Sample records for frequency analyzers

  1. Frequency spectrum analyzer with phase-lock

    DOEpatents

    Boland, Thomas J.

    1984-01-01

    A frequency-spectrum analyzer with phase-lock for analyzing the frequency and amplitude of an input signal is comprised of a voltage controlled oscillator (VCO) which is driven by a ramp generator, and a phase error detector circuit. The phase error detector circuit measures the difference in phase between the VCO and the input signal, and drives the VCO locking it in phase momentarily with the input signal. The input signal and the output of the VCO are fed into a correlator which transfers the input signal to a frequency domain, while providing an accurate absolute amplitude measurement of each frequency component of the input signal.

  2. Techniques for analyzing frequency selective surfaces - A review

    NASA Technical Reports Server (NTRS)

    Mittra, Raj; Chan, Chi H.; Cwik, Tom

    1988-01-01

    A number of representative techniques for analyzing frequency-selective surfaces (FSSs), which comprise periodic arrays of patches or apertures in a conducting screen and find important applications as filters in microwaves and optics, are discussed. The basic properties of the FSSs are reviewed and several different approaches to predicting their frequency-response characteristics are described. Some recent developments in the treatment of truncated, curved, and doubly periodic screens are mentioned and representative experimental results are included.

  3. Probing a Spray Using Frequency-Analyzed Light Scattering

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard; Lee, Michael H.; Rhys, Noah O.

    2008-01-01

    Frequency-analyzed laser-light scattering (FALLS) is a relatively simple technique that can be used to measure principal characteristics of a sheet of sprayed liquid as it breaks up into ligaments and then the ligaments break up into droplets. In particular, through frequency analysis of laser light scattered from a spray, it is possible to determine whether the laser-illuminated portion of the spray is in the intact-sheet region, the ligament region, or the droplet region. By logical extension, it is possible to determine the intact length from the location of the laser beam at the transition between the intact-sheet and ligament regions and to determine a breakup frequency from the results of the frequency analysis. Hence, FALLS could likely be useful both as a means of performing research on sprays in general and as a means of diagnostic sensing in diverse applications in which liquid fuels are sprayed. Sprays are also used for drying and to deposit paints and other coating materials.

  4. Primary Multi-frequency Data Analyze in Electrical Impedance Scanning.

    PubMed

    Liu, Ruigang; Dong, Xiuzhen; Fu, Feng; Shi, Xuetao; You, Fusheng; Ji, Zhenyu

    2005-01-01

    This paper deduced the Cole-Cole arc equation in form of admittance by the traditional Cole-Cole equation in form of impedance. Comparing to the latter, the former is more adaptive to the electrical impedance scanning which using lower frequency region. When using our own electrical impedance scanning device at 50-5000Hz, the measurement data separated on the arc of the former, while collected near the direct current resistor on the arc of the latter. The four parameters of the former can be evaluated by the least square method. The frequency of the imaginary part of admittance reaching maximum can be calculated by the Cole-Cole parameters. In conclusion, the Cole-Cole arc in form of admittance is more effective to multi-frequency data analyze at lower frequency region, like EIS.

  5. Data mining of tree-based models to analyze freeway accident frequency.

    PubMed

    Chang, Li-Yen; Chen, Wen-Chieh

    2005-01-01

    Statistical models, such as Poisson or negative binomial regression models, have been employed to analyze vehicle accident frequency for many years. However, these models have their own model assumptions and pre-defined underlying relationship between dependent and independent variables. If these assumptions are violated, the model could lead to erroneous estimation of accident likelihood. Classification and Regression Tree (CART), one of the most widely applied data mining techniques, has been commonly employed in business administration, industry, and engineering. CART does not require any pre-defined underlying relationship between target (dependent) variable and predictors (independent variables) and has been shown to be a powerful tool, particularly for dealing with prediction and classification problems. This study collected the 2001-2002 accident data of National Freeway 1 in Taiwan. A CART model and a negative binomial regression model were developed to establish the empirical relationship between traffic accidents and highway geometric variables, traffic characteristics, and environmental factors. The CART findings indicated that the average daily traffic volume and precipitation variables were the key determinants for freeway accident frequencies. By comparing the prediction performance between the CART and the negative binomial regression models, this study demonstrates that CART is a good alternative method for analyzing freeway accident frequencies. By comparing the prediction performance between the CART and the negative binomial regression models, this study demonstrates that CART is a good alternative method for analyzing freeway accident frequencies.

  6. High-frequency field-deployable isotope analyzer for hydrological applications

    Treesearch

    Elena S.F. Berman; Manish Gupta; Chris Gabrielli; Tina Garland; Jeffrey J. McDonnell

    2009-01-01

    A high-frequency, field-deployable liquid water isotope analyzer was developed. The instrument was deployed for 4 contiguous weeks in the H. J. Andrews Experimental Forest Long-term Ecological Research site in western Oregon, where it was used for real-time measurement of the isotope ratios of precipitation and stream water during three large storm events. We were able...

  7. ProteinAC: a frequency domain technique for analyzing protein dynamics

    NASA Astrophysics Data System (ADS)

    Bozkurt Varolgunes, Yasemin; Demir, Alper

    2018-03-01

    It is widely believed that the interactions of proteins with ligands and other proteins are determined by their dynamic characteristics as opposed to only static, time-invariant processes. We propose a novel computational technique, called ProteinAC (PAC), that can be used to analyze small scale functional protein motions as well as interactions with ligands directly in the frequency domain. PAC was inspired by a frequency domain analysis technique that is widely used in electronic circuit design, and can be applied to both coarse-grained and all-atom models. It can be considered as a generalization of previously proposed static perturbation-response methods, where the frequency of the perturbation becomes the key. We discuss the precise relationship of PAC to static perturbation-response schemes. We show that the frequency of the perturbation may be an important factor in protein dynamics. Perturbations at different frequencies may result in completely different response behavior while magnitude and direction are kept constant. Furthermore, we introduce several novel frequency dependent metrics that can be computed via PAC in order to characterize response behavior. We present results for the ferric binding protein that demonstrate the potential utility of the proposed techniques.

  8. Retarding field analyzer for ion energy distribution measurements at a radio-frequency biased electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gahan, D.; Hopkins, M. B.; Dolinaj, B.

    2008-03-15

    A retarding field energy analyzer designed to measure ion energy distributions impacting a radio-frequency biased electrode in a plasma discharge is examined. The analyzer is compact so that the need for differential pumping is avoided. The analyzer is designed to sit on the electrode surface, in place of the substrate, and the signal cables are fed out through the reactor side port. This prevents the need for modifications to the rf electrode--as is normally the case for analyzers built into such electrodes. The capabilities of the analyzer are demonstrated through experiments with various electrode bias conditions in an inductively coupledmore » plasma reactor. The electrode is initially grounded and the measured distributions are validated with the Langmuir probe measurements of the plasma potential. Ion energy distributions are then given for various rf bias voltage levels, discharge pressures, rf bias frequencies - 500 kHz to 30 MHz, and rf bias waveforms - sinusoidal, square, and dual frequency.« less

  9. High-frequency acoustic spectrum analyzer based on polymer integrated optics

    NASA Astrophysics Data System (ADS)

    Yacoubian, Araz

    This dissertation presents an acoustic spectrum analyzer based on nonlinear polymer-integrated optics. The device is used in a scanning heterodyne geometry by zero biasing a Michelson interferometer. It is capable of detecting vibrations from DC to the GHz range. Initial low frequency experiments show that the device is an effective tool for analyzing an acoustic spectrum even in noisy environments. Three generations of integrated sensors are presented, starting with a very lossy (86 dB total insertion loss) initial device that detects vibrations as low as λ/10, and second and third generation improvements with a final device of 44 dB total insertion loss. The sensor was further tested for detecting a pulsed laser-excited vibration and resonances due to the structure of the sample. The data are compared to the acoustic spectrum measured using a low loss passive fiber interferometer detection scheme which utilizes a high speed detector. The peaks present in the passive detection scheme are clearly visible with our sensor data, which have a lower noise floor. Hybrid integration of GHz electronics is also investigated in this dissertation. A voltage controlled oscillator (VCO) is integrated on a polymer device using a new approach. The VCO is shown to operate as specified by the manufacturer, and the RF signal is efficiently launched onto the micro-strip line used for EO modulation. In the future this technology can be used in conjunction with the presented sensor to produce a fully integrated device containing high frequency drive electronics controlled by low DC voltage. Issues related to device fabrication, loss analysis, RF power delivery to drive circuitry, efficient poling of large area samples, and optimizing poling conditions are also discussed throughout the text.

  10. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb.

    PubMed

    Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu

    2013-11-15

    A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

  11. Rectennas at optical frequencies: How to analyze the response

    NASA Astrophysics Data System (ADS)

    Joshi, Saumil; Moddel, Garret

    2015-08-01

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun.

  12. High Frequency Analyzer (HFA) of Plasma Wave Experiment (PWE) onboard the Arase spacecraft

    NASA Astrophysics Data System (ADS)

    Kumamoto, Atsushi; Tsuchiya, Fuminori; Kasahara, Yoshiya; Kasaba, Yasumasa; Kojima, Hirotsugu; Yagitani, Satoshi; Ishisaka, Keigo; Imachi, Tomohiko; Ozaki, Mitsunori; Matsuda, Shoya; Shoji, Masafumi; Matsuoka, Aayako; Katoh, Yuto; Miyoshi, Yoshizumi; Obara, Takahiro

    2018-05-01

    The High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment onboard the Arase (ERG) spacecraft. The main purposes of the HFA include (1) determining the electron number density around the spacecraft from observations of upper hybrid resonance (UHR) waves, (2) measuring the electromagnetic field component of whistler-mode chorus in a frequency range above 20 kHz, and (3) observing radio and plasma waves excited in the storm-time magnetosphere. Two components of AC electric fields detected by Wire Probe Antenna and one component of AC magnetic fields detected by Magnetic Search Coils are fed to the HFA. By applying analog and digital signal processing in the HFA, the spectrograms of two electric fields (EE mode) or one electric field and one magnetic field (EB mode) in a frequency range from 10 kHz to 10 MHz are obtained at an interval of 8 s. For the observation of plasmapause, the HFA can also be operated in PP (plasmapause) mode, in which spectrograms of one electric field component below 1 MHz are obtained at an interval of 1 s. In the initial HFA operations from January to July, 2017, the following results are obtained: (1) UHR waves, auroral kilometric radiation (AKR), whistler-mode chorus, electrostatic electron cyclotron harmonic waves, and nonthermal terrestrial continuum radiation were observed by the HFA in geomagnetically quiet and disturbed conditions. (2) In the test operations of the polarization observations on June 10, 2017, the fundamental R-X and L-O mode AKR and the second-harmonic R-X mode AKR from different sources in the northern polar region were observed. (3) The semiautomatic UHR frequency identification by the computer and a human operator was applied to the HFA spectrograms. In the identification by the computer, we used an algorithm for narrowing down the candidates of UHR frequency by checking intensity and bandwidth. Then, the identified UHR frequency by the computer was checked and corrected if needed by the human

  13. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  14. Analyzing crash frequency in freeway tunnels: A correlated random parameters approach.

    PubMed

    Hou, Qinzhong; Tarko, Andrew P; Meng, Xianghai

    2018-02-01

    The majority of past road safety studies focused on open road segments while only a few focused on tunnels. Moreover, the past tunnel studies produced some inconsistent results about the safety effects of the traffic patterns, the tunnel design, and the pavement conditions. The effects of these conditions therefore remain unknown, especially for freeway tunnels in China. The study presented in this paper investigated the safety effects of these various factors utilizing a four-year period (2009-2012) of data as well as three models: 1) a random effects negative binomial model (RENB), 2) an uncorrelated random parameters negative binomial model (URPNB), and 3) a correlated random parameters negative binomial model (CRPNB). Of these three, the results showed that the CRPNB model provided better goodness-of-fit and offered more insights into the factors that contribute to tunnel safety. The CRPNB was not only able to allocate the part of the otherwise unobserved heterogeneity to the individual model parameters but also was able to estimate the cross-correlations between these parameters. Furthermore, the study results showed that traffic volume, tunnel length, proportion of heavy trucks, curvature, and pavement rutting were associated with higher frequencies of traffic crashes, while the distance to the tunnel wall, distance to the adjacent tunnel, distress ratio, International Roughness Index (IRI), and friction coefficient were associated with lower crash frequencies. In addition, the effects of the heterogeneity of the proportion of heavy trucks, the curvature, the rutting depth, and the friction coefficient were identified and their inter-correlations were analyzed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ground penetrating radar data analyzed in frequency and time domain for engineering issues

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; Giampaolo, Valeria; Votta, Mario; Rizzo, Enzo

    2014-05-01

    Non-destructive testing (NDT) allows to analyze reinforced concrete and masonry structures, in order to identify gaps, defects, delaminations, and fracture. In the field of engineering, non-invasive diagnostic is used to test the processes of construction and maintenance of buildings and artifacts of the individual components, to reduce analysis time and costs of intervention (Proto et al., 2010). Ground penetrating radar (GPR) allows to evaluate with a good effectiveness the state of conservation of engineering construction (Mellet 1995)). But there are some uncertainties in GPR data due to the complexity of artificial objects. In this work we try to evaluate the capability of GPR for the characterization of building structures in the laboratory and in-situ. In particular the focus of this research consists in integrate spectral analysis to time domain data to enhance information obtained in a classical GPR processing approach. For this reason we have applied spectral analysis to localize and characterize the presence of extraneous bodies located in a test site rebuilt in laboratory to simulate a part of a typical concrete road. The test site is a segment of a road superimposed on two different layers of sand and gravel of varying thickness inside which were introduced steel rebar, PVC and aluminium pipes. This structure has also been cracked in a predetermined area and hidden internal fractures were investigated. The GPR has allowed to characterize the panel in a non-invasive mode and radargrams were acquired using two-dimensional and three-dimensional models from data obtained with the use of 400, 900, 1500 and 2000 Mhz antennas. We have also studied with 2 GHz antenna a beam of 'to years precast bridge characterized by a high state of decay. The last case study consisted in the characterization of a radiant floor analyzed with an integrated use of GPR and infrared thermography. In the frequency domain analysis has been possible to determine variations in the

  16. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  17. Onboard software of Plasma Wave Experiment aboard Arase: instrument management and signal processing of Waveform Capture/Onboard Frequency Analyzer

    NASA Astrophysics Data System (ADS)

    Matsuda, Shoya; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Yagitani, Satoshi; Ozaki, Mitsunori; Imachi, Tomohiko; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ota, Mamoru; Kurita, Satoshi; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Matsuoka, Ayako; Shinohara, Iku

    2018-05-01

    We developed the onboard processing software for the Plasma Wave Experiment (PWE) onboard the Exploration of energization and Radiation in Geospace, Arase satellite. The PWE instrument has three receivers: Electric Field Detector, Waveform Capture/Onboard Frequency Analyzer (WFC/OFA), and the High-Frequency Analyzer. We designed a pseudo-parallel processing scheme with a time-sharing system and achieved simultaneous signal processing for each receiver. Since electric and magnetic field signals are processed by the different CPUs, we developed a synchronized observation system by using shared packets on the mission network. The OFA continuously measures the power spectra, spectral matrices, and complex spectra. The OFA obtains not only the entire ELF/VLF plasma waves' activity but also the detailed properties (e.g., propagation direction and polarization) of the observed plasma waves. We performed simultaneous observation of electric and magnetic field data and successfully obtained clear wave properties of whistler-mode chorus waves using these data. In order to measure raw waveforms, we developed two modes for the WFC, `chorus burst mode' (65,536 samples/s) and `EMIC burst mode' (1024 samples/s), for the purpose of the measurement of the whistler-mode chorus waves (typically in a frequency range from several hundred Hz to several kHz) and the EMIC waves (typically in a frequency range from a few Hz to several hundred Hz), respectively. We successfully obtained the waveforms of electric and magnetic fields of whistler-mode chorus waves and ion cyclotron mode waves along the Arase's orbit. We also designed the software-type wave-particle interaction analyzer mode. In this mode, we measure electric and magnetic field waveforms continuously and transfer them to the mission data recorder onboard the Arase satellite. We also installed an onboard signal calibration function (onboard SoftWare CALibration; SWCAL). We performed onboard electric circuit diagnostics and

  18. Unique capabilities of AC frequency scanning and its implementation on a Mars Organic Molecule Analyzer linear ion trap.

    PubMed

    Snyder, Dalton T; Kaplan, Desmond A; Danell, Ryan M; van Amerom, Friso H W; Pinnick, Veronica T; Brinckerhoff, William B; Mahaffy, Paul R; Cooks, R Graham

    2017-06-21

    A limitation of conventional quadrupole ion trap scan modes which use rf amplitude control for mass scanning is that, in order to detect a subset of an ion population, the rest of the ion population must also be interrogated. That is, ions cannot be detected out of order; they must be detected in order of either increasing or decreasing mass-to-charge (m/z). However, an ion trap operated in the ac frequency scan mode, where the rf amplitude is kept constant and instead the ac frequency is used for mass-selective operations, has no such limitation because any variation in the ac frequency affects only the subset of ions whose secular frequencies match the perturbation frequency. Hence, an ion trap operated in the ac frequency scan mode can perform any arbitrary mass scan, as well as a sequence of scans, using a single ion injection; we demonstrate both capabilities here. Combining these two capabilities, we demonstrate the acquisition of a full mass spectrum, a product ion spectrum, and a second generation product ion spectrum using a single ion injection event. We further demonstrate a "segmented scan" in which different mass ranges are interrogated at different rf amplitudes in order to improve resolution over a portion of the mass range, and a "periodic scan" in which ions are continuously introduced into the ion trap to achieve a nearly 100% duty cycle. These unique scan modes, along with other characteristics of ac frequency scanning, are particularly appropriate for miniature ion trap mass spectrometers. Hence, implementation of ac frequency scanning on a prototype of the Mars Organic Molecule Analyzer mass spectrometer is also described.

  19. Analyzing mobile WiMAX base station deployment under different frequency planning strategies

    NASA Astrophysics Data System (ADS)

    Salman, M. K.; Ahmad, R. B.; Ali, Ziad G.; Aldhaibani, Jaafar A.; Fayadh, Rashid A.

    2015-05-01

    The frequency spectrum is a precious resource and scarce in the communication markets. Therefore, different techniques are adopted to utilize the available spectrum in deploying WiMAX base stations (BS) in cellular networks. In this paper several types of frequency planning techniques are illustrated, and a comprehensive comparative study between conventional frequency reuse of 1 (FR of 1) and fractional frequency reuse (FFR) is presented. These techniques are widely used in network deployment, because they employ universal frequency (using all the available bandwidth) in their base station installation/configuration within network system. This paper presents a network model of 19 base stations in order to be employed in the comparison of the aforesaid frequency planning techniques. Users are randomly distributed within base stations, users' resource mapping and their burst profile selection are based on the measured signal to interference plus-noise ratio (SINR). Simulation results reveal that the FFR has advantages over the conventional FR of 1 in various metrics. 98 % of downlink resources (slots) are exploited when FFR is applied, whilst it is 81 % at FR of 1. Data rate of FFR has been increased to 10.6 Mbps, while it is 7.98 Mbps at FR of 1. The spectral efficiency is better enhanced (1.072 bps/Hz) at FR of 1 than FFR (0.808 bps/Hz), since FR of 1 exploits all the Bandwidth. The subcarrier efficiency shows how many data bits that can be carried by subcarriers under different frequency planning techniques, the system can carry more data bits under FFR (2.40 bit/subcarrier) than FR of 1 (1.998 bit/subcarrier). This study confirms that FFR can perform better than conventional frequency planning (FR of 1) which made it a strong candidate for WiMAX BS deployment in cellular networks.

  20. Onboard Processing on PWE OFA/WFC (Onboard Frequency Analyzer/Waveform Capture) aboard the ERG (ARASE) Satellite

    NASA Astrophysics Data System (ADS)

    Matsuda, S.; Kasahara, Y.; Kojima, H.; Kasaba, Y.; Yagitani, S.; Ozaki, M.; Imachi, T.; Ishisaka, K.; Kurita, S.; Ota, M.; Kumamoto, A.; Tsuchiya, F.; Yoshizumi, M.; Matsuoka, A.; Teramoto, M.; Shinohara, I.

    2017-12-01

    Exploration of energization and Radiation in Geospace (ERG) is a mission for understanding particle acceleration, loss mechanisms, and the dynamic evolution of space storms in the context of cross-energy and cross-regional coupling [Miyoshi et al., 2012]. The ERG (ARASE) satellite was launched on December 20, 2016, and successfully inserted into an orbit. The Plasma Wave Experiment (PWE) is one of the science instruments on board the ERG satellite to measure electric field and magnetic field in the inner magnetosphere. PWE consists of three sub-components, EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer). Especially, OFA/WFC measures electric and magnetic field spectrum and waveform from a few Hz to 20 kHz. OFA/WFC processes signals detected by a couple of dipole wire-probe antenna (WPT) and tri-axis magnetic search coils (MSC) installed onboard the satellite. The PWE-OFA subsystem calculates and produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectrum matrix), and OFA-COMPLEX (complex spectrum). They are continuously processed 24 hours per day and all data are sent to the ground. OFA-MATRIX and OFA-COMPLEX are used for polarization analyses and direction finding of the plasma waves. The PWE-WFC subsystem measures raw (64 kHz sampled) and down-sampled (1 kHz sampled) burst waveform detected by the WPT and the MSC sensors. It activates by a command, automatic triggering, and scheduling. The initial check-out process of the PWE successfully completed, and initial data has been obtained. In this presentation, we introduce onboard processing technique on PWE OFA/WFC and its initial results.

  1. The Kuroshio Extension low-frequency variability analyzed with altimeter data through an ad hoc composite index

    NASA Astrophysics Data System (ADS)

    Pierini, Stefano; Gentile, Vittorio; de Ruggiero, Paola; Pietranera, Luca

    2017-04-01

    The Kuroshio Extension (KE) low-frequency variability (LFV) is analyzed with the satellite altimeter data distributed by AVISO from January 1993 to November 2015 through a new ad hoc composite index [1] that links the mean latitudinal position L of the KE jet and an integrated wavelet amplitude A measuring the high-frequency variability (HFV) of the KE path. This approach allows one to follow the KE evolution as an orbit in the (L,A) plane, as typically done in dynamical systems theory. Three intervals, I1 (1993-1998), I2 (1998-2006) and I3 (2006-November 2015) are separately analyzed also with sea surface height (SSH) maps. In I1 and I3, L and A are mostly anti-correlated and a recharging phase (characterized by a weak convoluted jet experiencing a rapid increase of the HFV) begins when negative SSH anomalies, remotely generated by the Pacific Decadal Oscillation, reach the KE region. On the other hand, in I2 the KE evolution is described by a hysteresis loop: this starts with a weak jet state followed by a recharging phase leading, in turn, to a persistent two-meander state, to its progressive and rapid erosion and, eventually, to the reestablishment of a weak jet state. This loop is found to correspond quite closely to the highly nonlinear intrinsic relaxation oscillation obtained in numerical process studies [1,2]. This supports the hypothesis that the KE LFV may have been controlled, during I2, by an intrinsic oceanic mode of variability. [1] Pierini S., 2015. J. Climate, 28, 5873-5881. [2] Pierini S., 2006. J. Phys. Oceanogr., 36, 1605-1625.

  2. A wideband, high-resolution spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Quirk, M. P.; Wilck, H. C.; Garyantes, M. F.; Grimm, M. J.

    1988-01-01

    A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.

  3. Analyzing Radio-Frequency Coverage for the ISS

    NASA Technical Reports Server (NTRS)

    Bolen, Steven M.; Sham, Catherine C.

    2007-01-01

    The Interactive Coverage Analysis Tool (iCAT) is an interactive desktop computer program serving to (1) support planning of coverage, and management of usage of frequencies, of current and proposed radio communication systems on and near the International Space Station (ISS) and (2) enable definition of requirements for development of future such systems. The iCAT can also be used in design trade studies for other (both outer-space and terrestrial) communication systems. A user can enter the parameters of a communication-system link budget in a table in a worksheet. The nominal (onaxis) link values for the bit-to-noise-energy ratio, received isotropic power (RIP), carrier-to-noise ratio (C/N), power flux density (PFD), and link margin of the system are calculated and displayed in the table. Plots of field gradients for the RIP, C/N, PFD, and link margin are constructed in an ISS coordinate system, at a specified link range, for both the forward and return link parameters, and are displayed in worksheets. The forward and reverse link antenna gain patterns are also constructed and displayed. Line-of-sight (LOS) obstructions can be both incorporated into the gradient plots and displayed on separate plots.

  4. MULTICHANNEL PULSE-HEIGHT ANALYZER

    DOEpatents

    Russell, J.T.; Lefevre, H.W.

    1958-01-21

    This patent deals with electronic computing circuits and more particularly to pulse-height analyzers used for classifying variable amplitude pulses into groups of different amplitudes. The device accomplishes this pulse allocation by by converting the pulses into frequencies corresponding to the amplitudes of the pulses, which frequencies are filtered in channels individually pretuned to a particular frequency and then detected and recorded in the responsive channel. This circuit substantially overcomes the disadvantages of prior annlyzers incorporating discriminators pre-set to respond to certain voltage levels, since small variation in component values is not as critical to satisfactory circuit operation.

  5. High-frequency asymptotic methods for analyzing the EM scattering by open-ended waveguide cavities

    NASA Technical Reports Server (NTRS)

    Burkholder, R. J.; Pathak, P. H.

    1989-01-01

    Four high-frequency methods are described for analyzing the electromagnetic (EM) scattering by electrically large open-ended cavities. They are: (1) a hybrid combination of waveguide modal analysis and high-frequency asymptotics, (2) geometrical optics (GO) ray shooting, (3) Gaussian beam (GB) shooting, and (4) the generalized ray expansion (GRE) method. The hybrid modal method gives very accurate results but is limited to cavities which are made up of sections of uniform waveguides for which the modal fields are known. The GO ray shooting method can be applied to much more arbitrary cavity geometries and can handle absorber treated interior walls, but it generally only predicts the major trends of the RCS pattern and not the details. Also, a very large number of rays need to be tracked for each new incidence angle. Like the GO ray shooting method, the GB shooting method can handle more arbitrary cavities, but it is much more efficient and generally more accurate than the GO method because it includes the fields diffracted by the rim at the open end which enter the cavity. However, due to beam divergence effects the GB method is limited to cavities which are not very long compared to their width. The GRE method overcomes the length-to-width limitation of the GB method by replacing the GB's with GO ray tubes which are launched in the same manner as the GB's to include the interior rim diffracted field. This method gives good accuracy and is generally more efficient than the GO method, but a large number of ray tubes needs to be tracked.

  6. A wide-band high-resolution spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Quirk, Maureen P.; Garyantes, Michael F.; Wilck, Helmut C.; Grimm, Michael J.

    1988-01-01

    A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.

  7. A wide-band high-resolution spectrum analyzer.

    PubMed

    Quirk, M P; Garyantes, M F; Wilck, H C; Grimm, M J

    1988-12-01

    This paper describes a two-million-channel 40-MHz-bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2(21)-point, Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis and detection.

  8. Speech analyzer

    NASA Technical Reports Server (NTRS)

    Lokerson, D. C. (Inventor)

    1977-01-01

    A speech signal is analyzed by applying the signal to formant filters which derive first, second and third signals respectively representing the frequency of the speech waveform in the first, second and third formants. A first pulse train having approximately a pulse rate representing the average frequency of the first formant is derived; second and third pulse trains having pulse rates respectively representing zero crossings of the second and third formants are derived. The first formant pulse train is derived by establishing N signal level bands, where N is an integer at least equal to two. Adjacent ones of the signal bands have common boundaries, each of which is a predetermined percentage of the peak level of a complete cycle of the speech waveform.

  9. Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System

    NASA Astrophysics Data System (ADS)

    Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup

    2018-04-01

    Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.

  10. Non-Seismology Seismology: Using QuakeCatchers to Analyze the Frequency of Bridge Vibrations

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Constantin, C.; Wilson, C. F.

    2013-12-01

    We conducted an experiment to test the feasibility of measuring seismic waves generated by traffic near James Madison University. We used QuakeCatcher seismometers (originally designed for passive seismic measurement) to measure vibrations associated with traffic on a wooden bridge as well as a nearby concrete bridge. This experiment was a signal processing exercise for a student research project and did not draw any conclusions regarding bridge safety or security. The experiment consisted of two temporary measurement stations comprised of a laptop computer and a QuakeCatcher - a small seismometer that plugs directly into the laptop via a USB cable. The QuakeCatcher was taped to the ground at the edge of the bridge to achieve good coupling, and vibrational events were triggered repeatedly with a control vehicle to accumulate a consistent dataset of the bridge response. For the wooden bridge, the resulting 'seismograms' were converted to Seismic Analysis Code (SAC) format and analyzed in MATLAB. The concrete bridge did not generate vibrations significant enough to trigger the recording mechanism on the QuakeCatchers. We will present an overview of the experimental design and frequency content of the traffic patterns, as well as a discussion of the instructional benefits of using the QuakeCatcher sensors in this non-traditional setting.

  11. Real time speech formant analyzer and display

    DOEpatents

    Holland, George E.; Struve, Walter S.; Homer, John F.

    1987-01-01

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

  12. Real time speech formant analyzer and display

    DOEpatents

    Holland, G.E.; Struve, W.S.; Homer, J.F.

    1987-02-03

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.

  13. A general purpose wideband optical spatial frequency spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Ballard, G. S.; Mellor, F. A.

    1972-01-01

    The light scattered at various angles by a transparent media is studied. An example of these applications is the optical Fourier spectrum measurement resulting from various spatial frequencies which were recorded on a photographic emulsion. A method for obtaining these measurements consists of illuminating the test object with parallel monochromatic light. A stationary lens, placed in the resulting wavefield at a distance of one focal length from the object, will focus parallel waves emanating from the test object at a point lying in the focal plane of the lens. A light detector with a small filtering aperture is then used to measure the intensity variation of the light in the focal or transform plane of the lens. Such measurements require the use of a lens which is highly corrected for all of the common aberrations except chromatic aberration.

  14. Signal Identification and Isolation Utilizing Radio Frequency Photonics

    DTIC Science & Technology

    2017-09-01

    analyzers can measure the frequency of signals and filters can be used to separate the signals apart from one another. This report will review...different techniques for spectrum analysis and isolation. 15. SUBJECT TERMS radio frequency, photonics, spectrum analyzer, filters 16. SECURITY CLASSIFICATION...Analyzers .......................................................................................... 3 3.2 Frequency Identification using Filters

  15. Method for network analyzation and apparatus

    DOEpatents

    Bracht, Roger B.; Pasquale, Regina V.

    2001-01-01

    A portable network analyzer and method having multiple channel transmit and receive capability for real-time monitoring of processes which maintains phase integrity, requires low power, is adapted to provide full vector analysis, provides output frequencies of up to 62.5 MHz and provides fine sensitivity frequency resolution. The present invention includes a multi-channel means for transmitting and a multi-channel means for receiving, both in electrical communication with a software means for controlling. The means for controlling is programmed to provide a signal to a system under investigation which steps consecutively over a range of predetermined frequencies. The resulting received signal from the system provides complete time domain response information by executing a frequency transform of the magnitude and phase information acquired at each frequency step.

  16. Effect of laser frequency noise on fiber-optic frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.

    1989-01-01

    The effect of the linewidth of a single longitude-mode laser on the frequency stability of a frequency reference transmitted over a single-mode optical fiber is analyzed. The interaction of the random laser frequency deviations with the dispersion of the optical fiber is considered to determine theoretically the effect on the Allan deviation (square root of the Allan variance) of the transmitted frequency reference. It is shown that the magnitude of this effect may determine the limit of the ultimate stability possible for frequency reference transmission on optical fiber, but is not a serious limitation to present system performance.

  17. Digital frequency control of satellite frequency standards. [Defense Navigation Satellites

    NASA Technical Reports Server (NTRS)

    Nichols, S. A.

    1973-01-01

    In the Frequency and Time Standard Development Program of the TIMATION System, a new miniaturized rubidium vapor frequency standard has been tested and analyzed for possible use on the TIMATION 3A launch, as part of the Defense Navigation Satellite Development Program. The design and construction of a digital frequency control was required to remotely control this rubidium vapor frequency standard as well as the quartz oscillator in current use. This control must be capable of accepting commands from a satellite telemetry system, verify that the correct commands have been sent and control the frequency to the requirements of the system. Several modifications must be performed to the rubidium vapor frequency standard to allow it to be compatible with the digital frequency control. These include the addition of a varactor to voltage tune the coarse range of the flywheel oscillator, and a modification to supply the C field current externally. The digital frequency control for the rubidium vapor frequency standard has been successfully tested in prototype form.

  18. The Statistical Loop Analyzer (SLA)

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1985-01-01

    The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.

  19. Charge Analyzer Responsive Local Oscillations

    NASA Technical Reports Server (NTRS)

    Krause, Linda Habash; Thornton, Gary

    2015-01-01

    The first transatlantic radio transmission, demonstrated by Marconi in December of 1901, revealed the essential role of the ionosphere for radio communications. This ionized layer of the upper atmosphere controls the amount of radio power transmitted through, reflected off of, and absorbed by the atmospheric medium. Low-frequency radio signals can propagate long distances around the globe via repeated reflections off of the ionosphere and the Earth's surface. Higher frequency radio signals can punch through the ionosphere to be received at orbiting satellites. However, any turbulence in the ionosphere can distort these signals, compromising the performance or even availability of space-based communication and navigations systems. The physics associated with this distortion effect is analogous to the situation when underwater images are distorted by convecting air bubbles. In fact, these ionospheric features are often called 'plasma bubbles' since they exhibit some of the similar behavior as underwater air bubbles. These events, instigated by solar and geomagnetic storms, can cause communication and navigation outages that last for hours. To help understand and predict these outages, a world-wide community of space scientists and technologists are devoted to researching this topic. One aspect of this research is to develop instruments capable of measuring the ionospheric plasma bubbles. Figure 1 shows a photo of the Charge Analyzer Responsive to Local Oscillations (CARLO), a new instrument under development at NASA Marshall Space Flight Center (MSFC). It is a frequency-domain ion spectrum analyzer designed to measure the distributions of ionospheric turbulence from 1 Hz to 10 kHz (i.e., spatial scales from a few kilometers down to a few centimeters). This frequency range is important since it focuses on turbulence scales that affect VHF/UHF satellite communications, GPS systems, and over-the-horizon radar systems. CARLO is based on the flight-proven Plasma Local

  20. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...

  1. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...

  2. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...

  3. 40 CFR 1065.308 - Continuous gas analyzer system-response and updating-recording verification-for gas analyzers not...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... which you sample and record gas-analyzer concentrations. (b) Measurement principles. This test verifies... appropriate frequency to prevent loss of information. This test also verifies that the measurement system... instructions. Adjust the measurement system as needed to optimize performance. Run this verification with the...

  4. A wide-band, high-resolution spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Wilck, H. C.; Quirk, M. P.; Grimm, M. J.

    1985-01-01

    A million-channel, 20 MHz-bandwidth, digital spectrum analyzer under evelopment for use in the SETI Sky Survey and other applications in the Deep Space Network is described. The analyzer digitizes an analog input, performs a 2(20)-point Radix-2, Fast Fourier Transform, accumulates the output power, and normalizes the output to remove frequency-dependent gain. The effective speed of the real-time hardware is 2.2 GigaFLOPS.

  5. Graph Frequency Analysis of Brain Signals

    PubMed Central

    Huang, Weiyu; Goldsberry, Leah; Wymbs, Nicholas F.; Grafton, Scott T.; Bassett, Danielle S.; Ribeiro, Alejandro

    2016-01-01

    This paper presents methods to analyze functional brain networks and signals from graph spectral perspectives. The notion of frequency and filters traditionally defined for signals supported on regular domains such as discrete time and image grids has been recently generalized to irregular graph domains, and defines brain graph frequencies associated with different levels of spatial smoothness across the brain regions. Brain network frequency also enables the decomposition of brain signals into pieces corresponding to smooth or rapid variations. We relate graph frequency with principal component analysis when the networks of interest denote functional connectivity. The methods are utilized to analyze brain networks and signals as subjects master a simple motor skill. We observe that brain signals corresponding to different graph frequencies exhibit different levels of adaptability throughout learning. Further, we notice a strong association between graph spectral properties of brain networks and the level of exposure to tasks performed, and recognize the most contributing and important frequency signatures at different levels of task familiarity. PMID:28439325

  6. Real-Time, Polyphase-FFT, 640-MHz Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Zimmerman, George A.; Garyantes, Michael F.; Grimm, Michael J.; Charny, Bentsian; Brown, Randy D.; Wilck, Helmut C.

    1994-01-01

    Real-time polyphase-fast-Fourier-transform, polyphase-FFT, spectrum analyzer designed to aid in detection of multigigahertz radio signals in two 320-MHz-wide polarization channels. Spectrum analyzer divides total spectrum of 640 MHz into 33,554,432 frequency channels of about 20 Hz each. Size and cost of polyphase-coefficient memory substantially reduced and much of processing loss of windowed FFTs eliminated.

  7. Numerical methods for analyzing electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Lo, Y. T.; Chuang, S. L.; Lee, C. S.

    1985-01-01

    Numerical methods to analyze electromagnetic scattering are presented. The dispersions and attenuations of the normal modes in a circular waveguide coated with lossy material were completely analyzed. The radar cross section (RCS) from a circular waveguide coated with lossy material was calculated. The following is observed: (1) the interior irradiation contributes to the RCS much more than does the rim diffraction; (2) at low frequency, the RCS from the circular waveguide terminated by a perfect electric conductor (PEC) can be reduced more than 13 dB down with a coating thickness less than 1% of the radius using the best lossy material available in a 6 radius-long cylinder; (3) at high frequency, a modal separation between the highly attenuated and the lowly attenuated modes is evident if the coating material is too lossy, however, a large RCS reduction can be achieved for a small incident angle with a thin layer of coating. It is found that the waveguide coated with a lossy magnetic material can be used as a substitute for a corrugated waveguide to produce a circularly polarized radiation yield.

  8. Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator

    PubMed Central

    Coluccelli, Nicola; Cassinerio, Marco; Gambetta, Alessio; Laporta, Paolo; Galzerano, Gianluca

    2015-01-01

    The frequency noise of an optical frequency comb is routinely measured through the hetherodyne beat of one comb tooth against a stable continuous-wave laser. After frequency-to-voltage conversion, the beatnote is sent to a spectrum analyzer to retrive the power spectral density of the frequency noise. Because narrow-linewidth continuous-wave lasers are available only at certain wavelengths, heterodyning the comb tooth can be challenging. We present a new technique for direct characterization of the frequency noise of an optical frequency comb, requiring no supplementary reference lasers and easily applicable in all spectral regions from the terahertz to the ultraviolet. The technique is based on the combination of a low finesse Fabry-Perot resonator and the so-called “fringe-side locking” method, usually adopted to characterize the spectral purity of single-frequency lasers, here generalized to optical frequency combs. The effectiveness of this technique is demonstrated with an Er-fiber comb source across the wavelength range from 1 to 2 μm. PMID:26548900

  9. Analyzing the properties of acceptor mode in two-dimensional plasma photonic crystals based on a modified finite-difference frequency-domain method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hai-Feng, E-mail: hanlor@163.com; Nanjing Artillery Academy, Nanjing 211132; Ding, Guo-Wen

    2015-05-15

    In this paper, the properties of acceptor mode in two-dimensional plasma photonic crystals (2D PPCs) composed of the homogeneous and isotropic dielectric cylinders inserted into nonmagnetized plasma background with square lattices under transverse-magnetic wave are theoretically investigated by a modified finite-difference frequency-domain (FDFD) method with supercell technique, whose symmetry of every supercell is broken by removing a central rod. A new FDFD method is developed to calculate the band structures of such PPCs. The novel FDFD method adopts a general function to describe the distribution of dielectric in the present PPCs, which can easily transform the complicated nonlinear eigenvalue equationmore » to the simple linear equation. The details of convergence and effectiveness of proposed FDFD method are analyzed using a numerical example. The simulated results demonstrate that the enough accuracy of the proposed FDFD method can be observed compared to the plane wave expansion method, and the good convergence can also be obtained if the number of meshed grids is large enough. As a comparison, two different configurations of photonic crystals (PCs) but with similar defect are theoretically investigated. Compared to the conventional dielectric-air PCs, not only the acceptor mode has a higher frequency but also an additional photonic bandgap (PBG) can be found in the low frequency region. The calculated results also show that PBGs of proposed PPCs can be enlarged as the point defect is introduced. The influences of the parameters for present PPCs on the properties of acceptor mode are also discussed in detail. Numerical simulations reveal that the acceptor mode in the present PPCs can be easily tuned by changing those parameters. Those results can hold promise for designing the tunable applications in the signal process or time delay devices based on the present PPCs.« less

  10. A Spatial-frequency Method for Analyzing Antenna-to-Probe Interactions in Near-field Antenna Measurements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, Billy C.

    The measurement of the radiation characteristics of an antenna on a near-field range requires that the antenna under test be located very close to the near-field probe. Although the direct coupling is utilized for characterizing the near field, this close proximity also presents the opportunity for significant undesired interactions (for example, reflections) to occur between the antenna and the near-field probe. When uncompensated, these additional interactions will introduce error into the measurement, increasing the uncertainty in the final gain pattern obtained through the near-field-to-far-field transformation. Quantifying this gain-uncertainty contribution requires quantifying the various additional interactions. A method incorporating spatial-frequency analysismore » is described which allows the dominant interaction contributions to be easily identified and quantified. In addition to identifying the additional antenna-to-probe interactions, the method also allows identification and quantification of interactions with other nearby objects within the measurement room. Because the method is a spatial-frequency method, wide-bandwidth data is not required, and it can be applied even when data is available at only a single temporal frequency. This feature ensures that the method can be applied to narrow-band antennas, where a similar time-domain analysis would not be possible. - 3 - - 4 -« less

  11. Digital signal processing in the radio science stability analyzer

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1995-01-01

    The Telecommunications Division has built a stability analyzer for testing Deep Space Network installations during flight radio science experiments. The low-frequency part of the analyzer operates by digitizing wave signals with bandwidths between 80 Hz and 45 kHz. Processed outputs include spectra of signal, phase, amplitude, and differential phase; time series of the same quantities; and Allan deviation of phase and differential phase. This article documents the digital signal-processing methods programmed into the analyzer.

  12. Analyzing Idioms and Their Frequency in Three Advanced ILI Textbooks: A Corpus-Based Study

    ERIC Educational Resources Information Center

    Alavi, Sepideh; Rajabpoor, Aboozar

    2015-01-01

    The present study aimed at identifying and quantifying the idioms used in three ILI "Advanced" level textbooks based on three different English corpora; MICASE, BNC and the Brown Corpus, and comparing the frequencies of the idioms across the three corpora. The first step of the study involved searching the books to find multi-word…

  13. The instantaneous frequency rate spectrogram

    NASA Astrophysics Data System (ADS)

    Czarnecki, Krzysztof

    2016-01-01

    An accelerogram of the instantaneous phase of signal components referred to as an instantaneous frequency rate spectrogram (IFRS) is presented as a joint time-frequency distribution. The distribution is directly obtained by processing the short-time Fourier transform (STFT) locally. A novel approach to amplitude demodulation based upon the reassignment method is introduced as a useful by-product. Additionally, an estimator of energy density versus the instantaneous frequency rate (IFR) is proposed and referred to as the IFR profile. The energy density is estimated based upon both the classical energy spectrogram and the IFRS smoothened by the median filter. Moreover, the impact of an analyzing window width, additive white Gaussian noise and observation time is tested. Finally, the introduced method is used for the analysis of the acoustic emission of an automotive engine. The recording of the engine of a Lamborghini Gallardo is analyzed as an example.

  14. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  15. New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.

    PubMed

    Nakanishi, Masahiro; Sasaki, Yasutaka; Nozaki, Ryusuke

    2010-12-01

    A new configuration for the sample cell to be used in broadband dielectric spectroscopy is presented. A coaxial structure with a parallel plate capacitor (outward parallel plate cell: OPPC) has made it possible to extend the frequency range significantly in comparison with the frequency range of the conventional configuration. In the proposed configuration, stray inductance is significantly decreased; consequently, the upper bound of the frequency range is improved by two orders of magnitude from the upper limit of conventional parallel plate capacitor (1 MHz). Furthermore, the value of capacitance is kept high by using a parallel plate configuration. Therefore, the precision of the capacitance measurement in the lower frequency range remains sufficiently high. Finally, OPPC can cover a wide frequency range (100 Hz-1 GHz) with an appropriate admittance measuring apparatus such as an impedance or network analyzer. The OPPC and the conventional dielectric cell are compared by examining the frequency dependence of the complex permittivity for several polar liquids and polymeric films.

  16. A practical implementation of multi-frequency widefield frequency-domain FLIM

    PubMed Central

    Chen, Hongtao

    2013-01-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime, especially in kinetic studies in biomedical researches. However, the small range of modulation frequencies available in commercial instruments makes this technique limited in its applications. Here we describe a practical implementation of multi-frequency widefield FD-FLIM using a pulsed supercontinuum laser and a direct digital synthesizer. In this instrument we use a pulse to modulate the image intensifier rather than the more conventional sine wave modulation. This allows parallel multi-frequency FLIM measurement using the Fast Fourier Transform and the cross-correlation technique, which permits precise and simultaneous isolation of individual frequencies. In addition, the pulse modulation at the cathode of image intensifier restored the loss of optical resolution caused by the defocusing effect when the voltage at the cathode is sinusoidally modulated. Furthermore, in our implementation of this technique, data can be graphically analyzed by the phasor method while data are acquired, which allows easy fit-free lifetime analysis of FLIM images. Here our measurements of standard fluorescent samples and a Föster resonance energy transfer pair demonstrate that the widefield multi-frequency FLIM system is a valuable and simple tool in fluorescence imaging studies. PMID:23296945

  17. Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V.

    1994-12-31

    A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.

  18. Josephson Junction spectrum analyzer for millimeter and submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Larkin, S. Y.; Anischenko, S. E.; Khabayev, P. V.

    1995-01-01

    A prototype of the Josephson-effect spectrum analyzer developed for the millimeter wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.

  19. Substructure coupling in the frequency domain

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Frequency domain analysis was found to be a suitable method for determining the transient response of systems subjected to a wide variety of loads. However, since a large number of calculations are performed within the discrete frequency loop, the method loses it computational efficiency if the loads must be represented by a large number of discrete frequencies. It was also discovered that substructure coupling in the frequency domain work particularly well for analyzing structural system with a small number of interface and loaded degrees of freedom. It was discovered that substructure coupling in the frequency domain can lead to an efficient method of obtaining natural frequencies of undamped structures. It was also found that the damped natural frequencies of a system may be determined using frequency domain techniques.

  20. Analyzing the Acoustic Beat with Mobile Devices

    ERIC Educational Resources Information Center

    Kuhn, Jochen; Vogt, Patrik; Hirth, Michael

    2014-01-01

    In this column, we have previously presented various examples of how physical relationships can be examined by analyzing acoustic signals using smartphones or tablet PCs. In this example, we will be exploring the acoustic phenomenon of small beats, which is produced by the overlapping of two tones with a low difference in frequency ?f. The…

  1. Multi-frequency communication system and method

    DOEpatents

    Carrender, Curtis Lee; Gilbert, Ronald W.

    2004-06-01

    A multi-frequency RFID remote communication system is provided that includes a plurality of RFID tags configured to receive a first signal and to return a second signal, the second signal having a first frequency component and a second frequency component, the second frequency component including data unique to each remote RFID tag. The system further includes a reader configured to transmit an interrogation signal and to receive remote signals from the tags. A first signal processor, preferably a mixer, removes an intermediate frequency component from the received signal, and a second processor, preferably a second mixer, analyzes the IF frequency component to output data that is unique to each remote tag.

  2. Beat frequency interference pattern characteristics study

    NASA Technical Reports Server (NTRS)

    Ott, J. H.; Rice, J. S.

    1981-01-01

    The frequency spectra and corresponding beat frequencies created by the relative motions between multiple Solar Power Satellites due to solar wind, lunar gravity, etc. were analyzed. The results were derived mathematically and verified through computer simulation. Frequency spectra plots were computer generated. Detailed computations were made for the seven following locations in the continental US: Houston, Tx.; Seattle, Wa.; Miami, Fl.; Chicago, Il.; New York, NY; Los Angeles, Ca.; and Barberton, Oh.

  3. Calibration of optical particle-size analyzer

    DOEpatents

    Pechin, William H.; Thacker, Louis H.; Turner, Lloyd J.

    1979-01-01

    This invention relates to a system for the calibration of an optical particle-size analyzer of the light-intercepting type for spherical particles, wherein a rotary wheel or disc is provided with radially-extending wires of differing diameters, each wire corresponding to a particular equivalent spherical particle diameter. These wires are passed at an appropriate frequency between the light source and the light detector of the analyzer. The reduction of light as received at the detector is a measure of the size of the wire, and the electronic signal may then be adjusted to provide the desired signal for corresponding spherical particles. This calibrator may be operated at any time without interrupting other processing.

  4. Analyzing the acoustic beat with mobile devices

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik; Hirth, Michael

    2014-04-01

    In this column, we have previously presented various examples of how physical relationships can be examined by analyzing acoustic signals using smartphones or tablet PCs. In this example, we will be exploring the acoustic phenomenon of small beats, which is produced by the overlapping of two tones with a low difference in frequency Δf. The resulting auditory sensation is a tone with a volume that varies periodically. Acoustic beats can be perceived repeatedly in day-to-day life and have some interesting applications. For example, string instruments are still tuned with the help of an acoustic beat, even with modern technology. If a reference tone (e.g., 440 Hz) and, for example, a slightly out-of-tune violin string produce a tone simultaneously, a beat can be perceived. The more similar the frequencies, the longer the duration of the beat. In the extreme case, when the frequencies are identical, a beat no longer arises. The string is therefore correctly tuned. Using the Oscilloscope app,4 it is possible to capture and save acoustic signals of this kind and determine the beat frequency fS of the signal, which represents the difference in frequency Δf of the two overlapping tones (for Android smartphones, the app OsciPrime Oscilloscope can be used).

  5. Frequency Selection for Multi-frequency Acoustic Measurement of Suspended Sediment

    NASA Astrophysics Data System (ADS)

    Chen, X.; HO, H.; Fu, X.

    2017-12-01

    Multi-frequency acoustic measurement of suspended sediment has found successful applications in marine and fluvial environments. Difficult challenges remain in regard to improving its effectiveness and efficiency when applied to high concentrations and wide size distributions in rivers. We performed a multi-frequency acoustic scattering experiment in a cylindrical tank with a suspension of natural sands. The sands range from 50 to 600 μm in diameter with a lognormal size distribution. The bulk concentration of suspended sediment varied from 1.0 to 12.0 g/L. We found that the commonly used linear relationship between the intensity of acoustic backscatter and suspended sediment concentration holds only at sufficiently low concentrations, for instance below 3.0 g/L. It fails at a critical value of concentration that depends on measurement frequency and the distance between the transducer and the target point. Instead, an exponential relationship was found to work satisfactorily throughout the entire range of concentration. The coefficient and exponent of the exponential function changed, however, with the measuring frequency and distance. Considering the increased complexity of inverting the concentration values when an exponential relationship prevails, we further analyzed the relationship between measurement error and measuring frequency. It was also found that the inversion error may be effectively controlled within 5% if the frequency is properly set. Compared with concentration, grain size was found to heavily affect the selection of optimum frequency. A regression relationship for optimum frequency versus grain size was developed based on the experimental results.

  6. Initial report of the High Frequency Analyzer (HFA) onboard the ARASE (ERG) Satellite: Observations of the plasmasphere evolution and auroral kilometric radiation from the both hemisphere

    NASA Astrophysics Data System (ADS)

    Kumamoto, A.; Tsuchiya, F.; Kasahara, Y.; Kasaba, Y.; Kojima, H.; Yagitani, S.; Ishisaka, K.; Imachi, T.; Ozaki, M.; Matsuda, S.; Shoji, M.; Matsuoka, A.; Katoh, Y.; Miyoshi, Y.; Shinohara, I.; Obara, T.

    2017-12-01

    High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment (PWE) onboard the ARASE (ERG, Exploration of energization and Radiation in Geospace) spacecraft for observation of radio and plasma waves in a frequency range from 0.01 to 10 MHz. In ARASE mission, HFA is expected to perform the following observations: (1) Upper hybrid resonance (UHR) waves in order to determine the electron number density around the spacecraft. (2) Magnetic field component of the chorus waves in a frequency range from 20 kHz to 100 kHz. (3) Radio and plasma waves excited via wave particle interactions and mode conversion processes in storm-time magnetosphere.HFA is operated in the following three observation modes: EE-mode, EB-mode, and PP-mode. In far-Earth region, HFA is operated in EE-mode. Spectrogram of two orthogonal or right and left-handed components of electric field in perpendicular directions to the spin axis of the spacecraft are obtained. In the near-Earth region, HFA is operated in EB-mode. Spectrogram of one components of electric field in perpendicular direction to the spin plane, and one component of the magnetic field in parallel direction to the spin axis are obtained. In EE and EB-modes, the frequency range from 0.01 to 10 MHz are covered with 480 frequency steps. The time resolution is 8 sec. We also prepared PP mode to measure the locations and structures of the plasmapause at higher resolution. In PP-mode, spectrogram of one electric field component in a frequency range from 0.01-0.4 MHz (PP1) or 0.1-1 MHz (PP2) can be obtained at time resolution of 1 sec.After the successful deployment of the wire antenna and search coils mast and initial checks, we could start routine observations and detect various radio and plasma wave phenomena such as upper hybrid resonance (UHR) waves, electrostatic electron cyclotron harmonic (ESCH) waves, auroral kilometric radiation (AKR), kilometric continuum (KC) and Type-III solar radio bursts. In the presentation, we

  7. Truck acoustic data analyzer system

    DOEpatents

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  8. The Deep Space Network stability analyzer

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Greenhall, Charles A.; Hamell, Robert L.; Kuhnle, Paul F.

    1995-01-01

    A stability analyzer for testing NASA Deep Space Network installations during flight radio science experiments is described. The stability analyzer provides realtime measurements of signal properties of general experimental interest: power, phase, and amplitude spectra; Allan deviation; and time series of amplitude, phase shift, and differential phase shift. Input ports are provided for up to four 100 MHz frequency standards and eight baseband analog (greater than 100 kHz bandwidth) signals. Test results indicate the following upper bounds to noise floors when operating on 100 MHz signals: -145 dBc/Hz for phase noise spectrum further than 200 Hz from carrier, 2.5 x 10(exp -15) (tau =1 second) and 1.5 x 10(exp -17) (tau =1000 seconds) for Allan deviation, and 1 x 10(exp -4) degrees for 1-second averages of phase deviation. Four copies of the stability analyzer have been produced, plus one transportable unit for use at non-NASA observatories.

  9. Frequency characterization of a swept- and fixed-wavelength external-cavity quantum cascade laser by use of a frequency comb.

    PubMed

    Knabe, Kevin; Williams, Paul A; Giorgetta, Fabrizio R; Armacost, Chris M; Crivello, Sam; Radunsky, Michael B; Newbury, Nathan R

    2012-05-21

    The instantaneous optical frequency of an external-cavity quantum cascade laser (QCL) is characterized by comparison to a near-infrared frequency comb. Fluctuations in the instantaneous optical frequency are analyzed to determine the frequency-noise power spectral density for the external-cavity QCL both during fixed-wavelength and swept-wavelength operation. The noise performance of a near-infrared external-cavity diode laser is measured for comparison. In addition to providing basic frequency metrology of external-cavity QCLs, this comb-calibrated swept QCL system can be applied to rapid, precise broadband spectroscopy in the mid-infrared spectral region.

  10. Peak high-frequency HRV and peak alpha frequency higher in PTSD.

    PubMed

    Wahbeh, Helané; Oken, Barry S

    2013-03-01

    Posttraumatic stress disorder (PTSD) is difficult to treat and current PTSD treatments are not effective for all people. Despite limited evidence for its efficacy, some clinicians have implemented biofeedback for PTSD treatment. As a first step in constructing an effective biofeedback treatment program, we assessed respiration, electroencephalography (EEG) and heart rate variability (HRV) as potential biofeedback parameters for a future clinical trial. This cross-sectional study included 86 veterans; 59 with and 27 without PTSD. Data were collected on EEG measures, HRV, and respiration rate during an attentive resting state. Measures were analyzed to assess sensitivity to PTSD status and the relationship to PTSD symptoms. Peak alpha frequency was higher in the PTSD group (F(1,84) = 6.14, p = 0.01). Peak high-frequency HRV was lower in the PTSD group (F(2,78) = 26.5, p < 0.00005) when adjusting for respiration rate. All other EEG and HRV measures and respiration were not different between groups. Peak high-frequency HRV and peak alpha frequency are sensitive to PTSD status and may be potential biofeedback parameters for future PTSD clinical trials.

  11. Mid-frequency MTF compensation of optical sparse aperture system.

    PubMed

    Zhou, Chenghao; Wang, Zhile

    2018-03-19

    Optical sparse aperture (OSA) can greatly improve the spatial resolution of optical system. However, because of its aperture dispersion and sparse, its mid-frequency modulation transfer function (MTF) are significantly lower than that of a single aperture system. The main focus of this paper is on the mid-frequency MTF compensation of the optical sparse aperture system. Firstly, the principle of the mid-frequency MTF decreasing and missing of optical sparse aperture are analyzed. This paper takes the filling factor as a clue. The method of processing the mid-frequency MTF decreasing with large filling factor and method of compensation mid-frequency MTF with small filling factor are given respectively. For the MTF mid-frequency decreasing, the image spatial-variant restoration method is proposed to restore the mid-frequency information in the image; for the mid-frequency MTF missing, two images obtained by two system respectively are fused to compensate the mid-frequency information in optical sparse aperture image. The feasibility of the two method are analyzed in this paper. The numerical simulation of the system and algorithm of the two cases are presented using Zemax and Matlab. The results demonstrate that by these two methods the mid-frequency MTF of OSA system can be compensated effectively.

  12. EMD-WVD time-frequency distribution for analysis of multi-component signals

    NASA Astrophysics Data System (ADS)

    Chai, Yunzi; Zhang, Xudong

    2016-10-01

    Time-frequency distribution (TFD) is two-dimensional function that indicates the time-varying frequency content of one-dimensional signals. And The Wigner-Ville distribution (WVD) is an important and effective time-frequency analysis method. The WVD can efficiently show the characteristic of a mono-component signal. However, a major drawback is the extra cross-terms when multi-component signals are analyzed by WVD. In order to eliminating the cross-terms, we decompose signals into single frequency components - Intrinsic Mode Function (IMF) - by using the Empirical Mode decomposition (EMD) first, then use WVD to analyze each single IMF. In this paper, we define this new time-frequency distribution as EMD-WVD. And the experiment results show that the proposed time-frequency method can solve the cross-terms problem effectively and improve the accuracy of WVD time-frequency analysis.

  13. Nonlinear single-spin spectrum analyzer.

    PubMed

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2013-03-15

    Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.

  14. Identification of site frequencies from building records

    USGS Publications Warehouse

    Celebi, M.

    2003-01-01

    A simple procedure to identify site frequencies using earthquake response records from roofs and basements of buildings is presented. For this purpose, data from five different buildings are analyzed using only spectral analyses techniques. Additional data such as free-field records in close proximity to the buildings and site characterization data are also used to estimate site frequencies and thereby to provide convincing evidence and confirmation of the site frequencies inferred from the building records. Furthermore, simple code-formula is used to calculate site frequencies and compare them with the identified site frequencies from records. Results show that the simple procedure is effective in identification of site frequencies and provides relatively reliable estimates of site frequencies when compared with other methods. Therefore the simple procedure for estimating site frequencies using earthquake records can be useful in adding to the database of site frequencies. Such databases can be used to better estimate site frequencies of those sites with similar geological structures.

  15. Frequency domain FIR and IIR adaptive filters

    NASA Technical Reports Server (NTRS)

    Lynn, D. W.

    1990-01-01

    A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.

  16. Methods, computer readable media, and graphical user interfaces for analysis of frequency selective surfaces

    DOEpatents

    Kotter, Dale K [Shelley, ID; Rohrbaugh, David T [Idaho Falls, ID

    2010-09-07

    A frequency selective surface (FSS) and associated methods for modeling, analyzing and designing the FSS are disclosed. The FSS includes a pattern of conductive material formed on a substrate to form an array of resonance elements. At least one aspect of the frequency selective surface is determined by defining a frequency range including multiple frequency values, determining a frequency dependent permittivity across the frequency range for the substrate, determining a frequency dependent conductivity across the frequency range for the conductive material, and analyzing the frequency selective surface using a method of moments analysis at each of the multiple frequency values for an incident electromagnetic energy impinging on the frequency selective surface. The frequency dependent permittivity and the frequency dependent conductivity are included in the method of moments analysis.

  17. General misincorporation frequency: Re-evaluation of the fidelity of DNA polymerases.

    PubMed

    Yang, Jie; Li, Bianbian; Liu, Xiaoying; Tang, Hong; Zhuang, Xiyao; Yang, Mingqi; Xu, Ying; Zhang, Huidong; Yang, Chun

    2018-02-19

    DNA replication in cells is performed in the presence of four dNTPs and four rNTPs. In this study, we re-evaluated the fidelity of DNA polymerases using the general misincorporation frequency consisting of three incorrect dNTPs and four rNTPs but not using the traditional special misincorporation frequency with only the three incorrect dNTPs. We analyzed both the general and special misincorporation frequencies of nucleotide incorporation opposite dG, rG, or 8-oxoG by Pseudomonas aeruginosa phage 1 (PaP1) DNA polymerase Gp90 or Sulfolobus solfataricus DNA polymerase Dpo4. Both misincorporation frequencies of other DNA polymerases published were also summarized and analyzed. The general misincorporation frequency is obviously higher than the special misincorporation frequency for many DNA polymerases, indicating the real fidelity of a DNA polymerase should be evaluated using the general misincorporation frequency. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Single-shot distributed Brillouin optical time domain analyzer.

    PubMed

    Fang, Jian; Xu, Pengbai; Dong, Yongkang; Shieh, William

    2017-06-26

    We demonstrate a novel single-shot distributed Brillouin optical time domain analyzer (SS-BOTDA). In our method, dual-polarization probe with orthogonal frequency-division multiplexing (OFDM) modulation is used to acquire the distributed Brillouin gain spectra, and coherent detection is used to enhance the signal-to-noise ratio (SNR) drastically. Distributed temperature sensing is demonstrated over a 1.08 km standard single-mode fiber (SSMF) with 20.48 m spatial resolution and 0.59 °C temperature accuracy. Neither frequency scanning, nor polarization scrambling, nor averaging is required in our scheme. All the data are obtained through only one-shot measurement, indicating that the sensing speed is only limited by the length of fiber.

  19. Peak High-Frequency HRV and Peak Alpha Frequency Higher in PTSD

    PubMed Central

    Oken, Barry S.

    2012-01-01

    Posttraumatic stress disorder (PTSD) is difficult to treat and current PTSD treatments are not effective for all people. Despite limited evidence for its efficacy, some clinicians have implemented biofeedback for PTSD treatment. As a first step in constructing an effective biofeedback treatment program, we assessed respiration, electroencephalography (EEG) and heart rate variability (HRV) as potential biofeedback parameters for a future clinical trial. This cross-sectional study included 86 veterans; 59 with and 27 without PTSD. Data were collected on EEG measures, HRV, and respiration rate during an attentive resting state. Measures were analyzed to assess sensitivity to PTSD status and the relationship to PTSD symptoms. Peak alpha frequency was higher in the PTSD group (F(1,84) = 6.14, p = 0.01). Peak high-frequency HRV was lower in the PTSD group (F(2,78) = 26.5, p<0.00005) when adjusting for respiration rate. All other EEG and HRV measures and respiration were not different between groups. Peak high-frequency HRV and peak alpha frequency are sensitive to PTSD status and may be potential biofeedback parameters for future PTSD clinical trials. PMID:23178990

  20. Motion detector and analyzer

    DOEpatents

    Unruh, W.P.

    1987-03-23

    Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.

  1. Analysis of Power System Low Frequency Oscillation Based on Energy Shift Theory

    NASA Astrophysics Data System (ADS)

    Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing

    2018-01-01

    In this paper, a new method for analyzing low-frequency oscillation between analytic areas based on energy coefficient is proposed. The concept of energy coefficient is proposed by constructing the energy function, and the low-frequency oscillation is analyzed according to the energy coefficient under the current operating conditions; meanwhile, the concept of model energy is proposed to analyze the energy exchange behavior between two generators. Not only does this method provide an explanation of low-frequency oscillation from the energy point of view, but also it helps further reveal the dynamic behavior of complex power systems. The case analysis of four-machine two-area and the power system of Jilin Power Grid proves the correctness and effectiveness of the proposed method in low-frequency oscillation analysis of power system.

  2. RF environment survey of Space Shuttle related EEE frequency bands

    NASA Technical Reports Server (NTRS)

    Simpson, J.; Prigel, B.; Postelle, J.

    1977-01-01

    Radio frequency assignments within the continental United States in frequency bands between 121 MHz abd 65 GHz were surveyed and analyzed in order to determine current utilization of anticipated frequency bands for the shuttle borne electromagnetic environment experiment. Data from both government and nongovernment files were used. Results are presented in both narrative form and in histograms which show the total number of unclassified assignments versus frequency and total assigned power versus frequency.

  3. Synchrosqueezing an effective method for analyzing Doppler radar physiological signals.

    PubMed

    Yavari, Ehsan; Rahman, Ashikur; Jia Xu; Mandic, Danilo P; Boric-Lubecke, Olga

    2016-08-01

    Doppler radar can monitor vital sign wirelessly. Respiratory and heart rate have time-varying behavior. Capturing the rate variability provides crucial physiological information. However, the common time-frequency methods fail to detect key information. We investigate Synchrosqueezing method to extract oscillatory components of the signal with time varying spectrum. Simulation and experimental result shows the potential of the proposed method for analyzing signals with complex time-frequency behavior like physiological signals. Respiration and heart signals and their components are extracted with higher resolution and without any pre-filtering and signal conditioning.

  4. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  5. Integrated Millimeter-Wave Frequency Multiplers

    NASA Astrophysics Data System (ADS)

    Schoenthal, Gerhard S.; Deaver, B. S.; Crowe, T. W.; Bishop, W. L.; Saini, K.; Bradley, R. F.

    2001-11-01

    Many of the molecules of interest to radio astronomers and atmospheric chemists resonate at frequencies in the millimeter and submillimeter wavelength bands. To measure the spectra of these molecules scientists rely on heterodyne receivers that convert the high frequency signal to the GHz band where it is readily amplified and analyzed. One of the challenges of developing suitable receiver systems is the development of compact, reliable and affordable sources of local oscillator power at frequencies in excess of 100 GHz. One useful solution is to use GaAs Schottky diodes, in their varactor mode, to generate high frequency harmonics of lower frequency sources such as Gunn oscillators. As a part of a multi-national radio astronomy project, the Atacama Millimeter Large Array (ALMA), we have designed and fabricated a broadband frequency tripler with an output centered at 240 GHz. It is integrated on a quartz substrate to greatly reduce the parasitic capacitance and thereby improve electrical performance. The integrated circuit was designed to require no oxides or ohmic contacts, thereby easing fabrication. This talk will discuss the novel millimeter-wave integrated circuit fabrication process and the initial results.

  6. Low-frequency oscillations in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wei, Li-Qiu; Han, Liang; Yu, Da-Ren; Guo, Ning

    2015-05-01

    In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects. Project supported by the National Natural Science Foundation of China (Grant No. 51477035), the Fundamental Research Funds for the Central Universities, China (Grant No. HIT.NSRIF 2015064), and the Open Research Fund Program of State Key Laboratory of Cryogenic Vacuum Technology and Physics, China (Grant No. ZDK201304).

  7. Burst-by-burst laser frequency monitor

    NASA Technical Reports Server (NTRS)

    Esproles, Carlos (Inventor)

    1994-01-01

    The invention is a system for real-time frequency monitoring and display of an RF burst where the burst frequency is analyzed and displayed on a burst-by-burst basis in order to allow for frequency control. Although the invention was made for monitoring the laser frequency of a LIDAR system, it has other applications where realtime monitoring is required. The novelty of the invention resides in the use of a counter that is reset at the beginning of each unit time of monitoring and then gated for a unit of time. The invention also has an LED bar graph for displaying the measure of frequency at the end of each unit time in either a bar length mode or a moving dot mode. In the latter mode, the operator makes necessary adjustments to maintain the dot at the center of the bar graph.

  8. A frequency standard via spectrum analysis and direct digital synthesis

    NASA Astrophysics Data System (ADS)

    Li, Dawei; Shi, Daiting; Hu, Ermeng; Wang, Yigen; Tian, Lu; Zhao, Jianye; Wang, Zhong

    2014-11-01

    We demonstrated a frequency standard based on a detuned coherent population beating phenomenon. In this phenomenon, the beat frequency of the radio frequency for laser modulation and the hyperfine splitting can be obtained by digital signal processing technology. After analyzing the spectrum of the beat frequency, the fluctuation information is obtained and applied to compensate for the frequency shift to generate the standard frequency by the digital synthesis method. Frequency instability of 2.6 × 1012 at 1000 s is observed in our preliminary experiment. By eliminating the phase-locking loop, the method will enable us to achieve a full-digital frequency standard with remarkable stability.

  9. Analyzing Aeroelasticity in Turbomachines

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.

    2003-01-01

    ASTROP2-LE is a computer program that predicts flutter and forced responses of blades, vanes, and other components of such turbomachines as fans, compressors, and turbines. ASTROP2-LE is based on the ASTROP2 program, developed previously for analysis of stability of turbomachinery components. In developing ASTROP2- LE, ASTROP2 was modified to include a capability for modeling forced responses. The program was also modified to add a capability for analysis of aeroelasticity with mistuning and unsteady aerodynamic solutions from another program, LINFLX2D, that solves the linearized Euler equations of unsteady two-dimensional flow. Using LINFLX2D to calculate unsteady aerodynamic loads, it is possible to analyze effects of transonic flow on flutter and forced response. ASTROP2-LE can be used to analyze subsonic, transonic, and supersonic aerodynamics and structural mistuning for rotors with blades of differing structural properties. It calculates the aerodynamic damping of a blade system operating in airflow so that stability can be assessed. The code also predicts the magnitudes and frequencies of the unsteady aerodynamic forces on the airfoils of a blade row from incoming wakes. This information can be used in high-cycle fatigue analysis to predict the fatigue lives of the blades.

  10. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics.

    PubMed

    Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai

    2016-01-01

    Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid.

  11. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  12. 40 CFR 86.1416 - Calibration; frequency and overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...

  13. 40 CFR 86.1416 - Calibration; frequency and overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...

  14. 40 CFR 86.1416 - Calibration; frequency and overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...

  15. 40 CFR 86.1416 - Calibration; frequency and overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...

  16. Frequency Arrangement For 700 MHz Band

    NASA Astrophysics Data System (ADS)

    Ancans, G.; Bobrovs, V.; Ivanovs, G.

    2015-02-01

    The 694-790 MHz (700 MHz) band was allocated by the 2012 World Radiocommunication Conference (WRC-12) in ITU Region 1 (Europe included), to the mobile service on a co-primary basis with other services to which this band was allocated on the primary basis and identified for the International Mobile Telecommunications (IMT). At the same time, the countries of Region 1 will be able also to continue using these frequencies for their broadcasting services if necessary. This allocation will be effective immediately after 2015 World Radiocommunication Conference (WRC-15). In order to make the best possible use of this frequency band for mobile service, a worldwide harmonized frequency arrangement is to be prepared to allow for large economies of scale and international roaming as well as utilizing the available spectrum in the best possible way, minimizing possible interference between services, facilitating deployment and cross-border coordination. The authors analyze different possible frequency arrangements and conclude on the frequency arrangement most suitable for Europe.

  17. Analysis of Fresnel Zone Plates Focusing Dependence on Operating Frequency

    PubMed Central

    Fuster, José Miguel; Candelas, Pilar; Castiñeira-Ibáñez, Sergio; Pérez-López, Sergio

    2017-01-01

    The focusing properties of Fresnel Zone Plates (FZPs) against frequency are analyzed in this work. It is shown that the FZP focal length depends almost linearly on the operating frequency. Focal depth and focal distortion are also considered, establishing a limit on the frequency span at which the operating frequency can be shifted. An underwater FZP ultrasound focusing system is demonstrated, and experimental results agree with the theoretical analysis and simulations. PMID:29206137

  18. VISAR Analysis in the Frequency Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, D. H.; Specht, P.

    2017-05-18

    VISAR measurements are typically analyzed in the time domain, where velocity is approximately proportional to fringe shift. Moving to the frequency domain clarifies the limitations of this approximation and suggests several improvements. For example, optical dispersion preserves high-frequency information, so a zero-dispersion (air delay) interferometer does not provide optimal time resolution. Combined VISAR measurements can also improve time resolution. With adequate bandwidth and reasonable noise levels, it is quite possible to achieve better resolution than the VISAR approximation allows.

  19. A Portable Analyzer for Pouch-Actuated, Immunoassay Cassettes

    PubMed Central

    Qiu, Xianbo; Liu, Changchun; Mauk, Michael G.; Hart, Robert W.; Chen, Dafeng; Qiu, Jing; Kientz, Terry; Fiene, Jonathan; Bau, Haim H.

    2011-01-01

    A portable, small footprint, light, general purpose analyzer (processor) to control the flow in immunoassay cassettes and to facilitate the detection of test results is described. The durable analyzer accepts disposable cassettes that contain pouches and reaction chambers for various unit operations such as hydration of dry reagents, stirring, and incubation. The analyzer includes individually controlled, linear actuators to compress the pouches in the cassette, which facilitates the pumping and mixing of sample and reagents, and to close diaphragm-based valves for flow control. The same types of actuators are used to compress pouches and actuate valves. The analyzer also houses a compact OEM scanner/reader to excite fluorescence and detect emission from labels. The analyzer is hydraulically isolated from the cassette, reducing the possibility of cross-contamination. The analyzer facilitates programmable, automated execution of a sequence of operations such as pumping and valving in a timely fashion, reducing the level of expertise required from the operator and the possibility for errors. The analyzer’s design is modular and expandable to accommodate cassettes of various complexities and additional functionalities. In this paper, the utility of the analyzer has been demonstrated with the execution of a simple, consecutive, lateral flow assay of a model biological system and the test results were detected with up converting phosphor labels that are excited at infrared frequencies and emit in the visible spectrum. PMID:22125359

  20. Frequency band adjustment match filtering based on variable frequency GPR antennas pairing scheme for shallow subsurface investigations

    NASA Astrophysics Data System (ADS)

    Shaikh, Shahid Ali; Tian, Gang; Shi, Zhanjie; Zhao, Wenke; Junejo, S. A.

    2018-02-01

    Ground penetrating Radar (GPR) is an efficient tool for subsurface geophysical investigations, particularly at shallow depths. The non-destructiveness, cost efficiency, and data reliability are the important factors that make it an ideal tool for the shallow subsurface investigations. Present study encompasses; variations in central frequency of transmitting and receiving GPR antennas (Tx-Rx) have been analyzed and frequency band adjustment match filters are fabricated and tested accordingly. Normally, the frequency of both the antennas remains similar to each other whereas in this study we have experimentally changed the frequencies of Tx-Rx and deduce the response. Instead of normally adopted three pairs, a total of nine Tx-Rx pairs were made from 50 MHz, 100 MHz, and 200 MHz antennas. The experimental data was acquired at the designated near surface geophysics test site of the Zhejiang University, Hangzhou, China. After the impulse response analysis of acquired data through conventional as well as varied Tx-Rx pairs, different swap effects were observed. The frequency band and exploration depth are influenced by transmitting frequencies rather than the receiving frequencies. The impact of receiving frequencies was noticed on the resolution; the more noises were observed using the combination of high frequency transmitting with respect to low frequency receiving. On the basis of above said variable results we have fabricated two frequency band adjustment match filters, the constant frequency transmitting (CFT) and the variable frequency transmitting (VFT) frequency band adjustment match filters. By the principle, the lower and higher frequency components were matched and then incorporated with intermediate one. Therefore, this study reveals that a Tx-Rx combination of low frequency transmitting with high frequency receiving is a better choice. Moreover, both the filters provide better radargram than raw one, the result of VFT frequency band adjustment filter is

  1. Design and Calibration of an Airborne Multichannel Swept-Tuned Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Diamond, John K.; Bertelrud, Arild

    1999-01-01

    This paper describes the design and calibration of a four-channel, airborne, swept-tuned spectrum analyzer used in two hypersonic flight experiments for characterizing dynamic data up to 25 kHz. Built mainly from commercially available analog function modules, the analyzer proved useful for an application with limited telemetry bandwidth, physical weight and volume, and electrical power. The authors discuss considerations that affect the frequency and amplitude calibrations, limitations of the design, and example flight data.

  2. Grid Frequency Extreme Event Analysis and Modeling: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florita, Anthony R; Clark, Kara; Gevorgian, Vahan

    Sudden losses of generation or load can lead to instantaneous changes in electric grid frequency and voltage. Extreme frequency events pose a major threat to grid stability. As renewable energy sources supply power to grids in increasing proportions, it becomes increasingly important to examine when and why extreme events occur to prevent destabilization of the grid. To better understand frequency events, including extrema, historic data were analyzed to fit probability distribution functions to various frequency metrics. Results showed that a standard Cauchy distribution fit the difference between the frequency nadir and prefault frequency (f_(C-A)) metric well, a standard Cauchy distributionmore » fit the settling frequency (f_B) metric well, and a standard normal distribution fit the difference between the settling frequency and frequency nadir (f_(B-C)) metric very well. Results were inconclusive for the frequency nadir (f_C) metric, meaning it likely has a more complex distribution than those tested. This probabilistic modeling should facilitate more realistic modeling of grid faults.« less

  3. Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers.

    PubMed

    Soto, Marcelo A; Ricchiuti, Amelia Lavinia; Zhang, Liang; Barrera, David; Sales, Salvador; Thévenaz, Luc

    2014-11-17

    A technique to enhance the response and performance of Brillouin distributed fiber sensors is proposed and experimentally validated. The method consists in creating a multi-frequency pump pulse interacting with a matching multi-frequency continuous-wave probe. To avoid nonlinear cross-interaction between spectral lines, the method requires that the distinct pump pulse components and temporal traces reaching the photo-detector are subject to wavelength-selective delaying. This way the total pump and probe powers launched into the fiber can be incrementally boosted beyond the thresholds imposed by nonlinear effects. As a consequence of the multiplied pump-probe Brillouin interactions occurring along the fiber, the sensor response can be enhanced in exact proportion to the number of spectral components. The method is experimentally validated in a 50 km-long distributed optical fiber sensor augmented to 3 pump-probe spectral pairs, demonstrating a signal-to-noise ratio enhancement of 4.8 dB.

  4. Ballistic missile precession frequency extraction by spectrogram's texture

    NASA Astrophysics Data System (ADS)

    Wu, Longlong; Xu, Shiyou; Li, Gang; Chen, Zengping

    2013-10-01

    In order to extract precession frequency, an crucial parameter in ballistic target recognition, which reflected the kinematical characteristics as well as structural and mass distribution features, we developed a dynamic RCS signal model for a conical ballistic missile warhead, with a log-norm multiplicative noise, substituting the familiar additive noise, derived formulas of micro-Doppler induced by precession motion, and analyzed time-varying micro-Doppler features utilizing time-frequency transforms, extracted precession frequency by measuring the spectrogram's texture, verified them by computer simulation studies. Simulation demonstrates the excellent performance of the method proposed in extracting the precession frequency, especially in the case of low SNR.

  5. Frequency-doubled microwave waveforms generation using a dual-polarization quadrature phase shift keying modulator driven by a single frequency radio frequency signal

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Qu, Kun; Lin, Tao

    2018-01-01

    A photonic approach to generate frequency-doubled microwave waveforms using an integrated dual-polarization quadrature phase shift keying (DP-QPSK) modulator driven by a sinusoidal radio frequency (RF) signal is proposed. By adjusting the dc bias points of the DP-QPSK modulator, the obtained second-order and six-order harmonics are in phase while the fourth-order harmonics are complementary when the orthogonal polarized outputs of the modulator are photodetected. After properly setting the modulation indices of the modulator, the amplitude of the second-order harmonic is 9 times of that of the six-order harmonic, indicating a frequency-doubled triangular waveform is generated. If a broadband 90° microwave phase shifter is attached after the photodetector (PD) to introduce a 90° phase shift, a frequency-doubled square waveform can be obtained after adjusting the amplitude of the second-order harmonic 3 times of that of the six-order harmonic. The proposal is first theoretically analyzed and then validated by simulation. Simulation results show that a 10 GHz triangular and square waveform sequences are successfully generated from a 5 GHz sinusoidal RF drive signal.

  6. Research of frequency converters energy characteristics of drilling rigs

    NASA Astrophysics Data System (ADS)

    Vasiliev, B. Y.; Kalashnikov, O. V.; Oleynikova, A. M.; Ivanovsky, A. I.; Grudinin, N. N.

    2017-10-01

    The investigation deals with multi-motor electric drives with frequency converters of various structures: with a common converter, with an individual converter, with a multi-inverter frequency converter. Their shortcomings and advantages were analyzed and there were drawn conclusions about the expediency of using each structure. Expediency of using multi-inverter frequency converters with an active frond end was shown to ensure the highest power characteristics of multi-motor electric drives of drilling rigs’ main mechanisms.

  7. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapaev, V. V., E-mail: kapaev@sci.lebedev.ru; Kopaev, Yu. V.; Savinov, S. A.

    2013-03-15

    The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schroedinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In{sub 0.53}Ga{sub 0.47}As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V{sub dc} in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in suchmore » structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.« less

  8. Analysis of frequency mixing error on heterodyne interferometric ellipsometry

    NASA Astrophysics Data System (ADS)

    Deng, Yuan-long; Li, Xue-jin; Wu, Yu-bin; Hu, Ju-guang; Yao, Jian-quan

    2007-11-01

    A heterodyne interferometric ellipsometer, with no moving parts and a transverse Zeeman laser, is demonstrated. The modified Mach-Zehnder interferometer characterized as a separate frequency and common-path configuration is designed and theoretically analyzed. The experimental data show a fluctuation mainly resulting from the frequency mixing error which is caused by the imperfection of polarizing beam splitters (PBS), the elliptical polarization and non-orthogonality of light beams. The producing mechanism of the frequency mixing error and its influence on measurement are analyzed with the Jones matrix method; the calculation indicates that it results in an error up to several nanometres in the thickness measurement of thin films. The non-orthogonality has no contribution to the phase difference error when it is relatively small; the elliptical polarization and the imperfection of PBS have a major effect on the error.

  9. Characterization of an Outdoor Ambient Radio Frequency Environment

    DTIC Science & Technology

    2016-02-16

    radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization, locations can be selected to avoid RF...spectrum analyzer, ambient RF noise floor, RF interference 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...environment (sometimes referred to as “radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization

  10. Improvement of a respiratory ozone analyzer.

    PubMed

    Ultman, J S; Ben-Jebria, A; Mac Dougall, C S; Rigas, M L

    1997-10-01

    The breath-to-breath measurement of total respiratory ozone (O3) uptake requires monitoring O3 concentration at the airway opening with an instrument that responds rapidly relative to the breathing frequency. Our original chemiluminescent analyzer, using 2-methyl-2-butene as the reactant gas, had a 10% to 90% step-response time of 110 msec and a minimal detectable concentration of 0.018 parts per million (ppm) O3 (Ben-Jebria et al. 1990). This instrument was suitable for respiratory O3 monitoring during quiet breathing and light exercise. For this study, we constructed a more self-contained analyzer with a faster response time using ethylene as the reactant gas. When the analyzer was operated at a reaction chamber pressure of 350 torr, an ethylene-to-sample flow ratio of 4:1, and a sampling flow of 0.6 liters per minute (Lpm), it had a 10% to 90% step-response time of 70 msec and a minimal detectable concentration of 0.006 ppm. These specifications make respiratory O3 monitoring possible during moderate-to-heavy exercise. In addition, the nonlinear calibration and the carbon dioxide (CO2) interference exhibited by the original analyzer were eliminated. In breath-to-breath measurements in two healthy men, the fractional uptake of O3 during one minute of quiet breathing was comparable to the results obtained by using a slowly responding commercial analyzer with a quasi-steady material balance method (Wiester et al. 1996). In fact, fractional uptake was about 0.8 regardless of O3 exposure concentration (0.11 to 0.43 ppm) or ventilation rate (4 to 41 Lpm/m2).

  11. Using frequency-domain methods to identify XV-15 aeroelastic modes

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Tischler, Mark B.

    1987-01-01

    The XV-15 Tilt-Rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed) with cross spectral and transfer function methods. Modal frequencies and damping were determined by performing curve fits to transfer function magnitude and phase data and to cross spectral magnitude data. Results are given for the XV-15 with its original metal rotor blades. Frequency and damping values are also compared with earlier predictions.

  12. Reverse-time migration for subsurface imaging using single- and multi- frequency components

    NASA Astrophysics Data System (ADS)

    Ha, J.; Kim, Y.; Kim, S.; Chung, W.; Shin, S.; Lee, D.

    2017-12-01

    Reverse-time migration is a seismic data processing method for obtaining accurate subsurface structure images from seismic data. This method has been applied to obtain more precise complex geological structure information, including steep dips, by considering wave propagation characteristics based on two-way traveltime. Recently, various studies have reported the characteristics of acquired datasets from different types of media. In particular, because real subsurface media is comprised of various types of structures, seismic data represent various responses. Among them, frequency characteristics can be used as an important indicator for analyzing wave propagation in subsurface structures. All frequency components are utilized in conventional reverse-time migration, but analyzing each component is required because they contain inherent seismic response characteristics. In this study, we propose a reverse-time migration method that utilizes single- and multi- frequency components for analyzing subsurface imaging. We performed a spectral decomposition to utilize the characteristics of non-stationary seismic data. We propose two types of imaging conditions, in which decomposed signals are applied in complex and envelope traces. The SEG/EAGE Overthrust model was used to demonstrate the proposed method, and the 1st derivative Gaussian function with a 10 Hz cutoff was used as the source signature. The results were more accurate and stable when relatively lower frequency components in the effective frequency range were used. By combining the gradient obtained from various frequency components, we confirmed that the results are clearer than the conventional method using all frequency components. Also, further study is required to effectively combine the multi-frequency components.

  13. Modal vector estimation for closely spaced frequency modes

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.; Chung, Y. T.; Blair, M.

    1982-01-01

    Techniques for obtaining improved modal vector estimates for systems with closely spaced frequency modes are discussed. In describing the dynamical behavior of a complex structure modal parameters are often analyzed: undamped natural frequency, mode shape, modal mass, modal stiffness and modal damping. From both an analytical standpoint and an experimental standpoint, identification of modal parameters is more difficult if the system has repeated frequencies or even closely spaced frequencies. The more complex the structure, the more likely it is to have closely spaced frequencies. This makes it difficult to determine valid mode shapes using single shaker test methods. By employing band selectable analysis (zoom) techniques and by employing Kennedy-Pancu circle fitting or some multiple degree of freedom (MDOF) curve fit procedure, the usefulness of the single shaker approach can be extended.

  14. Measurements by a Vector Network Analyzer at 325 to 508 GHz

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Samoska, Lorene; Chattopadhyay, Goutam; Gaier, Todd; Kangaslahti, Pekka; Pukala, David; Lau, Yuenie; Oleson, Charles; Denning, Anthony

    2008-01-01

    Recent experiments were performed in which return loss and insertion loss of waveguide test assemblies in the frequency range from 325 to 508 GHz were measured by use of a swept-frequency two-port vector network analyzer (VNA) test set. The experiments were part of a continuing effort to develop means of characterizing passive and active electronic components and systems operating at ever increasing frequencies. The waveguide test assemblies comprised WR-2.2 end sections collinear with WR-3.3 middle sections. The test set, assembled from commercially available components, included a 50-GHz VNA scattering- parameter test set and external signal synthesizers, augmented with recently developed frequency extenders, and further augmented with attenuators and amplifiers as needed to adjust radiofrequency and intermediate-frequency power levels between the aforementioned components. The tests included line-reflect-line calibration procedures, using WR-2.2 waveguide shims as the "line" standards and waveguide flange short circuits as the "reflect" standards. Calibrated dynamic ranges somewhat greater than about 20 dB for return loss and 35 dB for insertion loss were achieved. The measurement data of the test assemblies were found to substantially agree with results of computational simulations.

  15. Characteristics of EMG frequency bands in temporomandibullar disorders patients.

    PubMed

    Politti, Fabiano; Casellato, Claudia; Kalytczak, Marcelo Martins; Garcia, Marilia Barbosa Santos; Biasotto-Gonzalez, Daniela Aparecida

    2016-12-01

    The aim of the present study was to determine whether any specific frequency bands of surface electromyographic (sEMG) signals are more susceptible to alterations in patients with temporomandibular disorders (TMD), when compared with healthy subjects. Twenty-seven healthy adults (19 women and eight men; mean age: 23±6.68years) and 27 TMD patients (20 women and seven men; mean age: 24±5.89years) voluntarily participated in the experiment. sEMG data were recorded from the right and left masseter muscles (RM and LM) and the right and left anterior temporalis muscles (RT and LT) as the participants performed tests of chewing (CHW) and maximal clenching effort (MCE). Frequency domain analysis of the sEMG signal was used to analyze differences between TMD patients and healthy subjects in relation to the Power Spectral Density Function (PSDF). The analysis focused on the median frequency (MDF) of the sEMG signal and PSDF frequency bands after the EMG spectrum was divided into twenty-five frequency band of 20Hz each. The Mann-Whitney test was used to compare MDF between TMD patients and healthy subjects and the frequency bands were analyzed using three-way ANOVA with three factors: frequency band, muscle and group. The results of the analysis confirmed that the median frequency values in TMD patients were significantly higher (p<0.05) than those recorded for healthy subjects in the two experimental conditions (MCE and CHW), for all of the muscles assessed (RM, LM, RT and LT). In addition, frequency content between 20 and 100Hz of the normalized PSDF range was significantly lower (p<0.05) in TMD patients than in healthy. This study contributes to quantitatively identify TMD dysfunctions, by non-invasive sEMGs; this assessment is clinically important and still lacking nowadays. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. O-chromosome lethal frequencies in Serbian and Montenegrin Drosophila subobscura populations.

    PubMed

    Zivanovic, G; Arenas, C; Mestres, F

    2011-10-01

    Lethal chromosomal frequencies were obtained from three Drosophila subobscura samples from the Mt. Avala (Serbia) population in September 2003 (0.218), June 2004 (0.204) and September 2004 (0.250). These values and those from other Balkan populations studied previously (Petnica, Kamariste, Zanjic and Djerdap) were used to analyze the possible effect of population, year, month and altitude above sea level on lethal chromosomal frequencies. According to ANOVAS no effect were observed. Furthermore, the lethal frequencies of the Balkan populations did not vary according to latitude. This is probably due to the relative proximity and high gene flow between these populations. From a joint study of all the Palearctic D. subobscura populations so far analyzed, it can be deduced that the Balkan populations are located in the central area of the species distribution. Finally, it seems that lethal chromosomal frequencies are a consequence of the genetic structure of the populations.

  17. Study on time-frequency analysis method of very fast transient overvoltage

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Liu, Shiming; Huang, Qiyan; Fu, Chuanshun

    2018-04-01

    The operation of the disconnector in the gas insulated substation (GIS) may produce very fast transient overvoltage (VFTO), which has the characteristics of short rise time, short duration, high amplitude and rich frequency components. VFTO can cause damage to GIS and secondary equipment, and the frequency components contained in the VFTO can cause resonance overvoltage inside the transformer, so it is necessary to study the spectral characteristics of the VFTO. From the perspective of signal processing, VFTO is a kind of non-stationary signal, the traditional Fourier transform is difficult to describe its frequency which changes with time, so it is necessary to use time-frequency analysis to analyze VFTO spectral characteristics. In this paper, we analyze the performance of short time Fourier transform (STFT), Wigner-Ville distribution (WVD), pseudo Wigner-Ville distribution (PWVD) and smooth pseudo Wigner-Ville distribution (SPWVD). The results show that SPWVD transform is the best. The time-frequency aggregation of SPWVD is higher than STFT, and it does not have cross-interference terms, which can meet the requirements of VFTO spectrum analysis.

  18. A Frequency-List of Sentence Structures: Distribution of Kernel Sentences

    ERIC Educational Resources Information Center

    Geens, Dirk

    1974-01-01

    A corpus of 10,000 sentences extracted from British theatrical texts was used to construct a frequency list of kernel sentence structures. Thirty-one charts illustrate the analyzed results. The procedures used and an interpretation of the frequencies are given. Such lists might aid foreign language teachers in course organization. Available from…

  19. Time-Frequency Distribution Analyses of Ku-Band Radar Doppler Echo Signals

    NASA Astrophysics Data System (ADS)

    Bujaković, Dimitrije; Andrić, Milenko; Bondžulić, Boban; Mitrović, Srđan; Simić, Slobodan

    2015-03-01

    Real radar echo signals of a pedestrian, vehicle and group of helicopters are analyzed in order to maximize signal energy around central Doppler frequency in time-frequency plane. An optimization, preserving this concentration, is suggested based on three well-known concentration measures. Various window functions and time-frequency distributions were optimization inputs. Conducted experiments on an analytic and three real signals have shown that energy concentration significantly depends on used time-frequency distribution and window function, for all three used criteria.

  20. Simple and flexible SAS and SPSS programs for analyzing lag-sequential categorical data.

    PubMed

    O'Connor, B P

    1999-11-01

    This paper describes simple and flexible programs for analyzing lag-sequential categorical data, using SAS and SPSS. The programs read a stream of codes and produce a variety of lag-sequential statistics, including transitional frequencies, expected transitional frequencies, transitional probabilities, adjusted residuals, z values, Yule's Q values, likelihood ratio tests of stationarity across time and homogeneity across groups or segments, transformed kappas for unidirectional dependence, bidirectional dependence, parallel and nonparallel dominance, and significance levels based on both parametric and randomization tests.

  1. Amplitude-frequency effect of Y-cut langanite and langatate.

    PubMed

    Kim, Yoonkee

    2003-12-01

    Amplitude-frequency effect of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator were measured. The frequency shifts from the baseline frequency with 1 mA were measured as a function of drive currents up to 28 mA. High-drive current shifted the frequency, but it also heated the crystal locally, causing temperature-related frequency changes. The local heat transfer and its influence on the frequency were analyzed. The amplitude-frequency shift was effectively measured, and was not affected by the temperature-related frequency changes. The 3rd, 5th, and 7th overtones (OT's) were found to behave as soft springs, i.e., resonant frequency decreases as drive current increases. The drive sensitivity coefficients of the 3rd and 5th OT's are in the vicinity of -2 ppb/mA2 for both resonators. The 7th OT's are higher than the other OT's: -5 approximately -7 ppb/mA2. The lowest drive sensitivity is -1.2 ppb/mA2 on the 5th OT of the LGT.

  2. Frequency of orthodontic extraction

    PubMed Central

    Dardengo, Camila de S.; Fernandes, Luciana Q. P.; Capelli, Jonas

    2016-01-01

    Introduction: The option of dental extraction for orthodontic purposes has been debated for more than 100 years, including periods when it was widely used in treatment, including the present, during which other methods are used to avoid dental extractions. The objective was to analyze the frequency of tooth extraction treatment performed between 1980 and 2011 at the Orthodontic Clinic of Universidade Estadual do Rio de Janeiro (UERJ). Material and Methods: The clinical records of 1484 patients undergoing orthodontic treatment were evaluated. The frequency of extractions was evaluated with regard to sex, Angle's classification, the different combinations of extractions and the period when orthodontic treatment began. Chi-square test was used to determine correlations between variables, while the chi-square test for trends was used to assess the frequency of extractions over the years. Results: There was a reduction of approximately 20% in the frequency of cases treated with tooth extraction over the last 32 years. The most frequently extracted teeth were first premolars. Patients with Class I malocclusion showed fewer extractions, while Class II patients underwent a higher number of extraction treatment. There were no statistically significant differences with regard to sex. Conclusion: New features introduced into the orthodontic clinic and new esthetic concepts contributed to reducing the number of cases treated with dental extractions. However, dental extractions for orthodontic purposes are still well indicated in certain cases. PMID:27007762

  3. Real-time, high frequency QRS electrocardiograph with reduced amplitude zone detection

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2009-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as ''RAZs''. RAZs are displayed as ''go, no-go'' signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  4. Formant frequencies in country singers' speech and singing.

    PubMed

    Stone, R E; Cleveland, T F; Sundberg, J

    1999-06-01

    In previous investigations breathing kinematics, subglottal pressures, and voice source characteristics of a group of premier country singers have been analyzed. The present study complements the description of these singers' voice properties by examining the formant frequencies in five of these country singers' spoken and sung versions of the national anthem and of a song of their own choosing. The formant frequencies were measured for identical phonemes under both conditions. Comparisons revealed that the singers used the same or slightly higher formant frequencies when they were singing than when they were speaking. The differences may be related to the higher fundamental frequency in singing. These findings are in good agreement with previous observations regarding breathing, subglottal pressures, and voice source, but are in marked contrast to what has been found for classically trained singers.

  5. Detailed Vibration Analysis of Pinion Gear with Time-Frequency Methods

    NASA Technical Reports Server (NTRS)

    Mosher, Marianne; Pryor, Anna H.; Lewicki, David G.

    2003-01-01

    In this paper, the authors show a detailed analysis of the vibration signal from the destructive testing of a spiral bevel gear and pinion pair containing seeded faults. The vibration signal is analyzed in the time domain, frequency domain and with four time-frequency transforms: the Short Time Frequency Transform (STFT), the Wigner-Ville Distribution with the Choi-Williams kernel (WV-CW), the Continuous Wavelet' Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels and damage conditions, are analyzed using these methods. A new metric for automatic anomaly detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the time-frequency transforms, as well as time and frequency representations, on this data set. Analysis with the CWT detects changes in the signal at low torque levels not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic anomaly detection and to develop fault detection methods for the metric.

  6. Rotating field mass and velocity analyzer

    NASA Technical Reports Server (NTRS)

    Smith, Steven Joel (Inventor); Chutjian, Ara (Inventor)

    1998-01-01

    A rotating field mass and velocity analyzer having a cell with four walls, time dependent RF potentials that are applied to each wall, and a detector. The time dependent RF potentials create an RF field in the cell which effectively rotates within the cell. An ion beam is accelerated into the cell and the rotating RF field disperses the incident ion beam according to the mass-to-charge (m/e) ratio and velocity distribution present in the ion beam. The ions of the beam either collide with the ion detector or deflect away from the ion detector, depending on the m/e, RF amplitude, and RF frequency. The detector counts the incident ions to determine the m/e and velocity distribution in the ion beam.

  7. An Investigation into the Use of Word Frequency Lists in Computing Vocabulary Profiles.

    ERIC Educational Resources Information Center

    Coniam, David

    1999-01-01

    Investigates word frequency as an indicator of language proficiency in the written English of Grade 13 learners of English in Hong Kong. The study develops Laufer and Nation's (1995) work on Lexical Frequency Profile in which student writing was analyzed for the frequency of word families, with vocabulary profiles produced from the scripts on the…

  8. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz.

    PubMed

    Yang, Lin; Dai, Meng; Xu, Canhua; Zhang, Ge; Li, Weichen; Fu, Feng; Shi, Xuetao; Dong, Xiuzhen

    2017-01-01

    Frequency-difference electrical impedance tomography (fdEIT) reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz). In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects' heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz) significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz) also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection.

  9. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz

    PubMed Central

    Zhang, Ge; Li, Weichen; Fu, Feng; Shi, Xuetao; Dong, Xiuzhen

    2017-01-01

    Frequency-difference electrical impedance tomography (fdEIT) reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz). In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects’ heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz) significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz) also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection. PMID:28107524

  10. Sum-Frequency Generation from a Thin Cylindrical Layer

    NASA Astrophysics Data System (ADS)

    Shamyna, A. A.; Kapshai, V. N.

    2018-01-01

    In the Rayleigh-Gans-Debye approximation, we have solved the problem of the sum-frequency generation by two plane elliptically polarized electromagnetic waves from the surface of a dielectric particle of a cylindrical shape that is coated by a thin layer possessing nonlinear optical properties. The formulas that describe the sum-frequency field have been presented in the tensor and vector forms for the second-order nonlinear dielectric susceptibility tensor, which was chosen in the general form, containing chiral components. Expressions describing the sum-frequency field from the cylindrical particle ends have been obtained for the case of a nonlinear layer possessing chiral properties. Three-dimensional directivity patterns of the sum-frequency radiation have been analyzed for different combinations of parameters (angles of incidence, degrees of ellipticity, orientations of polarization ellipses, cylindrical particle dimensions). The mathematical properties of the spatial distribution functions of the sum-frequency field, which characterize the symmetry of directivity patterns, have been revealed.

  11. A new OTDR based on probe frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Lu, Lidong; Liang, Yun; Li, Binglin; Guo, Jinghong; Zhang, Xuping

    2013-12-01

    Two signal multiplexing methods are proposed and experimentally demonstrated in optical time domain reflectometry (OTDR) for fault location of optical fiber transmission line to obtain high measurement efficiency. Probe signal multiplexing is individually obtained by phase modulation for generation of multi-frequency and time sequential frequency probe pulses. The backscattered Rayleigh light of the multiplexing probe signals is transferred to corresponding heterodyne intermediate frequency (IF) through heterodyning with the single frequency local oscillator (LO). Then the IFs are simultaneously acquired by use of a data acquisition card (DAQ) with sampling rate of 100Msps, and the obtained data are processed by digital band pass filtering (BPF), digital down conversion (DDC) and digital low pass filtering (BPF) procedure. For each probe frequency of the detected signals, the extraction of the time domain reflecting signal power is performed by parallel computing method. For a comprehensive performance comparison with conventional coherent OTDR on the probe frequency multiplexing methods, the potential for enhancement of dynamic range, spatial resolution and measurement time are analyzed and discussed. Experimental results show that by use of the probe frequency multiplexing method, the measurement efficiency of coherent OTDR can be enhanced by nearly 40 times.

  12. Audio Frequency Analysis in Mobile Phones

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguía

    2016-01-01

    A new experiment using mobile phones is proposed in which its audio frequency response is analyzed using the audio port for inputting external signal and getting a measurable output. This experiment shows how the limited audio bandwidth used in mobile telephony is the main cause of the poor speech quality in this service. A brief discussion is…

  13. [Fundamental frequency analysis - a contribution to the objective examination of the speaking and singing voice (author's transl)].

    PubMed

    Schultz-Coulon, H J

    1975-07-01

    The applicability of a newly developed fundamental frequency analyzer to diagnosis in phoniatrics is reviewed. During routine voice examination, the analyzer allows a quick and accurate measurement of fundamental frequency and sound level of the speaking voice, and of vocal range and maximum phonation time. By computing fundamental frequency histograms, the median fundamental frequency and the total pitch range can be better determined and compared. Objective studies of certain technical faculties of the singing voice, which usually are estimated subjectively by the speech therapist, may now be done by means of this analyzer. Several examples demonstrate the differences between correct and incorrect phonation. These studies compare the pitch perturbations during the crescendo and decrescendo of a swell-tone, and show typical traces of staccato, thrill and yodel. Conclusions of the study indicate that fundamental frequency analysis is a valuable supplemental method for objective voice examination.

  14. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach

    PubMed Central

    Cheung, Mike W.-L.; Jak, Suzanne

    2016-01-01

    Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists—and probably the most crucial one—is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study. PMID:27242639

  15. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach.

    PubMed

    Cheung, Mike W-L; Jak, Suzanne

    2016-01-01

    Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists-and probably the most crucial one-is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study.

  16. Frequency Diverse Array Receiver Architectures

    DTIC Science & Technology

    2015-06-29

    completely associated with FDA, the Hybrid MIMO phased array (HMPAR) concept presented in [18] developed the basic beam patern synthesis theory for an...20], that analyzed beam paterns of chirp waveforms with slightly 6 different starting frequencies. In [21] and [11] they investigated using FDA for...forward-looking radar GMTI benefits. This research showed the ability of the range-dependent energy distribution characteristics of the FDA beam patern

  17. Seismology and geodesy of the sun: Low-frequency oscillations.

    PubMed

    Dicke, R H

    1981-04-01

    The hourly averages of the solar ellipticity measured from June 13 to Sept. 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 hr nu < 0.5 hr(-1). Nothing significant is found for frequencies nu > 0.1 hr(-1) but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-hr period, with many observational days missing, and with different numbers of hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.

  18. Novel Dual-Band Miniaturized Frequency Selective Surface based on Fractal Structures

    NASA Astrophysics Data System (ADS)

    Zhong, Tao; Zhang, Hou; Wu, Rui; Min, Xueliang

    2017-01-01

    A novel single-layer dual-band miniaturized frequency selective surface (FSS) based on fractal structures is proposed and analyzed in this paper. A prototype with enough dimensions is fabricated and measured in anechoic chamber, and the measured results provide good agreement with the simulated. The simulations and measurements indicate that the dual-band FSS with bandstop selectivity center at 3.95 GHz and 7.10 GHz, and the whole dimension of the proposed FSS cell is only 7×7 mm2, amount to 0.092λ0×0.092λ0, that λ0 is free space wavelength at first resonant frequency. In addition, the center frequencies have scarcely any changes for different polarizations and incidences. What's more, dual-band mechanism is analyzed clearly and it provides a new way to design novel miniaturized FSS structures.

  19. Method and apparatus for frequency spectrum analysis

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    1992-01-01

    A method for frequency spectrum analysis of an unknown signal in real-time is discussed. The method is based upon integration of 1-bit samples of signal voltage amplitude corresponding to sine or cosine phases of a controlled center frequency clock which is changed after each integration interval to sweep the frequency range of interest in steps. Integration of samples during each interval is carried out over a number of cycles of the center frequency clock spanning a number of cycles of an input signal to be analyzed. The invention may be used to detect the frequency of at least two signals simultaneously. By using a reference signal of known frequency and voltage amplitude (added to the two signals for parallel processing in the same way, but in a different channel with a sampling at the known frequency and phases of the reference signal), the absolute voltage amplitude of the other two signals may be determined by squaring the sine and cosine integrals of each channel and summing the squares to obtain relative power measurements in all three channels and, from the known voltage amplitude of the reference signal, obtaining an absolute voltage measurement for the other two signals by multiplying the known voltage of the reference signal with the ratio of the relative power of each of the other two signals to the relative power of the reference signal.

  20. On reliable time-frequency characterization and delay estimation of stimulus frequency otoacoustic emissions

    NASA Astrophysics Data System (ADS)

    Biswal, Milan; Mishra, Srikanta

    2018-05-01

    The limited information on origin and nature of stimulus frequency otoacoustic emissions (SFOAEs) necessitates a thorough reexamination into SFOAE analysis procedures. This will lead to a better understanding of the generation of SFOAEs. The SFOAE response waveform in the time domain can be interpreted as a summation of amplitude modulated and frequency modulated component waveforms. The efficiency of a technique to segregate these components is critical to describe the nature of SFOAEs. Recent advancements in robust time-frequency analysis algorithms have staked claims on the more accurate extraction of these components, from composite signals buried in noise. However, their potential has not been fully explored for SFOAEs analysis. Indifference to distinct information, due to nature of these analysis techniques, may impact the scientific conclusions. This paper attempts to bridge this gap in literature by evaluating the performance of three linear time-frequency analysis algorithms: short-time Fourier transform (STFT), continuous Wavelet transform (CWT), S-transform (ST) and two nonlinear algorithms: Hilbert-Huang Transform (HHT), synchrosqueezed Wavelet transform (SWT). We revisit the extraction of constituent components and estimation of their magnitude and delay, by carefully evaluating the impact of variation in analysis parameters. The performance of HHT and SWT from the perspective of time-frequency filtering and delay estimation were found to be relatively less efficient for analyzing SFOAEs. The intrinsic mode functions of HHT does not completely characterize the reflection components and hence IMF based filtering alone, is not recommended for segregating principal emission from multiple reflection components. We found STFT, WT, and ST to be suitable for canceling multiple internal reflection components with marginal altering in SFOAE.

  1. Measuring changes of radio-frequency dielectric properties of chicken meat during storage

    USDA-ARS?s Scientific Manuscript database

    Changes in dielectric properties of stored chicken meat were tracked by using a radio-frequency dielectric spectroscopy method. For this purpose, the dielectric properties were measured with an open-ended coaxial-line probe and vector network analyzer over a broad frequency range from 200 MHz to 20...

  2. Adiabatic description of long range frequency sweeping

    NASA Astrophysics Data System (ADS)

    Breizman, Boris; Nyqvist, Robert; Lilley, Matthew

    2012-10-01

    A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behavior of phase space holes and clumps is analyzed, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.

  3. Optimal Tikhonov Regularization in Finite-Frequency Tomography

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Yao, Z.; Zhou, Y.

    2017-12-01

    The last decade has witnessed a progressive transition in seismic tomography from ray theory to finite-frequency theory which overcomes the resolution limit of the high-frequency approximation in ray theory. In addition to approximations in wave propagation physics, a main difference between ray-theoretical tomography and finite-frequency tomography is the sparseness of the associated sensitivity matrix. It is well known that seismic tomographic problems are ill-posed and regularizations such as damping and smoothing are often applied to analyze the tradeoff between data misfit and model uncertainty. The regularizations depend on the structure of the matrix as well as noise level of the data. Cross-validation has been used to constrain data uncertainties in body-wave finite-frequency inversions when measurements at multiple frequencies are available to invert for a common structure. In this study, we explore an optimal Tikhonov regularization in surface-wave phase-velocity tomography based on minimization of an empirical Bayes risk function using theoretical training datasets. We exploit the structure of the sensitivity matrix in the framework of singular value decomposition (SVD) which also allows for the calculation of complete resolution matrix. We compare the optimal Tikhonov regularization in finite-frequency tomography with traditional tradeo-off analysis using surface wave dispersion measurements from global as well as regional studies.

  4. Low-frequency noise from large wind turbines.

    PubMed

    Møller, Henrik; Pedersen, Christian Sejer

    2011-06-01

    As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative amount of low-frequency noise is higher for large turbines (2.3-3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low frequencies, and for several of the investigated large turbines, the one-third-octave band with the highest level is at or below 250 Hz. It is thus beyond any doubt that the low-frequency part of the spectrum plays an important role in the noise at the neighbors. © 2011 Acoustical Society of America

  5. Modeling high-frequency electromotility of cochlear outer hair cell in microchamber experiment.

    PubMed

    Liao, Zhijie; Popel, Aleksander S; Brownell, William E; Spector, Alexander A

    2005-04-01

    Cochlear outer hair cells (OHC) are critically important for the amplification and sharp frequency selectivity of the mammalian ear. The microchamber experiment has been an effective tool to analyze the OHC high-frequency performance. In this study, the OHC electrical stimulation in the microchamber is simulated. The model takes into account the inertial and viscous properties of fluids inside and outside the cell as well as the viscoelastic and piezoelectric properties of the cell composite membrane (wall). The closed ends of the cylindrical cell were considered as oscillatory rigid plates. The final solution was obtained in terms of Fourier series, and it was checked against the available results of the microchamber experiment. The conditions of the interaction between the cell and pipette was analyzed, and it was found that the amount of slip along the contact surface has a significant effect on the cell electromotile response. The cell's length changes were computed as a function of frequency, and their dependence on the viscosities of both fluids and the cell wall was analyzed. The distribution of the viscous losses inside the fluids was also estimated. The proposed approach can help in a better understanding of the high-frequency OHC electromotility under experimental and physiological conditions.

  6. When does word frequency influence written production?

    PubMed

    Baus, Cristina; Strijkers, Kristof; Costa, Albert

    2013-01-01

    The aim of the present study was to explore the central (e.g., lexical processing) and peripheral processes (motor preparation and execution) underlying word production during typewriting. To do so, we tested non-professional typers in a picture typing task while continuously recording EEG. Participants were instructed to write (by means of a standard keyboard) the corresponding name for a given picture. The lexical frequency of the words was manipulated: half of the picture names were of high-frequency while the remaining were of low-frequency. Different measures were obtained: (1) first keystroke latency and (2) keystroke latency of the subsequent letters and duration of the word. Moreover, ERPs locked to the onset of the picture presentation were analyzed to explore the temporal course of word frequency in typewriting. The results showed an effect of word frequency for the first keystroke latency but not for the duration of the word or the speed to which letter were typed (interstroke intervals). The electrophysiological results showed the expected ERP frequency effect at posterior sites: amplitudes for low-frequency words were more positive than those for high-frequency words. However, relative to previous evidence in the spoken modality, the frequency effect appeared in a later time-window. These results demonstrate two marked differences in the processing dynamics underpinning typing compared to speaking: First, central processing dynamics between speaking and typing differ already in the manner that words are accessed; second, central processing differences in typing, unlike speaking, do not cascade to peripheral processes involved in response execution.

  7. When does word frequency influence written production?

    PubMed Central

    Baus, Cristina; Strijkers, Kristof; Costa, Albert

    2013-01-01

    The aim of the present study was to explore the central (e.g., lexical processing) and peripheral processes (motor preparation and execution) underlying word production during typewriting. To do so, we tested non-professional typers in a picture typing task while continuously recording EEG. Participants were instructed to write (by means of a standard keyboard) the corresponding name for a given picture. The lexical frequency of the words was manipulated: half of the picture names were of high-frequency while the remaining were of low-frequency. Different measures were obtained: (1) first keystroke latency and (2) keystroke latency of the subsequent letters and duration of the word. Moreover, ERPs locked to the onset of the picture presentation were analyzed to explore the temporal course of word frequency in typewriting. The results showed an effect of word frequency for the first keystroke latency but not for the duration of the word or the speed to which letter were typed (interstroke intervals). The electrophysiological results showed the expected ERP frequency effect at posterior sites: amplitudes for low-frequency words were more positive than those for high-frequency words. However, relative to previous evidence in the spoken modality, the frequency effect appeared in a later time-window. These results demonstrate two marked differences in the processing dynamics underpinning typing compared to speaking: First, central processing dynamics between speaking and typing differ already in the manner that words are accessed; second, central processing differences in typing, unlike speaking, do not cascade to peripheral processes involved in response execution. PMID:24399980

  8. Dual-frequency ultrasound imaging and therapeutic bilaminar array using frequency selective isolation layer.

    PubMed

    Azuma, Takashi; Ogihara, Makoto; Kubota, Jun; Sasaki, Akira; Umemura, Shin-ichiro; Furuhata, Hiroshi

    2010-05-01

    A new ultrasound array transducer with two different optimal frequencies designed for diagnosis and therapy integration in Doppler imaging-based transcranial sonothrombolysis is described. Previous studies have shown that respective frequencies around 0.5 and 2 MHz are suitable for sonothrombolysis and Doppler imaging. Because of the small acoustic window available for transcranial ultrasound exposure, it is highly desirable that both therapeutic and diagnostic ultrasounds pass through the same aperture with high efficiency. To achieve such a dual-frequency array transducer, we propose a bilaminar array, having an array for imaging and another for therapy, with a frequency selective isolation layer between the two arrays. The function of this layer is to isolate the imaging array from the therapy array at 2 MHz without disturbing the 0.5-MHz ultrasound transmission. In this study, we first used a 1-D model including two lead zirconate titanate (PZT) layers separated by an isolation layer for intuitive understanding of the phenomena. After that, we optimized the acoustic impedance and thickness of the isolation layer by analyzing pulse propagation in a 2-D model by conducting a numerical simulation with commercially available software. The optimal acoustic impedance and thickness are 3 to 4 MRayI and lambda/10, respectively. On the basis of the optimization, a prototype array transducer was fabricated, and the spatial resolutions of the Doppler images it obtained were found to be practically the same as those obtained through conventional imaging array transducers.

  9. Stratifying Parkinson's Patients With STN-DBS Into High-Frequency or 60 Hz-Frequency Modulation Using a Computational Model.

    PubMed

    Khojandi, Anahita; Shylo, Oleg; Mannini, Lucia; Kopell, Brian H; Ramdhani, Ritesh A

    2017-07-01

    High frequency stimulation (HFS) of the subthalamic nucleus (STN) is a well-established therapy for Parkinson's disease (PD), particularly the cardinal motor symptoms and levodopa induced motor complications. Recent studies have suggested the possible role of 60 Hz stimulation in STN-deep brain stimulation (DBS) for patients with gait disorder. The objective of this study was to develop a computational model, which stratifies patients a priori based on symptomatology into different frequency settings (i.e., high frequency or 60 Hz). We retrospectively analyzed preoperative MDS-Unified Parkinson's Disease Rating Scale III scores (32 indicators) collected from 20 PD patients implanted with STN-DBS at Mount Sinai Medical Center on either 60 Hz stimulation (ten patients) or HFS (130-185 Hz) (ten patients) for an average of 12 months. Predictive models using the Random Forest classification algorithm were built to associate patient/disease characteristics at surgery to the stimulation frequency. These models were evaluated objectively using leave-one-out cross-validation approach. The computational models produced, stratified patients into 60 Hz or HFS (130-185 Hz) with 95% accuracy. The best models relied on two or three predictors out of the 32 analyzed for classification. Across all predictors, gait and rest tremor of the right hand were consistently the most important. Computational models were developed using preoperative clinical indicators in PD patients treated with STN-DBS. These models were able to accurately stratify PD patients into 60 Hz stimulation or HFS (130-185 Hz) groups a priori, offering a unique potential to enhance the utilization of this therapy based on clinical subtypes. © 2017 International Neuromodulation Society.

  10. Modal testing with Asher's method using a Fourier analyzer and curve fitting

    NASA Technical Reports Server (NTRS)

    Gold, R. R.; Hallauer, W. L., Jr.

    1979-01-01

    An unusual application of the method proposed by Asher (1958) for structural dynamic and modal testing is discussed. Asher's method has the capability, using the admittance matrix and multiple-shaker sinusoidal excitation, of separating structural modes having indefinitely close natural frequencies. The present application uses Asher's method in conjunction with a modern Fourier analyzer system but eliminates the necessity of exciting the test structure simultaneously with several shakers. Evaluation of this approach with numerically simulated data demonstrated its effectiveness; the parameters of two modes having almost identical natural frequencies were accurately identified. Laboratory evaluation of this approach was inconclusive because of poor experimental input data.

  11. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy.

    PubMed

    Zhu, Zhuozhuo; Guo, Wenchuan

    2017-08-24

    To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.

  12. The nonstationary strain filter in elastography: Part I. Frequency dependent attenuation.

    PubMed

    Varghese, T; Ophir, J

    1997-01-01

    The accuracy and precision of the strain estimates in elastography depend on a myriad number of factors. A clear understanding of the various factors (noise sources) that plague strain estimation is essential to obtain quality elastograms. The nonstationary variation in the performance of the strain filter due to frequency-dependent attenuation and lateral and elevational signal decorrelation are analyzed in this and the companion paper for the cross-correlation-based strain estimator. In this paper, we focus on the role of frequency-dependent attenuation in the performance of the strain estimator. The reduction in the signal-to-noise ratio (SNRs) in the RF signal, and the center frequency and bandwidth downshift with frequency-dependent attenuation are incorporated into the strain filter formulation. Both linear and nonlinear frequency dependence of attenuation are theoretically analyzed. Monte-Carlo simulations are used to corroborate the theoretically predicted results. Experimental results illustrate the deterioration in the precision of the strain estimates with depth in a uniformly elastic phantom. Theoretical, simulation and experimental results indicate the importance of high SNRs values in the RF signals, because the strain estimation sensitivity, elastographic SNRe and dynamic range deteriorate rapidly with a decrease in the SNRs. In addition, a shift in the strain filter toward higher strains is observed at large depths in tissue due to the center frequency downshift.

  13. Parametric Time-Frequency Analysis and Its Applications in Music Classification

    NASA Astrophysics Data System (ADS)

    Shen, Ying; Li, Xiaoli; Ma, Ngok-Wah; Krishnan, Sridhar

    2010-12-01

    Analysis of nonstationary signals, such as music signals, is a challenging task. The purpose of this study is to explore an efficient and powerful technique to analyze and classify music signals in higher frequency range (44.1 kHz). The pursuit methods are good tools for this purpose, but they aimed at representing the signals rather than classifying them as in Y. Paragakin et al., 2009. Among the pursuit methods, matching pursuit (MP), an adaptive true nonstationary time-frequency signal analysis tool, is applied for music classification. First, MP decomposes the sample signals into time-frequency functions or atoms. Atom parameters are then analyzed and manipulated, and discriminant features are extracted from atom parameters. Besides the parameters obtained using MP, an additional feature, central energy, is also derived. Linear discriminant analysis and the leave-one-out method are used to evaluate the classification accuracy rate for different feature sets. The study is one of the very few works that analyze atoms statistically and extract discriminant features directly from the parameters. From our experiments, it is evident that the MP algorithm with the Gabor dictionary decomposes nonstationary signals, such as music signals, into atoms in which the parameters contain strong discriminant information sufficient for accurate and efficient signal classifications.

  14. Pattern-Recognition Algorithm for Locking Laser Frequency

    NASA Technical Reports Server (NTRS)

    Karayan, Vahag; Klipstein, William; Enzer, Daphna; Yates, Philip; Thompson, Robert; Wells, George

    2006-01-01

    A computer program serves as part of a feedback control system that locks the frequency of a laser to one of the spectral peaks of cesium atoms in an optical absorption cell. The system analyzes a saturation absorption spectrum to find a target peak and commands a laser-frequency-control circuit to minimize an error signal representing the difference between the laser frequency and the target peak. The program implements an algorithm consisting of the following steps: Acquire a saturation absorption signal while scanning the laser through the frequency range of interest. Condition the signal by use of convolution filtering. Detect peaks. Match the peaks in the signal to a pattern of known spectral peaks by use of a pattern-recognition algorithm. Add missing peaks. Tune the laser to the desired peak and thereafter lock onto this peak. Finding and locking onto the desired peak is a challenging problem, given that the saturation absorption signal includes noise and other spurious signal components; the problem is further complicated by nonlinearity and shifting of the voltage-to-frequency correspondence. The pattern-recognition algorithm, which is based on Hausdorff distance, is what enables the program to meet these challenges.

  15. An exploratory study on scientific investigations in homeopathy using medical analyzer.

    PubMed

    Mishra, Nirupama; Muraleedharan, K Charan; Paranjpe, Akalpita Sriniwas; Munta, Devendra Kumar; Singh, Hari; Nayak, Chaturbhuja

    2011-08-01

    The action of homeopathic medicines, in ultra-high dilution, is not directly observable. An attempt was made to explore autonomic response of selective homeopathic medicines, in healthy persons, using Medical Analyzer System (Electronics Division, Bhabha Atomic Research Centre, Mumbai, India). The objective of the study was to observe the action of homeopathic medicines on physiologic variability of heart rate and blood flow. Pre- and postinterventional variability spectra of heart rate and blood flow of 77 subjects were recorded with the Medical Analyzer System, administering homeopathic preparations of Aconitum napellus (6c, 10M), Arsenicum album (200c, 1M), Gelsemium sempervirens (200c, 1M), Phosphorus (200c, 1M), Pulsatilla nigricans (200c) and Sulphur (200c, 1M) versus placebo control. The amplitude of the peaks viz. low-frequency, medium-frequency, and high-frequency was measured for postintervention analysis. An increase in the amplitude of any valid peak by 100% or a decrease by 50% was considered as significant change. Aconitum napellus produced a response in heart rate variability (HRV) with 30c potency and in blood flow variability with 1M potency. Sulphur 200c and 1M, Gelsemium 200c and Pulsatilla 200c, produced a 62.5% response in HRV against the placebo response of 16.6%. Gelsemium, Phosphorus, and Sulphur produced a response in blood flow variability with a 1M potency, similar to the response of Aconitum napellus 1M. These data suggest that it is possible to record the response of homeopathic medicines on physiologic parameters of the autonomic nervous system.

  16. Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2012-01-01

    This software processes the flyby spectra of the Chirp Transform Spectrometer (CTS) of the Microwave Instrument for Rosetta Orbiter (MIRO). The tool corrects the effect of Doppler shift and local-oscillator (LO) frequency shift during the flyby mode of MIRO operations. The frequency correction for CTS flyby spectra is performed and is integrated with multiple spectra into a high signal-to-noise averaged spectrum at the rest-frame RF frequency. This innovation also generates the 8 molecular line spectra by dividing continuous 4,096-channel CTS spectra. The 8 line spectra can then be readily used for scientific investigations. A spectral line that is at its rest frequency in the frame of the Earth or an asteroid will be observed with a time-varying Doppler shift as seen by MIRO. The frequency shift is toward the higher RF frequencies on approach, and toward lower RF frequencies on departure. The magnitude of the shift depends on the flyby velocity. The result of time-varying Doppler shift is that of an observed spectral line will be seen to move from channel to channel in the CTS spectrometer. The direction (higher or lower frequency) in the spectrometer depends on the spectral line frequency under consideration. In order to analyze the flyby spectra, two steps are required. First, individual spectra must be corrected for the Doppler shift so that individual spectra can be superimposed at the same rest frequency for integration purposes. Second, a correction needs to be applied to the CTS spectra to account for the LO frequency shifts that are applied to asteroid mode.

  17. Seismology and geodesy of the sun: low-frequency oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dicke, R.H.

    1981-04-01

    The hourly averages of the solar ellipticity measured from June 13 to September 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 h ..nu.. < 0.5 h/sup -1/. Nothing significant is found for frequencies ..nu.. > 0.1 hr/sup -1/ but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-h period, with many observational days missing, and with different numbers ofmore » hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.« less

  18. Vibration analyzer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1990-01-01

    The invention relates to monitoring circuitry for the real time detection of vibrations of a predetermined frequency and which are greater than a predetermined magnitude. The circuitry produces an instability signal in response to such detection. The circuitry is particularly adapted for detecting instabilities in rocket thrusters, but may find application with other machines such as expensive rotating machinery, or turbines. The monitoring circuitry identifies when vibration signals are present having a predetermined frequency of a multi-frequency vibration signal which has an RMS energy level greater than a predetermined magnitude. It generates an instability signal only if such a vibration signal is identified. The circuitry includes a delay circuit which responds with an alarm signal only if the instability signal continues for a predetermined time period. When used with a rocket thruster, the alarm signal may be used to cut off the thruster if such thruster is being used in flight. If the circuitry is monitoring tests of the thruster, it generates signals to change the thruster operation, for example, from pulse mode to continuous firing to determine if the instability of the thruster is sustained once it is detected.

  19. Frequency dispersions of human skin dielectrics.

    PubMed Central

    Poon, C S; Choy, T T

    1981-01-01

    The electrical properties of many biological materials are known to exhibit frequency dispersions. In the human skin, the impedance measured at various frequencies closely describes a circular locus of the Cole-Cole type in the complex impedance plane. In this report, the formative mechanisms responsible for the anomalous circular-arc behavior of skin impedance were investigated, using data from impedance measurements taken after successive strippings of the skin. The data were analyzed with respect to changes in the parameters of the equivalent Cole-Cole model after each stripping. For an exponential resistivity profile (Tregear, 1966, Physical Functions of Skin; Yamamoto and Yamamoto, 1976, Med. Biol. Eng., 14:151--158), the profile of the dielectric constant was shown to be uniform across the epidermis. Based on these results, a structural model has been formulated in terms of the relaxation theory of Maxwell and Wagner for inhomogeneous dielectric materials. The impedance locus obtained from the model approximates a circular are with phase constant alpha = 0.82, which compares favorably with experimental data. At higher frequencies a constant-phase, frequency-dependent component having the same phase constant alpha is also demonstrated. It is suggested that an approximately rectangular distribution of the relaxation time over the epidermal dielectric sheath is adequate to account for the anomalous frequency characteristics of human skin impedance. PMID:7213928

  20. Analysis of error type and frequency in apraxia of speech among Portuguese speakers.

    PubMed

    Cera, Maysa Luchesi; Minett, Thaís Soares Cianciarullo; Ortiz, Karin Zazo

    2010-01-01

    Most studies characterizing errors in the speech of patients with apraxia involve English language. To analyze the types and frequency of errors produced by patients with apraxia of speech whose mother tongue was Brazilian Portuguese. 20 adults with apraxia of speech caused by stroke were assessed. The types of error committed by patients were analyzed both quantitatively and qualitatively, and frequencies compared. We observed the presence of substitution, omission, trial-and-error, repetition, self-correction, anticipation, addition, reiteration and metathesis, in descending order of frequency, respectively. Omission type errors were one of the most commonly occurring whereas addition errors were infrequent. These findings differed to those reported in English speaking patients, probably owing to differences in the methodologies used for classifying error types; the inclusion of speakers with apraxia secondary to aphasia; and the difference in the structure of Portuguese language to English in terms of syllable onset complexity and effect on motor control. The frequency of omission and addition errors observed differed to the frequency reported for speakers of English.

  1. Frequency clusters in self-excited dust density waves

    NASA Astrophysics Data System (ADS)

    Menzel, Kristoffer O.; Arp, Oliver; Piel, Alexander

    2010-11-01

    Self-excited dust density waves were studied under microgravity conditions. Their non-sinusoidal shape and high degrees of modulation suggests that nonlinear effects play an important role in their spatio-temporal dynamics. The resulting complex wave pattern is analyzed in great detail by means of the Hilbert transform, which provides instantaneous wave attributes, such as the phase and the frequency. Our analysis showed that the spatial frequency distribution of the DDWs is usually not constant over the dust cloud. In contrast, the wave field is divided into regions of different but almost constant frequencies [1]. The boundaries of these so-called frequency clusters coincide with the locations of phase defects in the wave field. It is found that the size of the clusters depends on the strength of spatial gradients in the plasma parameters. We attribute the formation of frequency clusters to synchronization phenomena as a consequence of the nonlinear character of the wave.[1] K. O. Menzel, O. Arp, A.Piel, Phys. Rev. Lett. 104, 235002 (2010)

  2. Digital processing of RF signals from optical frequency combs

    NASA Astrophysics Data System (ADS)

    Cizek, Martin; Smid, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Cip, Ondřej

    2013-01-01

    The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Secondly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique used for assessing the offset and repetition frequencies of the comb, resulting in digital servo-loop stabilization of the fs comb. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset frequency of the fs comb.

  3. Low frequency electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1989-01-01

    Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.

  4. Improved Controller Design of Grid Friendly™ Appliances for Primary Frequency Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jianming; Sun, Yannan; Marinovici, Laurentiu D.

    2015-09-01

    The Grid Friendlymore » $$^\\textrm{TM}$$ Appliance~(GFA) controller, developed at Pacific Northwest National Laboratory, can autonomously switch off the appliances by detecting the under-frequency events. In this paper, the impacts of curtailing frequency threshold on the performance of frequency responsive GFAs are carefully analyzed first. The current method of selecting curtailing frequency thresholds for GFAs is found to be insufficient to guarantee the desired performance especially when the frequency deviation is shallow. In addition, the power reduction of online GFAs could be so excessive that it can even impact the system response negatively. As a remedy to the deficiency of the current controller design, a different way of selecting curtailing frequency thresholds is proposed to ensure the effectiveness of GFAs in frequency protection. Moreover, it is also proposed to introduce a supervisor at each distribution feeder to monitor the curtailing frequency thresholds of online GFAs and take corrective actions if necessary.« less

  5. Entanglement and asymmetric steering over two octaves of frequency difference

    NASA Astrophysics Data System (ADS)

    Olsen, M. K.

    2017-12-01

    The development of quantum technologies which use quantum states of the light field interacting with other systems creates a demand for entangled states spanning wide frequency ranges. In this work we analyze a parametric scheme of cascaded harmonic generation which promises to deliver bipartite entangled states in which the two modes are separated by two octaves in frequency. This scheme is potentially very useful for applications in quantum communication and computation networks as well as providing for quantum interfaces between a wider range of light and atomic ensembles than is presently practicable. It doubles the frequency range over which entanglement is presently available.

  6. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    NASA Astrophysics Data System (ADS)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  7. Scientific applications of frequency-stabilized laser technology in space

    NASA Technical Reports Server (NTRS)

    Schumaker, Bonny L.

    1990-01-01

    A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops.

  8. Research on frequency control strategy of interconnected region based on fuzzy PID

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Li, Chunlan

    2018-05-01

    In order to improve the frequency control performance of the interconnected power grid, overcome the problems of poor robustness and slow adjustment of traditional regulation, the paper puts forward a frequency control method based on fuzzy PID. The method takes the frequency deviation and tie-line deviation of each area as the control objective, takes the regional frequency deviation and its deviation as input, and uses fuzzy mathematics theory, adjusts PID control parameters online. By establishing the regional frequency control model of water-fire complementary power generation in MATLAB, the regional frequency control strategy is given, and three control modes (TBC-FTC, FTC-FTC, FFC-FTC) are simulated and analyzed. The simulation and experimental results show that, this method has better control performance compared with the traditional regional frequency regulation.

  9. Amplitude Variation of Bottom Simulating Reflection with Respect to Frequency - Transitional Base or Attenuation?

    USGS Publications Warehouse

    Lee, Myung W.

    2007-01-01

    The amplitude of a bottom simulating reflection (BSR), which occurs near the phase boundary between gas hydrate-bearing sediments and underlying gas-filled sediments, strongly depends on the frequency content of a seismic signal, as well as the impedance contrast across the phase boundary. A strong-amplitude BSR, detectable in a conventional seismic profile, is a good indicator of the presence of free gas beneath the phase boundary. However, the BSR as observed in low-frequency multichannel seismic data is generally difficult to identify in high-frequency, single-channel seismic data. To investigate the frequency dependence of BSR amplitudes, single-channel seismic data acquired with an air gun source at Blake Ridge, which is located off the shore of South Carolina, were analyzed in the frequency range of 10-240 Hz. The frequency-dependent impedance contrast caused by the velocity dispersion in partially gas saturated sediments is important to accurately analyze BSR amplitude. Analysis indicates that seismic attenuation of gas hydrate-bearing sediments, velocity dispersion, and a transitional base all contribute to the frequency-dependent BSR amplitude variation in the frequency range of 10-500 Hz. When velocity dispersion is incorporated into the BSR amplitude analysis, the frequency-dependent BSR amplitude at Blake Ridge can be explained with gas hydrate-bearing sediments having a quality factor of about 250 and a transitional base with a thickness of about 1 meter.

  10. Adaptive frequency-difference matched field processing for high frequency source localization in a noisy shallow ocean.

    PubMed

    Worthmann, Brian M; Song, H C; Dowling, David R

    2017-01-01

    Remote source localization in the shallow ocean at frequencies significantly above 1 kHz is virtually impossible for conventional array signal processing techniques due to environmental mismatch. A recently proposed technique called frequency-difference matched field processing (Δf-MFP) [Worthmann, Song, and Dowling (2015). J. Acoust. Soc. Am. 138(6), 3549-3562] overcomes imperfect environmental knowledge by shifting the signal processing to frequencies below the signal's band through the use of a quadratic product of frequency-domain signal amplitudes called the autoproduct. This paper extends these prior Δf-MFP results to various adaptive MFP processors found in the literature, with particular emphasis on minimum variance distortionless response, multiple constraint method, multiple signal classification, and matched mode processing at signal-to-noise ratios (SNRs) from -20 to +20 dB. Using measurements from the 2011 Kauai Acoustic Communications Multiple University Research Initiative experiment, the localization performance of these techniques is analyzed and compared to Bartlett Δf-MFP. The results show that a source broadcasting a frequency sweep from 11.2 to 26.2 kHz through a 106 -m-deep sound channel over a distance of 3 km and recorded on a 16 element sparse vertical array can be localized using Δf-MFP techniques within average range and depth errors of 200 and 10 m, respectively, at SNRs down to 0 dB.

  11. Multivariate cross-frequency coupling via generalized eigendecomposition

    PubMed Central

    Cohen, Michael X

    2017-01-01

    This paper presents a new framework for analyzing cross-frequency coupling in multichannel electrophysiological recordings. The generalized eigendecomposition-based cross-frequency coupling framework (gedCFC) is inspired by source-separation algorithms combined with dynamics of mesoscopic neurophysiological processes. It is unaffected by factors that confound traditional CFC methods—such as non-stationarities, non-sinusoidality, and non-uniform phase angle distributions—attractive properties considering that brain activity is neither stationary nor perfectly sinusoidal. The gedCFC framework opens new opportunities for conceptualizing CFC as network interactions with diverse spatial/topographical distributions. Five specific methods within the gedCFC framework are detailed, these are validated in simulated data and applied in several empirical datasets. gedCFC accurately recovers physiologically plausible CFC patterns embedded in noise that causes traditional CFC methods to perform poorly. The paper also demonstrates that spike-field coherence in multichannel local field potential data can be analyzed using the gedCFC framework, which provides significant advantages over traditional spike-field coherence analyses. Null-hypothesis testing is also discussed. DOI: http://dx.doi.org/10.7554/eLife.21792.001 PMID:28117662

  12. 40 CFR 89.311 - Analyzer calibration frequency.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test... rejection ratio and the CO2 rejection ratio as specified in § 89.318. (e) Verify that the dynamometer test...

  13. Chip-Scale Architectures for Precise Optical Frequency Synthesis

    NASA Astrophysics Data System (ADS)

    Yang, Jinghui

    Scientists and engineers have investigated various types of stable and accurate optical synthesizers, where mode-locked laser based optical frequency comb synthesizers have been widely investigated. These frequency combs bridge the frequencies from optical domain to microwave domain with orders of magnitude difference, providing a metrological tool for various platforms. The demand for highly robust, scalable, compact and cost-effective femtosecond-laser synthesizers, however, are of great importance for applications in air- or space-borne platforms, where low cost and rugged packaging are particularly required. This has been afforded in the past several years due to breakthroughs in chip-scale nanofabrication, bringing advances in optical frequency combs down to semiconductor chips. These platforms, with significantly enhanced light-matter interaction, provide a fertile sandbox for research rich in nonlinear dynamics, and offer a reliable route towards low-phase noise photonic oscillators, broadband optical frequency synthesizers, miniaturized optical clockwork, and coherent terabit communications. The dissertation explores various types of optical frequency comb synthesizers based on nonlinear microresonators. Firstly, the fundamental mechanism of mode-locking in a high-quality factor microresonator is examined, supported by ultrafast optical characterizations, analytical closed-form solutions and numerical modeling. In the evolution of these frequency microcombs, the key nonlinear dynamical effect governing the comb state coherence is rigorously analyzed. Secondly, a prototype of chip-scale optical frequency synthesizer is demonstrated, with the laser frequency comb stabilized down to instrument-limited 50-mHz RF frequency inaccuracies and 10-16 fractional frequency inaccuracies, near the fundamental limits. Thirdly, a globally stable Turing pattern is achieved and characterized in these nonlinear resonators with high-efficiency conversion, subsequently

  14. Wave-field decay rate estimate from the wavenumber-frequency spectra

    NASA Astrophysics Data System (ADS)

    Comisel, H.; Narita, Y.; Voros, Z.

    2017-12-01

    Observational data for wave or turbulent fields are conveniently analyzed and interpreted in the Fourier domain spanning the frequencies and the wavenumbers. If a wave field has not only oscillatory components (characterized by real parts of frequency) but also temporally decaying components (characterized by imaginary parts of frequency), the energy spectrum shows a frequency broadening around the peak due to the imaginary parts of frequency (or the decay rate). The mechanism of the frequency broadening is the same as that of the Breit-Wigner spectrum in nuclear resonance phenomena. We show that the decay rate can observationally and directly be estimated once multi-point data are available, and apply the method to Cluster four-point magnetometer data in the solar wind on a spatial scale of about 1000 km. The estimated decay rate is larger than the eddy turnover time, indicating that the decay profile of solar wind turbulence is more plasma physical such as excitation of whistler waves and other modes rather than hydrodynamic turbulence behavior.

  15. Medium-frequency impulsive-thrust-activated liquid hydrogen reorientation with Geyser

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1992-01-01

    Efficient technique are studied for accomplishing propellant resettling through the minimization of propellant usage through impulsive thrust. A comparison between the use of constant-thrust and impulsive-thrust accelerations for the activation of propellant resettlement shows that impulsive thrust is superior to constant thrust for liquid reorientation in a reduced-gravity environment. This study shows that when impulsive thrust with 0.1-1.0-, and 10-Hz frequencies for liquid-fill levels in the range between 30-80 percent is considered, the selection of 1.0-Hz-frequency impulsive thrust over the other frequency ranges of impulsive thrust is the optimum. Characteristics of the slosh waves excited during the course of 1.0-Hz-frequency impulsive-thrust liquid reorientation were also analyzed.

  16. Fast focus estimation using frequency analysis in digital holography.

    PubMed

    Oh, Seungtaik; Hwang, Chi-Young; Jeong, Il Kwon; Lee, Sung-Keun; Park, Jae-Hyeung

    2014-11-17

    A novel fast frequency-based method to estimate the focus distance of digital hologram for a single object is proposed. The focus distance is computed by analyzing the distribution of intersections of smoothed-rays. The smoothed-rays are determined by the directions of energy flow which are computed from local spatial frequency spectrum based on the windowed Fourier transform. So our method uses only the intrinsic frequency information of the optical field on the hologram and therefore does not require any sequential numerical reconstructions and focus detection techniques of conventional photography, both of which are the essential parts in previous methods. To show the effectiveness of our method, numerical results and analysis are presented as well.

  17. Confocal Fabry-Perot interferometer for frequency stabilization of laser

    NASA Astrophysics Data System (ADS)

    Pan, H.-J.; Ruan, P.; Wang, H.-W.; Li, F.

    2011-02-01

    The frequency shift of laser source of Doppler lidar is required in the range of a few megahertzs. To satisfy this demand, a confocal Fabry-Perot (F-P) interferometer was manufactured as the frequency standard for frequency stabilization. After analyzing and contrasting the center frequency shift of confocal Fabry-Perot interferometers that are made of three different types of material with the change of temperature, the zerodur material was selected to fabricate the interferometer, and the cavity mirrors were optically contacted onto the end of spacer. The confocal Fabry-Perot interferometer was situated within a double-walled chamber, and the change of temperature in the chamber was less than 0.01 K. The experimental results indicate that the free spectral range is 500 MHz, the full-width at half maximum is 3.33 MHz, and the finesse is 150.

  18. Time-frequency analysis : mathematical analysis of the empirical mode decomposition.

    DOT National Transportation Integrated Search

    2009-01-01

    Invented over 10 years ago, empirical mode : decomposition (EMD) provides a nonlinear : time-frequency analysis with the ability to successfully : analyze nonstationary signals. Mathematical : Analysis of the Empirical Mode Decomposition : is a...

  19. Applying the new method of time-frequency transforms to the analysis of the characteristics of geomagnetic Pc5 pulsations

    NASA Astrophysics Data System (ADS)

    Zelinsky, N. R.; Kleimenova, N. G.; Gromova, L. I.

    2017-09-01

    This study considers the possibility of using the new methods of time-frequency transforms, such as chirplet and warblet transforms, to analyze the digital observational data of geomagnetic pulsations of Pc5 type. For this purpose, necessary algorithms of calculation and appropriate software were developed. The chirplet transform method (CT) is used to analyze signals with a linear frequency modulation. A chirplet variation, the so-called warblet transform, is used to analyze signals with a nonlinear frequency modulation. Since, in studying geomagnetic pulsations, it is difficult to make assumptions on the character of the behavior of the instantaneous frequency of the signal, the special generalized warblet transform (GWT) was used for the analysis. The GWT has a high spatiotemporal resolution and was developed to analyze oscillations both with a periodic and nonperiodic change of the instantaneous frequency. The software developed for GWT calculation was used to study daytime geomagnetic Pc5 pulsations with durations of several hours that were detected via the network of ground-based magnetometers of the Scandinavian IMAGE profile during the magnetic storm of May 29-30, 2003. For the first time, temporal variations of the instantaneous frequency of geomagnetic pulsations are determined and their possible use in studying the fine spatial structure of Pc5 waves is shown.

  20. Optimal behavior of viscoelastic flow at resonant frequencies.

    PubMed

    Lambert, A A; Ibáñez, G; Cuevas, S; del Río, J A

    2004-11-01

    The global entropy generation rate in the zero-mean oscillatory flow of a Maxwell fluid in a pipe is analyzed with the aim of determining its behavior at resonant flow conditions. This quantity is calculated explicitly using the analytic expression for the velocity field and assuming isothermal conditions. The global entropy generation rate shows well-defined peaks at the resonant frequencies where the flow displays maximum velocities. It was found that resonant frequencies can be considered optimal in the sense that they maximize the power transmitted to the pulsating flow at the expense of maximum dissipation.

  1. High frequency x-ray generator basics.

    PubMed

    Sobol, Wlad T

    2002-02-01

    The purpose of this paper is to present basic functional principles of high frequency x-ray generators. The emphasis is put on physical concepts that determine the engineering solutions to the problem of efficient generation and control of high voltage power required to drive the x-ray tube. The physics of magnetically coupled circuits is discussed first, as a background for the discussion of engineering issues related to high-frequency power transformer design. Attention is paid to physical processes that influence such factors as size, efficiency, and reliability of a high voltage power transformer. The basic electrical circuit of a high frequency generator is analyzed next, with focus on functional principles. This section investigates the role and function of basic components, such as power supply, inverter, and voltage doubler. Essential electronic circuits of generator control are then examined, including regulation of voltage, current and timing of electrical power delivery to the x-ray tube. Finally, issues related to efficient feedback control, including basic design of the AEC circuitry are reviewed.

  2. W-band six-port network analyzer for two-port characterization of millimeter wave transistors

    NASA Technical Reports Server (NTRS)

    Moeller, Karl J.; Schaffner, James H.; Fetterman, Harold R.

    1989-01-01

    A W-band (75-100 GHz) six-port junction network analyzer was constructed from commercially available descrete waveguide components and was used for the direct two-port S-parameter measurement of active three-terminal devices. A comparison between the six-port and a down-converter-type frequency extender for a conventional network analyzer revealed the superior performance of the six-port. The application of the six-port to characterize a 0.1-micron gate-length HEMT at W-band is described, and representative results are presented.

  3. Analysis of high-frequency oscillations in mutually-coupled nano-lasers.

    PubMed

    Han, Hong; Shore, K Alan

    2018-04-16

    The dynamics of mutually coupled nano-lasers has been analyzed using rate equations which include the Purcell cavity-enhanced spontaneous emission factor F and the spontaneous emission coupling factor β. It is shown that in the mutually-coupled system, small-amplitude oscillations with frequencies of order 100 GHz are generated and are maintained with remarkable stability. The appearance of such high-frequency oscillations is associated with the effective reduction of the carrier lifetime for larger values of the Purcell factor, F, and spontaneous coupling factor, β. In mutually-coupled nano-lasers the oscillation frequency changes linearly with the frequency detuning between the lasers. For non-identical bias currents, the oscillation frequency of mutually-coupled nano-lasers also increases with bias current. The stability of the oscillations which appear in mutually coupled nano-lasers offers opportunities for their practical applications and notably in photonic integrated circuits.

  4. Frequency spectrum analysis of laser generated ultrasonic waves in ablative regime

    NASA Astrophysics Data System (ADS)

    Mi, Bao; Ume, I. Charles

    2002-05-01

    In this paper, laser ultrasonic signals generated in ablative regime are measured in a number of metal samples (2024 Al, 6061 Al, 7075 Al, mild steel, and copper) with a broadband laser interferometer. The frequency spectra are analyzed and compared for different thicknesses (50.8 mm, 25.4 mm, 12.7 mm, and 6.4 mm), and for different power densities. Hanning windowing is applied before frequency analysis is performed. The experimental data match the theoretical predictions very well. The results show that the frequency spectrum extends from 0 to 15 MHz, while the center frequency occurs near 2 MHz. The detailed distribution of the spectrum is dependent on the material, thickness, and laser power density.

  5. The Effect of Flow Frequency on Internet Addiction to Different Internet Usage Activities

    ERIC Educational Resources Information Center

    Yang, Hui-Ling; Wu, Wei-Pang

    2017-01-01

    This study investigated the online flow frequency among college students in regard to different internet activities, and analyzed the effect of flow frequency on internet addiction. This study surveyed 525 undergraduate internet users in Taiwan by using convenience sampling to question participants. In this paper, analysis of variance (ANOVA) was…

  6. Optical frequency standards for gravitational wave detection using satellite velocimetry

    NASA Astrophysics Data System (ADS)

    Vutha, Amar

    2015-04-01

    Satellite Doppler velocimetry, building on the work of Kaufmann and Estabrook and Wahlquist, is a complementary technique to interferometric methods of gravitational wave detection. This method is based on the fact that the gravitational wave amplitude appears in the apparent Doppler shift of photons propagating from an emitter to a receiver. This apparent Doppler shift can be resolved provided that a frequency standard, capable of quickly averaging down to a high stability, is available. We present a design for a space-capable optical atomic frequency standard, and analyze the sensitivity of satellite Doppler velocimetry for gravitational wave astronomy in the milli-hertz frequency band.

  7. Quasi-Optical Network Analyzers and High-Reliability RF MEMS Switched Capacitors

    NASA Astrophysics Data System (ADS)

    Grichener, Alexander

    The thesis first presents a 2-port quasi-optical scalar network analyzer consisting of a transmitter and receiver both built in planar technology. The network analyzer is based on a Schottky-diode mixer integrated inside a planar antenna and fed differentially by a CPW transmission line. The antenna is placed on an extended hemispherical high-resistivity silicon substrate lens. The LO signal is swept from 3-5 GHz and high-order harmonic mixing in both up- and down- conversion mode is used to realize the 15-50 GHz RF bandwidth. The network analyzer resulted in a dynamic range of greater than 40 dB and was successfully used to measure a frequency selective surface with a second-order bandpass response. Furthermore, the system was built with circuits and components for easy scaling to millimeter-wave frequencies which is the primary motivation for this work. The application areas for a millimeter and submillimeter-wave network analyzer include material characterization and art diagnostics. The second project presents several RF MEMS switched capacitors designed for high-reliability operation and suitable for tunable filters and reconfigurable networks. The first switched-capacitor resulted in a digital capacitance ratio of 5 and an analog capacitance ratio of 5-9. The analog tuning of the down-state capacitance is enhanced by a positive vertical stress gradient in the the beam, making it ideal for applications that require precision tuning. A thick electroplated beam resulted in Q greater than 100 at C to X-band frequencies, and power handling of 0.6-1.1 W. The design also minimized charging in the dielectric, resulting in excellent reliability performance even under hot-switched and high power (1 W) conditions. The second switched-capacitor was designed without any dielectric to minimize charging. The device was hot-switched at 1 W of RF power for greater than 11 billion cycles with virtually no change in the C-V curve. The final project presents a 7-channel

  8. [Microstrip antenna design and system research of radio frequency identification temperature sensor].

    PubMed

    Yang, Hao; Yang, Xiaohe; Chen, Yuquan; Pan, Min

    2008-12-01

    Radio frequency identification sensor network, which is a product of integrating radio frequency identification (RFID) with wireless sensor network (WSN), is introduced in this paper. The principle of radio frequency identification sensor is analyzed, and the importance of the antenna is emphasized. Then three kinds of common antennae, namely coil antenna, dipole antenna and microstrip antenna, are discussed. Subsequently, according to requirement, we have designed a microstrip antenna in a wireless temperature-monitoring and controlling system. The measurement of factual effect showed the requirement was fulfilled.

  9. The transmission of low frequency medical data using delta modulation techniques.

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Dawson, C. T.

    1972-01-01

    The transmission of low-frequency medical data using delta modulation techniques is described. The delta modulators are used to distribute the low-frequency data into the passband of the telephone lines. Both adaptive and linear delta modulators are considered. Optimum bit rates to minimize distortion and intersymbol interference are discussed. Vibrocardiographic waves are analyzed as a function of bit rate and delta modulator configuration to determine their reproducibility for medical evaluation.

  10. Spectrometer employing optical fiber time delays for frequency resolution

    DOEpatents

    Schuss, Jack J.; Johnson, Larry C.

    1979-01-01

    This invention provides different length glass fibers for providing a broad range of optical time delays for short incident chromatic light pulses for the selective spatial and frequency analysis of the light with a single light detector. To this end, the frequencies of the incident light are orientated and matched with the different length fibers by dispersing the separate frequencies in space according to the respective fiber locations and lengths at the input terminal of the glass fibers. This makes the different length fibers useful in the field of plasma physics. To this end the short light pulses can be scattered by a plasma and then passed through the fibers for analyzing and diagnosing the plasma while it varies rapidly with time.

  11. Randomness versus specifics for word-frequency distributions

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoyong; Minnhagen, Petter

    2016-02-01

    The text-length-dependence of real word-frequency distributions can be connected to the general properties of a random book. It is pointed out that this finding has strong implications, when deciding between two conceptually different views on word-frequency distributions, i.e. the specific 'Zipf's-view' and the non-specific 'Randomness-view', as is discussed. It is also noticed that the text-length transformation of a random book does have an exact scaling property precisely for the power-law index γ = 1, as opposed to the Zipf's exponent γ = 2 and the implication of this exact scaling property is discussed. However a real text has γ > 1 and as a consequence γ increases when shortening a real text. The connections to the predictions from the RGF (Random Group Formation) and to the infinite length-limit of a meta-book are also discussed. The difference between 'curve-fitting' and 'predicting' word-frequency distributions is stressed. It is pointed out that the question of randomness versus specifics for the distribution of outcomes in case of sufficiently complex systems has a much wider relevance than just the word-frequency example analyzed in the present work.

  12. Local spatial frequency analysis for computer vision

    NASA Technical Reports Server (NTRS)

    Krumm, John; Shafer, Steven A.

    1990-01-01

    A sense of vision is a prerequisite for a robot to function in an unstructured environment. However, real-world scenes contain many interacting phenomena that lead to complex images which are difficult to interpret automatically. Typical computer vision research proceeds by analyzing various effects in isolation (e.g., shading, texture, stereo, defocus), usually on images devoid of realistic complicating factors. This leads to specialized algorithms which fail on real-world images. Part of this failure is due to the dichotomy of useful representations for these phenomena. Some effects are best described in the spatial domain, while others are more naturally expressed in frequency. In order to resolve this dichotomy, we present the combined space/frequency representation which, for each point in an image, shows the spatial frequencies at that point. Within this common representation, we develop a set of simple, natural theories describing phenomena such as texture, shape, aliasing and lens parameters. We show these theories lead to algorithms for shape from texture and for dealiasing image data. The space/frequency representation should be a key aid in untangling the complex interaction of phenomena in images, allowing automatic understanding of real-world scenes.

  13. Modal, ray, and beam techniques for analyzing the EM scattering by open-ended waveguide cavities

    NASA Technical Reports Server (NTRS)

    Pathak, Prabhakar H.; Burkholder, Robert J.

    1989-01-01

    The problem of high-frequency electromagnetic (EM) scattering by open-ended waveguide cavities with an interior termination is analyzed via three different approaches. When cavities can be adequately modeled by joining together piecewise separable waveguide sections, a hybrid combination of asymptotic high-frequency and modal techniques is employed. In the case of more arbitrarily shaped waveguide cavities for which modes cannot even be defined in the conventional sense, the geometrical optics ray approach proves to be highly useful. However, at sufficiently high frequencies, both of these approaches tend to become inefficient. Hence, a paraxial Gaussian batch technique, which retains much of the simplicity of the ray approximation but is potentially more efficient, is investigated. Typical numerical results based on the different approaches are discussed.

  14. A software tool for analyzing multichannel cochlear implant signals.

    PubMed

    Lai, Wai Kong; Bögli, Hans; Dillier, Norbert

    2003-10-01

    A useful and convenient means to analyze the radio frequency (RF) signals being sent by a speech processor to a cochlear implant would be to actually capture and display them with appropriate software. This is particularly useful for development or diagnostic purposes. sCILab (Swiss Cochlear Implant Laboratory) is such a PC-based software tool intended for the Nucleus family of Multichannel Cochlear Implants. Its graphical user interface provides a convenient and intuitive means for visualizing and analyzing the signals encoding speech information. Both numerical and graphic displays are available for detailed examination of the captured CI signals, as well as an acoustic simulation of these CI signals. sCILab has been used in the design and verification of new speech coding strategies, and has also been applied as an analytical tool in studies of how different parameter settings of existing speech coding strategies affect speech perception. As a diagnostic tool, it is also useful for troubleshooting problems with the external equipment of the cochlear implant systems.

  15. Dielectric properties of almond shells in the development of radio frequency and microwave pasteurization

    USDA-ARS?s Scientific Manuscript database

    To develop pasteurization treatments based on radio frequency (RF) or microwave energy, dielectric properties of almond shells were determined using an open-ended coaxial-probe with an impedance analyzer over a frequency range of 10 to 1800 MHz. Both the dielectric constant and loss factor of almond...

  16. Determining XV-15 aeroelastic modes from flight data with frequency-domain methods

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Tischler, Mark B.

    1993-01-01

    The XV-15 tilt-rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed). All spectral data were computed using chirp z-transforms. Modal frequencies and damping were determined by fitting curves to frequency-response magnitude and phase data. The results given in this report are for the XV-15 with its original metal rotor blades. Also, frequency and damping values are compared with theoretical predictions made using two different programs, CAMRAD and ASAP. The frequency-domain data-analysis method proved to be very reliable and adequate for tracking aeroelastic modes during flight-envelope expansion. This approach required less flight-test time and yielded mode estimations that were more repeatable, compared with the exponential-decay method previously used.

  17. Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: adaptation of muscle activation and movement frequency.

    PubMed

    Aguirre-Ollinger, Gabriel

    2015-01-01

    In this article, we analyze a novel strategy for assisting the lower extremities based on adaptive frequency oscillators. Our aim is to use the control algorithm presented here as a building block for the control of powered lower-limb exoskeletons. The algorithm assists cyclic movements of the human extremities by synchronizing actuator torques with the estimated net torque exerted by the muscles. Synchronization is produced by a nonlinear dynamical system combining an adaptive frequency oscillator with a form of adaptive Fourier analysis. The system extracts, in real time, the fundamental frequency component of the net muscle torque acting on a specific joint. Said component, nearly sinusoidal in shape, is the basis for the assistive torque waveform delivered by the exoskeleton. The action of the exoskeleton can be interpreted as a virtual reduction in the mechanical impedance of the leg. We studied the ability of human subjects to adapt their muscle activation to the assistive torque. Ten subjects swung their extended leg while coupled to a stationary hip joint exoskeleton. The experiment yielded a significant decrease, with respect to unassisted movement, of the activation levels of an agonist/antagonist pair of muscles controlling the hip joint's motion, which suggests the exoskeleton control has potential for assisting human gait. A moderate increase in swing frequency was observed as well. We theorize that the increase in frequency can be explained by the impedance model of the assisted leg. Per this model, subjects adjust their swing frequency in order to control the amount of reduction in net muscle torque. © IMechE 2015.

  18. Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian

    2006-01-01

    A noninvasive, sensitive method of diagnosing certain pathological conditions of the human heart involves computational processing of digitized electrocardiographic (ECG) signals acquired from a patient at all 12 conventional ECG electrode positions. In the processing, attention is focused on low-amplitude, high-frequency components of those portions of the ECG signals known in the art as QRS complexes. The unique contribution of this method lies in the utilization of signal features and combinations of signal features from various combinations of electrode positions, not reported previously, that have been found to be helpful in diagnosing coronary artery disease and such related pathological conditions as myocardial ischemia, myocardial infarction, and congestive heart failure. The electronic hardware and software used to acquire the QRS complexes and perform some preliminary analyses of their high-frequency components were summarized in Real-Time, High-Frequency QRS Electrocardiograph (MSC- 23154), NASA Tech Briefs, Vol. 27, No. 7 (July 2003), pp. 26-28. To recapitulate, signals from standard electrocardiograph electrodes are preamplified, then digitized at a sampling rate of 1,000 Hz, then analyzed by the software that detects R waves and QRS complexes and analyzes them from several perspectives. The software includes provisions for averaging signals over multiple beats and for special-purpose nonrecursive digital filters with specific low- and high-frequency cutoffs. These filters, applied to the averaged signal, effect a band-pass operation in the frequency range from 150 to 250 Hz. The output of the bandpass filter is the desired high-frequency QRS signal. Further processing is then performed in real time to obtain the beat-to-beat root mean square (RMS) voltage amplitude of the filtered signal, certain variations of the RMS voltage, and such standard measures as the heart rate and R-R interval at any given time. A key signal feature analyzed in the present

  19. Vector network analyzer ferromagnetic resonance spectrometer with field differential detection

    NASA Astrophysics Data System (ADS)

    Tamaru, S.; Tsunegi, S.; Kubota, H.; Yuasa, S.

    2018-05-01

    This work presents a vector network analyzer ferromagnetic resonance (VNA-FMR) spectrometer with field differential detection. This technique differentiates the S-parameter by applying a small binary modulation field in addition to the DC bias field to the sample. By setting the modulation frequency sufficiently high, slow sensitivity fluctuations of the VNA, i.e., low-frequency components of the trace noise, which limit the signal-to-noise ratio of the conventional VNA-FMR spectrometer, can be effectively removed, resulting in a very clean FMR signal. This paper presents the details of the hardware implementation and measurement sequence as well as the data processing and analysis algorithms tailored for the FMR spectrum obtained with this technique. Because the VNA measures a complex S-parameter, it is possible to estimate the Gilbert damping parameter from the slope of the phase variation of the S-parameter with respect to the bias field. We show that this algorithm is more robust against noise than the conventional algorithm based on the linewidth.

  20. Isoflurane Impairs Low-Frequency Feedback but Leaves High-Frequency Feedforward Connectivity Intact in the Fly Brain.

    PubMed

    Cohen, Dror; van Swinderen, Bruno; Tsuchiya, Naotsugu

    2018-01-01

    Hierarchically organized brains communicate through feedforward (FF) and feedback (FB) pathways. In mammals, FF and FB are mediated by higher and lower frequencies during wakefulness. FB is preferentially impaired by general anesthetics in multiple mammalian species. This suggests FB serves critical functions in waking brains. The brain of Drosophila melanogaster (fruit fly) is also hierarchically organized, but the presence of FB in these brains is not established. Here, we studied FB in the fly brain, by simultaneously recording local field potentials (LFPs) from low-order peripheral structures and higher-order central structures. We analyzed the data using Granger causality (GC), the first application of this analysis technique to recordings from the insect brain. Our analysis revealed that low frequencies (0.1-5 Hz) mediated FB from the center to the periphery, while higher frequencies (10-45 Hz) mediated FF in the opposite direction. Further, isoflurane anesthesia preferentially reduced FB. Our results imply that the spectral characteristics of FF and FB may be a signature of hierarchically organized brains that is conserved from insects to mammals. We speculate that general anesthetics may induce unresponsiveness across species by targeting the mechanisms that support FB.

  1. Isoflurane Impairs Low-Frequency Feedback but Leaves High-Frequency Feedforward Connectivity Intact in the Fly Brain

    PubMed Central

    2018-01-01

    Abstract Hierarchically organized brains communicate through feedforward (FF) and feedback (FB) pathways. In mammals, FF and FB are mediated by higher and lower frequencies during wakefulness. FB is preferentially impaired by general anesthetics in multiple mammalian species. This suggests FB serves critical functions in waking brains. The brain of Drosophila melanogaster (fruit fly) is also hierarchically organized, but the presence of FB in these brains is not established. Here, we studied FB in the fly brain, by simultaneously recording local field potentials (LFPs) from low-order peripheral structures and higher-order central structures. We analyzed the data using Granger causality (GC), the first application of this analysis technique to recordings from the insect brain. Our analysis revealed that low frequencies (0.1–5 Hz) mediated FB from the center to the periphery, while higher frequencies (10–45 Hz) mediated FF in the opposite direction. Further, isoflurane anesthesia preferentially reduced FB. Our results imply that the spectral characteristics of FF and FB may be a signature of hierarchically organized brains that is conserved from insects to mammals. We speculate that general anesthetics may induce unresponsiveness across species by targeting the mechanisms that support FB. PMID:29541686

  2. Frequency of depression, anxiety and stress among the undergraduate physiotherapy students.

    PubMed

    Syed, Annosha; Ali, Syed Shazad; Khan, Muhammad

    2018-01-01

    To assess the frequency of Depression, Anxiety and Stress (DAS) among the undergraduate physiotherapy students. A descriptive cross sectional study was conducted in various Physiotherapy Institutes in Sindh, Pakistan among undergraduate physiotherapy students. The total duration of this study was 4 months from September, 2016 to January, 2017. Data was collected from 267 students with no physical and mental illness; more than half were female students 75.3%. They were selected through Non probability purposive sampling technique. A self-administered standardized DASS (depression, anxiety and stress scale) was used to collect data and result was analyzed using its severity rating index. Data was entered and analyzed by using SPSS version 21. Descriptive statistics including the frequency of depression, anxiety, stress and demographic characteristic of the participant was collected. The mean age of students was 19.3371±1.18839 years. The Frequency of depression, anxiety and stress found among undergraduates Physiotherapy students was 48.0%, 68.54% and 53.2%, respectively. It was observed that the frequency of depression, anxiety and stress among physiotherapy undergraduates students were high. It suggests the urgent need of carrying out evidence based Psychological health promotion for undergraduate Physiotherapy students to control this growing problem.

  3. Frequency of depression, anxiety and stress among the undergraduate physiotherapy students

    PubMed Central

    Syed, Annosha; Ali, Syed Shazad; Khan, Muhammad

    2018-01-01

    Objectives: To assess the frequency of Depression, Anxiety and Stress (DAS) among the undergraduate physiotherapy students. Methods: A descriptive cross sectional study was conducted in various Physiotherapy Institutes in Sindh, Pakistan among undergraduate physiotherapy students. The total duration of this study was 4 months from September, 2016 to January, 2017. Data was collected from 267 students with no physical and mental illness; more than half were female students 75.3%. They were selected through Non probability purposive sampling technique. A self-administered standardized DASS (depression, anxiety and stress scale) was used to collect data and result was analyzed using its severity rating index. Data was entered and analyzed by using SPSS version 21. Descriptive statistics including the frequency of depression, anxiety, stress and demographic characteristic of the participant was collected. Results: The mean age of students was 19.3371±1.18839 years. The Frequency of depression, anxiety and stress found among undergraduates Physiotherapy students was 48.0%, 68.54% and 53.2%, respectively. Conclusions: It was observed that the frequency of depression, anxiety and stress among physiotherapy undergraduates students were high. It suggests the urgent need of carrying out evidence based Psychological health promotion for undergraduate Physiotherapy students to control this growing problem. PMID:29805428

  4. [Effects of extremely low frequency electromagnetic radiation on cardiovascular system of workers].

    PubMed

    Zhao, Long-yu; Song, Chun-xiao; Yu, Duo; Liu, Xiao-liang; Guo, Jian-qiu; Wang, Chuan; Ding, Yuan-wei; Zhou, Hong-xia; Ma, Shu-mei; Liu, Xiao-dong; Liu, Xin

    2012-03-01

    To observe the exposure levels of extremely low frequency electromagnetic fields in workplaces and to analyze the effects of extremely low frequency electromagnetic radiation on cardiovascular system of occupationally exposed people. Intensity of electromagnetic fields in two workplaces (control and exposure groups) was detected with EFA-300 frequency electromagnetic field strength tester, and intensity of the noise was detected with AWA5610D integral sound level. The information of health physical indicators of 188 controls and 642 occupationally exposed workers was collected. Data were analyzed by SPSS17.0 statistic software. The intensity of electric fields and the magnetic fields in exposure groups was significantly higher than that in control group (P < 0.05), but there was no significant difference of noise between two workplaces (P > 0.05). The results of physical examination showed that the abnormal rates of HCY, ALT, AST, GGT, ECG in the exposure group were significantly higher than those in control group (P < 0.05). There were no differences of sex, age, height, weight between two groups (P > 0.05). Exposure to extremely low frequency electromagnetic radiation may have some effects on the cardiovascular system of workers.

  5. Radio frequency detection assembly and method for detecting radio frequencies

    DOEpatents

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  6. Automated calculation of surface energy fluxes with high-frequency lake buoy data

    USGS Publications Warehouse

    Woolway, R. Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.

    2015-01-01

    Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.

  7. A Wide Band Absorbing Material Design Using Band-Pass Frequency Selective Surface

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Xu, Qiang; Liu, Ting; Zheng, Dianliang; Zhou, Li

    2018-03-01

    Based on the high frequency advantage characteristics of the Fe based absorbing coating, a method for designing the structure of broadband absorbing structure by using frequency selective surface (FSS) is proposed. According to the transmission and reflection characteristic of the different size FSS structure, the frequency variation characteristic was simulated. Secondly, the genetic algorithm was used to optimize the high frequency broadband absorbing materials, including the single and double magnetic layer material. Finally, the absorbing characteristics in iron layer were analyzed as the band pass FSS structure was embedded, the results showed that the band-pass FSS had the influence on widening the absorbing frequency. As the FSS was set as the bottom layer, it was effective to achieve the good absorbing property in low frequency and the high frequency absorbing performance was not weakened, because the band-pass FSS led the low frequency absorption and the high frequency shielding effect. The results of this paper are of guiding significance for designing and manufacturing the broadband absorbing materials.

  8. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    NASA Astrophysics Data System (ADS)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  9. 40 CFR 86.1216-90 - Calibrations; frequency and overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1216-90 Calibrations; frequency and...). (d) At least twice annually or after any maintenance perform a methanol retention check and calibration on the evaporative emission enclosure (see § 86.1217). (e) Calibrate the methanol analyzer as...

  10. 40 CFR 86.1216-90 - Calibrations; frequency and overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1216-90 Calibrations; frequency and...). (d) At least twice annually or after any maintenance perform a methanol retention check and calibration on the evaporative emission enclosure (see § 86.1217). (e) Calibrate the methanol analyzer as...

  11. Radio Frequency Mass Gauging of Propellants

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Vaden, Karl R.; Herlacher, Michael D.; Buchanan, David A.; VanDresar, Neil T.

    2007-01-01

    A combined experimental and computer simulation effort was conducted to measure radio frequency (RF) tank resonance modes in a dewar partially filled with liquid oxygen, and compare the measurements with numerical simulations. The goal of the effort was to demonstrate that computer simulations of a tank's electromagnetic eigenmodes can be used to accurately predict ground-based measurements, thereby providing a computational tool for predicting tank modes in a low-gravity environment. Matching the measured resonant frequencies of several tank modes with computer simulations can be used to gauge the amount of liquid in a tank, thus providing a possible method to gauge cryogenic propellant tanks in low-gravity. Using a handheld RF spectrum analyzer and a small antenna in a 46 liter capacity dewar for experimental measurements, we have verified that the four lowest transverse magnetic eigenmodes can be accurately predicted as a function of liquid oxygen fill level using computer simulations. The input to the computer simulations consisted of tank dimensions, and the dielectric constant of the fluid. Without using any adjustable parameters, the calculated and measured frequencies agree such that the liquid oxygen fill level was gauged to within 2 percent full scale uncertainty. These results demonstrate the utility of using electromagnetic simulations to form the basis of an RF mass gauging technology with the power to simulate tank resonance frequencies from arbitrary fluid configurations.

  12. Time-frequency analysis of electric motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentley, C.L.; Dunn, M.E.; Mattingly, J.K.

    1995-12-31

    Physical signals such as the current of an electric motor become nonstationary as a consequence of degraded operation and broken parts. In this instance, their power spectral densities become time dependent, and time-frequency analysis techniques become the appropriate tools for signal analysis. The first among these techniques, generally called the short-time Fourier transform (STFT) method, is the Gabor transform 2 (GT) of a signal S(t), which decomposes the signal into time-local frequency modes: where the window function, {Phi}(t-{tau}), is a normalized Gaussian. Alternatively, one can decompose the signal into its multi-resolution representation at different levels of magnification. This representation ismore » achieved by the continuous wavelet transform (CWT) where the function g(t) is a kernel of zero average belonging to a family of scaled and shifted wavelet kernels. The CWT can be interpreted as the action of a microscope that locates the signal by the shift parameter b and adjusts its magnification by changing the scale parameter a. The Fourier-transformed CWT, W,{sub g}(a, {omega}), acts as a filter that places the high-frequency content of a signal into the lower end of the scale spectrum and vice versa for the low frequencies. Signals from a motor in three different states were analyzed.« less

  13. A Frequency Reconfigurable MIMO Antenna System for Cognitive Radio Applications

    NASA Astrophysics Data System (ADS)

    Raza, A.; Khan, Muhammad U.; Tahir, Farooq A.

    2017-10-01

    In this paper, a two element frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system is presented. The proposed antenna consists of miniaturized patch antenna elements, loaded with varactor diodes to achieve frequency reconfigurability. The antenna has bandwidth of 30 MHz and provides a smooth frequency sweep from 2.12 GHz to 2.4 GHz by varying the reverse bias voltage of varactor diode. The antenna is designed on an FR4 substrate and occupies a space of 50×100 × 0.8 mm3. The antenna is analyzed for its far-field characteristics as well as for MIMO performance parameters. Designed antenna showed good performance and is suitable for cognitive radios (CR) applications.

  14. A single-frequency Ho:YLF pulsed laser with frequency stability better than 500 kHz

    NASA Astrophysics Data System (ADS)

    Kucirek, P.; Meissner, A.; Nyga, S.; Mertin, J.; Höfer, M.; Hoffmann, H.-D.

    2017-03-01

    The spectral stability of a previously reported Ho:YLF single frequency pulsed laser oscillator emitting at 2051 nm is drastically improved by utilizing a narrow linewidth Optically Pumped Semiconductor Laser (OPSL) as a seed for the oscillator. The oscillator is pumped by a dedicated gain-switched Tm:YLF laser at 1890 nm. The ramp-and-fire method is employed for generating single frequency emission. The heterodyne technique is used to analyze the spectral properties. The laser is designed to meet a part of the specifications for future airborne or space borne LIDAR detection of CO2. Seeding with a DFB diode and with an OPSL are compared. With OPSL seeding an Allan deviation of the centroid of the spectral distribution of 38 kHz and 517 kHz over 10 seconds and 60 milliseconds of sampling time for single pulses is achieved. The spectral width is approximately 30 MHz. The oscillator emits 2 mJ pulse energy with 50 Hz pulse repetition frequency (PRF) and 20 ns pulse duration. The optical to optical efficiency of the Ho:YLF oscillator is 10 % and the beam quality is diffraction limited. To our knowledge this is the best spectral stability demonstrated to date for a Ho:YLF laser with millijoule pulse energy and nanosecond pulse duration.

  15. Frequency steerable acoustic transducers

    NASA Astrophysics Data System (ADS)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  16. Frequency up-converted piezoelectric energy harvester for ultralow-frequency and ultrawide-frequency-range operation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiyang; Gao, Shiqiao; Li, Dongguang; Jin, Lei; Wu, Qinghe; Liu, Feng

    2018-04-01

    At present, frequency up-converted piezoelectric energy harvesters are disadvantaged by their narrow range of operating frequencies and low efficiency at ultralow-frequency excitation. To address these shortcomings, we propose herein an impact-driven frequency up-converted piezoelectric energy harvester composed of two driving beams and a generating beam. We find experimentally that the proposed device offers efficient energy output over an ultrawide-frequency-range and performs very well in the ultralow-frequency excitation. A maximum peak power of 29.3 mW is achieved under 0.5g acceleration at the excitation frequency of 12.7 Hz. The performance of the energy harvester can be adjusted and optimized by adjusting the spacing between the driving and generating beams. The results show that the proposed harvester has the potential to power miniaturized portable devices and wireless sensor nodes.

  17. A source mechanism producing HF-induced plasma lines (HFPLS) with up-shifted frequencies

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Lee, M. C.

    1992-01-01

    Attention is given to a nonlinear scattering process analyzed as a source mechanism producing the frequency up-shifted HFPLs observed in the Arecibo ionospheric heating experiments. A physical picture is offered to explain how Langmuir waves with frequencies greater than the HF heater wave frequency can be produced in the heating experiments and be detected by incoherent radars as frequency up-shifted HFPLs. Since the considered scattering process occurs in a region near the reflection height, it explains why the frequency up-shifted HFPLs should originate from the altitude near the reflection height as observed. The theory also shows that the amount of frequency up-shift is inversely proportional to the frequency of the HF heater and increases linearly with the electron temperature. The quantitative analysis of the theory shows a good agreement with the experimental results.

  18. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.

    PubMed

    Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L

    2015-02-01

    Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

  19. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  20. High-Frequency Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2009-01-01

    Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.

  1. A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockway, J D; Champagne, N J; Sharpe, R M

    2004-01-14

    Frequency domain techniques are popular for analyzing electromagnetics (EM) and coupled circuit-EM problems. These techniques, such as the method of moments (MoM) and the finite element method (FEM), are used to determine the response of the EM portion of the problem at a single frequency. Since only one frequency is solved at a time, it may take a long time to calculate the parameters for wideband devices. In this paper, a fast frequency sweep based on the Asymptotic Wave Expansion (AWE) method is developed and applied to generalized mixed circuit-EM problems. The AWE method, which was originally developed for lumped-loadmore » circuit simulations, has recently been shown to be effective at quasi-static and low frequency full-wave simulations. Here it is applied to a full-wave MoM solver, capable of solving for metals, dielectrics, and coupled circuit-EM problems.« less

  2. Cross-Modulated Amplitudes and Frequencies Characterize Interacting Components in Complex Systems

    NASA Astrophysics Data System (ADS)

    Gans, Fabian; Schumann, Aicko Y.; Kantelhardt, Jan W.; Penzel, Thomas; Fietze, Ingo

    2009-03-01

    The dynamics of complex systems is characterized by oscillatory components on many time scales. To study the interactions between these components we analyze the cross modulation of their instantaneous amplitudes and frequencies, separating synchronous and antisynchronous modulation. We apply our novel technique to brain-wave oscillations in the human electroencephalogram and show that interactions between the α wave and the δ or β wave oscillators as well as spatial interactions can be quantified and related with physiological conditions (e.g., sleep stages). Our approach overcomes the limitation to oscillations with similar frequencies and enables us to quantify directly nonlinear effects such as positive or negative frequency modulation.

  3. FIBER AND INTEGRATED OPTICS: Radio-frequency electrooptic modulation in optical fibers

    NASA Astrophysics Data System (ADS)

    Bulyuk, A. N.

    1992-10-01

    The electrooptic interaction in single-mode optical fibers with both linear and circular birefringe is analyzed. In most cases, a large interaction length imposes a limit on the modulation frequency. A circular birefringence in an optical fiber may lead to an effective coupling of polarization normal modes if a phase-matching condition is satisfied. Through an appropriate choice of polarization states of the light at the entrance and exit of the device, one can achieve a polarization modulation or a frequency shift of the light. There are possible applications in rf polarization modulators, devices for shifting the frequency of light, and detectors of electromagnetic fields.

  4. High-frequency output characteristics of AlGaAs/GaAs heterojunction bipolar transistors for large-signal applications

    NASA Astrophysics Data System (ADS)

    Chen, J.; Gao, G. B.; Ünlü, M. S.; Morkoç, H.

    1991-11-01

    High-frequency ic- vce output characteristics of bipolar transistors, derived from calculated device cutoff frequencies, are reported. The generation of high-frequency output characteristics from device design specifications represents a novel bridge between microwave circuit design and device design: the microwave performance of simulated device structures can be analyzed, or tailored transistor device structures can be designed to fit specific circuit applications. The details of our compact transistor model are presented, highlighting the high-current base-widening (Kirk) effect. The derivation of the output characteristics from the modeled cutoff frequencies are then presented, and the computed characteristics of an AlGaAs/GaAs heterojunction bipolar transistor operating at 10 GHz are analyzed. Applying the derived output characteristics to microwave circuit design, we examine large-signal class A and class B amplification.

  5. The power grid AGC frequency bias coefficient online identification method based on wide area information

    NASA Astrophysics Data System (ADS)

    Wang, Zian; Li, Shiguang; Yu, Ting

    2015-12-01

    This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.

  6. Theoretical analysis of optical poling and frequency doubling effect based on classical model

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Li, Fuquan; Lin, Aoxiang; Wang, Fang; Chai, Xiangxu; Wang, Zhengping; Zhu, Qihua; Sun, Xun; Zhang, Sen; Sun, Xibo

    2018-03-01

    Optical poling and frequency doubling effect is one of the effective manners to induce second order nonlinearity and realize frequency doubling in glass materials. The classical model believes that an internal electric field is built in glass when it's exposed by fundamental and frequency-doubled light at the same time, and second order nonlinearity appears as a result of the electric field and the orientation of poles. The process of frequency doubling in glass is quasi phase matched. In this letter, the physical process of poling and doubling process in optical poling and frequency doubling effect is deeply discussed in detail. The magnitude and direction of internal electric field, second order nonlinear coefficient and its components, strength and direction of frequency doubled output signal, quasi phase matched coupled wave equations are given in analytic expression. Model of optical poling and frequency doubling effect which can be quantitatively analyzed are constructed in theory, which set a foundation for intensive study of optical poling and frequency doubling effect.

  7. Influence of modulation frequency in rubidium cell frequency standards

    NASA Technical Reports Server (NTRS)

    Audoin, C.; Viennet, J.; Cyr, N.; Vanier, J.

    1983-01-01

    The error signal which is used to control the frequency of the quartz crystal oscillator of a passive rubidium cell frequency standard is considered. The value of the slope of this signal, for an interrogation frequency close to the atomic transition frequency is calculated and measured for various phase (or frequency) modulation waveforms, and for several values of the modulation frequency. A theoretical analysis is made using a model which applies to a system in which the optical pumping rate, the relaxation rates and the RF field are homogeneous. Results are given for sine-wave phase modulation, square-wave frequency modulation and square-wave phase modulation. The influence of the modulation frequency on the slope of the error signal is specified. It is shown that the modulation frequency can be chosen as large as twice the non-saturated full-width at half-maximum without a drastic loss of the sensitivity to an offset of the interrogation frequency from center line, provided that the power saturation factor and the amplitude of modulation are properly adjusted.

  8. Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup: Analysis and interpretation

    NASA Technical Reports Server (NTRS)

    Neubauer, Fritz M.; Glassmeier, Karl-Heinz; Coates, A. J.; Johnstone, A. D.

    1993-01-01

    The propagation and polarization characteristic of low-frequency electromagnetic wave fields near comet P/Grigg-Skjellerup (P/GS) are analyzed using magnetic field and plasma observations obtained by the Giotto magnetometer experiment and the Johnstone plasma analyzer during the encounter at the comet on July 10, 1992. The results have been physically interpreted.

  9. Optical calibration of a new two-way optical component network analyzer

    NASA Astrophysics Data System (ADS)

    Tsao, Shyh-Lin; Ko, Chih-Han; Liou, Tai-Chi

    2003-12-01

    High-speed fiber communications show promising results recently [1,2]. Using of lightwave technology for measuring S parameters with optical component becoming important. For this purpose to develop a two-way network analyzer has been reported [3]. In this paper, we report the calibration method of a new two-way lightwave component analyze for applying in fiber optical signal processing elements. The background error and circulator wavelength response are all calibrated. We have designed a new probe for two-way optical component network analyzer. The probe is composed of frequency division multiplexer(FDM), electrical circulator, optical transmitter, optical receiver, and an optical circulator. We design 2-D grating structures as frequency division. The PCB we adopted is Kinstan GD1530 160 whose relative dielectric constantɛ= 4.3, length= 120 mm, and height= 1.8 mm. Two dimensional non-metal covered array square pads are designed on FR4 Glass-Epoxy board for FDM. The FDM can be achieved by the two dimensional non-metalized covered array square pads. Finally we use a single fiber ring resonator filter as our test samples. Comparing the numerical and experimental results, test the device we made. References [1] D. D. Curtis and E. E. Ames,"Optical Test Set for Microwave Fiber-Optic Network Analysis," IEEE Transactions on Microwave Theory and Techniques. , vol. 38, NO.5, pp. 552-559, 1990. [2] J. A. C. Bingham,"Multicarrier modulation for data transmission: an idea whose time has come," IEEE Commun. Magazine., pp. 5 -14, 1990. [3] M. Nakazawa, K. Suzuki, and Y. Kimura, " 3.2-5 Gbps 100km error-free soliton transmission with erbium amplifiers and repenters," IEEE Photonics Tech Lett.,vol.2,pp.216-219,1990.

  10. Cyclic coding for Brillouin optical time-domain analyzers using probe dithering.

    PubMed

    Iribas, Haritz; Loayssa, Alayn; Sauser, Florian; Llera, Miguel; Le Floch, Sébastien

    2017-04-17

    We study the performance limits of mono-color cyclic coding applied to Brillouin optical time-domain analysis (BOTDA) sensors that use probe wave dithering. BOTDA analyzers with dithering of the probe use a dual-probe-sideband setup in which an optical frequency modulation of the probe waves along the fiber is introduced. This avoids non-local effects while keeping the Brillouin threshold at its highest level, thus preventing the spontaneous Brillouin scattering from generating noise in the deployed sensing fiber. In these conditions, it is possible to introduce an unprecedented high probe power into the sensing fiber, which leads to an enhancement of the signal-to-noise ratio (SNR) and consequently to a performance improvement of the analyzer. The addition of cyclic coding in these set-ups can further increase the SNR and accordingly enhance the performance. However, this unprecedented probe power levels that can be employed result in the appearance of detrimental effects in the measurement that had not previously been observed in other BOTDA set-ups. In this work, we analyze the distortion in the decoding process and the errors in the measurement that this distortion causes, due to three factors: the power difference of the successive pulses of a code sequence, the appearance of first-order non-local effects and the non-linear amplification of the probe wave that results when using mono-color cyclic coding of the pump pulses. We apply the results of this study to demonstrate the performance enhancement that can be achieved in a long-range dithered dual-probe BOTDA. A 164-km fiber-loop is measured with 1-m spatial resolution, obtaining 3-MHz Brillouin frequency shift measurement precision at the worst contrast location. To the best of our knowledge, this is the longest sensing distance achieved with a BOTDA sensor using mono-color cyclic coding.

  11. [Research on electricity frequency property of blood].

    PubMed

    Hu, Maoqing; Huang, Hua; Yuan, Zirun; Chen, Huaiqing; Den, Lihua

    2006-02-01

    On the basis of our previous work, the electric frequency property of human blood in different components, in physiological state and in pathological state (diabetes) are tested and analyzed in the range of 1Hz-20MHz progressively. Among the different components of blood; the lowest electrical impedance is serum; the plasma and the whole blood gradually become larger, the blood corpuscle is the largest one. Otherwise, the negative phase of serum is the largest, the plasma and the whole blood are lower, and the blood corpuscle is the lowest. Here, the question is why the effect of the electric capacity of serum and plasma is the biggest in the condition of no cell and cell membrane; diabetes mellitus is an endocrine disorder in which blood changes obviously, the electric frequency property of the blood of diabetic patients changes markedly; the electrical impedance of blood decreases (more obviously with low frequency), the negative phase increases (more obviously with high frequency). These indicate that the increase of electric conductivity in diabetic patients' blood is due to electric capacitance conductivity that is related to the changes of cell membrane, deformation abilities and aggregation of RBC. Related experiments demonstrate again that with the progressing of research in the electric frequency property of blood, we may use the theory and method of electricity to examine some important characters of blood in a different way, and so to corroborate other tests and analyses.

  12. Interference graph-based dynamic frequency reuse in optical attocell networks

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Xia, Peijie; Chen, Yong; Wu, Lan

    2017-11-01

    Indoor optical attocell network may achieve higher capacity than radio frequency (RF) or Infrared (IR)-based wireless systems. It is proposed as a special type of visible light communication (VLC) system using Light Emitting Diodes (LEDs). However, the system spectral efficiency may be severely degraded owing to the inter-cell interference (ICI), particularly for dense deployment scenarios. To address these issues, we construct the spectral interference graph for indoor optical attocell network, and propose the Dynamic Frequency Reuse (DFR) and Weighted Dynamic Frequency Reuse (W-DFR) algorithms to decrease ICI and improve the spectral efficiency performance. The interference graph makes LEDs can transmit data without interference and select the minimum sub-bands needed for frequency reuse. Then, DFR algorithm reuses the system frequency equally across service-providing cells to mitigate spectrum interference. While W-DFR algorithm can reuse the system frequency by using the bandwidth weight (BW), which is defined based on the number of service users. Numerical results show that both of the proposed schemes can effectively improve the average spectral efficiency (ASE) of the system. Additionally, improvement of the user data rate is also obtained by analyzing its cumulative distribution function (CDF).

  13. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  14. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  15. Nonlinear beat excitation of low frequency wave in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Mir, Zahid; Shahid, M.; Jamil, M.; Rasheed, A.; Shahbaz, A.

    2018-03-01

    The beat phenomenon due to the coupling of two signals at slightly different frequencies that generates the low frequency signal is studied. The linear dispersive properties of the pump and sideband are analyzed. The modified nonlinear dispersion relation through the field coupling of linear modes against the beat frequency is derived in the homogeneous quantum dusty magnetoplasmas. The dispersion relation is used to derive the modified growth rate of three wave parametric instability. Moreover, significant quantum effects of electrons through the exchange-correlation potential, the Bohm potential, and the Fermi pressure evolved in macroscopic three wave interaction are presented. The analytical results are interpreted graphically describing the significance of the work. The applications of this study are pointed out at the end of introduction.

  16. The low-frequency encoding disadvantage: Word frequency affects processing demands.

    PubMed

    Diana, Rachel A; Reder, Lynne M

    2006-07-01

    Low-frequency words produce more hits and fewer false alarms than high-frequency words in a recognition task. The low-frequency hit rate advantage has sometimes been attributed to processes that operate during the recognition test (e.g., L. M. Reder et al., 2000). When tasks other than recognition, such as recall, cued recall, or associative recognition, are used, the effects seem to contradict a low-frequency advantage in memory. Four experiments are presented to support the claim that in addition to the advantage of low-frequency words at retrieval, there is a low-frequency disadvantage during encoding. That is, low-frequency words require more processing resources to be encoded episodically than high-frequency words. Under encoding conditions in which processing resources are limited, low-frequency words show a larger decrement in recognition than high-frequency words. Also, studying items (pictures and words of varying frequencies) along with low-frequency words reduces performance for those stimuli. Copyright 2006 APA, all rights reserved.

  17. Influence of driving frequency on discharge modes in the dielectric barrier discharge excited by a triangle voltage

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Liu, Rui; Jia, Pengying; Wu, Kaiyue; Ren, Chenhua; Yin, Zengqian

    2018-01-01

    A one-dimensional fluid model in atmospheric pressure argon is employed to investigate the influence of the driving frequency on dielectric barrier discharge modes excited by a triangle voltage. Results indicate that a stepped discharge mode is obtained with a low driving frequency of 35 kHz. The current amplitude increases, while its plateau duration decreases with increasing the frequency. The stepped discharge transits into a multi-pulsed mode when the frequency is increased to 80 kHz. With its further increment, the pulse number decreases, and a double-pulsed discharge is realized at 90 kHz, which finally transits to a single-pulsed discharge. Through analyzing spatial distributions of electron density, ion density, and electric field, it can be concluded that the discharge regime transits from a Townsend-like discharge to a glow discharge with increasing the frequency. The regime transition is further verified by analyzing voltage-current curves. These simulated results are consistent with the experimental phenomena.

  18. Spectral inversion of frequency-domain IP data obtained in Haenam, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, B.; Nam, M. J.; Son, J. S.

    2017-12-01

    Spectral induced polarization (SIP) method using a range of source frequencies have been performed for not only exploring minerals resources, but also engineering or environmental application. SIP interpretation first makes inversion of individual frequency data to obtain complex resistivity structures, which will further analyzed employing Cole-Cole model to explain the frequency-dependent characteristics. However, due to the difficulty in fitting Cole-Cole model, there is a movement to interpret complex resistivity structure inverted only from a single frequency data: that is so-called "complex resistivity survey". Further, simultaneous inversion of multi-frequency SIP data, rather than making a single frequency SIP data, has been studied to improve ambiguity and artefacts of independent single frequency inversion in obtaining a complex resistivity structure, even though the dispersion characteristics of complex resistivity with respect to source frequency. Employing the simultaneous inversion method, this study makes inversion of field SIP data obtained over epithermal mineralized area, Haenam, in the southernmost tip of South Korea. The area has a polarizable structure because of extensive hydrothermal alteration, gold-silver deposits. After the inversion, we compare between inversion results considering multi-frequency data and single frequency data set to evaluate the performance of simultaneous inversion of multi-frequency SIP data.

  19. Universal distribution of component frequencies in biological and technological systems

    PubMed Central

    Pang, Tin Yau; Maslov, Sergei

    2013-01-01

    Bacterial genomes and large-scale computer software projects both consist of a large number of components (genes or software packages) connected via a network of mutual dependencies. Components can be easily added or removed from individual systems, and their use frequencies vary over many orders of magnitude. We study this frequency distribution in genomes of ∼500 bacterial species and in over 2 million Linux computers and find that in both cases it is described by the same scale-free power-law distribution with an additional peak near the tail of the distribution corresponding to nearly universal components. We argue that the existence of a power law distribution of frequencies of components is a general property of any modular system with a multilayered dependency network. We demonstrate that the frequency of a component is positively correlated with its dependency degree given by the total number of upstream components whose operation directly or indirectly depends on the selected component. The observed frequency/dependency degree distributions are reproduced in a simple mathematically tractable model introduced and analyzed in this study. PMID:23530195

  20. Helix structure for low frequency acoustic energy harvesting

    NASA Astrophysics Data System (ADS)

    Yuan, Ming; Cao, Ziping; Luo, Jun; Pang, Zongqiang

    2018-05-01

    In this study, a novel helix acoustic resonator is proposed to realize acoustic energy harvesting (AEH). Compared with the traditional acoustic resonators, the proposed structure occupies a small volume and is suitable for the low frequency range. At a specific incident frequency, the mechanical component of the AEH device can be intensely excited and the bonded piezoelectric patch is utilized to convert the strain energy into electrical energy. Analytical studies are carried out to disclose the acoustic resonant system properties. Meanwhile, the pure acoustic and coupled vibro-acoustic properties of the proposed device are analyzed via the finite element method. The major part of the AEH device is fabricated via 3D printing for experimental study, which is favored for rapid prototyping. At acoustic resonance frequency 175 Hz, 100 dB sound pressure level excitation working condition, the measured experimental data show that the harvested power can be up to 7.3 μW.

  1. Hybrid fiber links for accurate optical frequency comparison

    NASA Astrophysics Data System (ADS)

    Lee, Won-Kyu; Stefani, Fabio; Bercy, Anthony; Lopez, Olivier; Amy-Klein, Anne; Pottie, Paul-Eric

    2017-05-01

    We present the experimental demonstration of a local two-way optical frequency comparison over a 43-km-long urban fiber network without any requirement for measurement synchronization. We combined the local two-way scheme with a regular active noise compensation scheme that was implemented on another parallel fiber leading to a highly reliable and robust frequency transfer. This hybrid scheme allowed us to investigate the major limiting factors of the local two-way comparison. We analyzed the contributions of the interferometers at both local and remote locations to the phase noise of the local two-way signal. Using the ability of this setup to be injected by either a single laser or two independent lasers, we measured the contributions of the demodulated laser instabilities to the long-term instability. We show that a fractional frequency instability level of 10-20 at 10,000 s can be obtained using this simple setup after propagation over a distance of 43 km in an urban area.

  2. Helix structure for low frequency acoustic energy harvesting.

    PubMed

    Yuan, Ming; Cao, Ziping; Luo, Jun; Pang, Zongqiang

    2018-05-01

    In this study, a novel helix acoustic resonator is proposed to realize acoustic energy harvesting (AEH). Compared with the traditional acoustic resonators, the proposed structure occupies a small volume and is suitable for the low frequency range. At a specific incident frequency, the mechanical component of the AEH device can be intensely excited and the bonded piezoelectric patch is utilized to convert the strain energy into electrical energy. Analytical studies are carried out to disclose the acoustic resonant system properties. Meanwhile, the pure acoustic and coupled vibro-acoustic properties of the proposed device are analyzed via the finite element method. The major part of the AEH device is fabricated via 3D printing for experimental study, which is favored for rapid prototyping. At acoustic resonance frequency 175 Hz, 100 dB sound pressure level excitation working condition, the measured experimental data show that the harvested power can be up to 7.3 μW.

  3. Frequency Effects or Context Effects in Second Language Word Learning: What Predicts Early Lexical Production?

    ERIC Educational Resources Information Center

    Crossley, Scott A.; Subtirelu, Nicholas; Salsbury, Tom

    2013-01-01

    This study examines frequency, contextual diversity, and contextual distinctiveness effects in predicting produced versus not-produced frequent nouns and verbs by early second language (L2) learners of English. The study analyzes whether word frequency is the strongest predictor of early L2 word production independent of contextual diversity and…

  4. Time-frequency analysis of neuronal populations with instantaneous resolution based on noise-assisted multivariate empirical mode decomposition.

    PubMed

    Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E

    2016-07-15

    Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The functional spectrum of low-frequency coding variation.

    PubMed

    Marth, Gabor T; Yu, Fuli; Indap, Amit R; Garimella, Kiran; Gravel, Simon; Leong, Wen Fung; Tyler-Smith, Chris; Bainbridge, Matthew; Blackwell, Tom; Zheng-Bradley, Xiangqun; Chen, Yuan; Challis, Danny; Clarke, Laura; Ball, Edward V; Cibulskis, Kristian; Cooper, David N; Fulton, Bob; Hartl, Chris; Koboldt, Dan; Muzny, Donna; Smith, Richard; Sougnez, Carrie; Stewart, Chip; Ward, Alistair; Yu, Jin; Xue, Yali; Altshuler, David; Bustamante, Carlos D; Clark, Andrew G; Daly, Mark; DePristo, Mark; Flicek, Paul; Gabriel, Stacey; Mardis, Elaine; Palotie, Aarno; Gibbs, Richard

    2011-09-14

    Rare coding variants constitute an important class of human genetic variation, but are underrepresented in current databases that are based on small population samples. Recent studies show that variants altering amino acid sequence and protein function are enriched at low variant allele frequency, 2 to 5%, but because of insufficient sample size it is not clear if the same trend holds for rare variants below 1% allele frequency. The 1000 Genomes Exon Pilot Project has collected deep-coverage exon-capture data in roughly 1,000 human genes, for nearly 700 samples. Although medical whole-exome projects are currently afoot, this is still the deepest reported sampling of a large number of human genes with next-generation technologies. According to the goals of the 1000 Genomes Project, we created effective informatics pipelines to process and analyze the data, and discovered 12,758 exonic SNPs, 70% of them novel, and 74% below 1% allele frequency in the seven population samples we examined. Our analysis confirms that coding variants below 1% allele frequency show increased population-specificity and are enriched for functional variants. This study represents a large step toward detecting and interpreting low frequency coding variation, clearly lays out technical steps for effective analysis of DNA capture data, and articulates functional and population properties of this important class of genetic variation.

  6. Development and Deployment of a Portable Water Isotope Analyzer for Accurate, Continuous and High-Frequency Oxygen and Hydrogen Isotope Measurements in Water Vapor and Liquid Water

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Baer, Douglas

    2010-05-01

    Stable isotopes of water in liquid and vapor samples are powerful tracers to investigate the hydrological cycle and ecological processes. Therefore, continuous, in-situ and accurate measurements of del_18O and del_2H are critical to advance the understanding of water cycle dynamics around the globe. Furthermore, the combination of meteorological techniques and high-frequency isotopic water measurements can provide detailed time-resolved information on the eco-physiological performance of plants and enable improved understanding of water fluxes at ecosystem scales. In this work, we present recent laboratory development and field deployment of a novel Water Vapor Isotope Analyzer (WVIA), based on cavity enhanced laser absorption spectroscopy, capable of simultaneous in-situ measurements of del_18O and del_2H and water mixing ratio with high precision and high frequency (up to 10 Hz measurement rate). In addition, to ensure the accuracy of the water vapor isotope measurements, a novel Water Vapor Isotope Standard Source (WVISS), based on the instantaneous evaporation of micro-droplets of liquid water (with known isotope composition), has been developed to provide the reference water vapor with widely adjustable mixing ratio (500-30,000 ppmv) for real-time calibration of the WVIA. The comprehensive system that includes the WVIA and WVISS has been validated in extensive laboratory and field studies to be insensitive to ambient temperature changes (5-40 C) and to changes in water mixing ratio over a wide range of mixing ratios. In addition, by operating in the dual inlet mode, measurement drift has essentially been eliminated. The system (WVIA+WVISS) has also been deployed for long-term unattended continuous measurements in the field. In addition to water vapor isotope measurements, the new Water Vapor Isotopic Standard Source (WVISS) may be combined with the WVIA to provide continuous isotopic measurements of liquid water samples at rapid data rate. The availability of

  7. Device for recording the 20 Hz - 200 KHz sound frequency spectrum using teletransmission

    NASA Technical Reports Server (NTRS)

    Baciu, I.

    1974-01-01

    The device described consists of two distinct parts: (1) The sound pickup system consisting of the wide-frequency band condenser microphone which contains in the same assembly the frequency-modulated oscillator and the output stage. Being transistorized and small, this system can be easily moved, so that sounds can be picked up even in places that are difficult to reach with larger devices. (2) The receiving and recording part is separate and can be at a great distance from the sound pickup system. This part contains a 72 MHz input stage, a frequency changer that gives an intermediate frequency of 30 MHz and a multichannel analyzer coupled to an oscilloscope and a recorder.

  8. Frequency Distribution in Domestic Microwave Ovens and Its Influence on Heating Pattern.

    PubMed

    Luan, Donglei; Wang, Yifen; Tang, Juming; Jain, Deepali

    2017-02-01

    In this study, snapshots of operating frequency profiles of domestic microwave ovens were collected to reveal the extent of microwave frequency variations under different operation conditions. A computer simulation model was developed based on the finite difference time domain method to analyze the influence of the shifting frequency on heating patterns of foods in a microwave oven. The results showed that the operating frequencies of empty and loaded domestic microwave ovens varied widely even among ovens of the same model purchased on the same date. Each microwave oven had its unique characteristic operating frequencies, which were also affected by the location and shape of the load. The simulated heating patterns of a gellan gel model food when heated on a rotary plate agreed well with the experimental results, which supported the reliability of the developed simulation model. Simulation indicated that the heating patterns of a stationary model food load changed with the varying operating frequency. However, the heating pattern of a rotary model food load was not sensitive to microwave frequencies due to the severe edge heating overshadowing the effects of the frequency variations. © 2016 Institute of Food Technologists®.

  9. Effect of Solar Radiation on Viscoelastic Properties of Bovine Leather: Temperature and Frequency Scans

    NASA Astrophysics Data System (ADS)

    Nalyanya, Kallen Mulilo; Rop, Ronald K.; Onyuka, Arthur S.

    2017-04-01

    This work presents both analytical and experimental results of the effect of unfiltered natural solar radiation on the thermal and dynamic mechanical properties of Boran bovine leather at both pickling and tanning stages of preparation. Samples cut from both pickled and tanned pieces of leather of appropriate dimensions were exposed to unfiltered natural solar radiation for time intervals ranging from 0 h (non-irradiated) to 24 h. The temperature of the dynamic mechanical analyzer was equilibrated at 30°C and increased to 240°C at a heating rate of 5°C \\cdot Min^{-1}, while its oscillation frequency varied from 0.1 Hz to 100 Hz. With the help of thermal analysis (TA) control software which analyzes and generates parameter means/averages at temperature/frequency range, the graphs were created by Microsoft Excel 2013 from the means. The viscoelastic properties showed linear frequency dependence within 0.1 Hz to 30 Hz followed by negligible frequency dependence above 30 Hz. Storage modulus (E') and shear stress (σ ) increased with frequency, while loss modulus (E''), complex viscosity (η ^{*}) and dynamic shear viscosity (η) decreased linearly with frequency. The effect of solar radiation was evident as the properties increased initially from 0 h to 6 h of irradiation followed by a steady decline to a minimum at 18 h before a drastic increase to a maximum at 24 h. Hence, tanning industry can consider the time duration of 24 h for sun-drying of leather to enhance the mechanical properties and hence the quality of the leather. At frequencies higher than 30 Hz, the dynamic mechanical properties are independent of the frequency. The frequency of 30 Hz was observed to be a critical value in the behavior in the mechanical properties of bovine hide.

  10. Genetic traits of avascular necrosis of the femoral head analyzed by array comparative genomic hybridization and real-time polymerase chain reaction.

    PubMed

    Hwang, Jung-Taek; Baik, Seung-Ho; Choi, Jin-Soo; Lee, Kweon-Haeng; Rhee, Seung-Koo

    2011-01-03

    In an attempt to observe the genetic traits of avascular necrosis of the femoral head, we analyzed the genomic alterations in blood samples of 18 patients with avascular necrosis of the femoral head (9 idiopathic and 9 alcoholic cases) using the array comparative genomic hybridization method and real-time polymerase chain reaction. Several candidate genes were identified that may induce avascular necrosis of the femoral head, and we investigated their role in the pathomechanism of osteonecrosis of bone. The frequency of each candidate gene over all the categories of avascular necrosis of the femoral head was also calculated by real-time polymerase chain reaction. The highest frequency specific genes in each category were FLJ40296, CYP27C1, and CTDP1. FLJ40296 and CYP27C1 had the highest frequency (55.6%) in the idiopathic category. FLJ40296 had a high frequency (44.4%) in the alcoholic category, but CYP27C1 had a relatively low frequency (33.3%) in the alcoholic category. However, CTDP1 showed a significantly high frequency (55.6%) in the alcoholic category and a low frequency (22.2%) in the idiopathic category. Although we statistically analyzed the frequency of each gene with Fisher's exact test, we could not prove statistical significance due to the small number of samples. Further studies are needed with larger sample numbers. If the causal genes of avascular necrosis of the femoral head are found, they may be used for early detection, prognosis prediction, and genomic treatment of avascular necrosis of the femoral head in the future. Copyright 2011, SLACK Incorporated.

  11. Parametric Effects of Word Frequency in Memory for Mixed Frequency Lists

    ERIC Educational Resources Information Center

    Lohnas, Lynn J.; Kahana, Michael J.

    2013-01-01

    The "word frequency paradox" refers to the finding that low frequency words are better recognized than high frequency words yet high frequency words are better recalled than low frequency words. Rather than comparing separate groups of low and high frequency words, we sought to quantify the functional relation between word frequency and…

  12. Communication: Probing anomalous diffusion in frequency space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachura, Sławomir; Synchrotron Soleil, L’Orme de Merisiers, 91192 Gif-sur-Yvette; Kneller, Gerald R., E-mail: gerald.kneller@cnrs-orleans.fr

    Anomalous diffusion processes are usually detected by analyzing the time-dependent mean square displacement of the diffusing particles. The latter evolves asymptotically as W(t) ∼ 2D{sub α}t{sup α}, where D{sub α} is the fractional diffusion constant and 0 < α < 2. In this article we show that both D{sub α} and α can also be extracted from the low-frequency Fourier spectrum of the corresponding velocity autocorrelation function. This offers a simple method for the interpretation of quasielastic neutron scattering spectra from complex (bio)molecular systems, in which subdiffusive transport is frequently encountered. The approach is illustrated and validated by analyzing molecularmore » dynamics simulations of molecular diffusion in a lipid POPC bilayer.« less

  13. Depth-Duration Frequency of Precipitation for Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.; Rea, Alan; Asquith, William H.

    1999-01-01

    A regional frequency analysis was conducted to estimate the depth-duration frequency of precipitation for 12 durations in Oklahoma (15, 30, and 60 minutes; 1, 2, 3, 6, 12, and 24 hours; and 1, 3, and 7 days). Seven selected frequencies, expressed as recurrence intervals, were investigated (2, 5, 10, 25, 50, 100, and 500 years). L-moment statistics were used to summarize depth-duration data and to determine the appropriate statistical distributions. Three different rain-gage networks provided the data (15minute, 1-hour, and 1-day). The 60-minute, and 1-hour; and the 24-hour, and 1-day durations were analyzed separately. Data were used from rain-gage stations with at least 10-years of record and within Oklahoma or about 50 kilometers into bordering states. Precipitation annual maxima (depths) were determined from the data for 110 15-minute, 141 hourly, and 413 daily stations. The L-moment statistics for depths for all durations were calculated for each station using unbiased L-mo-ment estimators for the mean, L-scale, L-coefficient of variation, L-skew, and L-kur-tosis. The relation between L-skew and L-kurtosis (L-moment ratio diagram) and goodness-of-fit measures were used to select the frequency distributions. The three-parameter generalized logistic distribution was selected to model the frequencies of 15-, 30-, and 60-minute annual maxima; and the three-parameter generalized extreme-value distribution was selected to model the frequencies of 1-hour to 7-day annual maxima. The mean for each station and duration was corrected for the bias associated with fixed interval recording of precipitation amounts. The L-scale and spatially averaged L-skew statistics were used to compute the location, scale, and shape parameters of the selected distribution for each station and duration. The three parameters were used to calculate the depth-duration-frequency relations for each station. The precipitation depths for selected frequencies were contoured from weighted depth

  14. Eliminating spiral waves pinned to an anatomical obstacle in cardiac myocytes by high-frequency stimuli.

    PubMed

    Isomura, Akihiro; Hörning, Marcel; Agladze, Konstantin; Yoshikawa, Kenichi

    2008-12-01

    The unpinning of spiral waves by the application of high-frequency wave trains was studied in cultured cardiac myocytes. Successful unpinning was observed when the frequency of the paced waves exceeded a critical level. The unpinning process was analyzed by a numerical simulation with a model of cardiac tissue. The mechanism of unpinning by high-frequency stimuli is discussed in terms of local entrainment failure, through a reduction of the two-dimensional spatial characteristics into one dimension.

  15. Improvement of Frequency Locking Algorithm for Atomic Frequency Standards

    NASA Astrophysics Data System (ADS)

    Park, Young-Ho; Kang, Hoonsoo; Heyong Lee, Soo; Eon Park, Sang; Lee, Jong Koo; Lee, Ho Seong; Kwon, Taeg Yong

    2010-09-01

    The authors describe a novel method of frequency locking algorithm for atomic frequency standards. The new algorithm for locking the microwave frequency to the Ramsey resonance is compared with the old one that had been employed in the cesium atomic beam frequency standards such as NIST-7 and KRISS-1. Numerical simulations for testing the performance of the algorithm show that the new method has a noise filtering performance superior to the old one by a factor of 1.2 for the flicker signal noise and 1.4 for random-walk signal noise. The new algorithm can readily be used to enhance the frequency stability for a digital servo employing the slow square wave frequency modulation.

  16. Exacerbation frequency and course of COPD.

    PubMed

    Halpin, David M G; Decramer, Marc; Celli, Bartolome; Kesten, Steven; Liu, Dacheng; Tashkin, Donald P

    2012-01-01

    Exacerbations affect morbidity in chronic obstructive pulmonary disease (COPD). We sought to evaluate the association between exacerbation frequency and spirometric and health status changes over time using data from a large, long-term trial. This retrospective analysis of data from the 4-year UPLIFT (Understanding Potential Long-term Impacts on Function with Tiotropium) trial compared tiotropium with placebo. Annualized rates of decline and estimated mean differences at each time point were analyzed using a mixed-effects model according to subgroups based on exacerbation frequency (events per patient-year: 0, >0-1, >1-2, and >2). Spirometry and the St George's Respiratory Questionnaire (SGRQ) were performed at baseline and every 6 months (also at one month for spirometry). In total, 5992 patients (mean age 65 years, 75% male) were randomized. Higher exacerbation frequency was associated with lower baseline postbronchodilator forced expiratory volume in one second (FEV(1)) (1.40, 1.36, 1.26, and 1.14 L) and worsening SGRQ scores (43.7, 44.1, 47.8, and 52.4 units). Corresponding rates of decline in postbronchodilator FEV(1) (mL/year) were 40, 41, 43, and 48 (control), and 34, 38, 48, and 49 (tiotropium). Values for postbronchodilator forced vital capacity decline (mL/year) were 45, 56, 74, and 83 (control), and 43, 57, 83, and 95 (tiotropium). The rates of worsening in total SGRQ score (units/year) were 0.72, 1.16, 1.44, and 1.99 (control), and 0.38, 1.29, 1.68, and 2.86 (tiotropium). The proportion of patients who died (intention-to-treat analysis until four years [1440 days]) for the entire cohort increased with increasing frequency of hospitalized exacerbations. Increasing frequency of exacerbations worsens the rate of decline in lung function and health-related quality of life in patients with COPD. Increasing rates of hospitalized exacerbations are associated with increasing risk of death.

  17. What Do We Say When We Talk about Sustainability?: Analyzing Faculty, Staff and Student Definitions of Sustainability at One American University

    ERIC Educational Resources Information Center

    Owens, Katharine A.; Legere, Sasha

    2015-01-01

    Purpose: The purpose of this paper is to analyze how faculty, staff and students at one American University define the term sustainability. Design/methodology/approach: The authors analyze student, staff and faculty definitions by comparing word frequency counts to a list of the 25 most frequently found words in over 100 definitions of…

  18. Frequency spectral analysis of GPR data over a crude oil spill

    USGS Publications Warehouse

    Burton, B.L.; Olhoeft, G.R.; Powers, M.H.; ,

    2004-01-01

    A multi-offset ground penetrating radar (GPR) dataset was acquired by the U.S. Geological Survey (USGS) at a crude oil spill site near Bemidji, Minnesota, USA. The dataset consists of two, parallel profiles, each with 17 transmitter-receiver offsets ranging from 0.60 to 5.15m. One profile was acquired over a known oil pool floating on the water table, and the other profile was acquired over an uncontaminated area. The data appear to be more attenuated, or at least exhibit less reflectivity, in the area over the oil pool. In an attempt to determine the frequency dependence of this apparent attenuation, several attributes of the frequency spectra of the data were analyzed after accounting for the effects on amplitude of the radar system (radiation pattern), changes in antenna-ground coupling, and spherical divergence. The attributes analyzed were amplitude spectra peak frequency, 6 dB down, or half-amplitude, spectrum width, and the low and high frequency slopes between the 3 and 9 dB down points. The most consistent trend was observed for Fourier transformed full traces at offsets 0.81, 1.01, and 1.21m which displayed steeper low frequency slopes over the area corresponding to the oil pool. The Fourier-transformed time-windowed traces, where each window was equal to twice the airwave wavelet length, exhibited weakly consistent attribute trends from offset to offset and from window to window. The fact that strong, consistent oil indicators are not seen in this analysis indicates that another mechanism due to the presence of the oil, such as a gradient in the electromagnetic properties, may simply suppress reflections over the contaminated zone.

  19. Preliminary flood-frequency relations for small streams in Kansas

    USGS Publications Warehouse

    Irza, T.J.

    1966-01-01

    Preliminary flood-frequency relations have been defined for small streams in Kansas for floods having recurrence intervals not greater than 10 years. The defined relations will be useful for the design of culverts and other hydraulic structures. The relations are expressed in terms of basin characteristics.Peakflow records at 95 sites in Kansas for an 8-year period provided the basic data. The records were analyzed with respect to 20 basin characteristics by multiple-regression techniques. The resulting formulas relate flood magnitude and frequency to size of contributing drainage area, an index of stream-bed slope, and the average number of days per year when rainfall exceeded 1.0 inch. The other 17 factors had no statistical significance.To illustrate a typical application of the flood-frequency relation, a step-bystep method is presented for computing a frequency curve for Rock Creek near Meriden, Kans. The frequency curve shows that a peak discharge of 3,620 cfs (cubic feet per second) can be expected once every 10 years on the average, and that the 67 percent confidence interval ranges from 1,820 cfs to 7,230 cfs. The large range results from the fact that only 8 years of record have been collected and emphasizes the need for collecting records for a longer period.

  20. Frequency Representation: Visualization and Clustering of Acoustic Data Using Self-Organizing Maps.

    PubMed

    Guo, Xinhua; Sun, Song; Yu, Xiantao; Wang, Pan; Nakamura, Kentaro

    2017-11-01

    Extraction and display of frequency information in three-dimensional (3D) acoustic data are important steps to analyze object characteristics, because the characteristics, such as profiles, sizes, surface structures, and material properties, may show frequency dependence. In this study, frequency representation (FR) based on phase information in multispectral acoustic imaging (MSAI) is proposed to overcome the limit of intensity or amplitude information in image display. Experiments are performed on 3D acoustic data collected from a rigid surface engraved with five different letters. The results show that the proposed FR technique can not only identify the depth of the five letters by the colors representing frequency characteristics but also demonstrate the 3D image of the five letters, providing more detailed characteristics that are unavailable by conventional acoustic imaging.

  1. Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency.

    PubMed

    Cho, Hyunjun; Kim, Mincheol; Tripathi, Binu; Adams, Jonathan

    2017-07-01

    Although disturbance is thought to be important in many ecological processes, responses of fungal communities to soil disturbance have been little studied experimentally. We subjected a soil microcosm to physical disturbance, at a range of frequencies designed to simulate ecological disturbance events. We analyzed the fungal community structure using Illumina HiSeq sequencing of the ITS1 region. Fungal diversity was found to decline with the increasing disturbance frequencies, with no sign of the "humpback" pattern found in many studies of larger sedentary organisms. There is thus no evidence of an effect of release from competition resulting from moderate disturbance-which suggests that competition and niche overlap may not be important in limiting soil fungal diversity. Changing disturbance frequency also led to consistent differences in community composition. There were clear differences in OTU-level composition, with different disturbance treatments each having distinct fungal communities. The functional profile of fungal groups (guilds) was changed by the level of disturbance frequency. These predictable differences in community composition suggest that soil fungi can possess different niches in relation to disturbance frequency, or time since last disturbance. Fungi appear to be most abundant relative to bacteria at intermediate disturbance frequencies, on the time scale we studied here.

  2. Equivalent circuit consideration of frequency-shift-type acceleration sensor

    NASA Astrophysics Data System (ADS)

    Sasaki, Yoshifumi; Sugawara, Sumio; Kudo, Subaru

    2018-07-01

    In this paper, an electrical equivalent circuit for the piezoelectrically driven frequency-shift-type acceleration sensor model is represented, and the equivalent circuit constants including the effect of the axial force are clarified for the first time. The results calculated by the finite element method are compared with the experimentally measured ones of the one-axis sensor of trial production. The result shows that the analyzed values almost agree with the measured ones, and that the equivalent circuit representation of the sensor is useful for electrical engineers in order to easily analyze the characteristics of the sensors.

  3. Wireless Strain Measurement with a Micromachined Magnetoelastic Resonator Using Ringdown Frequency Locking

    PubMed Central

    Green, Scott R.; Gianchandani, Yogesh B.

    2017-01-01

    Resonant magnetoelastic devices are widely used as anti-theft tags and are also being investigated for a range of sensing applications. The vast majority of magnetoelastic devices are operated at resonance, and rely upon an external interface to wirelessly detect the resonant frequency, and other characteristics. For micromachined devices, this detection method must accommodate diminished signal strength and elevated resonant frequencies. Feedthrough of the interrogating stimulus to the detector also presents a significant challenge. This paper describes a method of interrogating wireless magnetoelastic strain sensors using a new frequency-lock approach. Following a brief excitation pulse, the sensor ring-down is analyzed and a feedback loop is used to match the excitation frequency and the resonant frequency. Data acquisition hardware is used in conjunction with custom software to implement the frequency-lock loop. Advantages of the method include temporal isolation of interrogating stimulus from the sensor response and near real-time tracking of resonant frequencies. The method was investigated using a family of wireless strain sensors with resonant frequencies ranging from 120 to 240 kHz. Strain levels extending to 3.5 mstrain and sensitivities up to 14300 ppm/mstrain were measured with response times faster than 0.5 s. The standard deviation of the locked frequency did not exceed 0.1%. PMID:28713873

  4. UNUSUAL TRENDS IN SOLAR P-MODE FREQUENCIES DURING THE CURRENT EXTENDED MINIMUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathy, S. C.; Jain, K.; Hill, F.

    2010-03-10

    We investigate the behavior of the intermediate-degree mode frequencies of the Sun during the current extended minimum phase to explore the time-varying conditions in the solar interior. Using contemporaneous helioseismic data from the Global Oscillation Network Group (GONG) and the Michelson Doppler Imager (MDI), we find that the changes in resonant mode frequencies during the activity minimum period are significantly greater than the changes in solar activity as measured by different proxies. We detect a seismic minimum in MDI p-mode frequency shifts during 2008 July-August but no such signature is seen in mean shifts computed from GONG frequencies. We alsomore » analyze the frequencies of individual oscillation modes from GONG data as a function of latitude and observe a signature of the onset of the solar cycle 24 in early 2009. Thus, the intermediate-degree modes do not confirm the onset of the cycle 24 during late 2007 as reported from the analysis of the low-degree Global Oscillations at Low Frequency frequencies. Further, both the GONG and MDI frequencies show a surprising anti-correlation between frequencies and activity proxies during the current minimum, in contrast to the behavior during the minimum between cycles 22 and 23.« less

  5. Frequency specific patterns of resting-state networks development from childhood to adolescence: A magnetoencephalography study.

    PubMed

    Meng, Lu; Xiang, Jing

    2016-11-01

    The present study investigated frequency dependent developmental patterns of the brain resting-state networks from childhood to adolescence. Magnetoencephalography (MEG) data were recorded from 20 healthy subjects at resting-state with eyes-open. The resting-state networks (RSNs) was analyzed at source-level. Brain network organization was characterized by mean clustering coefficient and average path length. The correlations between brain network measures and subjects' age during development from childhood to adolescence were statistically analyzed in delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), and beta (12-30Hz) frequency bands. A significant positive correlation between functional connectivity with age was found in alpha and beta frequency bands. A significant negative correlation between average path lengths with age was found in beta frequency band. The results suggest that there are significant developmental changes of resting-state networks from childhood to adolescence, which matures from a lattice network to a small-world network. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  6. Development of frequency modulation reflectometer for KSTAR tokamak: Data analysis based on Gaussian derivative waveleta)

    NASA Astrophysics Data System (ADS)

    Seo, Seong-Heon; Lee, K. D.

    2012-10-01

    A frequency modulation reflectometer has been developed to measure the density profile of the KSTAR tokamak. It has two channels operating in X-mode in the frequency range of Q band (33-50 GHz) and V band (50-75 GHz). The full band is swept in 20 μs. The mixer output is directly digitized at the sampling rate of 100 MSamples/s. A new phase detection algorithm is developed to analyze both amplitude and frequency modulated signal. The algorithm is benchmarked for a synthesized amplitude modulation-frequency modulation signal. This new algorithm is applied to the data analysis of KSTAR reflectometer.

  7. A time-frequency approach for the analysis of normal and arrhythmia cardiac signals.

    PubMed

    Mahmoud, Seedahmed S; Fang, Qiang; Davidović, Dragomir M; Cosic, Irena

    2006-01-01

    Previously, electrocardiogram (ECG) signals have been analyzed in either a time-indexed or spectral form. The reality, is that the ECG and all other biological signals belong to the family of multicomponent nonstationary signals. Due to this reason, the use of time-frequency analysis can be unavoidable for these signals. The Husimi and Wigner distributions are normally used in quantum mechanics for phase space representations of the wavefunction. In this paper, we introduce the Husimi distribution (HD) to analyze the normal and abnormal ECG signals in time-frequency domain. The abnormal cardiac signal was taken from a patient with supraventricular arrhythmia. Simulation results show that the HD has a good performance in the analysis of the ECG signals comparing with the Wigner-Ville distribution (WVD).

  8. Hydrocarbon Reservoir Prediction Using Bi-Gaussian S Transform Based Time-Frequency Analysis Approach

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Chen, Y.; Liu, Y.; Liu, W.; Zhang, G.

    2015-12-01

    Among those hydrocarbon reservoir detection techniques, the time-frequency analysis based approach is one of the most widely used approaches because of its straightforward indication of low-frequency anomalies from the time-frequency maps, that is to say, the low-frequency bright spots usually indicate the potential hydrocarbon reservoirs. The time-frequency analysis based approach is easy to implement, and more importantly, is usually of high fidelity in reservoir prediction, compared with the state-of-the-art approaches, and thus is of great interest to petroleum geologists, geophysicists, and reservoir engineers. The S transform has been frequently used in obtaining the time-frequency maps because of its better performance in controlling the compromise between the time and frequency resolutions than the alternatives, such as the short-time Fourier transform, Gabor transform, and continuous wavelet transform. The window function used in the majority of previous S transform applications is the symmetric Gaussian window. However, one problem with the symmetric Gaussian window is the degradation of time resolution in the time-frequency map due to the long front taper. In our study, a bi-Gaussian S transform that substitutes the symmetric Gaussian window with an asymmetry bi-Gaussian window is proposed to analyze the multi-channel seismic data in order to predict hydrocarbon reservoirs. The bi-Gaussian window introduces asymmetry in the resultant time-frequency spectrum, with time resolution better in the front direction, as compared with the back direction. It is the first time that the bi-Gaussian S transform is used for analyzing multi-channel post-stack seismic data in order to predict hydrocarbon reservoirs since its invention in 2003. The superiority of the bi-Gaussian S transform over traditional S transform is tested on a real land seismic data example. The performance shows that the enhanced temporal resolution can help us depict more clearly the edge of the

  9. Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems

    NASA Astrophysics Data System (ADS)

    Yang, Le; Wang, Shuo; Feng, Jianghua

    2017-11-01

    Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.

  10. Frequency domain analysis of noise in simple gene circuits

    NASA Astrophysics Data System (ADS)

    Cox, Chris D.; McCollum, James M.; Austin, Derek W.; Allen, Michael S.; Dar, Roy D.; Simpson, Michael L.

    2006-06-01

    Recent advances in single cell methods have spurred progress in quantifying and analyzing stochastic fluctuations, or noise, in genetic networks. Many of these studies have focused on identifying the sources of noise and quantifying its magnitude, and at the same time, paying less attention to the frequency content of the noise. We have developed a frequency domain approach to extract the information contained in the frequency content of the noise. In this article we review our work in this area and extend it to explicitly consider sources of extrinsic and intrinsic noise. First we review applications of the frequency domain approach to several simple circuits, including a constitutively expressed gene, a gene regulated by transitions in its operator state, and a negatively autoregulated gene. We then review our recent experimental study, in which time-lapse microscopy was used to measure noise in the expression of green fluorescent protein in individual cells. The results demonstrate how changes in rate constants within the gene circuit are reflected in the spectral content of the noise in a manner consistent with the predictions derived through frequency domain analysis. The experimental results confirm our earlier theoretical prediction that negative autoregulation not only reduces the magnitude of the noise but shifts its content out to higher frequency. Finally, we develop a frequency domain model of gene expression that explicitly accounts for extrinsic noise at the transcriptional and translational levels. We apply the model to interpret a shift in the autocorrelation function of green fluorescent protein induced by perturbations of the translational process as a shift in the frequency spectrum of extrinsic noise and a decrease in its weighting relative to intrinsic noise.

  11. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Grishkov, V. E.; Uryupin, S. A.

    2017-03-01

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron-ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  12. Generating ultra wide low-frequency gap for transverse wave isolation via inertial amplification effects

    NASA Astrophysics Data System (ADS)

    Li, Jingru; Li, Sheng

    2018-02-01

    Low-frequency transverse wave propagation plays a significant role in the out-of-plane vibration control. To efficiently attenuate the propagation of transverse waves at low-frequency range, this letter proposed a new type phononic beam by attaching inertial amplification mechanisms on it. The wave propagation of the beam with enhanced effective inertia is analyzed using the transfer matrix method. It is demonstrated that the low-frequency gap within inertial amplification effects can possess much wider bandwidth than using the local resonance method, thus is more suitable for designing applications to suppress transverse wave propagation.

  13. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  14. Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range.

    PubMed

    Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei

    2013-05-06

    A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.

  15. Experiments and error analysis of laser ranging based on frequency-sweep polarization modulation

    NASA Astrophysics Data System (ADS)

    Gao, Shuyuan; Ji, Rongyi; Li, Yao; Cheng, Zhi; Zhou, Weihu

    2016-11-01

    Frequency-sweep polarization modulation ranging uses a polarization-modulated laser beam to determine the distance to the target, the modulation frequency is swept and frequency values are measured when transmitted and received signals are in phase, thus the distance can be calculated through these values. This method gets much higher theoretical measuring accuracy than phase difference method because of the prevention of phase measurement. However, actual accuracy of the system is limited since additional phase retardation occurs in the measuring optical path when optical elements are imperfectly processed and installed. In this paper, working principle of frequency sweep polarization modulation ranging method is analyzed, transmission model of polarization state in light path is built based on the theory of Jones Matrix, additional phase retardation of λ/4 wave plate and PBS, their impact on measuring performance is analyzed. Theoretical results show that wave plate's azimuth error dominates the limitation of ranging accuracy. According to the system design index, element tolerance and error correcting method of system is proposed, ranging system is built and ranging experiment is performed. Experiential results show that with proposed tolerance, the system can satisfy the accuracy requirement. The present work has a guide value for further research about system design and error distribution.

  16. Research on Wide-field Imaging Technologies for Low-frequency Radio Array

    NASA Astrophysics Data System (ADS)

    Lao, B. Q.; An, T.; Chen, X.; Wu, X. C.; Lu, Y.

    2017-09-01

    Wide-field imaging of low-frequency radio telescopes are subject to a number of difficult problems. One particularly pernicious problem is the non-coplanar baseline effect. It will lead to distortion of the final image when the phase of w direction called w-term is ignored. The image degradation effects are amplified for telescopes with the wide field of view. This paper summarizes and analyzes several w-term correction methods and their technical principles. Their advantages and disadvantages have been analyzed after comparing their computational cost and computational complexity. We conduct simulations with two of these methods, faceting and w-projection, based on the configuration of the first-phase Square Kilometre Array (SKA) low frequency array. The resulted images are also compared with the two-dimensional Fourier transform method. The results show that image quality and correctness derived from both faceting and w-projection are better than the two-dimensional Fourier transform method in wide-field imaging. The image quality and run time affected by the number of facets and w steps have been evaluated. The results indicate that the number of facets and w steps must be reasonable. Finally, we analyze the effect of data size on the run time of faceting and w-projection. The results show that faceting and w-projection need to be optimized before the massive amounts of data processing. The research of the present paper initiates the analysis of wide-field imaging techniques and their application in the existing and future low-frequency array, and fosters the application and promotion to much broader fields.

  17. [EMD Time-Frequency Analysis of Raman Spectrum and NIR].

    PubMed

    Zhao, Xiao-yu; Fang, Yi-ming; Tan, Feng; Tong, Liang; Zhai, Zhe

    2016-02-01

    This paper analyzes the Raman spectrum and Near Infrared Spectrum (NIR) with time-frequency method. The empirical mode decomposition spectrum becomes intrinsic mode functions, which the proportion calculation reveals the Raman spectral energy is uniform distributed in each component, while the NIR's low order intrinsic mode functions only undertakes fewer primary spectroscopic effective information. Both the real spectrum and numerical experiments show that the empirical mode decomposition (EMD) regard Raman spectrum as the amplitude-modulated signal, which possessed with high frequency adsorption property; and EMD regards NIR as the frequency-modulated signal, which could be preferably realized high frequency narrow-band demodulation during first-order intrinsic mode functions. The first-order intrinsic mode functions Hilbert transform reveals that during the period of empirical mode decomposes Raman spectrum, modal aliasing happened. Through further analysis of corn leaf's NIR in time-frequency domain, after EMD, the first and second orders components of low energy are cut off, and reconstruct spectral signal by using the remaining intrinsic mode functions, the root-mean-square error is 1.001 1, and the correlation coefficient is 0.981 3, both of these two indexes indicated higher accuracy in re-construction; the decomposition trend term indicates the absorbency is ascending along with the decreasing to wave length in the near-infrared light wave band; and the Hilbert transform of characteristic modal component displays, 657 cm⁻¹ is the specific frequency by the corn leaf stress spectrum, which could be regarded as characteristic frequency for identification.

  18. Frequency-Dependent Rupture Processes for the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Miyake, H.

    2012-12-01

    The 2011 Tohoku earthquake is characterized by frequency-dependent rupture process [e.g., Ide et al., 2011; Wang and Mori, 2011; Yao et al., 2011]. For understanding rupture dynamics of this earthquake, it is extremely important to investigate wave-based source inversions for various frequency bands. The above frequency-dependent characteristics have been derived from teleseismic analyses. This study challenges to infer frequency-dependent rupture processes from strong motion waveforms of K-NET and KiK-net stations. The observations suggested three or more S-wave phases, and ground velocities at several near-source stations showed different arrivals of their long- and short-period components. We performed complex source spectral inversions with frequency-dependent phase weighting developed by Miyake et al. [2002]. The technique idealizes both the coherent and stochastic summation of waveforms using empirical Green's functions. Due to the limitation of signal-to-noise ratio of the empirical Green's functions, the analyzed frequency bands were set within 0.05-10 Hz. We assumed a fault plane with 480 km in length by 180 km in width with a single time window for rupture following Koketsu et al. [2011] and Asano and Iwata [2012]. The inversion revealed source ruptures expanding from the hypocenter, and generated sharp slip-velocity intensities at the down-dip edge. In addition to test the effects of empirical/hybrid Green's functions and with/without rupture front constraints on the inverted solutions, we will discuss distributions of slip-velocity intensity and a progression of wave generation with increasing frequency.

  19. Meal Frequency but Not Snack Frequency Is Associated with Micronutrient Intakes and Overall Diet Quality in Australian Men and Women.

    PubMed

    Leech, Rebecca M; Livingstone, Katherine M; Worsley, Anthony; Timperio, Anna; McNaughton, Sarah A

    2016-10-01

    Skipping breakfast is associated with poorer diet quality among adults, but evidence of associations for other eating patterns [e.g., eating occasion (EO), meal, or snack frequency] is equivocal. An understanding of how eating patterns are associated with diet quality is needed to inform population-level dietary recommendations. We aimed in this cross-sectional study to determine the relation between frequency of meals, snacks, and all EOs with nutrient intakes and diet quality in a representative sample of Australian adults. Dietary data for 5242 adults aged ≥19 y collected via two 24-h recalls during the 2011-2012 National Nutrition and Physical Activity Survey were analyzed. EO, meal, and snack frequency was calculated. Adherence to recommendations for healthy eating was assessed with the use of the 2013 Dietary Guidelines Index (DGI) and its subcomponents. Linear regression, adjusted for covariates and energy misreporting, was used to examine associations between eating patterns, energy-adjusted nutrient intakes, and the DGI-2013. The frequency of meals, but not of snacks, was positively associated with micronutrient intakes, overall diet quality [men: β = 5.6 (95% CI: 3.9, 7.3); women: β = 4.1 (95% CI: 2.2, 5.9); P < 0.001], and DGI-2013 component scores for cereals, lean meat and alternatives, and alcohol intake (P < 0.05). A higher frequency of all EOs, meals, and snacks was positively associated with DGI-2013 scores for food variety, fruits, and dairy foods (P < 0.05). Conversely, a higher snack frequency was associated with a lower compliance with guidelines for discretionary foods and added sugars among men (P < 0.05). These findings suggest that meal frequency is an important determinant of nutrient intakes and diet quality in Australian adults. Inconsistent associations for snack frequency suggest that the quality of snack choices is variable. More research examining the dietary profiles of eating patterns and their relations with diet quality is

  20. Filter frequency response of time dependent signal using Laplace transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shestakov, Aleksei I.

    We analyze the effect a filter has on a time dependent signal x(t). If X(s) is the Laplace transform of x and H (s) is the filter Transfer function, the response in frequency space is X (s) H (s). Consequently, in real space, the response is the convolution (x*h) (t), where hi is the Laplace inverse of H. Effects are analyzed and analytically for functions such as (t/t c) 2 e -t/tmore » $$_c$$, where t c = const. We consider lowpass, highpass and bandpass filters.« less

  1. Frequency-dependent solvent friction and torsional damping in liquid 1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    MacPhail, Richard A.; Monroe, Frances C.

    1991-04-01

    We have used Raman spectroscopy to study the torsional dynamics, rotational dynamics, and conformational solvation energy of liquid 1,2-difluoroethane. From the Raman intensities, we obtain Δ H(g-t) = -2.4±0.1 kcal/mol, indicating strong dipolar solvation of the gauche conformer. We analyze the Raman linewidths of the CCF bending bands to obtain the zero-frequency torsional damping coefficient or well friction for the gauche conformer, and from the linewidth of the torsion band we obtain the friction evaluated at the torsional frequency. The zero-frequency well friction shows deviations from hydrodynamic behavior reminiscent of those observed for barrier friction, whereas the high-frequency friction is considerably smaller in magnitude and independent of temperature and viscosity. The zero-frequency torsional friction correlates linearly with the rotational friction. It is argued that the small amplitude of the torsional fluctuations emphasizes the short distance, or high wavevector components of the solvent friction. Dielectric friction apparently does not contribute to the torsional friction at the observed frequencies.

  2. Obtaining eigensolutions for multiple frequency ranges in a single NASTRAN execution

    NASA Technical Reports Server (NTRS)

    Pamidi, P. R.; Brown, W. K.

    1990-01-01

    A novel and general procedure for obtaining eigenvalues and eigenvectors for multiple frequency ranges in a single NASTRAN execution is presented. The scheme is applicable to normal modes analyzes employing the FEER and Inverse Power methods of eigenvalue extraction. The procedure is illustrated by examples.

  3. Modeling and character analyzing of current-controlled memristors with fractional kinetic transport

    NASA Astrophysics Data System (ADS)

    Si, Gangquan; Diao, Lijie; Zhu, Jianwei; Lei, Yuhang; Babajide, Oresanya; Zhang, Yanbin

    2017-07-01

    Memristors have come into limelight again after it was realized by HP researchers. This paper proposes a memristor model which can be called fractional-order current-controlled memristor, and it is more general and comprehensive. We introduce the fractional integral/differential to the current-controlled memristor model and model memristor with fractional kinetic of charge transport. An interesting phenomena found out is that the I-V characteristic is a triple-loop curve (0 < α < 1) and not the conventional double-loop I-V curve (α=1). Memristance (RM) is analyzed versus the fractional order α and time(t), and it reach saturation faster when 0 < α < 1. The saturation (Rmin → Rmax) time is given and analyzed versus different orders α and frequencies ω, which increase with α increasing and ω decreasing. More importantly, the memristors can't reach the Rmax in some cases. Energy loss of the model is analyzed, and the I-P curves isn't origin-symmetric when 0 < α < 1 which is very different with curves when α = 1 .

  4. Microwave transient analyzer

    DOEpatents

    Gallegos, C.H.; Ogle, J.W.; Stokes, J.L.

    1992-11-24

    A method and apparatus for capturing and recording indications of frequency content of electromagnetic signals and radiation is disclosed including a laser light source and a Bragg cell for deflecting a light beam at a plurality of deflection angles dependent upon frequency content of the signal. A streak camera and a microchannel plate intensifier are used to project Bragg cell output onto either a photographic film or a charge coupled device (CCD) imager. Timing markers are provided by a comb generator and a one shot generator, the outputs of which are also routed through the streak camera onto the film or the CCD imager. Using the inventive method, the full range of the output of the Bragg cell can be recorded as a function of time. 5 figs.

  5. Ramanujan sums for signal processing of low-frequency noise

    NASA Astrophysics Data System (ADS)

    Planat, Michel; Rosu, Haret; Perrine, Serge

    2002-11-01

    An aperiodic (low-frequency) spectrum may originate from the error term in the mean value of an arithmetical function such as Möbius function or Mangoldt function, which are coding sequences for prime numbers. In the discrete Fourier transform the analyzing wave is periodic and not well suited to represent the low-frequency regime. In place we introduce a different signal processing tool based on the Ramanujan sums cq(n), well adapted to the analysis of arithmetical sequences with many resonances p/q. The sums are quasiperiodic versus the time n and aperiodic versus the order q of the resonance. Different results arise from the use of this Ramanujan-Fourier transform in the context of arithmetical and experimental signals.

  6. Studies of radio frequency interference at Parkes Observatory

    NASA Astrophysics Data System (ADS)

    Backus, Peter R.; Laroque, Sam; Tarter, Jill C.; Dreher, John; Gullers, Kent; Patrick, Alan; Heiligman, Gary

    1997-01-01

    From February through early June 1995, Project Phoenix conducted SETI observations of 209 stars over the frequency range from 1195 to 3005 MHz. A byproduct of this search is a unique data set suitable for studying the Radio Frequency Interference (RFI) environment at the Parkes 64-m telescope in New South Wales, Australia. RFI is an increasing problem for SETI and other radio astronomy observations conducted outside of the 'protected' frequency bands. The data analyzed for this paper were 'mean baseline' spectra in Left and Right Circular Polarization (LCP, RCP), integrated for either 138 or 276 s, covering a 10-MHz bandwidth with 15,552 channels at a resolution of 643 Hz. Channels were identified as contaminated by RFI when the power in the channel exceeded the mean noise by 3 percent. The 'spectral occupancy', the fraction of time RFI was seen, was determined for each channel. The RFI occupancy for LCP and RCP are distinctly different. Approximately 100 MHz of the spectrum was too heavily contaminated for SETI observations.

  7. Velocity measurement using frequency domain interferometer and chirped pulse laser

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.

    2017-02-01

    An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.

  8. Time-frequency Features for Impedance Cardiography Signals During Anesthesia Using Different Distribution Kernels.

    PubMed

    Muñoz, Jesús Escrivá; Gambús, Pedro; Jensen, Erik W; Vallverdú, Montserrat

    2018-01-01

    This works investigates the time-frequency content of impedance cardiography signals during a propofol-remifentanil anesthesia. In the last years, impedance cardiography (ICG) is a technique which has gained much attention. However, ICG signals need further investigation. Time-Frequency Distributions (TFDs) with 5 different kernels are used in order to analyze impedance cardiography signals (ICG) before the start of the anesthesia and after the loss of consciousness. In total, ICG signals from one hundred and thirty-one consecutive patients undergoing major surgery under general anesthesia were analyzed. Several features were extracted from the calculated TFDs in order to characterize the time-frequency content of the ICG signals. Differences between those features before and after the loss of consciousness were studied. The Extended Modified Beta Distribution (EMBD) was the kernel for which most features shows statistically significant changes between before and after the loss of consciousness. Among all analyzed features, those based on entropy showed a sensibility, specificity and area under the curve of the receiver operating characteristic above 60%. The anesthetic state of the patient is reflected on linear and non-linear features extracted from the TFDs of the ICG signals. Especially, the EMBD is a suitable kernel for the analysis of ICG signals and offers a great range of features which change according to the patient's anesthesia state in a statistically significant way. Schattauer GmbH.

  9. Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration.

    PubMed

    Wang, Y Z; Ding, X D; Xiong, X M; Zhang, J X

    2007-10-01

    Relations between various values of the internal friction (tgdelta, Q(-1), Q(-1*), and Lambda/pi) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay omega(FD), displacement-resonant frequency of forced vibration omega(d), and velocity-resonant frequency of forced vibration omega(0) are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements.

  10. Frequency-Rank Distributions

    ERIC Educational Resources Information Center

    Brookes, Bertram C.; Griffiths, Jose M.

    1978-01-01

    Frequency, rank, and frequency rank distributions are defined. Extensive discussion on several aspects of frequency rank distributions includes the Poisson process as a means of exploring the stability of ranks; the correlation of frequency rank distributions; and the transfer coefficient, a new measure in frequency rank distribution. (MBR)

  11. The Effect of Doppler Frequency Shift, Frequency Offset of the Local Oscillators, and Phase Noise on the Performance of Coherent OFDM Receivers

    NASA Technical Reports Server (NTRS)

    Xiong, Fuqin; Andro, Monty

    2001-01-01

    This paper first shows that the Doppler frequency shift affects the frequencies of the RF carrier, subcarriers, envelope, and symbol timing by the same percentage in an Orthogonal Frequency Division Multiplexing (OFDM) signal or any other modulated signals. Then the SNR degradation of an OFDM system due to Doppler frequency shift, frequency offset of the local oscillators and phase noise is analyzed. Expressions are given and values for 4-, 16-, 64-, and 256-QAM OFDM systems are calculated and plotted. The calculations show that the Doppler shift of the D3 project is about 305 kHz, and the degradation due to it is about 0.01 to 0.04 dB, which is negligible. The degradation due to frequency offset and phase noise of local oscillators will be the main source of degradation. To keep the SNR degradation under 0.1 dB, the relative frequency offset due to local oscillators must be below 0.01 for the 16 QAM-OFDM. This translates to an offset of 1.55 MHz (0.01 x 155 MHz) or a stability of 77.5 ppm (0.01 x 155 MHz/20 GHz) for the DI project. To keep the SNR degradation under 0.1 dB, the relative linewidth (0) due to phase noise of the local oscillators must be below 0.0004 for the 16 QAM-OFDM. This translates to a linewidth of 0.062 MHz (0.0004 x 155 MHz) of the 20 GHz RIF carrier. For a degradation of 1 dB, beta = 0.04, and the linewidth can be relaxed to 6.2 MHz.

  12. Parametric traveling wave amplifier with a low pump frequency

    NASA Astrophysics Data System (ADS)

    Marchenko, V. F.; Streltsov, A. M.; Zhmurov, S. E.

    1983-01-01

    Consideration is given to the model of a parametric traveling wave amplifier with a cubic nonlinearity in the form of an LF filter with MOS varactors. The operation of the amplifier is analyzed with allowance for wave damping and nonlinearity saturation, and the nonlinear mode of operation is examined. Experimental results are discussed, with emphasis on the amplitude-frequency response characteristics.

  13. Instantaneous Frequency Analysis on Nonlinear EMIC Emissions: Arase Observation

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Yoshizumi, M.; Omura, Y.; Kasaba, Y.; Ishisaka, K.; Matsuda, S.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Teramoto, M.; Takashima, T.; Shinohara, I.

    2017-12-01

    In the inner magnetosphere, electromagnetic ion cyclotron (EMIC) waves cause nonlinear interactions with energetic protons. The waves drastically modify the proton distribution function, resulting in the particle loss in the radiation belt. Arase spacecraft, launched in late 2016, observed a nonlinear EMIC falling tone emission in the high magnetic latitude (MLAT) region of the inner magnetosphere. The wave growth with sub-packet structures of the falling tone emission is found by waveform data from PWE/EFD instrument. The evolution of the instantaneous frequency of the electric field of the EMIC falling tone emission is analyzed by Hilbert-Huang transform (HHT). We find several sub-packets with rising frequency in the falling tone wave. A self-consistent hybrid simulation suggested the complicate frequency evolution of the EMIC sub-packet emissions in the generation region. The intrinsic mode functions of Arase data derived from HHT are compared with the simulation data. The origin of the falling tone emission in the high MLAT region is also discussed.

  14. Quasi-optical antenna-mixer-array design for terahertz frequencies

    NASA Technical Reports Server (NTRS)

    Guo, Yong; Potter, Kent A.; Rutledge, David B.

    1992-01-01

    A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.

  15. Gas Analyzer

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The M200 originated in the 1970's under an Ames Research Center/Stanford University contract to develop a small, lightweight gas analyzer for Viking Landers. Although the unit was not used on the spacecraft, it was further developed by The National Institute for Occupational Safety and Health (NIOSH). Three researchers from the project later formed Microsensor Technology, Inc. (MTI) to commercialize the analyzer. The original version (Micromonitor 500) was introduced in 1982, and the M200 in 1988. The M200, a more advanced version, features dual gas chromatograph which separate a gaseous mixture into components and measure concentrations of each gas. It is useful for monitoring gas leaks, chemical spills, etc. Many analyses are completed in less than 30 seconds, and a wide range of mixtures can be analyzed.

  16. Process Analyzer

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The ChemScan UV-6100 is a spectrometry system originally developed by Biotronics Technologies, Inc. under a Small Business Innovation Research (SBIR) contract. It is marketed to the water and wastewater treatment industries, replacing "grab sampling" with on-line data collection. It analyzes the light absorbance characteristics of a water sample, simultaneously detects hundreds of individual wavelengths absorbed by chemical substances in a process solution, and quantifies the information. Spectral data is then processed by ChemScan analyzer and compared with calibration files in the system's memory in order to calculate concentrations of chemical substances that cause UV light absorbance in specific patterns. Monitored substances can be analyzed for quality and quantity. Applications include detection of a variety of substances, and the information provided enables an operator to control a process more efficiently.

  17. Broadband W-band Rapid Frequency Sweep Considerations for Fourier Transform EPR.

    PubMed

    Strangeway, Robert A; Hyde, James S; Camenisch, Theodore G; Sidabras, Jason W; Mett, Richard R; Anderson, James R; Ratke, Joseph J; Subczynski, Witold K

    2017-12-01

    A multi-arm W-band (94 GHz) electron paramagnetic resonance spectrometer that incorporates a loop-gap resonator with high bandwidth is described. A goal of the instrumental development is detection of free induction decay following rapid sweep of the microwave frequency across the spectrum of a nitroxide radical at physiological temperature, which is expected to lead to a capability for Fourier transform electron paramagnetic resonance. Progress toward this goal is a theme of the paper. Because of the low Q-value of the loop-gap resonator, it was found necessary to develop a new type of automatic frequency control, which is described in an appendix. Path-length equalization, which is accomplished at the intermediate frequency of 59 GHz, is analyzed. A directional coupler is favored for separation of incident and reflected power between the bridge and the loop-gap resonator. Microwave leakage of this coupler is analyzed. An oversize waveguide with hyperbolic-cosine tapers couples the bridge to the loop-gap resonator, which results in reduced microwave power and signal loss. Benchmark sensitivity data are provided. The most extensive application of the instrument to date has been the measurement of T 1 values using pulse saturation recovery. An overview of that work is provided.

  18. A semi-nonparametric Poisson regression model for analyzing motor vehicle crash data.

    PubMed

    Ye, Xin; Wang, Ke; Zou, Yajie; Lord, Dominique

    2018-01-01

    This paper develops a semi-nonparametric Poisson regression model to analyze motor vehicle crash frequency data collected from rural multilane highway segments in California, US. Motor vehicle crash frequency on rural highway is a topic of interest in the area of transportation safety due to higher driving speeds and the resultant severity level. Unlike the traditional Negative Binomial (NB) model, the semi-nonparametric Poisson regression model can accommodate an unobserved heterogeneity following a highly flexible semi-nonparametric (SNP) distribution. Simulation experiments are conducted to demonstrate that the SNP distribution can well mimic a large family of distributions, including normal distributions, log-gamma distributions, bimodal and trimodal distributions. Empirical estimation results show that such flexibility offered by the SNP distribution can greatly improve model precision and the overall goodness-of-fit. The semi-nonparametric distribution can provide a better understanding of crash data structure through its ability to capture potential multimodality in the distribution of unobserved heterogeneity. When estimated coefficients in empirical models are compared, SNP and NB models are found to have a substantially different coefficient for the dummy variable indicating the lane width. The SNP model with better statistical performance suggests that the NB model overestimates the effect of lane width on crash frequency reduction by 83.1%.

  19. An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes

    NASA Technical Reports Server (NTRS)

    Kogut, J.; Larduinat, E.

    1984-01-01

    The potential effects of high frequency vibrations on the final Thematic Mapper (TM) image are evaluated for 26 scenes. The angular displacements of the TM detectors from their nominal pointing directions as measured by the TM Angular Displacement Sensor (ADS) and the spacecraft Dry Rotor Inertial Reference Unit (DRIRU) give data on the along scan and cross scan high frequency vibrations present in each scan of a scene. These measurements are to find the maximum overlap and underlap between successive scans, and to analyze the spectrum of the high frequency vibrations acting on the detectors. The Fourier spectrum of the along scan and cross scan vibrations for each scene also evaluated. The spectra of the scenes examined indicate that the high frequency vibrations arise primarily from the motion of the TM and MSS mirrors, and that their amplitudes are well within expected ranges.

  20. A size-frequency study of large Martian craters

    NASA Technical Reports Server (NTRS)

    Woronow, A.

    1975-01-01

    The log normal frequency distribution law was used to analyze the crater population on the surface of Mars. Resulting data show possible evidence for the size frequency evolution of crater producing bodies. Some regions on Mars display excessive depletion of either large or small craters; the most likely causes of the depletion are considered. Apparently, eolian sedimentation has markedly altered the population of the small craters south of -30 deg latitude. The general effects of crater obliteration in the Southern Hemisphere appear to be confined to diameters of less than 20 km. A strong depletion of large craters in a large region just south of Deuteronilus Mensae, and in a small region centered at 35 deg latitude and 10 deg west longitude, may indicate locations of subsurface ice.

  1. Low amplitude rhythmic contraction frequency in human detrusor strips correlates with phasic intravesical pressure waves.

    PubMed

    Colhoun, Andrew F; Speich, John E; Cooley, Lauren F; Bell, Eugene D; Barbee, R Wayne; Guruli, Georgi; Ratz, Paul H; Klausner, Adam P

    2017-08-01

    Low amplitude rhythmic contractions (LARC) occur in detrusor smooth muscle and may play a role in storage disorders such as overactive bladder and detrusor overactivity. The purpose of this study was to determine whether LARC frequencies identified in vitro from strips of human urinary bladder tissue correlate with in vivo LARC frequencies, visualized as phasic intravesical pressure (p ves ) waves during urodynamics (UD). After IRB approval, fresh strips of human urinary bladder were obtained from patients. LARC was recorded with tissue strips at low tension (<2 g) and analyzed by fast Fourier transform (FFT) to identify LARC signal frequencies. Blinded UD tracings were retrospectively reviewed for signs of LARC on the p ves tracing during filling and were analyzed via FFT. Distinct LARC frequencies were identified in 100% of tissue strips (n = 9) obtained with a mean frequency of 1.97 ± 0.47 cycles/min (33 ± 8 mHz). Out of 100 consecutive UD studies reviewed, 35 visually displayed phasic p ves waves. In 12/35 (34%), real p ves signals were present that were independent of abdominal activity. Average UD LARC frequency was 2.34 ± 0.36 cycles/min (39 ± 6 mHz) which was similar to tissue LARC frequencies (p = 0.50). A majority (83%) of the UD cohort with LARC signals also demonstrated detrusor overactivity. During UD, a subset of patients displayed phasic p ves waves with a distinct rhythmic frequency similar to the in vitro LARC frequency quantified in human urinary bladder tissue strips. Further refinements of this technique may help identify subsets of individuals with LARC-mediated storage disorders.

  2. Autopilot for frequency-modulation atomic force microscopy.

    PubMed

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri

    2015-10-01

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  3. Autopilot for frequency-modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri

    2015-10-01

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  4. Characterizing Far-infrared Laser Emissions and the Measurement of Their Frequencies

    PubMed Central

    Jackson, Michael; Zink, Lyndon R.

    2015-01-01

    The generation and subsequent measurement of far-infrared radiation has found numerous applications in high-resolution spectroscopy, radio astronomy, and Terahertz imaging. For about 45 years, the generation of coherent, far-infrared radiation has been accomplished using the optically pumped molecular laser. Once far-infrared laser radiation is detected, the frequencies of these laser emissions are measured using a three-laser heterodyne technique. With this technique, the unknown frequency from the optically pumped molecular laser is mixed with the difference frequency between two stabilized, infrared reference frequencies. These reference frequencies are generated by independent carbon dioxide lasers, each stabilized using the fluorescence signal from an external, low pressure reference cell. The resulting beat between the known and unknown laser frequencies is monitored by a metal-insulator-metal point contact diode detector whose output is observed on a spectrum analyzer. The beat frequency between these laser emissions is subsequently measured and combined with the known reference frequencies to extrapolate the unknown far-infrared laser frequency. The resulting one-sigma fractional uncertainty for laser frequencies measured with this technique is ± 5 parts in 107. Accurately determining the frequency of far-infrared laser emissions is critical as they are often used as a reference for other measurements, as in the high-resolution spectroscopic investigations of free radicals using laser magnetic resonance. As part of this investigation, difluoromethane, CH2F2, was used as the far-infrared laser medium. In all, eight far-infrared laser frequencies were measured for the first time with frequencies ranging from 0.359 to 1.273 THz. Three of these laser emissions were discovered during this investigation and are reported with their optimal operating pressure, polarization with respect to the CO2 pump laser, and strength. PMID:26709957

  5. Characterizing Far-infrared Laser Emissions and the Measurement of Their Frequencies.

    PubMed

    Jackson, Michael; Zink, Lyndon R

    2015-12-18

    The generation and subsequent measurement of far-infrared radiation has found numerous applications in high-resolution spectroscopy, radio astronomy, and Terahertz imaging. For about 45 years, the generation of coherent, far-infrared radiation has been accomplished using the optically pumped molecular laser. Once far-infrared laser radiation is detected, the frequencies of these laser emissions are measured using a three-laser heterodyne technique. With this technique, the unknown frequency from the optically pumped molecular laser is mixed with the difference frequency between two stabilized, infrared reference frequencies. These reference frequencies are generated by independent carbon dioxide lasers, each stabilized using the fluorescence signal from an external, low pressure reference cell. The resulting beat between the known and unknown laser frequencies is monitored by a metal-insulator-metal point contact diode detector whose output is observed on a spectrum analyzer. The beat frequency between these laser emissions is subsequently measured and combined with the known reference frequencies to extrapolate the unknown far-infrared laser frequency. The resulting one-sigma fractional uncertainty for laser frequencies measured with this technique is ± 5 parts in 10(7). Accurately determining the frequency of far-infrared laser emissions is critical as they are often used as a reference for other measurements, as in the high-resolution spectroscopic investigations of free radicals using laser magnetic resonance. As part of this investigation, difluoromethane, CH2F2, was used as the far-infrared laser medium. In all, eight far-infrared laser frequencies were measured for the first time with frequencies ranging from 0.359 to 1.273 THz. Three of these laser emissions were discovered during this investigation and are reported with their optimal operating pressure, polarization with respect to the CO2 pump laser, and strength.

  6. Frequency synchronization of a frequency-hopped MFSK communication system

    NASA Technical Reports Server (NTRS)

    Huth, G. K.; Polydoros, A.; Simon, M. K.

    1981-01-01

    This paper presents the performance of fine-frequency synchronization. The performance degradation due to imperfect frequency synchronization is found in terms of the effect on bit error probability as a function of full-band or partial-band noise jamming levels and of the number of frequency hops used in the estimator. The effect of imperfect fine-time synchronization is also included in the calculation of fine-frequency synchronization performance to obtain the overall performance degradation due to synchronization errors.

  7. Microwave transient analyzer

    DOEpatents

    Gallegos, Cenobio H.; Ogle, James W.; Stokes, John L.

    1992-01-01

    A method and apparatus for capturing and recording indications of frequency content of electromagnetic signals and radiation is disclosed including a laser light source (12) and a Bragg cell (14) for deflecting a light beam (22) at a plurality of deflection angles (36) dependent upon frequency content of the signal. A streak camera (26) and a microchannel plate intensifier (28) are used to project Bragg cell (14) output onto either a photographic film (32) or a charge coupled device (CCD) imager (366). Timing markers are provided by a comb generator (50) and a one shot generator (52), the outputs of which are also routed through the streak camera (26) onto the film (32) or the CCD imager (366). Using the inventive method, the full range of the output of the Bragg cell (14) can be recorded as a function of time.

  8. Fundamental frequency and voice perturbation measures in smokers and non-smokers: An acoustic and perceptual study

    NASA Astrophysics Data System (ADS)

    Freeman, Allison

    This research examined the fundamental frequency and perturbation (jitter % and shimmer %) measures in young adult (20-30 year-old) and middle-aged adult (40-55 year-old) smokers and non-smokers; there were 36 smokers and 36 non-smokers. Acoustic analysis was carried out utilizing one task: production of sustained /a/. These voice samples were analyzed utilizing Multi-Dimensional Voice Program (MDVP) software, which provided values for fundamental frequency, jitter %, and shimmer %.These values were analyzed for trends regarding smoking status, age, and gender. Statistical significance was found regarding the fundamental frequency, jitter %, and shimmer % for smokers as compared to non-smokers; smokers were found to have significantly lower fundamental frequency values, and significantly higher jitter % and shimmer % values. Statistical significance was not found regarding fundamental frequency, jitter %, and shimmer % for age group comparisons. With regard to gender, statistical significance was found regarding fundamental frequency; females were found to have statistically higher fundamental frequencies as compared to males. However, the relationships between gender and jitter % and shimmer % lacked statistical significance. These results indicate that smoking negatively affects voice quality. This study also examined the ability of untrained listeners to identify smokers and non-smokers based on their voices. Results of this voice perception task suggest that listeners are not accurately able to identify smokers and non-smokers, as statistical significance was not reached. However, despite a lack of significance, trends in data suggest that listeners are able to utilize voice quality to identify smokers and non-smokers.

  9. Optical Frequency Measurements Relying on a Mid-Infrared Frequency Standard

    NASA Astrophysics Data System (ADS)

    Rovera, G. Daniele; Acef, Ouali

    Only a small number of groups are capable of measuring optical frequencies throughout the world. In this contribution we present some of the underlying philosophy of such frequency measurement systems, including some important theoretical hints. In particular, we concentrate on the approach that has been used with the BNM-LPTF frequency chain, where a separate secondary frequency standard in the mid-infrared has been used. The low-frequency section of the chain is characterized by a measurement of the phase noise spectral density Sφ at 716GHz.Most of the significant measurements performed in the last decade are briefly presented, together with a report on the actual stability and reproducibility of the CO2/ OsO4 frequency standard.Measuring the frequency of an optical frequency standard by direct comparison with the signal available at the output of a primary frequency standard (usually between 5MHz and 100MHz) requires a multiplication factor greater than 107. A number of possible configurations, using harmonic generation, sum or difference frequency generation, have been proposed and realized in the past [1,2,3,4,5,6] and in more recent times [7]. A new technique, employing a femtosecond laser, is presently giving its first impressive results [8].All of the classical frequency chains require a large amount of manpower, together with a great deal of simultaneously operating hardware. This has the consequence that only a very few systems are actually in an operating condition throughout the world.

  10. DIFFERENTIAL ANALYZER

    DOEpatents

    Sorensen, E.G.; Gordon, C.M.

    1959-02-10

    Improvements in analog eomputing machines of the class capable of evaluating differential equations, commonly termed differential analyzers, are described. In general form, the analyzer embodies a plurality of basic computer mechanisms for performing integration, multiplication, and addition, and means for directing the result of any one operation to another computer mechanism performing a further operation. In the device, numerical quantities are represented by the rotation of shafts, or the electrical equivalent of shafts.

  11. High-Frequency Response and Voltage Noise in Magnetic Nanocomposites

    NASA Astrophysics Data System (ADS)

    Buznikov, N. A.; Iakubov, I. T.; Rakhmanov, A. L.; Kugel, K. I.; Sboychakov, A. O.

    We study the noise spectra and high-frequency permeability of inhomogeneous magnetic materials consisting of single-domain magnetic nanoparticles embedded into an insulating matrix. Possible mechanisms of 1/f voltage noise in phase-separated manganites is analyzed. The material is modelled by a system of small ferromagnetic metallic droplets (magnetic polarons or ferrons) in insulating antiferromagnetic or paramagnetic matrix. The electron transport is related to tunnelling of charge carriers between droplets. One of the sources of the 1/f noise in such a system stems from fluctuations of the number of droplets with extra electron. In the case of strong magnetic anisotropy, the 1/f noise can arise also due to the fluctuations of the magnetic moments of ferrons. The high frequency magnetic permeability of nanocomposite film with magnetic particles in insulating non-magnetic matrix is studied in detail. The case of strong magnetic dipole interaction and strong magnetic anisotropy of ferromagnetic granules is considered. The composite is modelled by a cubic regular array of ferromagnetic particles. The high-frequency permeability tensor components are found as a functions of frequency, temperature, ferromagnetic phase content, and magnetic anisotropy. The results demonstrate that magnetic dipole interaction leads to a shift of the resonance frequencies towards higher values, and nanocomposite film could have rather high value of magnetic permeability in the microwave range.

  12. High-Frequency Response and Voltage Noise in Magnetic Nanocomposites

    NASA Astrophysics Data System (ADS)

    Buznikov, N. A.; Iakubov, I. T.; Rakhmanov, A. L.; Kugel, K. I.; Sboychakov, A. O.

    2010-12-01

    We study the noise spectra and high-frequency permeability of inhomogeneous magnetic materials consisting of single-domain magnetic nanoparticles embedded into an insulating matrix. Possible mechanisms of 1/f voltage noise in phase-separated manganites is analyzed. The material is modelled by a system of small ferromagnetic metallic droplets (magnetic polarons or ferrons) in insulating antiferromagnetic or paramagnetic matrix. The electron transport is related to tunnelling of charge carriers between droplets. One of the sources of the 1/f noise in such a system stems from fluctuations of the number of droplets with extra electron. In the case of strong magnetic anisotropy, the 1/f noise can arise also due to the fluctuations of the magnetic moments of ferrons. The high frequency magnetic permeability of nanocomposite film with magnetic particles in insulating non-magnetic matrix is studied in detail. The case of strong magnetic dipole interaction and strong magnetic anisotropy of ferromagnetic granules is considered. The composite is modelled by a cubic regular array of ferromagnetic particles. The high-frequency permeability tensor components are found as a functions of frequency, temperature, ferromagnetic phase content, and magnetic anisotropy. The results demonstrate that magnetic dipole interaction leads to a shift of the resonance frequencies towards higher values, and nanocomposite film could have rather high value of magnetic permeability in the microwave range.

  13. Stable radio frequency dissemination by simple hybrid frequency modulation scheme.

    PubMed

    Yu, Longqiang; Wang, Rong; Lu, Lin; Zhu, Yong; Wu, Chuanxin; Zhang, Baofu; Wang, Peizhang

    2014-09-15

    In this Letter, we propose a fiber-based stable radio frequency transfer system by a hybrid frequency modulation scheme. Creatively, two radio frequency signals are combined and simultaneously transferred by only one laser diode. One frequency component is used to detect the phase fluctuation, and the other one is the derivative compensated signal providing a stable frequency for the remote end. A proper ratio of the frequencies of the components is well maintained by parameter m to avoid interference between them. Experimentally, a stable 200 MHz signal is transferred over 100 km optical fiber with the help of a 1 GHz detecting signal, and fractional instability of 2×10(-17) at 10(5) s is achieved.

  14. Development of a high-frequency and large-stroke fatigue testing system for rubber

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wu, Hao; Gao, Jianwen; Lin, Qiang

    2017-04-01

    The limited capabilities of current fatigue testing machines have resulted in studies on the fatigue behavior of rubber under large-displacement amplitude and high frequency being very sparse. In this study, a fatigue testing system that can carry out large-displacement amplitude and high-frequency fatigue tests on rubber was developed using a moving magnet voice coil motor (MMVCM) actuator, with finite element analysis applied to analyze the thrust of the MMVCM actuator. The results of a series of cyclic tension tests conducted on vulcanized natural rubber specimens using the developed fatigue testing system verify that it has high precision, low noise, large-stroke, and high-frequency characteristics. Further, the load frame with the developed MMVCM actuator is feasible for material testing, especially for large-stroke and high-frequency fatigue tests.

  15. Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media

    NASA Astrophysics Data System (ADS)

    Schmidt, Felix; Lünenschloss, Peter; Mai, Juliane; Wagner, Norman; Töpfer, Hannes; Bumberger, Jan

    2016-04-01

    The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections. Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric

  16. Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media

    NASA Astrophysics Data System (ADS)

    Schmidt, Felix; Wagner, Norman; Lünenschloß, Peter; Toepfer, Hannes; Dietrich, Peter; Kaliorias, Andreas; Bumberger, Jan

    2015-04-01

    The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric

  17. Development of a distributed polarization-OTDR to measure two vibrations with the same frequency

    NASA Astrophysics Data System (ADS)

    Pan, Yun; Wang, Feng; Wang, Xiangchuan; Zhang, Mingjiang; Zhou, Ling; Sun, Zhenqing; Zhang, Xuping

    2015-08-01

    A polarization optical time-domain reflectometer (POTDR) can distributedly measure the vibration of fiber by detecting the vibration induced polarization variation only with a polarization analyzer. It has great potential in the monitoring of the border intrusion, structural healthy, anti-stealing of pipeline and so on, because of its simple configuration, fast response speed and distributed measuring ability. However, it is difficult to distinguish two vibrations with the same frequency for POTDR because the signal induced by the first vibration would bury the other vibration induced signal. This paper proposes a simple method to resolve this problem in POTDR by analyzing the phase of the vibration induced signal. The effectiveness of this method in distinguishing two vibrations with the same frequency for POTDR is proved by simulation.

  18. Detection and imaging of moving objects with SAR by a joint space-time-frequency processing

    NASA Astrophysics Data System (ADS)

    Barbarossa, Sergio; Farina, Alfonso

    This paper proposes a joint spacetime-frequency processing scheme for the detection and imaging of moving targets by Synthetic Aperture Radars (SAR). The method is based on the availability of an array antenna. The signals received by the array elements are combined, in a spacetime processor, to cancel the clutter. Then, they are analyzed in the time-frequency domain, by computing their Wigner-Ville Distribution (WVD), in order to estimate the instantaneous frequency, to be used for the successive phase compensation, necessary to produce a high resolution image.

  19. Low-frequency noise effect on terahertz tomography using thermal detectors.

    PubMed

    Guillet, J P; Recur, B; Balacey, H; Bou Sleiman, J; Darracq, F; Lewis, D; Mounaix, P

    2015-08-01

    In this paper, the impact of low-frequency noise on terahertz-computed tomography (THz-CT) is analyzed for several measurement configurations and pyroelectric detectors. We acquire real noise data from a continuous millimeter-wave tomographic scanner in order to figure out its impact on reconstructed images. Second, noise characteristics are quantified according to two distinct acquisition methods by (i) extrapolating from experimental acquisitions a sinogram for different noise backgrounds and (ii) reconstructing the corresponding spatial distributions in a slice using a CT reconstruction algorithm. Then we describe the low-frequency noise fingerprint and its influence on reconstructed images. Thanks to the observations, we demonstrate that some experimental choices can dramatically affect the 3D rendering of reconstructions. Thus, we propose some experimental methodologies optimizing the resulting quality and accuracy of the 3D reconstructions, with respect to the low-frequency noise characteristics observed during acquisitions.

  20. Using Multiple Metrics to Analyze Trends and Sensitivity of Climate Variability in New York City

    NASA Astrophysics Data System (ADS)

    Huang, J.; Towey, K.; Booth, J. F.; Baez, S. D.

    2017-12-01

    As the overall temperature of Earth continues to warm, changes in the Earth's climate are being observed through extreme weather events, such as heavy precipitation events and heat waves. This study examines the daily precipitation and temperature record of the greater New York City region during the 1979-2014 period. Daily station observations from three greater New York City airports: John F. Kennedy (JFK), LaGuardia (LGA) and Newark (EWR), are used in this study. Multiple statistical metrics are used in this study to analyze trends and variability in temperature and precipitation in the greater New York City region. The temperature climatology reveals a distinct seasonal cycle, while the precipitation climatology exhibits greater annual variability. Two types of thresholds are used to examine the variability of extreme events: extreme threshold and daily anomaly threshold. The extreme threshold indicates how the strength of the overall maximum is changing whereas the daily anomaly threshold indicates if the strength of the daily maximum is changing over time. We observed an increase in the frequency of anomalous daily precipitation events over the last 36 years, with the greatest frequency occurring in 2011. The most extreme precipitation events occur during the months of late summer through early fall, with approximately four expected extreme events occurring per year during the summer and fall. For temperature, the greatest frequency and variation in temperature anomalies occur during winter and spring. In addition, temperature variance is also analyzed to determine if there is greater day-to-day temperature variability today than in the past.

  1. An auxiliary frequency tracking system for general purpose lock-in amplifiers

    NASA Astrophysics Data System (ADS)

    Xie, Kai; Chen, Liuhao; Huang, Anfeng; Zhao, Kai; Zhang, Hanlu

    2018-04-01

    Lock-in amplifiers (LIAs) are designed to measure weak signals submerged by noise. This is achieved with a signal modulator to avoid low-frequency noise and a narrow-band filter to suppress out-of-band noise. In asynchronous measurement, even a slight frequency deviation between the modulator and the reference may lead to measurement error because the filter’s passband is not flat. Because many commercial LIAs are unable to track frequency deviations, in this paper we propose an auxiliary frequency tracking system. We analyze the measurement error caused by the frequency deviation and propose both a tracking method and an auto-tracking system. This approach requires only three basic parameters, which can be obtained from any general purpose LIA via its communications interface, to calculate the frequency deviation from the phase difference. The proposed auxiliary tracking system is designed as a peripheral connected to the LIA’s serial port, removing the need for an additional power supply. The test results verified the effectiveness of the proposed system; the modified commercial LIA (model SR-850) was able to track the frequency deviation and continuous drift. For step frequency deviations, a steady tracking error of less than 0.001% was achieved within three adjustments, and the worst tracking accuracy was still better than 0.1% for a continuous frequency drift. The tracking system can be used to expand the application scope of commercial LIAs, especially for remote measurements in which the modulation clock and the local reference are separated.

  2. Time-Frequency and Non-Laplacian Phenomena at Radio Frequencies

    DTIC Science & Technology

    2017-01-22

    Unlimited UU UU UU UU 22-01-2017 30-Sep-2012 30-Sep-2016 Final Report: Time -Frequency and Non-Laplacian Phenomena at Radio Frequencies The views...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data... Time ‐Frequency and Non‐Laplacian Phenomena at Radio Frequencies  U.S. Army Research Office grant W911NF‐12‐1‐0526  Michael B. Steer  Department of

  3. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The

  4. Eddy Covariance Measurements of Methane Flux Using an Open-Path Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Burba, G.; Anderson, T.; Zona, D.; Schedlbauer, J.; Anderson, D.; Eckles, R.; Hastings, S.; Ikawa, H.; McDermitt, D.; Oberbauer, S.; Oechel, W.; Riensche, B.; Starr, G.; Sturtevant, C.; Xu, L.

    2008-12-01

    Methane is an important greenhouse gas with a warming potential of about 23 times that of carbon dioxide over a 100-year cycle (Houghton et al., 2001). Measurements of methane fluxes from the terrestrial biosphere have mostly been made using flux chambers, which have many advantages, but are discrete in time and space and may disturb surface integrity and air pressure. Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in- situ flux measurements, spatial integration using the Eddy Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and remote deployment due to lower power demands in the absence of a pump. The prototype open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 6 ppb at 10 Hz sampling in controlled laboratory environment. Field maintenance is minimized by a self-cleaning mechanism to keep the lower mirror free of contamination. Eddy Covariance measurements of methane flux using the prototype open-path methane analyzer are presented for the period between 2006 and 2008 in three ecosystems with contrasting weather and moisture conditions: (1) Fluxes over a short-hydroperiod sawgrass wetland in the Florida Everglades were measured in a warm and humid environment with temperatures often exceeding 25oC, variable winds, and frequent heavy dew at night; (2) Fluxes over coastal wetlands in an Arctic tundra were measured in an environment with frequent sub-zero temperatures, moderate winds, and ocean mist; (3) Fluxes over pacific mangroves in Mexico were measured in an environment with moderate air temperatures high winds, and sea spray. Presented eddy covariance flux data were collected from a co-located prototype open-path methane analyzer, LI-7500, and

  5. Ramanujan sums for signal processing of low-frequency noise.

    PubMed

    Planat, Michel; Rosu, Haret; Perrine, Serge

    2002-11-01

    An aperiodic (low-frequency) spectrum may originate from the error term in the mean value of an arithmetical function such as Möbius function or Mangoldt function, which are coding sequences for prime numbers. In the discrete Fourier transform the analyzing wave is periodic and not well suited to represent the low-frequency regime. In place we introduce a different signal processing tool based on the Ramanujan sums c(q)(n), well adapted to the analysis of arithmetical sequences with many resonances p/q. The sums are quasiperiodic versus the time n and aperiodic versus the order q of the resonance. Different results arise from the use of this Ramanujan-Fourier transform in the context of arithmetical and experimental signals.

  6. Influence of gate overlap engineering on ambipolar and high frequency characteristics of tunnel-CNTFET

    NASA Astrophysics Data System (ADS)

    Shaker, Ahmed; Ossaimee, Mahmoud; Zekry, A.; Abouelatta, Mohamed

    2015-10-01

    In this paper, we have investigated the effect of gate overlapping-on-drain on the ambipolar behavior and high frequency performance of tunnel CNTFET (T-CNTFET). It is found that gate overlapping-on-drain suppresses the ambipolar behavior and improves OFF-state current. The simulation results show that there is an optimum choice for the overlapped length. On the other hand, this overlap deteriorates the high frequency performance. The high frequency figure of merit is analyzed in terms of the unit-gain cutoff frequency (fT). Further, we propose two different approaches to improve the high frequency performance of the overlapped T-CNTFET. The first one is based on inserting a high-dielectric constant material below the overlapped part of the gate and the second is based on depositing a different work function gate metal for the overlapped region. The two solutions show very good improvement in the high frequency performance with maintaining the suppression of the ambipolar characteristics.

  7. Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, K. H.; Seo, B. H.; Kim, J. H.

    2016-03-15

    As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuitmore » model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.« less

  8. Frequency-bin entanglement of ultra-narrow band non-degenerate photon pairs

    NASA Astrophysics Data System (ADS)

    Rieländer, Daniel; Lenhard, Andreas; Jime`nez Farìas, Osvaldo; Máttar, Alejandro; Cavalcanti, Daniel; Mazzera, Margherita; Acín, Antonio; de Riedmatten, Hugues

    2018-01-01

    We demonstrate frequency-bin entanglement between ultra-narrowband photons generated by cavity enhanced spontaneous parametric down conversion. Our source generates photon pairs in widely non-degenerate discrete frequency modes, with one photon resonant with a quantum memory material based on praseodymium doped crystals and the other photon at telecom wavelengths. Correlations between the frequency modes are analyzed using phase modulators and narrowband filters before detection. We show high-visibility two photon interference between the frequency modes, allowing us to infer a coherent superposition of the modes. We develop a model describing the state that we create and use it to estimate optimal measurements to achieve a violation of the Clauser-Horne (CH) Bell inequality under realistic assumptions. With these settings we perform a Bell test and show a significant violation of the CH inequality, thus proving the entanglement of the photons. Finally we demonstrate the compatibility with a quantum memory material by using a spectral hole in the praseodymium (Pr) doped crystal as spectral filter for measuring high-visibility two-photon interference. This demonstrates the feasibility of combining frequency-bin entangled photon pairs with Pr-based solid state quantum memories.

  9. Effect of push frequency on the economy of wheelchair racers.

    PubMed

    Goosey, V L; Campbell, I G; Fowler, N E

    2000-01-01

    The aim of the study was to examine the effect of varying push frequency on pushing economy (oxygen uptake at a given speed). Eight male wheelchair racers completed a series of exercise bouts on a wheelchair ergometer (Bromking Turbo Trainer, Bromakin, UK) at 6.58 m x s(-1). Initially, subjects self-selected their freely chosen push frequency (FCF); this was followed by 4 random trials pushing at 60, 80, 120, and 140% of this FCF. Steady state VO2 was determined using Douglas bags, and heart rate was recorded by telemetry. After each condition, a small capillary blood sample was obtained and analyzed for blood lactate concentration (BLa) and a rating of perceived exertion (RPE) was recorded. At 6.58 m x s(-1) oxygen uptake, RPE, and gross mechanical efficiency were nonlinearly related to push frequency. Analysis of variance showed a significant effect (P < 0.05) of cycle frequency on VO2. VO2 was 11% higher at the 140% FCF compared with the 100% FCF condition. Changes in push frequency had little effect on HR although BLa increased linearly and was higher at the 140% FCF condition compared with 60% FCF (P < 0.05). A two-dimensional sagittal plane video analysis showed large interindividual differences in propulsion style. Both cycle time and the propulsion phase (%) decreased as the push frequency increased. The start angle and end angle of hand contact were similar for conditions, whereas the range of trunk motion decreased with push frequency (P < 0.05). The results of this study showed that the push frequency had an effect on pushing economy, and that the athletes' FCF was the most economical.

  10. Tolerance of the frequency deviation of LO sources at a MIMO system

    NASA Astrophysics Data System (ADS)

    Xiao, Jiangnan; Li, Xingying; Zhang, Zirang; Xu, Yuming; Chen, Long; Yu, Jianjun

    2015-11-01

    We analyze and simulate the tolerance of frequency offset at a W-band optical-wireless transmission system. The transmission system adopts optical polarization division multiplexing (PDM), and multiple-input multiple-output (MIMO) reception. The transmission signal adopts optical quadrature phase shift keying (QPSK) modulation, and the generation of millimeter-wave is based on the optical heterodyning technique. After 20-km single-mode fiber-28 (SMF-28) transmission, tens of Gb/s millimeter-wave signal is delivered. At the receiver, two millimeter-wave signals are down-converted into electrical intermediate-frequency (IF) signals in the analog domain by mixing with two electrical local oscillators (LOs) with different frequencies. We investigate the different frequency LO effect on the 2×2 MIMO system performance for the first time, finding that the process during DSP of implementing frequency offset estimation (FOE) before cascaded multi-modulus-algorithm (CMMA) equalization can get rid of the inter-channel interference (ICI) and improve system bit-error-ratio (BER) performance in this type of transmission system.

  11. Autopilot for frequency-modulation atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri, E-mail: phsivan@tx.technion.ac.il

    2015-10-15

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loopsmore » require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.« less

  12. Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2014-01-01

    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJ-based microwave detector can be used as an on-chip microwave phase and spectrum analyzer.

  13. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sen; Zhang, Yan, E-mail: yzhang@mail.cnu.edu.cn; Beijing Key Laboratory for Metamaterials and Devices, and Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048

    2015-12-14

    A practical circular polarization analyzer (CPA) that can selectively focus surface plasmon polaritons (SPPs) at two separate locations, according to the helicity of the circularly polarized light, is designed and experimentally verified in the terahertz frequency range. The CPA consists of fishbone-slit units and is designed using the simulated annealing algorithm. By differentially detecting the intensities of the two SPPs focuses, the helicity of the incident circularly polarized light can be obtained and the CPA is less vulnerable to the noise of incident light. The proposed device may also have wide potential applications in chiral SPPs photonics and the analysismore » of chiral molecules in biology.« less

  14. Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2014-01-01

    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJbased microwave detector can be used as an on-chip microwave phase and spectrum analyzer.

  15. Tremor frequency characteristics in Parkinson's disease under resting-state and stress-state conditions.

    PubMed

    Lee, Hong Ji; Lee, Woong Woo; Kim, Sang Kyong; Park, Hyeyoung; Jeon, Hyo Seon; Kim, Han Byul; Jeon, Beom S; Park, Kwang Suk

    2016-03-15

    Tremor characteristics-amplitude and frequency components-are primary quantitative clinical factors for diagnosis and monitoring of tremors. Few studies have investigated how different patient's conditions affect tremor frequency characteristics in Parkinson's disease (PD). Here, we analyzed tremor characteristics under resting-state and stress-state conditions. Tremor was recorded using an accelerometer on the finger, under resting-state and stress-state (calculation task) conditions, during rest tremor and postural tremor. The changes of peak power, peak frequency, mean frequency, and distribution of power spectral density (PSD) of tremor were evaluated across conditions. Patients whose tremors were considered more than "mild" were selected, for both rest (n=67) and postural (n=25) tremor. Stress resulted in both greater peak powers and higher peak frequencies for rest tremor (p<0.001), but not for postural tremor. Notably, peak frequencies were concentrated around 5 Hz under stress-state condition. The distributions of PSD of tremor were symmetrical, regardless of conditions. Tremor is more evident and typical tremor characteristics, namely a lower frequency as amplitude increases, are different in stressful condition. Patient's conditions directly affect neural oscillations related to tremor frequencies. Therefore, tremor characteristics in PD should be systematically standardized across patient's conditions such as attention and stress levels. Copyright © 2016. Published by Elsevier B.V.

  16. SMES application for frequency control during islanded microgrid operation

    NASA Astrophysics Data System (ADS)

    Kim, A.-Rong; Kim, Gyeong-Hun; Heo, Serim; Park, Minwon; Yu, In-Keun; Kim, Hak-Man

    2013-01-01

    This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail.

  17. Frequency of sucrose exposure on the cariogenicity of a biofilm-caries model

    PubMed Central

    Díaz-Garrido, Natalia; Lozano, Carla; Giacaman, Rodrigo A.

    2016-01-01

    Objective: Although sucrose is considered the most cariogenic carbohydrate in the human diet, the question of how many exposures are needed to induce damage on the hard dental tissues remains unclear. To approach this question, different frequencies of daily sucrose exposure were tested on a relevant biological caries model. Materials and Methods: Biofilms of the Streptococcus mutans were formed on enamel slabs and exposed to cariogenic challenges with 10% sucrose for 5 min at 0, 1, 3, 5, 8, or 10 times per day. After 5 days, biofilms were retrieved to analyze biomass, protein content, viable bacteria, and polysaccharide formation. Enamel demineralization was evaluated by percentage of microhardness loss (percentage surface hardness loss [%SHL]). Results: Biomass, protein content, polysaccharide production, acidogenicity of the biofilm, and %SHL proportionally increased with the number of daily exposures to sucrose (P < 0.05). One daily sucrose exposure was enough to induce 20% more demineralization than the negative unexposed control. Higher frequencies induced greater demineralization and more virulent biofilms, but eight and ten exposures were not different between them in most of the analyzed variables (P > 0.05). Conclusions: Higher sucrose exposure seems to increase cariogenicity, in a frequency-dependent manner, by the modification of bacterial virulent properties. PMID:27403051

  18. High-frequency imaging radar for robotic navigation and situational awareness

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Luo, Changan; Knox, Robert

    2011-05-01

    With increasingly available high frequency radar components, the practicality of imaging radar for mobile robotic applications is now practical. Navigation, ODOA, situational awareness and safety applications can be supported in small light weight packaging. Radar has the additional advantage of being able sense through aerosols, smoke and dust that can be difficult for many optical systems. The ability to directly measure the range rate of an object is also an advantage in radar applications. This paper will explore the applicability of high frequency imaging radar for mobile robotics and examine a W-band 360 degree imaging radar prototype. Indoor and outdoor performance data will be analyzed and evaluated for applicability to navigation and situational awareness.

  19. Frequency of urban building fires as related to daily weather conditions

    Treesearch

    Arthur R. Pirsko; Wallace L. Fons

    1956-01-01

    Daily weather elements of precipitation, wind, mean temperature, relative humidity, and dew-point temperature for selected urban areas (approximately 850,000 population) in the United States are statistically analyzed to determine their correlation with daily number of building fires. The frequency of urban building fires is found to be significantly correlated with...

  20. Analyzing Patients' Values by Applying Cluster Analysis and LRFM Model in a Pediatric Dental Clinic in Taiwan

    PubMed Central

    Lin, Shih-Yen; Liu, Chih-Wei

    2014-01-01

    This study combines cluster analysis and LRFM (length, recency, frequency, and monetary) model in a pediatric dental clinic in Taiwan to analyze patients' values. A two-stage approach by self-organizing maps and K-means method is applied to segment 1,462 patients into twelve clusters. The average values of L, R, and F excluding monetary covered by national health insurance program are computed for each cluster. In addition, customer value matrix is used to analyze customer values of twelve clusters in terms of frequency and monetary. Customer relationship matrix considering length and recency is also applied to classify different types of customers from these twelve clusters. The results show that three clusters can be classified into loyal patients with L, R, and F values greater than the respective average L, R, and F values, while three clusters can be viewed as lost patients without any variable above the average values of L, R, and F. When different types of patients are identified, marketing strategies can be designed to meet different patients' needs. PMID:25045741

  1. Analyzing patients' values by applying cluster analysis and LRFM model in a pediatric dental clinic in Taiwan.

    PubMed

    Wu, Hsin-Hung; Lin, Shih-Yen; Liu, Chih-Wei

    2014-01-01

    This study combines cluster analysis and LRFM (length, recency, frequency, and monetary) model in a pediatric dental clinic in Taiwan to analyze patients' values. A two-stage approach by self-organizing maps and K-means method is applied to segment 1,462 patients into twelve clusters. The average values of L, R, and F excluding monetary covered by national health insurance program are computed for each cluster. In addition, customer value matrix is used to analyze customer values of twelve clusters in terms of frequency and monetary. Customer relationship matrix considering length and recency is also applied to classify different types of customers from these twelve clusters. The results show that three clusters can be classified into loyal patients with L, R, and F values greater than the respective average L, R, and F values, while three clusters can be viewed as lost patients without any variable above the average values of L, R, and F. When different types of patients are identified, marketing strategies can be designed to meet different patients' needs.

  2. An L-band transit-time oscillator with mechanical frequency tunability

    NASA Astrophysics Data System (ADS)

    Song, Lili; He, Juntao; Ling, Junpu; Cao, Yibing

    2017-02-01

    An L-band coaxial Transit-time Oscillator (TTO) with mechanical frequency tunability is introduced in this paper. Particle-in-cell simulations have been done. The output power efficiency has been improved at least 20% under a 10.2 GW input power and with a tunable range from 1.57 GHz to 1.90 GHz by modulating the outer conductor. It is worth to note that the efficiency can reach as high as 41% at 1.75 GHz. The mechanical engineering method is also detailed in this work. The frequency tuning range of the coaxial TTO is 22.6% of the central frequency. On the other hand, the frequency can be tuned from 1.6 GHz to 1.85 GHz by modulating the inner conductor. The author highlights a hollow structure of the L-band coaxial TTO which can work from 1.03 GHz to 1.31 GHz via modulating the outer conductor in the rest of the article. The frequency tuning range of the hollow TTO is 21.4% of the central frequency. More importantly, the hollow TTO can be easily achieved after the inner conductor is removed from the coaxial TTO. The electric field distributions of the coaxial and hollow TTOs are analyzed, resulting in that the longitudinal and transverse working modes are TM01 and π mode, respectively. The same working mode from these two structures implies the stability of the TTOs mentioned above.

  3. Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field

    NASA Astrophysics Data System (ADS)

    Eklund, Anders; Bonetti, Stefano; Sani, Sohrab R.; Majid Mohseni, S.; Persson, Johan; Chung, Sunjae; Amir Hossein Banuazizi, S.; Iacocca, Ezio; Östling, Mikael; Åkerman, Johan; Gunnar Malm, B.

    2014-03-01

    The nano-scale spin torque oscillator (STO) is a compelling device for on-chip, highly tunable microwave frequency signal generation. Currently, one of the most important challenges for the STO is to increase its longer-time frequency stability by decreasing the 1/f frequency noise, but its high level makes even its measurement impossible using the phase noise mode of spectrum analyzers. Here, we present a custom made time-domain measurement system with 150 MHz measurement bandwidth making possible the investigation of the variation of the 1/f as well as the white frequency noise in a STO over a large set of operating points covering 18-25 GHz. The 1/f level is found to be highly dependent on the oscillation amplitude-frequency non-linearity and the vicinity of unexcited oscillation modes. These findings elucidate the need for a quantitative theoretical treatment of the low-frequency, colored frequency noise in STOs. Based on the results, we suggest that the 1/f frequency noise possibly can be decreased by improving the microstructural quality of the metallic thin films.

  4. Frequency spirals.

    PubMed

    Ottino-Löffler, Bertrand; Strogatz, Steven H

    2016-09-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call "frequency spirals." These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  5. Peripheral Frequency of CD4+ CD28− Cells in Acute Ischemic Stroke

    PubMed Central

    Tuttolomondo, Antonino; Pecoraro, Rosaria; Casuccio, Alessandra; Di Raimondo, Domenico; Buttà, Carmelo; Clemente, Giuseppe; Corte, Vittoriano della; Guggino, Giuliana; Arnao, Valentina; Maida, Carlo; Simonetta, Irene; Maugeri, Rosario; Squatrito, Rosario; Pinto, Antonio

    2015-01-01

    Abstract CD4+ CD28− T cells also called CD28 null cells have been reported as increased in the clinical setting of acute coronary syndrome. Only 2 studies previously analyzed peripheral frequency of CD28 null cells in subjects with acute ischemic stroke but, to our knowledge, peripheral frequency of CD28 null cells in each TOAST subtype of ischemic stroke has never been evaluated. We hypothesized that CD4+ cells and, in particular, the CD28 null cell subset could show a different degree of peripheral percentage in subjects with acute ischemic stroke in relation to clinical subtype and severity of ischemic stroke. The aim of our study was to analyze peripheral frequency of CD28 null cells in subjects with acute ischemic stroke in relation to TOAST diagnostic subtype, and to evaluate their relationship with scores of clinical severity of acute ischemic stroke, and their predictive role in the diagnosis of acute ischemic stroke and diagnostic subtype We enrolled 98 consecutive subjects admitted to our recruitment wards with a diagnosis of ischemic stroke. As controls we enrolled 66 hospitalized patients without a diagnosis of acute ischemic stroke. Peripheral frequency of CD4+ and CD28 null cells has been evaluated with a FACS Calibur flow cytometer. Subjects with acute ischemic stroke had a significantly higher peripheral frequency of CD4+ cells and CD28 null cells compared to control subjects without acute ischemic stroke. Subjects with cardioembolic stroke had a significantly higher peripheral frequency of CD4+ cells and CD28 null cells compared to subjects with other TOAST subtypes. We observed a significant relationship between CD28 null cells peripheral percentage and Scandinavian Stroke Scale and NIHSS scores. ROC curve analysis showed that CD28 null cell percentage may be useful to differentiate between stroke subtypes. These findings seem suggest a possible role for a T-cell component also in acute ischemic stroke clinical setting showing a different

  6. Music students: conventional hearing thresholds and at high frequencies.

    PubMed

    Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de

    2014-01-01

    Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry). Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  7. Solid perception mechanism by a shading pattern: spatial frequency components in a corrugated wave pattern.

    PubMed

    Nameda, N

    1988-01-01

    Illumination allows solid object perception to be obtained and depicted by a shading pattern produced by lighting. The shading cue, as one of solid perception cues (Gibson 1979), was investigated in regard to a white corrugated wave shape, using computer graphic device: Tospix-2. The reason the corrugated wave was chosen, is that an alternately bright and dark pattern, produced by shading, can be conveniently analyzed into contained spatial frequencies. This paper reports spatial frequency properties contained in the shading pattern. The shading patterns, input into the computer graphic device, are analyzed by Fourier Transformation by the same device. After the filtration by various spatial frequency low and high pass filters, Inverse Fourier Transformation is carried out for the residual components. The result of the analysis indicates that the third through higher harmonics components are important in regard to presenting a solid reality feeling in solid perception. Sakata (1983) also reported that an edged pattern, superimposed onto a lower sinusoidal pattern, was important in solid perception. The third through higher harmonics components express the changing position of luminance on the pattern, and a slanted plane relating to the light direction. Detection of a solid shape, constructed with flat planes, is assumed to be on the bottom of the perfect curved solid perception mechanism. Apparent evidence for this assumption, in difficult visual conditions, is that a flat paneled solid is seen before the curved solid. This mechanism is explained by two spatial frequency neural network systems, assumed as having correspondence with higher spatial frequency detection and lower spatial frequency detection.

  8. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    PubMed Central

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  9. Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska

    USGS Publications Warehouse

    Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.

    1999-01-01

    Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more

  10. Increasing low frequency sound attenuation using compounded single layer of sonic crystal

    NASA Astrophysics Data System (ADS)

    Gulia, Preeti; Gupta, Arpan

    2018-05-01

    Sonic crystals (SC) are man-made periodic structures where sound hard scatterers are arranged in a crystalline manner. SC reduces noise in a particular range of frequencies called as band gap. Sonic crystals have a promising application in noise shielding; however, the application is limited due to the size of structure. Particularly for low frequencies, the structure becomes quite bulky, restricting its practical application. This paper presents a compounded model of SC, which has the same overall area and filling fraction but with increased low frequency sound attenuation. Two cases have been considered, a three layer SC and a compounded single layer SC. Both models have been analyzed using finite element simulation and plane wave expansion method. Band gaps for periodic structures have been obtained using both methods which are in good agreement. Further, sound transmission loss has been evaluated using finite element method. The results demonstrate the use of compounded model of Sonic Crystal for low frequency sound attenuation.

  11. Robust interferometric frequency lock between cw lasers and optical frequency combs.

    PubMed

    Benkler, Erik; Rohde, Felix; Telle, Harald R

    2013-02-15

    A transfer interferometer is presented which establishes a versatile and robust optical frequency locking link between a tunable single frequency laser and an optical frequency comb. It enables agile and continuous tuning of the frequency difference between both lasers while fluctuations and drift effects of the transfer interferometer itself are widely eliminated via common mode rejection. Experimental results will be presented for a tunable extended-cavity 1.5 μm laser diode locked to an Er-fiber based frequency comb.

  12. Harmonic Frequency Lowering

    PubMed Central

    Kirchberger, Martin

    2016-01-01

    A novel algorithm for frequency lowering in music was developed and experimentally tested in hearing-impaired listeners. Harmonic frequency lowering (HFL) combines frequency transposition and frequency compression to preserve the harmonic content of music stimuli. Listeners were asked to make judgments regarding detail and sound quality in music stimuli. Stimuli were presented under different signal processing conditions: original, low-pass filtered, HFL, and nonlinear frequency compressed. Results showed that participants reported perceiving the most detail in the HFL condition. In addition, there was no difference in sound quality across conditions. PMID:26834122

  13. A frequency and content analysis of alcohol advertising on Brazilian television.

    PubMed

    Pinsky, I; Silva, M T

    1999-05-01

    Two studies were conducted with the objective of analyzing the frequency and content of alcoholic beverage advertising on Brazilian television. Study 1 presents a frequency analysis based on 84 hours of TV monitoring in which 1,640 commercials and 243 vignettes were recorded between 8:00 PM and 11:00 PM on the two main stations. Study 2 presents a content analysis of 139 alcoholic and 51 nonalcoholic beverage commercials aired in 1992-93, as evaluated by three trained judges. Study 1 showed the relative frequency of alcoholic beverage commercials (4.6%) to be higher than the frequency of other products such as cigarettes, nonalcoholic beverages and medicines, and lower than that of foods and various other items. Frequency of alcoholic "vignettes" (26.6%) was higher than the frequency of all the other product categories. Frequency data were closely matched by marketing investment data for the period. In Study 2, the most frequent themes and appeals present in alcohol commercials were relaxation, national symbolism, conformity, camaraderie and humor. Human models were present in most ads. Product-related themes such as information, quality or tradition were virtually absent, as were messages to drink moderately. However, 7.2% of the alcohol commercials displayed appeals promoting abusive drinking. The results seem to reflect the minimal regulation of alcohol advertising in Brazil, and a joint effort by health planners, educators, legislators, alcohol industries and advertising agencies is recommended as a necessary step to reduce alcoholic beverage problems in Brazilian society.

  14. Novel characterization method of impedance cardiography signals using time-frequency distributions.

    PubMed

    Escrivá Muñoz, Jesús; Pan, Y; Ge, S; Jensen, E W; Vallverdú, M

    2018-03-16

    The purpose of this document is to describe a methodology to select the most adequate time-frequency distribution (TFD) kernel for the characterization of impedance cardiography signals (ICG). The predominant ICG beat was extracted from a patient and was synthetized using time-frequency variant Fourier approximations. These synthetized signals were used to optimize several TFD kernels according to a performance maximization. The optimized kernels were tested for noise resistance on a clinical database. The resulting optimized TFD kernels are presented with their performance calculated using newly proposed methods. The procedure explained in this work showcases a new method to select an appropriate kernel for ICG signals and compares the performance of different time-frequency kernels found in the literature for the case of ICG signals. We conclude that, for ICG signals, the performance (P) of the spectrogram with either Hanning or Hamming windows (P = 0.780) and the extended modified beta distribution (P = 0.765) provided similar results, higher than the rest of analyzed kernels. Graphical abstract Flowchart for the optimization of time-frequency distribution kernels for impedance cardiography signals.

  15. To What Extent Is Mean EMG Frequency during Gait a Reflection of Functional Muscle Strength in Children with Cerebral Palsy?

    ERIC Educational Resources Information Center

    Van Gestel, L.; Wambacq, H.; Aertbelien, E.; Meyns, P.; Bruyninckx, H.; Bar-On, L.; Molenaers, G.; De Cock, P.; Desloovere, K.

    2012-01-01

    The aim of the current paper was to analyze the potential of the mean EMG frequency, recorded during 3D gait analysis (3DGA), for the evaluation of functional muscle strength in children with cerebral palsy (CP). As walking velocity is known to also influence EMG frequency, it was investigated to which extent the mean EMG frequency is a reflection…

  16. The P Wave Time-Frequency Variability Reflects Atrial Conduction Defects before Paroxysmal Atrial Fibrillation.

    PubMed

    Alcaraz, Raúl; Martínez, Arturo; Rieta, José J

    2015-09-01

    The study of atrial conduction defects associated with the onset of paroxysmal atrial fibrillation (PAF) can be addressed by analyzing the P wave from the surface electrocardiogram (ECG). Traditionally, signal-averaged ECGs have been mostly used for this purpose. However, this alternative hinders the possibility to quantify every single P wave, its variability over time, as well as to obtain complimentary and evolving information about the arrhythmia. This work analyzes the time progression of several time and frequency P wave features as potential indicators of atrial conduction variability several hours preceding the onset of PAF. The longest sinus rhythm interval from 24-hour Holter recordings of 46 PAF patients was selected. Next, the 2 hours before the onset of PAF were extracted and divided into two 1-hour periods. Every single P wave was automatically delineated and characterized by 16 time and frequency metrics, such as its duration, absolute energy in several frequency bands and high-to-low-frequency energy ratios. Finally, the P wave variability over each 1-hour period was estimated from the 16 features making use of a least-squares linear fitting. As a reference, the same parameters were also estimated from a set of 1-hour ECG segments randomly chosen from a control group of 53 healthy subjects age-, gender-, and heart rate-matched. All the analyzed metrics provided an increasing P wave variability trend as the onset of PAF approximated, being P wave duration and P wave high-frequency energy the most significant individual metrics. The linear fitting slope α associated with P wave duration was (2.48 ± 1.98)×10(-2) for healthy subjects, (23.8 ± 14.1)×10(-2) for ECG segments far from PAF and for (81.8 ± 48.7)×10(-2) ECG segments close to PAF p = 6.96×10(-22) . Similarly, the P wave high-frequency energy linear fitting slope was (2.42 ± 4.97)×10(-9) , (54.2 ± 107.1)×10(-9) and (274.2 ± 566.1)×10(-9) , respectively (p = 2.85×10(-20) ). A

  17. Frequency conversion system

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    A frequency conversion system comprises first and second gain sources providing first and second frequency radiation outputs where the second gain source receives as input the output of the first gain source and, further, the second gain source comprises a Raman or Brillouin gain fiber for wave shifting a portion of the radiation of the first frequency output into second frequency radiation output to provided a combined output of first and second frequencies. Powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  18. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    NASA Astrophysics Data System (ADS)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  19. An acoustical assessment of pitch-matching accuracy in relation to speech frequency, speech frequency range, age and gender in preschool children

    NASA Astrophysics Data System (ADS)

    Trollinger, Valerie L.

    This study investigated the relationship between acoustical measurement of singing accuracy in relationship to speech fundamental frequency, speech fundamental frequency range, age and gender in preschool-aged children. Seventy subjects from Southeastern Pennsylvania; the San Francisco Bay Area, California; and Terre Haute, Indiana, participated in the study. Speech frequency was measured by having the subjects participate in spontaneous and guided speech activities with the researcher, with 18 diverse samples extracted from each subject's recording for acoustical analysis for fundamental frequency in Hz with the CSpeech computer program. The fundamental frequencies were averaged together to derive a mean speech frequency score for each subject. Speech range was calculated by subtracting the lowest fundamental frequency produced from the highest fundamental frequency produced, resulting in a speech range measured in increments of Hz. Singing accuracy was measured by having the subjects each echo-sing six randomized patterns using the pitches Middle C, D, E, F♯, G and A (440), using the solfege syllables of Do and Re, which were recorded by a 5-year-old female model. For each subject, 18 samples of singing were recorded. All samples were analyzed by the CSpeech for fundamental frequency. For each subject, deviation scores in Hz were derived by calculating the difference between what the model sang in Hz and what the subject sang in response in Hz. Individual scores for each child consisted of an overall mean total deviation frequency, mean frequency deviations for each pattern, and mean frequency deviation for each pitch. Pearson correlations, MANOVA and ANOVA analyses, Multiple Regressions and Discriminant Analysis revealed the following findings: (1) moderate but significant (p < .001) relationships emerged between mean speech frequency and the ability to sing the pitches E, F♯, G and A in the study; (2) mean speech frequency also emerged as the strongest

  20. Use of complex frequency plane to design broadband and sub-wavelength absorbers.

    PubMed

    Romero-García, V; Theocharis, G; Richoux, O; Pagneux, V

    2016-06-01

    The reflection of sound of frequency below 1 kHz, by a rigid-backed structure that contains sub-wavelength resonators is studied in this work. In particular, only single mode reflected waves are considered, an approximation which is accurate in this low frequency regime. A method of analysis of absorption that uses the structure of the reflection coefficient in the complex frequency plane is proposed. In the absence of losses, the reflection coefficient supports pairs of poles and zeros that are complex conjugate and which have imaginary parts linked to the energy leakage by radiation. When losses are introduced and balanced to the leakage, the critical coupling condition is satisfied and total absorption is obtained. Examples of a slot resonator and of multiple Helmholtz resonators are analyzed to obtain both narrow and broadband total absorption.

  1. Grading of cervical intraepithelial neoplasia using spatial frequency for optical histology

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Jagtap, Jaidip; Pradhan, Asima; Alfano, Robert R.

    2014-03-01

    It is important to detect cervical dysplasia, Cervical Intraepithelial Neoplasia (CIN). CIN is the potentially premalignant and abnormal squamous cells on surface of cervix. In this study, the spatial frequency spectra of pre-cancer cervical tissues are used to detect differences among different grades of human cervical tissues. Seven sets of thick tissue sections of human cervix of normal, CIN 1, CIN 2, and CIN 3 tissues are studied. The confocal microscope images of the stromal region of normal and CIN human tissues were analyzed using Fast Fourier Transform (FFT) to generate the spatial spectra. It is observed that higher frequency components exist in CIN tissues than those in normal tissue, as well as those in higher grade CIN tissue than those in lower grade CIN tissue. The width of the spatial frequency of different types of tissues is used to create a criterion for CIN grading by training a support vector machine (SVM) classifier. The results show that the randomness of tissue structures from normal to different stages of precancer in cervical tissue can be recognized by fingerprints of the spatial frequency. The efficacy of spatial frequency analysis for CIN grading is evaluated as excellent since high AUC (area under the ROC curve), sensitivity and specificity are obtained by the statistics study. This works lays the foundation of using spatial frequency spectra for a histology evaluation.

  2. Frequency discriminator/phase detector

    NASA Technical Reports Server (NTRS)

    Crow, R. B.

    1974-01-01

    Circuit provides dual function of frequency discriminator/phase detector which reduces frequency acquisition time without adding to circuit complexity. Both frequency discriminators, in evaluated frequency discriminator/phase detector circuits, are effective two decades above and below center frequency.

  3. Negative Differential Resistance (NDR) frequency conversion with gain

    NASA Technical Reports Server (NTRS)

    Hwu, R. J.; Alm, R. W.; Lee, S. C.

    1992-01-01

    The dependence of the I-V characteristic of the negative differential resistance (NDR) devices on the power level and frequency of the rf input signal has been theoretically analyzed with a modified large- and small-signal nonlinear circuit analysis program. The NDR devices we used in this work include both the tunnel diode (without the antisymmetry in the I-V characteristic) and resonant-tunneling devices (with the antisymmetry in the I-V characteristic). Absolute negative conductance can be found from a zero-biased resonant tunneling device when the applied pump power is within a small range. This study verifies the work of Sollner et al. Variable negative conductances at the fundamental and harmonic frequencies can also be obtained from both the unbiased and biased tunnel diodes. The magnitude of the negative conductances can be adjusted by varying the pump amplitude -- a very useful circuit property. However, the voltage range over which the negative conductance occurs moves towards the more positive side of the voltage axis with increasing frequency. Furthermore, the range of the pumping amplitude to obtain negative conductance varies with the parasitics (resistance and capacitance) of the device. The theoretical observation of the dependence of the I-V characteristic of the NDR devices on the power and frequency of the applied pump signal is supported by the experimental results. In addition, novel functions of a NDR device such as self-oscillating frequency multiplier and mixer with gain have been experimentally demonstrated. The unbiased oscillator have also been successfully realized with a NDR device with an antisymmetrical I-V characteristic. Finally, the applications of these device functions will be discussed.

  4. Does increased urination frequency protect against bladder cancer?

    PubMed

    Silverman, Debra T; Alguacil, Juan; Rothman, Nathaniel; Real, Francisco X; Garcia-Closas, Montserrat; Cantor, Kenneth P; Malats, Nuria; Tardon, Adonina; Serra, Consol; Garcia-Closas, Reina; Carrato, Alfredo; Lloreta, Josep; Samanic, Claudine; Dosemeci, Mustafa; Kogevinas, Manolis

    2008-10-01

    Experimental studies suggest that increased urination frequency may reduce bladder cancer risk if carcinogens are present in the urine. Only 2 small studies of the effect of increased urination frequency on bladder cancer risk in humans have been conducted with conflicting results. Our purpose was to evaluate the effect of urination frequency on risk of bladder cancer in a large, multicenter case-control study. We analyzed data based on interviews conducted with 884 patients with newly diagnosed, bladder cancer and 996 controls from 1998 to 2001 in Spain. We observed a consistent, inverse trend in risk with increasing nighttime voiding frequency in both men (p = 0.0003) and women (p = 0.07); voiding at least 2 times per night was associated with a significant, 40-50% risk reduction. The protective effect of nocturia was apparent among study participants with low, moderate and high water consumption. The risk associated with cigarette smoking was reduced by nocturia. Compared with nonsmokers who did not urinate at night, current smokers who did not urinate at night had an OR of 7.0 (95% CI = 4.7-10.2), whereas those who voided at least twice per night had an OR of 3.3 (95% CI = 1.9-5.8) (p value for trend = 0.0005). Our findings suggest a strong protective effect of nocturia on bladder cancer risk, providing evidence in humans that bladder cancer risk is related to the contact time of the urothelium with carcinogens in urine. Increased urination frequency, coupled with possible dilution of the urine from increased water intake, may diminish the effect of urinary carcinogens on bladder cancer risk.

  5. Operational frequency stability of rubidium and cesium frequency standards

    NASA Technical Reports Server (NTRS)

    Lavery, J. E.

    1973-01-01

    The frequency stabilities under operational conditions of several commercially available rubidium and cesium frequency standards were determined from experimental data for frequency averaging times from 10 to the 7th power s and are presented in table and graph form. For frequency averaging times between 10 to the 5th power and 10 to the 7th power s, the rubidium standards tested have a stability of between 10 to the minus 12th power and 5 x 10 to the minus 12th power, while the cesium standards have a stability of between 2 x 10 to the minus 13th power and 5 x 10 to the minus 13th power.

  6. Energetic ion mass analysis using a radio-frequency quadrupole filter.

    PubMed

    Medley, S S

    1978-06-01

    In conventional applications of the radio-frequency quadrupole mass analyzer, the ion injection energy is usually limited to less than the order of 100 eV due to constraints on the dimensions and power supply of the device. However, requirements often arise, for example in fusion plasma ion diagnostics, for mass analysis of much more energetic ions. A technique easily adaptable to any conventional quadrupole analyzer which circumvents the limitation on injection energy is documented in this paper. Briefly, a retarding potential applied to the pole assembly is shown to facilitate mass analysis of multikiloelectron volt ions without altering the salient characteristics of either the quadrupole filter or the ion beam.

  7. A detector for high frequency modulation in auroral particle fluxes

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Oehme, D.; Loewenstein, R. F.; Murphree, J.; Anderson, H. R.; Anderson, R.

    1974-01-01

    A high time resolution electron detector has been developed for use in sounding rocket studies of the aurora. The detector is used to look for particle bunching in the range 50 kHz-10 MHz. The design uses an electron multiplier and an onboard frequency spectrum analyzer. By using the onboard analyzer, the data can be transmitted back to ground on a single 93-kHz voltage-controlled oscillator. The detector covers the 50 kHz-10 MHz range six times per second and detects modulation on the order of a new percent of the total electron flux. Spectra are presented for a flight over an auroral arc.

  8. Correlation between radiographic analysis of alveolar bone density around dental implant and resonance frequency of dental implant

    NASA Astrophysics Data System (ADS)

    Prawoko, S. S.; Nelwan, L. C.; Odang, R. W.; Kusdhany, L. S.

    2017-08-01

    The histomorphometric test is the gold standard for dental implant stability quantification; however, it is invasive, and therefore, it is inapplicable to clinical patients. Consequently, accurate and objective alternative methods are required. Resonance frequency analysis (RFA) and digital radiographic analysis are noninvasive methods with excellent objectivity and reproducibility. To analyze the correlation between the radiographic analysis of alveolar bone density around a dental implant and the resonance frequency of the dental implant. Digital radiographic images for 35 samples were obtained, and the resonance frequency of the dental implant was acquired using Osstell ISQ immediately after dental implant placement and on third-month follow-up. The alveolar bone density around the dental implant was subsequently analyzed using SIDEXIS-XG software. No significant correlation was reported between the alveolar bone density around the dental implant and the resonance frequency of the dental implant (r = -0.102 at baseline, r = 0.146 at follow-up, p > 0.05). However, the alveolar bone density and resonance frequency showed a significant difference throughout the healing period (p = 0.005 and p = 0.000, respectively). Conclusion: Digital dental radiographs and Osstell ISQ showed excellent objectivity and reproducibility in quantifying dental implant stability. Nonetheless, no significant correlation was observed between the results obtained using these two methods.

  9. The frequency-difference and frequency-sum acoustic-field autoproducts.

    PubMed

    Worthmann, Brian M; Dowling, David R

    2017-06-01

    The frequency-difference and frequency-sum autoproducts are quadratic products of solutions of the Helmholtz equation at two different frequencies (ω + and ω - ), and may be constructed from the Fourier transform of any time-domain acoustic field. Interestingly, the autoproducts may carry wave-field information at the difference (ω + - ω - ) and sum (ω + + ω - ) frequencies even though these frequencies may not be present in the original acoustic field. This paper provides analytical and simulation results that justify and illustrate this possibility, and indicate its limitations. The analysis is based on the inhomogeneous Helmholtz equation and its solutions while the simulations are for a point source in a homogeneous half-space bounded by a perfectly reflecting surface. The analysis suggests that the autoproducts have a spatial phase structure similar to that of a true acoustic field at the difference and sum frequencies if the in-band acoustic field is a plane or spherical wave. For multi-ray-path environments, this phase structure similarity persists in portions of the autoproduct fields that are not suppressed by bandwidth averaging. Discrepancies between the bandwidth-averaged autoproducts and true out-of-band acoustic fields (with potentially modified boundary conditions) scale inversely with the product of the bandwidth and ray-path arrival time differences.

  10. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    PubMed

    Wu, Hau-Tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong

    2016-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  11. Frequency spirals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottino-Löffler, Bertrand; Strogatz, Steven H., E-mail: strogatz@cornell.edu

    2016-09-15

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seenmore » in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.« less

  12. Study on rotational frequency noise in a centrifugal compressor for automobile turbochargers

    NASA Astrophysics Data System (ADS)

    Wakaki, Daichi; Sakuka, Yuta; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2014-02-01

    The rotational frequency noise (also known as the pulsation noise) due to the mistuning of impeller blade rows introduced at the manufacturing stage of the impellers is observed in the small-sized centrifugal compressor for automobile turbochargers. The present paper addresses the elucidation of the generating mechanism and parameter dependency such as the kind and degree of mistuning. In order to analyze numerically the rotational frequency noise due to mistuning, the unsteady computational fluid dynamics (CFD) of the whole compressor including volute is executed, and the resultant time history of the pressure is fed into the spectral analysis.

  13. Climatic Signals from Intra-annual Density Fluctuation Frequency in Mediterranean Pines at a Regional Scale

    PubMed Central

    Zalloni, Enrica; de Luis, Martin; Campelo, Filipe; Novak, Klemen; De Micco, Veronica; Di Filippo, Alfredo; Vieira, Joana; Nabais, Cristina; Rozas, Vicente; Battipaglia, Giovanna

    2016-01-01

    Tree rings provide information about the climatic conditions during the growing season by recording them in different anatomical features, such as intra-annual density fluctuations (IADFs). IADFs are intra-annual changes of wood density appearing as latewood-like cells within earlywood, or earlywood-like cells within latewood. The occurrence of IADFs is dependent on the age and size of the tree, and it is triggered by climatic drivers. The variations of IADF frequency of different species and their dependence on climate across a wide geographical range have still to be explored. The objective of this study is to investigate the effect of age, tree-ring width and climate on IADF formation and frequency at a regional scale across the Mediterranean Basin in Pinus halepensis Mill., Pinus pinaster Ait., and Pinus pinea L. The analyzed tree-ring network was composed of P. pinea trees growing at 10 sites (2 in Italy, 4 in Spain, and 4 in Portugal), P. pinaster from 19 sites (2 in Italy, 13 in Spain, and 4 in Portugal), and P. halepensis from 38 sites in Spain. The correlations between IADF frequency and monthly minimum, mean and maximum temperatures, as well as between IADF frequency and total precipitation, were analyzed. A significant negative relationship between IADF frequency and tree-ring age was found for the three Mediterranean pines. Moreover, IADFs were more frequent in wider rings than in narrower ones, although the widest rings showed a reduced IADF frequency. Wet conditions during late summer/early autumn triggered the formation of IADFs in the three species. Our results suggest the existence of a common climatic driver for the formation of IADFs in Mediterranean pines, highlighting the potential use of IADF frequency as a proxy for climate reconstructions with geographical resolution. PMID:27200052

  14. Frequency-scanning interferometry using a time-varying Kalman filter for dynamic tracking measurements.

    PubMed

    Jia, Xingyu; Liu, Zhigang; Tao, Long; Deng, Zhongwen

    2017-10-16

    Frequency scanning interferometry (FSI) with a single external cavity diode laser (ECDL) and time-invariant Kalman filtering is an effective technique for measuring the distance of a dynamic target. However, due to the hysteresis of the piezoelectric ceramic transducer (PZT) actuator in the ECDL, the optical frequency sweeps of the ECDL exhibit different behaviors, depending on whether the frequency is increasing or decreasing. Consequently, the model parameters of Kalman filter appear time varying in each iteration, which produces state estimation errors with time-invariant filtering. To address this, in this paper, a time-varying Kalman filter is proposed to model the instantaneous movement of a target relative to the different optical frequency tuning durations of the ECDL. The combination of the FSI method with the time-varying Kalman filter was theoretically analyzed, and the simulation and experimental results show the proposed method greatly improves the performance of dynamic FSI measurements.

  15. Frequency spectrum might act as communication code between retina and visual cortex I.

    PubMed

    Yang, Xu; Gong, Bo; Lu, Jian-Wei

    2015-01-01

    To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.

  16. Frequency spectrum might act as communication code between retina and visual cortex I

    PubMed Central

    Yang, Xu; Gong, Bo; Lu, Jian-Wei

    2015-01-01

    AIM To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). METHODS Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. RESULTS The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. CONCLUSION The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1. PMID:26682156

  17. Predicting fundamental frequency from mel-frequency cepstral coefficients to enable speech reconstruction.

    PubMed

    Shao, Xu; Milner, Ben

    2005-08-01

    This work proposes a method to reconstruct an acoustic speech signal solely from a stream of mel-frequency cepstral coefficients (MFCCs) as may be encountered in a distributed speech recognition (DSR) system. Previous methods for speech reconstruction have required, in addition to the MFCC vectors, fundamental frequency and voicing components. In this work the voicing classification and fundamental frequency are predicted from the MFCC vectors themselves using two maximum a posteriori (MAP) methods. The first method enables fundamental frequency prediction by modeling the joint density of MFCCs and fundamental frequency using a single Gaussian mixture model (GMM). The second scheme uses a set of hidden Markov models (HMMs) to link together a set of state-dependent GMMs, which enables a more localized modeling of the joint density of MFCCs and fundamental frequency. Experimental results on speaker-independent male and female speech show that accurate voicing classification and fundamental frequency prediction is attained when compared to hand-corrected reference fundamental frequency measurements. The use of the predicted fundamental frequency and voicing for speech reconstruction is shown to give very similar speech quality to that obtained using the reference fundamental frequency and voicing.

  18. Safety analytics for integrating crash frequency and real-time risk modeling for expressways.

    PubMed

    Wang, Ling; Abdel-Aty, Mohamed; Lee, Jaeyoung

    2017-07-01

    To find crash contributing factors, there have been numerous crash frequency and real-time safety studies, but such studies have been conducted independently. Until this point, no researcher has simultaneously analyzed crash frequency and real-time crash risk to test whether integrating them could better explain crash occurrence. Therefore, this study aims at integrating crash frequency and real-time safety analyses using expressway data. A Bayesian integrated model and a non-integrated model were built: the integrated model linked the crash frequency and the real-time models by adding the logarithm of the estimated expected crash frequency in the real-time model; the non-integrated model independently estimated the crash frequency and the real-time crash risk. The results showed that the integrated model outperformed the non-integrated model, as it provided much better model results for both the crash frequency and the real-time models. This result indicated that the added component, the logarithm of the expected crash frequency, successfully linked and provided useful information to the two models. This study uncovered few variables that are not typically included in the crash frequency analysis. For example, the average daily standard deviation of speed, which was aggregated based on speed at 1-min intervals, had a positive effect on crash frequency. In conclusion, this study suggested a methodology to improve the crash frequency and real-time models by integrating them, and it might inspire future researchers to understand crash mechanisms better. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Improved time-frequency analysis of ASDEX Upgrade reflectometry data using the reassigned spectrogram technique.

    PubMed

    Varela, P; Silva, A; da Silva, F; da Graça, S; Manso, M E; Conway, G D

    2010-10-01

    The spectrogram is one of the best-known time-frequency distributions suitable to analyze signals whose energy varies both in time and frequency. In reflectometry, it has been used to obtain the frequency content of FM-CW signals for density profile inversion and also to study plasma density fluctuations from swept and fixed frequency data. Being implemented via the short-time Fourier transform, the spectrogram is limited in resolution, and for that reason several methods have been developed to overcome this problem. Among those, we focus on the reassigned spectrogram technique that is both easily automated and computationally efficient requiring only the calculation of two additional spectrograms. In each time-frequency window, the technique reallocates the spectrogram coordinates to the region that most contributes to the signal energy. The application to ASDEX Upgrade reflectometry data results in better energy concentration and improved localization of the spectral content of the reflected signals. When combined with the automatic (data driven) window length spectrogram, this technique provides improved profile accuracy, in particular, in regions where frequency content varies most rapidly such as the edge pedestal shoulder.

  20. On the frequency dependence of the otoacoustic emission latency in hypoacoustic and normal ears

    NASA Astrophysics Data System (ADS)

    Sisto, R.; Moleti, A.

    2002-01-01

    Experimental measurements of the otoacoustic emission (OAE) latency of adult subjects have been obtained, as a function of frequency, by means of wavelet time-frequency analysis based on the iterative application of filter banks. The results are in agreement with previous OAE latency measurements by Tognola et al. [Hear. Res. 106, 112-122 (1997)], as regards both the latency values and the frequency dependence, and seem to be incompatible with the steep 1/f law that is predicted by scale-invariant full cochlear models. The latency-frequency relationship has been best fitted to a linear function of the cochlear physical distance, using the Greenwood map, and to an exponential function of the cochlear distance, for comparison with derived band ABR latency measurements. Two sets of ears [94 audiometrically normal and 42 impaired with high-frequency (f>3 kHz) hearing loss] have been separately analyzed. Significantly larger average latencies were found in the impaired ears in the mid-frequency range. Theoretical implications of these findings on the transmission of the traveling wave are discussed.

  1. A new principle technic for the transformation from frequency domain to time domain

    NASA Astrophysics Data System (ADS)

    Gao, Ben-Qing

    2017-03-01

    A principle technic for the transformation from frequency domain to time domain is presented. Firstly, a special type of frequency domain transcendental equation is obtained for an expected frequency domain parameter which is a rational or irrational fraction expression. Secondly, the inverse Laplace transformation is performed. When the two time-domain factors corresponding to the two frequency domain factors at two sides of frequency domain transcendental equation are known quantities, a time domain transcendental equation is reached. At last, the expected time domain parameter corresponding to the expected frequency domain parameter can be solved by the inverse convolution process. Proceeding from rational or irrational fraction expression, all solving process is provided. In the meantime, the property of time domain sequence is analyzed and the strategy for choosing the parameter values is described. Numerical examples are presented to verify the proposed theory and technic. Except for rational or irrational fraction expressions, examples of complex relative permittivity of water and plasma are used as verification method. The principle method proposed in the paper can easily solve problems which are difficult to be solved by Laplace transformation.

  2. Statistical analysis of low frequency vibrations in variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Escaler, X.; Mebarki, T.

    2013-12-01

    The spectral content of the low frequency vibrations in the band from 0 to 10 Hz measured in full scale wind turbines has been statistically analyzed as a function of the whole range of steady operating conditions. Attention has been given to the amplitudes of the vibration peaks and their dependency on rotating speed and power output. Two different wind turbine models of 800 and 2000 kW have been compared. For each model, a sample of units located in the same wind farm and operating during a representative period of time have been considered. A condition monitoring system installed in each wind turbine has been used to register the axial acceleration on the gearbox casing between the intermediate and the high speed shafts. The average frequency spectrum has permitted to identify the vibration signature and the position of the first tower natural frequency in both models. The evolution of the vibration amplitudes at the rotor rotating frequency and its multiples has shown that the tower response is amplified by resonance conditions in one of the models. So, it is concluded that a continuous measurement and control of low frequency vibrations is required to protect the turbines against harmful vibrations of this nature.

  3. Analyzing Peace Pedagogies

    ERIC Educational Resources Information Center

    Haavelsrud, Magnus; Stenberg, Oddbjorn

    2012-01-01

    Eleven articles on peace education published in the first volume of the Journal of Peace Education are analyzed. This selection comprises peace education programs that have been planned or carried out in different contexts. In analyzing peace pedagogies as proposed in the 11 contributions, we have chosen network analysis as our method--enabling…

  4. Improvement of Olfactory Function With High Frequency Non-invasive Auricular Electrostimulation in Healthy Humans

    PubMed Central

    Maharjan, Ashim; Wang, Eunice; Peng, Mei; Cakmak, Yusuf O.

    2018-01-01

    In past literature on animal models, invasive vagal nerve stimulation using high frequencies has shown to be effective at modulating the activity of the olfactory bulb (OB). Recent advances in invasive vagal nerve stimulation in humans, despite previous findings in animal models, used low frequency stimulation and found no effect on the olfactory functioning. The present article aimed to test potential effects of non-invasive, high and low frequency vagal nerve stimulation in humans, with supplementary exploration of the orbitofrontal cortex using near-infrared spectroscopy (NIRS). Healthy, male adult participants (n = 18) performed two olfactory tests [odor threshold test (OTT) and supra-threshold test (STT)] before and after receiving high-, low frequency vagal nerve stimulation and placebo (no stimulation). Participant's olfactory functioning was monitored using NIRS, and assessed with two behavioral olfactory tests. NIRS data of separate stimulation parameters were statistically analyzed using repeated-measures ANOVA across different stages. Data from olfactory tests were analyzed using paired parametric and non-parametric statistical tests. Only high frequency, non-invasive vagal nerve stimulation was able to positively modulate the performance of the healthy participants in the STT (p = 0.021, Wilcoxon sign-ranked test), with significant differences in NIRS (p = 0.014, post-hoc with Bonferroni correction) recordings of the right hemispheric, orbitofrontal cortex. The results from the current article implore further exploration of the neurocircuitry involved under vagal nerve stimulation and the effects of non-invasive, high frequency, vagal nerve stimulation toward olfactory dysfunction which showcase in Parkinson's and Alzheimer's Diseases. Despite the sufficient effect size (moderate effect, correlation coefficient (r): 0.39 for the STT) of the current study, future research should replicate the current findings with a larger cohort. PMID:29740266

  5. Effects of low-frequency repetitive transcranial magnetic stimulation on event-related potential P300

    NASA Astrophysics Data System (ADS)

    Torii, Tetsuya; Sato, Aya; Iwahashi, Masakuni; Iramina, Keiji

    2012-04-01

    The present study analyzed the effects of repetitive transcranial magnetic stimulation (rTMS) on brain activity. P300 latency of event-related potential (ERP) was used to evaluate the effects of low-frequency and short-term rTMS by stimulating the supramarginal gyrus (SMG), which is considered to be the related area of P300 origin. In addition, the prolonged stimulation effects on P300 latency were analyzed after applying rTMS. A figure-eight coil was used to stimulate left-right SMG, and intensity of magnetic stimulation was 80% of motor threshold. A total of 100 magnetic pulses were applied for rTMS. The effects of stimulus frequency at 0.5 or 1 Hz were determined. Following rTMS, an odd-ball task was performed and P300 latency of ERP was measured. The odd-ball task was performed at 5, 10, and 15 min post-rTMS. ERP was measured prior to magnetic stimulation as a control. Electroencephalograph (EEG) was measured at Fz, Cz, and Pz that were indicated by the international 10-20 electrode system. Results demonstrated that different effects on P300 latency occurred between 0.5-1 Hz rTMS. With 1 Hz low-frequency magnetic stimulation to the left SMG, P300 latency decreased. Compared to the control, the latency time difference was approximately 15 ms at Cz. This decrease continued for approximately 10 min post-rTMS. In contrast, 0.5 Hz rTMS resulted in delayed P300 latency. Compared to the control, the latency time difference was approximately 20 ms at Fz, and this delayed effect continued for approximately 15 min post-rTMS. Results demonstrated that P300 latency varied according to rTMS frequency. Furthermore, the duration of the effect was not similar for stimulus frequency of low-frequency rTMS.

  6. Improvement of Olfactory Function With High Frequency Non-invasive Auricular Electrostimulation in Healthy Humans.

    PubMed

    Maharjan, Ashim; Wang, Eunice; Peng, Mei; Cakmak, Yusuf O

    2018-01-01

    In past literature on animal models, invasive vagal nerve stimulation using high frequencies has shown to be effective at modulating the activity of the olfactory bulb (OB). Recent advances in invasive vagal nerve stimulation in humans, despite previous findings in animal models, used low frequency stimulation and found no effect on the olfactory functioning. The present article aimed to test potential effects of non-invasive, high and low frequency vagal nerve stimulation in humans, with supplementary exploration of the orbitofrontal cortex using near-infrared spectroscopy (NIRS). Healthy, male adult participants ( n = 18) performed two olfactory tests [odor threshold test (OTT) and supra-threshold test (STT)] before and after receiving high-, low frequency vagal nerve stimulation and placebo (no stimulation). Participant's olfactory functioning was monitored using NIRS, and assessed with two behavioral olfactory tests. NIRS data of separate stimulation parameters were statistically analyzed using repeated-measures ANOVA across different stages. Data from olfactory tests were analyzed using paired parametric and non-parametric statistical tests. Only high frequency, non-invasive vagal nerve stimulation was able to positively modulate the performance of the healthy participants in the STT ( p = 0.021, Wilcoxon sign-ranked test), with significant differences in NIRS ( p = 0.014, post-hoc with Bonferroni correction ) recordings of the right hemispheric, orbitofrontal cortex. The results from the current article implore further exploration of the neurocircuitry involved under vagal nerve stimulation and the effects of non-invasive, high frequency, vagal nerve stimulation toward olfactory dysfunction which showcase in Parkinson's and Alzheimer's Diseases. Despite the sufficient effect size (moderate effect, correlation coefficient (r): 0.39 for the STT) of the current study, future research should replicate the current findings with a larger cohort.

  7. Polarization of low-frequency electromagnetic radiation in the lobes of Jupiter's magnetotail

    NASA Technical Reports Server (NTRS)

    Moses, S. L.; Kennel, C. F.; Coroniti, F. V.; Scarf, F. L.; Kurth, W. S.

    1987-01-01

    The plasma wave instruments on the Voyager spacecraft have detected intense electromagnetic radiation within the lobes of Jupiter's magnetic tail down to the lowest frequency of the detector (10 Hz). During a yaw maneuver performed by Voyager 1 in the lobe of the Jovian magnetotail, a modulation appeared in the amplitudes of waves detected in the 10-, 17.8- and 31.1-Hz channels of the plasma wave analyzer, well below the local electron cyclotron frequency of 260 Hz. The lowest amplitudes occurred when the antenna axis was most nearly parallel to the magnetic field. Wave amplitudes in the 56.2-Hz and higher frequency channels remained nearly constant during the maneuver. From the cold-plasma theory of electromagnetic waves, it is concluded that the plasma frequency was between the 56.2- and 31.1-Hz channels where the parallel-polarized component of the spectrum cuts off. This implies a tail-lobe density between 0.000032 and 0.000015/cu cm. The left-hand cutoff frequency would then be below 10 Hz, consistent with either the Z-mode (L, X) or whistlers (R-mode) in the modulated channels.

  8. Large scale modulation of high frequency acoustic waves in periodic porous media.

    PubMed

    Boutin, Claude; Rallu, Antoine; Hans, Stephane

    2012-12-01

    This paper deals with the description of the modulation at large scale of high frequency acoustic waves in gas saturated periodic porous media. High frequencies mean local dynamics at the pore scale and therefore absence of scale separation in the usual sense of homogenization. However, although the pressure is spatially varying in the pores (according to periodic eigenmodes), the mode amplitude can present a large scale modulation, thereby introducing another type of scale separation to which the asymptotic multi-scale procedure applies. The approach is first presented on a periodic network of inter-connected Helmholtz resonators. The equations governing the modulations carried by periodic eigenmodes, at frequencies close to their eigenfrequency, are derived. The number of cells on which the carrying periodic mode is defined is therefore a parameter of the modeling. In a second part, the asymptotic approach is developed for periodic porous media saturated by a perfect gas. Using the "multicells" periodic condition, one obtains the family of equations governing the amplitude modulation at large scale of high frequency waves. The significant difference between modulations of simple and multiple mode are evidenced and discussed. The features of the modulation (anisotropy, width of frequency band) are also analyzed.

  9. SQUID magnetometers for low-frequency applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryhaenen, T.; Seppae, H.; Ilmoniemi, R.

    1989-09-01

    The authors present a novel formulation for SQUID operation, which enables them to evaluate and compare the sensitivity and applicability of different devices. SQUID magnetometers for low-frequency applications are analyzed, taking into account the coupling circuits and electronics. They discuss nonhysteretic and hysteretic single-junction rf SQUIDs, but the main emphasis is on the dynamics, sensitivity, and coupling considerations of dc-SQUID magnetometers. A short review of current ideas on thin-film, dc-SQUID design presents the problems in coupling and the basic limits of sensitivity. The fabrication technology of tunnel-junction devices is discussed with emphasis on how it limits critical current densities, specificmore » capacitances of junctions, minimum linewidths, conductor separations, etc. Properties of high-temperature superconductors are evaluated on the basis of recently published results on increased flux creep, low density of current carriers, and problems in fabricating reliable junctions. The optimization of electronics for different types of SQUIDs is presented. Finally, the most important low-frequency applications of SQUIDs in biomagnetism, metrology, geomagnetism, and some physics experiments demonstrate the various possibilities that state-of-the-art SQUIDs can provide.« less

  10. The Low-Frequency Encoding Disadvantage: Word Frequency Affects Processing Demands

    ERIC Educational Resources Information Center

    Diana, Rachel A.; Reder, Lynne M.

    2006-01-01

    Low-frequency words produce more hits and fewer false alarms than high-frequency words in a recognition task. The low-frequency hit rate advantage has sometimes been attributed to processes that operate during the recognition test (e.g., L. M. Reder et al., 2000). When tasks other than recognition, such as recall, cued recall, or associative…

  11. Software-type Wave-Particle Interaction Analyzer (SWPIA) by RPWI for JUICE

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Kojima, H.; Asamura, K.; Kasaba, Y.; Tsuchiya, F.; Kasahara, Y.; Ishisaka, S.; Kimura, T.; Miyoshi, Y.; Santolik, O.; Bergman, J.; Puccio, W.; Gill, R.; Wieser, M.; Schmidt, W.; Barabash, S.; Wahlund, J.-E.

    2017-09-01

    Software-type Wave-Particle Interaction Analyzer (SWPIA) will be realized as a software function of Low-Frequency receiver (LF) running on the DPU of RPWI (Radio and Plasma Waves Investigation) for the ESA JUICE mission. SWPIA conducts onboard computations of physical quantities indicating the energy exchange between plasma waves and energetic ions. Onboard inter-instruments communications are necessary to realize SWPIA, which will be implemented by efforts of RPWI, PEP (Particle Environment Package) and J-MAG (JUICE Magnetometer). By providing the direct evidence of ion energization processes by plasma waves around Jovian satellites, SWPIA contributes scientific output of JUICE as much as possible with keeping its impact on the telemetry data size to a minimum.

  12. Types and Frequency of Infusion Pump Alarms: Protocol for a Retrospective Data Analysis.

    PubMed

    Glover, Kevin R; Vitoux, Rachel R; Schuster, Catherine; Curtin, Christopher R

    2018-06-14

    The variety of alarms from all types of medical devices has increased from 6 to 40 in the last three decades, with today's most critically ill patients experiencing as many as 45 alarms per hour. Alarm fatigue has been identified as a critical safety issue for clinical staff that can lead to potentially dangerous delays or nonresponse to actionable alarms, resulting in serious patient injury and death. To date, most research on medical device alarms has focused on the nonactionable alarms of physiological monitoring devices. While there have been some reports in the literature related to drug library alerts during the infusion pump programing sequence, research related to the types and frequencies of actionable infusion pump alarms remains largely unexplored. The objectives of this study protocol are to establish baseline data related to the types and frequency of infusion pump alarms from the B. Braun Outlook 400ES Safety Infusion System with the accompanying DoseTrac Infusion Management Software. The most recent consecutive 60-day period of backup hospital data received between April 2014 and February 2017 from 32 United States-based hospitals will be selected for analysis. Microsoft SQL Server (2012 - 11.0.5343.0 X64) will be used to manage the data with unique code written to sort data and perform descriptive analyses. A validated data management methodology will be utilized to clean and analyze the data. Data management procedures will include blinding, cleaning, and review of existing infusion data within the DoseTrac Infusion Management Software databases at each hospital. Patient-identifying data will be removed prior to merging into a dedicated and secure data repository. This pooled data will then be analyzed. This exploratory study will analyze the aggregate alarm data for each hospital by care area, drug infused, time of day, and day of week, including: overall infusion pump alarm frequency (number of alarms per active infusion), duration of alarms

  13. [Correlation between the changes of fibrinogen and the treatment effect of all-frequency sudden deafness].

    PubMed

    Fang, X; Yu, L S; Ma, X; Xia, R M; Jiang, Y H; Liu, H X; Jing, Y Y

    2018-01-07

    Objective: To analyze the correlation between the changes of fibrinogen and the treatment effect of all-frequency sudden deafness, and to explore the individualized treatment strategy for the use of Batroxobin. Methods: Patients with all-frequency sudden deafness who were admitted to Department of Otorhinolaryngology, People's Hospital of Peking University, from January 2010 to September 2016 were selected. All patients were given standard treatment and regular use of Batroxobin. Value of fibrinogen on D1 (before treatment) / D3 / D7 (±1) and D14 (±2) were recorded, at the same time, the correlation between the changes of fibrinogen and prognosis of all-frequency sudden deafness by the audiograms of onset and after-treatment of all patients were analyzed. Independent t -test was used to analyze normal distributed measurement data and chi square linear trend test was used to analyze the curative effect of different fibrinogen groups. Results: A total of 148 patients were included, the outcomes were worst when the patient's fibrinogen was below 2 g/L or above 4 g/L before treatment, ineffective rate were both 50%. The fibrinogen was lowest when the treatment came to the third day. Normally, the patient's prognosis was best when this value waved between 0.7 and 0.9 g/L, with a total effective rate between 73.9% and 83.3%. The fibrinogen value of the 7th day was a good indicator of the outcome, and Fib7 value was significant lower in patients of effective group than ineffective ones ((1.25±0.37)g/L vs (1.38±0.35) g/L, t =-0.27, P =0.04). Patients found a best recovery when Fib7 was below 1 g/L, and the higher the Fib7 value, the higher the inefficiency (χ(2)=7.55, P =0.01). Batroxobin showed safety during the treatment and found no complications. Conclusion: The change of fibrinogen in the process of all-frequency sudden deafness is closely related to the curative effect.

  14. Frequency of Fluoride Dentifrice Use and Caries Lesions Inhibition and Repair.

    PubMed

    Nóbrega, Diego Figueiredo; Fernández, Constanza Estefany; Del Bel Cury, Altair Antoninha; Tenuta, Livia Maria Andaló; Cury, Jaime Aparecido

    2016-01-01

    The clinical relevance of the frequency of fluoride dentifrice (FD) use on enamel caries is based on evidence. However, the relative effect of FD on reduction of demineralization or enhancement of remineralization is unknown and the effect of frequency on root dentine caries has not been explored. The aim of this double-blind, crossover, in situ study, which was conducted in 4 phases of 14 days each, was to evaluate the relationship between the frequency of FD use and enamel and root dentine de- and remineralization. Eighteen volunteers wore palatal appliances containing enamel and root dentine slabs, either sound or carious. Biofilm accumulation on the slab surface was allowed, and 20% sucrose solution was dripped 3 or 8 times per day on the carious and sound slabs, respectively. Volunteers used FD (1,100 μg F/g) in the frequencies 0 (fluoride-placebo dentifrice), 1, 2 and 3 times per day. The demineralization and remineralization that occurred in sound or carious slabs was estimated by the percentage of surface hardness loss (%SHL) or recovery (%SHR). Loosely (CaF2) and firmly (FAp) bound fluoride concentrations were also determined. The relationship between the variables was analyzed by linear regression. The %SHL, CaF2 and FAp concentrations were a function of the frequency of FD use for enamel and dentine, but the %SHR was a function of the frequency of FD use only for enamel (p < 0.05). The results suggest that demineralization in enamel and root dentine is reduced in proportion to the frequency of FD use, but for remineralization the effect of the frequency of FD use was relevant only to enamel. © 2016 S. Karger AG, Basel.

  15. Waveform frequency notching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin W.; Andrews, John

    The various technologies presented herein relate to incorporating one or more notches into a radar spectrum, whereby the notches relate to one or more frequencies for which no radar transmission is to occur. An instantaneous frequency is monitored and if the frequency is determined to be of a restricted frequency, then a radar signal can be modified. Modification can include replacing the signal with a signal having a different instantaneous amplitude, a different instantaneous phase, etc. The modification can occur in a WFS prior to a DAC, as well as prior to a sin ROM component and/or a cos ROMmore » component. Further, the notch can be dithered to enable formation of a deep notch. The notch can also undergo signal transitioning to enable formation of a deep notch. The restricted frequencies can be stored in a LUT against which an instantaneous frequency can be compared.« less

  16. Frequency Characteristics of the MAGLEV Double-layered Propulsion Coil

    NASA Astrophysics Data System (ADS)

    Ema, Satoshi

    The MAGLEV (magnetically levitated vehicle) is now well along in development testing at Yamanashi Test Line. The MAGLEV power source needs to supply a variable voltage and variable frequency to propulsion coils, which installed on outdoor guideway. The output voltage of the electric power converter contains many higher harmonics, which causes many troubles such as inductive interference. Accordingly, it is necessary to clarify the frequency characteristics of the propulsion coils and the power feeding circuit. In view of this situation, experiments and the theoretical analysis concerning the frequency characteristics of the propulsion coils with single-layer arrangement and the power feeding circuit at Miyazaki Test Line had been performed by the author. But the arrangement of the propulsion coils had been changed in Yamanashi Test Line from the single-layered coils to the double-layered coils for the stability of the super-conducting magnet on board. Thus, experiments and investigations concerning the frequency characteristics(resonance characteristics)of the propulsion coils with double-layer arrangement at Yamanashi Test Line have been performed but a theoretical analysis had not been done enough. A theoretical analysis was therefore done in this paper by applying the inverted L equivalent circuit with mutual inductance and capacitance to the propulsion coil, from which the positive and zero phase characteristics of the double-layered propulsion coils were analyzed.

  17. [Infection frequency in patients with chronic idiopathic ulcerative colitis].

    PubMed

    Yamamoto-Furusho, J K; de León-Rendón, J L; Rodas, L

    2012-01-01

    Ulcerative Colitis (UC) is a chronic inflammatory bowel disease characterized by diffuse inflammation of the mucosa of the colon. Up to now, diverse observational studies have implicated a wide variety of pathogenic microorganisms as causal and exacerbating factors in UC. Clostridium difficile (C. difficile) infection has been associated with recurrence and treatment failure and its incidence in patients with UC has been on the rise in the last few years. To determine the frequency of infection by different microorganisms in Mexican UC patients. A total of 150 patients with definitive UC diagnosis were studied. All the stool tests for parasites and ova, stool cultures, tests for the C. difficile toxins A and B, and immunohistochemistry for Cytomegalovirus in colon segment biopsies were analyzed. Other demographic and clinical variables of the disease were recorded for their correlation with infection frequency. Infection frequency in UC patients was 28.00%. C. difficile infection was present in 0.013%. Other pathogens were found, such as Endolimax nana (9.00%), Entamoeba histolytica (3.00%), Cytomegalovirus (2.00%), Salmonella (2.00%), Shigella (0.70%), Toxoplasma gondii (0.70%) and Iodamoeba bütschlii (0.70%). Infection frequency was 28.00% in our study and C. difficile infection represented only 0.013%. Copyright © 2012 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  18. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liqiu, Wei, E-mail: weiliqiu@gmail.com, E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang

    2015-02-07

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  19. Continuous High Frequency Activity: A peculiar SEEG pattern related to specific brain regions

    PubMed Central

    Melani, Federico; Zelmann, Rina; Mari, Francesco; Gotman, Jean

    2015-01-01

    Objective While visually marking the high frequency oscillations in the stereo-EEG of epileptic patients, we observed a continuous/semicontinuous activity in the ripple band (80–250 Hz), which we defined continuous High Frequency Activity (HFA). We aim to analyze in all brain regions the occurrence and significance of this particular pattern. Methods Twenty patients implanted in mesial temporal and neocortical areas were studied. One minute of slow-wave sleep was reviewed. The background was classified as continuous/semicontinuous, irregular, or sporadic based on the duration of the fast oscillations. Each channel was classified as inside/outside the seizure onset zone (SOZ) or a lesion. Results The continuous/semicontinuous HFA occurred in 54 of the 790 channels analyzed, with a clearly higher prevalence in hippocampus and occipital lobe. No correlation was found with the SOZ or lesions. In the occipital lobe the continuous/semicontinuous HFA was present independently of whether eyes were open or closed. Conclusions We describe what appears to be a new physiological High Frequency Activity, independent of epileptogenicity, present almost exclusively in the hippocampus and occipital cortex but independent of the alpha rhythm. Significance The continuous HFA may be an intrinsic characteristic of specific brain regions, reflecting a particular type of physiological neuronal activity. PMID:23768436

  20. [Design of a high-voltage insulation testing system of X-ray high frequency generators].

    PubMed

    Huang, Yong; Mo, Guo-Ming; Wang, Yan; Wang, Hong-Zhi; Yu, Jie-Ying; Dai, Shu-Guang

    2007-09-01

    In this paper, we analyze the transformer of X-ray high-voltage high-frequency generators and, have designed and implemented a high-voltage insulation testing system for its oil tank using full-bridge series resonant soft switching PFM DC-DC converter.

  1. Optomechanical frequency combs

    NASA Astrophysics Data System (ADS)

    Miri, Mohammad-Ali; D’Aguanno, Giuseppe; Alù, Andrea

    2018-04-01

    We study the formation of frequency combs in a single-mode optomechanical cavity. The comb is composed of equidistant spectral lines centered at the pump laser frequency and located at different harmonics of the mechanical resonator. We investigate the classical nonlinear dynamics of such system and find analytically the onset of parametric instability resulting in the breakdown of a stationary continuous wave intracavity field into a periodic train of pulses, which in the Fourier domain gives rise to a broadband frequency comb. Different dynamical regimes, including a stationary state, frequency comb generation and chaos, and their dependence on the system parameters, are studied both analytically and numerically. Interestingly, the comb generation is found to be more robust in the poor cavity limit, where optical loss is equal or larger than the mechanical resonance frequency. Our results show that optomechanical resonators open exciting opportunities for microwave photonics as compact and robust sources of frequency combs with megahertz line spacing.

  2. Droplet actuator analyzer with cartridge

    NASA Technical Reports Server (NTRS)

    Sturmer, Ryan A. (Inventor); Paik, Philip Y. (Inventor); Srinivasan, Vijay (Inventor); Brafford, Keith R. (Inventor); West, Richard M. (Inventor); Smith, Gregory F. (Inventor); Pollack, Michael G. (Inventor); Pamula, Vamsee K. (Inventor)

    2011-01-01

    A droplet actuator with cartridge is provided. According to one embodiment, a sample analyzer is provided and includes an analyzer unit comprising electronic or optical receiving means, a cartridge comprising self-contained droplet handling capabilities, and a wherein the cartridge is coupled to the analyzer unit by a means which aligns electronic and/or optical outputs from the cartridge with electronic or optical receiving means on the analyzer unit. According to another embodiment, a sample analyzer is provided and includes a sample analyzer comprising a cartridge coupled thereto and a means of electrical interface and/or optical interface between the cartridge and the analyzer, whereby electrical signals and/or optical signals may be transmitted from the cartridge to the analyzer.

  3. Frequency-dependent selection at rough expanding fronts

    NASA Astrophysics Data System (ADS)

    Kuhr, Jan-Timm; Stark, Holger

    2015-10-01

    Microbial colonies are experimental model systems for studying the colonization of new territory by biological species through range expansion. We study a generalization of the two-species Eden model, which incorporates local frequency-dependent selection, in order to analyze how social interactions between two species influence surface roughness of growing microbial colonies. The model includes several classical scenarios from game theory. We then concentrate on an expanding public goods game, where either cooperators or defectors take over the front depending on the system parameters. We analyze in detail the critical behavior of the nonequilibrium phase transition between global cooperation and defection and thereby identify a new universality class of phase transitions dealing with absorbing states. At the transition, the number of boundaries separating sectors decays with a novel power law in time and their superdiffusive motion crosses over from Eden scaling to a nearly ballistic regime. In parallel, the width of the front initially obeys Eden roughening and, at later times, passes over to selective roughening.

  4. Low-frequency and high-frequency distortion product otoacoustic emission suppression in humans

    PubMed Central

    Gorga, Michael P.; Neely, Stephen T.; Dierking, Darcia M.; Kopun, Judy; Jolkowski, Kristin; Groenenboom, Kristin; Tan, Hongyang; Stiegemann, Bettina

    2008-01-01

    Distortion product otoacoustic emission suppression (quantified as decrements) was measured for f2=500 and 4000 Hz, for a range of primary levels (L2), suppressor frequencies (f3), and suppressor levels (L3) in 19 normal-hearing subjects. Slopes of decrement-versus-L3 functions were similar at both f2 frequencies, and decreased as f3 increased. Suppression tuning curves, constructed from decrement functions, were used to estimate (1) suppression for on- and low-frequency suppressors, (2) tip-to-tail differences, (3) QERB, and (4) best frequency. Compression, estimated from the slope of functions relating suppression “threshold” to L2 for off-frequency suppressors, was similar for 500 and 4000 Hz. Tip-to-tail differences, QERB, and best frequency decreased as L2 increased for both frequencies. However, tip-to-tail difference (an estimate of cochlear-amplifier gain) was 20 dB greater at 4000 Hz, compared to 500 Hz. QERB decreased to a greater extent with L2 when f2=4000 Hz, but, on an octave scale, best frequency shifted more with level when f2=500 Hz. These data indicate that, at both frequencies, cochlear processing is nonlinear. Response growth and compression are similar at the two frequencies, but gain is greater at 4000 Hz and spread of excitation is greater at 500 Hz. PMID:18397024

  5. Equilibrium finite-frequency noise of an interacting mesoscopic capacitor studied in time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-03-01

    We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.

  6. Analyzing communication errors in an air medical transport service.

    PubMed

    Dalto, Joseph D; Weir, Charlene; Thomas, Frank

    2013-01-01

    Poor communication can result in adverse events. Presently, no standards exist for classifying and analyzing air medical communication errors. This study sought to determine the frequency and types of communication errors reported within an air medical quality and safety assurance reporting system. Of 825 quality assurance reports submitted in 2009, 278 were randomly selected and analyzed for communication errors. Each communication error was classified and mapped to Clark's communication level hierarchy (ie, levels 1-4). Descriptive statistics were performed, and comparisons were evaluated using chi-square analysis. Sixty-four communication errors were identified in 58 reports (21% of 278). Of the 64 identified communication errors, only 18 (28%) were classified by the staff to be communication errors. Communication errors occurred most often at level 1 (n = 42/64, 66%) followed by level 4 (21/64, 33%). Level 2 and 3 communication failures were rare (, 1%). Communication errors were found in a fifth of quality and safety assurance reports. The reporting staff identified less than a third of these errors. Nearly all communication errors (99%) occurred at either the lowest level of communication (level 1, 66%) or the highest level (level 4, 33%). An air medical communication ontology is necessary to improve the recognition and analysis of communication errors. Copyright © 2013 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  7. Improved argument-FFT frequency offset estimation for QPSK coherent optical Systems

    NASA Astrophysics Data System (ADS)

    Han, Jilong; Li, Wei; Yuan, Zhilin; Li, Haitao; Huang, Liyan; Hu, Qianggao

    2016-02-01

    A frequency offset estimation (FOE) algorithm based on fast Fourier transform (FFT) of the signal's argument is investigated, which does not require removing the modulated data phase. In this paper, we analyze the flaw of the argument-FFT algorithm and propose a combined FOE algorithm, in which the absolute of frequency offset (FO) is accurately calculated by argument-FFT algorithm with a relatively large number of samples and the sign of FO is determined by FFT-based interpolation discrete Fourier transformation (DFT) algorithm with a relatively small number of samples. Compared with the previous algorithms based on argument-FFT, the proposed one has low complexity and can still effectively work with a relatively less number of samples.

  8. Spike train generation and current-to-frequency conversion in silicon diodes

    NASA Technical Reports Server (NTRS)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A device physics model is developed to analyze spontaneous neuron-like spike train generation in current driven silicon p(+)-n-n(+) devices in cryogenic environments. The model is shown to explain the very high dynamic range (0 to the 7th) current-to-frequency conversion and experimental features of the spike train frequency as a function of input current. The devices are interesting components for implementation of parallel asynchronous processing adjacent to cryogenically cooled focal planes because of their extremely low current and power requirements, their electronic simplicity, and their pulse coding capability, and could be used to form the hardware basis for neural networks which employ biologically plausible means of information coding.

  9. ERP correlates of letter identity and letter position are modulated by lexical frequency

    PubMed Central

    Vergara-Martínez, Marta; Perea, Manuel; Gómez, Pablo; Swaab, Tamara Y.

    2013-01-01

    The encoding of letter position is a key aspect in all recently proposed models of visual-word recognition. We analyzed the impact of lexical frequency on letter position assignment by examining the temporal dynamics of lexical activation induced by pseudowords extracted from words of different frequencies. For each word (e.g., BRIDGE), we created two pseudowords: A transposed-letter (TL: BRIGDE) and a replaced-letter pseudoword (RL: BRITGE). ERPs were recorded while participants read words and pseudowords in two tasks: Semantic categorization (Experiment 1) and lexical decision (Experiment 2). For high-frequency stimuli, similar ERPs were obtained for words and TL-pseudowords, but the N400 component to words was reduced relative to RL-pseudowords, indicating less lexical/semantic activation. In contrast, TL- and RL-pseudowords created from low-frequency stimuli elicited similar ERPs. Behavioral responses in the lexical decision task paralleled this asymmetry. The present findings impose constraints on computational and neural models of visual-word recognition. PMID:23454070

  10. Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification.

    PubMed

    Duan, Yuhua; Chen, Liao; Zhou, Haidong; Zhou, Xi; Zhang, Chi; Zhang, Xinliang

    2017-04-03

    Real-time electrical spectrum analysis is of great significance for applications involving radio astronomy and electronic warfare, e.g. the dynamic spectrum monitoring of outer space signal, and the instantaneous capture of frequency from other electronic systems. However, conventional electrical spectrum analyzer (ESA) has limited operation speed and observation bandwidth due to the electronic bottleneck. Therefore, a variety of photonics-assisted methods have been extensively explored due to the bandwidth advantage of the optical domain. Alternatively, we proposed and experimentally demonstrated an ultrafast ESA based on all-optical Fourier transform and temporal magnification in this paper. The radio-frequency (RF) signal under test is temporally multiplexed to the spectrum of an ultrashort pulse, thus the frequency information is converted to the time axis. Moreover, since the bandwidth of this ultrashort pulse is far beyond that of the state-of-the-art photo-detector, a temporal magnification system is applied to stretch the time axis, and capture the RF spectrum with 1-GHz resolution. The observation bandwidth of this ultrafast ESA is over 20 GHz, limited by that of the electro-optic modulator. Since all the signal processing is in the optical domain, the acquisition frame rate can be as high as 50 MHz. This ultrafast ESA scheme can be further improved with better dispersive engineering, and is promising for some ultrafast spectral information acquisition applications.

  11. An underestimated role of precipitation frequency in regulating summer soil moisture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chaoyang; Chen, Jing M.; Pumpanen, Jukka

    2012-04-26

    Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 andmore » 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions.« less

  12. A Dual Source Ion Trap Mass Spectrometer for the Mars Organic Molecule Analyzer of ExoMars 2018

    NASA Technical Reports Server (NTRS)

    Brickerhoff, William B.; vanAmerom, F. H. W.; Danell, R. M.; Arevalo, R.; Atanassova, M.; Hovmand, L.; Mahaffy, P. R.; Cotter, R. J.

    2011-01-01

    We present details on the objectives, requirements, design and operational approach of the core mass spectrometer of the Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars mission. The MOMA mass spectrometer enables the investigation to fulfill its objective of analyzing the chemical composition of organic compounds in solid samples obtained from the near surface of Mars. Two methods of ionization are realized, associated with different modes of MOMA operation, in a single compact ion trap mass spectrometer. The stringent mass and power constraints of the mission have led to features such as low voltage and low frequency RF operation [1] and pulse counting detection.

  13. Two-dimensional frequency-domain acoustic full-waveform inversion with rugged topography

    NASA Astrophysics Data System (ADS)

    Zhang, Qian-Jiang; Dai, Shi-Kun; Chen, Long-Wei; Li, Kun; Zhao, Dong-Dong; Huang, Xing-Xing

    2015-09-01

    We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff boundary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.

  14. Recent trends in the frequency and duration of global floods

    NASA Astrophysics Data System (ADS)

    Najibi, Nasser; Devineni, Naresh

    2018-06-01

    Frequency and duration of floods are analyzed using the global flood database of the Dartmouth Flood Observatory (DFO) to explore evidence of trends during 1985-2015 at global and latitudinal scales. Three classes of flood duration (i.e., short: 1-7, moderate: 8-20, and long: 21 days and above) are also considered for this analysis. The nonparametric Mann-Kendall trend analysis is used to evaluate three hypotheses addressing potential monotonic trends in the frequency of flood, moments of duration, and frequency of specific flood duration types. We also evaluated if trends could be related to large-scale atmospheric teleconnections using a generalized linear model framework. Results show that flood frequency and the tails of the flood duration (long duration) have increased at both the global and the latitudinal scales. In the tropics, floods have increased 4-fold since the 2000s. This increase is 2.5-fold in the north midlatitudes. However, much of the trend in frequency and duration of the floods can be placed within the long-term climate variability context since the Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and Pacific Decadal Oscillation were the main atmospheric teleconnections explaining this trend. There is no monotonic trend in the frequency of short-duration floods across all the global and latitudinal scales. There is a significant increasing trend in the annual median of flood durations globally and each latitudinal belt, and this trend is not related to these teleconnections. While the DFO data come with a certain level of epistemic uncertainty due to imprecision in the estimation of floods, overall, the analysis provides insights for understanding the frequency and persistence in hydrologic extremes and how they relate to changes in the climate, organization of global and local dynamical systems, and country-scale socioeconomic factors.

  15. Investigation of the Frequency Shift of a SAD Circuit Loop and the Internal Micro-Cantilever in a Gas Sensor

    PubMed Central

    Guan, Liu; Zhao, Jiahao; Yu, Shijie; Li, Peng; You, Zheng

    2010-01-01

    Micro-cantilever sensors for mass detection using resonance frequency have attracted considerable attention over the last decade in the field of gas sensing. For such a sensing system, an oscillator circuit loop is conventionally used to actuate the micro-cantilever, and trace the frequency shifts. In this paper, gas experiments are introduced to investigate the mechanical resonance frequency shifts of the micro-cantilever within the circuit loop(mechanical resonance frequency, MRF) and resonating frequency shifts of the electric signal in the oscillator circuit (system working frequency, SWF). A silicon beam with a piezoelectric zinc oxide layer is employed in the experiment, and a Self-Actuating-Detecting (SAD) circuit loop is built to drive the micro-cantilever and to follow the frequency shifts. The differences between the two resonating frequencies and their shifts are discussed and analyzed, and a coefficient α related to the two frequency shifts is confirmed. PMID:22163588

  16. Radio-Frequency Tank Eigenmode Sensor for Propellant Quantity Gauging

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Buchanan, David A.; Follo, Jeffrey C.; Vaden, Karl R.; Wagner, James D.; Asipauskas, Marius; Herlacher, Michael D.

    2010-01-01

    Although there are several methods for determining liquid level in a tank, there are no proven methods to quickly gauge the amount of propellant in a tank while it is in low gravity or under low-settling thrust conditions where propellant sloshing is an issue. Having the ability to quickly and accurately gauge propellant tanks in low-gravity is an enabling technology that would allow a spacecraft crew or mission control to always know the amount of propellant onboard, thus increasing the chances for a successful mission. The Radio Frequency Mass Gauge (RFMG) technique measures the electromagnetic eigenmodes, or natural resonant frequencies, of a tank containing a dielectric fluid. The essential hardware components consist of an RF network analyzer that measures the reflected power from an antenna probe mounted internal to the tank. At a resonant frequency, there is a drop in the reflected power, and these inverted peaks in the reflected power spectrum are identified as the tank eigenmode frequencies using a peak-detection software algorithm. This information is passed to a pattern-matching algorithm, which compares the measured eigenmode frequencies with a database of simulated eigenmode frequencies at various fill levels. A best match between the simulated and measured frequency values occurs at some fill level, which is then reported as the gauged fill level. The database of simulated eigenmode frequencies is created by using RF simulation software to calculate the tank eigenmodes at various fill levels. The input to the simulations consists of a fairly high-fidelity tank model with proper dimensions and including internal tank hardware, the dielectric properties of the fluid, and a defined liquid/vapor interface. Because of small discrepancies between the model and actual hardware, the measured empty tank spectra and simulations are used to create a set of correction factors for each mode (typically in the range of 0.999 1.001), which effectively accounts for

  17. Effect of crack on natural frequency for beam type of structures

    NASA Astrophysics Data System (ADS)

    Sawant, Saurabh U.; Chauhan, Santosh J.; Deshmukh, Nilaj N.

    2017-07-01

    Detection of damage in early stages reduces chances of sudden failure of that structure which is important from safety and economic point of view. Crack or damage affects dynamic behavior of structure. In last few decades many researchers have been developing different approaches to detect the damage based on its dynamic behavior. This paper focuses on effect on natural frequency of cantilever beam due to the presence of crack at different locations and with different depths. Cantilever beam is selected for analysis because these beams are most common structures used in many industrial applications. In the present study, modeling of healthy and damaged cantilever beam is done using ANSYSsoftware. Crack at 38 different locations with 1 mm, 2 mm and 3 mm crack depth were created for each of these locations. The effect of these cracks on natural frequency were analyzed over the healthy beam for the first four mode shapes. It is found that the presence of crack decreases the natural frequency of the beam and at some particular locations, the natural frequency of the cracked beam is found to be almost the same as that of the healthy beam.

  18. Frequency-tuned microwave photon counter based on a superconductive quantum interferometer

    NASA Astrophysics Data System (ADS)

    Shnyrkov, V. I.; Yangcao, Wu; Soroka, A. A.; Turutanov, O. G.; Lyakhno, V. Yu.

    2018-03-01

    Various types of single-photon counters operating in infrared, ultraviolet, and optical wavelength ranges are successfully used to study electromagnetic fields, analyze radiation sources, and solve problems in quantum informatics. However, their operating principles become ineffective at millimeter band, S-band, and ultra-high frequency bands of wavelengths due to the decrease in quantum energy by 4-5 orders of magnitude. Josephson circuits with discrete Hamiltonians and qubits are a good foundation for the construction of single-photon counters at these frequencies. This paper presents a frequency-tuned microwave photon counter based on a single-junction superconducting quantum interferometer and flux qutrit. The control pulse converts the interferometer into a two-level system for resonance absorption of photons. Decay of the photon-induced excited state changes the magnetic flux in the interferometer, which is measured by a SQUID magnetometer. Schemes for recording the magnetic flux using a DC SQUID or ideal parametric detector, based on a qutrit with high-frequency excitation, are discussed. It is shown that the counter consisting of an interferometer with a Josephson junction and a parametric detector demonstrates high performance and is capable of detecting single photons in a microwave band.

  19. Biophysical characterization of low-frequency ultrasound interaction with dental pulp stem cells

    PubMed Central

    2013-01-01

    Background Low-intensity ultrasound is considered an effective non-invasive therapy to stimulate hard tissue repair, in particular to accelerate delayed non-union bone fracture healing. More recently, ultrasound has been proposed as a therapeutic tool to repair and regenerate dental tissues. Our recent work suggested that low-frequency kilohertz-range ultrasound is able to interact with dental pulp cells which could have potential to stimulate dentine reparative processes and hence promote the viability and longevity of teeth. Methods In this study, the biophysical characteristics of low-frequency ultrasound transmission through teeth towards the dental pulp were explored. We conducted cell culture studies using an odontoblast-like/dental pulp cell line, MDPC-23. Half of the samples underwent ultrasound exposure while the other half underwent ‘sham treatment’ where the transducer was submerged into the medium but no ultrasound was generated. Ultrasound was applied directly to the cell cultures using a therapeutic ultrasound device at a frequency of 45 kHz with intensity settings of 10, 25 and 75 mW/cm2 for 5 min. Following ultrasound treatment, the odontoblast-like cells were detached from the culture using a 0.25% Trypsin/EDTA solution, and viable cell numbers were counted. Two-dimensional tooth models based on μ-CT 2D images of the teeth were analyzed using COMSOL as the finite element analysis platform. This was used to confirm experimental results and to demonstrate the potential theory that with the correct combination of frequency and intensity, a tooth can be repaired using small doses of ultrasound. Frequencies in the 30 kHz–1 MHz range were analyzed. For each frequency, pressure/intensity plots provided information on how the intensity changes at each point throughout the propagation path. Spatial peak temporal average (SPTA) intensity was calculated and related to existing optimal spatial average temporal average (SATA) intensity deemed effective

  20. Single-frequency tunable laser for pumping cesium frequency standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravleva, O V; Ivanov, Andrei V; Leonovich, A I

    2006-08-31

    A single-frequency tunable laser for pumping the cesium frequency standard is studied. It is shown experimentally that the laser emits at a single frequency despite the fact that a few longitudinal modes of the external cavity fall within the reflection band of a fibre Bragg grating (FBG) written in the optical fibre. The laser wavelength can be tuned by varying the pump current of the laser, its temperature, and the FBG temperature. The laser linewidth does not exceed 2 MHz for 10 mW of output power. (lasers)

  1. Universal MOSFET parameter analyzer

    NASA Astrophysics Data System (ADS)

    Klekachev, A. V.; Kuznetsov, S. N.; Pikulev, V. B.; Gurtov, V. A.

    2006-05-01

    MOSFET analyzer is developed to extract most important parameters of transistors. Instead of routine DC transfer and output characteristics, analyzer provides an evaluation of interface states density by applying charge pumping technique. There are two features that outperform the analyzer among similar products of other vendors. It is compact (100 × 80 × 50 mm 3 in dimensions) and lightweight (< 200 gram) instrument with ultra low power supply (< 2.5 W). The analyzer operates under control of IBM PC by means of USB interface that simultaneously provides power supply. Owing to the USB-compatible microcontroller as the basic element, designed analyzer offers cost-effective solution for diverse applications. The enclosed software runs under Windows 98/2000/XP operating systems, it has convenient graphical interface simplifying measurements for untrained user. Operational characteristics of analyzer are as follows: gate and drain output voltage within limits of +/-10V measuring current range of 1pA ÷ 10 mA; lowest limit of interface states density characterization of ~10 9 cm -2 • eV -1. The instrument was designed on the base of component parts from CYPRESS and ANALOG DEVICES (USA).

  2. Numerical analysis of deposition frequency for successive droplets coalescence dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoding; Zhu, Yunlong; Zhang, Lei; Zhang, Dingyi; Ku, Tao

    2018-04-01

    A pseudopotential based multi-relaxation-time lattice Boltzmann model is employed to investigate the dynamic behaviors of successive droplets' impact and coalescence on a solid surface. The effects of deposition frequency on the morphology of the formed line are investigated with a zero receding contact angle by analyzing the droplet-to-droplet coalescence dynamics. Two collision modes (in-phase mode and out-of-phase mode) between the pre-deposited bead and the subsequent droplet are identified depending on the deposition frequency. A uniform line can be obtained at the optimal droplet spacing in the in-phase mode (Δt* < 1.875). However, a scalloped line pattern is formed in the out-of-phase mode (Δt* > 1.875). It is found that decreasing the droplet spacing or advancing contact angle can improve the smoothness of line in the out-of-phase mode. Furthermore, the effects of deposition frequency on the morphology of the formed lines are validated to be applicable to cases with a finite receding contact angle.

  3. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud

    PubMed Central

    Florence, A. Paulin; Shanthi, V.; Simon, C. B. Sunil

    2016-01-01

    Cloud computing is a new technology which supports resource sharing on a “Pay as you go” basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption. PMID:27239551

  4. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud.

    PubMed

    Florence, A Paulin; Shanthi, V; Simon, C B Sunil

    2016-01-01

    Cloud computing is a new technology which supports resource sharing on a "Pay as you go" basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption.

  5. Mutual Information in Frequency and Its Application to Measure Cross-Frequency Coupling in Epilepsy

    NASA Astrophysics Data System (ADS)

    Malladi, Rakesh; Johnson, Don H.; Kalamangalam, Giridhar P.; Tandon, Nitin; Aazhang, Behnaam

    2018-06-01

    We define a metric, mutual information in frequency (MI-in-frequency), to detect and quantify the statistical dependence between different frequency components in the data, referred to as cross-frequency coupling and apply it to electrophysiological recordings from the brain to infer cross-frequency coupling. The current metrics used to quantify the cross-frequency coupling in neuroscience cannot detect if two frequency components in non-Gaussian brain recordings are statistically independent or not. Our MI-in-frequency metric, based on Shannon's mutual information between the Cramer's representation of stochastic processes, overcomes this shortcoming and can detect statistical dependence in frequency between non-Gaussian signals. We then describe two data-driven estimators of MI-in-frequency: one based on kernel density estimation and the other based on the nearest neighbor algorithm and validate their performance on simulated data. We then use MI-in-frequency to estimate mutual information between two data streams that are dependent across time, without making any parametric model assumptions. Finally, we use the MI-in- frequency metric to investigate the cross-frequency coupling in seizure onset zone from electrocorticographic recordings during seizures. The inferred cross-frequency coupling characteristics are essential to optimize the spatial and spectral parameters of electrical stimulation based treatments of epilepsy.

  6. DDC Descriptor Frequencies.

    ERIC Educational Resources Information Center

    Klingbiel, Paul H.; Jacobs, Charles R.

    This report summarizes the frequency of use of the 7144 descriptors used for indexing technical reports in the Defense Documentation Center (DDC) collection. The descriptors are arranged alphabetically in the first section and by frequency in the second section. The frequency data cover about 427,000 AD documents spanning the interval from March…

  7. European trends in the frequency of original research in acne vulgaris, rosacea, dermatitis, psoriasis, skin cancer, and skin infections, 1970-2010.

    PubMed

    Choi, Young M; Garcha, Jaspreet K; Wu, Jashin J

    2015-04-16

    We analyzed trends in the frequency of original publications into common dermatologic topics in two premier European journals, the British Journal of Dermatology and the Journal of the European Academy of Dermatology and Venereology. Most notably, we found that psoriasis publications peaked around the mid-to-late 1980's as well as demonstrated an upward trend since the 21st century. Skin cancer research witnessed a gradual increase in the frequency of publications since 1970. These findings were consistent with a prior study analyzing trends in two American dermatology journals. We attempted to analyze these results from a historical perspective as well as provide an outlook on the future of research into these common dermatologic topics.

  8. Low Frequency of the ERG Oncogene Alterations in Prostate Cancer Patients from India.

    PubMed

    Rawal, Sudhir; Young, Denise; Williams, Molly; Colombo, Monica; Krishnappa, Raghunath; Petrovics, Gyorgy; McLeod, David G; Srivastava, Shiv; Sesterhenn, Isabell A

    2013-01-01

    ERG oncogene fusions (predominantly TMPRSS2-ERG) represent the most common (50-70% frequency) and validated prostate cancer (CaP) genome alteration in the Western countries. A common TMPRSS2-ERG fusion type leads to the androgen dependent tumor cell specific expression of the TMPRSS2-ERG fusion transcript and amino terminally truncated ERG oncoprotein. CaP prevalence and aggressiveness, as well as genomic alterations vary in different geographic locations in the world. Recent studies from our group highlighted significantly lower frequency of ERG alterations in prostate index tumors of African American men (~30%) in comparison to Caucasian Americans (~60%). Further, much lower frequencies (10 -25%) of ERG alterations have been reported in studies from China and Japan. There is no study on ERG alterations in CaP patients from India, representing a significant portion of the world male population. This study focuses on the frequency of ERG oncoprotein expression in CaP patients from India. De-identified formalin-fixed paraffin-embedded (FFPE) specimens from radical prostatectomy (RP) specimens of 51 patients from the Rajiv Gandhi Cancer Institute and Research Centre (RGCI), New Delhi, India, were analyzed for ERG alterations. The ERG oncoprotein expression as a surrogate of ERG gene fusions was analyzed by using a highly specific ERG monoclonal antibody (9FY). TMPRSS2-ERG fusion was assessed by fluorescent in situ hybridization (FISH) assays using the break-apart ERG probes. Specimens reflecting prior hormonal treatment, or lacking any tumor content, were excluded from the analyses. Of the thirty evaluable specimens, ERG positive tumors were present in 8 cases (27%) and one tumor specimen exhibited rare ERG positive cells. None of the benign glands were positive for ERG supporting previous studies showing complete specificity of the ERG oncoprotein for detection of tumors cells in prostate. Frequency of ERG oncoprotein expression is much lower in CaP patients from

  9. Thromboelastography platelet mapping in healthy dogs using 1 analyzer versus 2 analyzers.

    PubMed

    Blois, Shauna L; Banerjee, Amrita; Wood, R Darren; Park, Fiona M

    2013-07-01

    The objective of this study was to describe the results of thromboelastography platelet mapping (TEG-PM) carried out using 2 techniques in 20 healthy dogs. Maximum amplitudes (MA) generated by thrombin (MAthrombin), fibrin (MAfibrin), adenosine diphosphate (ADP) receptor activity (MAADP), and thromboxane A2 (TxA2) receptor activity (stimulated by arachidonic acid, MAAA) were recorded. Thromboelastography platelet mapping was carried out according to the manufacturer's guidelines (2-analyzer technique) and using a variation of this method employing only 1 analyzer (1-analyzer technique) on 2 separate blood samples obtained from each dog. Mean [± standard deviation (SD)] MA values for the 1-analyzer/2-analyzer techniques were: MAthrombin = 51.9 mm (± 7.1)/52.5 mm (± 8.0); MAfibrin = 20.7 mm (± 21.8)/23.0 mm (± 26.1); MAADP = 44.5 mm (± 15.6)/45.6 mm (± 17.0); and MAAA = 45.7 mm (± 11.6)/45.0 mm (± 15.4). Mean (± SD) percentage aggregation due to ADP receptor activity was 70.4% (± 32.8)/67.6% (± 33.7). Mean percentage aggregation due to TxA2 receptor activity was 77.3% (± 31.6)/78.1% (± 50.2). Results of TEG-PM were not significantly different for the 1-analyzer and 2-analyzer methods. High correlation was found between the 2 methods for MAfibrin [concordance correlation coefficient (r) = 0.930]; moderate correlation was found for MAthrombin (r = 0.70) and MAADP (r = 0.57); correlation between the 2 methods for MAAA was lower (r = 0.32). Thromboelastography platelet mapping (TEG-PM) should be further investigated to determine if it is a suitable method for measuring platelet dysfunction in dogs with thrombopathy.

  10. Thromboelastography platelet mapping in healthy dogs using 1 analyzer versus 2 analyzers

    PubMed Central

    Blois, Shauna L.; Banerjee, Amrita; Wood, R. Darren; Park, Fiona M.

    2013-01-01

    The objective of this study was to describe the results of thromboelastography platelet mapping (TEG-PM) carried out using 2 techniques in 20 healthy dogs. Maximum amplitudes (MA) generated by thrombin (MAthrombin), fibrin (MAfibrin), adenosine diphosphate (ADP) receptor activity (MAADP), and thromboxane A2 (TxA2) receptor activity (stimulated by arachidonic acid, MAAA) were recorded. Thromboelastography platelet mapping was carried out according to the manufacturer’s guidelines (2-analyzer technique) and using a variation of this method employing only 1 analyzer (1-analyzer technique) on 2 separate blood samples obtained from each dog. Mean [± standard deviation (SD)] MA values for the 1-analyzer/2-analyzer techniques were: MAthrombin = 51.9 mm (± 7.1)/52.5 mm (± 8.0); MAfibrin = 20.7 mm (± 21.8)/23.0 mm (± 26.1); MAADP = 44.5 mm (± 15.6)/45.6 mm (± 17.0); and MAAA = 45.7 mm (± 11.6)/45.0 mm (± 15.4). Mean (± SD) percentage aggregation due to ADP receptor activity was 70.4% (± 32.8)/67.6% (± 33.7). Mean percentage aggregation due to TxA2 receptor activity was 77.3% (± 31.6)/78.1% (± 50.2). Results of TEG-PM were not significantly different for the 1-analyzer and 2-analyzer methods. High correlation was found between the 2 methods for MAfibrin [concordance correlation coefficient (r) = 0.930]; moderate correlation was found for MAthrombin (r = 0.70) and MAADP (r = 0.57); correlation between the 2 methods for MAAA was lower (r = 0.32). Thromboelastography platelet mapping (TEG-PM) should be further investigated to determine if it is a suitable method for measuring platelet dysfunction in dogs with thrombopathy. PMID:24101802

  11. Body weight status and cardiovascular risk factors in adults by frequency of candy consumption.

    PubMed

    Murphy, Mary M; Barraj, Leila M; Bi, Xiaoyu; Stettler, Nicolas

    2013-04-30

    Limited information is available regarding the impact of candy consumption on health. The purpose of this study was to investigate associations between typical frequency of candy consumption and body weight status and select cardiovascular risk factors among adults in the United States. Using data collected in the 2003-2006 National Health and Nutrition Examination Surveys (NHANES), adults were categorized as infrequent (≤ 3 eating occasions [EO]/month), moderate (> 3 EO/month and ≤ 3.5 EO/week), or frequent (> 3.5 EO/week) candy consumers based on the combined frequency of chocolate and other candy consumption over the previous 12 months. Weight and adiposity status were analyzed using logistic regression models, and blood pressure, lipids, and insulin sensitivity were analyzed using linear regression models. Models were adjusted for age, sex and race/ethnicity, and also for additional covariates with potential associations with the outcomes. Appropriate statistical weights were used to yield results generalizable to the US population. Frequency of candy consumption was not associated with the risk of obesity, overweight/obesity, elevated waist circumference, elevated skinfold thickness, blood pressure, low density lipoprotein (LDL) or high density lipoprotein (HDL) cholesterol, triglycerides, or insulin resistance. Increased frequency of candy consumption was associated with higher energy intakes and higher energy adjusted intakes of carbohydrates, total sugars and added sugars, total fat, saturated fatty acids and monounsaturated fatty acids (p < 0.05), and lower adjusted intakes of protein and cholesterol (p < 0.001). Increased frequency of candy consumption among adults in the United States was not associated with objective measures of adiposity or select cardiovascular risk factors, despite associated dietary differences. Given the cross-sectional study design, however, it cannot be concluded that candy consumption does not cause obesity or

  12. Frequency and specificity of red blood cell alloimmunization in chilean transfused patients.

    PubMed

    Caamaño, José; Musante, Evangelina; Contreras, Margarita; Ulloa, Hernán; Reyes, Carolina; Inaipil, Verónica; Saavedra, Nicolás; Guzmán, Neftalí

    2015-01-01

    Alloimmunization is an adverse effect of blood transfusions. In Chile, alloimmunization frequency is not established, and for this reason the aim of this study was to investigate the prevalence and specificity of red blood cell (RBC) alloantibodies in Chilean transfused subjects. Records from 4,716 multi-transfused patients were analyzed. In these patients, antibody screening was carried out prior to cross-matching with a commercially available two-cell panel by the microcolum gel test, and samples with a positive screen were analyzed for the specificity of the alloantibody with a 16-cell identification panel. The incidence of RBC alloimmunization in transfused patients was 1.02% (48/4,716) with a higher prevalence in women (40/48). We detected 52 antibodies, the most frequent specificities identified were anti-E (30.8%), anti-K (26.9%), anti-D (7.7%), and anti-Fy(a) (5.8%). The highest incidence of alloantibodies was observed in cancer and gastroenterology patients. The data demonstrated a low alloimmunization frequency in Chilean transfused patients, principally associated with antibodies anti-E, anti-K, anti-D, and anti-Fy(a).

  13. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform

    PubMed Central

    Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong

    2016-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. PMID:27304979

  14. Modernization of gas-turbine engines with high-frequency induction motors

    NASA Astrophysics Data System (ADS)

    Abramovich, B. N.; Sychev, Yu A.; Kuznetsov, P. A.

    2018-03-01

    Main tendencies of growth of electric energy consumption in general and mining industries were analyzed in the paper. A key role of electric drive in this process was designated. A review about advantages and disadvantages of unregulated gearboxes with mechanical units that are commonly used in domestically produced gas-turbine engines was made. This review allows one to propose different gas-turbine engines modernization schemes with the help of PWM-driven high-frequency induction motors. Induction motors with the double rotor winding were examined. A simulation of high-frequency induction motors with double rotor windings in Matlab-Simulink software was carried out based on equivalent circuit parameters. Obtained characteristics of new motors were compared with serially produced analogues. After the simulation, results were implemented in the real prototype.

  15. Frequencies of VNTR and RFLP polymorphisms associated with factor VIII gene in Singapore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, I.; Lai, P.S.; Ouah, T.C.

    1994-09-01

    The allelic frequency of any polymorphism within a population determines its usefulness for genetic counselling. This is important in populations of non-Caucasian origin as RFLPs may significantly differ among ethnic groups. We report a study of five intragenic polymorphisms in factor VIII gene carried out in Singapore. The three PCR-based RFLP markers studied were Intron 18/Bcl I, Intron 19/Hind III and Intron 22/Xba I. In an analysis of 148 unrelated normal X chromosomes, the allele frequencies were found to be A1 = 0.18, A2 = 0.82 (Bcl I RFLP), A1 = 0.80, A2 = 0.20 (Hind III RFLP) and A1more » = 0.58, and A2 = 0.42 (Xba I RFLP). The heterozygosity rates of 74 females analyzed separately were 31%, 32% and 84.2%, respectively. Linkage disequilibrium was also observed to some degree between Bcl I and Hind III polymorphism in our population. We have also analyzed a sequence polymorphism in Intron 7 using hybridization with radioactive-labelled {sup 32}P allele-specific oligonucleotide probes. This polymorphism was not very polymorphic in our population with only 2% of 117 individuals analyzed being informative. However, the use of a hypervariable dinucleotide repeat sequence (VNTR) in Intron 13 showed that 25 of our of 27 (93%) females were heterozygous. Allele frequencies ranged from 1 to 55 %. We conclude that a viable strategy for molecular analysis of Hemophilia A families in our population should include the use of Intron 18/Bcl I and Intron 22/Xba I RFLP markers and the Intron 13 VNTR marker.« less

  16. Caregivers' suffix frequencies and suffix acquisition by language impaired, late talking, and typically developing children.

    PubMed

    Warlaumont, Anne S; Jarmulowicz, Linda

    2012-11-01

    Acquisition of regular inflectional suffixes is an integral part of grammatical development in English and delayed acquisition of certain inflectional suffixes is a hallmark of language impairment. We investigate the relationship between input frequency and grammatical suffix acquisition, analyzing 217 transcripts of mother-child (ages 1 ; 11-6 ; 9) conversations from the CHILDES database. Maternal suffix frequency correlates with previously reported rank orders of acquisition and with child suffix frequency. Percentages of children using a suffix are consistent with frequencies in caregiver speech. Although late talkers acquire suffixes later than typically developing children, order of acquisition is similar across populations. Furthermore, the third person singular and past tense verb suffixes, weaknesses for children with language impairment, are less frequent in caregiver speech than the plural noun suffix, a relative strength in language impairment. Similar findings hold across typical, SLI and late talker populations, suggesting that frequency plays a role in suffix acquisition.

  17. Notched-noise embedded frequency specific chirps for objective audiometry using auditory brainstem responses

    PubMed Central

    Corona-Strauss, Farah I.; Schick, Bernhard; Delb, Wolfgang; Strauss, Daniel J.

    2012-01-01

    It has been shown recently that chirp-evoked auditory brainstem responses (ABRs) show better performance than click stimulations, especially at low intensity levels. In this paper we present the development, test, and evaluation of a series of notched-noise embedded frequency specific chirps. ABRs were collected in healthy young control subjects using the developed stimuli. Results of the analysis of the corresponding ABRs using a time-scale phase synchronization stability (PSS) measure are also reported. The resultant wave V amplitude and latency measures showed a similar behavior as for values reported in literature. The PSS of frequency specific chirp-evoked ABRs reflected the presence of the wave V for all stimulation intensities. The scales that resulted in higher PSS are in line with previous findings, where ABRs evoked by broadband chirps were analyzed, and which stated that low frequency channels are better for the recognition and analysis of chirp-evoked ABRs. We conclude that the development and test of the series of notched-noise embedded frequency specific chirps allowed the assessment of frequency specific ABRs, showing an identifiable wave V for different intensity levels. Future work may include the development of a faster automatic recognition scheme for these frequency specific ABRs. PMID:26557336

  18. Recovering Long-wavelength Velocity Models using Spectrogram Inversion with Single- and Multi-frequency Components

    NASA Astrophysics Data System (ADS)

    Ha, J.; Chung, W.; Shin, S.

    2015-12-01

    Many waveform inversion algorithms have been proposed in order to construct subsurface velocity structures from seismic data sets. These algorithms have suffered from computational burden, local minima problems, and the lack of low-frequency components. Computational efficiency can be improved by the application of back-propagation techniques and advances in computing hardware. In addition, waveform inversion algorithms, for obtaining long-wavelength velocity models, could avoid both the local minima problem and the effect of the lack of low-frequency components in seismic data. In this study, we proposed spectrogram inversion as a technique for recovering long-wavelength velocity models. In spectrogram inversion, decomposed frequency components from spectrograms of traces, in the observed and calculated data, are utilized to generate traces with reproduced low-frequency components. Moreover, since each decomposed component can reveal the different characteristics of a subsurface structure, several frequency components were utilized to analyze the velocity features in the subsurface. We performed the spectrogram inversion using a modified SEG/SEGE salt A-A' line. Numerical results demonstrate that spectrogram inversion could also recover the long-wavelength velocity features. However, inversion results varied according to the frequency components utilized. Based on the results of inversion using a decomposed single-frequency component, we noticed that robust inversion results are obtained when a dominant frequency component of the spectrogram was utilized. In addition, detailed information on recovered long-wavelength velocity models was obtained using a multi-frequency component combined with single-frequency components. Numerical examples indicate that various detailed analyses of long-wavelength velocity models can be carried out utilizing several frequency components.

  19. Cover/Frequency (CF)

    Treesearch

    John F. Caratti

    2006-01-01

    The FIREMON Cover/Frequency (CF) method is used to assess changes in plant species cover and frequency for a macroplot. This method uses multiple quadrats to sample within-plot variation and quantify statistically valid changes in plant species cover, height, and frequency over time. Because it is difficult to estimate cover in quadrats for larger plants, this method...

  20. Detection of main tidal frequencies using least squares harmonic estimation method

    NASA Astrophysics Data System (ADS)

    Mousavian, R.; Hossainali, M. Mashhadi

    2012-11-01

    In this paper the efficiency of the method of Least Squares Harmonic Estimation (LS-HE) for detecting the main tidal frequencies is investigated. Using this method, the tidal spectrum of the sea level data is evaluated at two tidal stations: Bandar Abbas in south of Iran and Workington on the eastern coast of the UK. The amplitudes of the tidal constituents at these two tidal stations are not the same. Moreover, in contrary to the Workington station, the Bandar Abbas tidal record is not an equispaced time series. Therefore, the analysis of the hourly tidal observations in Bandar Abbas and Workington can provide a reasonable insight into the efficiency of this method for analyzing the frequency content of tidal time series. Furthermore, applying the method of Fourier transform to the Workington tidal record provides an independent source of information for evaluating the tidal spectrum proposed by the LS-HE method. According to the obtained results, the spectrums of these two tidal records contain the components with the maximum amplitudes among the expected ones in this time span and some new frequencies in the list of known constituents. In addition, in terms of frequencies with maximum amplitude; the power spectrums derived from two aforementioned methods are the same. These results demonstrate the ability of LS-HE for identifying the frequencies with maximum amplitude in both tidal records.

  1. Blade frequency program for nonuniform helicopter rotors, with automated frequency search

    NASA Technical Reports Server (NTRS)

    Sadler, S. G.

    1972-01-01

    A computer program for determining the natural frequencies and normal modes of a lumped parameter model of a rotating, twisted beam, with nonuniform mass and elastic properties was developed. The program is used to solve the conditions existing in a helicopter rotor where the outboard end of the rotor has zero forces and moments. Three frequency search methods have been implemented. Including an automatic search technique, which allows the program to find up to the fifteen lowest natural frequencies without the necessity for input estimates of these frequencies.

  2. Numerical study of low-frequency discharge oscillations in a 5 kW Hall thruster

    NASA Astrophysics Data System (ADS)

    Le, YANG; Tianping, ZHANG; Juanjuan, CHEN; Yanhui, JIA

    2018-07-01

    A two-dimensional particle-in-cell plasma model is built in the R–Z plane to investigate the low-frequency plasma oscillations in the discharge channel of a 5 kW LHT-140 Hall thruster. In addition to the elastic, excitation, and ionization collisions between neutral atoms and electrons, the Coulomb collisions between electrons and electrons and between electrons and ions are analyzed. The sheath characteristic distortion is also corrected. Simulation results indicate the capability of the built model to reproduce the low-frequency oscillation with high accuracy. The oscillations of the discharge current and ion density produced by the model are consistent with the existing conclusions. The model predicts a frequency that is consistent with that calculated by the zero-dimensional theoretical model.

  3. A tone analyzer based on a piezoelectric polymer and organic thin film transistors.

    PubMed

    Hsu, Yu-Jen; Kymissis, Ioannis

    2012-12-01

    A tone analyzer is demonstrated using a distributed resonator architecture on a tensioned piezoelectric polyvinyledene diuoride (PVDF) sheet. This sheet is used as both the resonator and detection element. Two architectures are demonstrated; one uses distributed, directly addressed elements as a proof of concept, and the other integrates organic thin film transistor-based transimpedance amplifiers directly with the PVDF to convert the piezoelectric charge signal into a current signal. The PVDF sheet material is instrumented along its length, and the amplitude response at 15 sites is recorded and analyzed as a function of the frequency of excitation. The determination of the dominant component of an incoming tone is demonstrated using linear system decomposition of the time-averaged response of the sheet and is performed without any time domain analysis. This design allows for the determination of the spectral composition of a sound using the mechanical signal processing provided by the amplitude response and eliminates the need for time-domain downstream signal processing of the incoming signal.

  4. PBxplore: a tool to analyze local protein structure and deformability with Protein Blocks

    PubMed Central

    Craveur, Pierrick; Joseph, Agnel Praveen; Jallu, Vincent

    2017-01-01

    This paper describes the development and application of a suite of tools, called PBxplore, to analyze the dynamics and deformability of protein structures using Protein Blocks (PBs). Proteins are highly dynamic macromolecules, and a classical way to analyze their inherent flexibility is to perform molecular dynamics simulations. The advantage of using small structural prototypes such as PBs is to give a good approximation of the local structure of the protein backbone. More importantly, by reducing the conformational complexity of protein structures, PBs allow analysis of local protein deformability which cannot be done with other methods and had been used efficiently in different applications. PBxplore is able to process large amounts of data such as those produced by molecular dynamics simulations. It produces frequencies, entropy and information logo outputs as text and graphics. PBxplore is available at https://github.com/pierrepo/PBxplore and is released under the open-source MIT license. PMID:29177113

  5. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran

    2018-01-01

    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  6. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran

    2018-05-01

    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  7. Applications of fractional lower order S transform time frequency filtering algorithm to machine fault diagnosis

    PubMed Central

    Wang, Haibin; Zha, Daifeng; Li, Peng; Xie, Huicheng; Mao, Lili

    2017-01-01

    Stockwell transform(ST) time-frequency representation(ST-TFR) is a time frequency analysis method which combines short time Fourier transform with wavelet transform, and ST time frequency filtering(ST-TFF) method which takes advantage of time-frequency localized spectra can separate the signals from Gaussian noise. The ST-TFR and ST-TFF methods are used to analyze the fault signals, which is reasonable and effective in general Gaussian noise cases. However, it is proved that the mechanical bearing fault signal belongs to Alpha(α) stable distribution process(1 < α < 2) in this paper, even the noise also is α stable distribution in some special cases. The performance of ST-TFR method will degrade under α stable distribution noise environment, following the ST-TFF method fail. Hence, a new fractional lower order ST time frequency representation(FLOST-TFR) method employing fractional lower order moment and ST and inverse FLOST(IFLOST) are proposed in this paper. A new FLOST time frequency filtering(FLOST-TFF) algorithm based on FLOST-TFR method and IFLOST is also proposed, whose simplified method is presented in this paper. The discrete implementation of FLOST-TFF algorithm is deduced, and relevant steps are summarized. Simulation results demonstrate that FLOST-TFR algorithm is obviously better than the existing ST-TFR algorithm under α stable distribution noise, which can work better under Gaussian noise environment, and is robust. The FLOST-TFF method can effectively filter out α stable distribution noise, and restore the original signal. The performance of FLOST-TFF algorithm is better than the ST-TFF method, employing which mixed MSEs are smaller when α and generalized signal noise ratio(GSNR) change. Finally, the FLOST-TFR and FLOST-TFF methods are applied to analyze the outer race fault signal and extract their fault features under α stable distribution noise, where excellent performances can be shown. PMID:28406916

  8. Process Analyzer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Under a NASA Small Business Innovation Research (SBIR) contract, Axiomatics Corporation developed a shunting Dielectric Sensor to determine the nutrient level and analyze plant nutrient solutions in the CELSS, NASA's space life support program. (CELSS is an experimental facility investigating closed-cycle plant growth and food processing for long duration manned missions.) The DiComp system incorporates a shunt electrode and is especially sensitive to changes in dielectric property changes in materials at measurements much lower than conventional sensors. The analyzer has exceptional capabilities for predicting composition of liquid streams or reactions. It measures concentrations and solids content up to 100 percent in applications like agricultural products, petrochemicals, food and beverages. The sensor is easily installed; maintenance is low, and it can be calibrated on line. The software automates data collection and analysis.

  9. Time-frequency analysis of submerged synthetic jet

    NASA Astrophysics Data System (ADS)

    Kumar, Abhay; Saha, Arun K.; Panigrahi, P. K.

    2017-12-01

    The coherent structures transport the finite body of fluid mass through rolling which plays an important role in heat transfer, boundary layer control, mixing, cooling, propulsion and other engineering applications. A synthetic jet in the form of a train of vortex rings having coherent structures of different length scales is expected to be useful in these applications. The propagation and sustainability of these coherent structures (vortex rings) in downstream direction characterize the performance of synthetic jet. In the present study, the velocity signal acquired using the S-type hot-film probe along the synthetic jet centerline has been taken for the spectral analysis. One circular and three rectangular orifices of aspect ratio 1, 2 and 4 actuating at 1, 6 and 18 Hz frequency have been used for creating different synthetic jets. The laser induced fluorescence images are used to study the flow structures qualitatively and help in explaining the velocity signal for detection of coherent structures. The study depicts four regions as vortex rollup and suction region (X/D h ≤ 3), steadily translating region (X/D h ≤ 3-8), vortex breakup region (X/Dh ≤ 4-8) and dissipation of small-scale vortices (X/D h ≤ 8-15). The presence of coherent structures localized in physical and temporal domain is analyzed for the characterization of synthetic jet. Due to pulsatile nature of synthetic jet, analysis of velocity time trace or signal in time, frequency and combined time-frequency domain assist in characterizing the signatures of coherent structures. It has been observed that the maximum energy is in the first harmonic of actuation frequency, which decreases slowly in downstream direction at 6 Hz compared to 1 and 18 Hz of actuation.

  10. Radio frequency spectrum management

    NASA Astrophysics Data System (ADS)

    Sujdak, E. J., Jr.

    1980-03-01

    This thesis is a study of radio frequency spectrum management as practiced by agencies and departments of the Federal Government. After a brief introduction to the international agency involved in radio frequency spectrum management, the author concentrates on Federal agencies engaged in frequency management. These agencies include the National Telecommunications and Information Administration (NTIA), the Interdepartment Radio Advisory Committee (IRAC), and the Department of Defense (DoD). Based on an analysis of Department of Defense frequency assignment procedures, recommendations are given concerning decentralizing military frequency assignment by delegating broader authority to unified commanders. This proposal includes a recommendation to colocate the individual Service frequency management offices at the Washington level. This would result in reduced travel costs, lower manpower requirements, and a common tri-Service frequency management data base.

  11. Influence of damping on the frequency-dependent polarizabilities of doped quantum dot

    NASA Astrophysics Data System (ADS)

    Pal, Suvajit; Ghosh, Manas

    2014-09-01

    We investigate the profiles of diagonal components of frequency-dependent linear (αxx and αyy), and first nonlinear (βxxx and βyyy) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally focuses on investigating the role of damping on the polarizability components. In view of this the dopant is considered to be propagating under damped condition which is otherwise linear inherently. The frequency-dependent polarizabilities are then analyzed by placing the doped dot to a periodically oscillating external electric field of given intensity. The damping strength, in conjunction with external oscillation frequency and confinement potentials, fabricate the polarizability components in a fascinating manner which is adorned with emergence of maximization, minimization, and saturation. The discrimination in the values of the polarizability components in x and y-directions has also been addressed in the present context.

  12. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  13. Soil Rock Analyzer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A redesigned version of a soil/rock analyzer developed by Martin Marietta under a Langley Research Center contract is being marketed by Aurora Tech, Inc. Known as the Aurora ATX-100, it has self-contained power, an oscilloscope, a liquid crystal readout, and a multichannel spectrum analyzer. It measures energy emissions to determine what elements in what percentages a sample contains. It is lightweight and may be used for mineral exploration, pollution monitoring, etc.

  14. AUTOMATIC FREQUENCY CONTROL SYSTEM

    DOEpatents

    Hansen, C.F.; Salisbury, J.D.

    1961-01-10

    A control is described for automatically matching the frequency of a resonant cavity to that of a driving oscillator. The driving oscillator is disconnected from the cavity and a secondary oscillator is actuated in which the cavity is the frequency determining element. A low frequency is mixed with the output of the driving oscillator and the resultant lower and upper sidebands are separately derived. The frequencies of the sidebands are compared with the secondary oscillator frequency. deriving a servo control signal to adjust a tuning element in the cavity and matching the cavity frequency to that of the driving oscillator. The driving oscillator may then be connected to the cavity.

  15. The relative immunity of high-frequency transposed stimuli to low-frequency binaural interference

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2004-05-01

    We have recently demonstrated that high-frequency transposed stimuli, having envelopes designed to provide high-frequency channels with information similar to that normally available in only low-frequency channels, yield threshold-ITDs and extents of laterality comparable to those obtained with conventional low-frequency stimuli. This enhanced potency of ITDs conveyed by high-frequency transposed stimuli, as compared to conventional high-frequency stimuli, suggested to us that ITDs conveyed by transposed stimuli might be relatively immune to the presence of low-frequency binaural interferers. To investigate this issue, threshold-ITDs and extents of laterality were measured with a variety of conventional and transposed targets centered at 4 kHz. The targets were presented either in the presence or absence of a simultaneously gated diotic noise centered at 500 Hz, the interferer. As expected, the presence of the low-frequency interferer resulted in substantially elevated threshold-ITDs and reduced extents of laterality for the conventional high-frequency stimuli. In contrast, these interference effects were either greatly attenuated or absent for ITDs conveyed by the high-frequency transposed targets. The results will be discussed in the context of current models of binaural interference. [Work supported by NIH DC 04147, NIH DC04073, NIH DC 002304.

  16. The Mid-Canada Radar Line and First Nations' people of the James Bay region, Canada: an evaluation using log-linear contingency modelling to analyze organochlorine frequency data.

    PubMed

    Tsuji, Leonard J S; Wainman, Bruce C; Martin, Ian D; Weber, Jean-Philippe; Sutherland, Celine; Elliott, J Richard; Nieboer, Evert

    2005-09-01

    Abandoned radar line stations in the North American arctic and sub-arctic regions are point sources of contamination, especially for PCBs. Few data exist with respect to human body burden of organochlorines (OCs) in residents of communities located in close proximity to these radar line sites. We compared plasma OC concentration (unadjusted for total lipids) frequency distribution data using log-linear contingency modelling for Fort Albany First Nation, the site of an abandoned Mid-Canada Radar Line station, and two comparison populations (the neighbouring community of Kashechewan First Nation without such a radar installation, and Hamilton, a city in southern Ontario, Canada). This type of analysis is important as it allows for an initial investigation of contaminant data without imputing any values. The two-state log-linear model (employing both non-detectable and detectable concentration frequencies and applicable to PCB congeners 28 and 105 and cis-nonachlor) and the four-state log-linear model (using quartile concentration frequencies for Aroclor 1260, PCB congeners [99,118,138,153,156,170,180,183,187], beta-HCH, p,p'-DDT +p,p'-DDE, HCB, mirex, oxychlordane, and trans-nonachlor) revealed that the effects of subject gender were inconsequential. Significant differences (p < 0.05) between the groups examined were attributable to the effect of location on the frequency of detection of OCs or on their differential distribution among the concentration quartiles. In general, people from Hamilton had higher frequencies of non-detections and of concentrations in the first quartile (p < 0.05) for most OCs compared to people from Fort Albany and Kashechewan (who consume a traditional diet of wild meats that does not include marine mammals). An unexpected finding was that, for Kashechewan males, the frequency of many OCs was significantly higher (p < 0.05) in the 4th concentration quartile than that predicted by the four-state log-linear model, but significantly lower

  17. Power Supply for Variable Frequency Induction Heating Using MERS Soft-Switching High Frequency Inverter

    NASA Astrophysics Data System (ADS)

    Isobe, Takanori; Kitahara, Tadayuki; Fukutani, Kazuhiko; Shimada, Ryuichi

    Variable frequency induction heating has great potential for industrial heating applications due to the possibility of achieving heating distribution control; however, large-scale induction heating with variable frequency has not yet been introduced for practical use. This paper proposes a high frequency soft-switching inverter for induction heating that can achieve variable frequency operation. One challenge of variable frequency induction heating is increasing power electronics ratings. This paper indicates that its current source type dc-link configuration and soft-switching characteristics can make it possible to build a large-scale system with variable frequency capability. A 90-kVA 150-1000Hz variable frequency experimental power supply for steel strip induction heating was developed. Experiments confirmed the feasibility of variable frequency induction heating with proposed converter and the advantages of variable frequency operation.

  18. Resolution-enhancement and sampling error correction based on molecular absorption line in frequency scanning interferometry

    NASA Astrophysics Data System (ADS)

    Pan, Hao; Qu, Xinghua; Shi, Chunzhao; Zhang, Fumin; Li, Yating

    2018-06-01

    The non-uniform interval resampling method has been widely used in frequency modulated continuous wave (FMCW) laser ranging. In the large-bandwidth and long-distance measurements, the range peak is deteriorated due to the fiber dispersion mismatch. In this study, we analyze the frequency-sampling error caused by the mismatch and measure it using the spectroscopy of molecular frequency references line. By using the adjacent points' replacement and spline interpolation technique, the sampling errors could be eliminated. The results demonstrated that proposed method is suitable for resolution-enhancement and high-precision measurement. Moreover, using the proposed method, we achieved the precision of absolute distance less than 45 μm within 8 m.

  19. Effects of End Conditions of Cross-Ply Laminated Composite Beams on Their Dimensionless Natural Frequencies

    NASA Astrophysics Data System (ADS)

    Algarray, A. F. A.; Jun, H.; Mahdi, I.-E. M.

    2017-11-01

    The effects of the end conditions of cross-ply laminated composite beams on their dimensionless natural frequencies of free vibration is investigated. The problem is analyzed and solved by using the energy approach, which is formulated by a finite element model. Various end conditions of beams are used. Each beam has either movable ends or immovable ends. Numerical results are verified by comparisons with other relevant works. It is found that more constrained beams have higher values of natural frequencies of transverse vibration. The values of the natural frequencies of longitudinal modes are found to be the same for all beams with movable ends because they are generated by longitudinal movements only.

  20. [An EMD based time-frequency distribution and its application in EEG analysis].

    PubMed

    Li, Xiaobing; Chu, Meng; Qiu, Tianshuang; Bao, Haiping

    2007-10-01

    Hilbert-Huang transform (HHT) is a new time-frequency analytic method to analyze the nonlinear and the non-stationary signals. The key step of this method is the empirical mode decomposition (EMD), with which any complicated signal can be decomposed into a finite and small number of intrinsic mode functions (IMF). In this paper, a new EMD based method for suppressing the cross-term of Wigner-Ville distribution (WVD) is developed and is applied to analyze the epileptic EEG signals. The simulation data and analysis results show that the new method suppresses the cross-term of the WVD effectively with an excellent resolution.

  1. Maintenance of Time and Frequency in the DSN Using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Kirk, A.; Borutzki, S. E.

    1985-01-01

    The Deep Space Network must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. The DSN has three tracking complexes, located approximately equidistantly around the Earth. Various methods are used to coordinate the clocks among the three complexes. These methods include Loran-C, TV Line 10, very long baseline interferometry (VLBI), and the Global Positioning System (GPS). The GPS is becoming increasingly important because of the accuracy, precision, and rapid availability of the data; GPS receivers have been installed at each of the DSN complexes and are used to obtain daily time offsets between the master clock at each site and UTC(USNO/NBS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN frequency and timing system (DFT). A brief history of the GPS timing receivers in the DSN, a description of the data and information flow, data on the performance of the DSN master clocks and GPS measurement system, and a description of hydrogen maser frequency steering using these data are presented.

  2. Design and construction of high-frequency magnetic probe system on the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Liang, S. Y.; Ji, X. Q.; Sun, T. F.; Xu, Yuan; Lu, J.; Yuan, B. S.; Ren, L. L.; Yang, Q. W.

    2017-12-01

    A high-frequency magnetic probe system is designed, calibrated and constructed on the HL-2A tokamak. To investigate the factors which affect the probe frequency response, the inductance and capacitance in the probe system are analyzed using an equivalent circuit. Suitable sizes and turn number of the coil, and the length of transmission cable are optimized based on the theory and detailed test in the calibration. To deal with the frequency response limitation and bake-out, the ceramic grooved technique is used and the probe is wound with a bare copper wire. A cascade filter is manufactured with a suitable bandwidth as well as a good phase consistency between channels. The system has been used in the experiment to measure high frequency (≤300 kHz) magnetohydrodynamic fluctuations, which can meet the requirement of physical analysis on HL-2A.

  3. Active laser ranging with frequency transfer using frequency comb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongyuan; Wei, Haoyun; Yang, Honglei

    2016-05-02

    A comb-based active laser ranging scheme is proposed for enhanced distance resolution and a common time standard for the entire system. Three frequency combs with different repetition rates are used as light sources at the two ends where the distance is measured. Pulse positions are determined through asynchronous optical sampling and type II second harmonic generation. Results show that the system achieves a maximum residual of 379.6 nm and a standard deviation of 92.9 nm with 2000 averages over 23.6 m. Moreover, as for the frequency transfer, an atom clock and an adjustable signal generator, synchronized to the atom clock, are used asmore » time standards for the two ends to appraise the frequency deviation introduced by the proposed system. The system achieves a residual fractional deviation of 1.3 × 10{sup −16} for 1 s, allowing precise frequency transfer between the two clocks at the two ends.« less

  4. Synthetic gene frequency maps of man and selective effects of climate

    PubMed Central

    Piazza, A.; Menozzi, P.; Cavalli-Sforza, L. L.

    1981-01-01

    The world distribution of 39 independent gene frequencies in human populations is analyzed by multivariate techniques and synthetic geographic maps. Most genetic variation is associated with longitude, with South Asia showing a tendency to be central. Also latitude and, more particularly, distance from the equator play a significant role in a way that suggests that climatic factors exercise selective pressures, especially for certain genes. Images PMID:6941316

  5. Application of Frequent Itemsets Mining to Analyze Patterns of One-Stop Visits in Taiwan

    PubMed Central

    Tu, Chun-Yi; Chen, Tzeng-Ji; Chou, Li-Fang

    2011-01-01

    Background The free choice of health care facilities without limitations on frequency of visits within the National Health Insurance in Taiwan gives rise to not only a high number of annual ambulatory visits per capita but also a unique “one-stop shopping”phenomenon, which refers to a patient' visits to several specialties of the same healthcare facility in one day. The visits to multiple physicians would increase the potential risk of polypharmacy. The aim of this study was to analyze the frequency and patterns of one-stop visits in Taiwan. Methodology/Principal Findings The claims datasets of 1 million nationally representative people within Taiwan's National Health Insurance in 2005 were used to calculate the number of patients with one-stop visits. The frequent itemsets mining was applied to compute the combination patterns of specialties in the one-stop visits. Among the total 13,682,469 ambulatory care visits in 2005, one-stop visits occurred 144,132 times and involved 296,822 visits (2.2% of all visits) by 66,294 (6.6%) persons. People tended to have this behavior with age and the percentage reached 27.5% (5,662 in 20,579) in the age group ≥80 years. In general, women were more likely to have one-stop visits than men (7.2% vs. 6.0%). Internal medicine plus ophthalmology was the most frequent combination with a visited frequency of 3,552 times (2.5%), followed by cardiology plus neurology with 3,183 times (2.2%). The most frequent three-specialty combination, cardiology plus neurology and gastroenterology, occurred only 111 times. Conclusions/Significance Without the novel computational technique, it would be hardly possible to analyze the extremely diverse combination patterns of specialties in one-stop visits. The results of the study could provide useful information either for the hospital manager to set up integrated services or for the policymaker to rebuild the health care system. PMID:21747926

  6. An automatic frequency control loop using overlapping DFTs (Discrete Fourier Transforms)

    NASA Technical Reports Server (NTRS)

    Aguirre, S.

    1988-01-01

    An automatic frequency control (AFC) loop is introduced and analyzed in detail. The new scheme is a generalization of the well known Cross Product AFC loop that uses running overlapping discrete Fourier transforms (DFTs) to create a discriminator curve. Linear analysis is included and supported with computer simulations. The algorithm is tested in a low carrier to noise ratio (CNR) dynamic environment, and the probability of loss of lock is estimated via computer simulations. The algorithm discussed is a suboptimum tracking scheme with a larger frequency error variance compared to an optimum strategy, but offers simplicity of implementation and a very low operating threshold CNR. This technique can be applied during the carrier acquisition and re-acquisition process in the Advanced Receiver.

  7. An animal tracking system for behavior analysis using radio frequency identification.

    PubMed

    Catarinucci, Luca; Colella, Riccardo; Mainetti, Luca; Patrono, Luigi; Pieretti, Stefano; Secco, Andrea; Sergi, Ilaria

    2014-09-01

    Evaluating the behavior of mice and rats has substantially contributed to the progress of research in many scientific fields. Researchers commonly observe recorded video of animal behavior and manually record their observations for later analysis, but this approach has several limitations. The authors developed an automated system for tracking and analyzing the behavior of rodents that is based on radio frequency identification (RFID) in an ultra-high-frequency bandwidth. They provide an overview of the system's hardware and software components as well as describe their technique for surgically implanting passive RFID tags in mice. Finally, the authors present the findings of two validation studies to compare the accuracy of the RFID system versus commonly used approaches for evaluating the locomotor activity and object exploration of mice.

  8. Instantaneous microwave frequency measurement with improved resolution

    NASA Astrophysics Data System (ADS)

    Li, Yueqin; Pei, Li; Li, Jing; Zheng, Jingjing; Wang, Yiqun; Yuan, Jin; Tang, Yu

    2015-11-01

    An approach of instantaneous microwave frequency measurement with improved resolution is proposed and analyzed. The primary component employed in the proposal is a polarization modulator (PolM) followed by a linear polarizer (LP) and a spool of dispersive fiber. To obtain a flexible amplitude comparison function (ACF), the polarization state between the PolM and the LP should be properly adjusted. It is found that the notch point of the ACF can be widely shifted by simply adjusting the bias voltage applied to the PolM, especially, a greater first-order derivative of the ACF ensures that the measurement resolution can be improved when compared with the work in the reference.

  9. [Invert transformer design for high frequency X-ray machine based on PWM controller SG 3525].

    PubMed

    Yu, Xue-fei; Li, Zhe

    2005-07-01

    This paper introduces the principle of invert transformer of high frequency X-ray machine, and analyzes its main constitution. Meanwhile, a scheme based on SG3525 for closed loop voltage regulation is given. The experimental result testifies its efficiency and utility.

  10. The University of Iowa Helios solar wind plasma wave experiment /E 5a/. [using spectrum analyzer-electric field antenna system

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Anderson, R. R.; Odem, D. L.

    1975-01-01

    This document describes the University of Iowa solar wind plasma wave experiment for the Helios missions (Experiment 5a). The objective of this experiment is the investigation of naturally occurring plasma instabilities and electromagnetic waves in the solar wind. To carry out this investigation, the experiment consists primarily of a 16-channel spectrum analyzer connected to the electric field antennas. The spectrum analyzer covers the frequency range from 20 Hz to 200 kHz and has an amplitude dynamic range which extends from .3 microvolts/m to 30 mV/m per channel. This spectrum analyzer, the antenna potential measurements, the shock alarm system and the supporting electronics are discussed in detail.

  11. Sensitive frequency dependence of the carrier-envelope phase effect on bound-bound transitions: An interference perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Dian; Fu Panming; Wang Bingbing

    2010-11-15

    We investigate numerically with Hylleraas coordinates the frequency dependence of the carrier-envelope phase (CEP) effect on bound-bound transitions of helium induced by an ultrashort laser pulse of a few cycles. We find that the CEP effect is very sensitive to the carrier frequency of the laser pulse, occurring regularly even at far-off-resonance frequencies. By analyzing a two-level model, we find that the CEP effect can be attributed to the quantum interference between neighboring multiphoton transition pathways, which is made possible by the broadened spectrum of the ultrashort laser pulse. A general picture is developed along this line to understand themore » sensitivity of the CEP effect to the laser's carrier frequency. Multilevel influence on the CEP effect is also discussed.« less

  12. Influence of Spectral Transfer Processes in Compressible Low Frequency Plasma Turbulence on Scattering and Refraction of Electromagnetic Signals

    DTIC Science & Technology

    2015-01-01

    AFRL-RY-WP-TR-2014-0230 INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND...INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND REFRACTION OF ELECTROMAGNETIC SIGNALS 5a...research is to analyze influence of plasma turbulence on hypersonic sensor systems and NGOTHR applications and to meet the Air Force’s ever-increasing

  13. Interpretation of the instantaneous frequency of phonocardiogram signals

    NASA Astrophysics Data System (ADS)

    Rey, Alexis B.

    2005-06-01

    Short-Time Fourier transforms, Wigner-Ville distribution, and Wavelet Transforms have been commonly used when dealing with non-stationary signals, and they have been known as time-frequency distributions. Also, it is commonly intended to investigate the behaviour of phonocardiogram signals as a means of prediction some oh the pathologies of the human hart. For this, this paper aims to analyze the relationship between the instantaneous frequency of a PCG signal and the so-mentioned time-frequency distributions; three algorithms using Matlab functions have been developed: the first one, the estimation of the IF using the normalized linear moment, the second one, the estimation of the IF using the periodic first moment, and the third one, the computing of the WVD. Meanwhile, the computing of the STFT spectrogram is carried out with a Matlab function. Several simulations of the spectrogram for a set of PCG signals and the estimation of the IF are shown, and its relationship is validated through correlation. Finally, the second algorithm is a better choice because the estimation is not biased, whereas the WVD is very computing-demanding and offers no benefit since the estimation of the IF by using this TFD has an equivalent result when using the derivative of the phase of the analytic signal, which is also less computing-demanding.

  14. The seasonal predictability of blocking frequency in two seasonal prediction systems (CMCC, Met-Office) and the associated representation of low-frequency variability.

    NASA Astrophysics Data System (ADS)

    Athanasiadis, Panos; Gualdi, Silvio; Scaife, Adam A.; Bellucci, Alessio; Hermanson, Leon; MacLachlan, Craig; Arribas, Alberto; Materia, Stefano; Borelli, Andrea

    2014-05-01

    Low-frequency variability is a fundamental component of the atmospheric circulation. Extratropical teleconnections, the occurrence of blocking and the slow modulation of the jet streams and storm tracks are all different aspects of low-frequency variability. Part of the latter is attributed to the chaotic nature of the atmosphere and is inherently unpredictable. On the other hand, primarily as a response to boundary forcings, tropospheric low-frequency variability includes components that are potentially predictable. Seasonal forecasting faces the difficult task of predicting these components. Particularly referring to the extratropics, the current generation of seasonal forecasting systems seem to be approaching this target by realistically initializing most components of the climate system, using higher resolution and utilizing large ensemble sizes. Two seasonal prediction systems (Met-Office GloSea and CMCC-SPS-v1.5) are analyzed in terms of their representation of different aspects of extratropical low-frequency variability. The current operational Met-Office system achieves unprecedented high scores in predicting the winter-mean phase of the North Atlantic Oscillation (NAO, corr. 0.74 at 500 hPa) and the Pacific-N. American pattern (PNA, corr. 0.82). The CMCC system, considering its small ensemble size and course resolution, also achieves good scores (0.42 for NAO, 0.51 for PNA). Despite these positive features, both models suffer from biases in low-frequency variance, particularly in the N. Atlantic. Consequently, it is found that their intrinsic variability patterns (sectoral EOFs) differ significantly from the observed, and the known teleconnections are underrepresented. Regarding the representation of N. hemisphere blocking, after bias correction both systems exhibit a realistic climatology of blocking frequency. In this assessment, instantaneous blocking and large-scale persistent blocking events are identified using daily geopotential height fields at

  15. Data Acquisition Unit for SATCOM Signal Analyzer

    DTIC Science & Technology

    1980-01-01

    APSIM simulator program APDEBUG debugging program APTEST diagnostic and test program MATH Library IOP-16 16 bit I/O port 223 APPENDIX C Table...3. SYNTEST Corporation, Frequency Synthesizer Module, Data Sheet, The Syntest SM-101 Frequency Synthesizer Module, not dated . 4. DATEL Systems Inc

  16. High-frequency Oscillations in the Atmosphere above a Sunspot Umbra

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Deng, Hui; Li, Bo; Feng, Song; Bai, Xianyong; Deng, Linhua; Yang, Yunfei; Xue, Zhike; Wang, Rui

    2018-03-01

    We use high spatial and temporal resolution observations, simultaneously obtained with the New Vacuum Solar Telescope and Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, to investigate the high-frequency oscillations above a sunspot umbra. A novel time–frequency analysis method, namely, the synchrosqueezing transform (SST), is employed to represent their power spectra and to reconstruct the high-frequency signals at different solar atmospheric layers. A validation study with synthetic signals demonstrates that SST is capable of resolving weak signals even when their strength is comparable to the high-frequency noise. The power spectra, obtained from both SST and the Fourier transform, of the entire umbral region indicate that there are significant enhancements between 10 and 14 mHz (labeled as 12 mHz) at different atmospheric layers. Analyzing the spectrum of a photospheric region far away from the umbra demonstrates that this 12 mHz component exists only inside the umbra. The animation based on the reconstructed 12 mHz component in AIA 171 Å illustrates that an intermittently propagating wave first emerges near the footpoints of coronal fan structures, and then propagates outward along the structures. A time–distance diagram, coupled with a subsonic wave speed (∼49 km s‑1), highlights the fact that these coronal perturbations are best described as upwardly propagating magnetoacoustic slow waves. Thus, we first reveal the high-frequency oscillations with a period around one minute in imaging observations at different height above an umbra, and these oscillations seem to be related to the umbral perturbations in the photosphere.

  17. Optimization of natural frequencies of a slender beam shaped in a linear combination of its mode shapes

    NASA Astrophysics Data System (ADS)

    Silva, Guilherme Augusto Lopes da; Nicoletti, Rodrigo

    2017-06-01

    This work focuses on the placement of natural frequencies of beams to desired frequency regions. More specifically, we investigate the effects of combining mode shapes to shape a beam to change its natural frequencies, both numerically and experimentally. First, we present a parametric analysis of a shaped beam and we analyze the resultant effects for different boundary conditions and mode shapes. Second, we present an optimization procedure to find the optimum shape of the beam for desired natural frequencies. In this case, we adopt the Nelder-Mead simplex search method, which allows a broad search of the optimum shape in the solution domain. Finally, the obtained results are verified experimentally for a clamped-clamped beam in three different optimization runs. Results show that the method is effective in placing natural frequencies at desired values (experimental results lie within a 10% error to the expected theoretical ones). However, the beam must be axially constrained to have the natural frequencies changed.

  18. Multiple Frequency Parametric Sonar

    DTIC Science & Technology

    2015-09-28

    300003 1 MULTIPLE FREQUENCY PARAMETRIC SONAR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...a method for increasing the bandwidth of a parametric sonar system by using multiple primary frequencies rather than only two primary frequencies...2) Description of Prior Art [0004] Parametric sonar generates narrow beams at low frequencies by projecting sound at two distinct primary

  19. Electromechanical Frequency Filters

    NASA Astrophysics Data System (ADS)

    Wersing, W.; Lubitz, K.

    Frequency filters select signals with a frequency inside a definite frequency range or band from signals outside this band, traditionally afforded by a combination of L-C-resonators. The fundamental principle of all modern frequency filters is the constructive interference of travelling waves. If a filter is set up of coupled resonators, this interference occurs as a result of the successive wave reflection at the resonators' ends. In this case, the center frequency f c of a filter, e.g., set up of symmetrical λ/2-resonators of length 1, is given by f_c = f_r = v_{ph}/λ = v_{ph}/2l , where v ph is the phase velocity of the wave. This clearly shows the big advantage of acoustic waves for filter applications in comparison to electro-magnetic waves. Because v ph of acoustic waves in solids is about 104-105 smaller than that of electro-magnetic waves, much smaller filters can be realised. Today, piezoelectric materials and processing technologies exist that electromechanical resonators and filters can be produced in the frequency range from 1 kHz up to 10 GHz. Further requirements for frequency filters such as low losses (high resonator Q) and low temperature coefficients of frequency constants can also be fulfilled with these filters. Important examples are quartz-crystal resonators and filters (1 kHz-200 MHz) as discussed in Chap. 2, electromechanical channel filters (50 kHz and 130 kHz) for long-haul communication systems as discussed in this section, surface acoustic wave (SAW) filters (20 MHz-5 GHz), as discussed in Chap. 14, and thin film bulk acoustic resonators (FBAR) and filters (500 MHz-10 GHz), as discussed in Chap. 15.

  20. Weighted network analysis of high-frequency cross-correlation measures

    NASA Astrophysics Data System (ADS)

    Iori, Giulia; Precup, Ovidiu V.

    2007-03-01

    In this paper we implement a Fourier method to estimate high-frequency correlation matrices from small data sets. The Fourier estimates are shown to be considerably less noisy than the standard Pearson correlation measures and thus capable of detecting subtle changes in correlation matrices with just a month of data. The evolution of correlation at different time scales is analyzed from the full correlation matrix and its minimum spanning tree representation. The analysis is performed by implementing measures from the theory of random weighted networks.

  1. A Dual Frequency Carrier Phase Error Difference Checking Algorithm for the GNSS Compass.

    PubMed

    Liu, Shuo; Zhang, Lei; Li, Jian

    2016-11-24

    The performance of the Global Navigation Satellite System (GNSS) compass is related to the quality of carrier phase measurement. How to process the carrier phase error properly is important to improve the GNSS compass accuracy. In this work, we propose a dual frequency carrier phase error difference checking algorithm for the GNSS compass. The algorithm aims at eliminating large carrier phase error in dual frequency double differenced carrier phase measurement according to the error difference between two frequencies. The advantage of the proposed algorithm is that it does not need additional environment information and has a good performance on multiple large errors compared with previous research. The core of the proposed algorithm is removing the geographical distance from the dual frequency carrier phase measurement, then the carrier phase error is separated and detectable. We generate the Double Differenced Geometry-Free (DDGF) measurement according to the characteristic that the different frequency carrier phase measurements contain the same geometrical distance. Then, we propose the DDGF detection to detect the large carrier phase error difference between two frequencies. The theoretical performance of the proposed DDGF detection is analyzed. An open sky test, a manmade multipath test and an urban vehicle test were carried out to evaluate the performance of the proposed algorithm. The result shows that the proposed DDGF detection is able to detect large error in dual frequency carrier phase measurement by checking the error difference between two frequencies. After the DDGF detection, the accuracy of the baseline vector is improved in the GNSS compass.

  2. Laser pulse coded signal frequency measuring device based on DSP and CPLD

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-bo; Cao, Li-hua; Geng, Ai-hui; Li, Yan; Guo, Ru-hai; Wang, Ting-feng

    2011-06-01

    Laser pulse code is an anti-jamming measures used in semi-active laser guided weapons. On account of the laser-guided signals adopting pulse coding mode and the weak signal processing, it need complex calculations in the frequency measurement process according to the laser pulse code signal time correlation to meet the request in optoelectronic countermeasures in semi-active laser guided weapons. To ensure accurately completing frequency measurement in a short time, it needed to carry out self-related process with the pulse arrival time series composed of pulse arrival time, calculate the signal repetition period, and then identify the letter type to achieve signal decoding from determining the time value, number and rank number in a signal cycle by Using CPLD and DSP for signal processing chip, designing a laser-guided signal frequency measurement in the pulse frequency measurement device, improving the signal processing capability through the appropriate software algorithms. In this article, we introduced the principle of frequency measurement of the device, described the hardware components of the device, the system works and software, analyzed the impact of some system factors on the accuracy of the measurement. The experimental results indicated that this system improve the accuracy of the measurement under the premise of volume, real-time, anti-interference, low power of the laser pulse frequency measuring device. The practicality of the design, reliability has been demonstrated from the experimental point of view.

  3. The probable source of certain spurious frequencies found in the output of a variable speed generating system using slip recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, P W

    1989-06-01

    As part of US Department of Energy-sponsored research on wind energy, a Mod-O wind turbine was used to drive a variable-speed, wound-rotor, induction generator. Energy resulting from the slip frequency voltage in the generator rotor was rectified to dc, inverted back to utility frequency ac, and injected into the power line. Spurious changing frequencies displayed in the generator output by a spectrum analyzer are caused by ripple on the dc link. No resonances of any of these moving frequencies were seen in spite of the presence of a bank of power factor correcting capacitors. 5 figs.

  4. Frequency Compounded Imaging with a High-Frequency Dual Element Transducer

    PubMed Central

    Chang, Jin Ho; Kim, Hyung Ham; Lee, Jungwoo; Shung, K. Kirk

    2014-01-01

    This paper proposes a frequency compounding method to reduce speckle interferences, where a concentric annular type high-frequency dual element transducer is used to broaden the bandwidth of an imaging system. In frequency compounding methods, frequency division is carried out to obtain sub-band images containing uncorrelated speckles, which sacrifices axial resolution. Therefore, frequency compounding often deteriorates the target-detecting capability, quantified by the total signal-to-noise ratio (SNR), when the speckle’s SNR (SSNR) is not improved as much as the degraded axial resolution. However, this could be avoided if the effective bandwidth required for frequency compounding is increased. The primary goal of the proposed approach, hence, is to improve SSNR by a factor of two under the condition where axial resolution is degraded by a factor of less than two, which indicates the total SNR improvement to higher than 40% compared to that of an original image. Since the method here employs a dual element transducer operating at 20 and 40 MHz, the effective bandwidth necessary for frequency compounding becomes broadened. By dividing each spectrum of RF samples from both elements into two sub-bands, this method eventually enables four sets of the sub-band samples to contain uncorrelated speckles. This causes the axial resolution to be reduced by a factor of as low as 1.85, which means that this method would improve total SNR by at least 47 %. An in vitro experiment on an excised pig eye was performed to validate the proposed approach, and the results showed that the SSNR was improved from 2.081±0.365 in the original image to 4.206±0.635 in the final compounding image. PMID:19914674

  5. Frequency compounded imaging with a high-frequency dual element transducer.

    PubMed

    Chang, Jin Ho; Kim, Hyung Ham; Lee, Jungwoo; Shung, K Kirk

    2010-04-01

    This paper proposes a frequency compounding method to reduce speckle interferences, where a concentric annular type high-frequency dual element transducer is used to broaden the bandwidth of an imaging system. In frequency compounding methods, frequency division is carried out to obtain sub-band images containing uncorrelated speckles, which sacrifices axial resolution. Therefore, frequency compounding often deteriorates the target-detecting capability, quantified by the total signal-to-noise ratio (SNR), when the speckle's SNR (SSNR) is not improved as much as the degraded axial resolution. However, this could be avoided if the effective bandwidth required for frequency compounding is increased. The primary goal of the proposed approach, hence, is to improve SSNR by a factor of two under the condition where axial resolution is degraded by a factor of less than two, which indicates the total SNR improvement to higher than 40% compared to that of an original image. Since the method here employs a dual element transducer operating at 20 and 40MHz, the effective bandwidth necessary for frequency compounding becomes broadened. By dividing each spectrum of RF samples from both elements into two sub-bands, this method eventually enables four sets of the sub-band samples to contain uncorrelated speckles. This causes the axial resolution to be reduced by a factor of as low as 1.85, which means that this method would improve total SNR by at least 47%. An in vitro experiment on an excised pig eye was performed to validate the proposed approach, and the results showed that the SSNR was improved from 2.081+/-0.365 in the original image to 4.206+/-0.635 in the final compounding image. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Web-based multi-channel analyzer

    DOEpatents

    Gritzo, Russ E.

    2003-12-23

    The present invention provides an improved multi-channel analyzer designed to conveniently gather, process, and distribute spectrographic pulse data. The multi-channel analyzer may operate on a computer system having memory, a processor, and the capability to connect to a network and to receive digitized spectrographic pulses. The multi-channel analyzer may have a software module integrated with a general-purpose operating system that may receive digitized spectrographic pulses for at least 10,000 pulses per second. The multi-channel analyzer may further have a user-level software module that may receive user-specified controls dictating the operation of the multi-channel analyzer, making the multi-channel analyzer customizable by the end-user. The user-level software may further categorize and conveniently distribute spectrographic pulse data employing non-proprietary, standard communication protocols and formats.

  7. Effect of echolocation behavior-related constant frequency-frequency modulation sound on the frequency tuning of inferior collicular neurons in Hipposideros armiger.

    PubMed

    Tang, Jia; Fu, Zi-Ying; Wei, Chen-Xue; Chen, Qi-Cai

    2015-08-01

    In constant frequency-frequency modulation (CF-FM) bats, the CF-FM echolocation signals include both CF and FM components, yet the role of such complex acoustic signals in frequency resolution by bats remains unknown. Using CF and CF-FM echolocation signals as acoustic stimuli, the responses of inferior collicular (IC) neurons of Hipposideros armiger were obtained by extracellular recordings. We tested the effect of preceding CF or CF-FM sounds on the shape of the frequency tuning curves (FTCs) of IC neurons. Results showed that both CF-FM and CF sounds reduced the number of FTCs with tailed lower-frequency-side of IC neurons. However, more IC neurons experienced such conversion after adding CF-FM sound compared with CF sound. We also found that the Q 20 value of the FTC of IC neurons experienced the largest increase with the addition of CF-FM sound. Moreover, only CF-FM sound could cause an increase in the slope of the neurons' FTCs, and such increase occurred mainly in the lower-frequency edge. These results suggested that CF-FM sound could increase the accuracy of frequency analysis of echo and cut-off low-frequency elements from the habitat of bats more than CF sound.

  8. A Study on the Transient Behavior of Pulse Modulated Dual-Frequency Capacitive Discharges based on Circuit Analysis

    NASA Astrophysics Data System (ADS)

    Na, Byungkeun; Bae, Inshik; Park, Gi Jung; Chang, Hong-Young

    2016-09-01

    Multi-frequency capacitively coupled plasma (CCP) has been studied to independently control the ion energy and the ion flux; pulsing technique is used to reduce the electron temperature and finally the charging effects. The use of these techniques is a key to high aspect ratio contact (HARC) etching in the recent semiconductor processing. In this study, the characteristics of pulsed dual frequency (DF) CCP is investigated. Two separate powers of 3 MHz and 40 MHz are delivered to the powered electrode of an asymmetric CCP, and each frequency is modulated by an external 1 kHz pulse. Due to the complexity of the RF compensation in DF CCP, the characteristics of the plasma and the sheath are analyzed by high speed impedance measurement. The transient behavior of pulse modulated DF CCP is analyzed based on the result of continuous wave (CW) DF CCP. The optimized experimental condition for high ion energy will be presented. The difference between electronegative oxygen plasma and electropositive argon plasma is discussed as well.

  9. Full waveform inversion in the frequency domain using classified time-domain residual wavefields

    NASA Astrophysics Data System (ADS)

    Son, Woohyun; Koo, Nam-Hyung; Kim, Byoung-Yeop; Lee, Ho-Young; Joo, Yonghwan

    2017-04-01

    We perform the acoustic full waveform inversion in the frequency domain using residual wavefields that have been separated in the time domain. We sort the residual wavefields in the time domain according to the order of absolute amplitudes. Then, the residual wavefields are separated into several groups in the time domain. To analyze the characteristics of the residual wavefields, we compare the residual wavefields of conventional method with those of our residual separation method. From the residual analysis, the amplitude spectrum obtained from the trace before separation appears to have little energy at the lower frequency bands. However, the amplitude spectrum obtained from our strategy is regularized by the separation process, which means that the low-frequency components are emphasized. Therefore, our method helps to emphasize low-frequency components of residual wavefields. Then, we generate the frequency-domain residual wavefields by taking the Fourier transform of the separated time-domain residual wavefields. With these wavefields, we perform the gradient-based full waveform inversion in the frequency domain using back-propagation technique. Through a comparison of gradient directions, we confirm that our separation method can better describe the sub-salt image than the conventional approach. The proposed method is tested on the SEG/EAGE salt-dome model. The inversion results show that our algorithm is better than the conventional gradient based waveform inversion in the frequency domain, especially for deeper parts of the velocity model.

  10. How Frequency of Electrosurgical Current and Electrode Size Affect the Depth of Electrocoagulation.

    PubMed

    Taheri, Arash; Mansoori, Parisa; Bahrami, Naeim; Alinia, Hossein; Watkins, Casey E; Feldman, Steven R

    2016-02-01

    Many factors affect the depth of electrocoagulation. To evaluate the effect of current frequency and electrode size on the depth of electrocoagulation. In this in vitro study, 4 cylindrical electrodes (2, 2.3, 3, and 4 mm) were used to apply 3 electrosurgical currents (0.4, 1.5, and 3 MHz) to bovine liver. Each electrode was placed at different points on the surface of the liver, and energy at various levels and frequencies was delivered to the tissue. Subsequently, cross-sections of the liver were analyzed. Coagulation started at the periphery of the electrode-tissue contact area. With higher energy levels, coagulation spreads to involve the remainder of the contact area. Neither the frequency nor the electrode size had any effect on this coagulation pattern. The frequency of the current also did not show any relation with depth of coagulation; however, there was a direct correlation between the size of the electrode and the depth of coagulation. Larger-tip electrodes provided deeper coagulation compared with finer-tip electrodes.

  11. Effects of ENSO on weather-type frequencies and properties at New Orleans, Louisiana, USA

    USGS Publications Warehouse

    McCabe, G.J.; Muller, R.A.

    2002-01-01

    Examination of historical climate records indicates a significant relation between the El Nin??o/Southern Oscillation (ENSO) and seasonal temperature and precipitation in Louisiana. In this study, a 40 yr record of twice daily (06:00 and 15:00 h local time) weather types are used to study the effects of ENSO variability on the local climate at New Orleans, Louisiana. Tropical Pacific sea-surface temperatures (SSTs) for the NINO3.4 region are used to define ENSO events (i.e. El Nin??o and La Nin??a events), and daily precipitation and temperature data for New Orleans are used to define weather-type precipitation and temperature properties. Data for winters (December through February) 1962-2000 are analyzed. The 39 winters are divided into 3 categories; winters with NINO3.4 SST anomalies 1??C (El Nin??o events), and neutral conditions (all other years). For each category, weather-type frequencies and properties (i.e. precipitation and temperature) are determined and analyzed. Results indicate that El Nin??o events primarily affect precipitation characteristics of weather types at New Orleans, whereas the effects of La Nin??a events are most apparent in weather-type frequencies. During El Nin??o events, precipitation for some of the weather types is greater than during neutral and La Nin??a conditions and is related to increased water vapor transport from the Tropics to the Gulf of Mexico. The changes in weather-type frequencies during La Nin??a events are indicative of a northward shift in storm tracks and/or a decrease in storm frequency in southern Louisiana.

  12. Frequency set on systems

    NASA Astrophysics Data System (ADS)

    Wilby, W. A.; Brett, A. R. H.

    Frequency set on techniques used in ECM applications include repeater jammers, frequency memory loops (RF and optical), coherent digital RF memories, and closed loop VCO set on systems. Closed loop frequency set on systems using analog phase and frequency locking are considered to have a number of cost and performance advantages. Their performance is discussed in terms of frequency accuracy, bandwidth, locking time, stability, and simultaneous signals. Some experimental results are presented which show typical locking performance. Future ECM systems might require a response to very short pulses. Acoustooptic and fiber-optic pulse stretching techniques can be used to meet such requirements.

  13. Frequency selective infrared sensors

    DOEpatents

    Davids, Paul; Peters, David W

    2014-11-25

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  14. Frequency selective infrared sensors

    DOEpatents

    Davids, Paul; Peters, David W

    2013-05-28

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  15. Photovoltaic frequency–watt curve design for frequency regulation and fast contingency reserves

    DOE PAGES

    Johnson, Jay; Neely, Jason C.; Delhotal, Jarod J.; ...

    2016-09-02

    When renewable energy resources are installed in electricity grids, they typically increase generation variability and displace thermal generator control action and inertia. Grid operators combat these emerging challenges with advanced distributed energy resource (DER) functions to support frequency and provide voltage regulation and protection mechanisms. This paper focuses on providing frequency reserves using autonomous IEC TR 61850-90-7 pointwise frequency-watt (FW) functions that adjust DER active power as a function of measured grid frequency. The importance of incorporating FW functions into a fleet of photovoltaic (PV) systems is demonstrated in simulation. Effects of FW curve design, including curtailment, deadband, and droop,more » were analyzed against performance metrics using Latin hypercube sampling for 20%, 70%, and 120% PV penetration scenarios on the Hawaiian island of Lanai. Finally, to understand the financial implications of FW functions to utilities, a performance function was defined based on monetary costs attributable to curtailed PV production, load shedding, and generator wear. An optimization wrapper was then created to find the best FW function curve for each penetration level. Lastly, it was found that in all cases, the utility would save money by implementing appropriate FW functions.« less

  16. Frequency of Toxoplasma gondii in the retina in eye banks in Brazil.

    PubMed

    Costa, Deise F; Nascimento, Heloisa; Sutili, Aline; Nobrega, Fernando A J; Fowler, Flavio; Nobrega, Mario Junqueira; Garrido, Cristina; de Oliveira Dias, Janaina; Adán, Consuelo B D; Rizzo, Luiz Vicente; Silveira, Claudio; Belfort, Rubens; Commodaro, Alessandra G

    2017-07-01

    Ocular toxoplasmosis is the main cause of posterior uveitis worldwide frequently leading to vision loss. In Brazil, the seroprevalence of Toxoplasma gondii infection ranges from 50 to 80% depending of the region studied. The frequency of toxoplasmic retinal scar may reach 18% of the adults in the South of Brazil. Our goal was to determine the frequency of T. gondii DNA in retinas from eye banks from different regions in Brazil. A total of 162 eyes were obtained from eye banks in Manaus (n = 60), Sao Paulo (n = 60), Chapeco (n = 26), and Joinville (n = 16). The retinas were macroscopically analyzed and collected for DNA extraction. Real-time PCR (qPCR) was performed using the T. gondii B1 marker. By qPCR, a higher frequency of T. gondii DNA in the retinas from the eye bank of Joinville (25%) was found when compared to Manaus (5%). The retinas from Sao Paulo and Chapeco were qPCR negative. Clinical examination determined the retina lesions to be compatible with toxoplasmosis in the following frequencies: Joinville (62.5%), Manaus (10%), Sao Paulo (6.7%), and Chapeco (15.4%).

  17. Characterization of low-frequency acoustic wave propagation through a periodic corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Jiang, Changyong; Huang, Lixi

    2018-03-01

    In this paper, a periodic corrugated waveguide structure is proposed, and its unit-cell is analyzed by the wave finite element method. In low-frequency range, the unit-cell is treated as an equivalent fluid through a homogenization process, and the equivalent acoustic parameters are obtained, which are validated by finite structure simulations and experiments. The proposed structure is shown to add tortuosity to the waveguide, hence higher equivalent fluid density is achieved, while the system elastic modulus remains unchanged. As a result, the equivalent speed of sound is smaller than normal air. The application of such change of speed of sound is demonstrated in the classic quarter-wavelength resonator based on the corrugated waveguide, which gives a lower resonance frequency with the same side branch length. When the waveguide is filled with porous materials, the added tortuosity enhances the broadband, low-frequency sound absorption by increasing the equivalent mass without bringing in excess damping, the latter being partly responsible for the poor performance of usual porous materials in the low-frequency region. Therefore, the proposed structure provides another dimension for the design and optimization of porous sound absorption materials.

  18. Zipf's Law for Word Frequencies: Word Forms versus Lemmas in Long Texts.

    PubMed

    Corral, Álvaro; Boleda, Gemma; Ferrer-i-Cancho, Ramon

    2015-01-01

    Zipf's law is a fundamental paradigm in the statistics of written and spoken natural language as well as in other communication systems. We raise the question of the elementary units for which Zipf's law should hold in the most natural way, studying its validity for plain word forms and for the corresponding lemma forms. We analyze several long literary texts comprising four languages, with different levels of morphological complexity. In all cases Zipf's law is fulfilled, in the sense that a power-law distribution of word or lemma frequencies is valid for several orders of magnitude. We investigate the extent to which the word-lemma transformation preserves two parameters of Zipf's law: the exponent and the low-frequency cut-off. We are not able to demonstrate a strict invariance of the tail, as for a few texts both exponents deviate significantly, but we conclude that the exponents are very similar, despite the remarkable transformation that going from words to lemmas represents, considerably affecting all ranges of frequencies. In contrast, the low-frequency cut-offs are less stable, tending to increase substantially after the transformation.

  19. Association between Frequency of Breakfast Consumption and Academic Performance in Healthy Korean Adolescents.

    PubMed

    So, Wi-Young

    2013-01-01

    The purpose of this study was to examine whether the frequency of breakfast consumption was related to academic performance in healthy Korean adolescents. We analyzed data from the seventh Korea Youth Risk Behavior Web-based Survey conducted in 2011, in which 75,643 adolescents from school grades 7-12 participated. We assessed the association between the frequency of breakfast consumption (per week) and academic performance using multivariate logistic regression analysis after adjusting for covariates such as age, body mass index, frequency of smoking, frequency of drinking, parents' education level, family economic status, frequency of vigorous physical activity (PA), frequency of moderate PA, frequency of muscular strength exercises, and level of mental stress. For male adolescents, the odds ratios (ORs) for achieving average or higher academic performance according to the breakfast frequency per week were once per week, 1.004 (P=0.945); twice per week, 0.915 (P=0.153); 3 days per week, 0.928 (P=0.237); 4 days per week, 1.087 (P=0.176); 5 days per week, 1.258 (P<0.001); 6 days per week, 1.473 (P<0.001); and every day, 1.700 (P<0.001), compared to no breakfast per week. For female adolescents, the ORs for achieving average or higher academic performance according to the breakfast frequency were once per week, 1.068 (P=0.320); twice per week, 1.140 (P=0.031); 3 days per week, 1.179 (P=0.004); 4 days per week, 1.339 (P<0.001); 5 days per week, 1.449 (P<0.001); 6 days per week, 1.768 (P<0.001); and every day, 1.922 (P<0.001), compared to no breakfast per week. The frequency of breakfast consumption is positively correlated with academic performance in both male and female healthy adolescents in Korea.

  20. An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars.

    PubMed

    Huang, Jiyan; Zhang, Ying; Luo, Shan

    2017-12-15

    Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer-Rao lower bound (CRLB) are derived. The simulation results verified the proposed method.