at high frequency, a modal separation between the highly attenuated and the lowly attenuated modes is evident if the coating material is too lossy, however, a large RCS reduction can be achieved for a small incident angle with a thin layer of coating. It is found that the waveguide coated with a lossy magnetic material can be used as a substitute for a corrugated waveguide to produce a circularly polarized radiation yield.

  13. Digital signal processing in the radio science stability analyzer

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1995-01-01

    The Telecommunications Division has built a stability analyzer for testing Deep Space Network installations during flight radio science experiments. The low-frequency part of the analyzer operates by digitizing wave signals with bandwidths between 80 Hz and 45 kHz. Processed outputs include spectra of signal, phase, amplitude, and differential phase; time series of the same quantities; and Allan deviation of phase and differential phase. This article documents the digital signal-processing methods programmed into the analyzer.

  14. On-Demand Urine Analyzer

    NASA Technical Reports Server (NTRS)

    Farquharson, Stuart; Inscore, Frank; Shende, Chetan

    2010-01-01

    A lab-on-a-chip was developed that is capable of extracting biochemical indicators from urine samples and generating their surface-enhanced Raman spectra (SERS) so that the indicators can be quantified and identified. The development was motivated by the need to monitor and assess the effects of extended weightlessness, which include space motion sickness and loss of bone and muscle mass. The results may lead to developments of effective exercise programs and drug regimes that would maintain astronaut health. The analyzer containing the lab-on-a- chip includes materials to extract 3- methylhistidine (a muscle-loss indicator) and Risedronate (a bone-loss indicator) from the urine sample and detect them at the required concentrations using a Raman analyzer. The lab-on- a-chip has both an extractive material and a SERS-active material. The analyzer could be used to monitor the onset of diseases, such as osteoporosis.

  15. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  16. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, Norman E.

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  17. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  18. FORTRAN Static Source Code Analyzer

    NASA Technical Reports Server (NTRS)

    Merwarth, P.

    1984-01-01

    FORTRAN Static Source Code Analyzer program, SAP (DEC VAX version), automatically gathers statistics on occurrences of statements and structures within FORTRAN program and provides reports of those statistics. Provisions made for weighting each statistic and provide an overall figure of complexity.

  19. FORTRAN Static Source Code Analyzer

    NASA Technical Reports Server (NTRS)

    Merwarth, P.

    1982-01-01

    FORTRAN Static Source Code Analyzer program (SAP) automatically gathers and reports statistics on occurrences of statements and structures within FORTRAN program. Provisions are made for weighting each statistic, providing user with overall figure of complexity. Statistics, as well as figures of complexity, are gathered on module-by-module basis. Overall summed statistics are accumulated for complete input source file.

  20. Pollution Analyzing and Monitoring Instruments.

    ERIC Educational Resources Information Center

    1972

    Compiled in this book is basic, technical information useful in a systems approach to pollution control. Descriptions and specifications are given of what is available in ready made, on-the-line commercial equipment for sampling, monitoring, measuring and continuously analyzing the multitudinous types of pollutants found in the air, water, soil,…

  1. Therapy Talk: Analyzing Therapeutic Discourse

    ERIC Educational Resources Information Center

    Leahy, Margaret M.

    2004-01-01

    Therapeutic discourse is the talk-in-interaction that represents the social practice between clinician and client. This article invites speech-language pathologists to apply their knowledge of language to analyzing therapy talk and to learn how talking practices shape clinical roles and identities. A range of qualitative research approaches,…

  2. Software-Design-Analyzer System

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1991-01-01

    CRISP-90 software-design-analyzer system, update of CRISP-80, is set of computer programs constituting software tool for design and documentation of other software and supporting top-down, hierarchical, modular, structured methodologies for design and programming. Written in Microsoft QuickBasic.

  3. Strategies for Analyzing Tone Languages

    ERIC Educational Resources Information Center

    Coupe, Alexander R.

    2014-01-01

    This paper outlines a method of auditory and acoustic analysis for determining the tonemes of a language starting from scratch, drawing on the author's experience of recording and analyzing tone languages of north-east India. The methodology is applied to a preliminary analysis of tone in the Thang dialect of Khiamniungan, a virtually undocumented…

  4. Microcomputer to Multichannel Analyzer Interface.

    ERIC Educational Resources Information Center

    Metz, Roger N.

    1982-01-01

    Describes a microcomputer-based multichannel analyzer (MCA) in which the front end is connected to a microcomputer through a custom interface. Thus an MCA System of 1024 channel resolution, programmable in Basic rather than in machine language and having moderate cost, is achieved. (Author/SK)

  5. Helping Students Analyze Business Documents.

    ERIC Educational Resources Information Center

    Devet, Bonnie

    2001-01-01

    Notes that student writers gain greater insight into the importance of audience by analyzing business documents. Discusses how business writing teachers can help students understand the rhetorical refinements of writing to an audience. Presents an assignment designed to lead writers systematically through an analysis of two advertisements. (SG)

  6. Analyzing Software Piracy in Education.

    ERIC Educational Resources Information Center

    Lesisko, Lee James

    This study analyzes the controversy of software piracy in education. It begins with a real world scenario that presents the setting and context of the problem. The legalities and background of software piracy are explained and true court cases are briefly examined. Discussion then focuses on explaining why individuals and organizations pirate…

  7. Frequency of orthodontic extraction

    PubMed Central

    Dardengo, Camila de S.; Fernandes, Luciana Q. P.; Capelli, Jonas

    2016-01-01

    Introduction: The option of dental extraction for orthodontic purposes has been debated for more than 100 years, including periods when it was widely used in treatment, including the present, during which other methods are used to avoid dental extractions. The objective was to analyze the frequency of tooth extraction treatment performed between 1980 and 2011 at the Orthodontic Clinic of Universidade Estadual do Rio de Janeiro (UERJ). Material and Methods: The clinical records of 1484 patients undergoing orthodontic treatment were evaluated. The frequency of extractions was evaluated with regard to sex, Angle's classification, the different combinations of extractions and the period when orthodontic treatment began. Chi-square test was used to determine correlations between variables, while the chi-square test for trends was used to assess the frequency of extractions over the years. Results: There was a reduction of approximately 20% in the frequency of cases treated with tooth extraction over the last 32 years. The most frequently extracted teeth were first premolars. Patients with Class I malocclusion showed fewer extractions, while Class II patients underwent a higher number of extraction treatment. There were no statistically significant differences with regard to sex. Conclusion: New features introduced into the orthodontic clinic and new esthetic concepts contributed to reducing the number of cases treated with dental extractions. However, dental extractions for orthodontic purposes are still well indicated in certain cases. PMID:27007762

  8. A technique for noise measurement optimization with spectrum analyzers

    NASA Astrophysics Data System (ADS)

    Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.

    2015-08-01

    Measuring low noise of electronic devices with a spectrum analyzer requires particular care as the instrument could add significant contributions. A Low Noise Amplifier, LNA, is therefore necessary to be connected between the source to be measured and the instrument, to mitigate its effect at the LNA input. In the present work we suggest a technique for the implementation of the LNA that allows to optimize both low frequency noise and white noise, obtaining outstanding performance in a very broad frequency range.

  9. HITCAN: High temperature composite analyzer

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Lackney, Joseph J.; Chamis, Christos C.; Murthy, Pappu L. N.

    1990-01-01

    A computer code, HITCAN (High Temperature Composite Analyzer) was developed to analyze/design metal matrix composite structures. HITCAN is based on composite mechanics theories and computer codes developed at NASA LeRC over the last two decades. HITCAN is a general purpose code for predicting the global structural and local stress-strain response of multilayered (arbitrarily oriented) metal matrix structures both at the constituent (fiber, matrix, and interphase) and the structure level and including the fabrication process effects. The thermomechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress, and stress rate. The computational procedure employs an incremental iterative nonlinear approach utilizing a multifactor-interaction material behavior model. HITCAN features and analysis capabilities (static, load stepping, modal, and buckling) are demonstrated through typical example problems.

  10. DEEP WATER ISOTOPIC CURRENT ANALYZER

    DOEpatents

    Johnston, W.H.

    1964-04-21

    A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

  11. Source-Code-Analyzing Program

    NASA Technical Reports Server (NTRS)

    Manteufel, Thomas; Jun, Linda

    1991-01-01

    FORTRAN Static Source Code Analyzer program, SAP, developed to gather statistics automatically on occurrences of statements and structures within FORTRAN program and provide for reporting of those statistics. Provisions made to weight each statistic and provide overall figure of complexity. Statistics, as well as figures of complexity, gathered on module-by-module basis. Overall summed statistics also accumulated for complete input source file. Written in FORTRAN IV.

  12. Remote Laser Diffraction PSD Analyzer

    SciTech Connect

    T. A. Batcheller; G. M. Huestis; S. M. Bolton

    2000-06-01

    Particle size distribution (PSD) analysis of radioactive slurry samples were obtained using a modified off-the-shelf classical laser light scattering particle size analyzer. A Horiba Instruments Inc. Model La-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a hot cell (gamma radiation) environment. The general details of the modifications to this analyzer are presented in this paper. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not achievable - making this technology far superior than the traditional methods used previously. Remote deployment and utilization of this technology is in an exploratory stage. The risk of malfunction in this radiation environment is countered by gaining of this tremendously useful fundamental engineering data. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  13. Remote Laser Diffraction PSD Analyzer

    SciTech Connect

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2000-06-01

    Particle size distribution (PSD) analysis of radioactive slurry samples were obtained using a modified "off-the-shelf" classical laser light scattering particle size analyzer. A Horiba Instruments Inc. Model La-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a "hot cell" (gamma radiation) environment. The general details of the modifications to this analyzer are presented in this paper. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not achievable - making this technology far superior than the traditional methods used previously. Remote deployment and utilization of this technology is in an exploratory stage. The risk of malfunction in this radiation environment is countered by gaining of this tremendously useful fundamental engineering data. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  14. Infrared analyzers for process measurements

    NASA Astrophysics Data System (ADS)

    Hyvarinen, Timo S.; Lammasniemi, Jorma; Malinen, Jouko; Niemela, Pentti; Tenhunen, Jussi

    1993-01-01

    Optical analysis techniques, infrared spectroscopy in the front end, are rapidly achieving new applications in process control. This progress is accelerated by the development of more rugged instrument constructions. This paper describes two analyzer techniques especially developed for use in demanding environments. First, the integrated multichannel detector techniques is suitable for applications where the measurement can be accomplished by using 2 to 4 wavelengths. This technique has been used to construct several compact, portable and battery-operated IR analyzers, and process analyzers which measure exactly simultaneously at each wavelength resulting in very high tolerance against rapid changes and flow of the process stream. Secondly, a miniaturized Fourier transform infrared (FTIR) spectrometer is being developed for use as an OEM module in specific process and laboratory instruments. Special attention has been paid to increase the resistance of FTIR technique to ambient vibrations. The module contains an integrated digital signal processing electronics for intelligent control of the spectrometer and for fast real time spectral data treatment. Application studies include on line measurement of the concentrations of diluted and colloidal organic detrimental substances, especially pitch components, in the circulating waters in paper machine wet end.

  15. Analyzing ion distributions around DNA.

    PubMed

    Lavery, Richard; Maddocks, John H; Pasi, Marco; Zakrzewska, Krystyna

    2014-07-01

    We present a new method for analyzing ion, or molecule, distributions around helical nucleic acids and illustrate the approach by analyzing data derived from molecular dynamics simulations. The analysis is based on the use of curvilinear helicoidal coordinates and leads to highly localized ion densities compared to those obtained by simply superposing molecular dynamics snapshots in Cartesian space. The results identify highly populated and sequence-dependent regions where ions strongly interact with the nucleic and are coupled to its conformational fluctuations. The data from this approach is presented as ion populations or ion densities (in units of molarity) and can be analyzed in radial, angular and longitudinal coordinates using 1D or 2D graphics. It is also possible to regenerate 3D densities in Cartesian space. This approach makes it easy to understand and compare ion distributions and also allows the calculation of average ion populations in any desired zone surrounding a nucleic acid without requiring references to its constituent atoms. The method is illustrated using microsecond molecular dynamics simulations for two different DNA oligomers in the presence of 0.15 M potassium chloride. We discuss the results in terms of convergence, sequence-specific ion binding and coupling with DNA conformation. PMID:24906882

  16. Identification of site frequencies from building records

    USGS Publications Warehouse

    Celebi, M.

    2003-01-01

    A simple procedure to identify site frequencies using earthquake response records from roofs and basements of buildings is presented. For this purpose, data from five different buildings are analyzed using only spectral analyses techniques. Additional data such as free-field records in close proximity to the buildings and site characterization data are also used to estimate site frequencies and thereby to provide convincing evidence and confirmation of the site frequencies inferred from the building records. Furthermore, simple code-formula is used to calculate site frequencies and compare them with the identified site frequencies from records. Results show that the simple procedure is effective in identification of site frequencies and provides relatively reliable estimates of site frequencies when compared with other methods. Therefore the simple procedure for estimating site frequencies using earthquake records can be useful in adding to the database of site frequencies. Such databases can be used to better estimate site frequencies of those sites with similar geological structures.

  17. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach

    PubMed Central

    Cheung, Mike W.-L.; Jak, Suzanne

    2016-01-01

    Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists—and probably the most crucial one—is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study. PMID:27242639

  18. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach.

    PubMed

    Cheung, Mike W-L; Jak, Suzanne

    2016-01-01

    Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists-and probably the most crucial one-is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study. PMID:27242639

  19. Rotating field mass and velocity analyzer

    NASA Technical Reports Server (NTRS)

    Smith, Steven Joel (Inventor); Chutjian, Ara (Inventor)

    1998-01-01

    A rotating field mass and velocity analyzer having a cell with four walls, time dependent RF potentials that are applied to each wall, and a detector. The time dependent RF potentials create an RF field in the cell which effectively rotates within the cell. An ion beam is accelerated into the cell and the rotating RF field disperses the incident ion beam according to the mass-to-charge (m/e) ratio and velocity distribution present in the ion beam. The ions of the beam either collide with the ion detector or deflect away from the ion detector, depending on the m/e, RF amplitude, and RF frequency. The detector counts the incident ions to determine the m/e and velocity distribution in the ion beam.

  20. Frequency synthesizers for telemetry receivers

    NASA Astrophysics Data System (ADS)

    Stirling, Ronald C.

    1990-07-01

    The design of a frequency synthesizer is presented for telemetry receivers. The synthesizer contains two phase-locked loops, each with a programmable frequency counter, and incorporates fractional frequency synthesis but does not use a phase accumulator. The selected receiver design has a variable reference loop operating as a part of the output loop. Within the synthesizer, a single VTO generates the output frequency that is voltage-tunable from 375-656 MHz. The single-sideband phase noise is measured with an HP 8566B spectrum analyzer, and the receiver's bit error rate (BER) is measured with a carrier frequency of 250 MHz, synthesized LO at 410 MHz, and the conditions of BPSK, NRZ-L, and 2.3 kHz bit rate. The phase noise measurement limits and the BER performance data are presented in tabular form.

  1. The Aqueduct Global Flood Analyzer

    NASA Astrophysics Data System (ADS)

    Iceland, Charles

    2015-04-01

    As population growth and economic growth take place, and as climate change accelerates, many regions across the globe are finding themselves increasingly vulnerable to flooding. A recent OECD study of the exposure of the world's large port cities to coastal flooding found that 40 million people were exposed to a 1 in 100 year coastal flood event in 2005, and the total value of exposed assets was about US 3,000 billion, or 5% of global GDP. By the 2070s, those numbers were estimated to increase to 150 million people and US 35,000 billion, or roughly 9% of projected global GDP. Impoverished people in developing countries are particularly at risk because they often live in flood-prone areas and lack the resources to respond. WRI and its Dutch partners - Deltares, IVM-VU University Amsterdam, Utrecht University, and PBL Netherlands Environmental Assessment Agency - are in the initial stages of developing a robust set of river flood and coastal storm surge risk measures that show the extent of flooding under a variety of scenarios (both current and future), together with the projected human and economic impacts of these flood scenarios. These flood risk data and information will be accessible via an online, easy-to-use Aqueduct Global Flood Analyzer. We will also investigate the viability, benefits, and costs of a wide array of flood risk reduction measures that could be implemented in a variety of geographic and socio-economic settings. Together, the activities we propose have the potential for saving hundreds of thousands of lives and strengthening the resiliency and security of many millions more, especially those who are most vulnerable. Mr. Iceland will present Version 1.0 of the Aqueduct Global Flood Analyzer and provide a preview of additional elements of the Analyzer to be released in the coming years.

  2. The OpenSHMEM Analyzer

    SciTech Connect

    Hernandez, Oscar

    2014-07-30

    The OpenSHMEM Analyzer is a compiler-based tool that can help users detect errors and provide useful analyses about their OpenSHMEM applications. The tool is built on top of the OpenUH compiler (a branch of Open64 compiler) and presents OpenSHMEM information as feedback to the user. Some of the analyses it provides include checks for correct usage of symmetric variables in OpenSHMEM calls, out-of-bounds checks for symmetric data, checks for the correct initialization of pointers to symmetric data, and symmetric data alias information.

  3. Method for analyzing microbial communities

    DOEpatents

    Zhou, Jizhong [Oak Ridge, TN; Wu, Liyou [Oak Ridge, TN

    2010-07-20

    The present invention provides a method for quantitatively analyzing microbial genes, species, or strains in a sample that contains at least two species or strains of microorganisms. The method involves using an isothermal DNA polymerase to randomly and representatively amplify genomic DNA of the microorganisms in the sample, hybridizing the resultant polynucleotide amplification product to a polynucleotide microarray that can differentiate different genes, species, or strains of microorganisms of interest, and measuring hybridization signals on the microarray to quantify the genes, species, or strains of interest.

  4. The OpenSHMEM Analyzer

    Energy Science and Technology Software Center (ESTSC)

    2014-07-30

    The OpenSHMEM Analyzer is a compiler-based tool that can help users detect errors and provide useful analyses about their OpenSHMEM applications. The tool is built on top of the OpenUH compiler (a branch of Open64 compiler) and presents OpenSHMEM information as feedback to the user. Some of the analyses it provides include checks for correct usage of symmetric variables in OpenSHMEM calls, out-of-bounds checks for symmetric data, checks for the correct initialization of pointers tomore » symmetric data, and symmetric data alias information.« less

  5. Trace Gas Analyzer (TGA) program

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design, fabrication, and test of a breadboard trace gas analyzer (TGA) is documented. The TGA is a gas chromatograph/mass spectrometer system. The gas chromatograph subsystem employs a recirculating hydrogen carrier gas. The recirculation feature minimizes the requirement for transport and storage of large volumes of carrier gas during a mission. The silver-palladium hydrogen separator which permits the removal of the carrier gas and its reuse also decreases vacuum requirements for the mass spectrometer since the mass spectrometer vacuum system need handle only the very low sample pressure, not sample plus carrier. System performance was evaluated with a representative group of compounds.

  6. Charged particle mobility refrigerant analyzer

    DOEpatents

    Allman, Steve L.; Chen, Chung-Hsuan; Chen, Fang C.

    1993-01-01

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  7. Charged particle mobility refrigerant analyzer

    DOEpatents

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  8. Composite-Blade Structural Analyzer

    NASA Technical Reports Server (NTRS)

    Aiello, R. A.; Chamis, C. C.

    1992-01-01

    COBSTRAN (COmposite Blade STRuctural ANalyzer) computer program is preprocessor and postprocessor facilitating design and analysis of composite turbofan and turboprop blades, and of composite wind-turbine blades. Combines theories of mechanics of composites and of laminates with data base of fiber and matrix properties. Designed to carry out linear analyses required for efficient mathematical modeling and analysis of bladelike structural components made of multilayered angle-plied fiber composites. Components made from isotropic or anisotropic homogeneous materials also modeled. Written in FORTRAN 77.

  9. Metabolic analyzer. [for Skylab mission

    NASA Technical Reports Server (NTRS)

    Perry, C. L.

    1973-01-01

    An apparatus is described for the measurement of metabolic rate and breathing dynamics in which inhaled and exhaled breath are sensed by sealed, piston-displacement type spirometers. These spirometers electrically measure the volume of inhaled and exhaled breath. A mass spectrometer analyzes simultaneously for oxygen, carbon dioxide, nitrogen, and water vapor. Circuits responsive to the outputs of the spirometers, mass spectrometer, temperature, pressure, and timing signals compute oxygen consumption, carbon dioxide production, minute volume, and respiratory exchange ratio. A selective indicator provides for readout of these data at predetermined cyclic intervals.

  10. Multi-frequency communication system and method

    DOEpatents

    Carrender, Curtis Lee; Gilbert, Ronald W.

    2004-06-01

    A multi-frequency RFID remote communication system is provided that includes a plurality of RFID tags configured to receive a first signal and to return a second signal, the second signal having a first frequency component and a second frequency component, the second frequency component including data unique to each remote RFID tag. The system further includes a reader configured to transmit an interrogation signal and to receive remote signals from the tags. A first signal processor, preferably a mixer, removes an intermediate frequency component from the received signal, and a second processor, preferably a second mixer, analyzes the IF frequency component to output data that is unique to each remote tag.

  11. COBSTRAN - COMPOSITE BLADE STRUCTURAL ANALYZER

    NASA Technical Reports Server (NTRS)

    Aiello, R. A.

    1994-01-01

    The COBSTRAN (COmposite Blade STRuctural ANalyzer) program is a pre- and post-processor that facilitates the design and analysis of composite turbofan and turboprop blades, as well as composite wind turbine blades. COBSTRAN combines composite mechanics and laminate theory with a data base of fiber and matrix properties. As a preprocessor for NASTRAN or another Finite Element Method (FEM) program, COBSTRAN generates an FEM model with anisotropic homogeneous material properties. Stress output from the FEM program is provided as input to the COBSTRAN postprocessor. The postprocessor then uses the composite mechanics and laminate theory routines to calculate individual ply stresses, strains, interply stresses, thru-the-thickness stresses and failure margins. COBSTRAN is designed to carry out the many linear analyses required to efficiently model and analyze blade-like structural components made of multilayered angle-plied fiber composites. Components made from isotropic or anisotropic homogeneous materials can also be modeled as a special case of COBSTRAN. NASTRAN MAT1 or MAT2 material cards are generated according to user supplied properties. COBSTRAN is written in FORTRAN 77 and was implemented on a CRAY X-MP with a UNICOS 5.0.12 operating system. The program requires either COSMIC NASTRAN or MSC NASTRAN as a structural analysis package. COBSTRAN was developed in 1989, and has a memory requirement of 262,066 64 bit words.

  12. Managing healthcare information: analyzing trust.

    PubMed

    Söderström, Eva; Eriksson, Nomie; Åhlfeldt, Rose-Mharie

    2016-08-01

    Purpose - The purpose of this paper is to analyze two case studies with a trust matrix tool, to identify trust issues related to electronic health records. Design/methodology/approach - A qualitative research approach is applied using two case studies. The data analysis of these studies generated a problem list, which was mapped to a trust matrix. Findings - Results demonstrate flaws in current practices and point to achieving balance between organizational, person and technology trust perspectives. The analysis revealed three challenge areas, to: achieve higher trust in patient-focussed healthcare; improve communication between patients and healthcare professionals; and establish clear terminology. By taking trust into account, a more holistic perspective on healthcare can be achieved, where trust can be obtained and optimized. Research limitations/implications - A trust matrix is tested and shown to identify trust problems on different levels and relating to trusting beliefs. Future research should elaborate and more fully address issues within three identified challenge areas. Practical implications - The trust matrix's usefulness as a tool for organizations to analyze trust problems and issues is demonstrated. Originality/value - Healthcare trust issues are captured to a greater extent and from previously unchartered perspectives. PMID:27477934

  13. Network analyzer for nonstatic jamming

    NASA Astrophysics Data System (ADS)

    Cheng, Unjeng

    1989-06-01

    The survivability of a packet radio network (PRNET) under jamming attack is an important issue. The goal of this research is to develop the analytical methods for understanding as well as predicting the behavior of PRNETs under various jamming conditions. Jamming can be stationary or nonstationary. For the stationary jamming, the jamming strategy is fixed, but it can be described stochastically. For instance, we may say that a node is jammed with probability 0.5 in each slot. Therefore, although the jamming strategy is fixed, the actual jamming pattern changes from slot to slot. A subclass of the stationary jamming is the static jamming, where the jamming pattern is fixed. For the nonstationary jamming, the jamming strategy changes from time to time. A subclass of the nonstationary jamming is the nonstatic jamming, where a fixed jamming pattern is applied in each block of time, but the jamming pattern changes from block to block. We analyzed the behavior of PRNETs under static jamming attack in our previous report. In this report, we introduce a method of analyzing the PRNET behavior under the nonstatic jamming attack. The analytical results for the static jamming attack scenario were presented in our previous report for both the transmitter-based code and the receiver-based code networks. The numerical results were given only for the receiver-based code case. Simulations were performed to verify the accuracy of the analytical approach.

  14. Some easily analyzable convolutional codes

    NASA Technical Reports Server (NTRS)

    Mceliece, R.; Dolinar, S.; Pollara, F.; Vantilborg, H.

    1989-01-01

    Convolutional codes have played and will play a key role in the downlink telemetry systems on many NASA deep-space probes, including Voyager, Magellan, and Galileo. One of the chief difficulties associated with the use of convolutional codes, however, is the notorious difficulty of analyzing them. Given a convolutional code as specified, say, by its generator polynomials, it is no easy matter to say how well that code will perform on a given noisy channel. The usual first step in such an analysis is to computer the code's free distance; this can be done with an algorithm whose complexity is exponential in the code's constraint length. The second step is often to calculate the transfer function in one, two, or three variables, or at least a few terms in its power series expansion. This step is quite hard, and for many codes of relatively short constraint lengths, it can be intractable. However, a large class of convolutional codes were discovered for which the free distance can be computed by inspection, and for which there is a closed-form expression for the three-variable transfer function. Although for large constraint lengths, these codes have relatively low rates, they are nevertheless interesting and potentially useful. Furthermore, the ideas developed here to analyze these specialized codes may well extend to a much larger class.

  15. DARHT-II Energy Analyzer

    SciTech Connect

    Paul, A C; Hawkins, S; McCarrick, J; Sullivan, J; Watson, J; Westenskow, G; Eylon, S; Fessenden, T J; Nexsen, W

    2003-05-06

    An energy analyzer system is being built for the DARHT-II accelerator similar to the energy analyzer used on the Astron accelerator. This system consists of a scattering wire, magnetic bend, and null signal detector. The wire thickness of 40 mil carbon and the scattering angle of 11 degrees is chosen for good signal to noise ratio. The dipole bend angle is 60 degrees, with a 30 cm radius of curvature. The image-plane focal distance is chosen for the required energy resolution. The energy resolution and acceptance are 0.1% and {+-}5% with a time response of 10 nsec. The wire must survive the 2{micro}sec 2kA, 18.4 MeV DARHT-II beam. The MCNP code was used to study the wire scattered properties. The scattered beam fills the available 1x2 cm dipole aperture. The dispersion normal to the beam direction is 0.43 cm%. The detector is a PIN diode array which determines the beam position on the chip. This array consists of 40 2.5x0.1x0.25 mm bins with a gain in excess of 10000. The system will be installed in the space between the debris blocker and the cruncher solenoid up-stream from the shuttle dump.

  16. Predicting and Analyzing Cellular Networks

    NASA Astrophysics Data System (ADS)

    Singh, Mona

    High-throughput experimental technologies, along with computational predictions, have resulted in large-scale biological networks for numerous organisms. Global analyses of biological networks provide new opportunities for revealing protein functions and pathways, and for uncovering cellular organization principles. In my talk, I will discuss a number of approaches we have developed over the years for the complementary problems of predicting interactions and analyzing interaction networks. First, I will describe a genomic approach for uncovering high-confidence regulatory interactions, and show how it can be effectively combined with a framework for predicting regulatory interactions for proteins with known structural domains but unknown binding specificity. Next, I will describe algorithms for analyzing protein interaction networks in order to uncover protein function and functional modules, and demonstrate the importance of considering the topological structure of interaction networks in order to make high quality predictions. Finally, I will present a framework for explicitly incorporating known attributes of individual proteins into the analysis of biological networks, and utilize it to discover recurring network patterns underlying a range of biological processes.

  17. A wide-band high-resolution spectrum analyzer.

    PubMed

    Quirk, M P; Garyantes, M F; Wilck, H C; Grimm, M J

    1988-12-01

    This paper describes a two-million-channel 40-MHz-bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2(21)-point, Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis and detection. PMID:11542136

  18. A wide-band, high-resolution spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Wilck, H. C.; Quirk, M. P.; Grimm, M. J.

    1985-01-01

    A million-channel, 20 MHz-bandwidth, digital spectrum analyzer under evelopment for use in the SETI Sky Survey and other applications in the Deep Space Network is described. The analyzer digitizes an analog input, performs a 2(20)-point Radix-2, Fast Fourier Transform, accumulates the output power, and normalizes the output to remove frequency-dependent gain. The effective speed of the real-time hardware is 2.2 GigaFLOPS.

  19. Real-Time, Polyphase-FFT, 640-MHz Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Zimmerman, George A.; Garyantes, Michael F.; Grimm, Michael J.; Charny, Bentsian; Brown, Randy D.; Wilck, Helmut C.

    1994-01-01

    Real-time polyphase-fast-Fourier-transform, polyphase-FFT, spectrum analyzer designed to aid in detection of multigigahertz radio signals in two 320-MHz-wide polarization channels. Spectrum analyzer divides total spectrum of 640 MHz into 33,554,432 frequency channels of about 20 Hz each. Size and cost of polyphase-coefficient memory substantially reduced and much of processing loss of windowed FFTs eliminated.

  20. Coaxial charged particle energy analyzer

    NASA Technical Reports Server (NTRS)

    Kelly, Michael A. (Inventor); Bryson, III, Charles E. (Inventor); Wu, Warren (Inventor)

    2011-01-01

    A non-dispersive electrostatic energy analyzer for electrons and other charged particles having a generally coaxial structure of a sequentially arranged sections of an electrostatic lens to focus the beam through an iris and preferably including an ellipsoidally shaped input grid for collimating a wide acceptance beam from a charged-particle source, an electrostatic high-pass filter including a planar exit grid, and an electrostatic low-pass filter. The low-pass filter is configured to reflect low-energy particles back towards a charged particle detector located within the low-pass filter. Each section comprises multiple tubular or conical electrodes arranged about the central axis. The voltages on the lens are scanned to place a selected energy band of the accepted beam at a selected energy at the iris. Voltages on the high-pass and low-pass filters remain substantially fixed during the scan.

  1. Compact Microwave Fourier Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  2. Space Shuttle Trace Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Dencker, W.

    1975-01-01

    A Trace Gas Analyzer (TGA) with the ability to detect the presence of toxic contaminants in the Space Shuttle atmosphere within the subparts-per-million range is under development. The design is a modification of the miniaturized Gas Chromatograph-Mass Spectrometer (GCMS) developed for the Viking Mars Lander. An ambient air sample is injected onto the GC column from a constant volume sample loop and separated into individual compounds for identification by the MS. The GC-MS interface consists of an effluent divider and a silver-paladium separator, an electrochemical cell which removes more than 99.99% of the hydrogen carrier gas. The hydrogen is reclaimed and repressurized without affecting the separator efficiency, a feature which enables a considerable weight reduction in the carrier gas supply system.

  3. Drought Frequency Index

    NASA Astrophysics Data System (ADS)

    Gonzalez, J.; Valdes, J. B.

    2003-04-01

    Droughts are related with prolonged time periods during moisture is significantly below normal situation. Drought indexes try to scale the main drought features based on similar definitions. The Standard Precipitation Index (SPI) is a well-known index, which for a given aggregation-time measures the deviation from the normality of the precipitation. One of the SPI weak points in the representation of drought phenomenon is that drought duration should be analyzed by using different aggregation-times. In this work, a new index is presented, which simultaneously characterize droughts based on the deviation from the normal precipitation regime and the drought persistence, both from the statistical point of view. The new index does not require aggregation at different time-lengths. Instead droughts are treated as multivariate events, whose dimensionality depends on the duration. Probabilistic events with different dimensionalities are compared on a common dimension of interest. In this case the dimension chosen is the mean frequency of recurrence. The derived index, named Drought Frequency Index (DFI) may be used to characterize historical droughts or current situation. It can be apply not only over precipitation but also over flows or other hydroclimatic variables. The new index was applied to several places in USA and Spain both for precipitation and flow historical sequences, and compared with SPI. The DFI allows the representation of the main drought characteristics in a single value, based on the stochastic feature of the phenomenon, and scaled on the mean frequency of recurrence.

  4. A multichannel dual-mixer stability analyzer: progress report

    NASA Technical Reports Server (NTRS)

    Stevens, C. A.; Kirk, A.; Stevens, G. L.

    2001-01-01

    A stability analyzer is being developed for frequency standards in JPL's Deep Space Network. Prototype hardware and software have been built. Initial tests on 100-MHz sources show an Allan deviation noise floor of about 7 X 10(sup -15) at 1 second for a dual-mixer channel.

  5. Preparing and Analyzing Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.; Burke, Kevin M.; Nolan, Gerald J.; Brown, Dennis

    2004-01-01

    SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.

  6. Radiation energy detector and analyzer

    SciTech Connect

    Roberts, T.G.

    1981-09-15

    A radiation detector array and a method for measuring the spectral content of radiation. The radiation sensor or detector is an array or stack of thin solid-electrolyte batteries. The batteries, arranged in a stack, may be composed of independent battery cells or may be arranged so that adjacent cells share a common terminal surface. This common surface is possible since the polarity of the batteries with respect to an adjacent battery is unrestricted, allowing a reduction in component parts of the assembly and reducing the overall stack length. Additionally, a test jig or chamber for allowing rapid measurement of the voltage across each battery is disclosed. A multichannel recorder and display may be used to indicate the voltage gradient change across the cells, or a small computer may be used for rapidly converting these voltage readings to a graph of radiation intensity versus wavelength or energy. The behavior of the batteries when used as a radiation detector and analyzer are such that the voltage measurements can be made at leisure after the detector array has been exposed to the radiation, and it is not necessary to make rapid measurements as is now done.

  7. Thomson parabola ion energy analyzer

    SciTech Connect

    Cobble, James A; Flippo, Kirk A; Letzring, Samuel A; Lopez, Frank E; Offermann, Dustin T; Oertel, John A; Mastrosimone, Dino

    2010-01-01

    A new, versatile Thomson parabola ion energy (TPIE) analyzer has been designed and constructed for use at the OMEGA-EP facility. Multi-MeV ions from EP targets are transmitted through a W pinhole into a (5- or 8-kG) magnetic field and subsequently through a parallel electric field of up to 30 kV/cm. The ion drift region may have a user-selected length of 10, 50, or 80 cm. With the highest fields, 500-Me V C{sup 6+} and C{sup 5+} may be resolved. TPIE is TIM-mounted at OMEGA-EP and is qualified in all existing TIMs. The instrument runs on pressure-interlocked 15-VDC power available in EP TIM carts. It may be inserted to within several inches of the target to attain sufficient flux for a measurement. For additional flux control, the user may select a square-aperture W pinhole of 0.004-inch or 0.010-inch. The detector consists of CR-39 backed by an image plate. The fully relativistic design code and design features are discussed. Ion spectral results from first use at OMEGA-EP are expected.

  8. Analyzing and modeling heterogeneous behavior

    NASA Astrophysics Data System (ADS)

    Lin, Zhiting; Wu, Xiaoqing; He, Dongyue; Zhu, Qiang; Ni, Jixiang

    2016-05-01

    Recently, it was pointed out that the non-Poisson statistics with heavy tail existed in many scenarios of human behaviors. But most of these studies claimed that power-law characterized diverse aspects of human mobility patterns. In this paper, we suggest that human behavior may not be driven by identical mechanisms and can be modeled as a Semi-Markov Modulated Process. To verify our suggestion and model, we analyzed a total of 1,619,934 records of library visitations (including undergraduate and graduate students). It is found that the distribution of visitation intervals is well fitted with three sections of lines instead of the traditional power law distribution in log-log scale. The results confirm that some human behaviors cannot be simply expressed as power law or any other simple functions. At the same time, we divided the data into groups and extracted period bursty events. Through careful analysis in different groups, we drew a conclusion that aggregate behavior might be composed of heterogeneous behaviors, and even the behaviors of the same type tended to be different in different period. The aggregate behavior is supposed to be formed by "heterogeneous groups". We performed a series of experiments. Simulation results showed that we just needed to set up two states Semi-Markov Modulated Process to construct proper representation of heterogeneous behavior.

  9. Analyze and test violin's tonal quality from holographic pattern

    NASA Astrophysics Data System (ADS)

    Zhu, Hengsheng

    1994-05-01

    The frequency response curve--laser holographic method which studies the tonal quality of violin's and musical instruments. The method is based on macro measure of frequency response curve and full used sensitivity of laser holograph on weak vibration. We have analyzed violins of different tonal quality and have summarized fine violin's holographic mode. A new measuring method on tonal quality of musical instruments is being developed. We take the microscopic holograms of a violin when it is being vibrated (time--average method), and also with the frequency response curve, to analyze and measure a violin's vibration, to calculate the amplitude of the top and back plate of a violin, to find out the plate of a violin's plate where is should be repaired and micro quantity (micrometer), to change the interval of a violin's box (top and back plate) to improve the violin's tonal quality, to explore the quantitative rules of a whole violin's fine quality.

  10. The diffraction limit of an optical spectrum analyzer

    NASA Astrophysics Data System (ADS)

    Kolobrodov, V. G.; Tymchik, G. S.; Kolobrodov, M. S.

    2015-11-01

    This article examines a systematic error that occurs in optical spectrum analyzers and is caused by Fresnel approximation. The aim of the article is to determine acceptable errors of spatial frequency measurement in signal spectrum. The systematic error of spatial frequency measurement has been investigated on the basis of a physical and mathematical model of a coherent spectrum analyzer. It occurs as a result of the transition from light propagation in free space to Fresnel diffraction. Equations used to calculate absolute and relative measurement errors depending on a diffraction angle have been obtained. It allows us to determine the limits of the spectral range according to the given relative error of the spatial frequency measurement.

  11. OPTIMUM FREQUENCY OF CALIBRATION MONITORING

    EPA Science Inventory

    The paper develops an algorithm by which to compute the optimal frequency of calibration monitoring to minimize the total cost of analyzing a set of samples and the required calibration standards. Optimum calibration monitoring is needed because of the high cost and calibration d...

  12. The instantaneous frequency rate spectrogram

    NASA Astrophysics Data System (ADS)

    Czarnecki, Krzysztof

    2016-01-01

    An accelerogram of the instantaneous phase of signal components referred to as an instantaneous frequency rate spectrogram (IFRS) is presented as a joint time-frequency distribution. The distribution is directly obtained by processing the short-time Fourier transform (STFT) locally. A novel approach to amplitude demodulation based upon the reassignment method is introduced as a useful by-product. Additionally, an estimator of energy density versus the instantaneous frequency rate (IFR) is proposed and referred to as the IFR profile. The energy density is estimated based upon both the classical energy spectrogram and the IFRS smoothened by the median filter. Moreover, the impact of an analyzing window width, additive white Gaussian noise and observation time is tested. Finally, the introduced method is used for the analysis of the acoustic emission of an automotive engine. The recording of the engine of a Lamborghini Gallardo is analyzed as an example.

  13. Describing the Frequency of Marijuana Use: Fuzziness and Context-Dependent Interpretation of Frequency Expressions.

    ERIC Educational Resources Information Center

    Matt, Georg E.; Wilson, Sandra Jo

    1994-01-01

    A fuzzy set model is offered for interpreting vague frequency expressions, such as "rarely" and "sometimes." Results with 152 undergraduates reporting marijuana use reflect different frequency expressions for the same level of use and suggest that self-report validity may be enhanced by analyzing frequency expressions as fuzzy sets. (SLD)

  14. Analyzes Data from Semiconductor Wafers

    Energy Science and Technology Software Center (ESTSC)

    2002-07-23

    This program analyzes reflectance data from semiconductor wafers taken during the deposition or evolution of a thin film, typically via chemical vapor deposition (CVD) or molecular beam epitaxy (MBE). It is used to determine the growth rate and optical constants of the deposited thin films using a virtual interface concept. Growth rates and optical constants of multiple-layer structures is possible by selecting appropriate sections in the reflectance vs time waveform. No prior information or estimatesmore » of growth rates and materials properties is required if an absolute reflectance waveform is used. If the optical constants of a thin film are known, then the growth rate may be extracted from a relative reflectance data set. The analysis is valid for either s or p polarized light at any incidence angle and wavelength. The analysis package is contained within an easy-to-use graphical user interface. The program is based on the algorighm described in the following two publications: W.G. Breiland and K.P. Killen, J. Appl. Phys. 78 (1995) 6726, and W. G. Breiland, H.Q. Hou, B.E. Hammons, and J.F. Klem, Proc. XXVIII SOTAPOCS Symp. Electrochem. Soc. San Diego, May 3-8, 1998. It relies on the fact that any multiple-layer system has a reflectance spectrum that is mathematically equivalent to a single-layer thin film on a virtual substrate. The program fits the thin film reflectance with five adjustable parameters: 1) growth rate, 2) real part of complex refractive index, 3) imaginary part of refractive index, 4) amplitude of virtual interface reflectance, 5) phase of virtual interface reflectance.« less

  15. 40 CFR 1065.369 - H2O, CO, and CO2 interference verification for photoacoustic alcohol analyzers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alcohol analyzers. (a) Scope and frequency. If you measure ethanol or methanol using a photoacoustic... photoacoustic analyzer by causing a response similar to ethanol or methanol. If the photoacoustic analyzer...

  16. Frequency noise in frequency swept fiber laser.

    PubMed

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2013-04-01

    This Letter presents a measurement of the spectral content of frequency shifted pulses generated by a lightwave synthesized frequency sweeper. We found that each pulse is shifted in frequency with very high accuracy. We also discovered that noise originating from light leaking through the acousto- optical modulators and forward propagating Brillouin scattering appear in the spectrum. PMID:23546253

  17. Electrode contamination effects of retarding potential analyzer.

    PubMed

    Fang, H K; Oyama, K-I; Cheng, C Z

    2014-01-01

    The electrode contamination in electrostatic analyzers such as Langmuir probes and retarding potential analyzers (RPA) is a serious problem for space measurements. The contamination layer acts as extra capacitance and resistance and leads to distortion in the measured I-V curve, which leads to erroneous measurement results. There are two main effects of the contamination layer: one is the impedance effect and the other is the charge attachment and accumulation due to the capacitance. The impedance effect can be reduced or eliminated by choosing the proper sweeping frequency. However, for RPA the charge accumulation effect becomes serious because the capacitance of the contamination layer is much larger than that of the Langmuir probe of similar dimension. The charge accumulation on the retarding potential grid causes the effective potential, that ions experience, to be changed from the applied voltage. Then, the number of ions that can pass through the retarding potential grid to reach the collector and, thus, the measured ion current are changed. This effect causes the measured ion drift velocity and ion temperature to be changed from the actual values. The error caused by the RPA electrode contamination is expected to be significant for sounding rocket measurements with low rocket velocity (1-2 km/s) and low ion temperature of 200-300 K in the height range of 100-300 km. In this paper we discuss the effects associated with the RPA contaminated electrodes based on theoretical analysis and experiments performed in a space plasma operation chamber. Finally, the development of a contamination-free RPA for sounding rocket missions is presented. PMID:24517809

  18. Substructure coupling in the frequency domain

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Frequency domain analysis was found to be a suitable method for determining the transient response of systems subjected to a wide variety of loads. However, since a large number of calculations are performed within the discrete frequency loop, the method loses it computational efficiency if the loads must be represented by a large number of discrete frequencies. It was also discovered that substructure coupling in the frequency domain work particularly well for analyzing structural system with a small number of interface and loaded degrees of freedom. It was discovered that substructure coupling in the frequency domain can lead to an efficient method of obtaining natural frequencies of undamped structures. It was also found that the damped natural frequencies of a system may be determined using frequency domain techniques.

  19. Toward Integrated μNetwork Analyzer

    NASA Astrophysics Data System (ADS)

    Kmec, M.; Helbig, M.; Herrmann, R.; Rauschenbach, P.; Sachs, J.; Schilling, K.

    The article deals with recent development steps toward monolithically integrated micro-Network Analyzer (μNA). The device will deploy M-Sequence-based single-chip transceivers with a built-in ultra-wideband wave separation unit in the receiver chains. The introduced on-chip wideband wave separation is realized using an optimized resistive directional coupler combined with a customized differential LNA as detector. The wave separation works almost down to DC, and its upper frequency limit is determined by the performance of the implemented technology (i.e., bridge resistors, transistors, etc.), the selected circuit topology, and the wirings of particular coupler components but also by the IC packaging itself. Even though the upper limit is designed to be compatible with the analog input bandwidth of the receiver circuit [which is about 18 GHz for naked die (Kmec et al., M-Sequence based single chip UWB-radar sensor. ANTEM/AMEREM 2010 Conference, Ottawa, 2010)], the packaged IC is intended for use up to 8 GHz. Finally, the discussed transceiver is a further development of the mother SiGe System-on-Chip (SoC) presented in the work cited above.

  20. Resonance frequency analysis.

    PubMed

    Gupta, Rajiv K; Padmanabhan, Thallam V

    2011-01-01

    Initial stability at the placement and development of osseointegration are two major issues for implant survival. Implant stability is a mechanical phenomenon which is related to the local bone quality and quantity, type of implant, and placement technique used. The application of a simple, clinically applicable, non-invasive test to assess implant stability and osseointegration is considered highly desirable. Resonance frequency analysis (RFA) is one of such techniques which is most frequently used now days. The aim of this paper was to review and analyze critically the current available literature in the field of RFA, and to also discuss based on scientific evidence, the prognostic value of RFA to detect implants at risk of failure. A search was made using the PubMed database to find all the literature published on "Resonance frequency analysis for implant stability" till date. Articles discussed in vivo or in vitro studies comparing RFA with other methods of implant stability measurement and articles discussing its reliability were thoroughly reviewed and discussed. A limited number of clinical reports were found. Various studies have demonstrated the feasibility and predictability of the technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are based on short-term results and long-term follow up are still scarce in this field. Nonetheless, from available literature, it may be concluded that RFA technique evaluates implant stability as a function of stiffness of the implant bone interface and is influenced by factors such as bone type, exposed implant height above the alveolar crest. Resonance frequency analysis could serve as a non-invasive diagnostic tool for detecting the implant stability of dental implants during the healing stages and in subsequent routine follow up care after treatment. Future studies, preferably randomized, prospective

  1. Beat frequency interference pattern characteristics study

    NASA Technical Reports Server (NTRS)

    Ott, J. H.; Rice, J. S.

    1981-01-01

    The frequency spectra and corresponding beat frequencies created by the relative motions between multiple Solar Power Satellites due to solar wind, lunar gravity, etc. were analyzed. The results were derived mathematically and verified through computer simulation. Frequency spectra plots were computer generated. Detailed computations were made for the seven following locations in the continental US: Houston, Tx.; Seattle, Wa.; Miami, Fl.; Chicago, Il.; New York, NY; Los Angeles, Ca.; and Barberton, Oh.

  2. Electronic power generators for ultrasonic frequencies

    NASA Technical Reports Server (NTRS)

    Ciovica, D.

    1974-01-01

    The design and construction of an ultrasonic frequency electronic power generator are discussed. The principle design elements of the generator are illustrated. The generator provides an inductive load with an output power of two kilowatts and a variable output frequency in the fifteen to thirty KiloHertz range. The method of conducting the tests and the results obtained with selected materials are analyzed.

  3. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  4. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The

  5. Analyzing wildfire exposure on Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Salis, Michele; Ager, Alan A.; Arca, Bachisio; Finney, Mark A.; Alcasena, Fermin; Bacciu, Valentina; Duce, Pierpaolo; Munoz Lozano, Olga; Spano, Donatella

    2014-05-01

    We used simulation modeling based on the minimum travel time algorithm (MTT) to analyze wildfire exposure of key ecological, social and economic features on Sardinia, Italy. Sardinia is the second largest island of the Mediterranean Basin, and in the last fifty years experienced large and dramatic wildfires, which caused losses and threatened urban interfaces, forests and natural areas, and agricultural productions. Historical fires and environmental data for the period 1995-2009 were used as input to estimate fine scale burn probability, conditional flame length, and potential fire size in the study area. With this purpose, we simulated 100,000 wildfire events within the study area, randomly drawing from the observed frequency distribution of burn periods and wind directions for each fire. Estimates of burn probability, excluding non-burnable fuels, ranged from 0 to 1.92x10-3, with a mean value of 6.48x10-5. Overall, the outputs provided a quantitative assessment of wildfire exposure at the landscape scale and captured landscape properties of wildfire exposure. We then examined how the exposure profiles varied among and within selected features and assets located on the island. Spatial variation in modeled outputs resulted in a strong effect of fuel models, coupled with slope and weather. In particular, the combined effect of Mediterranean maquis, woodland areas and complex topography on flame length was relevant, mainly in north-east Sardinia, whereas areas with herbaceous fuels and flat areas were in general characterized by lower fire intensity but higher burn probability. The simulation modeling proposed in this work provides a quantitative approach to inform wildfire risk management activities, and represents one of the first applications of burn probability modeling to capture fire risk and exposure profiles in the Mediterranean basin.

  6. Gabor: frequency, time, and memory.

    PubMed

    Korpel, A

    1982-10-15

    Dennis Gabor is well-known as the inventor of holography. Less well-known, perhaps, are his contributions to other areas. Yet they are important and, like holography, characteristic of his foresight. In the field of communications, Gabor investigated the classic dichotomy of time and frequency. Guided by analogies to quantum mechanics, he postulated a set of elementary signals and made brilliant use of time-frequency diagrams to analyze communication systems. Applying his theories to acoustics, he researched the mechanism of hearing, defining acoustical quanta in the process and inventing early prototype frequency compressors and expanders. In a completely different field, Gabor, inspired by some early work of Longuet-Higgins on models for holographic temporal recall in the brain, suggested novel approaches which contributed significantly to the understanding of associative memories. In this paper we describe Gabor's pioneering work in these areas and trace the subsequent development by himself and others. PMID:20396288

  7. Expert system for analyzing eddy current measurements

    SciTech Connect

    Levy, A.J.; Oppenlander, J.E.; Brudnoy, D.M.; Englund, J.M.; Loomis, K.C.

    1994-08-16

    A method and apparatus (called DODGER) analyzes eddy current data for heat exchanger tubes or any other metallic object. DODGER uses an expert system to analyze eddy current data by reasoning with uncertainty and pattern recognition. The expert system permits DODGER to analyze eddy current data intelligently, and obviate operator uncertainty by analyzing the data in a uniform and consistent manner. 21 figs.

  8. Expert system for analyzing eddy current measurements

    DOEpatents

    Levy, Arthur J.; Oppenlander, Jane E.; Brudnoy, David M.; Englund, James M.; Loomis, Kent C.

    1994-01-01

    A method and apparatus (called DODGER) analyzes eddy current data for heat exchanger tubes or any other metallic object. DODGER uses an expert system to analyze eddy current data by reasoning with uncertainty and pattern recognition. The expert system permits DODGER to analyze eddy current data intelligently, and obviate operator uncertainty by analyzing the data in a uniform and consistent manner.

  9. Frequency domain FIR and IIR adaptive filters

    NASA Technical Reports Server (NTRS)

    Lynn, D. W.

    1990-01-01

    A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.

  10. A Portable Analyzer for Pouch-Actuated, Immunoassay Cassettes

    PubMed Central

    Qiu, Xianbo; Liu, Changchun; Mauk, Michael G.; Hart, Robert W.; Chen, Dafeng; Qiu, Jing; Kientz, Terry; Fiene, Jonathan; Bau, Haim H.

    2011-01-01

    A portable, small footprint, light, general purpose analyzer (processor) to control the flow in immunoassay cassettes and to facilitate the detection of test results is described. The durable analyzer accepts disposable cassettes that contain pouches and reaction chambers for various unit operations such as hydration of dry reagents, stirring, and incubation. The analyzer includes individually controlled, linear actuators to compress the pouches in the cassette, which facilitates the pumping and mixing of sample and reagents, and to close diaphragm-based valves for flow control. The same types of actuators are used to compress pouches and actuate valves. The analyzer also houses a compact OEM scanner/reader to excite fluorescence and detect emission from labels. The analyzer is hydraulically isolated from the cassette, reducing the possibility of cross-contamination. The analyzer facilitates programmable, automated execution of a sequence of operations such as pumping and valving in a timely fashion, reducing the level of expertise required from the operator and the possibility for errors. The analyzer’s design is modular and expandable to accommodate cassettes of various complexities and additional functionalities. In this paper, the utility of the analyzer has been demonstrated with the execution of a simple, consecutive, lateral flow assay of a model biological system and the test results were detected with up converting phosphor labels that are excited at infrared frequencies and emit in the visible spectrum. PMID:22125359

  11. RF environment survey of Space Shuttle related EEE frequency bands

    NASA Technical Reports Server (NTRS)

    Simpson, J.; Prigel, B.; Postelle, J.

    1977-01-01

    Radio frequency assignments within the continental United States in frequency bands between 121 MHz abd 65 GHz were surveyed and analyzed in order to determine current utilization of anticipated frequency bands for the shuttle borne electromagnetic environment experiment. Data from both government and nongovernment files were used. Results are presented in both narrative form and in histograms which show the total number of unclassified assignments versus frequency and total assigned power versus frequency.

  12. Effect of laser frequency noise on fiber-optic frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.

    1989-01-01

    The effect of the linewidth of a single longitude-mode laser on the frequency stability of a frequency reference transmitted over a single-mode optical fiber is analyzed. The interaction of the random laser frequency deviations with the dispersion of the optical fiber is considered to determine theoretically the effect on the Allan deviation (square root of the Allan variance) of the transmitted frequency reference. It is shown that the magnitude of this effect may determine the limit of the ultimate stability possible for frequency reference transmission on optical fiber, but is not a serious limitation to present system performance.

  13. AUTOMATIC FREQUENCY CONTROL SYSTEM

    DOEpatents

    Hansen, C.F.; Salisbury, J.D.

    1961-01-10

    A control is described for automatically matching the frequency of a resonant cavity to that of a driving oscillator. The driving oscillator is disconnected from the cavity and a secondary oscillator is actuated in which the cavity is the frequency determining element. A low frequency is mixed with the output of the driving oscillator and the resultant lower and upper sidebands are separately derived. The frequencies of the sidebands are compared with the secondary oscillator frequency. deriving a servo control signal to adjust a tuning element in the cavity and matching the cavity frequency to that of the driving oscillator. The driving oscillator may then be connected to the cavity.

  14. 40 CFR 91.313 - Analyzers required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... monoxide (CO) analysis. (i) The carbon monoxide analyzer must be of the non-dispersive infrared (NDIR...) The carbon dioxide analyzer must be of the non-dispersive infrared (NDIR) absorption type. (ii)...

  15. 40 CFR 91.313 - Analyzers required.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monoxide (CO) analysis. (i) The carbon monoxide analyzer must be of the non-dispersive infrared (NDIR...) The carbon dioxide analyzer must be of the non-dispersive infrared (NDIR) absorption type. (ii)...

  16. 40 CFR 91.313 - Analyzers required.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monoxide (CO) analysis. (i) The carbon monoxide analyzer must be of the non-dispersive infrared (NDIR...) The carbon dioxide analyzer must be of the non-dispersive infrared (NDIR) absorption type. (ii)...

  17. 40 CFR 91.313 - Analyzers required.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monoxide (CO) analysis. (i) The carbon monoxide analyzer must be of the non-dispersive infrared (NDIR...) The carbon dioxide analyzer must be of the non-dispersive infrared (NDIR) absorption type. (ii)...

  18. 40 CFR 91.313 - Analyzers required.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monoxide (CO) analysis. (i) The carbon monoxide analyzer must be of the non-dispersive infrared (NDIR...) The carbon dioxide analyzer must be of the non-dispersive infrared (NDIR) absorption type. (ii)...

  19. New image processing software for analyzing object size-frequency distributions, geometry, orientation, and spatial distribution

    NASA Astrophysics Data System (ADS)

    Beggan, Ciarán; Hamilton, Christopher W.

    2010-04-01

    Geological Image Analysis Software (GIAS) combines basic tools for calculating object area, abundance, radius, perimeter, eccentricity, orientation, and centroid location, with the first automated method for characterizing the aerial distribution of objects using sample-size-dependent nearest neighbor (NN) statistics. The NN analyses include tests for (1) Poisson, (2) Normalized Poisson, (3) Scavenged k=1, and (4) Scavenged k=2 NN distributions. GIAS is implemented in MATLAB with a Graphical User Interface (GUI) that is available as pre-parsed pseudocode for use with MATLAB, or as a stand-alone application that runs on Windows and Unix systems. GIAS can process raster data (e.g., satellite imagery, photomicrographs, etc.) and tables of object coordinates to characterize the size, geometry, orientation, and spatial organization of a wide range of geological features. This information expedites quantitative measurements of 2D object properties, provides criteria for validating the use of stereology to transform 2D object sections into 3D models, and establishes a standardized NN methodology that can be used to compare the results of different geospatial studies and identify objects using non-morphological parameters.

  20. 40 CFR 86.319-79 - Analyzer checks and calibrations; frequency and overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 86.343. (5) Check the fuel flow measurement instrument to insure that the specifications in § 86.314 are met. Flow meters of the tapered tube and float design (rotometers) or the balance beam...

  1. 40 CFR 86.319-79 - Analyzer checks and calibrations; frequency and overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 86.343. (5) Check the fuel flow measurement instrument to insure that the specifications in § 86.314 are met. Flow meters of the tapered tube and float design (rotometers) or the balance beam...

  2. Modeling, calculating, and analyzing multidimensional vibrational spectroscopies.

    PubMed

    Tanimura, Yoshitaka; Ishizaki, Akihito

    2009-09-15

    Spectral line shapes in a condensed phase contain information from various dynamic processes that modulate the transition energy, such as microscopic dynamics, inter- and intramolecular couplings, and solvent dynamics. Because nonlinear response functions are sensitive to the complex dynamics of chemical processes, multidimensional vibrational spectroscopies can separate these processes. In multidimensional vibrational spectroscopy, the nonlinear response functions of a molecular dipole or polarizability are measured using ultrashort pulses to monitor inter- and intramolecular vibrational motions. Because a complex profile of such signals depends on the many dynamic and structural aspects of a molecular system, researchers would like to have a theoretical understanding of these phenomena. In this Account, we explore and describe the roles of different physical phenomena that arise from the peculiarities of the system-bath coupling in multidimensional spectra. We also present simple analytical expressions for a weakly coupled multimode Brownian system, which we use to analyze the results obtained by the experiments and simulations. To calculate the nonlinear optical response, researchers commonly use a particular form of a system Hamiltonian fit to the experimental results. The optical responses of molecular vibrational motions have been studied in either an oscillator model or a vibration energy state model. In principle, both models should give the same results as long as the energy states are chosen to be the eigenstates of the oscillator model. The energy state model can provide a simple description of nonlinear optical processes because the diagrammatic Liouville space theory that developed in the electronically resonant spectroscopies can easily handle three or four energy states involved in high-frequency vibrations. However, the energy state model breaks down if we include the thermal excitation and relaxation processes in the dynamics to put the system in a

  3. Development of an Infrared Fluorescent Gas Analyzer.

    ERIC Educational Resources Information Center

    McClatchie, E. A.

    A prototype model low level carbon monoxide analyzer was developed using fluorescent cell and negative chopping techniques to achieve a device superior to state of art NDIR (Nondispersive infrared) analyzers in stability and cross-sensitivity to other gaseous species. It is clear that this type of analyzer has that capacity. The prototype…

  4. 46 CFR 154.1360 - Oxygen analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Oxygen analyzer. 154.1360 Section 154.1360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Instrumentation § 154.1360 Oxygen analyzer. The vessel must have a portable analyzer that measures oxygen...

  5. 46 CFR 154.1360 - Oxygen analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Oxygen analyzer. 154.1360 Section 154.1360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Instrumentation § 154.1360 Oxygen analyzer. The vessel must have a portable analyzer that measures oxygen...

  6. 46 CFR 154.1360 - Oxygen analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Oxygen analyzer. 154.1360 Section 154.1360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Instrumentation § 154.1360 Oxygen analyzer. The vessel must have a portable analyzer that measures oxygen...

  7. 46 CFR 154.1360 - Oxygen analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Oxygen analyzer. 154.1360 Section 154.1360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Instrumentation § 154.1360 Oxygen analyzer. The vessel must have a portable analyzer that measures oxygen...

  8. 46 CFR 154.1360 - Oxygen analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Oxygen analyzer. 154.1360 Section 154.1360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Instrumentation § 154.1360 Oxygen analyzer. The vessel must have a portable analyzer that measures oxygen...

  9. Encoding voice fundamental frequency into vibrotactile frequency.

    PubMed

    Rothenberg, M; Molitor, R D

    1979-10-01

    Measured in this study was the ability of eight hearing and five deaf subjects to identify the stress pattern in a short sentence from the variation in voice fundamental frequency (F0), when presented aurally (for hearing subjects) and when transformed into vibrotactile pulse frequency. Various transformations from F0 to pulse frequency were tested in an attempt to determine an optimum transformation, the amount of F0 information that could be transmitted, and what the limitations in the tactile channel might be. The results indicated that a one- or two-octave reduction of F0 vibrotactile frequency (transmitting every second or third glottal pulse) might result in a significant ability to discriminate the intonation patterns associated with moderate-to-strong patterns of sentence stress in English. However, accurate reception of the details of the intonation pattern may require a slower than normal pronounciation because of an apparent temporal indeterminacy of about 200 ms in the perception of variations in vibrotactile frequency. A performance deficit noted for the two prelingually, profoundly deaf subjects with marginally discriminable encodings offers some support for our previous hypothesis that there is a natural association between auditory pitch and perceived vibrotactile frequency. PMID:159917

  10. Flood frequency in Alaska

    USGS Publications Warehouse

    Childers, J.M.

    1970-01-01

    Records of peak discharge at 183 sites were used to study flood frequency in Alaska. The vast size of Alaska, its great ranges of physiography, and the lack of data for much of the State precluded a comprehensive analysis of all flood determinants. Peak stream discharges, where gaging-station records were available, were analyzed for 2-year, 5-year, 10-year, 25-year, and 50-year average-recurrence intervals. A regional analysis of the flood characteristics by multiple-regression methods gave a set of equations that can be used to estimate floods of selected recurrence intervals up to 50 years for any site on any stream in Alaska. The equations relate floods to drainage-basin characteristics. The study indicates that in Alaska the 50-year flood can be estimated from 10-year gaging- station records with a standard error of 22 percent whereas the 50-year flood can be estimated from the regression equation with a standard error of 53 percent. Also, maximum known floods at more than 500 gaging stations and miscellaneous sites in Alaska were related to drainage-area size. An envelope curve of 500 cubic feet per second per square mile covered all but 2 floods in the State.