Science.gov

Sample records for frequency domain method

  1. Frequency-Domain Methods for Characterization of Pulsed Power Diagnostics

    SciTech Connect

    White, A D; Anderson, R A; Ferriera, T J; Goerz, D A

    2009-07-27

    This paper discusses methods of frequency-domain characterization of pulsed power sensors using vector network analyzer and spectrum analyzer techniques that offer significant simplification over time-domain methods, while mitigating or minimizing the effect of the difficulties present in time domain characterization. These methods are applicable to characterization of a wide variety of sensors.

  2. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  3. A simple method for converting frequency domain aerodynamics to the time domain

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.

    1980-01-01

    A simple, direct procedure was developed for converting frequency domain aerodynamics into indicial aerodynamics. The data required for aerodynamic forces in the frequency domain may be obtained from any available (linear) theory. The method retains flexibility for the analyst and is based upon the particular character of the frequency domain results. An evaluation of the method was made for incompressible, subsonic, and transonic two dimensional flows.

  4. Frequency-domain multiscale quantum mechanics/electromagnetics simulation method

    SciTech Connect

    Meng, Lingyi; Yin, Zhenyu; Yam, ChiYung E-mail: ghc@everest.hku.hk; Koo, SiuKong; Chen, GuanHua E-mail: ghc@everest.hku.hk; Chen, Quan; Wong, Ngai

    2013-12-28

    A frequency-domain quantum mechanics and electromagnetics (QM/EM) method is developed. Compared with the time-domain QM/EM method [Meng et al., J. Chem. Theory Comput. 8, 1190–1199 (2012)], the newly developed frequency-domain QM/EM method could effectively capture the dynamic properties of electronic devices over a broader range of operating frequencies. The system is divided into QM and EM regions and solved in a self-consistent manner via updating the boundary conditions at the QM and EM interface. The calculated potential distributions and current densities at the interface are taken as the boundary conditions for the QM and EM calculations, respectively, which facilitate the information exchange between the QM and EM calculations and ensure that the potential, charge, and current distributions are continuous across the QM/EM interface. Via Fourier transformation, the dynamic admittance calculated from the time-domain and frequency-domain QM/EM methods is compared for a carbon nanotube based molecular device.

  5. Frequency domain optical tomography using a Monte Carlo perturbation method

    NASA Astrophysics Data System (ADS)

    Yamamoto, Toshihiro; Sakamoto, Hiroki

    2016-04-01

    A frequency domain Monte Carlo method is applied to near-infrared optical tomography, where an intensity-modulated light source with a given modulation frequency is used to reconstruct optical properties. The frequency domain reconstruction technique allows for better separation between the scattering and absorption properties of inclusions, even for ill-posed inverse problems, due to cross-talk between the scattering and absorption reconstructions. The frequency domain Monte Carlo calculation for light transport in an absorbing and scattering medium has thus far been analyzed mostly for the reconstruction of optical properties in simple layered tissues. This study applies a Monte Carlo calculation algorithm, which can handle complex-valued particle weights for solving a frequency domain transport equation, to optical tomography in two-dimensional heterogeneous tissues. The Jacobian matrix that is needed to reconstruct the optical properties is obtained by a first-order "differential operator" technique, which involves less variance than the conventional "correlated sampling" technique. The numerical examples in this paper indicate that the newly proposed Monte Carlo method provides reconstructed results for the scattering and absorption coefficients that compare favorably with the results obtained from conventional deterministic or Monte Carlo methods.

  6. Damping identification in frequency domain using integral method

    NASA Astrophysics Data System (ADS)

    Guo, Zhiwei; Sheng, Meiping; Ma, Jiangang; Zhang, Wulin

    2015-03-01

    A new method for damping identification of linear system in frequency domain is presented, by using frequency response function (FRF) with integral method. The FRF curve is firstly transformed to other type of frequency-related curve by changing the representations of horizontal and vertical axes. For the newly constructed frequency-related curve, integral is conducted and the area forming from the new curve is used to determine the damping. Three different methods based on integral are proposed in this paper, which are called FDI-1, FDI-2 and FDI-3 method, respectively. For a single degree of freedom (Sdof) system, the formulated relation of each method between integrated area and loss factor is derived theoretically. The numeral simulation and experiment results show that, the proposed integral methods have high precision, strong noise resistance and are very stable in repeated measurements. Among the three integral methods, FDI-3 method is the most recommended because of its higher accuracy and simpler algorithm. The new methods are limited to linear system in which modes are well separated, and for closely spaced mode system, mode decomposition process should be conducted firstly.

  7. A mixed finite element domain decomposition method for nearly elastic wave equations in the frequency domain

    SciTech Connect

    Feng, Xiaobing

    1996-12-31

    A non-overlapping domain decomposition iterative method is proposed and analyzed for mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary conditions. These differential systems describe the motion of a nearly elastic solid in the frequency domain. The convergence of the iterative procedure is demonstrated and the rate of convergence is derived for the case when the domain is decomposed into subdomains in which each subdomain consists of an individual element associated with the mixed finite elements. The hybridization of mixed finite element methods plays a important role in the construction of the discrete procedure.

  8. Numerical methods for time-domain and frequency-domain analysis: applications in engineering

    NASA Astrophysics Data System (ADS)

    Tamas, R. D.

    2015-11-01

    Numerical methods are widely used for modeling different physical phenomena in engineering, especially when an analytic approach is not possible. Time-domain or frequency- domain type variations are generally investigated, depending on the nature of the process under consideration. Some methods originate from mechanics, although most of their applications belong to other fields, such as electromagnetism. Conversely, other methods were firstly developed for electromagnetism, but their field of application was extended to other fields. This paper presents some results that we have obtained by using a general purpose method for solving linear equations, i.e., the method of moments (MoM), and a time-domain method derived for electromagnetism, i.e., the Transmission Line Matrix method (TLM).

  9. Comparison of frequency-domain and time-domain rotorcraft vibration control methods

    NASA Technical Reports Server (NTRS)

    Gupta, N. K.

    1984-01-01

    Active control of rotor-induced vibration in rotorcraft has received significant attention recently. Two classes of techniques have been proposed. The more developed approach works with harmonic analysis of measured time histories and is called the frequency-domain approach. The more recent approach computes the control input directly using the measured time history data and is called the time-domain approach. The report summarizes the results of a theoretical investigation to compare the two approaches. Five specific areas were addressed: (1) techniques to derive models needed for control design (system identification methods), (2) robustness with respect to errors, (3) transient response, (4) susceptibility to noise, and (5) implementation difficulties. The system identification methods are more difficult for the time-domain models. The time-domain approach is more robust (e.g., has higher gain and phase margins) than the frequency-domain approach. It might thus be possible to avoid doing real-time system identification in the time-domain approach by storing models at a number of flight conditions. The most significant error source is the variation in open-loop vibrations caused by pilot inputs, maneuvers or gusts. The implementation requirements are similar except that the time-domain approach can be much simpler to implement if real-time system identification were not necessary.

  10. A review of time-domain and frequency-domain component mode synthesis method

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.

    1985-01-01

    Hurty (1965) has conducted a dynamic analysis of structural systems using component modes. The component mode synthesis (CMS) procedure considered by him represents a form of substructure coupling analysis which is often utilized in structural dynamics. Time-domain CMS methods employing real modes are discussed, taking into account real component modes, normal modes, redundant constraint modes, rigid-body modes, attachment modes, inertia-relief modes, statically-complete interface mode sets, dynamic component mode supersets, component modal models, the coupling of components, and the classification of methods. Attention is also given to the experimental determination of component mode synthesis parameters, time-domain CMS methods for damped systems, and frequency-domain CMS methods for damped systems.

  11. Frequency-domain methods for modeling a nonlinear acoustic orifice

    NASA Astrophysics Data System (ADS)

    Egolf, David P.; Murphy, William J.; Franks, John R.; Kirlin, R. Lynn

    2002-11-01

    This presentation describes frequency-domain methods for simulating transmission loss across a single orifice mounted in an acoustic waveguide. The work was a preamble to research involving earplugs containing one or more orifices. Simulation methods included direct Fourier transformation, linearization about an operating point, and Volterra series. They were applied to an electric-circuit analog of the acoustic system containing the orifice. The orifice itself was characterized by an empirical expression for nonlinear impedance obtained by fitting curves to experimental resistance and reactance data reported by other authors. Their data-collection procedures required the impedance expression presented herein to be properly labeled as a describing function, a quantity well known in the nonlinear control systems literature. Results of the computer simulations were compared to experimental transmission-loss data. For a single-tone input sound pressure, the computer code accurately predicted the output fundamental (i.e., without harmonics). For a broadband input, the simulated output was less accurate, but acceptable. Levels of the sound-pressure input ranged from 60 to 160 dB. [Work supported by the National Institute for Occupational Safety and Health, Cincinnati, OH, through a research associateship granted the first author by the National Research Council.] a)Currently on leave at National Institute for Occupational Safety and Health, Cincinnati, OH.

  12. On the Analysis Methods for the Time Domain and Frequency Domain Response of a Buried Objects*

    NASA Astrophysics Data System (ADS)

    Poljak, Dragan; Šesnić, Silvestar; Cvetković, Mario

    2014-05-01

    There has been a continuous interest in the analysis of ground-penetrating radar systems and related applications in civil engineering [1]. Consequently, a deeper insight of scattering phenomena occurring in a lossy half-space, as well as the development of sophisticated numerical methods based on Finite Difference Time Domain (FDTD) method, Finite Element Method (FEM), Boundary Element Method (BEM), Method of Moments (MoM) and various hybrid methods, is required, e.g. [2], [3]. The present paper deals with certain techniques for time and frequency domain analysis, respectively, of buried conducting and dielectric objects. Time domain analysis is related to the assessment of a transient response of a horizontal straight thin wire buried in a lossy half-space using a rigorous antenna theory (AT) approach. The AT approach is based on the space-time integral equation of the Pocklington type (time domain electric field integral equation for thin wires). The influence of the earth-air interface is taken into account via the simplified reflection coefficient arising from the Modified Image Theory (MIT). The obtained results for the transient current induced along the electrode due to the transmitted plane wave excitation are compared to the numerical results calculated via an approximate transmission line (TL) approach and the AT approach based on the space-frequency variant of the Pocklington integro-differential approach, respectively. It is worth noting that the space-frequency Pocklington equation is numerically solved via the Galerkin-Bubnov variant of the Indirect Boundary Element Method (GB-IBEM) and the corresponding transient response is obtained by the aid of inverse fast Fourier transform (IFFT). The results calculated by means of different approaches agree satisfactorily. Frequency domain analysis is related to the assessment of frequency domain response of dielectric sphere using the full wave model based on the set of coupled electric field integral

  13. A frequency domain method for the generation of partially coherent normal stationary time domain signals

    SciTech Connect

    Smallwood, D.O.; Paez, T.L.

    1991-01-01

    A procedure for generating vectors of time domain signals which are partially coherent in a prescribed manner is described. The procedure starts with the spectral density matrix, (G{sub xx}(f)), that relates pairs of elements of the vector random process (x(t), {minus}{infinity} < t < {infinity}). The spectral density matrix is decomposed into the form (G{sub xx}(f)) = (U(f)) (S(f)) (U(f)){prime} where (U(f)) is a matrix of complex frequency response functions, and (S(f)) is a diagonal matrix of real functions which can vary with frequency. The factors of the spectral density matrix, (U(f)) and (S(f)), are then used to generate a frame of random data in the frequency domain. The data is transformed into the time domain using an inverse FFT to generate a frame of data in the time domain. Successive frames of data are then windowed, overlapped, and added to form a vector of normal stationary sampled time histories, (x(t)), of arbitrary length. 11 refs., 4 figs., 1 tab.

  14. Frequency-domain method for discrete frequency noise prediction of rotors in arbitrary steady motion

    NASA Astrophysics Data System (ADS)

    Gennaretti, M.; Testa, C.; Bernardini, G.

    2012-12-01

    A novel frequency-domain formulation for the prediction of the tonal noise emitted by rotors in arbitrary steady motion is presented. It is derived from Farassat's 'Formulation 1A', that is a time-domain boundary integral representation for the solution of the Ffowcs-Williams and Hawkings equation, and represents noise as harmonic response to body kinematics and aerodynamic loads via frequency-response-function matrices. The proposed frequency-domain solver is applicable to rotor configurations for which sound pressure levels of discrete tones are much higher than those of broadband noise. The numerical investigation concerns the analysis of noise produced by an advancing helicopter rotor in blade-vortex interaction conditions, as well as the examination of pressure disturbances radiated by the interaction of a marine propeller with a non-uniform inflow.

  15. A method for efficient fractional sample delay generation for real-time frequency-domain beamformers

    SciTech Connect

    Breeding, J.E.; Karnowski, T.P.

    1995-07-01

    This paper presents an efficient method for fractional delay filter generation for frequency-domain beamformers. A common misunderstanding regarding frequency-domain beamforming is that any fractional time shift can be achieved using the delay property of the discrete Fourier transform (DFT). Blind application of the DFT delay property introduces circular convolution errors that may adversely affect the beam`s time series. The method presented avoids these errors while enabling real-time processing.

  16. Frequency domain system identification methods - Matrix fraction description approach

    NASA Technical Reports Server (NTRS)

    Horta, Luca G.; Juang, Jer-Nan

    1993-01-01

    This paper presents the use of matrix fraction descriptions for least-squares curve fitting of the frequency spectra to compute two matrix polynomials. The matrix polynomials are intermediate step to obtain a linearized representation of the experimental transfer function. Two approaches are presented: first, the matrix polynomials are identified using an estimated transfer function; second, the matrix polynomials are identified directly from the cross/auto spectra of the input and output signals. A set of Markov parameters are computed from the polynomials and subsequently realization theory is used to recover a minimum order state space model. Unevenly spaced frequency response functions may be used. Results from a simple numerical example and an experiment are discussed to highlight some of the important aspect of the algorithm.

  17. Comparison of back projection methods of determining earthquake rupture process in time and frequency domains

    NASA Astrophysics Data System (ADS)

    Wang, W.; Wen, L.

    2013-12-01

    Back projection is a method to back project the seismic energy recorded in a seismic array back to the earthquake source region and determine the rupture process of a large earthquake. The method takes advantage of the coherence of seismic energy in a seismic array and is quick in determining some important properties of earthquake source. The method can be performed in both time and frequency domains. In time domain, the most conventional procedure is beam forming with some measures of suppressing the noise, such as the Nth root stacking, etc. In the frequency domain, the multiple signal classification method (MUSIC) estimates the direction of arrivals of multiple waves propagating through an array using the subspace method. The advantage of this method is the ability to study rupture properties at various frequencies and to resolve simultaneous arrivals making it suitable for detecting biliteral rupture of an earthquake source. We present a comparison of back projection results on some large earthquakes between the methods in time domain and frequency domain. The time-domain procedure produces an image that is smeared and exhibits some artifacts, although some enhancing stacking methods can at some extent alleviate the problem. On the other hand, the MUSIC method resolves clear multiple arrivals and provides higher resolution of rupture imaging.

  18. Determining XV-15 aeroelastic modes from flight data with frequency-domain methods

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Tischler, Mark B.

    1993-01-01

    The XV-15 tilt-rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed). All spectral data were computed using chirp z-transforms. Modal frequencies and damping were determined by fitting curves to frequency-response magnitude and phase data. The results given in this report are for the XV-15 with its original metal rotor blades. Also, frequency and damping values are compared with theoretical predictions made using two different programs, CAMRAD and ASAP. The frequency-domain data-analysis method proved to be very reliable and adequate for tracking aeroelastic modes during flight-envelope expansion. This approach required less flight-test time and yielded mode estimations that were more repeatable, compared with the exponential-decay method previously used.

  19. Novel frequency domain techniques and advances in Finite Difference Time domain (FDTD) method for efficient solution of multiscale electromagnetic problems

    NASA Astrophysics Data System (ADS)

    Panayappan, Kadappan

    With the advent of sub-micron technologies and increasing awareness of Electromagnetic Interference and Compatibility (EMI/EMC) issues, designers are often interested in full- wave solutions of complete systems, taking to account a variety of environments in which the system operates. However, attempts to do this substantially increase the complexities involved in computing full-wave solutions, especially when the problems involve multi- scale geometries with very fine features. For such problems, even the well-established numerical methods, such as the time domain technique FDTD and the frequency domain methods FEM and MoM, are often challenged to the limits of their capabilities. In an attempt to address such challenges, three novel techniques have been introduced in this work, namely Dipole Moment (DM) Approach, Recursive Update in Frequency Domain (RUFD) and New Finite Difference Time Domain ( vFDTD). Furthermore, the efficacy of the above techniques has been illustrated, via several examples, and the results obtained by proposed techniques have been compared with other existing numerical methods for the purpose of validation. The DM method is a new physics-based approach for formulating MoM problems, which is based on the use of dipole moments (DMs), as opposed to the conventional Green's functions. The absence of the Green's functions, as well as those of the vector and scalar potentials, helps to eliminate two of the key sources of difficulties in the conventional MoM formulation, namely the singularity and low-frequency problems. Specifically, we show that there are no singularities that we need to be concerned with in the DM formulation; hence, this obviates the need for special techniques for integrating these singularities. Yet another salutary feature of the DM approach is its ability to handle thin and lossy structures, or whether they are metallic, dielectric-type, or even combinations thereof. We have found that the DM formulation can handle these

  20. Comparison of Frequency-Domain Array Methods for Studying Earthquake Rupture Process

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Yin, J.; Yao, H.

    2014-12-01

    Seismic array methods, in both time- and frequency- domains, have been widely used to study the rupture process and energy radiation of earthquakes. With better spatial resolution, the high-resolution frequency-domain methods, such as Multiple Signal Classification (MUSIC) (Schimdt, 1986; Meng et al., 2011) and the recently developed Compressive Sensing (CS) technique (Yao et al., 2011, 2013), are revealing new features of earthquake rupture processes. We have performed various tests on the methods of MUSIC, CS, minimum-variance distortionless response (MVDR) Beamforming and conventional Beamforming in order to better understand the advantages and features of these methods for studying earthquake rupture processes. We use the ricker wavelet to synthesize seismograms and use these frequency-domain techniques to relocate the synthetic sources we set, for instance, two sources separated in space but, their waveforms completely overlapping in the time domain. We also test the effects of the sliding window scheme on the recovery of a series of input sources, in particular, some artifacts that are caused by the sliding window scheme. Based on our tests, we find that CS, which is developed from the theory of sparsity inversion, has relatively high spatial resolution than the other frequency-domain methods and has better performance at lower frequencies. In high-frequency bands, MUSIC, as well as MVDR Beamforming, is more stable, especially in the multi-source situation. Meanwhile, CS tends to produce more artifacts when data have poor signal-to-noise ratio. Although these techniques can distinctly improve the spatial resolution, they still produce some artifacts along with the sliding of the time window. Furthermore, we propose a new method, which combines both the time-domain and frequency-domain techniques, to suppress these artifacts and obtain more reliable earthquake rupture images. Finally, we apply this new technique to study the 2013 Okhotsk deep mega earthquake

  1. Maximum likelihood method for estimating airplane stability and control parameters from flight data in frequency domain

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1980-01-01

    A frequency domain maximum likelihood method is developed for the estimation of airplane stability and control parameters from measured data. The model of an airplane is represented by a discrete-type steady state Kalman filter with time variables replaced by their Fourier series expansions. The likelihood function of innovations is formulated, and by its maximization with respect to unknown parameters the estimation algorithm is obtained. This algorithm is then simplified to the output error estimation method with the data in the form of transformed time histories, frequency response curves, or spectral and cross-spectral densities. The development is followed by a discussion on the equivalence of the cost function in the time and frequency domains, and on advantages and disadvantages of the frequency domain approach. The algorithm developed is applied in four examples to the estimation of longitudinal parameters of a general aviation airplane using computer generated and measured data in turbulent and still air. The cost functions in the time and frequency domains are shown to be equivalent; therefore, both approaches are complementary and not contradictory. Despite some computational advantages of parameter estimation in the frequency domain, this approach is limited to linear equations of motion with constant coefficients.

  2. Identification of XV-15 aeroelastic modes using frequency-domain methods

    NASA Technical Reports Server (NTRS)

    Acree, Cecil W., Jr.; Tischler, Mark B.

    1989-01-01

    The XV-15 Tilt-Rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed) with cross spectral and transfer function methods. Modal frequencies and damping were determined by performing curve fits to transfer function magnitude and phase data and to cross spectral magnitude data. Results are given for the XV-15 with its original metal rotor blades. Frequency and damping values are also compared with earlier predictions.

  3. Using frequency-domain methods to identify XV-15 aeroelastic modes

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Tischler, Mark B.

    1987-01-01

    The XV-15 Tilt-Rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed) with cross spectral and transfer function methods. Modal frequencies and damping were determined by performing curve fits to transfer function magnitude and phase data and to cross spectral magnitude data. Results are given for the XV-15 with its original metal rotor blades. Frequency and damping values are also compared with earlier predictions.

  4. Frequency-space domain acoustic wave simulation with the BiCGstab (ℓ) iterative method

    NASA Astrophysics Data System (ADS)

    Du, Zengli; Liu, Jianjun; Liu, Wenge; Li, Chunhong

    2016-02-01

    The vast computational cost and memory requirements of LU decomposition are major obstacles to 3D seismic modelling in the frequency-space domain. BiCGstab (ℓ) is an effective bi-conjugate gradient method to solve the giant sparse linear equations, but the convergence rate is extremely low when the threshold value is set small enough. The BiCGstab (ℓ) iterative method was introduced into 3D numerical simulation to overcome these problems in this paper. Numerical examples have shown that the precision of the BiCGstab (ℓ) iterative method meets the demand of seismic modelling and the result is equivalent to that of LU decomposition. The computational cost and memory resource demands of the BiCGstab (ℓ) iterative method are superior to that of LU decomposition. It is an effective method of 3D seismic modelling in the frequency-space domain.

  5. Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains.

    PubMed

    Al-Fahoum, Amjed S; Al-Fraihat, Ausilah A

    2014-01-01

    Technically, a feature represents a distinguishing property, a recognizable measurement, and a functional component obtained from a section of a pattern. Extracted features are meant to minimize the loss of important information embedded in the signal. In addition, they also simplify the amount of resources needed to describe a huge set of data accurately. This is necessary to minimize the complexity of implementation, to reduce the cost of information processing, and to cancel the potential need to compress the information. More recently, a variety of methods have been widely used to extract the features from EEG signals, among these methods are time frequency distributions (TFD), fast fourier transform (FFT), eigenvector methods (EM), wavelet transform (WT), and auto regressive method (ARM), and so on. In general, the analysis of EEG signal has been the subject of several studies, because of its ability to yield an objective mode of recording brain stimulation which is widely used in brain-computer interface researches with application in medical diagnosis and rehabilitation engineering. The purposes of this paper, therefore, shall be discussing some conventional methods of EEG feature extraction methods, comparing their performances for specific task, and finally, recommending the most suitable method for feature extraction based on performance. PMID:24967316

  6. Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains

    PubMed Central

    Al-Fahoum, Amjed S.; Al-Fraihat, Ausilah A.

    2014-01-01

    Technically, a feature represents a distinguishing property, a recognizable measurement, and a functional component obtained from a section of a pattern. Extracted features are meant to minimize the loss of important information embedded in the signal. In addition, they also simplify the amount of resources needed to describe a huge set of data accurately. This is necessary to minimize the complexity of implementation, to reduce the cost of information processing, and to cancel the potential need to compress the information. More recently, a variety of methods have been widely used to extract the features from EEG signals, among these methods are time frequency distributions (TFD), fast fourier transform (FFT), eigenvector methods (EM), wavelet transform (WT), and auto regressive method (ARM), and so on. In general, the analysis of EEG signal has been the subject of several studies, because of its ability to yield an objective mode of recording brain stimulation which is widely used in brain-computer interface researches with application in medical diagnosis and rehabilitation engineering. The purposes of this paper, therefore, shall be discussing some conventional methods of EEG feature extraction methods, comparing their performances for specific task, and finally, recommending the most suitable method for feature extraction based on performance. PMID:24967316

  7. Optical Frequency Domain Imaging

    NASA Astrophysics Data System (ADS)

    Bouma, Brett E.; Tearney, Guillermo J.; Vakoc, Benjamin; Yun, Seok Hyun

    In this chapter, we discuss a frequency-domain approach, optical frequency-domain imaging (OFDI), which is based on optical frequency-domain reflectometry and uses a wavelength-swept laser and standard single-element photodetectors. The chapter begins with an overview of the fundamental aspects of the technology, including the detected signal, sensitivity, depth range, and resolution, and then goes on to discuss specific component technologies including the light source, interferometer and acquisition electronics, and image processing. The final section of the chapter provides a brief glimpse at some of the biomedical applications that most directly take advantage of the improved speed and sensitivity of OFDI.

  8. Mixed frequency-/time-domain coherent multidimensional spectroscopy: research tool or potential analytical method?

    PubMed

    Pakoulev, Andrei V; Rickard, Mark A; Kornau, Kathryn M; Mathew, Nathan A; Yurs, Lena A; Block, Stephen B; Wright, John C

    2009-09-15

    Coherent multidimensional spectroscopy (CMDS) is now the optical analogue of nuclear magnetic resonance (NMR). Just as NMR heteronuclear multiple-quantum coherence (HMQC) methods rely on multiple quantum coherences, achieving widespread application requires that CMDS also excites multiple quantum coherences over a wide range of quantum state energies. This Account focuses on frequency-domain CMDS because these methods tune the excitation frequencies to resonance with the desired quantum states and can form multiple quantum coherences between states with very different energies. CMDS methods use multiple excitation pulses to excite multiple quantum states within their dephasing time, so their quantum mechanical phase is maintained. Coherences formed from pairs of the excited states emit coherent beams of light. The temporal ordering of the excitation pulses defines a sequence of coherences that can result in zero, single, double, or higher order coherences as required for multiple quantum coherence CMDS. Defining the temporal ordering and the excitation frequencies and spectrally resolving the output frequency also defines a particular temporal pathway for the coherences, just as an NMR pulse sequence defines an NMR method. Two dimensional contour plots through this multidimensional parameter space allow visualization of the state energies and dynamics. This Account uses nickel and rhodium chelates as models for understanding mixed frequency-/time-domain CMDS. Mixed frequency-/time-domain methods use excitation pulse widths that are comparable to the dephasing times, so multidimensional spectra are obtained by scanning the excitation frequencies, while the coherence and population dynamics are obtained by scanning the time delays. Changing the time delays changes the peaks in the 2D excitation spectra depending upon whether the pulse sequence excites zero, single, or double quantum coherences. In addition, peaks split as a result of the frequency-domain

  9. Frequency-domain Monte Carlo method for linear oscillatory gas flows

    NASA Astrophysics Data System (ADS)

    Ladiges, Daniel R.; Sader, John E.

    2015-03-01

    Gas flows generated by resonating nanoscale devices inherently occur in the non-continuum, low Mach number regime. Numerical simulations of such flows using the standard direct simulation Monte Carlo (DSMC) method are hindered by high statistical noise, which has motivated the development of several alternate Monte Carlo methods for low Mach number flows. Here, we present a frequency-domain low Mach number Monte Carlo method based on the Boltzmann-BGK equation, for the simulation of oscillatory gas flows. This circumvents the need for temporal simulations, as is currently required, and provides direct access to both amplitude and phase information using a pseudo-steady algorithm. The proposed method is validated for oscillatory Couette flow and the flow generated by an oscillating sphere. Good agreement is found with an existing time-domain method and accurate numerical solutions of the Boltzmann-BGK equation. Analysis of these simulations using a rigorous statistical approach shows that the frequency-domain method provides a significant improvement in computational speed.

  10. Single channel speech separation in modulation frequency domain based on a novel pitch range estimation method

    NASA Astrophysics Data System (ADS)

    Mahmoodzadeh, Azar; Abutalebi, Hamid Reza; Soltanian-Zadeh, Hamid; Sheikhzadeh, Hamid

    2012-12-01

    Computational Auditory Scene Analysis (CASA) has been the focus in recent literature for speech separation from monaural mixtures. The performance of current CASA systems on voiced speech separation strictly depends on the robustness of the algorithm used for pitch frequency estimation. We propose a new system that estimates pitch (frequency) range of a target utterance and separates voiced portions of target speech. The algorithm, first, estimates the pitch range of target speech in each frame of data in the modulation frequency domain, and then, uses the estimated pitch range for segregating the target speech. The method of pitch range estimation is based on an onset and offset algorithm. Speech separation is performed by filtering the mixture signal with a mask extracted from the modulation spectrogram. A systematic evaluation shows that the proposed system extracts the majority of target speech signal with minimal interference and outperforms previous systems in both pitch extraction and voiced speech separation.

  11. Parallel full-waveform inversion in the frequency domain by the Gauss-Newton method

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Zhuang, Yuan

    2016-06-01

    In this paper, we investigate the full-waveform inversion in the frequency domain. We first test the inversion ability of three numerical optimization methods, i.e., the steepest-descent method, the Newton-CG method and the Gauss- Newton method, for a simple model. The results show that the Gauss-Newton method performs well and efficiently. Then numerical computations for a benchmark model named Marmousi model by the Gauss-Newton method are implemented. Parallel algorithm based on message passing interface (MPI) is applied as the inversion is a typical large-scale computational problem. Numerical computations show that the Gauss-Newton method has good ability to reconstruct the complex model.

  12. 3D micro profile measurement with the method of spatial frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yongxiang

    2015-10-01

    3D micro profiles are often needed for measurement in many fields, e.g., binary optics, electronic industry, mechanical manufacturing, aeronautic and space industry, etc. In the case where height difference between two neighboring points of a test profile is equal to or greater than λ / 4, microscopic interferometry based on laser source will no longer be applicable because of the uncertainty in phase unwrapping. As white light possesses the characteristic of interference length approximate to zero, applying it for micro profilometry can avoid the trouble and can yield accurate results. Using self-developed Mirau-type scanning interference microscope, a step-like sample was tested twice, with 128 scanning interferograms recorded for each test. To process each set of the interferograms, the method of spatial frequency domain analysis was adopted. That is, for each point, by use of Furrier transform, white-light interference intensities were decomposed in spatial frequency domain, thus obtaining phase values corresponding to different wavenumbers; by using least square fitting on phases and wave numbers, a group-velocity OPD was gained for the very point; and finally in terms of the relation between relative height and the group-velocity OPD, the profile of the test sample was obtained. Two tests yielded same profile result for the sample, and step heights obtained were 50.88 nm and 50.94 nm, respectively. Meantime, the sample was also measured with a Zygo Newview 7200 topography instrument, with same profile result obtained and step height differing by 0.9 nm. In addition, data processing results indicate that chromatic dispersion equal to and higher than 2nd order is negligible when applying spatial frequency domain analysis method.

  13. Tuning fractional PID controllers for a Steward platform based on frequency domain and artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Copot, Cosmin; Zhong, Yu; Ionescu, Clara; Keyser, Robin

    2013-06-01

    In this paper, two methods to tune a fractional-order PI λ D μ controller for a mechatronic system are presented. The first method is based on a genetic algorithm to obtain the parameter values for the fractionalorder PI λ D μ controller by global optimization. The second method used to design the fractional-order PI λ D μ controller relies on an auto-tuning approach by meeting some specifications in the frequency domain. The real-time experiments are conducted using a Steward platform which consists of a table tilted by six servo-motors with a ball on the top of the table. The considered system is a 6 degrees of freedom (d.o.f.) motion platform. The feedback on the position of the ball is obtained from images acquired by a visual sensor mounted above the platform. The fractional-order controllers were implemented and the performances of the steward platform are analyzed.

  14. Frequency domain nonlinear optics

    NASA Astrophysics Data System (ADS)

    Legare, Francois

    2016-05-01

    The universal dilemma of gain narrowing occurring in fs amplifiers prevents ultra-high power lasers from delivering few-cycle pulses. This problem is overcome by a new amplification concept: Frequency domain Optical Parametric Amplification - FOPA. It enables simultaneous up-scaling of peak power and amplified spectral bandwidth and can be performed at any wavelength range of conventional amplification schemes, however, with the capability to amplify single cycles of light. The key idea for amplification of octave-spanning spectra without loss of spectral bandwidth is to amplify the broad spectrum ``slice by slice'' in the frequency domain, i.e. in the Fourier plane of a 4f-setup. The striking advantages of this scheme, are its capability to amplify (more than) one octave of bandwidth without shorting the corresponding pulse duration. This is because ultrabroadband phase matching is not defined by the properties of the nonlinear crystal employed but the number of crystals employed. In the same manner, to increase the output energy one simply has to increase the spectral extension in the Fourier plane and to add one more crystal. Thus, increasing pulse energy and shortening its duration accompany each other. A proof of principle experiment was carried out at ALLS on the sub-two cycle IR beam line and yielded record breaking performance in the field of few-cycle IR lasers. 100 μJ two-cycle pulses from a hollow core fibre compression setup were amplified to 1.43mJ without distorting spatial or temporal properties. Pulse duration at the input of FOPA and after FOPA remains the same. Recently, we have started upgrading this system to be pumped by 250 mJ to reach 40 mJ two-cycle IR few-cycle pulses and latest results will be presented at the conference. Furthermore, the extension of the concept of FOPA to other nonlinear optical processes will be discussed. Frequency domain nonlinear optics.

  15. Full waveform inversion in the frequency domain using direct iterative T-matrix methods

    NASA Astrophysics Data System (ADS)

    Jakobsen, Morten; Ursin, Bjørn

    2015-06-01

    We present two direct iterative solutions to the nonlinear seismic waveform inversion problem that are based on volume integral equation methods for seismic forward modelling in the acoustic approximation. The solutions are presented in the frequency domain, where accurate inversion results can often be obtained using a relatively low number of frequency components. Our inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. Both these solutions update the wavefield within the scattering domain after each iteration. The main difference is that the background medium Green functions are kept fixed in the first solution, but updated after each iteration in the second solution. This means that our solutions are very similar to the Born iterative (BI) and the distorted Born iterative (DBI) methods that are commonly used in acoustic and electromagnetic inverse scattering. However, we have eliminated the need to perform a full forward simulation (or to invert a huge matrix) at each iteration via the use of an iterative T-matrix method for fixed background media for the BI method and a variational T-matrix method for dynamic background media for the DBI method. The T-matrix (variation) is linearly related with the seismic wavefield data (residuals), but related with the unknown scattering potential model parameter (updates) in a non-linear manner, which is independent of the source-receiver configuration. This mathematical structure, which allows one to peel off the effects of the source-receiver configuration, is very attractive when dealing with multiple (simultaneous) sources, and is also compatible with the (future) use of renormalization methods for dealing with local minima problems. To illustrate the performance and potential of the two direct iterative methods for FWI, we performed a series of numerical

  16. Substructure coupling in the frequency domain

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Frequency domain analysis was found to be a suitable method for determining the transient response of systems subjected to a wide variety of loads. However, since a large number of calculations are performed within the discrete frequency loop, the method loses it computational efficiency if the loads must be represented by a large number of discrete frequencies. It was also discovered that substructure coupling in the frequency domain work particularly well for analyzing structural system with a small number of interface and loaded degrees of freedom. It was discovered that substructure coupling in the frequency domain can lead to an efficient method of obtaining natural frequencies of undamped structures. It was also found that the damped natural frequencies of a system may be determined using frequency domain techniques.

  17. Study of Skin Phantoms by Photothermal Radiometry in Frequency Domain and Multivariate Methods

    NASA Astrophysics Data System (ADS)

    Pichardo-Molina, J. L.; Gutiérez-Juárez, G.; Landa-Hernandez, A.; Barbosa-Garcia, O.; Ivanov, R.; Huerta-Franco, M. R.

    2008-12-01

    In this paper the use of the photothermal radiometry technique in the frequency domain (PRTF) and the use of multivariate methods in the study of two types of skin phantoms: (a) one in which skin pigmentation was simulated dyeing the gel phantom and (b) the other consists of exposure of animal skin samples to different degrees of thermal damage. In experiment (a), gel phantoms were prepared with different concentrations of methylene blue (MB). The mean values of the radiometry signal (RS) show significant differences in only those cases in which changes in the concentration of MB were higher than 0.38 mM. This result was confirmed with a t test for independent samples of the data ( p < 0.05). The mean values of the amplitude and phase signal do not permit discrimination between phantoms with changes in pigmentation equal to or lower than this value. However, principal component analysis (PCA) demonstrated that it is possible to discriminate between phantoms with changes in molar concentration equal to 0.38 mM (for the phase signal). In the case of experiment (b), the following four groups of pork skin samples were analyzed: one consists of samples of fresh skin, while the other three consist of samples exposed to thermal damage at 45 °C (the exposure time was 4 s) and 80 °C (exposure times were 4 s and 8 s, respectively). The mean values of the RS for each group of samples did not show a clear visual discrimination. However, the t test for independent samples applied to the data demonstrated significant differences only between fresh skin and skin exposure to thermal damage at 80 °C (with exposure times of 4 s and 8 s). PCA was used to discriminate between the four different skin samples.

  18. A Fast Method of Transforming Relaxation Functions Into the Frequency Domain

    PubMed Central

    Mopsik, Frederick I.

    1999-01-01

    The limits to the error due to truncation of the numeric integration of the one-sided Laplace transform of a relaxation function in the time domain into its equivalent frequency domain are established. Separate results are given for large and small ω. These results show that, for a given ω, only a restricted range of time samples is needed to perform the computation to a given accuracy. These results are then combined with a known error estimate for integration by cubic splines to give a good estimate for the number of points needed to perform the computation to a given accuracy. For a given data window between t1 and t2, the computation time is shown to be proportional to ln(t1/t2).

  19. Frequency domain modelling of wind turbine structures

    SciTech Connect

    Soerensen, P.; Larsen, G.C.; Christensen, C.J.

    1995-09-01

    The present paper describes a frequency domain model of the structure of an operating horizontal axis wind turbine. The frequency domain model is implemented along with an analogous time domain modeling the Risoe PC code Design Basis 2, and a more detailed description of the model is offered in a Risoe report by Soerensen (1994). The structure of an operating wind turbine is affected by essential non-linearities between structural variables on blades and tower respectively. These non-linearities are caused by the rotation of the blades. The transformations between the blade coordinate systems and the tower coordinate system will depend on the instantaneous azimuth positions of the blades as they rotate. Frequency domain analysis are much faster than time simulations and in some respects they give more insight into the dynamics of the structure. However, the non-linear terms in the dynamic equations for a complex wind turbine structure are usually thought to preclude the use of frequency domain methods. Design Basis 2 is used to verify the frequency domain model comparing loads on the structure calculated with the frequency domain model both to loads calculated with the time domain model and to measured loads. Examples show that frequency and time domain calculations of typical PSD`s of loads are in very good agreement. Also the agreement between the calculated and measured PSD`s is good. Moreover, Design Basis 2 has shown that the frequency domain model results in an extremely fast calculation method.

  20. Frequency-domain elastic full-waveform multiscale inversion method based on dual-level parallelism

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Yuan; Li, Zhen-Chun; Zhang, Kai; Zhang, Xuan

    2015-12-01

    The complexity of an elastic wavefield increases the nonlinearity of inversion. To some extent, multiscale inversion decreases the nonlinearity of inversion and prevents it from falling into local extremes. A multiscale strategy based on the simultaneous use of frequency groups and layer stripping method based on damped wave field improves the stability of inversion. A dual-level parallel algorithm is then used to decrease the computational cost and improve practicability. The seismic wave modeling of a single frequency and inversion in a frequency group are computed in parallel by multiple nodes based on multifrontal massively parallel sparse direct solver and MPI. Numerical tests using an overthrust model show that the proposed inversion algorithm can effectively improve the stability and accuracy of inversion by selecting the appropriate inversion frequency and damping factor in lowfrequency seismic data.

  1. Method for measuring settling phenomena by means of frequency domain instrumentation.

    PubMed

    D'Apuzzo, M; D'Arco, M; Liccardo, A; Vadursi, M

    2016-05-01

    The paper deals with the analysis of settling phenomena that characterize the step response of digital to analog converters, amplifiers, and several other devices. Settling is described by means of a minimal second order model that is suitable to account for the distortion terms recognized in the signal spectrum. An alternative method for dynamic performance assessment of systems characterized by poor settling performance is then proposed. Thanks to the use of high bandwidth spectrum analyzers, the proposed method overtakes the limits characterizing the measurement approaches based on the use of time-domain instruments in the presence of modern ultra-wideband systems. PMID:27250466

  2. Method for measuring settling phenomena by means of frequency domain instrumentation

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, M.; D'Arco, M.; Liccardo, A.; Vadursi, M.

    2016-05-01

    The paper deals with the analysis of settling phenomena that characterize the step response of digital to analog converters, amplifiers, and several other devices. Settling is described by means of a minimal second order model that is suitable to account for the distortion terms recognized in the signal spectrum. An alternative method for dynamic performance assessment of systems characterized by poor settling performance is then proposed. Thanks to the use of high bandwidth spectrum analyzers, the proposed method overtakes the limits characterizing the measurement approaches based on the use of time-domain instruments in the presence of modern ultra-wideband systems.

  3. A frequency domain numerical method for airfoil broadband self-noise prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Qidou; Joseph, Phillip

    2007-01-01

    This paper describes a numerical approach, based in the frequency domain, for predicting the broadband self-noise radiation due to an airfoil situated in a smooth mean flow. Noise is generated by the interaction between the boundary layer turbulence on the airfoil surface and the airfoil trailing edge. Thin airfoil theory is used to deduce the unsteady blade loading. In this paper, the important difference with much of the previous work dealing with trailing edge noise is that the integration of the surface sources for computation of the radiated sound field is evaluated on the actual airfoil surface rather than in the mean-chord plane. The assumption of flat plate geometry in the calculation of radiation is therefore avoided. Moreover, the solution is valid in both near and far fields and reduces to the analytic solution due to Amiet when the airfoil collapses to a flat plate with large span, and the measurement point is taken to the far field. Predictions of the airfoil broadband self-noise radiation presented here are shown to be in reasonable agreement with the predictions obtained using the Brooks approach, which are based on a comprehensive database of experimental data. Also investigated in this paper is the effect on the broadband noise prediction of relaxing the 'frozen-gust' assumption, whereby the turbulence at each frequency comprises a continuous spectrum of streamwise wavenumber components. It is shown that making the frozen gust assumption yields an under-prediction of the noise spectrum by approximately 2dB compared with that obtained when this assumption is relaxed, with the largest occurring at high frequencies. This paper concludes with a comparison of the broadband noise directivity for a flat-plat, a NACA 0012 and a NACA 0024 airfoil at non-zero angle of attack. Differences of up to 20 dB are predicted, with the largest difference occurring at a radiation angle of zero degrees relative to the airfoil mean centre line.

  4. Method and apparatus for determining shaliness and oil saturations in earth formations using induced polarization in the frequency domain

    SciTech Connect

    Vinegar, H.J.; Waxman, M.H.

    1982-11-16

    An apparatus is disclosed for borehole measurements of the induced polarization of earth formations. The apparatus consists of an induced polarization logger capable of measuring both in-phase and quadrature conductivities in the frequency domain. A method is described which uses these measurements to determine cation exchange capacity per unit pore volume, Qv, brine conductivity, Cw, and oil and water saturations, So and Sw, in shaly sands.

  5. Equations for the angles of arrival and departure for multivariable root loci using frequency-domain methods

    NASA Technical Reports Server (NTRS)

    Yagle, A. E.; Levy, B. C.

    1983-01-01

    Frequency domain methods are developed to obtain explicit equations for the angles of arrival and departure for multivariable root loci. The techniques involve an evaluation of polynomials formulated within the transfer function matrix. The equations defined require simpler computations than the state-space results of Shaked (1976). A class of higher order poles and zeros is formulated in terms of simpler equations than Shaked's, and the equations are shown to be generalizations of the single-input-single-output root locus equations.

  6. Frequency Domain Analysis of Beat-Less Control Method for Converter-Inverter Driving Systems Applied to AC Electric Cars

    NASA Astrophysics Data System (ADS)

    Kimura, Akira

    In inverter-converter driving systems for AC electric cars, the DC input voltage of an inverter contains a ripple component with a frequency that is twice as high as the line voltage frequency, because of a single-phase converter. The ripple component of the inverter input voltage causes pulsations on torques and currents of driving motors. To decrease the pulsations, a beat-less control method, which modifies a slip frequency depending on the ripple component, is applied to the inverter control. In the present paper, the beat-less control method was analyzed in the frequency domain. In the first step of the analysis, transfer functions, which revealed the relationship among the ripple component of the inverter input voltage, the slip frequency, the motor torque pulsation and the current pulsation, were derived with a synchronous rotating model of induction motors. An analysis model of the beat-less control method was then constructed using the transfer functions. The optimal setting of the control method was obtained according to the analysis model. The transfer functions and the analysis model were verified through simulations.

  7. Frequency-domain Hadamard spectroscopy

    NASA Astrophysics Data System (ADS)

    Kupče, Ēriks; Freeman, Ray

    2003-05-01

    A new technique is proposed for multichannel excitation and detection of NMR signals in the frequency domain, an alternative to the widely used pulse-excited Fourier transform method. An extensive array of N radiofrequency irradiation channels covers the spectrum of interest. A selective radiofrequency pulse sequence is applied to each channel, generating a steady-state NMR response acquired one-point-at-a-time in the intervals between pulses. The excitation pattern is repeated N times, phase-encoded according to a Hadamard matrix, and the corresponding N composite responses are decoded by reference to the same matrix. This multiplex technique offers the same sensitivity advantage as conventional Fourier transform spectroscopy. The irradiation pattern may be tailored to concentrate on interesting spectral regions, to facilitate homonuclear double resonance, or to avoid exciting strong solvent peaks. As no free induction decay is involved, the new method avoids problems of pulse breakthrough or lineshape distortion by premature termination of the time-domain signal.

  8. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis.

    PubMed

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-01-01

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment. PMID:27322266

  9. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis

    PubMed Central

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-01-01

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment. PMID:27322266

  10. Methods for rapid frequency-domain characterization of leakage currents in silicon nanowire-based field-effect transistors.

    PubMed

    Roinila, Tomi; Yu, Xiao; Verho, Jarmo; Li, Tie; Kallio, Pasi; Vilkko, Matti; Gao, Anran; Wang, Yuelin

    2014-01-01

    Silicon nanowire-based field-effect transistors (SiNW FETs) have demonstrated the ability of ultrasensitive detection of a wide range of biological and chemical targets. The detection is based on the variation of the conductance of a nanowire channel, which is caused by the target substance. This is seen in the voltage-current behavior between the drain and source. Some current, known as leakage current, flows between the gate and drain, and affects the current between the drain and source. Studies have shown that leakage current is frequency dependent. Measurements of such frequency characteristics can provide valuable tools in validating the functionality of the used transistor. The measurements can also be an advantage in developing new detection technologies utilizing SiNW FETs. The frequency-domain responses can be measured by using a commercial sine-sweep-based network analyzer. However, because the analyzer takes a long time, it effectively prevents the development of most practical applications. Another problem with the method is that in order to produce sinusoids the signal generator has to cope with a large number of signal levels. This may become challenging in developing low-cost applications. This paper presents fast, cost-effective frequency-domain methods with which to obtain the responses within seconds. The inverse-repeat binary sequence (IRS) is applied and the admittance spectroscopy between the drain and source is computed through Fourier methods. The methods is verified by experimental measurements from an n-type SiNW FET. PMID:25161832

  11. phiFLIM: a new method to avoid aliasing in frequency-domain fluorescence lifetime imaging microscopy.

    PubMed

    Van Munster, E B; Gadella, T W J

    2004-01-01

    In conventional wide-field frequency-domain fluorescence lifetime imaging microscopy (FLIM), excitation light is intensity-modulated at megahertz frequencies. Emitted fluorescence is recorded by a CCD camera through an image intensifier, which is modulated at the same frequency. From images recorded at various phase differences between excitation and intensifier gain modulation, the phase and modulation depth of the emitted light is obtained. The fluorescence lifetime is determined from the delay and the decrease in modulation depth of the emission relative to the excitation. A minimum of three images is required, but in this case measurements become susceptible to aliasing caused by the presence of higher harmonics. Taking more images to avoid this is not always possible owing to phototoxicity or movement. A method is introduced, phiFLIM, requiring only three recordings that is not susceptible to aliasing. The phase difference between the excitation and the intensifier is scanned over the entire 360 degrees range following a predefined phase profile, during which the image produced by the intensifier is integrated onto the CCD camera, yielding a single image. Three different images are produced following this procedure, each with a different phase profile. Measurements were performed with a conventional wide-field frequency-domain FLIM system based on an acousto-optic modulator for modulation of the excitation and a microchannel-plate image intensifier coupled to a CCD camera for the detection. By analysis of the harmonic content of measured signals it was found that the third harmonic was effectively the highest present. Using the conventional method with three recordings, phase errors due to aliasing of up to +/- 29 degrees and modulation depth errors of up to 30% were found. Errors in lifetimes of YFP-transfected HeLa cells were as high as 100%. With phiFLIM, using the same specimen and settings, systematic errors due to aliasing did not occur. PMID:14678510

  12. An adaptive subspace trust-region method for frequency-domain seismic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Zhang, Huan; Li, Xiaofan; Song, Hanjie; Liu, Shaolin

    2015-05-01

    Full waveform inversion is currently considered as a promising seismic imaging method to obtain high-resolution and quantitative images of the subsurface. It is a nonlinear ill-posed inverse problem, the main difficulty of which that prevents the full waveform inversion from widespread applying to real data is the sensitivity to incorrect initial models and noisy data. Local optimization theories including Newton's method and gradient method always lead the convergence to local minima, while global optimization algorithms such as simulated annealing are computationally costly. To confront this issue, in this paper we investigate the possibility of applying the trust-region method to the full waveform inversion problem. Different from line search methods, trust-region methods force the new trial step within a certain neighborhood of the current iterate point. Theoretically, the trust-region methods are reliable and robust, and they have very strong convergence properties. The capability of this inversion technique is tested with the synthetic Marmousi velocity model and the SEG/EAGE Salt model. Numerical examples demonstrate that the adaptive subspace trust-region method can provide solutions closer to the global minima compared to the conventional Approximate Hessian approach and the L-BFGS method with a higher convergence rate. In addition, the match between the inverted model and the true model is still excellent even when the initial model deviates far from the true model. Inversion results with noisy data also exhibit the remarkable capability of the adaptive subspace trust-region method for low signal-to-noise data inversions. Promising numerical results suggest this adaptive subspace trust-region method is suitable for full waveform inversion, as it has stronger convergence and higher convergence rate.

  13. A novel method for sensing metastatic cells in the CSF of pediatric population with medulloblastoma by frequency domain FLIM system

    NASA Astrophysics Data System (ADS)

    Yahav, Gilad; Fixler, Dror; Gershanov, Sivan; Goldenberg-Cohen, Nitza

    2016-03-01

    Brain tumors are the second leading cause of cancer-related deaths in children, after leukemia. Patients with cancer in the central nervous system have a very low recovery rate. Today known imaging and cytology techniques are not always sensitive enough for an early detection of both tumor and its metastatic spread, moreover the detection is generally limited, reviewer dependent and takes a relatively long time. Medulloblastoma (MB) is the most common malignant brain tumor in children. The aim of our talk is to present the frequency domain fluorescence lifetime imaging microscopy system as a possible method for an early detection of MB and its metastatic spread in the cerebrospinal fluids within the pediatric population.

  14. a Frequency Domain Based NUMERIC-ANALYTICAL Method for Non-Linear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Sekar, P.

    1998-04-01

    In this paper a multiharmonic balancing technique is used to develop certain algorithms to determine periodic orbits of non-liner dynamical systems with external, parametric and self excitations. Essentially, in this method the non-linear differential equations are transformed into a set of non-linear algebraic equations in terms of the Fourier coefficients of the periodic solutions which are solved by using the Newton-Raphson technique. The method is developed such that both fast Fourier transform and discrete Fourier transform algorithms can be used. It is capable of treating all types of non-linearities and higher dimensional systems. The stability of periodic orbits is investigated by obtaining the monodromy matrix. A path following algorithm based on the predictor-corrector method is also presented to enable the bifurcation analysis. The prediction is done with a cubic extrapolation technique with an arc length incrementation while the correction is done with the use of the least square minimisation technique. The under determined system of equations is solved by singular value decomposition. The suitability of the method is demonstrated by obtaining the bifurcational behaviour of rolling contact vibrations modelled by Hertz contact law.

  15. Frequency domain optical parametric amplification

    PubMed Central

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-01-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968

  16. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  17. Frequency domain photoacoustic and fluorescence microscopy

    PubMed Central

    Langer, Gregor; Buchegger, Bianca; Jacak, Jaroslaw; Klar, Thomas A.; Berer, Thomas

    2016-01-01

    We report on simultaneous frequency domain optical-resolution photoacoustic and fluorescence microscopy with sub-µm lateral resolution. With the help of a blood smear, we show that photoacoustic and fluorescence images provide complementary information. Furthermore, we compare theoretically predicted signal-to-noise ratios of sinusoidal modulation in frequency domain with pulsed excitation in time domain. PMID:27446698

  18. Frequency domain photoacoustic and fluorescence microscopy.

    PubMed

    Langer, Gregor; Buchegger, Bianca; Jacak, Jaroslaw; Klar, Thomas A; Berer, Thomas

    2016-07-01

    We report on simultaneous frequency domain optical-resolution photoacoustic and fluorescence microscopy with sub-µm lateral resolution. With the help of a blood smear, we show that photoacoustic and fluorescence images provide complementary information. Furthermore, we compare theoretically predicted signal-to-noise ratios of sinusoidal modulation in frequency domain with pulsed excitation in time domain. PMID:27446698

  19. Frequency domain FIR and IIR adaptive filters

    NASA Technical Reports Server (NTRS)

    Lynn, D. W.

    1990-01-01

    A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.

  20. Frequency domain state-space system identification

    NASA Technical Reports Server (NTRS)

    Chen, Chung-Wen; Juang, Jer-Nan; Lee, Gordon

    1992-01-01

    An algorithm for identifying state-space models from frequency response data of linear systems is presented. A matrix-fraction description of the transfer function is employed to curve-fit the frequency response data, using the least-squares method. The parameters of the matrix-fraction representation are then used to construct the Markov parameters of the system. Finally, state-space models are obtained through the Eigensystem Realization Algorithm using Markov parameters. The main advantage of this approach is that the curve-fitting and the Markov parameter construction are linear problems which avoid the difficulties of nonlinear optimization of other approaches. Another advantage is that it avoids windowing distortions associated with other frequency domain methods.

  1. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    SciTech Connect

    Gyüre, B.; Márkus, B. G.; Bernáth, B.; Simon, F.; Murányi, F.

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.

  2. Apparatus and method for qualitative and quantitative measurements of optical properties of turbid media using frequency-domain photon migration

    DOEpatents

    Tromberg, Bruce J.; Tsay, Tsong T.; Berns, Michael W.; Svaasand, Lara O.; Haskell, Richard C.

    1995-01-01

    Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid.

  3. Apparatus and method for qualitative and quantitative measurements of optical properties of turbid media using frequency-domain photon migration

    DOEpatents

    Tromberg, B.J.; Tsay, T.T.; Berns, M.W.; Svaasand, L.O.; Haskell, R.C.

    1995-06-13

    Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid. 14 figs.

  4. Frequency Domain Sampling Using Biomedical Imaging Physics

    NASA Astrophysics Data System (ADS)

    Seo, Gun Ha; Chung, Minji; Kyung, Richard

    2015-04-01

    In magnetic resonance image analysis using physical and computational method, the process of transformation from frequency domain to image domain requires significant amount time because Inverse Fourier Transformation (IFT) takes every frequency points to determine the final output image. This paper shows the mechanisms and physics of image formation using the selectivity of proper k-space by removing different amounts of high or low frequencies to create the most optimal magnetic resonance image of a human tibial bone. Originally, square unit step function, N/2-N/10:N/2 + N/10 = 1, was used during the Fourier Transformations. And Gaussian filter, y = exp(-t2/40n) , where t = h-L/2, h = [0,M], L =2*7*N/40, the size of frequency matrix (M, N) = (365,557) was tested. Also circle equations as a filter, r = sqrt((x-M/2)2 + (y-N/2)2) , were tested in creating the images of the human tibial bone to find an efficient filter. The best efficiency occurred when the exponent n in the proposed Gaussian filter equation is in between 3 and 8, and therefore, a new algorithm is needed to find the exact number since the number is not only an integer.

  5. Frequency domain optoacoustic tomography using amplitude and phase

    PubMed Central

    Mohajerani, Pouyan; Kellnberger, Stephan; Ntziachristos, Vasilis

    2014-01-01

    We introduce optoacoustic tomographic imaging using intensity modulated light sources and collecting amplitude and phase information in the frequency domain. Imaging is performed at multiple modulation frequencies. The forward modeling uses the Green's function solution to the pressure wave equation in frequency domain and the resulting inverse problem is solved using regularized least squares minimization. We study the effect of the number of frequencies and of the bandwidth employed on the image quality achieved. The possibility of employing an all-frequency domain optoacoustic imaging for experimental measurements is studied as a function of noise. We conclude that frequency domain optoacoustic tomography may evolve to a practical experimental method using light intensity modulated sources, with advantages over time-domain optoacoustics. PMID:25431755

  6. Time-Domain Frequency Correction Method for Averaging Low-Field NMR Signals Acquired in Urban Laboratory Environment

    NASA Astrophysics Data System (ADS)

    Qiu, Long-Qing; Liu, Chao; Dong, Hui; Xu, Lu; Zhang, Yi; Hans-Joachim, Krause; Xie, Xiao-Ming; Andreas, Offenhäusser

    2012-10-01

    Using a second-order helium-cooled superconducting quantum interference device gradiometer as the detector, ultra-low-field nuclear magnetic resonance (ULF-NMR) signals of protons are recorded in an urban environment without magnetic shielding. The homogeneity and stability of the measurement field are investigated. NMR signals of protons are studied at night and during working hours. The Larmor frequency variation caused by the fluctuation of the external magnetic field during daytime reaches around 5 Hz when performing multiple measurements for about 10 min, which seriously affects the results of averaging. In order to improve the performance of the averaged data, we suggest the use of a data processor, i.e. the so-called time-domain frequency correction (TFC). For a 50-times averaged signal spectrum, the signal-to-noise ratio is enhanced from 30 to 120 when applying TFC while preserving the NMR spectrum linewidth. The TFC is also applied successfully to the measurement data of the hetero-nuclear J-coupling in 2,2,2-trifluoroethanol.

  7. Frequency Domain Calculations Of Acoustic Propagation

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2004-01-01

    Two complex geometry problems are solved using the linearized Euler equations. The impedance mismatch method1 is used to impose the solid surfaces without the need to use a body-fitted grid. The problem is solved in the frequency domain to avoid long run times. Although the harmonic assumption eliminates all time dependence, a pseudo-time term is added to allow conventional iterative methods to be employed. A Jameson type, Runge-Kutta scheme is used to advance the solution in pseudo time. The spatial operator is based on a seven-point, sixth-order finite difference. Constant coefficient, sixth-derivative artificial dissipation is used throughout the domain. A buffer zone technique employing a complex frequency to damp all waves near the boundaries is used to minimize reflections. The results show that the method is capable of capturing the salient features of the scattering, but an excessive number of grid points are required to resolve the phenomena in the vicinity of the solid bodies because the wavelength of the acoustics is relatively short compared with the size of the bodies. Smoothly transitioning into the immersed boundary condition alleviates the difficulties, but a fine mesh is still required.

  8. Spatial frequency domain error budget

    SciTech Connect

    Hauschildt, H; Krulewich, D

    1998-08-27

    The aim of this paper is to describe a methodology for designing and characterizing machines used to manufacture or inspect parts with spatial-frequency-based specifications. At Lawrence Livermore National Laboratory, one of our responsibilities is to design or select the appropriate machine tools to produce advanced optical and weapons systems. Recently, many of the component tolerances for these systems have been specified in terms of the spatial frequency content of residual errors on the surface. We typically use an error budget as a sensitivity analysis tool to ensure that the parts manufactured by a machine will meet the specified component tolerances. Error budgets provide the formalism whereby we account for all sources of uncertainty in a process, and sum them to arrive at a net prediction of how "precisely" a manufactured component can meet a target specification. Using the error budget, we are able to minimize risk during initial stages by ensuring that the machine will produce components that meet specifications before the machine is actually built or purchased. However, the current error budgeting procedure provides no formal mechanism for designing machines that can produce parts with spatial-frequency-based specifications. The output from the current error budgeting procedure is a single number estimating the net worst case or RMS error on the work piece. This procedure has limited ability to differentiate between low spatial frequency form errors versus high frequency surface finish errors. Therefore the current error budgeting procedure can lead us to reject a machine that is adequate or accept a machine that is inadequate. This paper will describe a new error budgeting methodology to aid in the design and characterization of machines used to manufacture or inspect parts with spatial-frequency-based specifications. The output from this new procedure is the continuous spatial frequency content of errors that result on a machined part. If the machine

  9. Comparison of delay compensation methods for real-time hybrid simulation using frequency-domain evaluation index

    NASA Astrophysics Data System (ADS)

    Weijie, Xu; Tong, Guo; Cheng, Chen

    2016-03-01

    The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenarios, however, needs to be quantitatively evaluated. In this study, four compensation methods (i.e., the polynomial extrapolation, the linear acceleration extrapolation, the inverse compensation and the adaptive inverse compensation) are selected and compared experimentally using a frequency evaluation index (FEI) method. The effectiveness of the FEI method is first verified through comparison with the discrete transfer function approach for compensation methods assuming constant delay. Incomparable advantage is further demonstrated for the FEI method when applied to adaptive compensation methods, where the discrete transfer function approach is difficult to implement. Both numerical simulation and laboratory tests with predefined displacements are conducted using sinusoidal signals and random signals as inputs. Findings from numerical simulation and experimental results demonstrate that the FEI method is an efficient and effective approach to compare the performance of different compensation methods, especially for those requiring adaptation of compensation parameters.

  10. Turbulence excited frequency domain damping measurement and truncation effects

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1976-01-01

    Existing frequency domain modal frequency and damping analysis methods are discussed. The effects of truncation in the Laplace and Fourier transform data analysis methods are described. Methods for eliminating truncation errors from measured damping are presented. Implications of truncation effects in fast Fourier transform analysis are discussed. Limited comparison with test data is presented.

  11. Autonomous Frequency-Domain Indentification

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Yam, Yeung; Bayard, David S.; Hadaegh, Fred Y.; Milman, Mark H.; Scheid, Robert E.

    1992-01-01

    Test and data-processing system determines plant models and uncertainties. Integrated system of methods, digital signal-processing, and algorithms identifies parametric model of large, flexible structures. Experiments in development of system conducted on laboratory model intended to represent large space antenna or flexible spacecraft. Also applicable to many terrestrial systems, robust control of dynamic plants and processes, robust control of systems about which knowledge uncertain or incomplete, decentralized control, and knowledge-based control systems.

  12. Analysis of anomalous electrical conductivity and magnetic permeability effects using a frequency domain controlled-source electromagnetic method

    NASA Astrophysics Data System (ADS)

    Noh, Kyubo; Oh, Seokmin; Seol, Soon Jee; Lee, Ki Ha; Byun, Joongmoo

    2016-03-01

    We present a series of processes for understanding and analysing controlled-source electromagnetic (CSEM) responses for a conductive and permeable earth. To realize the CSEM response, a new 3-D CSEM forward modelling algorithm based on an edge finite element method for both electrically conductive and magnetically permeable heterogeneities is developed. The algorithm shows highly accurate results in validation tests against a semi-analytic solution for stratified earth and an integral form of the scattered field. We describe the vector behaviour of an anomalous magnetic field originating from a conductive and permeable anomaly when the loop sources are deployed over a conductive half-space. The CSEM response of the conductive and permeable anomaly is classified into three effects originating from: conductivity perturbations, permeability perturbations and the coupling of these two effects. The separated individual results and the corresponding integral equation form of the anomalous field help to better understand the physical behaviour. We confirm the characteristic features of the CSEM response from the conductive and permeable anomaly, for example, (1) the general dominance of the induction effect in the out-of-phase response accompanied by a non-negligible magnetization effect from the magnetic anomaly in a conductive half-space and (2) the dominance of near frequency-independent magnetization effects in the in-phase response at relatively low frequencies and change in ruling part of the in-phase response into the induction effect as the frequency increases. We also demonstrate the effect of coupling mode and show that its maximum contribution is limited to a few per cent level of other two modes, induction and magnetization mode, even when the heterogeneity of our model is strong. In our synthetic survey, using examples of land-based profiling surveys of low induction number and intermediate regime, we find that the effect of magnetization can be used as an

  13. Frequency-Domain Approach To Determine Magnetic Address-Sensor Separation Distance Using the Harmonic Ratio Method.

    PubMed

    Young, Colin C; Blackley, Benjamin W; Porter, Marc D; Granger, Michael C

    2016-02-16

    In this work, we describe an approach to determine the distance separating a magnetic address from a scanning magnetoresistive sensor, a critical adjustable parameter for certain bioassay analyses where magnetic nanoparticles are used as labels. Our approach is leveraged from the harmonic ratio method (HRM), a method used in the hard drive industry to control the distance separating a magnetoresistive read head from its data platter with nanometer resolution. At the heart of the HRM is an amplitude comparison of a signal's fundamental frequency to that of its harmonics. When the signal is derived from the magnetic field pattern of a periodic array of magnetic addresses, the harmonic ratio contains the information necessary to determine the separation between the address array and the read head. The elegance of the HRM is that there is no need of additional components to the detection platform to determine a separation distance; the streaming "bit signal" contains all the information needed. In this work, we demonstrate that the tenets governing HRM used in the hard drive industry can be applied to the bioanalytical arena where submicrometer to 100 μm separations are required. PMID:26879366

  14. Detector nonlinearity in frequency-domain fluorometry.

    PubMed

    Wirth, M J; Burbage, J D; Zulli, S L

    1993-02-20

    Frequency-domain fluorometry relies on the measurement of the phase and amplitudes of the Fourier components of the time-dependent fluorescence signal. Experimental results that show that a conventional photomultiplier is subject to intensity-dependent phase shifts are presented. The measurements indicate that this is a problem well below the maximum linear current of the photomultiplier response. These results have important implications in frequency-domain fluorescence anisotropy experiments, in which the parallel and the perpendicular components of the emission intensity are inherently different from one another: a phase shift can be introduced by the photomultiplier. PMID:20802776

  15. Frequency domain optical tomography in human tissue

    NASA Astrophysics Data System (ADS)

    Yao, Yuqi; Wang, Yao; Pei, Yaling; Zhu, Wenwu; Hu, Jenhun; Barbour, Randall L.

    1995-10-01

    In this paper, a reconstruction algorithm for frequency-domain optical tomography in human tissue is presented. A fast and efficient multigrid finite difference (MGFD) method is adopted as a forward solver to obtain the simulated detector responses and the required imaging operator. The solutions obtained form MGFD method for 3D problems with weakly discontinuous cocoefficients are compared with analyzed solutions to determine the accuracy of the numerical method. Simultaneous reconstruction of both absorption and scattering coefficients for tissue-like media is accomplished by solving a perturbation equation using the Born approximation. This solution is obtained by a conjugate gradient descent method with Tikhonov regularization. Two examples are given to show the quality of the reconstruction results. Both involve the examination of anatomically accurate optical models of tissue derived from segmented 3D magnetic resonance images to which have been assigned optical coefficients to the designated tissue types. One is a map of a female breast containing two small 'added pathologies', such as tumors. The other is a map of the brain containing a 'local bleeding' area, representing a hemorrhage. The reconstruction results show that the algorithm is computationally practical and can yield qualitatively correct geometry of the objects embedded in the simulated human tissue. Acceptable results are obtaiend even when 10% noise is present in the data.

  16. Method and Apparatus of Multiplexing and Acquiring Data from Multiple Optical Fibers Using a Single Data Channel of an Optical Frequency-Domain Reflectometry (OFDR) System

    NASA Technical Reports Server (NTRS)

    Parker, Jr., Allen R (Inventor); Chan, Hon Man (Inventor); Piazza, Anthony (Nino) (Inventor); Richards, William Lance (Inventor)

    2014-01-01

    A method and system for multiplexing a network of parallel fiber Bragg grating (FBG) sensor-fibers to a single acquisition channel of a closed Michelson interferometer system via a fiber splitter by distinguishing each branch of fiber sensors in the spatial domain. On each branch of the splitter, the fibers have a specific pre-determined length, effectively separating each branch of fiber sensors spatially. In the spatial domain the fiber branches are seen as part of one acquisition channel on the interrogation system. However, the FBG-reference arm beat frequency information for each fiber is retained. Since the beat frequency is generated between the reference arm, the effective fiber length of each successive branch includes the entire length of the preceding branch. The multiple branches are seen as one fiber having three segments where the segments can be resolved. This greatly simplifies optical, electronic and computational complexity, and is especially suited for use in multiplexed or branched OFS networks for SHM of large and/or distributed structures which need a lot of measurement points.

  17. Frequency versus time domain immunity testing of Smart Grid components

    NASA Astrophysics Data System (ADS)

    Gronwald, F.

    2014-11-01

    Smart Grid components often are subject to considerable conducted current disturbances in the frequency range 2-150 kHz and, as a consequence, it is necessary to provide reliable immunity test methods. The relevant basic standard IEC 61000-4-19 that is currently under discussion focusses on frequency domain test methods. It is remarked in this contribution that in the context of frequency domain testing the chosen frequency spacing is related to the resonance response of the system under test which, in turn, is characterized in terms of resonance frequencies and quality factors. These notions apply well to physical system but it is pointed out by the example of an actual smart meter immunity test that smart grid components may exhibit susceptibilities that do not necessarily follow a resonance pattern and, additionally, can be narrowband. As a consequence it is suggested to supplement the present frequency domain test methods by time domain tests which utilize damped sinusoidal excitations with corresponding spectra that properly cover the frequency range 2-150 kHz, as exemplified by the military standard MIL-STD-461.

  18. Analyzing the properties of acceptor mode in two-dimensional plasma photonic crystals based on a modified finite-difference frequency-domain method

    SciTech Connect

    Zhang, Hai-Feng; Ding, Guo-Wen; Lin, Yi-Bing; Chen, Yu-Qing

    2015-05-15

    In this paper, the properties of acceptor mode in two-dimensional plasma photonic crystals (2D PPCs) composed of the homogeneous and isotropic dielectric cylinders inserted into nonmagnetized plasma background with square lattices under transverse-magnetic wave are theoretically investigated by a modified finite-difference frequency-domain (FDFD) method with supercell technique, whose symmetry of every supercell is broken by removing a central rod. A new FDFD method is developed to calculate the band structures of such PPCs. The novel FDFD method adopts a general function to describe the distribution of dielectric in the present PPCs, which can easily transform the complicated nonlinear eigenvalue equation to the simple linear equation. The details of convergence and effectiveness of proposed FDFD method are analyzed using a numerical example. The simulated results demonstrate that the enough accuracy of the proposed FDFD method can be observed compared to the plane wave expansion method, and the good convergence can also be obtained if the number of meshed grids is large enough. As a comparison, two different configurations of photonic crystals (PCs) but with similar defect are theoretically investigated. Compared to the conventional dielectric-air PCs, not only the acceptor mode has a higher frequency but also an additional photonic bandgap (PBG) can be found in the low frequency region. The calculated results also show that PBGs of proposed PPCs can be enlarged as the point defect is introduced. The influences of the parameters for present PPCs on the properties of acceptor mode are also discussed in detail. Numerical simulations reveal that the acceptor mode in the present PPCs can be easily tuned by changing those parameters. Those results can hold promise for designing the tunable applications in the signal process or time delay devices based on the present PPCs.

  19. Scalable video coding in frequency domain

    NASA Astrophysics Data System (ADS)

    Civanlar, Mehmet R.; Puri, Atul

    1992-11-01

    Scalable video coding is important in a number of applications where video needs to be decoded and displayed at a variety of resolution scales. It is more efficient than simulcasting, in which all desired resolution scales are coded totally independent of one another within the constraint of a fixed available bandwidth. In this paper, we focus on scalability using the frequency domain approach. We employ the framework proposed for the ongoing second phase of Motion Picture Experts Group (MPEG-2) standard to study the performance of one such scheme and investigate improvements aimed at increasing its efficiency. Practical issues related to multiplexing of encoded data of various resolution scales to facilitate decoding are considered. Simulations are performed to investigate the potential of a chosen frequency domain scheme. Various prospects and limitations are also discussed.

  20. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  1. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    SciTech Connect

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-10-15

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  2. Frequency Domain Modeling of SAW Devices

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, G. M.

    2007-01-01

    New SAW sensors for integrated vehicle health monitoring of aerospace vehicles are being investigated. SAW technology is low cost, rugged, lightweight, and extremely low power. However, the lack of design tools for MEMS devices in general, and for Surface Acoustic Wave (SAW) devices specifically, has led to the development of tools that will enable integrated design, modeling, simulation, analysis and automatic layout generation of SAW devices. A frequency domain model has been created. The model is mainly first order, but it includes second order effects from triple transit echoes. This paper presents the model and results from the model for a SAW delay line device.

  3. AU-FREDI - AUTONOMOUS FREQUENCY DOMAIN IDENTIFICATION

    NASA Technical Reports Server (NTRS)

    Yam, Y.

    1994-01-01

    The Autonomous Frequency Domain Identification program, AU-FREDI, is a system of methods, algorithms and software that was developed for the identification of structural dynamic parameters and system transfer function characterization for control of large space platforms and flexible spacecraft. It was validated in the CALTECH/Jet Propulsion Laboratory's Large Spacecraft Control Laboratory. Due to the unique characteristics of this laboratory environment, and the environment-specific nature of many of the software's routines, AU-FREDI should be considered to be a collection of routines which can be modified and reassembled to suit system identification and control experiments on large flexible structures. The AU-FREDI software was originally designed to command plant excitation and handle subsequent input/output data transfer, and to conduct system identification based on the I/O data. Key features of the AU-FREDI methodology are as follows: 1. AU-FREDI has on-line digital filter design to support on-orbit optimal input design and data composition. 2. Data composition of experimental data in overlapping frequency bands overcomes finite actuator power constraints. 3. Recursive least squares sine-dwell estimation accurately handles digitized sinusoids and low frequency modes. 4. The system also includes automated estimation of model order using a product moment matrix. 5. A sample-data transfer function parametrization supports digital control design. 6. Minimum variance estimation is assured with a curve fitting algorithm with iterative reweighting. 7. Robust root solvers accurately factorize high order polynomials to determine frequency and damping estimates. 8. Output error characterization of model additive uncertainty supports robustness analysis. The research objectives associated with AU-FREDI were particularly useful in focusing the identification methodology for realistic on-orbit testing conditions. Rather than estimating the entire structure, as is

  4. Frequency domain analysis of knock images

    NASA Astrophysics Data System (ADS)

    Qi, Yunliang; He, Xin; Wang, Zhi; Wang, Jianxin

    2014-12-01

    High speed imaging-based knock analysis has mainly focused on time domain information, e.g. the spark triggered flame speed, the time when end gas auto-ignition occurs and the end gas flame speed after auto-ignition. This study presents a frequency domain analysis on the knock images recorded using a high speed camera with direct photography in a rapid compression machine (RCM). To clearly visualize the pressure wave oscillation in the combustion chamber, the images were high-pass-filtered to extract the luminosity oscillation. The luminosity spectrum was then obtained by applying fast Fourier transform (FFT) to three basic colour components (red, green and blue) of the high-pass-filtered images. Compared to the pressure spectrum, the luminosity spectra better identify the resonant modes of pressure wave oscillation. More importantly, the resonant mode shapes can be clearly visualized by reconstructing the images based on the amplitudes of luminosity spectra at the corresponding resonant frequencies, which agree well with the analytical solutions for mode shapes of gas vibration in a cylindrical cavity.

  5. Identification of characteristic components in frequency domain from signal singularities.

    PubMed

    Miao, Qiang; Wang, Dong; Huang, Hong-Zhong

    2010-03-01

    In rotating machinery condition monitoring, identification of characteristic components is fundamental in many engineering applications so as to obtain fault sensitive features for fault detection and diagnosis. This paper proposed a novel method for the identification of characteristic components in frequency domain based on singularity analysis. In this process, Lipschitz exponent function is constructed from the signal through wavelet-based singularity analysis. In order to highlight the periodic phenomena, autocorrelation transform is employed to extract the periodic exponents and Fourier transform is used to map the time-domain information into frequency domain. Case study with rolling element bearing vibration data shows that the proposed has very excellent capability for the identification of characteristic components compared with traditional methods. PMID:20370219

  6. High-speed optical frequency-domain imaging

    PubMed Central

    Yun, S. H.; Tearney, G. J.; de Boer, J. F.; Iftimia, N.; Bouma, B. E.

    2009-01-01

    We demonstrate high-speed, high-sensitivity, high-resolution optical imaging based on optical frequency-domain interferometry using a rapidly-tuned wavelength-swept laser. We derive and show experimentally that frequency-domain ranging provides a superior signal-to-noise ratio compared with conventional time-domain ranging as used in optical coherence tomography. A high sensitivity of −110 dB was obtained with a 6 mW source at an axial resolution of 13.5 µm and an A-line rate of 15.7 kHz, representing more than an order-of-magnitude improvement compared with previous OCT and interferometric imaging methods. PMID:19471415

  7. Radiative Transport Based Frequency Domain Fluorescence Tomography

    PubMed Central

    Joshi, Amit; Rasmussen, John C.; Sevick-Muraca, Eva M.; Wareing, Todd A.; McGhee, John

    2011-01-01

    We report the development of radiative transport model based fluorescence optical tomography from frequency domain boundary measurements. The coupled radiative transport model for describing NIR fluorescence propagation in tissue is solved by a novel software based on the established Attila™ particle transport simulation platform. The proposed scheme enables the prediction of fluorescence measurements with non-contact sources and detectors at minimal computational cost. An adjoint transport solution based fluorescence tomography algorithm is implemented on dual grids to efficiently assemble the measurement sensitivity Jacobian matrix. Finally, we demonstrate fluorescence tomography on a realistic computational mouse model to locate nM to μM fluorophore concentration distributions in simulated mouse organs. PMID:18364555

  8. Evaluation of the accuracy of brain optical properties estimation at different ages using the frequency-domain multi-distance method

    NASA Astrophysics Data System (ADS)

    Dehaes, Mathieu; Grant, P. Ellen; Sliva, Danielle D.; Roche-Labarbe, Nadège; Pienaar, Rudolph; Boas, David A.; Franceschini, Maria Angela; Selb, Juliette

    2011-03-01

    NIRS is safe, non-invasive and offers the possibility to record local hemodynamic parameters at the bedside, avoiding the transportation of neonates and critically ill patients. In this work, we evaluate the accuracy of the frequency-domain multi-distance (FD-MD) method to retrieve brain optical properties from neonate to adult. Realistic measurements are simulated using a 3D Monte Carlo modeling of light propagation. Height different ages were investigated: a term newborn of 38 weeks gestational age, two infants of 6 and 12 months of age, a toddler of 2 year (yr.) old, two children of 5 and 10 years of age, a teenager of 14 yr. old, and an adult. Measurements are generated at multiple distances on the right parietal area of head models and fitted to a homogeneous FD-MD model to estimate the brain optical properties. In the newborn, infants, toddler and 5 yr. old child models, the error was dominated by the head curvature, while the superficial layer in the 10 yr. old child, teenager and adult heads. The influence of the CSF is also evaluated. In this case, absorption coefficients suffer from an additional error. In all cases, measurements at 5 mm provided worse estimation because of the diffusion approximation.

  9. Optimal System Realization in Frequency Domain

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Maghami, Peiman G.

    1999-01-01

    Several approaches are presented to identify an experimental system model directly from frequency response data. The formulation begins with a matrix-fraction description as the model structure. Frequency weighting such as exponential weighting is introduced to solve a weighted least-squares problem to obtain the coefficient matrices for the matrix-fraction description. A multi-variable state-space model can then be formed using the coefficient matrices of the matrix-fraction description. An approach is introduced to fine-tune the model using non-linear programming methods to minimize the desired cost function. The method deals with the model in the real Schur or modal form and reassigns a subset of system poles using a nonlinear optimizer. At every optimization step, the input and output influence matrices are refined through least-squares procedures. The proposed approaches are used to identify an analytical model for a NASA testbed from experimental data.

  10. Autonomous Frequency-Domain System-Identification Program

    NASA Technical Reports Server (NTRS)

    Yam, Yeung; Mettler, Edward; Bayard, David S.; Hadaegh, Fred Y.; Milman, Mark H.; Scheid, Robert E.

    1993-01-01

    Autonomous Frequency Domain Identification (AU-FREDI) computer program implements system of methods, algorithms, and software developed for identification of parameters of mathematical models of dynamics of flexible structures and characterization, by use of system transfer functions, of such models, dynamics, and structures regarded as systems. Software considered collection of routines modified and reassembled to suit system-identification and control experiments on large flexible structures.

  11. Time and frequency domain characteristics of detrending-operation-based scaling analysis: Exact DFA and DMA frequency responses.

    PubMed

    Kiyono, Ken; Tsujimoto, Yutaka

    2016-07-01

    We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale. PMID:27575081

  12. Time and frequency domain characteristics of detrending-operation-based scaling analysis: Exact DFA and DMA frequency responses

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Tsujimoto, Yutaka

    2016-07-01

    We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale.

  13. Time domain and frequency domain design techniques for model reference adaptive control systems

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1971-01-01

    Some problems associated with the design of model-reference adaptive control systems are considered and solutions to these problems are advanced. The stability of the adapted system is a primary consideration in the development of both the time-domain and the frequency-domain design techniques. Consequentially, the use of Liapunov's direct method forms an integral part of the derivation of the design procedures. The application of sensitivity coefficients to the design of model-reference adaptive control systems is considered. An application of the design techniques is also presented.

  14. Resonant frequency analysis of a Lamé-mode resonator on a quartz plate by the finite-difference time-domain method using the staggered grid with the collocated grid points of velocities

    NASA Astrophysics Data System (ADS)

    Yasui, Takashi; Hasegawa, Koji; Hirayama, Koichi

    2016-07-01

    The finite-difference time-domain (FD-TD) method using a staggered grid with the collocated grid points of velocities (SGCV) was formulated for elastic waves propagating in anisotropic solids and for a rectangular SGCV. Resonant frequency analysis of Lamé-mode resonators on a quartz plate was carried out to confirm the accuracy and validity of the proposed method. The resonant frequencies for the fundamental and higher-order Lamé-modes calculated by the proposed method agreed very well with their theoretical values.

  15. Frequency-domain direct waveform inversion based on perturbation theory

    NASA Astrophysics Data System (ADS)

    Kwak, Sangmin; Kim, Youngseo; Shin, Changsoo

    2014-05-01

    A direct waveform inversion based on perturbation theory is proposed to delineate a subsurface velocity structure from seismic data. This technique can directly compute the difference between the actual subsurface velocity and an initial guess of the velocity, while full waveform inversion updates the velocity model in the directions of reducing the data residual. Unlike full waveform inversion using the steepest descent method, the direct waveform inversion does not require a proper step length to iteratively update the velocity model. We present an algorithm for the waveform inversion method in the frequency domain and numerical examples demonstrating how the inversion method can reconstruct subsurface velocity structures using surface seismic data. The time-domain seismograms synthesized in the inversion procedure match the corresponding shot-gather seismograms of field data.

  16. Frequency Domain Beamforming for a Deep Space Network Downlink Array

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2012-01-01

    This paper describes a frequency domain beamformer to array up to 8 antennas of NASA's Deep Space Network currently in development. The objective of this array is to replace and enhance the capability of the DSN 70m antennas with multiple 34m antennas for telemetry, navigation and radio science use. The array will coherently combine the entire 500 MHz of usable bandwidth available to DSN receivers. A frequency domain beamforming architecture was chosen over a time domain based architecture to handle the large signal bandwidth and efficiently perform delay and phase calibration. The antennas of the DSN are spaced far enough apart that random atmospheric and phase variations between antennas need to be calibrated out on an ongoing basis in real-time. The calibration is done using measurements obtained from a correlator. This DSN Downlink Array expands upon a proof of concept breadboard array built previously to develop the technology and will become an operational asset of the Deep Space Network. Design parameters for frequency channelization, array calibration and delay corrections will be presented as well a method to efficiently calibrate the array for both wide and narrow bandwidth telemetry.

  17. Analysis of frequency domain frame detection and synchronization in OQAM-OFDM systems

    NASA Astrophysics Data System (ADS)

    Thein, Christoph; Schellmann, Malte; Peissig, Jürgen

    2014-12-01

    For future communication systems, filter bank multicarrier schemes offer the flexibility to increase spectrum utilization in heterogeneous wireless environments by good separation of signals in the frequency domain. To fully exploit this property for frame detection and synchronization, the advantage of the filter bank should be taken at the receiver side. In this work, the concept of frequency domain processing for frame detection and synchronization is analyzed and a suitable preamble design as well as corresponding estimation algorithms is discussed. The theoretical performance of the detection and estimation schemes is derived and compared with simulation-based assessments. The results show that, even though the frequency domain algorithms are sensitive to carrier frequency offsets, satisfactory frame detection and synchronization can be achieved in the frequency domain. In comparison to time domain synchronization methods, the computational complexity increases; however, enhanced robustness in shared spectrum access scenarios is gained in case the described frequency domain approach is utilized.

  18. Visual saliency: a biologically plausible contourlet-like frequency domain approach

    PubMed Central

    Bian, Peng

    2010-01-01

    In this paper we propose a fast frequency domain saliency detection method that is also biologically plausible, referred to as frequency domain divisive normalization (FDN). We show that the initial feature extraction stage, common to all spatial domain approaches, can be simplified to a Fourier transform with a contourlet-like grouping of coefficients, and saliency detection can be achieved in frequency domain. Specifically, we show that divisive normalization, a model of cortical surround inhibition, can be conducted in frequency domain. Since Fourier coefficients are global in space, we extend to this model by conducting piecewise FDN (PFDN) using overlapping local patches to provide better biological plausibility. Not only do FDN and PFDN outperform current state-of-the-art methods in eye fixation prediction, they are also faster. Speed and simplicity are advantages of our frequency domain approach, and its biological plausibility is the main contribution of our paper. PMID:21886671

  19. Frequency-domain measurement of luminescent lanthanide chelates.

    PubMed

    Hyppänen, Iko; Soukka, Tero; Kankare, Jouko

    2010-08-01

    The sinusoidal modulation of excitation intensity and phase-sensitive detection of emission is ideally suitable for the accurate determination of the lifetime and intensity of lanthanide luminescence. In this work we elaborate on the general mathematical and instrumental techniques of the frequency-domain (FD) measurements in the low-frequency domain below 100 kHz. A modular FD luminometer is constructed by using a UV-LED as the excitation source, proper light filters in the excitation and emission paths, a photomultiplier with a fast preamplifier, and a conventional dual-phase lock-in amplifier. Starting from the set of linear differential equations governing the excited-state processes of the lanthanide chelates, an equation linking the luminescence intensity to the general form of the excitation modulation was derived. Application to the sinusoidal modulation in the Euler's exponential form gives the expression for the in-phase and out-of-phase signals of a dual-phase lock-in amplifier. It is shown that by using a relatively large number of logarithmically equidistant modulation frequencies it is possible to use the Kramers-Kronig relation for checking the compatibility of the out-of-phase and in-phase signals. As an example, the emission from two different europium(III) chelates were measured by using 200 modulation frequencies between 10 Hz and 100 kHz. In addition to the conventional transition between (5)D(0) and (7)F(2) levels emitting at 615 nm, also the emission from the transition between (5)D(1) and (7)F(1) levels at ca. 540 nm was measured. The latter emission was also measured at different temperatures, yielding the energy difference between the (5)D(1) and (5)D(0) levels. The relatively large number of modulation frequencies allows also an accurate determination of lifetimes and corresponding amplitudes by using an appropriate nonlinear regression method. Comparison of the time-domain and frequency-domain methods shows that the weighting of data is

  20. Frequency and time domain modeling of high speed amplifier

    NASA Astrophysics Data System (ADS)

    Opalska, Katarzyna

    2015-09-01

    The paper presents the lumped model of high speed amplifier useful for frequency and time domain (also large signal) simulation. Model is constructed on the basis of two-domain device measurements, namely small signal frequency parameters and time response to the input step of varying amplitude. Rational approximation of frequency domain data leads to small signal model composed of RLC subcircuits and controlled sources. Next, the model is complimented with the nonlinearities identified from time-domain measurements, including those taken for large input signals. Final amplifier model implemented in SPICE simulator is shown to correctly render the behavior of the device over the wide variety of operating conditions.

  1. A statistical package for computing time and frequency domain analysis

    NASA Technical Reports Server (NTRS)

    Brownlow, J.

    1978-01-01

    The spectrum analysis (SPA) program is a general purpose digital computer program designed to aid in data analysis. The program does time and frequency domain statistical analyses as well as some preanalysis data preparation. The capabilities of the SPA program include linear trend removal and/or digital filtering of data, plotting and/or listing of both filtered and unfiltered data, time domain statistical characterization of data, and frequency domain statistical characterization of data.

  2. Frequency Domain Optical Coherence Tomography Techniques in Eye Imaging

    NASA Astrophysics Data System (ADS)

    Wojtkowski, M.; Kowalczyk, A.; Targowski, P.; Gorczyñska, I.

    2000-12-01

    This contribution presents an application of frequency-domain optical tomography to ophthalmology. Essential theoretical foundations of time-domain and frequency-domain optical tomography are presented. Images of sections through the anterior chamber, the corneo-scleral angle and fundus of the eye are reconstructed from the spectral fringes. The morphological information gained by tomograms is important for diagnosing and planning of a treatment of glaucoma.

  3. Frequency Dependent Microwave Impedance Microscopy of Ferroelectric Domain Walls

    NASA Astrophysics Data System (ADS)

    Johnston, Scott; Shen, Zhi-Xun

    ABO3 ferroelectrics are known to exhibit domain wall conductivity which is of great fundamental and technological interest. Microwave Impedance Microscopy is a near field measurement technique which allows local, non-contact measurement of AC conductivity and permittivity. In this work, Microwave Impedance Microscopy over a wide frequency range is used to probe the electrical properties of domain walls in ABO3 ferroelectrics. An unexpected, strong frequency dependence in the microwave dissipation near domain walls is observed.

  4. Frequency and Time Domain Modeling of Acoustic Liner Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.

    1982-01-01

    As part of a research program directed at the acoustics of advanced subsonic propulsion systems undertaken at NASA Langley, Duke University was funded to develop a boundary condition model for bulk-reacting nacelle liners. The overall objective of the Langley program was to understand and predict noise from advanced subsonic transport engines and to develop related noise control technology. The overall technical areas included: fan and propeller source noise, acoustics of ducts and duct liners, interior noise, subjective acoustics, and systems noise prediction. The Duke effort was directed toward duct liner acoustics for the development of analytical methods to characterize liner behavior in both frequency domain and time domain. A review of duct acoustics and liner technology can be found in Reference [1]. At that time, NASA Langley was investigating the propulsion concept of an advanced ducted fan, with a large diameter housed inside a relatively short duct. Fan diameters in excess of ten feet were proposed. The lengths of both the inlet and exhaust portions of the duct were to be short, probably less than half the fan diameter. The nacelle itself would be relatively thin-walled for reasons of aerodynamic efficiency. The blade-passage frequency was expected to be less than I kHz, and very likely in the 200 to 300 Hz range. Because of the design constraints of a short duct, a thin nacelle, and long acoustic wavelengths, the application of effective liner technology would be especially challenging. One of the needs of the NASA Langley program was the capability to accurately and efficiently predict the behavior of the acoustic liner. The traditional point impedance method was not an adequate model for proposed liner designs. The method was too restrictive to represent bulk reacting liners and to allow for the characterization of many possible innovative liner concepts. In the research effort at Duke, an alternative method, initially developed to handle bulk

  5. Two-photon experiments in the frequency domain

    NASA Astrophysics Data System (ADS)

    Mbodji, I.; Olislager, L.; Woodhead, E.; Galmes, B.; Cussey, J.; Furfaro, L.; Emplit, P.; Massar, S.; Phan Huy, K.; Merolla, J.-M.

    2012-06-01

    We report on the study of two-photon interference in the frequency domain. Bell and Hong-Ou-Mandel experiments are investigated. These experiments involve the manipulation of photons in the frequency domain, using off-the-shelf telecommunication components such as electro-optic phase modulators and narrow-band frequency filters. In the first experiment, photon pairs entangled in frequency are created and separated. Each photon is then directed through an independent electro-optic phase modulator. Variation of the radio-frequency parameters of the modulation gives rise to a well-controlled Bessel-shape two-photon interference pattern in the frequency domain. This is efficiently measured with narrow-band frequency filters and superconducting single photon detectors. Experimental measurements exhibit high visibilities (over 99 percent both for net and raw visibilities) and allow the (theoretically proven) optimal violation of a Bell inequality for our setup (by more than 18 standard deviations). The second experiment is a Hong-Ou-Mandel experiment in the frequency domain. We show that a grating (spatial domain) or a phase modulator (temporal domain) can be seen as a frequency beam splitter. A broadband spectrum of photon pairs is divided into two interleaved frequency combs, each one used as an independent input to this acting beam splitter. A theoretical calculation shows clear photon anti-bunching behavior.

  6. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1999-01-01

    A method for real-time estimation of parameters in a linear dynamic state space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight for indirect adaptive or reconfigurable control. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle HARV) were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than 1 cycle of the dominant dynamic mode natural frequencies, using control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements, and could be implemented aboard an aircraft in real time.

  7. Frequency domain, waveform inversion of laboratory crosswell radar data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2010-01-01

    A new waveform inversion for crosswell radar is formulated in the frequency-domain for a 2.5D model. The inversion simulates radar waves using the vector Helmholtz equation for electromagnetic waves. The objective function is minimized using a backpropagation method suitable for a 2.5D model. The inversion is tested by processing crosswell radar data collected in a laboratory tank. The estimated model is consistent with the known electromagnetic properties of the tank. The formulation for the 2.5D model can be extended to inversions of acoustic and elastic data.

  8. A frequency domain approach to handling qualities design

    NASA Technical Reports Server (NTRS)

    Wolovich, W. A.

    1978-01-01

    A method for designing linear multivariable feedback control systems based on desired closed loop transfer matrix information is introduced. The technique which was employed to achieve the final design was based on a theoretical result, known as the structure theorem. The structure theorem was a frequency domain relationship which simplified the expression for the transfer matrix (matrix of transfer functions) of a linear time-invariant multivariable system. The effect of linear state variable feedback on the closed loop transfer matrix of the system was also clarified.

  9. Iterative procedures for wave propagation in the frequency domain

    SciTech Connect

    Kim, Seongjai; Symes, W.W.

    1996-12-31

    A parallelizable two-grid iterative algorithm incorporating a domain decomposition (DD) method is considered for solving the Helmholtz problem. Since a numerical method requires choosing at least 6 to 8 grid points per wavelength, the coarse-grid problem itself is not an easy task for high frequency applications. We solve the coarse-grid problem using a nonoverlapping DD method. To accelerate the convergence of the iteration, an artificial damping technique and relaxation parameters are introduced. Automatic strategies for finding efficient parameters are discussed. Numerical results are presented to show the effectiveness of the method. It is numerically verified that the rate of convergence of the algorithm depends on the wave number sub-linearly and does not deteriorate as the mesh size decreases.

  10. Frequency domain fluorimetry using a mercury vapor lamp

    NASA Astrophysics Data System (ADS)

    Bohn, Matthew J.; Lundin, Michael A.; Marciniak, Michael A.

    2009-04-01

    Frequency Domain (FD) fluorimetry, capitalizes on the frequency response function of a fluorophore and offers independence from light scatter and excitation/emission intensity variations in order to extract the sample's fluorescent lifetime. Mercury vapor lamps, a common source of industrial facility lighting, emit radiation that overlaps the UV/blue absorption spectrum of many fluorophores and may be used as an efficient and portable excitation source. The AC power modulation of mercury vapor lamps modulates the lamp's intensity at 120 Hz (in the United States) and higher harmonics. The fluorescent lifetimes for 3 different materials (willemite, uranium doped glass and U3O8) are measured with conventional techniques and compared with the FD technique using the power harmonics from a mercury vapor lamp. The mercury lamp measurements agree to within 25% of the conventional methods.

  11. Remote Strain Sensing of CFRP Using Microwave Frequency Domain Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote measurement of strain occurring at the first ply of a composite fiber reinforced polymer (CFRP) structure using Radio Frequency (RF) Electro-Magnetic (EM) radiation. While microwave reflectometry has been used to detect disbonds in CFRP structures, its use in detecting strain has been limited. This work will present data demonstrating the measurement of the reactance changes due to loading conditions that are indicative of strain in a CFRP structure. In addition, the basic EM signature will be presented along with an analysis of temperature and humidity effects.

  12. Nonintrusive noncontacting frequency-domain photothermal radiometry of caries

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, Yasser H.; Abd-Elwahab, Bassam

    2010-04-01

    Among diffusion methods, photothermal radiometry (PTR) has the ability to penetrate and yield information about an opaque medium well beyond the range of conventional optical imaging. Owing to this ability, pulsed-laser PTR has been extensively used in turbid media such as biological tissues to study the sub-surface deposition of laser radiation, a task that may be difficult or impossible for many optical methods due to excessive scattering and absorption. In this paper considers the achievements of Pulsed Photothermal Radiometry using IR camera in the investigation of physical properties of biological materials and the diagnostics of the interaction of laser radiation with biological materials. A three-dimensional heat conduction formulation with the use of three-dimensional optical diffusion is developed to derive a turbid frequency-domain PTR model. The present photo-thermal model for frequency-domain PTR may prove useful for non-contact; non-invasive, in situ evaluate the depth profilometric imaging capabilities of FDPTR in monitoring carious and artificial subsurface lesions in human teeth.

  13. Frequency domain effects of low resolution digitization

    NASA Astrophysics Data System (ADS)

    Law, Eugene L.

    Some effects of minimizing the transmitted bandwidth by quantizing to a small number of bits are discussed. Measured performance is presented for four different input signals and one-,three-, and eight-bit quantization. The signals are amplitude modulation, angle modulation, sum of sine waves, and frequency sweep. The analysis are performed using either fast Fourier transforms or a Kay DSP sonograph. The effective dynamic ranges of one- and three-bit quantization are shown to be a function of the input signal characteristics. One- and three-bit quantizations perform best for angle modulated signals and worst for amplitude modulated signals.

  14. Polarization influence on reflectance measurements in the spatial frequency domain.

    PubMed

    Wiest, J; Bodenschatz, N; Brandes, A; Liemert, A; Kienle, A

    2015-08-01

    In this work, we quantify the influence of crossed polarizers on reflectance measurements in the spatial frequency domain. The use of crossed polarizers is a very common approach for suppression of specular surface reflections. However, measurements are typically evaluated using a non-polarized scalar theory. The consequences of this discrepancy are the focus of our study, and we also quantify the related errors of the derived optical properties. We used polarized Monte Carlo simulations for forward calculation of the reflectance from different samples. The samples' scatterers are assumed to be spherical, allowing for the calculation of the scattering functions by Mie theory. From the forward calculations, the reduced scattering coefficient [Formula: see text] and the absorption coefficient μa were derived by means of a scalar theory, as commonly used. Here, we use the analytical solution of the scalar radiative transfer equation. With this evaluation approach, which does not consider polarization, we found large errors in [Formula: see text] and μa in the range of 25% and above. Furthermore, we investigated the applicability of the use of a reference measurement to reduce these errors as suggested in literature. We found that this method is not able to generally improve the accuracy of measurements in the spatial frequency domain. Our general recommendation is to apply a polarized theory when using crossed polarizers. PMID:26158399

  15. Phasor plotting with frequency-domain flow cytometry.

    PubMed

    Cao, Ruofan; Jenkins, Patrick; Peria, William; Sands, Bryan; Naivar, Mark; Brent, Roger; Houston, Jessica P

    2016-06-27

    Interest in time resolved flow cytometry is growing. In this paper, we collect time-resolved flow cytometry data and use it to create polar plots showing distributions that are a function of measured fluorescence decay rates from individual fluorescently-labeled cells and fluorescent microspheres. Phasor, or polar, graphics are commonly used in fluorescence lifetime imaging microscopy (FLIM). In FLIM measurements, the plotted points on a phasor graph represent the phase-shift and demodulation of the frequency-domain fluorescence signal collected by the imaging system for each image pixel. Here, we take a flow cytometry cell counting system, introduce into it frequency-domain optoelectronics, and process the data so that each point on a phasor plot represents the phase shift and demodulation of an individual cell or particle. In order to demonstrate the value of this technique, we show that phasor graphs can be used to discriminate among populations of (i) fluorescent microspheres, which are labeled with one fluorophore type; (ii) Chinese hamster ovary (CHO) cells labeled with one and two different fluorophore types; and (iii) Saccharomyces cerevisiae cells that express combinations of fluorescent proteins with different fluorescence lifetimes. The resulting phasor plots reveal differences in the fluorescence lifetimes within each sample and provide a distribution from which we can infer the number of cells expressing unique single or dual fluorescence lifetimes. These methods should facilitate analysis time resolved flow cytometry data to reveal complex fluorescence decay kinetics. PMID:27410612

  16. Real time frequency domain fibreoptic temperature sensor using ruby crystals.

    PubMed

    Alcala, J R; Liao, S C; Zheng, J

    1996-01-01

    The excited state phosphorescence lifetime of ruby crystals is used to monitor temperature in the physiological range from 15 degrees to 45 degrees C with precision and accuracy less than 1 degree C, in real time. Precision of 0.1 degree C is attained with 3 min integration times. A 500 micron cubic ruby crystal bounded to the distal end of an optical fibre of similar core dimensions is excited with pulsed Ne-He laser light of about 9 microW average power. The instrument uses a sampler for data acquisition, and frequency domain methods for data fitting. The instrument amplifies the a.c. components of the detector output and band limits the signal to 800 Hz. The fundamental frequency of the excitation is set to 24.41 Hz to obtain 32 or less harmonics. This band-limited signal is sampled and averaged between 20 and 100 cycles to obtain temperature measurements in real time. The frequency domain representation of the data is obtained by employing fast Fourier transform algorithms. The phase delay and the modulation ratio, of each sampled harmonic, is then computed. Five to 32 values of the phase and modulation are averaged before computing the sensor lifetime. The technique is capable of measuring precise and accurate excited state lifetimes from subpicowatt luminescent signals in plastic optical fibres. A least squares fit yields the lifetimes of single exponentials. A component of zero lifetime is introduced to account for the backscatter excitation seen by the photodetector leaking through optical interference filters. The phosphorescence lifetimes measured reproducibly to about six parts in 1000, with a 2 s integration time, are used to monitor physiological temperature. Temperatures are computed employing empirical polynomials. The system drift is 3% over 5 h of continuous operation. The instrumentation and methods allow 2.7 s update times and 50 s full response times. PMID:8771039

  17. Ion mobility spectrometer using frequency-domain separation

    DOEpatents

    Martin, Stephen J.; Butler, Michael A.; Frye, Gregory C.; Schubert, W. Kent

    1998-01-01

    An apparatus and method is provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine).

  18. Frequency domain compensation of a DYNGEN turbofan engine model

    NASA Technical Reports Server (NTRS)

    Schafer, R. M.; Gejji, R. R.; Hoppner, P. W.; Longenbaker, W. E.; Sain, M. K.

    1977-01-01

    Following Rosenbrock's ideas regarding the advantages of dominance in linear multivariable control systems, a new graphical technique is used for the design of compensators that achieve dominance. The technique is illustrated with an application to the problem of designing compensators for a linear turbofan-engine model. The resulting design is put into perspective by examining it in the light of two other multivariable frequency-domain methods. One, MacFarlane's method of characteristic loci, is used to realize a final design for stability and low interaction. The other is a direct technique based upon the algebraic expansion of the determinant of the return difference in terms of it's elements. Results from simulations carried out on the NASA DYNGEN software are included.

  19. Ion mobility spectrometer using frequency-domain separation

    DOEpatents

    Martin, S.J.; Butler, M.A.; Frye, G.C.; Schubert, W.K.

    1998-08-04

    An apparatus and method are provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine). 6 figs.

  20. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  1. Time delay measurement in the frequency domain

    DOE PAGESBeta

    Durbin, Stephen M.; Liu, Shih -Chieh; Dufresne, Eric M.; Li, Yuelin; Wen, Haidan

    2015-08-06

    Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (~100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ~1 ps. Improved precision is possible bymore » simply extending the data acquisition time.« less

  2. Time delay measurement in the frequency domain

    SciTech Connect

    Durbin, Stephen M.; Liu, Shih -Chieh; Dufresne, Eric M.; Li, Yuelin; Wen, Haidan

    2015-08-06

    Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (~100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ~1 ps. Improved precision is possible by simply extending the data acquisition time.

  3. A comparison of discrimination capabilities of time- and frequency-domain electromagnetic induction systems

    NASA Astrophysics Data System (ADS)

    Chilaka, Sailaja V.; Faircloth, Daniel L.; Riggs, Lloyd S.; Baginski, Michael E.

    2005-06-01

    This paper discusses the ability of time and frequency domain electromagnetic induction systems to discriminate unexploded ordnance from clutter. Toward this end, time and frequency domain electromagnetic induction systems were built and the responses of a wide variety of targets including loops, spheres, cylinders and inert UXOs were measured. Also, time and frequency responses of test targets are numerically modeled using finite element methods to validate the experimental work. Target information is more distinct in the frequency domain than time domain. Moreover, discrimination performance of the frequency domain electromagnetic induction system was enhanced by almost a factor of two when the usual the low frequency spectrum (30 Hz to 24 kHz) was extended down to extremely low frequencies (1 Hz to 30 Hz). However, data acquisition at extremely low frequencies is a time consuming process especially if data averaging is required to achieve acceptable SNR. Therefore, in practice, it would be better to have two operating modes when using a frequency domain electromagnetic induction system; one with very few operating frequencies and the other operating in the entire band (1 Hz to 24 kHz). Once a target location is marked using the first mode, the system can be used as a "cued" sensor in the second mode, thus improving the discrimination.

  4. AD Conversion Revisited in the Frequency Domain

    NASA Astrophysics Data System (ADS)

    Chikada, Y.

    2010-12-01

    The output of a quantizer is shown in the form of a sum of harmonics and inter-modulations, whose coefficient is also shown in an analytical form using Kummer confluent hypergeometric functions of the first kind. Methods to reduce quantization noise are also discussed.

  5. Segmentation and frequency domain ML pitch estimation of speech signals

    NASA Astrophysics Data System (ADS)

    Hanna, Salim A.

    The rate of oscillation of the vocal cords and its inverse value, the pitch period, are important speech features that are useful for speech analysis/synthesis, speech recognition, and speech coding. An automatic approach for the estimation of the pitch period in continuous speech is presented. The proposed approach considers the segmentation of the speech signal into homogeneous regions and the detection of segments that are generated by vocal cord oscillations prior to pitch estimation. The pitch period of voiced segments is estimated in the frequency domain using a maximum likelihood (ML) procedure. The estimated pitch period is chosen to maximize a likelihood function over the range of expected pitch periods. An efficient simplified realization of the generalized likelihood ratio segmentation method is also described.

  6. Frequency domain photothermal radiometry with spherical solids

    SciTech Connect

    Wang, Chinhua; Liu, Yue; Mandelis, Andreas; Shen, Jun

    2007-04-15

    Motivated by increasing practical and industrial applications of photothermal techniques in the measurement of materials of various shapes with curvature, we extend the applications of photothermal diagnostics to solid spheres, in which both theoretical and experimental photothermal radiometry studies on spherical geometries and thermal diffusivity of the sample are discussed. Based on the Green function method, a full thermal-wave field distribution of a spherical solid is obtained. The characteristics of the thermal-wave field with respect to thermophysical properties of the material, the diameter of the solid, the size of the incident laser beam, and the measurement angle are discussed. Experimental results with steel spheres of different diameters exhibit good agreement between the theory and the experiments.

  7. Uncertainty Modeling Via Frequency Domain Model Validation

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Andrisani, Dominick, II

    1999-01-01

    Abstract The majority of literature on robust control assumes that a design model is available and that the uncertainty model bounds the actual variations about the nominal model. However, methods for generating accurate design models have not received as much attention in the literature. The influence of the level of accuracy of the uncertainty model on closed loop performance has received even less attention. The research reported herein is an initial step in applying and extending the concept of model validation to the problem of obtaining practical uncertainty models for robust control analysis and design applications. An extension of model validation called 'sequential validation' is presented and applied to a simple spring-mass-damper system to establish the feasibility of the approach and demonstrate the benefits of the new developments.

  8. Vector optical fields broken in the spatial frequency domain

    NASA Astrophysics Data System (ADS)

    Gao, Xu-Zhen; Pan, Yue; Li, Si-Min; Wang, Dan; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-03-01

    We theoretically and experimentally explore the redistribution of polarization states and orbital angular momentum (OAM) in the output plane, induced by the symmetry breaking in the spatial frequency domain. When the vector fields are obstructed by sector-shaped filters in the spatial frequency domain, the local polarization states in the output plane undergo an abrupt transition from linear to circular polarization. The results reveal the polarization-dependent splitting and the appearance of a series of opposite OAMs in the output plane. We also find the self-healing effect of the vector fields broken in the spatial frequency domain and further explore its potential application. If the vector optical fields are used for information transferring or for imaging, even if the optical field carrying the information or image is partially blocked, the complete information or image can still be obtained, implying that which may increase the robustness of the information transferring and the imaging.

  9. Real-time background suppression during frequency domain lifetime measurements.

    PubMed

    Herman, Petr; Maliwal, Badri P; Lakowicz, Joseph R; Maliwal, Baldri P

    2002-10-01

    We describe real time background suppression of autofluorescence from biological samples during frequency domain or phase modulation measurements of intensity decays. For these measurements the samples were excited with a train of light pulses with widths below 1 ps. The detector was gated off for a short time period of 10 to 40 ns during and shortly after the excitation pulse. The reference signal needed for the frequency domain measurement was provided by a long-lifetime reference fluorophore which continues to emit following the off-gating pulse. Both the sample and the reference were measured under identical optical and electronic conditions avoiding the need for correction of the photomultiplier tube signal for the gating sequence. We demonstrate frequency domain background suppression using a mixture of short- and long-lifetime probes and for a long-lifetime probe in human plasma with significant autofluorescence. PMID:12381357

  10. An analog filter approach to frequency domain fluorescence spectroscopy

    DOE PAGESBeta

    Trainham, Clifford P.; O'Neill, Mary D.; McKenna, Ian J.

    2015-10-01

    The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modeled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as Spicea can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modeling of the entiremore » system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. Furthermore, the techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response.« less

  11. An Analog Filter Approach to Frequency Domain Fluorescence Spectroscopy.

    PubMed

    Trainham, R; O'Neill, M; McKenna, I J

    2015-11-01

    The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modelled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as SPICE can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modelling of the entire system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. The techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response. The simplification of the analysis mathematics, and the ability to model the entire detection chain, make it possible to develop more compact instruments for remote sensing applications. PMID:26429345

  12. An analog filter approach to frequency domain fluorescence spectroscopy

    SciTech Connect

    Trainham, Clifford P.; O'Neill, Mary D.; McKenna, Ian J.

    2015-10-01

    The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modeled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as Spicea can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modeling of the entire system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. Furthermore, the techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response.

  13. Autonomous frequency domain identification: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Yam, Yeung; Bayard, D. S.; Hadaegh, F. Y.; Mettler, E.; Milman, M. H.; Scheid, R. E.

    1989-01-01

    The analysis, design, and on-orbit tuning of robust controllers require more information about the plant than simply a nominal estimate of the plant transfer function. Information is also required concerning the uncertainty in the nominal estimate, or more generally, the identification of a model set within which the true plant is known to lie. The identification methodology that was developed and experimentally demonstrated makes use of a simple but useful characterization of the model uncertainty based on the output error. This is a characterization of the additive uncertainty in the plant model, which has found considerable use in many robust control analysis and synthesis techniques. The identification process is initiated by a stochastic input u which is applied to the plant p giving rise to the output. Spectral estimation (h = P sub uy/P sub uu) is used as an estimate of p and the model order is estimated using the produce moment matrix (PMM) method. A parametric model unit direction vector p is then determined by curve fitting the spectral estimate to a rational transfer function. The additive uncertainty delta sub m = p - unit direction vector p is then estimated by the cross spectral estimate delta = P sub ue/P sub uu where e = y - unit direction vectory y is the output error, and unit direction vector y = unit direction vector pu is the computed output of the parametric model subjected to the actual input u. The experimental results demonstrate the curve fitting algorithm produces the reduced-order plant model which minimizes the additive uncertainty. The nominal transfer function estimate unit direction vector p and the estimate delta of the additive uncertainty delta sub m are subsequently available to be used for optimization of robust controller performance and stability.

  14. Theoretical analysis of long offset time-lapse frequency domain controlled source electromagnetic signals using the method of moments: Application to the monitoring of a land oil reservoir

    NASA Astrophysics Data System (ADS)

    Schamper, C.; Rejiba, F.; Tabbagh, A.; Spitz, S.

    2011-03-01

    We present a sensitivity study applied to water front monitoring of an onshore oil reservoir, using a remote controlled source electromagnetic method (CSEM) with electric dipoles and a borehole-to-surface configuration. We have developed an optimized and parallelized code based on the method of moments, in order to study the influence of several static or time-varying background uncertainties on the time-lapse CSEM signal (also called 4-D CSEM). Analysis of the relative and absolute variations in phase or quadrature of the time-lapse signal induced by the fluid substitution process, inside the reservoir, has shown that the vertical electric dipole allows the shape of the water front to be monitored, while remaining less sensitive (compared to a horizontal electric source dipole) to the total volume of substituted fluid. We have examined the influence of missed anomalies (1-D/3-D), with more or less conductive properties, near to the ground surface or the reservoir, and with or without time-varying properties. In most cases, the 4-D signal behaves like a reliable filter, canceling almost all response anomalies. However, it can also lead to strong, local perturbations of the time-lapse signal. We have also shown that in the presence of steel cased boreholes at the source location, or with outlying steel cased boreholes, the recording of exploitable data does not present insurmountable difficulties at low frequencies (˜1 Hz), and for a dense array of surface receivers. These positive results with CSEM monitoring suggest that minimal, coarse-time 3-D explorations should be used to ensure reliable interpretation of the monitored data.

  15. Imaging scattering orientation with spatial frequency domain imaging

    PubMed Central

    Konecky, Soren D.; Rice, Tyler; Durkin, Anthony J.; Tromberg, Bruce J.

    2011-01-01

    Optical imaging techniques based on multiple light scattering generally have poor sensitivity to the orientation and direction of microscopic light scattering structures. In order to address this limitation, we introduce a spatial frequency domain method for imaging contrast from oriented scattering structures by measuring the angular-dependence of structured light reflectance. The measurement is made by projecting sinusoidal patterns of light intensity on a sample, and measuring the degree to which the patterns are blurred as a function of the projection angle. We derive a spatial Fourier domain solution to an anisotropic diffusion model. This solution predicts the effects of bulk scattering orientation on the amplitude and phase of the projected patterns. We introduce a new contrast function based on a scattering orientation index (SOI) which is sensitive to the degree to which light scattering is directionally dependent. We validate the technique using tissue simulating phantoms, and ex vivo samples of muscle and brain. Our results show that SOI is independent of the overall amount of bulk light scattering and absorption, and that isotropic versus oriented scattering structures can be clearly distinguished. We determine the orientation of subsurface microscopic scattering structures located up to 600 μm beneath highly scattering (μ′s = 1.5 mm−1) material. PMID:22191918

  16. Frequency Domain Tomography Of Evolving Laser-Plasma Accelerator Structures

    SciTech Connect

    Dong Peng; Reed, Stephen; Kalmykov, Serguei; Shvets, Gennady; Downer, Mike

    2009-01-22

    Frequency Domain Holography (FDH), a technique for visualizing quasistatic objects propagating near the speed of light, has produced 'snapshots' of laser wakefields, but they are averaged over structural variations that occur during propagation through the plasma medium. Here we explore via simulations a generalization of FDH--that we call Frequency Domain Tomography (FDT)--that can potentially record a time sequence of quasistatic snapshots, like the frames of a movie, of the wake structure as it propagates through the plasma. FDT utilizes a several probe-reference pulse pairs that propagate obliquely to the drive pulse and wakefield, along with tomographic reconstruction algorithms similar to those used in medical CAT scans.

  17. Non-stationary frequency domain system identification using time-frequency representations

    NASA Astrophysics Data System (ADS)

    Guo, Yanlin; Kareem, Ahsan

    2016-05-01

    System properties of buildings and bridges may vary with time due to temperature changes, aging or extreme loadings. To identify these time-varying system properties, this study proposes a new output-only non-stationary system identification (SI) framework based on instantaneous or marginal spectra derived from the time-frequency representation, e.g., short time Fourier or wavelet transform. Spectra derived from these time-frequency representations are very popular in tracking time-varying frequencies; however, they have seldom been used to identify the time-varying damping ratio because a short window needed to capture the time-varying information amplifies the bandwidth significantly, which may lead to considerably overestimating the damping ratio. To overcome this shortcoming, this study modifies the theoretical frequency response function (FRF) to explicitly account for the windowing effect, and therefore enables SI directly using instantaneous or marginal spectra derived from the wavelet or short time Fourier transform. The response spectrum estimated using the short time window and the modified FRF are both influenced by the same time window, thus the instantaneous or time-localized marginal spectrum of response can be fitted to the modified FRF to identify frequency and damping ratio at each time instant. This spectral-based SI framework can reliably identify damping in time-varying systems under non-stationary excitations. The efficacy of the proposed framework is demonstrated by both numerical and full-scale examples, and also compared to the time-domain SI method, stochastic subspace identification (SSI), since the time-domain SI approaches and their extensions are popular in identifying time-varying systems utilizing recursive algorithms or moving windows.

  18. Frequency-Domain Identification of XV-15 Tilt-Rotor Aircraft Dynamics in Hovering Flight

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Leung, Joseph G. M.; Dugan, Daniel C.

    1985-01-01

    Frequency-domain methods are used to identify the open-loop dynamics of the XV-15 tilt-rotor aircraft from flight tests. Piloting and data analysis techniques are presented to determine frequency response plots and equivalent transfer function models. The open-loop pitch and roll dynamics for the hover flight condition exhibit unstable low-frequency oscillations, whereas the dynamics in the remaining degrees of freedom are lightly damped and generally decoupled. Comparisons of XV-15 flight-test and simulator data are more favorable for high-frequency inputs (omega greater than 1.0 rad/sec) than low-frequency inputs. Time-domain comparisons of the extracted transfer functions with step response flight data are very favorable, even for large amplitude motions. The results presented in this paper demonstrate the utility of the frequency-domain techniques for dynamics identification and simulator fidelity studies.

  19. Adaptive multidirectional frequency domain filter for noise removal in wrapped phase patterns.

    PubMed

    Liu, Guixiong; Chen, Dongxue; Peng, Yanhua; Zeng, Qilin

    2016-08-01

    In order to avoid the detrimental effects of excessive noise in the phase fringe patterns of a laser digital interferometer over the accuracy of phase unwrapping and the successful detection of mechanical fatigue defects, an effective method of adaptive multidirectional frequency domain filtering is introduced based on the characteristics of the energy spectrum of localized wrapped phase patterns. Not only can this method automatically set the cutoff frequency, but it can also effectively filter out noise while preserving the image edge information. Compared with the sine and cosine transform filtering and the multidirectional frequency domain filtering, the experimental results demonstrate that the image filtered by our method has the fewest number of residues and is the closest to the noise-free image, compared to the two aforementioned methods, demonstrating the effectiveness of this adaptive multidirectional frequency domain filter. PMID:27505376

  20. Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy.

    PubMed

    Boens, Noël; Qin, Wenwu; Basarić, Nikola; Hofkens, Johan; Ameloot, Marcel; Pouget, Jacques; Lefèvre, Jean-Pierre; Valeur, Bernard; Gratton, Enrico; vandeVen, Martin; Silva, Norberto D; Engelborghs, Yves; Willaert, Katrien; Sillen, Alain; Rumbles, Garry; Phillips, David; Visser, Antonie J W G; van Hoek, Arie; Lakowicz, Joseph R; Malak, Henryk; Gryczynski, Ignacy; Szabo, Arthur G; Krajcarski, Don T; Tamai, Naoto; Miura, Atsushi

    2007-03-01

    A series of fluorophores with single-exponential fluorescence decays in liquid solution at 20 degrees C were measured independently by nine laboratories using single-photon timing and multifrequency phase and modulation fluorometry instruments with lasers as excitation source. The dyes that can serve as fluorescence lifetime standards for time-domain and frequency-domain measurements are all commercially available, are photostable under the conditions of the measurements, and are soluble in solvents of spectroscopic quality (methanol, cyclohexane, water). These lifetime standards are anthracene, 9-cyanoanthracene, 9,10-diphenylanthracene, N-methylcarbazole, coumarin 153, erythrosin B, N-acetyl-l-tryptophanamide, 1,4-bis(5-phenyloxazol-2-yl)benzene, 2,5-diphenyloxazole, rhodamine B, rubrene, N-(3-sulfopropyl)acridinium, and 1,4-diphenylbenzene. At 20 degrees C, the fluorescence lifetimes vary from 89 ps to 31.2 ns, depending on fluorescent dye and solvent, which is a useful range for modern pico- and nanosecond time-domain or mega- to gigahertz frequency-domain instrumentation. The decay times are independent of the excitation and emission wavelengths. Dependent on the structure of the dye and the solvent, the excitation wavelengths used range from 284 to 575 nm, the emission from 330 to 630 nm. These lifetime standards may be used to either calibrate or test the resolution of time- and frequency-domain instrumentation or as reference compounds to eliminate the color effect in photomultiplier tubes. Statistical analyses by means of two-sample charts indicate that there is no laboratory bias in the lifetime determinations. Moreover, statistical tests show that there is an excellent correlation between the lifetimes estimated by the time-domain and frequency-domain fluorometries. Comprehensive tables compiling the results for 20 (fluorescence lifetime standard/solvent) combinations are given. PMID:17269654

  1. Underground imaging by frequency-domain electromagnetic migration

    SciTech Connect

    Zhdanov, M.S.; Traynin, P.; Booker, J.R.

    1996-05-01

    A new method of the resistivity imaging based on frequency-domain electromagnetic migration is developed. Electromagnetic (EM) migration involves downward diffusion of observed EM fields whose time flow has been reversed. Unlike downward analytical continuation, migration is a stable procedure that accurately restores the phase of the upgoing field inside the Earth. This method is indented for the processing and interpretation of EM data collected for both TE and TM modes of plane-wave excitation. Until recently, the method could be applied only for determining the position of anomalous structures and for finding interfaces between layers of different conductivity. There were no well developed approaches to the resistivity imaging, which is the key problem in the inversion of EM data. The authors provide a novel approach to determining not only the position of anomalous structures but their resistivity as well. The main difficulty in the practical realization of this approach is determining the background resistivity distribution for migration. They discuss the method of the solution of this problem based on differential transformation of apparent resistivity curves. The final goal of migration is to provide a first order interpretation using a computational effort equivalent to a forward modeling calculation.

  2. Bubble Pulse Cancelation in the Time-Frequency Domain Using Warping Operators

    NASA Astrophysics Data System (ADS)

    Niu, Hai-Qiang; Zhang, Ren-He; Li, Zheng-Lin; Guo, Yong-Gang; He, Li

    2013-08-01

    The received shock waves produced by explosive charges are often polluted by bubble pulses in underwater acoustic experiments. A method based on warping operators is proposed to cancel the bubble pulses in the time-frequency domain. This is applied to the explosive data collected during the Yellow Sea experiment in November 2000. The original received signal is first transformed into a warped signal by warping operators. Then, the warped signal is analyzed in the time-frequency domain. Due to the different features between the shock waves and the bubble pulses in the time-frequency domain for the warped signal, the bubble pulses can be easily filtered out. Furthermore, the shock waves in the original time domain can be retrieved by the inverse warping transformation. The autocorrelation functions and the time-frequency representation show that the bubble pulses can be canceled effectively.

  3. A Windowing Frequency Domain Adaptive Filter for Acoustic Echo Cancellation

    NASA Astrophysics Data System (ADS)

    Wu, Sheng; Qiu, Xiaojun

    This letter proposes a windowing frequency domain adaptive algorithm, which reuses the filtering error to apply window function in the filter updating symmetrically. By using a proper window function to reduce the negative influence of the spectral leakage, the proposed algorithm can significantly improve the performance of the acoustic echo cancellation for speech signals.

  4. Time domain measurement of frequency stability: A tutorial introduction

    NASA Technical Reports Server (NTRS)

    Vanier, J.; Tetu, M.

    1978-01-01

    The theoretical basis behind the definition of frequency stability in the time domain is outlined. Various types of variances were examined. Their differences and interrelation are pointed out. Systems that are generally used in the measurement of these variances are described.

  5. SPA- STATISTICAL PACKAGE FOR TIME AND FREQUENCY DOMAIN ANALYSIS

    NASA Technical Reports Server (NTRS)

    Brownlow, J. D.

    1994-01-01

    The need for statistical analysis often arises when data is in the form of a time series. This type of data is usually a collection of numerical observations made at specified time intervals. Two kinds of analysis may be performed on the data. First, the time series may be treated as a set of independent observations using a time domain analysis to derive the usual statistical properties including the mean, variance, and distribution form. Secondly, the order and time intervals of the observations may be used in a frequency domain analysis to examine the time series for periodicities. In almost all practical applications, the collected data is actually a mixture of the desired signal and a noise signal which is collected over a finite time period with a finite precision. Therefore, any statistical calculations and analyses are actually estimates. The Spectrum Analysis (SPA) program was developed to perform a wide range of statistical estimation functions. SPA can provide the data analyst with a rigorous tool for performing time and frequency domain studies. In a time domain statistical analysis the SPA program will compute the mean variance, standard deviation, mean square, and root mean square. It also lists the data maximum, data minimum, and the number of observations included in the sample. In addition, a histogram of the time domain data is generated, a normal curve is fit to the histogram, and a goodness-of-fit test is performed. These time domain calculations may be performed on both raw and filtered data. For a frequency domain statistical analysis the SPA program computes the power spectrum, cross spectrum, coherence, phase angle, amplitude ratio, and transfer function. The estimates of the frequency domain parameters may be smoothed with the use of Hann-Tukey, Hamming, Barlett, or moving average windows. Various digital filters are available to isolate data frequency components. Frequency components with periods longer than the data collection interval

  6. In vivo spatial frequency domain spectroscopy of two layer media

    NASA Astrophysics Data System (ADS)

    Yudovsky, Dmitry; Nguyen, John Quan M.; Durkin, Anthony J.

    2012-10-01

    Monitoring of tissue blood volume and local oxygen saturation can inform the assessment of tissue health, healing, and dysfunction. These quantities can be estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in skin can be confounded by the strong absorption of melanin in the epidermis and epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. Therefore, a method is desired that decouples the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. A previously developed inverse method based on a neural network forward model was applied to simulated spatial frequency domain reflectance of skin for multiple wavelengths in the near infrared. It is demonstrated that the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis can be determined independently and with minimal coupling. Then, the same inverse method was applied to reflectance measurements from a tissue simulating phantom and in vivo human skin. Oxygen saturation and total hemoglobin concentrations were estimated from the volar forearms of weakly and strongly pigmented subjects using a standard homogeneous model and the present two layer model.

  7. Time-domain control of ultrahigh-frequency nanomechanical systems.

    PubMed

    Liu, N; Giesen, F; Belov, M; Losby, J; Moroz, J; Fraser, A E; McKinnon, G; Clement, T J; Sauer, V; Hiebert, W K; Freeman, M R

    2008-12-01

    Nanoelectromechanical systems could have applications in fields as diverse as ultrasensitive mass detection and mechanical computation, and can also be used to explore fundamental phenomena such as quantized heat conductance and quantum-limited displacement. Most nanomechanical studies to date have been performed in the frequency domain. However, applications in computation and information storage will require transient excitation and high-speed time-domain operation of nanomechanical systems. Here we show a time-resolved optical approach to the transduction of ultrahigh-frequency nanoelectromechanical systems, and demonstrate that coherent control of nanomechanical oscillation is possible through appropriate pulse programming. A series of cantilevers with resonant frequencies ranging from less than 10 MHz to over 1 GHz are characterized using the same pulse parameters. PMID:19057589

  8. Frequency-Domain Interferometry of Electron Bunch Driven Wakefields

    NASA Astrophysics Data System (ADS)

    Zgadzaj, Rafal; Downer, M. C.; Yi, Austin; Shvets, Gennady; Fang, Yun; Muggli, Patric; Yakimenko, Vitaly; Babzien, Marcus; Fedurin, Mikhail; Kusche, Karl

    2012-10-01

    Beam-driven plasma wakefield accelerators (PWFA), such as the ``plasma afterburner'' can potentially greatly increase the particle energies of conventional accelerators . Various schemes using single and multiple bunches of electrons, positrons and protons have been investigated. Appropriately delayed witness bunches have been the usual method to probe the fields of such wakes, and indirectly, the corresponding plasma wake structures. However, the wake structure has not been observed directly in the PWFA. We will report our progress in the development of direct, optical interferometric methods of measuring the plasma density modulation in electron beam driven wakefields. Frequency Domain Holography (FDH), employing two chirped laser pulses (probe and reference) co-propagating with the particle drive-beam and its plasma wake, permits single shot observation of an extended section of the wakefield behind a drive bunch. The chirped, temporally stretched, probe samples several periods of the wake, while the undisturbed reference pulse propagates ahead of the electron drive bunch. The technique is being developed in the Accelerator Test Facility at the Brookhaven National Laboratory as a probe for two and multibunch driven plasmawakefield experiments

  9. Optical Frequency Domain Visualization of Electron Beam Driven Plasma Wakefields

    NASA Astrophysics Data System (ADS)

    Zgadzaj, Rafal; Downer, Michael C.; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl; Fedurin, Michhail; Babzien, Marcus

    2010-11-01

    Bunch driven plasma wakefield accelerators (PWFA), such as the "plasma afterburner," are a promising emerging method for significantly increasing the energy output of conventional particle accelerators [1]. The study and optimization of this method would benefit from an experimental correlation of the drive bunch parameters and the accelerated particle parameters with the corresponding plasma wave structure. However, the plasma wave structure has not been observed directly so far. We will report ongoing development of a noninvasive optical Frequency Domain Interferometric (FDI) [2] and Holographic (FDH) [3] diagnostics of bunch driven plasma wakes. Both FDI and FDH have been previously demonstrated in the case of laser driven wakes. These techniques employ two laser pulses co-propagating with the drive particle bunch and the trailing plasma wave. One pulse propagates ahead of the drive bunch and serves as a reference, while the second is overlapped with the plasma wave and probes its structure. The multi-shot FDI and single-shot FDH diagnostics permit direct noninvasive observation of longitudinal and transverse structure of the plasma wakes. The experiment is being developed at the 70 MeV Linac in the Accelerator Test Facility at Brookhaven National Laboratory to visualize wakes generated by two [4] and multi-bunch [5] drive beams.

  10. Optical Frequency Domain Visualization of Electron Beam Driven Plasma Wakefields

    SciTech Connect

    Zgadzaj, Rafal; Downer, Michael C.; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl; Fedurin, Michhail; Babzien, Marcus

    2010-11-04

    Bunch driven plasma wakefield accelerators (PWFA), such as the 'plasma afterburner', are a promising emerging method for significantly increasing the energy output of conventional particle accelerators. The study and optimization of this method would benefit from an experimental correlation of the drive bunch parameters and the accelerated particle parameters with the corresponding plasma wave structure. However, the plasma wave structure has not been observed directly so far. We will report ongoing development of a noninvasive optical Frequency Domain Interferometric (FDI) and Holographic (FDH) diagnostics of bunch driven plasma wakes. Both FDI and FDH have been previously demonstrated in the case of laser driven wakes. These techniques employ two laser pulses co-propagating with the drive particle bunch and the trailing plasma wave. One pulse propagates ahead of the drive bunch and serves as a reference, while the second is overlapped with the plasma wave and probes its structure. The multi-shot FDI and single-shot FDH diagnostics permit direct noninvasive observation of longitudinal and transverse structure of the plasma wakes. The experiment is being developed at the 70 MeV Linac in the Accelerator Test Facility at Brookhaven National Laboratory to visualize wakes generated by two and multi-bunch drive beams.

  11. Interconnect modeling using integrated time-domain and frequency-domain techniques

    SciTech Connect

    You, Hong; Yeh, Chune-Sin; Gadepally, B.

    1995-12-31

    This paper presents an integrated time- and-frequency-domain technique for characterization and modeling of parasitic effects associated with interconnects. This technique enables direct measurements of critical transient as well as frequency responses of interconnects; accurate and efficient SPICE model extraction for coupled lines; and cross-domain verification of the measured data as well as the extracted models. To illustrate its application this technique is applied to characterize and extract the equivalent circuit model of the I/O bus on a real-world printed circuit board.

  12. Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting

    PubMed Central

    Yun, S. H.; Tearney, G. J.; de Boer, J. F.; Bouma, B. E.

    2009-01-01

    A novel technique using an acousto-optic frequency shifter in optical frequency domain imaging (OFDI) is presented. The frequency shift eliminates the ambiguity between positive and negative differential delays, effectively doubling the interferometric ranging depth while avoiding image cross-talk. A signal processing algorithm is demonstrated to accommodate nonlinearity in the tuning slope of the wavelength-swept OFDI laser source. PMID:19484034

  13. Domain adaptive boosting method and its applications

    NASA Astrophysics Data System (ADS)

    Geng, Jie; Miao, Zhenjiang

    2015-03-01

    Differences of data distributions widely exist among datasets, i.e., domains. For many pattern recognition, nature language processing, and content-based analysis systems, a decrease in performance caused by the domain differences between the training and testing datasets is still a notable problem. We propose a domain adaptation method called domain adaptive boosting (DAB). It is based on the AdaBoost approach with extensions to cover the domain differences between the source and target domains. Two main stages are contained in this approach: source-domain clustering and source-domain sample selection. By iteratively adding the selected training samples from the source domain, the discrimination model is able to achieve better domain adaptation performance based on a small validation set. The DAB algorithm is suitable for the domains with large scale samples and easy to extend for multisource adaptation. We implement this method on three computer vision systems: the skin detection model in single images, the video concept detection model, and the object classification model. In the experiments, we compare the performances of several commonly used methods and the proposed DAB. Under most situations, the DAB is superior.

  14. Multiple Input Design for Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene

    2003-01-01

    A method for designing multiple inputs for real-time dynamic system identification in the frequency domain was developed and demonstrated. The designed inputs are mutually orthogonal in both the time and frequency domains, with reduced peak factors to provide good information content for relatively small amplitude excursions. The inputs are designed for selected frequency ranges, and therefore do not require a priori models. The experiment design approach was applied to identify linear dynamic models for the F-15 ACTIVE aircraft, which has multiple control effectors.

  15. Frequency-Domain Streak Camera and Tomography for Ultrafast Imaging of Evolving and Channeled Plasma Accelerator Structures

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Reed, Stephen; Dong, Peng; Downer, Michael C.

    2010-11-01

    We demonstrate a prototype Frequency Domain Streak Camera (FDSC) that can capture the picosecond time evolution of the plasma accelerator structure in a single shot. In our prototype Frequency-Domain Streak Camera, a probe pulse propagates obliquely to a sub-picosecond pump pulse that creates an evolving nonlinear index "bubble" in fused silica glass, supplementing a conventional Frequency Domain Holographic (FDH) probe-reference pair that co-propagates with the "bubble". Frequency Domain Tomography (FDT) generalizes Frequency-Domain Streak Camera by probing the "bubble" from multiple angles and reconstructing its morphology and evolution using algorithms similar to those used in medical CAT scans. Multiplexing methods (Temporal Multiplexing and Angular Multiplexing) improve data storage and processing capability, demonstrating a compact Frequency Domain Tomography system with a single spectrometer.

  16. Polarization sensitive optical frequency domain imaging system for endobronchial imaging.

    PubMed

    Li, Jianan; Feroldi, Fabio; de Lange, Joop; Daniels, Johannes M A; Grünberg, Katrien; de Boer, Johannes F

    2015-02-01

    A polarization sensitive endoscopic optical frequency domain imaging (PS-OFDI) system with a motorized distal scanning catheter is demonstrated. It employs a passive polarization delay unit to multiplex two orthogonal probing polarization states in depth, and a polarization diverse detection unit to detect interference signal in two orthogonal polarization channels. Per depth location four electro-magnetic field components are measured that can be represented in a complex 2x2 field matrix. A Jones matrix of the sample is derived and the sample birefringence is extracted by eigenvalue decomposition. The condition of balanced detection and the polarization mode dispersion are quantified. A complex field averaging method based on the alignment of randomly pointing field phasors is developed to reduce speckle noise. The variation of the polarization states incident on the tissue due to the circular scanning and catheter sheath birefringence is investigated. With this system we demonstrated imaging of ex vivo chicken muscle, in vivo pig lung and ex vivo human lung specimens. PMID:25836196

  17. Frequency-wavenumber domain analysis of guided wavefields.

    PubMed

    Michaels, Thomas E; Michaels, Jennifer E; Ruzzene, Massimo

    2011-05-01

    Full wavefield measurements obtained with either an air-coupled transducer mounted on a scanning stage or a scanning laser vibrometer can be combined with effective signal and imaging processing algorithms to support characterization of guided waves as well as detection, localization and quantification of structural damage. These wavefield images contain a wealth of information that clearly shows details of guided waves as they propagate outward from the source, reflect from specimen boundaries, and scatter from discontinuities within the structure. The analysis of weaker scattered waves is facilitated by the removal of source waves and the separation of wave modes, which is effectively achieved via frequency-wavenumber domain filtering in conjunction with the subsequent analysis of the resulting residual signals. Incident wave removal highlights the presence and the location of weak scatterers, while the separation of individual guided wave modes allows the characterization of their separate contribution to the scattered field and the evaluation of mode conversion phenomena. The effectiveness of these methods is demonstrated through their application to detection of a delamination in a composite plate and detection of a crack emanating from a hole. PMID:21190706

  18. High-speed frequency-domain terahertz coherence tomography.

    PubMed

    Yahng, Ji Sang; Park, Choon-Su; Lee, Hwi Don; Kim, Chang-Seok; Yee, Dae-Su

    2016-01-25

    High-speed frequency-domain terahertz (THz) coherence tomography is demonstrated using frequency sweeping of continuous-wave THz radiation and beam steering. For axial scanning, THz frequency sweeping with a kHz sweep rate and a THz sweep range is executed using THz photomixing with an optical beat source consisting of a wavelength-swept laser and a distributed feedback laser diode. During the frequency sweep, frequency-domain THz interferograms are measured using coherent homodyne detection employing signal averaging for noise reduction and used as axial-scan data via fast Fourier transform. Axial-scan data are acquired while scanning a transverse range of 100 × 100 mm(2) by use of a THz beam scanner with moving neither sample nor THz transmitter/receiver unit. It takes 100 s to acquire axial-scan data for 100 × 100 points with 5 averaged traces at a sweep rate of 1 kHz. THz tomographic images of a glass fiber reinforced polymer sample with artificial internal defects are presented, acquired using the tomography system. PMID:26832489

  19. Single SQUID frequency-domain multiplexer for large bolometer arrays

    SciTech Connect

    Yoon, Jongsoo; Clarke, John; Gildemeister, J.M.; Lee, Adrian T.; Myers, M.J.; Skidmore, J.T.; Richards, P.L.; Spieler, H.G.

    2001-08-20

    We describe the development of a frequency-domain superconducting quantum interference device (SQUID) multiplexer which monitors a row of low-temperature sensors simultaneously with a single SQUID. Each sensor is ac biased with a unique frequency and all the sensor currents are added in a superconducting summing loop. A single SQUID measures the current in the summing loop, and the individual signals are lock-in detected after the room temperature SQUID electronics. The current in the summing loop is nulled by feedback to eliminate direct crosstalk. We have built an eight-channel prototype and demonstrated channel separation and signal recovery.

  20. Multifunction tests of a frequency domain based flutter suppression system

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.; Adams, William M., Jr.

    1992-01-01

    This paper describes the process of analysis, design, digital implementation and subsonic testing of an active controls flutter suppression system for a full span, free-to-roll wind-tunnel model of an advanced fighter concept. The design technique employed a frequency domain representation of the plant and used optimization techniques to generate a robust multi-input/multi-output controller. During testing in a fixed-in-roll configuration, simultaneous suppression of both symmetric and antisymmetric flutter was successfully demonstrated. For a free-to-roll configuration, symmetric flutter was suppressed to the limit of the tunnel test envelope. During aggressive rolling maneuvers above the open-loop flutter boundary, simultaneous flutter suppression and maneuver load control were demonstrated. Finally, the flutter suppression controller was reoptimized overnight during the test using combined experimental and analytical frequency domain data, resulting in improved stability robustness.

  1. Multifunction tests of a frequency domain based flutter suppression system

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.; Adams, William M., Jr.

    1992-01-01

    The process is described of analysis, design, digital implementation, and subsonic testing of an active control flutter suppression system for a full span, free-to-roll wind tunnel model of an advanced fighter concept. The design technique uses a frequency domain representation of the plant and used optimization techniques to generate a robust multi input/multi output controller. During testing in a fixed-in-roll configuration, simultaneous suppression of both symmetric and antisymmetric flutter was successfully shown. For a free-to-roll configuration, symmetric flutter was suppressed to the limit of the tunnel test envelope. During aggressive rolling maneuvers above the open-loop flutter boundary, simultaneous flutter suppression and maneuver load control were demonstrated. Finally, the flutter damping controller was reoptimized overnight during the test using combined experimental and analytical frequency domain data, resulting in improved stability robustness.

  2. Joint time-frequency domain identification of nonlinearly controlled structures

    NASA Astrophysics Data System (ADS)

    Jin, Gang; Sain, Michael K.; Spencer, Billie F., Jr.; Pham, Khanh D.

    2006-05-01

    This paper introduces a 3-step approach for the identification of a linear structure that is controlled by nonlinear damping devices. First, the structure with the integrated nonlinear damper is subjected to random vibration test and the frequency response function (FRF) of the structure is calculated from the input-output data of the physical system. Based on the frequency domain data, a state space model is then estimated using a recently developed FRF curve-fitting technique that is designed especially for lightly damped structures with control inputs. Finally an iterative process is used to optimize the model performance in the time domain and an integrated model of the nonlinearly controlled structure is derived by interconnecting the structure model with that of the nonlinear damper. The complete approach is illustrated by the modeling of a base-isolated structure controlled by a magnetorheological (MR) fluid damper.

  3. Spatial frequency domain spectroscopy of two layer media

    NASA Astrophysics Data System (ADS)

    Yudovsky, Dmitry; Durkin, Anthony J.

    2011-10-01

    Monitoring of tissue blood volume and oxygen saturation using biomedical optics techniques has the potential to inform the assessment of tissue health, healing, and dysfunction. These quantities are typically estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in superficial tissue such as the skin can be confounded by the strong absorption of melanin in the epidermis. Furthermore, epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. This study describes a technique for decoupling the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. An artificial neural network was used to map input optical properties to spatial frequency domain diffuse reflectance of two layer media. Then, iterative fitting was used to determine the optical properties from simulated spatial frequency domain diffuse reflectance. Additionally, an artificial neural network was trained to directly map spatial frequency domain reflectance to sets of optical properties of a two layer medium, thus bypassing the need for iteration. In both cases, the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis were determined independently. The accuracy and efficiency of the iterative fitting approach was compared with the direct neural network inversion.

  4. Recovering Complex Conductivity from Frequency and Time Domain Geophysical Surveys

    NASA Astrophysics Data System (ADS)

    KANG, S.; Marchant, D.; Oldenburg, D.

    2013-12-01

    The electrical conductivity of earth materials can be frequency dependent. The bulk conductivity decreases with decreasing frequency because of the build-up of electric charges that occur under the application of an electric field. Effectively, the rock is electrically polarized. Finding the polarization response (often referred to as IP, Induced Polarization) can lead to economic benefits, as in the case of discovering sulphide minerals, but there is applicability in environmental problems, groundwater flow, and site characterization. We have the ability to model Maxwell's equations in 3D for complex conductivity in either the time or frequency domain. The challenge therefore is to invert the EM (electromagnetic) data to recover a four-dimensional conductivity (σ (ω, x, y, z)) using limited EM data generally acquired on, or above, the surface of the earth. At late times (or low frequencies) the static Maxwell's equation are valid and, if a background conductivity is known, then chargeability can be extracted. Unfortunately the static assumption is often violated and EM induction processes contaminate the sought signal. For example, signals in the time domain have three parts: a static on-time, an early-time inductive portion, and a late-time IP signal. Information about conductivity using the appropriate Maxwell's equations is available from each of these segments. The potential contamination of the IP from EM induction (often referred to as EM coupling) and the potential contamination of the EM signal from the IP data (IP coupling) can cause deleterious effects and must be addressed. The goal of this talk is to address such issues and outline a practical procedure for extracting IP information from existing time and frequency domain surveys.

  5. Frequency-Domain Identification With Composite Curve Fitting

    NASA Technical Reports Server (NTRS)

    Bayard, David S.

    1994-01-01

    Improved method of parameter identification based on decomposing single wide-band model into two or more component systems in parallel. Each component model predominates in specific frequency range. Wide-band mathematical model of system identified as two narrow-band models: one containing most of information on high-frequency components of dynamics, and one containing most of information on low-frequency components. Applicable to diverse systems, including vibrating structures, electronic circuits, and control systems.

  6. Frequency domain stress intensity calibration of damped cracked panels

    NASA Technical Reports Server (NTRS)

    Doyle, James F.; Rizzi, Stephen A.

    1993-01-01

    This paper discusses two schemes for doing finite element K calibration in the frequency domain. The baseline scheme uses the definition of K as a limit toward the crack tip. The limiting process requires using a very fine mesh around the crack tip making the scheme computationally very expensive. It is shown that the behavior of K as a function of frequency is very similar to a modal response. Taking advantage of this, a more efficient scheme involves a modal analysis of the cracked sheet and scaling the response to that of the static stress intensity. In this way, only a static K calibration need be performed. All the examples shown are for a frequency range spanning multiple resonances and with two levels of damping.

  7. Electromagnetic coupling in frequency domain induced polarisation data

    NASA Astrophysics Data System (ADS)

    Routh, Partha Sarathi

    2000-11-01

    Frequency domain induced polarization (IP) surveys are commonly carried out to provide information about the chargeability structure of the earth. The goals might be as diverse as trying to delineate a mineralized and/or alteration zone for mineral exploration, or to find a region of contaminants for an environmental problem. Unfortunately, the measured responses can have contributions from inductive and galvanic effects of the ground. The inductive components are called EM coupling effects. They are considered to be ``noise'' and much of this thesis is devoted towards either removing these effects, or reformulating the inverse problem so that inductive effects are part of the ``signal''. If the forward modeling is based on galvanic responses only, then the inductive responses must first be removed from the data. The motivation for attacking the problem in this manner is that it is easier to solve D.C. resistivity equation than the full Maxwell's equation. The separation of the inductive response from the total response is derived by expressing the total electric field as a product of an IP response function, and an electric field which depends on EM coupling response. This enables me to generate formulae to obtain IP amplitude (PFE) and phase response from the raw data. The data can then be inverted, using a galvanic forward modeling. I illustrate this with 1D and 3D synthetic examples. To handle field data sets, I have developed an approximate method for estimating the EM coupling effects based upon the assumption that the earth is locally 1D. The 1D conductivity is obtained from a 2D inversion of the low frequency DC resistivity data. Application of this method to a field data set has shown encouraging results. I also examine the EM coupling problem in terms of complex conductivity. I show that if the forward modeling is carried out with full Maxwell's equation, then there is no need to remove EM coupling. I illustrate this with 1D synthetic example. In summary

  8. Multi-frequency periodic vibration suppressing in active magnetic bearing-rotor systems via response matching in frequency domain

    NASA Astrophysics Data System (ADS)

    Jiang, Kejian; Zhu, Changsheng

    2011-05-01

    A method for multi-frequency periodic vibration suppressing in active magnetic bearing (AMB)-rotor systems is proposed, which is based on an adaptive finite-duration impulse response (FIR) filter in time domain. Firstly, the theoretic feasibility of the method is proved. However, two problems would be unavoidable, if the conventional adaptive FIR filter is adopted in practical application. One is that the convergence rate of the different frequency components may be highly disparate in multi-frequency vibration control. The other is that the computational complexity is significantly increased because the long memory FIR filter is required to match the transient response time of the AMB-rotor system. To overcome the problems above, the Fast Block Least Mean Square (FBLMS) algorithm is adopted to efficiently implement the computation in frequency domain at a computational cost far less than that of the conventional FIR filter. By the FBLMS algorithm, regardless of the number of the considered frequency components in vibration disturbance, the computational complexity would be invariable. Moreover, filter's weights in the FBLMS algorithm have the intuitional relation with signal's frequency. As a result, the convergence rate of each frequency component can be adjusted by assigning the individual step size parameter for each weight. Experiments with the reciprocating simulating disturbance test and the rotating harmonic vibration test were carried out on an AMB-rigid rotor test rig with a vertical shaft. The experiment results indicate that the proposed method with the FBLMS algorithm can achieve the good effectiveness for suppressing the multi-frequency vibration. The convergence property of each frequency component can be adjusted conveniently. Each harmonic component of the vibration can be addressed, respectively, by reconfiguring the frequency components of the reference input signal.

  9. Frequency Domain Magnetic Measurements from Kilohertz to Gigahertz

    NASA Astrophysics Data System (ADS)

    Gregg, John F.

    "......we applied much prolonged labor on investigating the magnetical forces; so wonderful indeed are they, compared with the forces in all other minerals, surpassing even the virtues of all bodies around us. Nor have we found this labor idle or unfruitful; since daily in our experimenting new unexpected properties came to light."William Gilbert, De Magnete, 1600Abstract. This review deals with practical aspects of making frequency-domain measurements of magnetic susceptibility and magnetic losses from 200 kHz up to 10 GHz. It sets out the types of measurement concerned, distinguishing resonant from nonresonant phenomena. The techniques available are categorized according to suitability for the different frequency regimes and types of investigation. Practical recipes are provided for undertaking such experiments across the entire frequency range. Marginal oscillator spectrometry is discussed which is applicable across the whole frequency range. Different instruments are presented, and particular emphasis is placed on designs which function on the Robinson principle. Analysis of oscillation condition and signal-to-noise performance is dealt with, also sample considerations such as filling factor. Practical circuits are presented and their merits and demerits evaluated. Layout and radio-frequency design considerations are dealt with. Ultrahigh/microwave frequency marginal oscillator spectrometry is given special treatment and several practical designs are given. The essentials of good microwave design are emphasized. A general discussion of resonant structures is included which treats multiple layer coil design, slow wave line structures, stripline and cavities. Unusual cavity designs such as the rhumbatron are treated. Use of striplines with microwave marginal spectrometry is described and compared with conventional network-analysis techniques. The use of parameter matrices for high-frequency analysis is alluded to. Some details of good construction practice are

  10. A Frequency-Domain Substructure System Identification Algorithm

    NASA Technical Reports Server (NTRS)

    Blades, Eric L.; Craig, Roy R., Jr.

    1996-01-01

    A new frequency-domain system identification algorithm is presented for system identification of substructures, such as payloads to be flown aboard the Space Shuttle. In the vibration test, all interface degrees of freedom where the substructure is connected to the carrier structure are either subjected to active excitation or are supported by a test stand with the reaction forces measured. The measured frequency-response data is used to obtain a linear, viscous-damped model with all interface-degree of freedom entries included. This model can then be used to validate analytical substructure models. This procedure makes it possible to obtain not only the fixed-interface modal data associated with a Craig-Bampton substructure model, but also the data associated with constraint modes. With this proposed algorithm, multiple-boundary-condition tests are not required, and test-stand dynamics is accounted for without requiring a separate modal test or finite element modeling of the test stand. Numerical simulations are used in examining the algorithm's ability to estimate valid reduced-order structural models. The algorithm's performance when frequency-response data covering narrow and broad frequency bandwidths is used as input is explored. Its performance when noise is added to the frequency-response data and the use of different least squares solution techniques are also examined. The identified reduced-order models are also compared for accuracy with other test-analysis models and a formulation for a Craig-Bampton test-analysis model is also presented.

  11. Analysis of wave packet motion in frequency and time domain: oxazine 1.

    PubMed

    Braun, Markus; Sobotta, Constanze; Dürr, Regina; Pulvermacher, Horst; Malkmus, Stephan

    2006-08-17

    Wave packet motion in the laser dye oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral range of 600-690 nm was accessible by amplified broadband probe pulses covering the overlap region of ground-state bleach and stimulated emission signal. The influence of vibrational wave packets on the optical signal is analyzed in the frequency domain and the time domain. For the analysis in the frequency domain an algorithm is presented that accounts for interference effects of neighbored vibrational modes. By this method amplitude, phase and decay time of vibrational modes are retrieved as a function of probe wavelength and distortions due to neighbored modes are reduced. The analysis of the data in the time domain yields complementary information on the intensity, central wavelength, and spectral width of the optical bleach spectrum due to wave packet motion. PMID:16898679

  12. Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media

    NASA Astrophysics Data System (ADS)

    Schmidt, Felix; Lünenschloss, Peter; Mai, Juliane; Wagner, Norman; Töpfer, Hannes; Bumberger, Jan

    2016-04-01

    The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections. Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric

  13. Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media

    NASA Astrophysics Data System (ADS)

    Schmidt, Felix; Wagner, Norman; Lünenschloß, Peter; Toepfer, Hannes; Dietrich, Peter; Kaliorias, Andreas; Bumberger, Jan

    2015-04-01

    The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric

  14. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  15. Identification and verification of frequency-domain models for XV-15 tilt-rotor aircraft dynamics

    NASA Technical Reports Server (NTRS)

    Tischler, M. B.; Leung, J. G. M.; Dugan, D. C.

    1984-01-01

    Frequency-domain methods are used to extract the open-loop dynamics of the XV-15 tilt-rotor aircraft from flight test data for the cruise condition (V = 170 knots). The frequency responses are numerically fitted with transfer-function forms to identify equivalent model characteristics. The associated handling quality parameters meet or exceed Level 2, Category A, requirements for fixed-wing military aircraft. Step response matching is used to verify the time-domain fidelity of the transfer-function models for the cruise and hover flight conditions. The transient responses of the model and aircraft are in close agreement in all cases, except for the normal acceleration response to elevator deflection in cruise. This discrepancy is probably due to the unmodeled rotor rpm dynamics. The utility of the frequency-domain approach for dynamics identification and analysis is clearly demonstrated.

  16. Four-channel magnetic resonance imaging receiver using frequency domain multiplexing

    NASA Astrophysics Data System (ADS)

    He, Wang; Qin, Xu; Jiejing, Ren; Gengying, Li

    2007-01-01

    An alternative technique that uses frequency domain multiplexing to acquire phased array magnetic resonance images is discussed in detail. The proposed method has advantages over traditional independent receiver chains in that it utilizes an analog-to-digital converter and a single-chip multicarrier receiver with high performance to reduce the size and cost of the phased array receiver system. A practical four-channel digital receiver using frequency domain multiplexing was implemented and verified on a home-built 0.3T magnetic resonance imaging system. The experimental results confirmed that the cross talk between each channel was below -60dB, the phase fluctuations were about 1°, and there was no obvious signal-to-noise ratio degradation. It is demonstrated that the frequency domain multiplexing is a valuable and economical technique, particularly for array coil systems where the multichannel receiver is indispensable and dynamic range is not a critical problem.

  17. Demultiplexing based on frequency-domain joint decision MMA for MDM system

    NASA Astrophysics Data System (ADS)

    Caili, Gong; Li, Li; Guijun, Hu

    2016-06-01

    In this paper, we propose a demultiplexing method based on frequency-domain joint decision multi-modulus algorithm (FD-JDMMA) for mode division multiplexing (MDM) system. The performance of FD-JDMMA is compared with frequency-domain multi-modulus algorithm (FD-MMA) and frequency-domain least mean square (FD-LMS) algorithm. The simulation results show that FD-JDMMA outperforms FD-MMA in terms of BER and convergence speed in the cases of mQAM (m=4, 16 and 64) formats. And it is also demonstrated that FD-JDMMA achieves better BER performance and converges faster than FD-LMS in the cases of 16QAM and 64QAM. Furthermore, FD-JDMMA maintains similar computational complexity as the both equalization algorithms.

  18. Robust spike classification based on frequency domain neural waveform features

    NASA Astrophysics Data System (ADS)

    Yang, Chenhui; Yuan, Yuan; Si, Jennie

    2013-12-01

    Objective. We introduce a new spike classification algorithm based on frequency domain features of the spike snippets. The goal for the algorithm is to provide high classification accuracy, low false misclassification, ease of implementation, robustness to signal degradation, and objectivity in classification outcomes. Approach. In this paper, we propose a spike classification algorithm based on frequency domain features (CFDF). It makes use of frequency domain contents of the recorded neural waveforms for spike classification. The self-organizing map (SOM) is used as a tool to determine the cluster number intuitively and directly by viewing the SOM output map. After that, spike classification can be easily performed using clustering algorithms such as the k-Means. Main results. In conjunction with our previously developed multiscale correlation of wavelet coefficient (MCWC) spike detection algorithm, we show that the MCWC and CFDF detection and classification system is robust when tested on several sets of artificial and real neural waveforms. The CFDF is comparable to or outperforms some popular automatic spike classification algorithms with artificial and real neural data. Significance. The detection and classification of neural action potentials or neural spikes is an important step in single-unit-based neuroscientific studies and applications. After the detection of neural snippets potentially containing neural spikes, a robust classification algorithm is applied for the analysis of the snippets to (1) extract similar waveforms into one class for them to be considered coming from one unit, and to (2) remove noise snippets if they do not contain any features of an action potential. Usually, a snippet is a small 2 or 3 ms segment of the recorded waveform, and differences in neural action potentials can be subtle from one unit to another. Therefore, a robust, high performance classification system like the CFDF is necessary. In addition, the proposed algorithm

  19. Baseband feedback for SAFARI-SPICA using Frequency Domain Multiplexing

    NASA Astrophysics Data System (ADS)

    Bounab, A.; de Korte, P.; Cros, A.; van der Kuur, J.; van Leeuwen, B. J.; Monna, B.; Mossel, R.; Nieuwenhuizen, A.; Ravera, L.

    We report on the performance of the digital baseband feedback circuit developed to readout and process signals from arrays of transition edge sensors for SPICA-SAFARI in frequency domain multiplexing (FDM). The standard procedure to readout the SQUID current amplifiers is to use a feedback loop (flux-locked loop: FLL). However the achievable FFL bandwidth is limited by the cable transport delay t_d, which makes standard feedback inconvenient. A much better approach is to use baseband feedback. We have developed a model of the electronic readout chain for SPICA-SAFARI instrument by using an Anlog-digital co-simulation based on Simulink-System Generator environment.

  20. A frequency-domain derivation of shot-noise

    NASA Astrophysics Data System (ADS)

    Rice, Frank

    2016-01-01

    A formula for shot-noise is derived in the frequency-domain. The derivation is complete and reasonably rigorous while being appropriate for undergraduate students; it models a sequence of random pulses using Fourier sine and cosine series, and requires some basic statistical concepts. The text here may serve as a pedagogic introduction to the spectral analysis of random processes and may prove useful to introduce students to the logic behind stochastic problems. The concepts of noise power spectral density and equivalent noise bandwidth are introduced.

  1. Frequency-Domain Green's Functions for Radar Waves in Heterogeneous 2.5D Media

    EPA Science Inventory

    Green’s functions for radar waves propagating in heterogeneous media may be calculated in the frequency domain using a hybrid of two numerical methods. The model is defined in the Cartesian coordinate system, and its electromagnetic properties may vary in the x and z directions, ...

  2. Detecting structural information of scatterers using spatial frequency domain imaging.

    PubMed

    Bodenschatz, Nico; Krauter, Philipp; Nothelfer, Steffen; Foschum, Florian; Bergmann, Florian; Liemert, André; Kienle, Alwin

    2015-11-01

    We demonstrate optical phantom experiments on the phase function parameter γ using spatial frequency domain imaging. The incorporation of two different types of scattering particles allows for control of the optical phantoms’ microscopic scattering properties. By laterally structuring areas with either TiO2 or Al2O3 scattering particles, we were able to obtain almost pure subdiffusive scattering contrast in a single optical phantom. Optical parameter mapping was then achieved using an analytical radiative transfer model revealing the microscopic structural contrast on a macroscopic field of view. As part of our study, we explain several correction and referencing techniques for high spatial frequency analysis and experimentally study the sampling depth of the subdiffusive parameter γ. PMID:26590206

  3. Frequency domain identification for robust large space structure control design

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Bayard, D. S.; Scheid, R. E.

    1991-01-01

    A methodology is demonstrated for frequency domain identification of large space structures which systematically transforms experimental raw data into a form required for synthesizing H(infinity) controllers using modern robust control design software (e.g., Matlab Toolboxes). A unique feature of this approach is that the additive uncertainty is characterized to a specified statistic confidence rather than with hard bounds. In this study, the difference in robust performance is minimal between the two levels of confidence. In general cases, the present methodology provides a tool for performance/confidence level tradeoff studies. For simplicity, the additive uncertainty on a frequency grid is considered and the interpolation error in between grid points is neglected.

  4. Domain reduction method for atomistic simulations

    SciTech Connect

    Medyanik, Sergey N. . E-mail: medyanik@northwestern.edu; Karpov, Eduard G. . E-mail: edkarpov@gmail.com; Liu, Wing Kam . E-mail: w-liu@northwestern.edu

    2006-11-01

    In this paper, a quasi-static formulation of the method of multi-scale boundary conditions (MSBCs) is derived and applied to atomistic simulations of carbon nano-structures, namely single graphene sheets and multi-layered graphite. This domain reduction method allows for the simulation of deformable boundaries in periodic atomic lattice structures, reduces the effective size of the computational domain, and consequently decreases the cost of computations. The size of the reduced domain is determined by the value of the domain reduction parameter. This parameter is related to the distance between the boundary of the reduced domain, where MSBCs are applied, and the boundary of the full domain, where the standard displacement boundary conditions are prescribed. Two types of multi-scale boundary conditions are derived: one for simulating in-layer multi-scale boundaries in a single graphene sheet and the other for simulating inter-layer multi-scale boundaries in multi-layered graphite. The method is tested on benchmark nano-indentation problems and the results are consistent with the full domain solutions.

  5. Time domain characterization of oscillating sensors: Application of frequency counting to resonance frequency determination

    NASA Astrophysics Data System (ADS)

    Zeng, Kefeng; Ong, Keat G.; Mungle, Casey; Grimes, Craig A.

    2002-12-01

    A frequency counting technique is described for determining the resonance frequency of a transiently excited sensor; the technique is applicable to any sensor platform where the characteristic resonance frequency is the parameter of interest. The sensor is interrogated by a pulse-like excitation signal, and the resonance frequency of the sensor subsequently determined by counting the number of oscillations per time during sensor ring-down. A repetitive time domain interrogation technique is implemented to overcome the effects of sensor damping, such as that associated with mass loading, which reduces the duration of the sensor ring-down and hence the measurement resolution. The microcontroller based, transient frequency counting technique is detailed with application to the monitoring of magnetoelastic sensors [C. A. Grimes, D. Kouzoudis, and C. Mungle, Rev. Sci. Instrum. 71, 3822 (2000)], with a measurement resolution of 0.001% achieved in approximately 40 ms.

  6. Dynamics of spintronic materials: Exploration in the time and frequency domain

    SciTech Connect

    Zabel, Hartmut

    2014-12-14

    X-ray and neutron reflectivity are mature experimental techniques for the exploration of film thicknesses and interface roughnesses on the nanoscale. Combining with photon and neutron polarization, these methods can be carried forward to the analysis of magnetic thin films and magnetic domain structures. New opportunities open up when these methods are used either in the time or in the frequency domain. Then dynamical processes can be studied such as domain oscillations, domain propagation, precession of spins, and damping effects. Two methods are discussed which have been developed recently: polarized neutron reflectivity from magnetic films in an alternating magnetic field and time resolved resonant magnetic x-ray reflectivity of the free precessional dynamics in films and multilayers.

  7. Ultrasound breast imaging using frequency domain reverse time migration

    NASA Astrophysics Data System (ADS)

    Roy, O.; Zuberi, M. A. H.; Pratt, R. G.; Duric, N.

    2016-04-01

    Conventional ultrasonography reconstruction techniques, such as B-mode, are based on a simple wave propagation model derived from a high frequency approximation. Therefore, to minimize model mismatch, the central frequency of the input pulse is typically chosen between 3 and 15 megahertz. Despite the increase in theoretical resolution, operating at higher frequencies comes at the cost of lower signal-to-noise ratio. This ultimately degrades the image contrast and overall quality at higher imaging depths. To address this issue, we investigate a reflection imaging technique, known as reverse time migration, which uses a more accurate propagation model for reconstruction. We present preliminary simulation results as well as physical phantom image reconstructions obtained using data acquired with a breast imaging ultrasound tomography prototype. The original reconstructions are filtered to remove low-wavenumber artifacts that arise due to the inclusion of the direct arrivals. We demonstrate the advantage of using an accurate sound speed model in the reverse time migration process. We also explain how the increase in computational complexity can be mitigated using a frequency domain approach and a parallel computing platform.

  8. Radiative transport in fluorescence-enhanced frequency domain photon migration.

    PubMed

    Rasmussen, John C; Joshi, Amit; Pan, Tianshu; Wareing, Todd; McGhee, John; Sevick-Muraca, Eva M

    2006-12-01

    Small animal optical tomography has significant, but potential application for streamlining drug discovery and pre-clinical investigation of drug candidates. However, accurate modeling of photon propagation in small animal volumes is critical to quantitatively obtain accurate tomographic images. Herein we present solutions from a robust fluorescence-enhanced, frequency domain radiative transport equation (RTE) solver with unique attributes that facilitate its deployment within tomographic algorithms. Specifically, the coupled equations describing time-dependent excitation and emission light transport are solved using discrete ordinates (SN) angular differencing along with linear discontinuous finite-element spatial differencing on unstructured tetrahedral grids. Source iteration in conjunction with diffusion synthetic acceleration is used to iteratively solve the resulting system of equations. This RTE solver can accurately and efficiently predict ballistic as well as diffusion limited transport regimes which could simultaneously exist in small animals. Furthermore, the solver provides accurate solutions on unstructured, tetrahedral grids with relatively large element sizes as compared to commonly employed solvers that use step differencing. The predictions of the solver are validated by a series of frequency-domain, phantom measurements with optical properties ranging from diffusion limited to transport limited propagation. Our results demonstrate that the RTE solution consistently matches measurements made under both diffusion and transport-limited conditions. This work demonstrates the use of an appropriate RTE solver for deployment in small animal optical tomography. PMID:17278821

  9. Allan deviation computations of a linear frequency synthesizer system using frequency domain techniques

    NASA Technical Reports Server (NTRS)

    Wu, Andy

    1995-01-01

    Allan Deviation computations of linear frequency synthesizer systems have been reported previously using real-time simulations. Even though it takes less time compared with the actual measurement, it is still very time consuming to compute the Allan Deviation for long sample times with the desired confidence level. Also noises, such as flicker phase noise and flicker frequency noise, can not be simulated precisely. The use of frequency domain techniques can overcome these drawbacks. In this paper the system error model of a fictitious linear frequency synthesizer is developed and its performance using a Cesium (Cs) atomic frequency standard (AFS) as a reference is evaluated using frequency domain techniques. For a linear timing system, the power spectral density at the system output can be computed with known system transfer functions and known power spectral densities from the input noise sources. The resulting power spectral density can then be used to compute the Allan Variance at the system output. Sensitivities of the Allan Variance at the system output to each of its independent input noises are obtained, and they are valuable for design trade-off and trouble-shooting.

  10. Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization

    NASA Astrophysics Data System (ADS)

    Tanaka, Ken; Tomeba, Hiromichi; Adachi, Fumiyuki

    Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of orthogonal frequency division multiplexing (OFDM) and time-domain spreading, while multi-carrier code division multiple access (MC-CDMA) is a combination of OFDM and frequency-domain spreading. In MC-CDMA, a good bit error rate (BER) performance can be achieved by using frequency-domain equalization (FDE), since the frequency diversity gain is obtained. On the other hand, the conventional orthogonal MC DS-CDMA fails to achieve any frequency diversity gain. In this paper, we propose a new orthogonal MC DS-CDMA that can obtain the frequency diversity gain by applying FDE. The conditional BER analysis is presented. The theoretical average BER performance in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the orthogonal MC DS-CDMA signal transmission.

  11. Cerebral autoregulation in the preterm newborn using near-infrared spectroscopy: a comparison of time-domain and frequency-domain analyses

    NASA Astrophysics Data System (ADS)

    Eriksen, Vibeke R.; Hahn, Gitte H.; Greisen, Gorm

    2015-03-01

    The aim was to compare two conventional methods used to describe cerebral autoregulation (CA): frequency-domain analysis and time-domain analysis. We measured cerebral oxygenation (as a surrogate for cerebral blood flow) and mean arterial blood pressure (MAP) in 60 preterm infants. In the frequency domain, outcome variables were coherence and gain, whereas the cerebral oximetry index (COx) and the regression coefficient were the outcome variables in the time domain. Correlation between coherence and COx was poor. The disagreement between the two methods was due to the MAP and cerebral oxygenation signals being in counterphase in three cases. High gain and high coherence may arise spuriously when cerebral oxygenation decreases as MAP increases; hence, time-domain analysis appears to be a more robust-and simpler-method to describe CA.

  12. Plane-wave solutions to frequency-domain and time-domain scattering from magnetodielectric slabs.

    PubMed

    Yaghjian, Arthur D; Hansen, Thorkild B

    2006-04-01

    Plane-wave representations are used to formulate the exact solutions to frequency-domain and time-domain sources illuminating a magnetodielectric slab with complex permittivity epsilon(omega) and permeability mu(omega). In the special case of a line source at z = 0 a distance d < L in front of an L-wide lossless double-negative (DNG) slab with kappa(omega 0) = epsilon(omega 0) / epsilon 0 = mu(omega 0) / mu 0 = (-1), the single-frequency (omega 0) solution exhibits not only "perfectly focused" fields for z > 2L but also divergent infinite fields in the region 2d < z < 2L. In contrast, the solution to the same lossless kappa(omega 0) = (-1) DNG slab illuminated by a sinusoidal wave that begins at some initial time t = 0 (and thus has a nonzero bandwidth, unlike the single-frequency excitation that begins at t = (-infinity) is proven to have imperfectly focused fields and convergent finite fields everywhere for all finite time t. The proof hinges on the variation of kappa(omega) about omega = omega 0 having a lower bound imposed by causality and energy conservation. The minimum time found to produce a given resolution is proportional to the estimate obtained by G. Gómez-Santos, [Phys. Rev. Lett. 90, 077401 (2003)]. Only as t --> infinity do the fields become perfectly focused in the region z > 2L and divergent in the region 2d < z < 2L. These theoretical results, which are confirmed by numerical examples, imply that divergent fields of the single-frequency solution are not caused by an inherent inconsistency in assuming an ideal lossless kappa(omega 0) = (-1) DNG material, but are the result of the continuous single-frequency wave (which contains infinite energy) building up infinite reactive fields during the infinite duration of time from t = (-infinity) to the present time t that the single-frequency excitation has been applied. An analogous situation occurs at the resonant frequencies of a lossless cavity. A single-frequency (zero-bandwidth) source inside the

  13. Patellofemoral pain syndrome: electromyography in a frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Catelli, D. S.; Kuriki, H. U.; Polito, L. F.; Azevedo, F. M.; Negrão Filho, R. F.; Alves, N.

    2011-09-01

    The Patellofemoral Pain Syndrome (PFPS), has a multifactorial etiology and affects approximately 7 to 15% of the population, mostly women, youth, adults and active persons. PFPS causes anterior or retropatelar pain that is exacerbated during functional motor gestures, such as up and down stairs or spending long periods of time sitting, squatting or kneeling. As the diagnostic evaluation of this syndrome is still indirect, different mechanisms and methodologies try to make a classification that distinguishes patients with PFPS in relation to asymptomatic. Thereby, the purpose of this investigation was to determine the characteristics of the electromyographic (EMG) signal in the frequency domain of the vastus medialis oblique (VMO) and vastus lateralis (VL) in patients with PFPS, during the ascent of stairs. 33 young women (22 control group and 11 PFPS group), were evaluated by EMG during ascent of stairs. The VMO mean power frequency (MPF) and the VL frequency 95% (F95) were lower in symptomatic individuals. This may be related to the difference in muscle recruitment strategy exerted by each muscle in the PFPS group compared to the control group.

  14. Development of a frequency-domain electromagnetic scattering measurement system

    NASA Astrophysics Data System (ADS)

    Oh, Kenneth K.

    1993-12-01

    This thesis describes the development of a system for measuring frequency-domain scattered fields in the Transient Electromagnetic Scattering Range at the Naval Postgraduate School. The new system employs a stepped-frequency CW waveform and utilizes an HP-8510B network analyzer as an RF front-end and a coherent receiver. A pair of AEL H1498 antennas was installed to cover a frequency range of 2 GHz to 18 GHz. An HP-82300C BASIC Language Processor was installed on a COMPAQ Deskpro-386 PC, and an HP-BASIC program was developed for remote control of the HP-8510B with data acquisition over the HPIB bus. A post-processing algorithm was created using MatLab for background subtraction, calibration, and deconvolution. A set of RCS measurements was made using various size spheres, and the postprocessing outputs were compared to computed values. Good agreement between these measurements and computed data indicates excellent accuracy of the measurement system and valid operations of the postprocessing algorithm.

  15. Simultaneous storage of medical images in the spatial and frequency domain: A comparative study

    PubMed Central

    Nayak, Jagadish; Bhat, P Subbanna; Acharya U, Rajendra; UC, Niranjan

    2004-01-01

    Background Digital watermarking is a technique of hiding specific identification data for copyright authentication. This technique is adapted here for interleaving patient information with medical images, to reduce storage and transmission overheads. Methods The patient information is encrypted before interleaving with images to ensure greater security. The bio-signals are compressed and subsequently interleaved with the image. This interleaving is carried out in the spatial domain and Frequency domain. The performance of interleaving in the spatial, Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) coefficients is studied. Differential pulse code modulation (DPCM) is employed for data compression as well as encryption and results are tabulated for a specific example. Results It can be seen from results, the process does not affect the picture quality. This is attributed to the fact that the change in LSB of a pixel changes its brightness by 1 part in 256. Spatial and DFT domain interleaving gave very less %NRMSE as compared to DCT and DWT domain. Conclusion The Results show that spatial domain the interleaving, the %NRMSE was less than 0.25% for 8-bit encoded pixel intensity. Among the frequency domain interleaving methods, DFT was found to be very efficient. PMID:15180899

  16. Elastic wave attenuation and velocity of Berea sandstone measured in the frequency domain

    NASA Astrophysics Data System (ADS)

    Shankland, T. J.; Johnson, P. A.; Hopson, T. M.

    1993-03-01

    Using measurements in the frequency domain we have measured quality factor Q and travel times of direct and side-reflected elastic waves in a 1.8 m long sample of Berea sandstone. The frequency domain travel time (FDTT) method produces the continuous-wave (CW) response of a propagating wave by stepwise sweeping frequency of a driving source and detecting amplitude and phase of the received signal in reference to the source. Each separate travel path yields a characteristic repetition cycle in frequency space as its wave vector-distance product is stepped; an inverse fast Fourier transform (IFFT) reveals the corresponding travel time at the group velocity. Because arrival times of direct and reflected elastic waves appear as spikes along the time axis, travel times can be obtained precisely, and different arrivals can be clearly separated. Q can be determined from the amplitude vs frequency response of each peak as obtained from a moving window IFFT of the frequency-domain signal. In this sample at ambient conditions compressional velocity Vp is 2380 m/s and Qp is 55.

  17. Motion estimation in the frequency domain using fuzzy c-planes clustering.

    PubMed

    Erdem, C E; Karabulut, G Z; Yanmaz, E; Anarim, E

    2001-01-01

    A recent work explicitly models the discontinuous motion estimation problem in the frequency domain where the motion parameters are estimated using a harmonic retrieval approach. The vertical and horizontal components of the motion are independently estimated from the locations of the peaks of respective periodogram analyses and they are paired to obtain the motion vectors using a procedure proposed. In this paper, we present a more efficient method that replaces the motion component pairing task and hence eliminates the problems of the pairing method described. The method described in this paper uses the fuzzy c-planes (FCP) clustering approach to fit planes to three-dimensional (3-D) frequency domain data obtained from the peaks of the periodograms. Experimental results are provided to demonstrate the effectiveness of the proposed method. PMID:18255527

  18. Frequency domain identification experiment on a large flexible structure

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Hadaegh, F. Y.; Yam, Y.; Scheid, R. E.; Mettler, E.; Milman, M. H.

    1989-01-01

    Recent experiences in the field of flexible structure control in space have indicated a need for on-orbit system identification to support robust control redesign to avoid in-flight instabilities and maintain high spacecraft performance. The authors highlight an automated frequency domain system identification methodology recently developed to fill this need. The methodology supports (1) the estimation of system quantities useful for robust control analysis and design, (2) experiment design tailored to performing system identification in a typically constrained on-orbit environment, and (3) the automation of operations to reduce human-in-the-loop requirements. A basic overview of the methodology is presented first, followed by an experimental verification of the approach performed on the JPL/AFAL testbed facility.

  19. Noise characteristics of heterodyne/homodyne frequency-domain measurements

    NASA Astrophysics Data System (ADS)

    Kang, Dongyel; Kupinski, Matthew A.

    2012-01-01

    We theoretically develop and experimentally validate the noise characteristics of heterodyne and/or homodyne measurements that are widely used in frequency-domain diffusive imaging. The mean and covariance of the modulated heterodyne output are derived by adapting the random amplification of a temporal point process. A multinomial selection rule is applied to the result of the temporal noise analysis to additionally model the spatial distribution of intensified photons measured by a charge-coupled device (CCD), which shows that the photon detection efficiency of CCD pixels plays an important role in the noise property of detected photons. The approach of using a multinomial probability law is validated from experimental results. Also, experimentally measured characteristics of means and variances of homodyne outputs are in agreement with the developed theory. The developed noise model can be applied to all photon amplification processes.

  20. Monitoring electrical and thermal burns with Spatial Frequency Domain Imaging

    NASA Astrophysics Data System (ADS)

    Ramella-Roman, Jessica

    2011-10-01

    Thermal and electrical injuries are devastating and hard-to-treat clinical lesions. The pathophysiology of these injuries is not fully understood to this day. Further elucidating the natural history of this form of tissue injury could be helpful in offering stage-appropriate therapy. Spatial Frequency Domain Imaging (SFDI) is a novel non-invasive technique that can be used to determine optical properties of biological media. We have developed an experimental apparatus based on SFDI aimed at monitoring parameters of clinical interest such as tissue oxygen saturation, methemoglobin volume fraction, and hemoglobin volume fraction. Co- registered Laser Doppler images of the lesions are also acquired to assess tissue perfusion. Results of experiments conducted on a rat model and discussions on the systemic changes in tissue optical properties before and after injury will be presented.

  1. Spectrally balanced detection for optical frequency domain imaging.

    PubMed

    Chen, Yueli; de Bruin, Daniel M; Kerbage, Charles; de Boer, Johannes F

    2007-12-10

    In optical frequency domain imaging (OFDI) or swept-source optical coherence tomography, balanced detection is required to suppress relative intensity noise (RIN). A regular implementation of balanced detection by combining reference and sample arm signal in a 50/50 coupler and detecting the differential output with a balanced receiver is however, not perfect. Since the splitting ratio of the 50/50 coupler is wavelength dependent, RIN is not optimally canceled at the edges of the wavelength sweep. The splitting ratio has a nearly linear shift of 0.4% per nanometer. This brings as much as +/-12% deviation at the margins of wavelength-swept range centered at 1060nm. We demonstrate a RIN suppression of 33dB by spectrally corrected balanced detection, 11dB more that regular balanced detection. PMID:19550929

  2. Frequency-domain ultrasound waveform tomography breast attenuation imaging

    NASA Astrophysics Data System (ADS)

    Sandhu, Gursharan Yash Singh; Li, Cuiping; Roy, Olivier; West, Erik; Montgomery, Katelyn; Boone, Michael; Duric, Neb

    2016-04-01

    Ultrasound waveform tomography techniques have shown promising results for the visualization and characterization of breast disease. By using frequency-domain waveform tomography techniques and a gradient descent algorithm, we have previously reconstructed the sound speed distributions of breasts of varying densities with different types of breast disease including benign and malignant lesions. By allowing the sound speed to have an imaginary component, we can model the intrinsic attenuation of a medium. We can similarly recover the imaginary component of the velocity and thus the attenuation. In this paper, we will briefly review ultrasound waveform tomography techniques, discuss attenuation and its relations to the imaginary component of the sound speed, and provide both numerical and ex vivo examples of waveform tomography attenuation reconstructions.

  3. Optical Frequency Domain Visualization of Electron Beam Driven Plasma Wakefields

    NASA Astrophysics Data System (ADS)

    Zgadzaj, Rafal; Downer, M. C.; Muggli, Patric; Yakimenko, Vitaly; Babzien, Marcus; Kusche, Karl; Fedurin, Mikhail

    2010-11-01

    Beam-driven plasma wakefield accelerators (PWFA), such as the ``plasma afterburner,'' are a promising approach for significantly increasing the particle energies of conventional accelerators. The study and optimization of PWFA would benefit from an experimental correlation between the parameters of the drive bunch, the accelerated bunch and the corresponding, accelerating plasma wave structure. However, the plasma wave structure has not yet been observed directly in PWFA. We will report our current work on noninvasive optical Frequency Domain Interferometric (FDI) and Holographic (FDH) visualization of beam-driven plasma waves. Both techniques employ two laser pulses (probe and reference) co-propagating with the particle drive-beam and its plasma wake. The reference pulse precedes the drive bunch, while the probe overlaps the plasma wave and maps its longitudinal and transverse structure. The experiment is being developed at the BNL/ATF Linac to visualize wakes generated by two and multi-bunch drive beams.

  4. Radiative transport-based frequency-domain fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Rasmussen, John C.; Sevick-Muraca, Eva M.; Wareing, Todd A.; McGhee, John

    2008-04-01

    We report the development of radiative transport model-based fluorescence optical tomography from frequency-domain boundary measurements. The coupled radiative transport model for describing NIR fluorescence propagation in tissue is solved by a novel software based on the established Attila™ particle transport simulation platform. The proposed scheme enables the prediction of fluorescence measurements with non-contact sources and detectors at a minimal computational cost. An adjoint transport solution-based fluorescence tomography algorithm is implemented on dual grids to efficiently assemble the measurement sensitivity Jacobian matrix. Finally, we demonstrate fluorescence tomography on a realistic computational mouse model to locate nM to µM fluorophore concentration distributions in simulated mouse organs.

  5. Face identification with frequency domain matched filtering in mobile environments

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Su; Woo, Yong-Hyun; Yeom, Seokwon; Kim, Shin-Hwan

    2012-06-01

    Face identification at a distance is very challenging since captured images are often degraded by blur and noise. Furthermore, the computational resources and memory are often limited in the mobile environments. Thus, it is very challenging to develop a real-time face identification system on the mobile device. This paper discusses face identification based on frequency domain matched filtering in the mobile environments. Face identification is performed by the linear or phase-only matched filter and sequential verification stages. The candidate window regions are decided by the major peaks of the linear or phase-only matched filtering outputs. The sequential stages comprise a skin-color test and an edge mask filtering test, which verify color and shape information of the candidate regions in order to remove false alarms. All algorithms are built on the mobile device using Android platform. The preliminary results show that face identification of East Asian people can be performed successfully in the mobile environments.

  6. Domain decomposition methods for mortar finite elements

    SciTech Connect

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  7. Efficient integration method for fictitious domain approaches

    NASA Astrophysics Data System (ADS)

    Duczek, Sascha; Gabbert, Ulrich

    2015-10-01

    In the current article, we present an efficient and accurate numerical method for the integration of the system matrices in fictitious domain approaches such as the finite cell method (FCM). In the framework of the FCM, the physical domain is embedded in a geometrically larger domain of simple shape which is discretized using a regular Cartesian grid of cells. Therefore, a spacetree-based adaptive quadrature technique is normally deployed to resolve the geometry of the structure. Depending on the complexity of the structure under investigation this method accounts for most of the computational effort. To reduce the computational costs for computing the system matrices an efficient quadrature scheme based on the divergence theorem (Gauß-Ostrogradsky theorem) is proposed. Using this theorem the dimension of the integral is reduced by one, i.e. instead of solving the integral for the whole domain only its contour needs to be considered. In the current paper, we present the general principles of the integration method and its implementation. The results to several two-dimensional benchmark problems highlight its properties. The efficiency of the proposed method is compared to conventional spacetree-based integration techniques.

  8. Fast damage imaging using the time-reversal technique in the frequency-wavenumber domain

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Huang, G. L.; Yuan, F. G.

    2013-07-01

    The time-reversal technique has been successfully used in structural health monitoring (SHM) for quantitative imaging of damage. However, the technique is very time-consuming when it is implemented in the time domain. In this paper, we study the technique in the frequency-wavenumber (f-k) domain for fast real-time imaging of multiple damage sites in plates using scattered flexural plate waves. Based on Mindlin plate theory, the time reversibility of dispersive flexural waves in an isotropic plate is theoretically investigated in the f-k domain. A fast damage imaging technique is developed by using the cross-correlation between the back-propagated scattered wavefield and the incident wavefield in the frequency domain. Numerical simulations demonstrate that the proposed technique cannot only localize multiple damage sites but also potentially identify their sizes. Moreover, the time-reversal technique in the f-k domain is about two orders of magnitude faster than the method in the time domain. Finally, experimental testing of an on-line SHM system with a sparse piezoelectric sensor array is conducted for fast multiple damage identification using the proposed technique.

  9. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  10. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for the Convective Wave Equation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Kreider, K. L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  11. Frequency-domain correction of sensor dynamic error for step response.

    PubMed

    Yang, Shuang-Long; Xu, Ke-Jun

    2012-11-01

    To obtain accurate results in dynamic measurements it is required that the sensors should have good dynamic performance. In practice, sensors have non-ideal dynamic characteristics due to their small damp ratios and low natural frequencies. In this case some dynamic error correction methods can be adopted for dealing with the sensor responses to eliminate the effect of their dynamic characteristics. The frequency-domain correction of sensor dynamic error is a common method. Using the existing calculation method, however, the correct frequency-domain correction function (FCF) cannot be obtained according to the step response calibration experimental data. This is because of the leakage error and invalid FCF value caused by the cycle extension of the finite length step input-output intercepting data. In order to solve these problems the data splicing preprocessing and FCF interpolation are put forward, and the FCF calculation steps as well as sensor dynamic error correction procedure by the calculated FCF are presented in this paper. The proposed solution is applied to the dynamic error correction of the bar-shaped wind tunnel strain gauge balance so as to verify its effectiveness. The dynamic error correction results show that the adjust time of the balance step response is shortened to 10 ms (shorter than 1/30 before correction) after frequency-domain correction, and the overshoot is fallen within 5% (less than 1/10 before correction) as well. The dynamic measurement accuracy of the balance is improved significantly. PMID:23206091

  12. Frequency-domain correction of sensor dynamic error for step response

    NASA Astrophysics Data System (ADS)

    Yang, Shuang-Long; Xu, Ke-Jun

    2012-11-01

    To obtain accurate results in dynamic measurements it is required that the sensors should have good dynamic performance. In practice, sensors have non-ideal dynamic characteristics due to their small damp ratios and low natural frequencies. In this case some dynamic error correction methods can be adopted for dealing with the sensor responses to eliminate the effect of their dynamic characteristics. The frequency-domain correction of sensor dynamic error is a common method. Using the existing calculation method, however, the correct frequency-domain correction function (FCF) cannot be obtained according to the step response calibration experimental data. This is because of the leakage error and invalid FCF value caused by the cycle extension of the finite length step input-output intercepting data. In order to solve these problems the data splicing preprocessing and FCF interpolation are put forward, and the FCF calculation steps as well as sensor dynamic error correction procedure by the calculated FCF are presented in this paper. The proposed solution is applied to the dynamic error correction of the bar-shaped wind tunnel strain gauge balance so as to verify its effectiveness. The dynamic error correction results show that the adjust time of the balance step response is shortened to 10 ms (shorter than 1/30 before correction) after frequency-domain correction, and the overshoot is fallen within 5% (less than 1/10 before correction) as well. The dynamic measurement accuracy of the balance is improved significantly.

  13. Frequency domain stability analysis of nonlinear active disturbance rejection control system.

    PubMed

    Li, Jie; Qi, Xiaohui; Xia, Yuanqing; Pu, Fan; Chang, Kai

    2015-05-01

    This paper applies three methods (i.e., root locus analysis, describing function method and extended circle criterion) to approach the frequency domain stability analysis of the fast tool servo system using nonlinear active disturbance rejection control (ADRC) algorithm. Root locus qualitative analysis shows that limit cycle is generated because the gain of the nonlinear function used in ADRC varies with its input. The parameters in the nonlinear function are adjustable to suppress limit cycle. In the process of root locus analysis, the nonlinear function is transformed based on the concept of equivalent gain. Then, frequency domain description of the nonlinear function via describing function is presented and limit cycle quantitative analysis including estimating prediction error is presented, which virtually and theoretically demonstrates that the describing function method cannot guarantee enough precision in this case. Furthermore, absolute stability analysis based on extended circle criterion is investigated as a complement. PMID:25532936

  14. Time-domain representation of frequency-dependent foundation impedance functions

    USGS Publications Warehouse

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  15. 3D frequency-domain finite-difference modeling of acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Operto, S.; Virieux, J.

    2006-12-01

    We present a 3D frequency-domain finite-difference method for acoustic wave propagation modeling. This method is developed as a tool to perform 3D frequency-domain full-waveform inversion of wide-angle seismic data. For wide-angle data, frequency-domain full-waveform inversion can be applied only to few discrete frequencies to develop reliable velocity model. Frequency-domain finite-difference (FD) modeling of wave propagation requires resolution of a huge sparse system of linear equations. If this system can be solved with a direct method, solutions for multiple sources can be computed efficiently once the underlying matrix has been factorized. The drawback of the direct method is the memory requirement resulting from the fill-in of the matrix during factorization. We assess in this study whether representative problems can be addressed in 3D geometry with such approach. We start from the velocity-stress formulation of the 3D acoustic wave equation. The spatial derivatives are discretized with second-order accurate staggered-grid stencil on different coordinate systems such that the axis span over as many directions as possible. Once the discrete equations were developed on each coordinate system, the particle velocity fields are eliminated from the first-order hyperbolic system (following the so-called parsimonious staggered-grid method) leading to second-order elliptic wave equations in pressure. The second-order wave equations discretized on each coordinate system are combined linearly to mitigate the numerical anisotropy. Secondly, grid dispersion is minimized by replacing the mass term at the collocation point by its weighted averaging over all the grid points of the stencil. Use of second-order accurate staggered- grid stencil allows to reduce the bandwidth of the matrix to be factorized. The final stencil incorporates 27 points. Absorbing conditions are PML. The system is solved using the parallel direct solver MUMPS developed for distributed

  16. Thermal characterization of light-emitting diodes in the frequency domain

    NASA Astrophysics Data System (ADS)

    Vitta, P.; Žukauskas, A.

    2008-09-01

    We report on a method for the measurement of thermal relaxation time constants within light-emitting diodes (LEDs) in the frequency domain. The method is based on the phase shift of the forward voltage waveform with respect to that of the harmonically modulated forward current due to the sensitivity of the forward voltage to junction temperature. The phase shift was shown to exhibit dips at angular frequencies equal to inverse thermal time constants. Extraction of thermal time constants was demonstrated for common low-power and high-power LEDs. The measured thermal time constants (˜0.1-100 ms) were linked to heat flows between the LED components.

  17. Frequency-dependent FDTD methods using Z transforms

    NASA Technical Reports Server (NTRS)

    Sullivan, Dennis M.

    1992-01-01

    While the frequency-dependent finite-difference time-domain, or (FD)2TD, method can correctly calculate EM propagation through media whose dielectric properties are frequency-dependent, more elaborate applications lead to greater (FD)2TD complexity. Z-transform theory is presently used to develop the mathematical bases of the (FD)2TD method, simultaneously obtaining a clearer formulation and allowing researchers to draw on the existing literature of systems analysis and signal-processing.

  18. Prediction of Cancer Proteins by Integrating Protein Interaction, Domain Frequency, and Domain Interaction Data Using Machine Learning Algorithms

    PubMed Central

    2015-01-01

    Many proteins are known to be associated with cancer diseases. It is quite often that their precise functional role in disease pathogenesis remains unclear. A strategy to gain a better understanding of the function of these proteins is to make use of a combination of different aspects of proteomics data types. In this study, we extended Aragues's method by employing the protein-protein interaction (PPI) data, domain-domain interaction (DDI) data, weighted domain frequency score (DFS), and cancer linker degree (CLD) data to predict cancer proteins. Performances were benchmarked based on three kinds of experiments as follows: (I) using individual algorithm, (II) combining algorithms, and (III) combining the same classification types of algorithms. When compared with Aragues's method, our proposed methods, that is, machine learning algorithm and voting with the majority, are significantly superior in all seven performance measures. We demonstrated the accuracy of the proposed method on two independent datasets. The best algorithm can achieve a hit ratio of 89.4% and 72.8% for lung cancer dataset and lung cancer microarray study, respectively. It is anticipated that the current research could help understand disease mechanisms and diagnosis. PMID:25866773

  19. Nonlinear (time domain) and linearized (time and frequency domain) solutions to the compressible Euler equations in conservation law form

    NASA Technical Reports Server (NTRS)

    Sreenivas, Kidambi; Whitfield, David L.

    1995-01-01

    Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations.

  20. Motion artifacts in optical coherence tomography with frequency-domain ranging

    PubMed Central

    Yun, S. H.; Tearney, G. J.; de Boer, J. F.; Bouma, B. E.

    2009-01-01

    We describe results of theoretical and experimental investigations of artifacts that can arise in spectral-domain optical coherence tomography (SD-OCT) and optical frequency domain imaging (OFDI) as a result of sample or probe beam motion. While SD-OCT and OFDI are based on similar spectral interferometric principles, the specifics of motion effects are quite different because of distinct signal acquisition methods. These results provide an understanding of motion artifacts such as signal fading, spatial distortion and blurring, and emphasize the need for fast image acquisition in biomedical applications. PMID:19483816

  1. Frequency-domain seismic-wave modeling, migration, and full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Xu, Kun

    In the dissertation, I have proposed and developed new approaches for seismic modeling, migration, and full-waveform inversion in the frequency domain. For 3D scalar-wave simulations in the frequency-space domain, we develop a fourth-order compact finite-difference (FD) form with a high-order spatial accuracy (4-5 grid points per shortest wavelength), and optimal one-way wave-equation (OWWE) absorbing boundary conditions (ABCs) with only one outer layer; these strategies greatly reduce the total number of the model grid points, and thus the overall computational cost. For reverse-time migration (RTM) using the cross-correlation imaging condition in the time domain, extra disk storage or wavefield simulations are required to make the forward propagated source and backward-propagated receiver wavefields available at the same time. We propose a new method to implement RTM in the frequency domain. Using virtual sources for the backward propagation of the receiver wavefield, we can straightforwardly implement the excitation-time and cross-correlation imaging conditions at each frequency without any disk storage or I/O and with complete spatial coverage of the migrated images. As both time and frequency domains have their own advantages for the inversion, we implement a hybrid scheme to combine both advantages in elastic full-waveform inversion (FWI). We simulate the wavefields using a time-domain high-precision finite-element (FE) modeling parallelized over shots with the message passing interface (MPI), and implement the inversion in the frequency domain via Fourier transform. Thus, we can easily apply both frequency-selection and time-windowing techniques to reduce the nonlinearity in inversion. To decouple different parameters in elastic FWI, we propose a new multi-steplength gradient approach to assign individual weights separately for each parameter gradient, and search for an optimal steplength along the composite gradient direction. As variations in the results

  2. Frequency and time domain three-dimensional inversion of electromagnetic data for a grounded-wire source

    NASA Astrophysics Data System (ADS)

    Sasaki, Yutaka; Yi, Myeong-Jong; Choi, Jihyang; Son, Jeong-Sul

    2015-01-01

    We present frequency- and time-domain three-dimensional (3-D) inversion approaches that can be applied to transient electromagnetic (TEM) data from a grounded-wire source using a PC. In the direct time-domain approach, the forward solution and sensitivity were obtained in the frequency domain using a finite-difference technique, and the frequency response was then Fourier-transformed using a digital filter technique. In the frequency-domain approach, TEM data were Fourier-transformed using a smooth-spectrum inversion method, and the recovered frequency response was then inverted. The synthetic examples show that for the time derivative of magnetic field, frequency-domain inversion of TEM data performs almost as well as time-domain inversion, with a significant reduction in computational time. In our synthetic studies, we also compared the resolution capabilities of the ground and airborne TEM and controlled-source audio-frequency magnetotelluric (CSAMT) data resulting from a common grounded wire. An airborne TEM survey at 200-m elevation achieved a resolution for buried conductors almost comparable to that of the ground TEM method. It is also shown that the inversion of CSAMT data was able to detect a 3-D resistivity structure better than the TEM inversion, suggesting an advantage of electric-field measurements over magnetic-field-only measurements.

  3. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics.

    PubMed

    Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai

    2016-01-01

    Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid. PMID:27375465

  4. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics

    PubMed Central

    Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai

    2016-01-01

    Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid. PMID:27375465

  5. A comparison of frequency domain design and l1-optimal control

    NASA Technical Reports Server (NTRS)

    Jayasuriya, Suhada; Sobhani, Massoud; Zentgraf, Peter

    1991-01-01

    A frequency-domain design methodology is applied to a DC motor-speed control system and the results are compared to those obtained using l1-optimal control theory (Pearson and Bamieh, 1990). Both methods synthesize controllers that maximize the allowable size of an unknown-but-bounded disturbance while satisfying prespecified constraints on the control, the control rate, and the outputs. The frequency-domain design technique in general results in much lower-order compensators than those required by the l1-optimal method for a given size of disturbance. Also, the design trade-offs regarding the bandwidth of the system, the size of the disturbance input, and the structural complexity of the controller transfer function become quite transparent.

  6. Dynamic analysis of offshore structures with non-zero initial conditions in the frequency domain

    NASA Astrophysics Data System (ADS)

    Liu, Fushun; Lu, Hongchao; Li, Huajun

    2016-03-01

    The state of non-zero conditions is typically treated as fact when considering the dynamic analysis of offshore structures. This article extends a newly proposed method [1] to manage the non-zero initial conditions of offshore structures in the frequency domain, including new studies on original environmental loads reconstruction, response comparisons with the commercial software ANSYS, and a demonstration using an experimental cantilever beam. The original environmental loads, such as waves, currents, and winds, that act on a structure are decomposed into multiple complex exponential components are represented by a series of poles and corresponding residues. Counter to the traditional frequency-domain method, the non-zero initial conditions of offshore structures could be solved in the frequency domain. Compared with reference [1], an improvement reported in this article is that practical issues, including the choice of model order and central-processing-unit (CPU) time consumption, are further studied when applying this new method to offshore structures. To investigate the feasibility of the representation of initial environmental loads by their poles and corresponding residues, a measured random wave force collected from a column experiment at the Lab of Ocean University of China is used, decomposed, reconstructed and then compared with the original wave force; then, a numerical offshore platform is used to study the performance of the proposed method in detail. The numerical results of this study indicate that (1) a short duration of environmental loads are required to obtain their constitutive poles and residues, which implies good computational efficiency; and (2) the proposed method has a similar computational efficiency to traditional methods due to the use of the inverse Fourier transform technique. To better understand the performance, of time consumption and accuracy of the proposed method, the commercial software ANSYS is used to determine responses

  7. Three-dimensional inversion of frequency domain airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Cox, Leif Harrington

    Airborne electromagnetic (AEM) surveys provide vast amounts of data over remote areas that may not be ground accessible. Typical surveys may contain hundreds of thousands of data points sampled every few meters. Quantitative interpretation of this large amount of data is computationally very time consuming and challenging. This dissertation presents two methods, based on the integral equation (IE), to invert AEM data in three dimensions. One inversion method is based on the localized quasi-linear (LQL) approximate inversion, which I have modified so the inverse and forward operators only include a small area of the inversion domain. This is possible for airborne data interpretation because the footprint, or region that affects the response of each measurement, is relatively small relative to the typical survey area. This modification to the approximate LQL inversion enables interpretation of full airborne surveys using tens of thousands of data points and hundreds of thousands of cells. The method is tested on both synthetic and field data, each showing accurate results. The second interpretation method is a rigorous inversion, which uses the full accuracy of the IE method. It is based on the iterative solution of the domain and field equations, while keeping the inverse operator linear to speed the inversion process. The domain equation is solved using a preconditioned form of the complex generalized minimum residual solver to guarantee convergence. This inversion includes the footprint method developed for the LQL inversion. It has also been tested on both synthetic and field data, demonstrating excellent results with respect to both the speed and accuracy of the method. With present computing power, the rigorous method is intended to interpret subsets of AEM surveys. The LQL inversion can be applied to entire survey areas, but the accuracy is limited by the approximate nature of the inversion. These two methods pair nicely, with the LQL method used to identify

  8. Enhancement of Frequency Domain Indices of Heart Rate Variability by Cholinergic Stimulation with Pyridostigmine Bromide

    PubMed Central

    Zarei, Ali Asghar; Foroutan, Seyyed Abbas; Foroutan, Seyyed Mohsen; Erfanian Omidvar, Abbas

    2011-01-01

    Pyridostigmine bromide (PB) is a reversible cholinesterase inhibitor. The aim of this study was to determine the effect of orally administration of single dose sustained-released tablet of pyridostigmine bromide (PBSR) on the frequency domain indices of heart rate variability (HRV). Thirty-two healthy young men were participated in this study. They were divided into 2 groups; the pyridostigmine group (n = 22) and the placebo group (n = 10). Electrocardiogram (ECG) was recorded at 10, 30, 60, 90, 120, 150, 180, 210, 240, 300 and 420 min after PBSR administration. At each time, simultaneously, a blood sample was prepared and PB plasma concentration was measured by high-performance liquid chromatography (HPLC) method. Statistical analysis showed that in different indices of HRV, there is a significant increase in low frequency (LF) band at 300 min, but no difference in high frequency band (HF). It also showed significant decreases in normalized high frequency band (Hfnu), normalized low frequency band (Lfnu) and LF/HF ratio at 120, 240 and 300 min after PBSR administration. Maximum plasma concentration of PB was 150 min after the administration. In conclusion, administration of a single dose PBSR can enhance the frequency domains indices of HRV and improvesympathovagal balance. PMID:24250427

  9. Enhancement of frequency domain indices of heart rate variability by cholinergic stimulation with pyridostigmine bromide.

    PubMed

    Zarei, Ali Asghar; Foroutan, Seyyed Abbas; Foroutan, Seyyed Mohsen; Erfanian Omidvar, Abbas

    2011-01-01

    Pyridostigmine bromide (PB) is a reversible cholinesterase inhibitor. The aim of this study was to determine the effect of orally administration of single dose sustained-released tablet of pyridostigmine bromide (PBSR) on the frequency domain indices of heart rate variability (HRV). Thirty-two healthy young men were participated in this study. They were divided into 2 groups; the pyridostigmine group (n = 22) and the placebo group (n = 10). Electrocardiogram (ECG) was recorded at 10, 30, 60, 90, 120, 150, 180, 210, 240, 300 and 420 min after PBSR administration. At each time, simultaneously, a blood sample was prepared and PB plasma concentration was measured by high-performance liquid chromatography (HPLC) method. Statistical analysis showed that in different indices of HRV, there is a significant increase in low frequency (LF) band at 300 min, but no difference in high frequency band (HF). It also showed significant decreases in normalized high frequency band (Hfnu), normalized low frequency band (Lfnu) and LF/HF ratio at 120, 240 and 300 min after PBSR administration. Maximum plasma concentration of PB was 150 min after the administration. In conclusion, administration of a single dose PBSR can enhance the frequency domains indices of HRV and improvesympathovagal balance. PMID:24250427

  10. Frequency domain response of a parametrically excited riser under random wave forces

    NASA Astrophysics Data System (ADS)

    Lei, Song; Zhang, Wen-Shou; Lin, Jia-Hao; Yue, Qian-Jin; Kennedy, D.; Williams, F. W.

    2014-01-01

    Floating Production, Drilling, Storage and Offloading units represent a new technology with a promising future in the offshore oil industry. An important role is played by risers, which are installed between the subsea wellhead and the Tension Leg Deck located in the middle of the moon-pool in the hull. The inevitable heave motion of the floating hull causes a time-varying axial tension in the riser. This time dependent tension may have an undesirable influence on the lateral deflection response of the riser, with random wave forces in the frequency domain. To investigate this effect, a riser is modeled as a Bernoulli-Euler beam. The axial tension is expressed as a static part, along with a harmonic dynamic part. By linearizing the wave drag force, the riser's lateral deflection is obtained through a partial differential equation containing a time-dependent coefficient. Applying the Galerkin method, the equation is reduced to an ordinary differential equation that can be solved using the pseudo-excitation method in the frequency domain. Moreover, the Floquet-Liapunov theorem is used to estimate the stability of the vibration system in the space of parametric excitation. Finally, stability charts are obtained for some numerical examples, the correctness of the proposed method is verified by comparing with Monte-Carlo simulation and the influence of the parametric excitation on the frequency domain responses of the riser is discussed.

  11. Spectral evolution of two-dimensional kinetic plasma turbulence in the wavenumber-frequency domain

    SciTech Connect

    Comişel, H.; Verscharen, D.; Narita, Y.; Motschmann, U.

    2013-09-15

    We present a method for studying the evolution of plasma turbulence by tracking dispersion relations in the energy spectrum in the wavenumber-frequency domain. We apply hybrid plasma simulations in a simplified two-dimensional geometry to demonstrate our method and its applicability to plasma turbulence in the ion kinetic regime. We identify four dispersion relations: ion-Bernstein waves, oblique whistler waves, oblique Alfvén/ion-cyclotron waves, and a zero-frequency mode. The energy partition and frequency broadening are evaluated for these modes. The method allows us to determine the evolution of decaying plasma turbulence in our restricted geometry and shows that it cascades along the dispersion relations during the early phase with an increasing broadening around the dispersion relations.

  12. Implementation of an LED-based clinical spatial frequency domain imaging system

    NASA Astrophysics Data System (ADS)

    Mazhar, Amaan; Sharif, Seyed A.; Saggese, Steve; Choi, Bernard; Cuccia, David J.; Durkin, Anthony J.

    2012-03-01

    Spatial Frequency Domain Imaging (SFDI) is a non-contact imaging method that uses multiple frequency spatial illumination to generate two dimensional maps of tissue optical properties (absorption and reduced scattering) and chromophore concentrations. We present phantom validation and pilot clinical data of a deployed light-emitting diode (LED) based system. The system employs four LED wavelengths (658 nm, 730 nm, 850 nm, 970 nm) to quantitatively assess tissue health by measurement of common tissue constituents. Phantom validation results and maps of oxyhemoglobin, deoxy-hemoglobin, water content, reduced scattering, and surface topography will be presented for pilot studies assessing burn severity and efficacy of port wine stain treatment.

  13. Statistical significance of task related deep brain EEG dynamic changes in the time-frequency domain.

    PubMed

    Chládek, J; Brázdil, M; Halámek, J; Plešinger, F; Jurák, P

    2013-01-01

    We present an off-line analysis procedure for exploring brain activity recorded from intra-cerebral electroencephalographic data (SEEG). The objective is to determine the statistical differences between different types of stimulations in the time-frequency domain. The procedure is based on computing relative signal power change and subsequent statistical analysis. An example of characteristic statistically significant event-related de/synchronization (ERD/ERS) detected across different frequency bands following different oddball stimuli is presented. The method is used for off-line functional classification of different brain areas. PMID:24109865

  14. Polarized spatial frequency domain imaging of heart valve fiber structure

    NASA Astrophysics Data System (ADS)

    Goth, Will; Yang, Bin; Lesicko, John; Allen, Alicia; Sacks, Michael S.; Tunnell, James W.

    2016-03-01

    Our group previously introduced Polarized Spatial Frequency Domain Imaging (PSFDI), a wide-field, reflectance imaging technique which we used to empirically map fiber direction in porcine pulmonary heart valve leaflets (PHVL) without optical clearing or physical sectioning of the sample. Presented is an extended analysis of our PSFDI results using an inverse Mueller matrix model of polarized light scattering that allows additional maps of fiber orientation distribution, along with instrumentation permitting increased imaging speed for dynamic PHVL fiber measurements. We imaged electrospun fiber phantoms with PSFDI, and then compared these measurements to SEM data collected for the same phantoms. PHVL was then imaged and compared to results of the same leaflets optically cleared and imaged with small angle light scattering (SALS). The static PHVL images showed distinct regional variance of fiber orientation distribution, matching our SALS results. We used our improved imaging speed to observe bovine tendon subjected to dynamic loading using a biaxial stretching device. Our dynamic imaging experiment showed trackable changes in the fiber microstructure of biological tissue under loading. Our new PSFDI analysis model and instrumentation allows characterization of fiber structure within heart valve tissues (as validated with SALS measurements), along with imaging of dynamic fiber remodeling. The experimental data will be used as inputs to our constitutive models of PHVL tissue to fully characterize these tissues' elastic behavior, and has immediate application in determining the mechanisms of structural and functional failure in PHVLs used as bio-prosthetic implants.

  15. Visible spatial frequency domain imaging with a digital light microprojector

    PubMed Central

    Lin, Alexander J.; Ponticorvo, Adrien; Konecky, Soren D.; Cui, Haotian; Rice, Tyler B.; Choi, Bernard; Durkin, Anthony J.

    2013-01-01

    Abstract. There is a need for cost effective, quantitative tissue spectroscopy and imaging systems in clinical diagnostics and pre-clinical biomedical research. A platform that utilizes a commercially available light-emitting diode (LED) based projector, cameras, and scaled Monte Carlo model for calculating tissue optical properties is presented. These components are put together to perform spatial frequency domain imaging (SFDI), a model-based reflectance technique that measures and maps absorption coefficients (μa) and reduced scattering coefficients (μs′) in thick tissue such as skin or brain. We validate the performance of the flexible LED and modulation element (FLaME) system at 460, 530, and 632 nm across a range of physiologically relevant μa values (0.07 to 1.5  mm−1) in tissue-simulating intralipid phantoms, showing an overall accuracy within 11% of spectrophotometer values for μa and 3% for μs′. Comparison of oxy- and total hemoglobin fits between the FLaME system and a spectrophotometer (450 to 1000 nm) is differed by 3%. Finally, we acquire optical property maps of a mouse brain in vivo with and without an overlying saline well. These results demonstrate the potential of FLaME to perform tissue optical property mapping in visible spectral regions and highlight how the optical clearing effect of saline is correlated to a decrease in μs′ of the skull. PMID:24005154

  16. Optimal Frequency-Domain System Realization with Weighting

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Maghami, Peiman G.

    1999-01-01

    Several approaches are presented to identify an experimental system model directly from frequency response data. The formulation uses a matrix-fraction description as the model structure. Frequency weighting such as exponential weighting is introduced to solve a weighted least-squares problem to obtain the coefficient matrices for the matrix-fraction description. A multi-variable state-space model can then be formed using the coefficient matrices of the matrix-fraction description. Three different approaches are introduced to fine-tune the model using nonlinear programming methods to minimize the desired cost function. The first method uses an eigenvalue assignment technique to reassign a subset of system poles to improve the identified model. The second method deals with the model in the real Schur or modal form, reassigns a subset of system poles, and adjusts the columns (rows) of the input (output) influence matrix using a nonlinear optimizer. The third method also optimizes a subset of poles, but the input and output influence matrices are refined at every optimization step through least-squares procedures.

  17. Quantitative broadband absorption and scattering spectroscopy in turbid media by combined frequency-domain and steady state methodologies

    DOEpatents

    Tromberg, Bruce J.; Berger, Andrew J.; Cerussi, Albert E.; Bevilacqua, Frederic; Jakubowski, Dorota

    2008-09-23

    A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.

  18. Determination of medium electrical properties through full-wave modelling of frequency domain reflectrometry data

    NASA Astrophysics Data System (ADS)

    André, Frédéric; Lambot, Sébastien

    2015-04-01

    Accurate knowledge of the shallow soil properties is of prime importance in agricultural, hydrological and environmental engineering. During the last decade, numerous geophysical techniques, either invasive or resorting to proximal or remote sensing, have been developed and applied for quantitative characterization of soil properties. Amongst them, time domain reflectrometry (TDR) and frequency domain reflectometry (FDR) are recognized as standard techniques for the determination of soil dielectric permittivity and electrical conductivity, based on the reflected electromagnetic waves from a probe inserted into the soil. TDR data were first commonly analyzed in the time domain using methods considering only a part of the waveform information. Later, advancements have led to the possibility of analyzing the TDR signal through full-wave inverse modeling either in the time or the frequency domains. A major advantage of FDR compared to TDR is the possibility to increase the bandwidth, thereby increasing the information content of the data and providing more detailed characterization of the medium. Amongst the recent works in this field, Minet et al. (2010) developed a modeling procedure for processing FDR data based on an exact solution of Maxwell's equations for wave propagation in one-dimensional multilayered media. In this approach, the probe head is decoupled from the medium and is fully described by characteristic transfer functions. The authors successfully validated the method for homogeneous sand subject to a range of water contents. In the present study, we further validated the modelling approach using reference liquids with well-characterized frequency-dependent electrical properties. In addition, the FDR model was coupled with a dielectric mixing model to investigate the ability of retrieving water content, pore water electrical conductivity and sand porosity from inversion of FDR data acquired in sand subject to different water content levels. Finally, the

  19. Water content evaluation in unsaturated soil using GPR signal analysis in the frequency domain

    NASA Astrophysics Data System (ADS)

    Benedetto, Andrea

    2010-05-01

    The evaluation of the water content of unsaturated soil is important for many applications, such as environmental engineering, agriculture and soil science. This study is applied to pavement engineering, but the proposed approach can be utilized in other applications as well. There are various techniques currently available which measure the soil moisture content and some of these techniques are non-intrusive. Herein, a new methodology is proposed that avoids several disadvantages of existing techniques. In this study, ground-coupled Ground Penetrating Radar (GPR) techniques are used to non-destructively monitor the volumetric water content. The signal is processed in the frequency domain; this method is based on Rayleigh scattering according to the Fresnel theory. The scattering produces a non-linear frequency modulation of the electromagnetic signal, where the modulation is a function of the water content. To test the proposed method, five different types of soil were wetted in laboratory under controlled conditions and the samples were analyzed using GPR. The GPR data were processed in the frequency domain, demonstrating a correlation between the shift of the frequency spectrum of the radar signal and the moisture content. The techniques also demonstrate the potential for detecting clay content in soils. This frequency domain approach gives an innovative method that can be applied for an accurate and non-invasive estimation of the water content of soils - particularly, in sub-asphalt aggregate layers - and assessing the bearing capacity and efficacy of the pavement drainage layers. The main benefit of this method is that no preventive calibration is needed.

  20. Research efforts in support of resonance extraction studies. Volume 1: Improvement and validation of TWFD (Thin-Wire Frequency-Domain): A thin-wire frequency-domain scattering code

    NASA Astrophysics Data System (ADS)

    Auton, J. R.; Larry, T. L.; Vanblaricum, M. L.

    1984-11-01

    The development of a thin-wire frequency-domain (TWFD) method of moments code was discussed in a previous report 1. Since that time this code has undergone further development and numerical testing. The purpose of the code is to provide a theoretical and numerical basis to aid in understanding the resonance region electromagnetic scattering from thin-wire stick models. This frequency domain code augments a time-domain code (TWTD) which calculates the scattered transient response for an impulsive incident field. The outputs from both of these codes have provided numerical predictions which have been indispensible in assessing our ability to extract resonance information from actual scattering range data.

  1. Method of detecting system function by measuring frequency response

    DOEpatents

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.

    2012-04-03

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  2. Method of detecting system function by measuring frequency response

    NASA Technical Reports Server (NTRS)

    Morrison, John L. (Inventor); Morrison, William H. (Inventor); Christophersen, Jon P. (Inventor)

    2012-01-01

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  3. Frequency domain transfer function identification using the computer program SYSFIT

    SciTech Connect

    Trudnowski, D.J.

    1992-12-01

    Because the primary application of SYSFIT for BPA involves studying power system dynamics, this investigation was geared toward simulating the effects that might be encountered in studying electromechanical oscillations in power systems. Although the intended focus of this work is power system oscillations, the studies are sufficiently genetic that the results can be applied to many types of oscillatory systems with closely-spaced modes. In general, there are two possible ways of solving the optimization problem. One is to use a least-squares optimization function and to write the system in such a form that the problem becomes one of linear least-squares. The solution can then be obtained using a standard least-squares technique. The other method involves using a search method to obtain the optimal model. This method allows considerably more freedom in forming the optimization function and model, but it requires an initial guess of the system parameters. SYSFIT employs this second approach. Detailed investigations were conducted into three main areas: (1) fitting to exact frequency response data of a linear system; (2) fitting to the discrete Fourier transformation of noisy data; and (3) fitting to multi-path systems. The first area consisted of investigating the effects of alternative optimization cost function options; using different optimization search methods; incorrect model order, missing response data; closely-spaced poles; and closely-spaced pole-zero pairs. Within the second area, different noise colorations and levels were studied. In the third area, methods were investigated for improving fitting results by incorporating more than one system path. The following is a list of guidelines and properties developed from the study for fitting a transfer function to the frequency response of a system using optimization search methods.

  4. New parallel SOR method by domain partitioning

    SciTech Connect

    Xie, D.; Adams, L.

    1999-07-01

    In this paper the authors propose and analyze a new parallel SOR method, the PSOR method, formulated by using domain partitioning and interprocessor data communication techniques. They prove that the PSOR method has the same asymptotic rate of convergence as the Red/Black (R/B) SOR method for the five-point stencil on both strip and block partitions, and as the four-color (R/B/G/O) SOR method for the nine-point stencil on strip partitions. They also demonstrate the parallel performance of the PSOR method on four different MIMD multiprocessors (a KSR1, an Intel Delta, a Paragon, and an IBM SP2). Finally, they compare the parallel performance of PSOR, R/B SOR, and R/B/G/O SOR. Numerical results on the Paragon indicate that PSOR is more efficient than R/B SOR and R/B/G/O SOR in both computation and interprocessor data communication.

  5. Mixed frequency/time domain optical analogues of heteronuclear multidimensional NMR.

    PubMed

    Pakoulev, Andrei V; Rickard, Mark A; Meyer, Kent A; Kornau, Kathryn; Mathew, Nathan A; Thompson, David E; Wright, John C

    2006-03-16

    Ultrafast spectroscopy is dominated by time domain methods such as pump-probe and, more recently, 2D-IR spectroscopies. In this paper, we demonstrate that a mixed frequency/time domain ultrafast four wave mixing (FWM) approach not only provides similar capabilities, but it also provides optical analogues of multiple- and zero-quantum heteronuclear nuclear magnetic resonance (NMR). The method requires phase coherence between the excitation pulses only over the dephasing time of the coherences. It uses twelve coherence pathways that include four with populations, four with zero-quantum coherences, and four with double-quantum coherences. Each pathway provides different capabilities. The population pathways correspond to those of two-dimensional (2D) time domain spectroscopies, while the double- and zero-quantum coherence pathways access the coherent dynamics of coupled quantum states. The three spectral and two temporal dimensions enable the isolation and characterization of the spectral correlations between different vibrational and/or electronic states, coherence and population relaxation rates, and coupling strengths. Quantum-level interference between the direct and free-induction decay components gives a spectral resolution that exceeds that of the excitation pulses. Appropriate parameter choices allow isolation of individual coherence pathways. The mixed frequency/time domain approach allows one to access any set of quantum states with coherent multidimensional spectroscopy. PMID:16526612

  6. Suspension parameter estimation in the frequency domain using a matrix inversion approach

    NASA Astrophysics Data System (ADS)

    Thite, A. N.; Banvidi, S.; Ibicek, T.; Bennett, L.

    2011-12-01

    The dynamic lumped parameter models used to optimise the ride and handling of a vehicle require base values of the suspension parameters. These parameters are generally experimentally identified. The accuracy of identified parameters can depend on the measurement noise and the validity of the model used. The existing publications on suspension parameter identification are generally based on the time domain and use a limited degree of freedom. Further, the data used are either from a simulated 'experiment' or from a laboratory test on an idealised quarter or a half-car model. In this paper, a method is developed in the frequency domain which effectively accounts for the measurement noise. Additional dynamic constraining equations are incorporated and the proposed formulation results in a matrix inversion approach. The nonlinearities in damping are estimated, however, using a time-domain approach. Full-scale 4-post rig test data of a vehicle are used. The variations in the results are discussed using the modal resonant behaviour. Further, a method is implemented to show how the results can be improved when the matrix inverted is ill-conditioned. The case study shows a good agreement between the estimates based on the proposed frequency-domain approach and measurable physical parameters.

  7. A frequency domain analysis of spatial organization of epicardial maps.

    PubMed

    Sih, H J; Sahakian, A V; Arentzen, C E; Swiryn, S

    1995-07-01

    Mapping of organized rhythms like sinus rhythm uses activation times from individual electrograms, and often assumes that the map for a single activation is similar to maps for subsequent activations. However, during fibrillation, activation times and electrograms are not easy to define, and maps change from activation to activation. Volume and complexity of data make analysis of more than a few seconds of fibrillation difficult. Magnitude Squared Coherence (MSC), a frequency domain measure of the phase consistency between two signals, can be used to help interpret longer data segments without defining activation times or electrograms. Sinus rhythm, flutter, and fibrillation in humans and swine were mapped with an array of unipolar electrodes (2.5 mm apart) at 240 sites on the atrial or ventricular epicardium. Four-second data segments were analyzed. One site near the center of the array was chosen ad hoc as a reference. MSC maps were made by measuring mean MSC from 0-50 Hz between every point in the array relative to the reference. Isocoherence contours were drawn. The effects of bias in the coherence estimate due to misalignment were investigated. Average MSC versus distance from the reference was measured for all rhythms. Results indicate that in a 4-s segment of fibrillation, there can exist some phase consistency between one site and the reference and little or none between a second site and the reference even when both sites are equidistant from the reference. In fibrillation, isocoherence contours are elongated and irregularly shaped, reflecting long-term, but nonuniform, spatial organization. That is, activation during fibrillation cannot be considered as random over a 4-s interval. Bias in the coherence estimate due to misalignment is significant for sinus rhythm and flutter, but can be corrected by manual realignment. Average MSC drops with distance for all rhythms, being most pronounced for fibrillation, MSC maps may provide insights into long

  8. Frequency-domain optical probing of coherent spins in nanocrystal quantum dots.

    PubMed

    Frey, J A; Berezovsky, J

    2012-08-27

    Spin-photon interactions such as the Faraday effect provide techniques for measuring coherent spin dynamics in semiconductors. In contrast to typical ultrafast pulsed laser techniques, which measure spin dynamics in the time domain with an intense, spectrally broad probe pulse, we demonstrate a frequency-domain spin-photon resonance effect using modulated continuous-wave lasers which enables measurement of GHz-scale coherent spin dynamics in semiconductors with minimal spectral linewidth. This technique permits high-resolution spectroscopic measurements not possible with ultrafast methods. We have employed this effect to observe coherent spin dynamics in CdSe nanocrystals using standard diode lasers. By fitting the results to the expected model, we extract electron g-factors, and spin coherence and dephasing times in agreement with time-domain measurements. PMID:23037054

  9. 2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Brossier, R.; Virieux, J.; Operto, S.

    2008-12-01

    Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.

  10. Frequency domain analysis of the random loading of cracked panels

    NASA Technical Reports Server (NTRS)

    Doyle, James F.

    1994-01-01

    The primary effort concerned the development of analytical methods for the accurate prediction of the effect of random loading on a panel with a crack. Of particular concern was the influence of frequency on the stress intensity factor behavior. Many modern structures, such as those found in advanced aircraft, are lightweight and susceptible to critical vibrations, and consequently dynamic response plays a very important role in their analysis. The presence of flaws and cracks can have catastrophic consequences. The stress intensity factor, K, emerges as a very significant parameter that characterizes the crack behavior. In analyzing the dynamic response of panels that contain cracks, the finite element method is used, but because this type of problem is inherently computationally intensive, a number of ways of calculating K more efficiently are explored.

  11. To Err is Normable: The Computation of Frequency-Domain Error Bounds from Time-Domain Data

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Veillette, Robert J.; DeAbreuGarcia, J. Alexis; Chicatelli, Amy; Hartmann, Richard

    1998-01-01

    This paper exploits the relationships among the time-domain and frequency-domain system norms to derive information useful for modeling and control design, given only the system step response data. A discussion of system and signal norms is included. The proposed procedures involve only simple numerical operations, such as the discrete approximation of derivatives and integrals, and the calculation of matrix singular values. The resulting frequency-domain and Hankel-operator norm approximations may be used to evaluate the accuracy of a given model, and to determine model corrections to decrease the modeling errors.

  12. 3D seismic data reconstruction based on complex-valued curvelet transform in frequency domain

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Chen, Xiaohong; Li, Hongxing

    2015-02-01

    Traditional seismic data sampling must follow the Nyquist Sampling Theorem. However, the field data acquisition may not meet the sampling criteria due to missing traces or limits in exploration cost, causing a prestack data reconstruction problem. Recently researchers have proposed many useful methods to regularize the seismic data. In this paper, a 3D seismic data reconstruction method based on the Projections Onto Convex Sets (POCS) algorithm and a complex-valued curvelet transform (CCT) has been introduced in the frequency domain. In order to improve reconstruction efficiency and reduce the computation time, the seismic data are transformed from the t-x-y domain to the f-x-y domain and the data reconstruction is processed for every frequency slice during the reconstruction process. The selection threshold parameter is important for reconstruction efficiency for each iteration, therefore an exponential square root decreased (ESRD) threshold is proposed. The experimental results show that the ESRD threshold can greatly reduce iterations and improve reconstruction efficiency compared to the other thresholds for the same reconstruction result. We also analyze the antinoise ability of the CCT-based POCS reconstruction method. The example studies on synthetic and real marine seismic data showed that our proposed method is more efficient and applicable.

  13. Microwave signal processing in two-frequency domain for ROF systems implementation: training course

    NASA Astrophysics Data System (ADS)

    Morozov, Oleg G.; Morozov, Gennady A.

    2014-04-01

    This article is presented materials from two tutorials: "Optical two-frequency domain reflectometry1, 2" and "Microwave technologies in industry, living systems and telecommunications3". These materials were prepared for master training courses and listed in the "SPIE Optical Education Directory" for 2013/2014. The main its theme is microwave photonics. Microwave photonics has been defined as the study of photonic devices operating at microwave frequencies and their application to microwave and optical systems. Its initial rationale was to use the advantages of photonic technologies to provide functions in microwave systems that are very complex or even impossible to carry out directly in the radiofrequency domain. But microwave photonics is also succeeding in incorporating a variety of techniques used in microwave engineering to improve the performance of photonic communication networks and systems. Three parts of this chapter are devoted to applications and construction principles of systems forming microwave photonic filters, measuring instantaneous frequency of microwave heterodyne signals and characterizing stimulated Mandelstam- Brillouin scattering spectrum in ROF systems. The main emphasis is on the use of the two-frequency symmetric radiation, generated by the Il'in-Morozov's method4, in given systems. It is forming radiation for the synthesis of optical filters coefficients, it's application and processing determine the increase in the signal-to-noise ratio during heterodyne frequencies monitoring and characterization of nonlinear effects spectrum.

  14. A new method of charged particle identification based on frequency spectrum analysis

    NASA Astrophysics Data System (ADS)

    Jin-Tao, Zhu; Guo-Fu, Liu; Jun, Yang; Xiao-Liang, Luo; Lei, Zhang; Li-Feng, Ji

    2016-03-01

    A new frequency domain method for charged particle identification, called Frequency Ratio Analysis (FRA), is proposed by analyzing the frequency spectra of proton pulses and alpha pulses acquired from a totally depleted Si detector. Identification performance of the FRA method is evaluated and compared with two time domain methods, the current pulse amplitude method and the second moment method. The results show that the FRA method is not only feasible and effective but also superior to the two time domain methods, as it achieves an obvious increase in value of the figure-of-merit (FOM). Supported by National Natural Science Foundation of China (11175254, 11375264)

  15. Two-dimensional frequency-domain acoustic full-waveform inversion with rugged topography

    NASA Astrophysics Data System (ADS)

    Zhang, Qian-Jiang; Dai, Shi-Kun; Chen, Long-Wei; Li, Kun; Zhao, Dong-Dong; Huang, Xing-Xing

    2015-09-01

    We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff boundary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.

  16. Visualization of evolving laser-generated structures by frequency domain tomography

    NASA Astrophysics Data System (ADS)

    Chang, Yenyu; Li, Zhengyan; Wang, Xiaoming; Zgadzaj, Rafal; Downer, Michael

    2011-10-01

    We introduce frequency domain tomography (FDT) for single-shot visualization of time-evolving refractive index structures (e.g. laser wakefields, nonlinear index structures) moving at light-speed. Previous researchers demonstrated single-shot frequency domain holography (FDH), in which a probe-reference pulse pair co- propagates with the laser-generated structure, to obtain snapshot-like images. However, in FDH, information about the structure's evolution is averaged. To visualize an evolving structure, we use several frequency domain streak cameras (FDSCs), in each of which a probe-reference pulse pair propagates at an angle to the propagation direction of the laser-generated structure. The combination of several FDSCs constitutes the FDT system. We will present experimental results for a 4-probe FDT system that has imaged the whole-beam self-focusing of a pump pulse propagating through glass in a single laser shot. Combining temporal and angle multiplexing methods, we successfully processed data from four probe pulses in one spectrometer in a single-shot. The output of data processing is a multi-frame movie of the self- focusing pulse. Our results promise the possibility of visualizing evolving laser wakefield structures that underlie laser-plasma accelerators used for multi-GeV electron acceleration.

  17. Radio frequency power load and associated method

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2010-01-01

    A radio frequency power load and associated method. A radio frequency power load apparatus includes a container and a fluid having an ion source therein, the fluid being contained in the container. Two conductors are immersed in the fluid. A radio frequency transmission system includes a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus includes a fluid having an ion source therein, and two conductors immersed in the fluid. A method of dissipating power generated by a radio frequency transmission system includes the steps of: immersing two conductors of a radio frequency power load apparatus in a fluid having an ion source therein; and connecting the apparatus to an amplifier of the transmission system.

  18. A Method to Examine Content Domain Structures

    ERIC Educational Resources Information Center

    D'Agostino, Jerome; Karpinski, Aryn; Welsh, Megan

    2011-01-01

    After a test is developed, most content validation analyses shift from ascertaining domain definition to studying domain representation and relevance because the domain is assumed to be set once a test exists. We present an approach that allows for the examination of alternative domain structures based on extant test items. In our example based on…

  19. Frequency domain approach for time-resolved pump-probe microscopy using intensity modulated laser diodes

    NASA Astrophysics Data System (ADS)

    Miyazaki, J.; Kawasumi, K.; Kobayashi, T.

    2014-09-01

    We present a scheme for time-resolved pump-probe microscopy using intensity modulated laser diodes. The modulation frequencies of the pump and probe beams are varied up to 500 MHz with fixed frequency detuning typically set at 15 kHz. The frequency response of the pump-probe signal is detected using a lock-in amplifier referenced at the beat frequency. This frequency domain method is capable of characterizing the nanosecond to picosecond relaxation dynamics of sample species without the use of a high speed detector or a high frequency lock-in amplifier. Furthermore, as the pump-probe signal is based on the nonlinear interaction between the two laser beams and the sample, our scheme provides better spatial resolution than the conventional diffraction-limited optical microscopes. Time-resolved pump-probe imaging of fluorescence beads and aggregates of quantum dots demonstrates that this method is useful for the microscopic analysis of optoelectronic devices. The system is implemented using compact and low-cost laser diodes, and thus has a broad range of applications in the fields of photochemistry, optical physics, and biological imaging.

  20. Instantaneous Polarization Attributes in the Time-frequency Domain: Application to Wave Field Separation

    NASA Astrophysics Data System (ADS)

    Diallo, M. S.; Kulesh, M.; Holschneider, M.; Scherbaum, F.

    2004-12-01

    In this contribution we propose a method of wave field separation from multicomponent data sets based on the continuous wavelet transform (CWT). We present different approaches for obtaining the time-frequency dependent instantaneous polarization attributes for multicomponent data sets (2C, 3C or more). Using these attributes, we show how to construct filters tailored to separate (filter) different wave types followed by an inverse wavelet transform to obtain the desired wave type in the time domain. The proposed methods are applied on synthetic and experimental data for illustration.

  1. A frequency-domain estimator for use in adaptive control systems

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard O.; Valavani, Lena; Athans, Michael; Stein, Gunter

    1991-01-01

    This paper presents a frequency-domain estimator that can identify both a parametrized nominal model of a plant as well as a frequency-domain bounding function on the modeling error associated with this nominal model. This estimator, which we call a robust estimator, can be used in conjunction with a robust control-law redesign algorithm to form a robust adaptive controller.

  2. A frequency-domain estimator for use in adaptive control systems

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard O.; Valavani, Lena; Athans, Michael; Stein, Gunter

    1987-01-01

    The paper presents a frequency-domain estimator which can identify both a nominal model of a plant as well as a frequency-domain bounding function on the modeling error associated with this nominal model. This estimator, which is called a robust estimator, can be used in conjunction with a robust control-law redesign algorithm to form a robust adaptive controller.

  3. Localized Mode DFT-S-OFDMA Implementation Using Frequency and Time Domain Interpolation

    NASA Astrophysics Data System (ADS)

    Viholainen, Ari; Ihalainen, Tero; Rinne, Mika; Renfors, Markku

    2009-12-01

    This paper presents a novel method to generate a localized mode single-carrier frequency division multiple access (SC-FDMA) waveform. Instead of using DFT-spread OFDMA (DFT-S-OFDMA) processing, the new structure called SCiFI-FDMA relies on frequency and time domain interpolation followed by a user-specific frequency shift. SCiFI-FDMA can provide signal waveforms that are compatible to DFT-S-OFDMA. In addition, it provides any resolution of user bandwidth allocation for the uplink multiple access with comparable computational complexity, because the DFT is avoided. Therefore, SCiFI-FDMA allows a flexible choice of parameters appreciated in broadband mobile communications in the future.

  4. Gearbox fault diagnosis based on time-frequency domain synchronous averaging and feature extraction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shengli; Tang, Jiong

    2016-04-01

    Gearbox is one of the most vulnerable subsystems in wind turbines. Its healthy status significantly affects the efficiency and function of the entire system. Vibration based fault diagnosis methods are prevalently applied nowadays. However, vibration signals are always contaminated by noise that comes from data acquisition errors, structure geometric errors, operation errors, etc. As a result, it is difficult to identify potential gear failures directly from vibration signals, especially for the early stage faults. This paper utilizes synchronous averaging technique in time-frequency domain to remove the non-synchronous noise and enhance the fault related time-frequency features. The enhanced time-frequency information is further employed in gear fault classification and identification through feature extraction algorithms including Kernel Principal Component Analysis (KPCA), Multilinear Principal Component Analysis (MPCA), and Locally Linear Embedding (LLE). Results show that the LLE approach is the most effective to classify and identify different gear faults.

  5. The simulation of far-field wavelets using frequency-domain air-gun array near-field wavelets

    NASA Astrophysics Data System (ADS)

    Song, Jian-Guo; Deng, Yong; Tong, Xin-Xin

    2013-12-01

    Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets recorded from near-field geophones and then synthesized them into far-field wavelets. This is critical for processing wavelets in marineseismic exploration. For this purpose, several algorithms are currently used to decompose and synthesize wavelets in the time domain. If the traveltime of single air-gun wavelets is not an integral multiple of the sampling interval, the complex and error-prone resampling of the seismic signals using the time-domain method is necessary. Based on the relation between the frequency-domain phase and the time-domain time delay, we propose a method that first transforms the real near-field wavelet to the frequency domain via Fourier transforms; then, it decomposes it and composes the wavelet spectrum in the frequency domain, and then back transforms it to the time domain. Thus, the resampling problem is avoided and single air-gun wavelets and far-field wavelets can be reliably derived. The effect of ghost reflections is also considered, while decomposing the wavelet and removing the ghost reflections. Modeling and real data processing were used to demonstrate the feasibility of the proposed method.

  6. Nonlinear seismic response of stratified soil deposits using higher order frequency response functions in the frequency domain

    NASA Astrophysics Data System (ADS)

    Arroyo Caraballo, Jose Ramon

    1999-11-01

    This dissertation presents a new methodology for calculating the nonlinear seismic response of a single or multiple soil layer deposit in the frequency domain. The nonlinear behavior of the soil is taken into account using a model based on the Higher Order Frequency Response functions obtained from the Volterra series. The nonlinear analysis in the frequency domain permits to consider in a precise way the seismic response of soils in which the damping is described by the hysteretic model. This study considers up to the third order kernel, which was found to provide an accurate description for medium to medium-high nonlinearities. The first, second and third order Frequency Response Functions were developed. The procedure developed involves the use of the direct and inverse Fourier transforms of higher order. A one-degree of freedom model of a single horizontal soil layer is first presented to introduce the method. A comparison between the results obtained with the Newmark integration scheme and the proposed method for a soil with viscous damping is presented. Soil deposits with multiple horizontal layers soil deposits are studied next using discrete multiple degree of freedom models. The hysteretic damping model is used to compare the results produced by the Volterra series approach and the Linear Equivalent Method. A sensitivity analysis is carried out to show how the consideration of more terms in the series leads to a more accurate solution. A comparison of ground response spectra obtained from field measurements and from the proposed method is carried out using the data gathered at Treasure Island. The shear beam element with one degree of freedom per layer is used for the spatial discretization of the stratified soil. This model and the proposed method were implemented in computer programs using MATLAB(c). A soil-structure interaction problem, in which a simple model of a building is included in the formulation, is presented as an example of the application of

  7. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing

    PubMed Central

    Yun, S.H.; Vakoc, B.J.; Shishkov, M.; Desjardins, A.E.; Park, B.H.; de Boer, J.F.; Tearney, G.J.; Bouma, B.E.

    2009-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) provides a cross-sectional image of birefringence in biological samples that is complementary in many applications to the standard reflectance-based image. Recent ex vivo studies have demonstrated that birefringence mapping enables the characterization of collagen and smooth muscle concentration and distribution in vascular tissues. Instruments capable of applying these measurements percutaneously in vivo may provide new insights into coronary atherosclerosis and acute myocardial infarction. We have developed a polarization sensitive optical frequency domain imaging (PS-OFDI) system that enables high-speed intravascular birefringence imaging through a fiber-optic catheter. The novel design of this system utilizes frequency multiplexing to simultaneously measure reflectance of two incident polarization states, overcoming concerns regarding temporal variations of the catheter fiber birefringence and spatial variations in the birefringence of the sample. We demonstrate circular cross-sectional birefringence imaging of a human coronary artery ex vivo through a flexible fiber-optic catheter with an A-line rate of 62 kHz and a ranging depth of 6.2 mm. PMID:18542183

  8. Frequency domain mechanism extraction. [of localized scattering mechanisms from composite signature with two scattering mechanisms

    NASA Technical Reports Server (NTRS)

    Turhan-Sayan, Gonul; Dominek, Allen K.

    1990-01-01

    A time-domain analysis is applied to a frequency-domain technique which recovers the individual frequency characteristics of localized scattering mechanisms from a composite signature with two scattering mechanisms. This technique constructs a matrix which has filter characteristics with similar properties to a physically realizable filter based upon convolution concepts. This similarity is expanded to evaluate the rows of the matrix as filters, as demonstrated in the time domain to provide an alternate interpretation of the extraction process.

  9. Quantum theory of optical coherence of nonstationary light in the space-frequency domain

    SciTech Connect

    Lahiri, Mayukh; Wolf, Emil

    2010-10-15

    Classical theories of coherence for statistically stationary, as well as, nonstationary optical fields are frequently discussed both in the space-time and in the space-frequency domains. However, the quantum treatment of coherence theory is generally carried out in the space-time domain. In this paper, we present a quantum-mechanical theory of first-order coherence for statistically nonstationary light in the space-frequency domain.

  10. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    NASA Astrophysics Data System (ADS)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-11-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.

  11. Characterization of an intraluminal differential frequency-domain photoacoustics system

    NASA Astrophysics Data System (ADS)

    Lashkari, Bahman; Son, Jungik; Liang, Simon; Castelino, Robin; Foster, F. Stuart; Courtney, Brian; Mandelis, Andreas

    2016-03-01

    Cardiovascular related diseases are ranked as the second highest cause of death in Canada. Among the most important cardiovascular diseases is atherosclerosis. Current methods of diagnosis of atherosclerosis consist of angiography, intravascular ultrasound (IVUS) and optical coherence tomography (OCT). None of these methods possesses adequate sensitivity, as the ideal technique should be capable of both depth profiling, as well as functional imaging. An alternative technique is photoacoustics (PA) which can perform deep imaging and spectroscopy. The presented study explores the application of wavelength-modulated differential photoacoustic radar (WM-DPAR) for characterizing arterial vessels. The wavelength-modulated differential photoacoustic technique was shown to be able to substantially increase the dynamic range and sensitivity of hemoglobin oxygenation level detection. In this work the differential PA technique was used with a very high frequency modulation range. To perform spectroscopic PA imaging, at least two wavelengths are required. The selected wavelengths for this work are 1210 nm and 980 nm. 1210 nm corresponds to the maximum optical absorption coefficient of cholesterol and cholesteryl esters which are the main constituents of plaques. Since water, elastin and collagen also have high absorption coefficients at 1210 nm, this wavelength alone cannot provide very high sensitivity and specificity. The additional wavelength, 980 nm corresponds to high absorption coefficient of those constituents of healthy artery tissue. The simultaneous application of the abovementioned wavelengths can provide higher sensitivity and improved specificity in detecting lipids in the arterial vessels.

  12. Radio Frequency Power Load and Associated Method

    NASA Technical Reports Server (NTRS)

    Srinivasan, V. Karthik (Inventor); Freestone, Todd M. (Inventor); Sims, William Herbert, III (Inventor)

    2014-01-01

    A radio frequency power load and associated method. A radio frequency power load apparatus may include a container with an ionized fluid therein. The apparatus may include one conductor immersed in a fluid and another conductor electrically connected to the container. A radio frequency transmission system may include a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus may include a fluid having an ion source therein, one conductor immersed in a fluid, and another conductor electrically connected to the container. A method of dissipating power generated by a radio frequency transmission system may include constructing a waveguide with ionized fluid in a container and connecting the waveguide to an amplifier of the transmission system.

  13. Quantification of magnetic nanoparticles with broadband measurements of magnetic susceptibility in the frequency domain

    NASA Astrophysics Data System (ADS)

    Kodama, Kazuto; An, Zhisheng; Chang, Hong; Qiang, Xiaoke

    2015-04-01

    Measurement of low-field magnetic susceptibility over a wide band of frequencies spanning four orders of magnitude is a useful method for the assessment of the grain size distribution of ultrafine magnetic particles smaller than the SP/SSD boundary. This method has been applied to a loess/paleosol sequence at Luochuan in the Chinese Loess Plateau. The studied succession consists of sequences from the latest paleosol unit to the upper part of the loess unit, spanning the last glacial-interglacial cycle. Reconstructed grain size distributions (GSDs) consist of volume fractions on the order of 10-24 m3, and the mean GSDs are modal but with distinctive skewness among the loess, the weakly developed paleosol (weak paleosol), and the mature paleosol. This indicates that the mean volume of SP particles in this sequence tends to increase during the transition from the loess to the paleosol. An index, defined as the difference between χ130 at the lowest (130 Hz) and χ500k at the highest (500 kHz) frequencies normalized to χ130, is judged to be a more suitable index than previous frequency dependence parameters for the concentration of SP particles. This index has a strong correlation with χ130, showing a continuous 'growth curve' with the rate of increase being highest for the loess, moderate for the weak paleosol, and saturated for the paleosol. The characteristic curve suggests that smaller SP particles are preferentially formed in the earlier stage of pedogenesis rather than the later phase when even larger particles are formed in the mature paleosol. These results demonstrate that the broad-band-frequency susceptibility measurement will be useful for the quantitative assessment of magnetic nanoparticles in soils and sediments. Additionally, we point out that the measurement in the frequency domain generally requires time and may not be most suitable to routine measurements. We thus propose an alternative manner, the measurement in the time domain that can be

  14. Computational Complexity Reduction of Synthetic-aperture Focus in Ultrasound Imaging Using Frequency-domain Reconstruction.

    PubMed

    Moghimirad, Elahe; Mahloojifar, Ali; Mohammadzadeh Asl, Babak

    2016-05-01

    A new frequency-domain implementation of a synthetic aperture focusing technique is presented in the paper. The concept is based on synthetic aperture radar (SAR) and sonar that is a developed version of the convolution model in the frequency domain. Compared with conventional line-by-line imaging, synthetic aperture imaging has a better resolution and contrast at the cost of more computational load. To overcome this problem, point-by-point reconstruction methods have been replaced by block-processing algorithms in radar and sonar; however, these techniques are relatively unknown in medical imaging. In this paper, we extended one of these methods called wavenumber to medical ultrasound imaging using a simple model of synthetic aperture focus. The model, derived here for monostatic mode, can be generalized to multistatic as well. The method consists of 4 steps: a 2D fast Fourier transform of the data, frequency shift of the data to baseband, interpolation to convert polar coordinates to rectangular ones, and returning the data to the spatial-domain using a 2D inverse Fourier transform. We have also used chirp pulse excitation followed by matched filtering and spotlighting algorithm to compensate the effect of differences in parameters between radar and medical imaging. Computational complexities of the two methods, wavenumber and delay-and-sum (DAS), have been calculated. Field II simulated point data have been used to evaluate the results in terms of resolution and contrast. Evaluations with simulated data show that for typical phantoms, reconstruction by the wavenumber algorithm is almost 20 times faster than classical DAS while retaining the resolution. PMID:25900969

  15. New parallel SOR method by domain partitioning

    SciTech Connect

    Xie, Dexuan

    1996-12-31

    In this paper, we propose and analyze a new parallel SOR method, the PSOR method, formulated by using domain partitioning together with an interprocessor data-communication technique. For the 5-point approximation to the Poisson equation on a square, we show that the ordering of the PSOR based on the strip partition leads to a consistently ordered matrix, and hence the PSOR and the SOR using the row-wise ordering have the same convergence rate. However, in general, the ordering used in PSOR may not be {open_quote}consistently ordered{close_quotes}. So, there is a need to analyze the convergence of PSOR directly. In this paper, we present a PSOR theory, and show that the PSOR method can have the same asymptotic rate of convergence as the corresponding sequential SOR method for a wide class of linear systems in which the matrix is {open_quotes}consistently ordered{close_quotes}. Finally, we demonstrate the parallel performance of the PSOR method on four different message passing multiprocessors (a KSR1, the Intel Delta, an Intel Paragon and an IBM SP2), along with a comparison with the point Red-Black and four-color SOR methods.

  16. Modeling of converter transformers using frequency domain terminal impedance measurements

    SciTech Connect

    Liu, Yilu; Sebo, S.A.; Caldecott, R.; Kasten, D.G. ); Wright, S.E. )

    1993-01-01

    HVDC converter stations generate radio frequency (RF) electromagnetic (EM) noise which could interfere with adjacent communication and computer equipment, and carrier system operations. In order to calculate and predict the RF EM noise produced by the valve ignition of a converter station, it is essential to develop accurate models of station equipment over a broad frequency range. Models of all station equipment can be characterized by frequency dependent impedances. The paper describes the frequency dependent node-to-node impedance function (NIF) models of power system equipment based on systematic broad frequency range (50 Hz to 1MHz) external driving point impedance measurements, sponsored by the Electric Power Research Institute (EPRI). The regular structure, high accuracy, and virtually unlimited frequency range are important features of the NIF model. Examples of NIF model application in converter station RF EM noise calculations are presented.

  17. Multiple frequency method for operating electrochemical sensors

    SciTech Connect

    Martin, Louis P.

    2012-05-15

    A multiple frequency method for the operation of a sensor to measure a parameter of interest using calibration information including the steps of exciting the sensor at a first frequency providing a first sensor response, exciting the sensor at a second frequency providing a second sensor response, using the second sensor response at the second frequency and the calibration information to produce a calculated concentration of the interfering parameters, using the first sensor response at the first frequency, the calculated concentration of the interfering parameters, and the calibration information to measure the parameter of interest.

  18. Frequency Domain Ultrasound Waveform Tomography: Breast Imaging Using a Ring Transducer

    PubMed Central

    Sandhu, G Y; Li, C; Roy, O; Schmidt, S; Duric, N

    2016-01-01

    Application of the frequency domain acoustic wave equation on data acquired from ultrasound tomography scans is shown to yield high resolution sound speed images on the order of the wavelength of the highest reconstructed frequency. Using a signal bandwidth of 0.4–1 MHz and an average sound speed of 1500 m/s, the resolution is approximately 1.5 mm. The quantitative sound speed values and morphology provided by these images have the potential to inform diagnosis and classification of breast disease. In this study, we present the formalism, practical application, and in vivo results of waveform tomography applied to breast data gathered by two different ultrasound tomography scanners that utilize ring transducers. The formalism includes a review of frequency domain modeling of the wave equation using finite difference operators as well as a review of the gradient descent method for the iterative reconstruction scheme. It is shown that the practical application of waveform tomography requires an accurate starting model, careful data processing, and a method to gradually incorporate higher frequency information into the sound speed reconstruction. Following these steps resulted in high resolution quantitative sound speed images of the breast. These images show marked improvement relative to commonly used ray tomography reconstruction methods. The robustness of the method is demonstrated by obtaining similar results from two different ultrasound tomography devices. We also compare our method to MRI to demonstrate concordant findings. The clinical data used in this work was obtained from a HIPAA compliant clinical study (IRB 040912M1F). PMID:26110909

  19. Frequency domain ultrasound waveform tomography: breast imaging using a ring transducer.

    PubMed

    Sandhu, G Y; Li, C; Roy, O; Schmidt, S; Duric, N

    2015-07-21

    Application of the frequency domain acoustic wave equation on data acquired from ultrasound tomography scans is shown to yield high resolution sound speed images on the order of the wavelength of the highest reconstructed frequency. Using a signal bandwidth of 0.4-1 MHz and an average sound speed of 1500 m s(-1), the resolution is approximately 1.5 mm. The quantitative sound speed values and morphology provided by these images have the potential to inform diagnosis and classification of breast disease. In this study, we present the formalism, practical application, and in vivo results of waveform tomography applied to breast data gathered by two different ultrasound tomography scanners that utilize ring transducers. The formalism includes a review of frequency domain modeling of the wave equation using finite difference operators as well as a review of the gradient descent method for the iterative reconstruction scheme. It is shown that the practical application of waveform tomography requires an accurate starting model, careful data processing, and a method to gradually incorporate higher frequency information into the sound speed reconstruction. Following these steps resulted in high resolution quantitative sound speed images of the breast. These images show marked improvement relative to commonly used ray tomography reconstruction methods. The robustness of the method is demonstrated by obtaining similar results from two different ultrasound tomography devices. We also compare our method to MRI to demonstrate concordant findings. The clinical data used in this work was obtained from a HIPAA compliant clinical study (IRB 040912M1F). PMID:26110909

  20. Frequency domain ultrasound waveform tomography: breast imaging using a ring transducer

    NASA Astrophysics Data System (ADS)

    Sandhu, G. Y.; Li, C.; Roy, O.; Schmidt, S.; Duric, N.

    2015-07-01

    Application of the frequency domain acoustic wave equation on data acquired from ultrasound tomography scans is shown to yield high resolution sound speed images on the order of the wavelength of the highest reconstructed frequency. Using a signal bandwidth of 0.4-1 MHz and an average sound speed of 1500 m s-1, the resolution is approximately 1.5 mm. The quantitative sound speed values and morphology provided by these images have the potential to inform diagnosis and classification of breast disease. In this study, we present the formalism, practical application, and in vivo results of waveform tomography applied to breast data gathered by two different ultrasound tomography scanners that utilize ring transducers. The formalism includes a review of frequency domain modeling of the wave equation using finite difference operators as well as a review of the gradient descent method for the iterative reconstruction scheme. It is shown that the practical application of waveform tomography requires an accurate starting model, careful data processing, and a method to gradually incorporate higher frequency information into the sound speed reconstruction. Following these steps resulted in high resolution quantitative sound speed images of the breast. These images show marked improvement relative to commonly used ray tomography reconstruction methods. The robustness of the method is demonstrated by obtaining similar results from two different ultrasound tomography devices. We also compare our method to MRI to demonstrate concordant findings. The clinical data used in this work was obtained from a HIPAA compliant clinical study (IRB 040912M1F).

  1. IQ Imbalance Estimation Scheme in the Presence of DC Offset and Frequency Offset in the Frequency Domain

    NASA Astrophysics Data System (ADS)

    Inamori, Mamiko; Takayama, Shuzo; Sanada, Yukitoshi

    Direct conversion receivers in orthogonal frequency division multiplexing (OFDM) systems suffer from direct current (DC) offset, frequency offset, and IQ imbalance. We have proposed an IQ imbalance estimation scheme in the presence of DC offset and frequency offset, which uses preamble signals in the time domain. In this scheme, the DC offset is eliminated by a differential filter. However, the accuracy of IQ imbalance estimation is deteriorated when the frequency offset is small. To overcome this problem, a new IQ imbalance estimation scheme in the frequency domain with the differential filter has been proposed in this paper. The IQ imbalance is estimated with pilot subcarriers. Numerical results obtained through computer simulation show that estimation accuracy and bit error rate (BER) performance can be improved even if the frequency offset is small.

  2. Method of Detecting System Function by Measuring Frequency Response

    NASA Technical Reports Server (NTRS)

    Morrison, John L. (Inventor); Morrison, William H. (Inventor)

    2008-01-01

    Real time battery impedance spectrum is acquired using one time record, Compensated Synchronous Detection (CSD). This parallel method enables battery diagnostics. The excitation current to a test battery is a sum of equal amplitude sin waves of a few frequencies spread over range of interest. The time profile of this signal has duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known, synchronous detection processes the time record and each component, both magnitude and phase, is obtained. For compensation, the components, except the one of interest, are reassembled in the time domain. The resulting signal is subtracted from the original signal and the component of interest is synchronously detected. This process is repeated for each component.

  3. Method of detecting system function by measuring frequency response

    DOEpatents

    Morrison, John L.; Morrison, William H.

    2008-07-01

    Real time battery impedance spectrum is acquired using one time record, Compensated Synchronous Detection (CSD). This parallel method enables battery diagnostics. The excitation current to a test battery is a sum of equal amplitude sin waves of a few frequencies spread over range of interest. The time profile of this signal has duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known, synchronous detection processes the time record and each component, both magnitude and phase, is obtained. For compensation, the components, except the one of interest, are reassembled in the time domain. The resulting signal is subtracted from the original signal and the component of interest is synchronously detected. This process is repeated for each component.

  4. On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials

    NASA Astrophysics Data System (ADS)

    Robinson, D. A.; Schaap, M. G.; Or, D.; Jones, S. B.

    2005-02-01

    Time domain reflectometry (TDR) is one of the most commonly used techniques for water content determination in the subsurface. The measurement results in a single bulk permittivity value that corresponds to a particular, but unknown, ``effective'' frequency (feff). Estimating feff using TDR is important, as it allows comparisons with other techniques, such as impedance or capacitance probes, or microwave remote sensing devices. Soils, especially those with high clay and organic matter content, show appreciable dielectric dispersion, i.e., the real permittivity changes as a function of frequency. Consequently, comparison of results obtained with different sensor types must account for measurement frequency in assessing sensor accuracy and performance. In this article we use a transmission line model to examine the impact of dielectric dispersion on the TDR signal, considering lossless materials (negligible electrical conductivity). Permittivity is inferred from the standard tangent line fitting procedure (KaTAN) and by a method of using the apex of the derivative of the TDR waveform (KaDER). The permittivity determined using the tangent line method is considered to correspond to a velocity associated with a maximum passable frequency; whereas we consider the permittivity determined from the derivative method to correspond with the frequency associated with the signal group velocity. The effective frequency was determined from the 10-90% risetime of the reflected signal. On the basis of this definition, feff was found to correspond with the permittivity determined from KaDER and not from KaTAN in dispersive dielectrics. The modeling is corroborated by measurements in bentonite, ethanol and 1-propanol/water mixtures, which demonstrate the same result. Interestingly, for most nonconductive TDR measurements, frequencies are expected to lie in a range from 0.7 to 1 GHz, while in dispersive media, feff is expected to fall below 0.6 GHz.

  5. On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials

    NASA Astrophysics Data System (ADS)

    Robinson, D. A.; Schaap, M. G.; Or, D.; Jones, S. B.

    2005-02-01

    Time domain reflectometry (TDR) is one of the most commonly used techniques for water content determination in the subsurface. The measurement results in a single bulk permittivity value that corresponds to a particular, but unknown, "effective" frequency (feff). Estimating feff using TDR is important, as it allows comparisons with other techniques, such as impedance or capacitance probes, or microwave remote sensing devices. Soils, especially those with high clay and organic matter content, show appreciable dielectric dispersion, i.e., the real permittivity changes as a function of frequency. Consequently, comparison of results obtained with different sensor types must account for measurement frequency in assessing sensor accuracy and performance. In this article we use a transmission line model to examine the impact of dielectric dispersion on the TDR signal, considering lossless materials (negligible electrical conductivity). Permittivity is inferred from the standard tangent line fitting procedure (KaTAN) and by a method of using the apex of the derivative of the TDR waveform (KaDER). The permittivity determined using the tangent line method is considered to correspond to a velocity associated with a maximum passable frequency; whereas we consider the permittivity determined from the derivative method to correspond with the frequency associated with the signal group velocity. The effective frequency was determined from the 10-90% risetime of the reflected signal. On the basis of this definition, feff was found to correspond with the permittivity determined from KaDER and not from KaTAN in dispersive dielectrics. The modeling is corroborated by measurements in bentonite, ethanol and 1-propanol/water mixtures, which demonstrate the same result. Interestingly, for most nonconductive TDR measurements, frequencies are expected to lie in a range from 0.7 to 1 GHz, while in dispersive media, feff is expected to fall below 0.6 GHz.

  6. 2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Li, Wen-Ben; Zeng, Zhao-Fa; Li, Jing; Chen, Xiong; Wang, Kun; Xia, Zhao

    2016-03-01

    Frequency-domain airborne electromagnetics is a proven geophysical exploration method. Presently, the interpretation is mainly based on resistivity—depth imaging and one-dimensional layered inversion; nevertheless, it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods. 3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data. Thus, we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm. To eliminate the source singularities in the numerical simulations, we split the fields into primary and secondary fields. The primary fields are calculated using homogeneous or layered models with analytical solutions, and the secondary (scattered) fields are solved by the finite-element method. The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver, which greatly improves the computational efficiency. The inversion algorithm was based on damping least-squares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix. Synthetic and field data were used to test the effectiveness of the proposed method.

  7. Domain decomposition methods in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gropp, William D.; Keyes, David E.

    1992-01-01

    The divide-and-conquer paradigm of iterative domain decomposition, or substructuring, has become a practical tool in computational fluid dynamic applications because of its flexibility in accommodating adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple discretizations of the operator equations, and the modular pathway it provides towards parallelism. These features are illustrated on the classic model problem of flow over a backstep using Newton's method as the nonlinear iteration. Multiple discretizations (second-order in the operator and first-order in the preconditioner) and locally uniform mesh refinement pay dividends separately, and they can be combined synergistically. Sample performance results are included from an Intel iPSC/860 hypercube implementation.

  8. Domain decomposition methods in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gropp, William D.; Keyes, David E.

    1991-01-01

    The divide-and-conquer paradigm of iterative domain decomposition, or substructuring, has become a practical tool in computational fluid dynamic applications because of its flexibility in accommodating adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple discretizations of the operator equations, and the modular pathway it provides towards parallelism. These features are illustrated on the classic model problem of flow over a backstep using Newton's method as the nonlinear iteration. Multiple discretizations (second-order in the operator and first-order in the preconditioner) and locally uniform mesh refinement pay dividends separately, and they can be combined synergistically. Sample performance results are included from an Intel iPSC/860 hypercube implementation.

  9. Frequency and Time Domain Analysis of Foetal Heart Rate Variability with Traditional Indexes: A Critical Survey

    PubMed Central

    Romano, Maria; Iuppariello, Luigi; Ponsiglione, Alfonso Maria; Improta, Giovanni; Bifulco, Paolo; Cesarelli, Mario

    2016-01-01

    Monitoring of foetal heart rate and its variability (FHRV) covers an important role in assessing health of foetus. Many analysis methods have been used to get quantitative measures of FHRV. FHRV has been studied in time and in frequency domain and interesting clinical results have been obtained. Nevertheless, a standardized definition of FHRV and a precise methodology to be used for its evaluation are lacking. We carried out a literature overview about both frequency domain analysis (FDA) and time domain analysis (TDA). Then, by using simulated FHR signals, we defined the methodology for FDA. Further, employing more than 400 real FHR signals, we analysed some of the most common indexes, Short Term Variability for TDA and power content of the spectrum bands and sympathovagal balance for FDA, and evaluated their ranges of values, which in many cases are a novelty. Finally, we verified the relationship between these indexes and two important parameters: week of gestation, indicator of foetal growth, and foetal state, classified as active or at rest. Our results indicate that, according to literature, it is necessary to standardize the procedure for FHRV evaluation and to consider week of gestation and foetal state before FHR analysis. PMID:27195018

  10. Frequency and Time Domain Analysis of Foetal Heart Rate Variability with Traditional Indexes: A Critical Survey.

    PubMed

    Romano, Maria; Iuppariello, Luigi; Ponsiglione, Alfonso Maria; Improta, Giovanni; Bifulco, Paolo; Cesarelli, Mario

    2016-01-01

    Monitoring of foetal heart rate and its variability (FHRV) covers an important role in assessing health of foetus. Many analysis methods have been used to get quantitative measures of FHRV. FHRV has been studied in time and in frequency domain and interesting clinical results have been obtained. Nevertheless, a standardized definition of FHRV and a precise methodology to be used for its evaluation are lacking. We carried out a literature overview about both frequency domain analysis (FDA) and time domain analysis (TDA). Then, by using simulated FHR signals, we defined the methodology for FDA. Further, employing more than 400 real FHR signals, we analysed some of the most common indexes, Short Term Variability for TDA and power content of the spectrum bands and sympathovagal balance for FDA, and evaluated their ranges of values, which in many cases are a novelty. Finally, we verified the relationship between these indexes and two important parameters: week of gestation, indicator of foetal growth, and foetal state, classified as active or at rest. Our results indicate that, according to literature, it is necessary to standardize the procedure for FHRV evaluation and to consider week of gestation and foetal state before FHR analysis. PMID:27195018

  11. Design of frequency domain multiplexing of TES signals by multi-input SQUIDs

    NASA Astrophysics Data System (ADS)

    Yamasaki, Noriko Y.; Masui, Kensuke; Mitsuda, Kazuhisa; Morooka, Toshimitsu; Nakayama, Satoshi; Takei, Yoh

    2006-04-01

    In frequency-domain Superconducting Quantum Interference Device (SQUID) multiplexing for Transition Edge Sensor (TES) readout, a magnetic field summation method utilizing multi-input SQUIDs has a fundamental merit of small degradation of signal-to-noise ratio. Independent wiring without common impedance avoids the cross talk current, and the current induced by magnetic coupling between the input coils is suppressed by the direct feedback at the summing point. A multi-input SQUID which has 8 input coils has been fabricated and requirements for Flux Locked Loop (FLL) circuits are summarized.

  12. Vibrational frequencies of anti-diabetic drug studied by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, S. Q.; Li, H.; Xie, L.; Chen, L.; Peng, Y.; Zhu, Y. M.; Li, H.; Dong, P.; Wang, J. T.

    2012-04-01

    By using terahertz time-domain spectroscopy, the absorption spectra of seven anti-diabetic pills have been investigated. For gliquidone, glipizide, gliclazide, and glimepiride, an obvious resonance peak is found at 1.37 THz. Furthermore, to overcome the limit of density functional theory that can analyze the normal mode frequencies of the ground state of organic material, we also present a method that relies on pharmacophore recognition, from which we can obtain the resonance peak at 1.37 THz can be attributed to the vibration of sulfonylurea group. The results indicate that the veracity of density functional theory can be increased by combining pharmacophore recognition.

  13. Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration.

    PubMed

    Mayer, R H; Reynolds, J S; Sevick-Muraca, E M

    1999-08-01

    A method is presented to determine fluorescence decay lifetimes within tissuelike scattering media. Fluorescence lifetimes are determined for micromolar concentrations of the dyes 3,3'-Diethylthiatricarbocyanine Iodide and Indocyanine Green by frequency-domain investigations of light propagating in turbid media. Dual-wavelength photon-migration measurements that use intensity-modulated sources at excitation and emission wavelengths of the fluorophores provide optical parameters of the media as well as fluorescence properties of the dyes. The deduction of fluorescence lifetimes requires no calibration with reference fluorophores, and the results are shown to be independent of dye concentration. PMID:18323983

  14. Automatic restoration of motion blurred image based on frequency and cepstrum domain

    NASA Astrophysics Data System (ADS)

    Xu, Li; Gao, Xiaoyu; Fang, Tian

    2015-10-01

    The motion blur is one of the common factors leading to blurred images, the parameters of the point spread function (PSF) estimation is the key and prerequisite of motion blurred image restoration. Based on motion blur image characteristics of spectrum and cepstrum analysis, a automatic detection algorithm based on frequency domain and cepstrum domain algorithms is proposed in the paper, which can automatically detect the blur length and blur angle, then we can restorate the motion blur image. Experiments show that when the blur length is 15 ~ 80 pixels noiselessly, In addition to the individual blur length/angle (e.g. 30 pixels/300, 75 pixels/300), blur length estimation error is 0 ~ 0.2 pixels and blur angle estimation error is almost 0. The detection range is greater than some other methods, and the quality of image restoration is good.

  15. Estimation of mixing parameters for cancellation of discretized eddy current signals using time and frequency domain techniques

    SciTech Connect

    Sword, C.K.; Simaar, M.

    1985-03-01

    In this paper, we present two methods for estimating the mixing parameters used in scaling, rotating, and time shifting discrete time eddy current impedance plane trajectories in order to suppress unwanted support plate signals. One method operates directly on the time signals. The other method operates on the frequency domain representation of these signals and consequently is computationally more involved. Both methods require the minimization of a functional which measures the energy difference between the horizontal and vertical components of the high and low frequency data. Three illustrative examples are presented, and it is shown that the use of the frequency domain method is justified if the data are corrupted with random noise as well as with unknown multisample time shifts.

  16. Frequency-domain calculation of the self-force: The high-frequency problem and its resolution

    SciTech Connect

    Barack, Leor; Sago, Norichika; Ori, Amos

    2008-10-15

    The mode-sum method provides a practical means for calculating the self-force acting on a small particle orbiting a larger black hole. In this method, one first computes the spherical-harmonic l-mode contributions F{sub l}{sup {mu}} of the 'full-force' field F{sup {mu}}, evaluated at the particle's location, and then sums over l subject to a certain regularization scheme. In the frequency-domain variant of this procedure the quantities F{sub l}{sup {mu}} are obtained by fully decomposing the particle's self-field into Fourier-harmonic modes lm{omega}, calculating the contribution of each such mode to F{sub l}{sup {mu}}, and then summing over {omega} and m for given l. This procedure has the advantage that one only encounters ordinary differential equations. However, for eccentric orbits, the sum over {omega} is found to converge badly at the particle's location. This problem (reminiscent of the familiar Gibbs phenomenon of Fourier analysis) results from the discontinuity of the time-domain F{sub l}{sup {mu}} field at the particle's worldline. Here we propose a simple and practical method to resolve this problem. The method utilizes the homogeneous modes lm{omega} of the self-field to construct F{sub l}{sup {mu}} (rather than the inhomogeneous modes, as in the standard method), which guarantees an exponentially fast convergence to the correct value of F{sub l}{sup {mu}}, even at the particle's location. We illustrate the application of the method with the example of the monopole scalar-field perturbation from a scalar charge in an eccentric orbit around a Schwarzschild black hole. Our method, however, should be applicable to a wider range of problems, including the calculation of the gravitational self-force using either Teukolsky's formalism, or a direct integration of the metric perturbation equations.

  17. Signals features extraction in liquid-gas flow measurements using gamma densitometry. Part 2: frequency domain

    NASA Astrophysics Data System (ADS)

    Hanus, Robert; Zych, Marcin; Petryka, Leszek; Jaszczur, Marek; Hanus, Paweł

    2016-03-01

    Knowledge of the structure of a flow is really significant for the proper conduct a number of industrial processes. In this case a description of a two-phase flow regimes is possible by use of the time-series analysis e.g. in frequency domain. In this article the classical spectral analysis based on Fourier Transform (FT) and Short-Time Fourier Transform (STFT) were applied for analysis of signals obtained for water-air flow using gamma ray absorption. The presented method was illustrated by use data collected in experiments carried out on the laboratory hydraulic installation with a horizontal pipe of 4.5 m length and inner diameter of 30 mm equipped with two 241Am radioactive sources and scintillation probes with NaI(Tl) crystals. Stochastic signals obtained from detectors for plug, bubble, and transitional plug - bubble flows were considered in this work. The recorded raw signals were analyzed and several features in the frequency domain were extracted using autospectral density function (ADF), cross-spectral density function (CSDF), and the STFT spectrogram. In result of a detail analysis it was found that the most promising to recognize of the flow structure are: maximum value of the CSDF magnitude, sum of the CSDF magnitudes in the selected frequency range, and the maximum value of the sum of selected amplitudes of STFT spectrogram.

  18. Separating Reflective and Fluorescent Components Using High Frequency Illumination in the Spectral Domain.

    PubMed

    Fu, Ying; Lam, Antony; Sato, Imari; Okabe, Takahiro; Sato, Yoichi

    2016-05-01

    Hyperspectral imaging is beneficial to many applications but most traditional methods do not consider fluorescent effects which are present in everyday items ranging from paper to even our food. Furthermore, everyday fluorescent items exhibit a mix of reflection and fluorescence so proper separation of these components is necessary for analyzing them. In recent years, effective imaging methods have been proposed but most require capturing the scene under multiple illuminants. In this paper, we demonstrate efficient separation and recovery of reflectance and fluorescence emission spectra through the use of two high frequency illuminations in the spectral domain. With the obtained fluorescence emission spectra from our high frequency illuminants, we then describe how to estimate the fluorescence absorption spectrum of a material given its emission spectrum. In addition, we provide an in depth analysis of our method and also show that filters can be used in conjunction with standard light sources to generate the required high frequency illuminants. We also test our method under ambient light and demonstrate an application of our method to synthetic relighting of real scenes. PMID:26336113

  19. Radio frequency detection assembly and method for detecting radio frequencies

    SciTech Connect

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  20. Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems.

    PubMed

    Li, Jianfeng; Huang, Zhitong; Liu, Xiaoshuang; Ji, Yuefeng

    2015-01-12

    A novel hybrid time-frequency domain equalization scheme is proposed and experimentally demonstrated to mitigate the white light emitting diode (LED) nonlinearity in visible light communication (VLC) systems based on orthogonal frequency division multiplexing (OFDM). We handle the linear and nonlinear distortion separately in a nonlinear OFDM system. The linear part is equalized in frequency domain and the nonlinear part is compensated by an adaptive nonlinear time domain equalizer (N-TDE). The experimental results show that with only a small number of parameters the nonlinear equalizer can efficiently mitigate the LED nonlinearity. With the N-TDE the modulation index (MI) and BER performance can be significantly enhanced. PMID:25835706

  1. Reconstruction of sectional images in frequency-domain based photoacoustic imaging.

    PubMed

    Zhu, Banghe; Sevick-Muraca, Eva M

    2011-11-01

    Photoacoustic (PA) imaging is based upon the generation of an ultrasound pulse arising from subsurface tissue absorption due to pulsed laser excitation, and measurement of its surface time-of-arrival. Expensive and bulky pulsed lasers with high peak fluence powers may provide shortcomings for applications of PA imaging in medicine and biology. These limitations may be overcome with the frequency-domain PA measurements, which employ modulated rather than pulsed light to generate the acoustic wave. In this contribution, we model the single modulation frequency based PA pressures on the measurement plane through the diffraction approximation and then employ a convolution approach to reconstruct the sectional image slices. The results demonstrate that the proposed method with appropriate data post-processing is capable of recovering sectional images while suppressing the defocused noise resulting from the other sections. PMID:22109207

  2. Application of Frequency Domain Substructure Synthesis Technique for Plates Loaded with Complex Attachments

    SciTech Connect

    RL Campbell; SA Hambric

    2004-02-05

    Frequency domain substructure synthesis is a modeling technique that enables the prediction of a combined response of individual structures using experimentally measured or numerically predicted frequency response functions (FRFs). The traditional synthesis algorithm [1,2] operates on component impedances and thus generally requires several matrix inversions. An improved algorithm, developed by Jetmundsen et al. [3], requires a single matrix inversion with a completely arbitrary interface definition that can easily incorporate connection impedances. The main limitations of the method are the large data requirements and sensitivity to data truncation. The utility of this technique is demonstrated through a comparison of synthesized and measured admittances of an edge-stiffened plate with attached equipment. The plate mobilities are obtained from a numerical analysis because of the ability to accurately model this structure using a finite element representation. The attachments are characterized experimentally because of their complexity. The sections describe the synthesis technique and show numerical and experimental results for the plate and equipment.

  3. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults.

    PubMed

    Li, Xiao-Jian; Yang, Guang-Hong

    2014-08-01

    This paper is concerned with the fault detection (FD) problem in finite frequency domain for continuous-time Takagi-Sugeno fuzzy systems with sensor faults. Some finite-frequency performance indices are initially introduced to measure the fault/reference input sensitivity and disturbance robustness. Based on these performance indices, an effective FD scheme is then presented such that the generated residual is designed to be sensitive to both fault and reference input for faulty cases, while robust against the reference input for fault-free case. As the additional reference input sensitivity for faulty cases is considered, it is shown that the proposed method improves the existing FD techniques and achieves a better FD performance. The theory is supported by simulation results related to the detection of sensor faults in a tunnel-diode circuit. PMID:24184791

  4. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey

    NASA Astrophysics Data System (ADS)

    Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen

    2016-03-01

    Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey.

  5. Evaluating highly resolved paleoclimate records in the frequency domain for multidecadal-scale climate variability

    USGS Publications Warehouse

    DeLong, K.L.; Quinn, T.M.; Mitchum, G.T.; Poore, R.Z.

    2009-01-01

    Do the chronological methods used in the construction of paleoclimate records influence the results of the frequency analysis applied to them? We explore this phenomenon using the Dongge Cave speleothem record (U-series chronology with variable time steps, ??t) and the El Malpais tree-ring index (cross-dating of ring-width series). Interpolation of the Dongge Cave record to a constant ??t resulted in the suppression of periodicities (<20 years) altering the red noise model used for significance testing. Frequency analysis of temporal subsets of the El Malpais tree-ring index revealed that concentrations of variance varied with the number of ring-width series. Frequency analyses of these records identified significant periodicities, some common to both (???25 and ???69 years). Cross-wavelet analysis, which examines periodicities in the time domain, revealed that coherency between these records occurs intermittently. We found the chronology methods can influence the ability of frequency analysis to detect periodicities and tests for coherency. Copyright 2009 by the American Geophysical Union.

  6. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey.

    PubMed

    Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen

    2016-03-01

    Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey. PMID:27036795

  7. Experimental Study of High-Range-Resolution Medical Acoustic Imaging for Multiple Target Detection by Frequency Domain Interferometry

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Taki, Hirofumi; Sakamoto, Takuya; Sato, Toru

    2009-07-01

    We employed frequency domain interferometry (FDI) for use as a medical acoustic imager to detect multiple targets with high range resolution. The phase of each frequency component of an echo varies with the frequency, and target intervals can be estimated from the phase variance. This processing technique is generally used in radar imaging. When the interference within a range gate is coherent, the cross correlation between the desired signal and the coherent interference signal is nonzero. The Capon method works under the guiding principle that output power minimization cancels the desired signal with a coherent interference signal. Therefore, we utilize frequency averaging to suppress the correlation of the coherent interference. The results of computational simulations using a pseudoecho signal show that the Capon method with adaptive frequency averaging (AFA) provides a higher range resolution than a conventional method. These techniques were experimentally investigated and we confirmed the effectiveness of the proposed method of processing by FDI.

  8. Frequency-domain elastic full waveform inversion using encoded simultaneous sources

    NASA Astrophysics Data System (ADS)

    Jeong, W.; Son, W.; Pyun, S.; Min, D.

    2011-12-01

    Currently, numerous studies have endeavored to develop robust full waveform inversion and migration algorithms. These processes require enormous computational costs, because of the number of sources in the survey. To avoid this problem, the phase encoding technique for prestack migration was proposed by Romero (2000) and Krebs et al. (2009) proposed the encoded simultaneous-source inversion technique in the time domain. On the other hand, Ben-Hadj-Ali et al. (2011) demonstrated the robustness of the frequency-domain full waveform inversion with simultaneous sources for noisy data changing the source assembling. Although several studies on simultaneous-source inversion tried to estimate P- wave velocity based on the acoustic wave equation, seismic migration and waveform inversion based on the elastic wave equations are required to obtain more reliable subsurface information. In this study, we propose a 2-D frequency-domain elastic full waveform inversion technique using phase encoding methods. In our algorithm, the random phase encoding method is employed to calculate the gradients of the elastic parameters, source signature estimation and the diagonal entries of approximate Hessian matrix. The crosstalk for the estimated source signature and the diagonal entries of approximate Hessian matrix are suppressed with iteration as for the gradients. Our 2-D frequency-domain elastic waveform inversion algorithm is composed using the back-propagation technique and the conjugate-gradient method. Source signature is estimated using the full Newton method. We compare the simultaneous-source inversion with the conventional waveform inversion for synthetic data sets of the Marmousi-2 model. The inverted results obtained by simultaneous sources are comparable to those obtained by individual sources, and source signature is successfully estimated in simultaneous source technique. Comparing the inverted results using the pseudo Hessian matrix with previous inversion results

  9. Finite element solution of a Schelkunoff vector potential for frequency domain, EM field simulation

    NASA Astrophysics Data System (ADS)

    Kordy, M. A.; Wannamaker, P. E.; Cherkaev, E.

    2011-12-01

    A novel method for the 3-D diffusive electromagnetic (EM) forward problem is developed and tested. A Lorentz-gauge, Schelkunoff complex vector potential is used to represent the EM field in the frequency domain and the nodal finite element method is used for numerical simulation. The potential allows for three degrees of freedom per node, instead of four if Coulomb-gauge vector and scalar potentials are used. Unlike the finite-difference method, which minimizes error at discrete points, the finite element method minimizes error over the entire domain cell volumes and may easily adapt to complex topography. Existence and uniqueness of this continuous Schelkunoff potential is proven, boundary conditions are found and a governing equation satisfied by the potential in weak form is obtained. This approach for using a Schelkunoff potential in the finite element method differs from other trials found in the literature. If the standard weak form of the Helmholtz equation is used, the obtained solution is continuous and has continuous normal derivative across boundaries of regions with different physical properties; however, continuous Schelkunoff potential components do not have continuous normal derivative, divergence of the potential divided by (complex) conductivity and magnetic permeability is continuous instead. The weak form of governing equation used here imposes proper boundary conditions on the solution. Moreover, as the solution is continuous, nodal shape functions are used instead of edge elements. Magnetotelluric (MT) simulation results using the new method are compared with those from other MT forward codes

  10. ac Dynamics of Ferroelectric Domains from an Investigation of the Frequency Dependence of Hysteresis Loops

    SciTech Connect

    Yang, Sang Mo; Jo, Ji Young; Kim, T. H.; Yoon, J. -G.; Song, T. K.; Lee, Ho Nyung; Marton, Zsolt; Park, S.; Jo, Y.; Noh, Tae Won

    2010-01-01

    We investigated nonequilibrium domain wall dynamics under an ac field by measuring the hystere- sis loops of epitaxial ferroelectric capacitors at various frequencies and temperatures. Polarization switching is induced mostly by thermally activated creep motion at lower frequencies, and by vis- cous ow motion at higher frequencies. The dynamic crossover between the creep and ow regimes unveils two frequency-dependent scaling regions of hysteresis loops. Based on these findings, we constructed a dynamic phase diagram for hysteretic ferroelectric domain dynamics in the presence of ac fields.

  11. Frequency domain analysis and synthesis of lumped parameter systems using nonlinear least squares techniques

    NASA Technical Reports Server (NTRS)

    Hays, J. R.

    1969-01-01

    Lumped parametric system models are simplified and computationally advantageous in the frequency domain of linear systems. Nonlinear least squares computer program finds the least square best estimate for any number of parameters in an arbitrarily complicated model.

  12. Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI)

    PubMed Central

    Zhao, Yanyu; Tabassum, Syeda; Piracha, Shaheer; Nandhu, Mohan Sobhana; Viapiano, Mariano; Roblyer, Darren

    2016-01-01

    Spatial frequency domain imaging (SFDI) is a widefield imaging technique that allows for the quantitative extraction of tissue optical properties. SFDI is currently being explored for small animal tumor imaging, but severe imaging artifacts occur for highly curved surfaces (e.g. the tumor edge). We propose a modified Lambertian angle correction, adapted from the Minnaert correction method for satellite imagery, to account for tissue surface angles up to 75°. The method was tested in a hemisphere phantom study as well as a small animal tumor model. The proposed method reduced µa and µs` extraction errors by an average of 64% and 16% respectively compared to performing no angle correction, and provided more physiologically agreeable optical property and chromophore values on tumors. PMID:27375952

  13. Determination of delayed neutrons source in the frequency domain based on in-pile oscillation measurements

    SciTech Connect

    Yedvab, Y.; Reiss, I.; Bettan, M.; Harari, R.; Grober, A.; Ettedgui, H.; Caspi, E. N.

    2006-07-01

    A method for determining delayed neutrons source in the frequency domain based on measuring power oscillations in a non-critical reactor is presented. This method is unique in the sense that the delayed neutrons source is derived from the dynamic behavior of the reactor, which serves as the measurement system. An algorithm for analyzing power oscillation measurements was formulated, which avoids the need for a multi-parameter non-linear fit process used by other methods. Using this algorithm results of two sets of measurements performed in IRR-I and IRR-II (Israeli Research Reactors I and II) are presented. The agreement between measured values from both reactors and calculated values based on Keepin (and JENDL-3.3) group parameters is very good. (authors)

  14. Controller design for flexible, distributed parameter mechanical arms via combined state space and frequency domain techniques

    NASA Technical Reports Server (NTRS)

    Book, W. J.; Majett, M.

    1982-01-01

    The potential benefits of the ability to control more flexible mechanical arms are discussed. A justification is made in terms of speed of movement. A new controller design procedure is then developed to provide this capability. It uses both a frequency domain representation and a state variable representation of the arm model. The frequency domain model is used to update the modal state variable model to insure decoupled states. The technique is applied to a simple example with encouraging results.

  15. A look at motion in the frequency domain

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Ahumada, A. J., Jr.

    1983-01-01

    A moving image can be specified by a contrast distribution, c(x,y,t), over the dimensions of space x,y, and time t. Alternatively, it can be specified by the distribution C(u,v,w) over spatial frequency u,v and temporal frequency w. The frequency representation of a moving image is shown to have a characteristic form. This permits two useful observations. The first is that the apparent smoothness of time-sampled moving images (apparent motion) can be explained by the filtering action of the human visual system. This leads to the following formula for the required update rate for time-sampled displays. W(c)=W(l)+ru(l) where w(c) is the required update rate in Hz, W(l) is the limit of human temporal resolution in Hz, r is the velocity of the moving image in degrees/sec, and u(l) is the limit of human spatial resolution in cycles/deg. The second observation is that it is possible to construct a linear sensor that responds to images moving in a particular direction. The sensor is derived and its properties are discussed.

  16. Comparison of signal to noise ratios from spatial and frequency domain formulations of nonprewhitening model observers in digital mammography

    SciTech Connect

    Sisini, Francesco; Zanca, Federica; Marshall, Nicholas W.; Taibi, Angelo; Cardarelli, Paolo; Bosmans, Hilde

    2012-09-15

    Purpose: Image quality indices based upon model observers are promising alternatives to laborious human readings of contrast-detail images. This is especially appealing in digital mammography as limiting values for contrast thresholds determine, according to some international protocols, the acceptability of these systems in the radiological practice. The objective of the present study was to compare the signal to noise ratios (SNR) obtained with two nonprewhitening matched filter model observer approaches, one in the spatial domain and the other in the frequency domain, and with both of them worked out for disks as present in the CDMAM phantom. Methods: The analysis was performed using images acquired with the Siemens Novation and Inspiration digital mammography systems. The spatial domain formulation uses a series of high dose CDMAM images as the signal and a routine exposure of two flood images to calculate the covariance matrix. The frequency domain approach uses the mathematical description of a disk and modulation transfer function (MTF) and noise power spectrum (NPS) calculated from images. Results: For both systems most of the SNR values calculated in the frequency domain were in very good agreement with the SNR values calculated in the spatial domain. Both the formulations in the frequency domain and in the spatial domain show a linear relationship between SNR and the diameter of the CDMAM discs. Conclusions: The results suggest that both formulations of the model observer lead to very similar figures of merit. This is a step forward in the adoption of figures of merit based on NPS and MTF for the acceptance testing of mammography systems.

  17. Coherent optical neural networks that have optical-frequency-controlled behavior and generalization ability in the frequency domain.

    PubMed

    Hirose, A; Eckmiller, R

    1996-02-10

    Coherent optical neural networks that have optical-frequency-controlled behavior are proposed as sophisticated optical neural systems. The coherent optical neural-network system consists of an optical complex-valued neural network, a phase reference path, and coherent detectors for selfhomodyne detection. The learning process is realized by adjusting the delay time and the transparency of neural connections in the optical neural network with the optical frequency as a learning parameter. Generalization ability in frequency space is also analyzed. Information geometry in the learning process is discussed for obtaining a parameter range in which a reasonable generalization is realized in frequency space. It is found that there are error-function minima periodically both in the delay-time domain and the input-signal-frequency domain. Because of this reason, the initial connection delay should be within a certain range for a meaningful generalization. Simulation experiments demonstrate that a stable learning and a reasonable generalization in the frequency domain are successfully realized in a parameter range obtained in the theory. PMID:21069078

  18. Method and apparatus for frequency spectrum analysis

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    1992-01-01

    A method for frequency spectrum analysis of an unknown signal in real-time is discussed. The method is based upon integration of 1-bit samples of signal voltage amplitude corresponding to sine or cosine phases of a controlled center frequency clock which is changed after each integration interval to sweep the frequency range of interest in steps. Integration of samples during each interval is carried out over a number of cycles of the center frequency clock spanning a number of cycles of an input signal to be analyzed. The invention may be used to detect the frequency of at least two signals simultaneously. By using a reference signal of known frequency and voltage amplitude (added to the two signals for parallel processing in the same way, but in a different channel with a sampling at the known frequency and phases of the reference signal), the absolute voltage amplitude of the other two signals may be determined by squaring the sine and cosine integrals of each channel and summing the squares to obtain relative power measurements in all three channels and, from the known voltage amplitude of the reference signal, obtaining an absolute voltage measurement for the other two signals by multiplying the known voltage of the reference signal with the ratio of the relative power of each of the other two signals to the relative power of the reference signal.

  19. A Unified Frequency Domain Model to Study the Effect of Demyelination on Axonal Conduction

    PubMed Central

    Chaubey, Saurabh; Goodwin, Shikha J.

    2016-01-01

    Multiple sclerosis is a disease caused by demyelination of nerve fibers. In order to determine the loss of signal with the percentage of demyelination, we need to develop models that can simulate this effect. Existing time-based models does not provide a method to determine the influences of demyelination based on simulation results. Our goal is to develop a system identification approach to generate a transfer function in the frequency domain. The idea is to create a unified modeling approach for neural action potential propagation along the length of an axon containing number of Nodes of Ranvier (N). A system identification approach has been used to identify a transfer function of the classical Hodgkin–Huxley equations for membrane voltage potential. Using this approach, we model cable properties and signal propagation along the length of the axon with N node myelination. MATLAB/Simulink platform is used to analyze an N node-myelinated neuronal axon. The ability to transfer function in the frequency domain will help reduce effort and will give a much more realistic feel when compared to the classical time-based approach. Once a transfer function is identified, the conduction as a cascade of each linear time invariant system-based transfer function can be modeled. Using this approach, future studies can model the loss of myelin in various parts of nervous system. PMID:27103847

  20. A Unified Frequency Domain Model to Study the Effect of Demyelination on Axonal Conduction.

    PubMed

    Chaubey, Saurabh; Goodwin, Shikha J

    2016-01-01

    Multiple sclerosis is a disease caused by demyelination of nerve fibers. In order to determine the loss of signal with the percentage of demyelination, we need to develop models that can simulate this effect. Existing time-based models does not provide a method to determine the influences of demyelination based on simulation results. Our goal is to develop a system identification approach to generate a transfer function in the frequency domain. The idea is to create a unified modeling approach for neural action potential propagation along the length of an axon containing number of Nodes of Ranvier (N). A system identification approach has been used to identify a transfer function of the classical Hodgkin-Huxley equations for membrane voltage potential. Using this approach, we model cable properties and signal propagation along the length of the axon with N node myelination. MATLAB/Simulink platform is used to analyze an N node-myelinated neuronal axon. The ability to transfer function in the frequency domain will help reduce effort and will give a much more realistic feel when compared to the classical time-based approach. Once a transfer function is identified, the conduction as a cascade of each linear time invariant system-based transfer function can be modeled. Using this approach, future studies can model the loss of myelin in various parts of nervous system. PMID:27103847

  1. Template-based CTA X-ray angio rigid registration of coronary arteries in frequency domain

    NASA Astrophysics Data System (ADS)

    Aksoy, Timur; Demirci, Stefanie; Degertekin, Muzaffer; Navab, Nassir; Unal, Gozde

    2013-03-01

    This study performs 3D to 2D rigid registration of segmented pre-operative CTA coronary arteries with a single segmented intra-operative X-ray Angio frame in both frequency and spatial domains for real-time Angiography interventions by C-arm fluoroscopy. Most of the work on rigid registration in literature required a close initial- ization of poses and/or positions because of the abundance of local minima and high complexity that searching algorithms face. This study avoids such setbacks by transforming the projections into translation-invariant Fourier domain for estimating the 3D pose. First, template DRRs as candidate poses of 3D vessels of segmented CTA are produced by rotating the camera (image intensifier) around the DICOM angle values with a wide range as in C-arm setup. We have compared the 3D poses of template DRRs with the real X-ray after equalizing the scales (due to disparities in focal length distances) in 3 domains, namely Fourier magnitude, Fourier phase and Fourier polar. The best pose candidate was chosen by one of the highest similarity measures returned by the methods in these domains. It has been noted in literature that these methods are robust against noise and occlusion which was also validated by our results. Translation of the volume was then recovered by distance-map based BFGS optimization well suited to convex structure of our objective function without local minima due to distance maps. Final results were evaluated in 2D projection space rather than with actual values in 3D due to lack of ground truth, ill-posedness of the problem which we intend to address in future.

  2. Domain Decomposition By the Advancing-Partition Method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2008-01-01

    A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.

  3. Uncertainty quantification of dynamic responses in the frequency domain in the context of virtual testing

    NASA Astrophysics Data System (ADS)

    Brehm, Maik; Deraemaeker, Arnaud

    2015-04-01

    For the development of innovative materials, construction types or maintenance strategies, experimental investigations are inevitable to validate theoretical approaches in praxis. Numerical simulations, embedded in a general virtual testing approach, are alternatives to expensive experimental investigations. The statistical properties of the dynamic response in the frequency domain obtained from continuously measured data are often the basis for many developments, such as the optimization of damage indicators for structural health monitoring systems or the investigation of data-based frequency response function estimates. Two straightforward numerical simulation approaches exist to derive the statistics of a response due to random excitation and measurement errors. One approach is the sample-based technique, wherein for each excitation sample a time integration solution is needed. This can be computationally very demanding if a high accuracy of the statistical properties is of interest. The other approach consists in using the relationship between the excitation and the response directly in the frequency domain, wherein a weakly stationary process is assumed. This approach is inherently related to an infinite time response, which can hardly be derived from measured data. In this paper, a novel approach is proposed that overcomes the limitation of both aforementioned methods, by providing a fast analytical probabilistic framework for uncertainty quantification to determine accurately the statistics of short time dynamic responses. It is assumed that the structural system is known and can be described by deterministic parameters. The influences of signal processing techniques, such as linear combinations, windowing, and segmentation used in Welch's method, are considered as well. The performance of the new algorithm is investigated in comparison to both previous approaches on a three degrees of freedom system. The benchmark shows that the novel approach outperforms

  4. Experimental research on anti-vibration interferometry based on time-frequency-domain analysis

    NASA Astrophysics Data System (ADS)

    Hu, Yao; Hao, Qun; Zhang, Fanghua; Tian, Yuhan

    2013-10-01

    Phase-shifting interferometry is a non-contact precision precise measuring method for optical surface, but it is highly sensitive to external vibrations. A time-and-frequency-domain (TFD) anti-noise phase-shifting interferometry is proposed to eliminate the effect of vibrations and improve the precision of measurement. According to simulations and preliminary experiments, active phase-shifting speed as well as interferogram capture speed should be increased to improve the anti-vibration capability of the TFD method. In this paper, a fast phase-shifting approach based on PZT actuator and interferogram detection with high-speed camera is proposed. Preliminary experimental results are given to demonstrate the approach.

  5. Real-time locating and speed measurement of fibre fuse using optical frequency-domain reflectometry.

    PubMed

    Jiang, Shoulin; Ma, Lin; Fan, Xinyu; Wang, Bin; He, Zuyuan

    2016-01-01

    We propose and experimentally demonstrate real-time locating and speed measurement of fibre fuse by analysing the Doppler shift of reflected light using optical frequency-domain reflectometry (OFDR). Our method can detect the start of a fibre fuse within 200 ms which is equivalent to a propagation distance of about 10 cm in standard single-mode fibre. We successfully measured instantaneous speed of propagating fibre fuses and observed their subtle fluctuation owing to the laser power instability. The resolution achieved for speed measurement in our demonstration is 1 × 10(-3) m/s. We studied the fibre fuse propagation speed dependence on the launched power in different fibres. Our method is promising for both real time fibre fuse monitoring and future studies on its propagation and termination. PMID:27146550

  6. Real-time locating and speed measurement of fibre fuse using optical frequency-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Jiang, Shoulin; Ma, Lin; Fan, Xinyu; Wang, Bin; He, Zuyuan

    2016-05-01

    We propose and experimentally demonstrate real-time locating and speed measurement of fibre fuse by analysing the Doppler shift of reflected light using optical frequency-domain reflectometry (OFDR). Our method can detect the start of a fibre fuse within 200 ms which is equivalent to a propagation distance of about 10 cm in standard single-mode fibre. We successfully measured instantaneous speed of propagating fibre fuses and observed their subtle fluctuation owing to the laser power instability. The resolution achieved for speed measurement in our demonstration is 1 × 10‑3 m/s. We studied the fibre fuse propagation speed dependence on the launched power in different fibres. Our method is promising for both real time fibre fuse monitoring and future studies on its propagation and termination.

  7. Real-time locating and speed measurement of fibre fuse using optical frequency-domain reflectometry

    PubMed Central

    Jiang, Shoulin; Ma, Lin; Fan, Xinyu; Wang, Bin; He, Zuyuan

    2016-01-01

    We propose and experimentally demonstrate real-time locating and speed measurement of fibre fuse by analysing the Doppler shift of reflected light using optical frequency-domain reflectometry (OFDR). Our method can detect the start of a fibre fuse within 200 ms which is equivalent to a propagation distance of about 10 cm in standard single-mode fibre. We successfully measured instantaneous speed of propagating fibre fuses and observed their subtle fluctuation owing to the laser power instability. The resolution achieved for speed measurement in our demonstration is 1 × 10−3 m/s. We studied the fibre fuse propagation speed dependence on the launched power in different fibres. Our method is promising for both real time fibre fuse monitoring and future studies on its propagation and termination. PMID:27146550

  8. Axial standing-wave illumination frequency-domain imaging (SWIF)

    PubMed Central

    Judkewitz, Benjamin; Yang, Changhuei

    2014-01-01

    Despite their tremendous contribution to biomedical research and diagnosis, conventional spatial sampling techniques such as wide-field, point scanning or selective plane illumination microscopy face inherent limiting trade-offs between spatial resolution, field-of-view, phototoxicity and recording speed. Several of these trade-offs are the result of spatial sampling with diffracting beams. Here, we introduce a new strategy for fluorescence imaging, SWIF, which instead encodes the axial profile of a sample in the Fourier domain. We demonstrate how this can be achieved with propagation-invariant illumination patterns that extend over several millimeters and robustly propagate through layers of varying refractive index. This enabled us to image a lateral field-of-view of 0.8 mm x 1.5 mm with an axial resolution of 2.4 µm – greatly exceeding the lateral field-of-view of conventional illumination techniques (~100 µm) at comparable resolution. Thus, SWIF allowed us to surpass the limitations of diffracting illumination beams and untangle lateral field-of-view from resolution. PMID:24921798

  9. High-frequency programmable acoustic wave device realized through ferroelectric domain engineering

    SciTech Connect

    Ivry, Yachin E-mail: cd229@eng.cam.ac.uk; Wang, Nan; Durkan, Colm E-mail: cd229@eng.cam.ac.uk

    2014-03-31

    Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8 GHz), allowing low-cost programmable high-frequency resonators.

  10. FDFD: A 3D Finite-Difference Frequency-Domain Code for Electromagnetic Induction Tomography

    NASA Astrophysics Data System (ADS)

    Champagne, Nathan J.; Berryman, James G.; Buettner, H. Michael

    2001-07-01

    A new 3D code for electromagnetic induction tomography with intended applications to environmental imaging problems has been developed. The approach consists of calculating the fields within a volume using an implicit finite-difference frequency-domain formulation. The volume is terminated by an anisotropic perfectly matched layer region that simulates an infinite domain by absorbing outgoing waves. Extensive validation of this code has been done using analytical and semianalytical results from other codes, and some of those results are presented in this paper. The new code is written in Fortran 90 and is designed to be easily parallelized. Finally, an adjoint field method of data inversion, developed in parallel for solving the fully nonlinear inverse problem for electrical conductivity imaging (e.g., for mapping underground conducting plumes), uses this code to provide solvers for both forward and adjoint fields. Results obtained from this inversion method for high-contrast media are encouraging and provide a significant improvement over those obtained from linearized inversion methods.

  11. Grandchild of the frequency: Decomposition multigrid method

    SciTech Connect

    Dendy, J.E. Jr.; Tazartes, C.C.

    1994-12-31

    Previously the authors considered the frequency decomposition multigrid method and rejected it because it was not robust for problems with discontinuous coefficients. In this paper they show how to modify the method so as to obtain such robustness while retaining robustness for problems with anisotropic coefficients. They also discuss application of this method to a problem arising in global ocean modeling on the CM-5.

  12. Multipactor radiation analysis within a waveguide region based on a frequency-domain representation of the dynamics of charged particles.

    PubMed

    Gimeno, B; Sorolla, E; Anza, S; Vicente, C; Gil, J; Pérez, A M; Boria, V E; Pérez-Soler, F J; Quesada, F; Alvarez, A; Raboso, D

    2009-04-01

    A technique for the accurate computation of the electromagnetic fields radiated by a charged particle moving within a parallel-plate waveguide is presented. Based on a transformation of the time-varying current density of the particle into a time-harmonic current density, this technique allows the evaluation of the radiated electromagnetic fields both in the frequency and time domains, as well as in the near- and far-field regions. For this purpose, several accelerated versions of the parallel-plate Green's function in the frequency domain have been considered. The theory has been successfully applied to the multipactor discharge occurring within a two metal-plates region. The proposed formulation has been tested with a particle-in-cell code based on the finite-difference time-domain method, obtaining good agreement. PMID:19518368

  13. Digital Frequency Domain Multiplexer for mm-Wavelength Telescopes

    SciTech Connect

    Spieler, Helmuth G; Dobbs, Matt; Bissonnette, Eric; Spieler, Helmuth G.

    2007-07-23

    An FPGA based digital signal processing (DSP) system for biasing and reading out multiplexed bolometric detectors for mm-wavelength telescopes is presented. This readout system is being deployed for balloon-borne and ground based cosmology experiments with the primary goal of measuring the signature of inflation with the Cosmic Microwave Background Radiation. The system consists of analog superconducting electronics running at 250 mK and 4 K, coupled to digital room temperature backend electronics described here. The digital electronics perform the real time functionality with DSP algorithms implemented in firmware. A soft embedded processor provides all of the slow housekeeping control and communications. Each board in the system synthesizes multi-frequency combs of 8 to 32 carriers in the MHz band to bias the detectors. After the carriers have been modulated with the sky-signal by the detectors, the same boards digitize the comb directly. The carriers are mixed down to base-band and low pass filtered. The signal bandwidth of 0.050Hz-100 Hz places extreme requirements on stability and requires powerful filtering techniques to recover the sky-signal from the MHz carriers.

  14. Frequency-Domain Blind Source Separation of Many Speech Signals Using Near-Field and Far-Field Models

    NASA Astrophysics Data System (ADS)

    Mukai, Ryo; Sawada, Hiroshi; Araki, Shoko; Makino, Shoji

    2006-12-01

    We discuss the frequency-domain blind source separation (BSS) of convolutive mixtures when the number of source signals is large, and the potential source locations are omnidirectional. The most critical problem related to the frequency-domain BSS is the permutation problem, and geometric information is helpful as regards solving it. In this paper, we propose a method for obtaining proper geometric information with which to solve the permutation problem when the number of source signals is large and some of the signals come from the same or a similar direction. First, we describe a method for estimating the absolute DOA by using relative DOAs obtained by the solution provided by independent component analysis (ICA) and the far-field model. Next, we propose a method for estimating the spheres on which source signals exist by using ICA solution and the near-field model. We also address another problem with regard to frequency-domain BSS that arises from the circularity of discrete-frequency representation. We discuss the characteristics of the problem and present a solution for solving it. Experimental results using eight microphones in a room show that the proposed method can separate a mixture of six speech signals arriving from various directions, even when two of them come from the same direction.

  15. Frequency domain interferometry observations of tropo/stratospheric scattering layers using the MU radar: Description and first results

    SciTech Connect

    Palmer, R.D.; Fukao, S.; Yamamoto, M.; Tsuda, T.; Kato, S. ); Woodman, R.F. ); Larsen, M.F. )

    1990-11-01

    This paper describes the first results of the implementation of frequency domain interferometry (FDI) using the Middle and Upper (MU) atmosphere radar. A new method of using this FDI data is introduced, which is shown to be useful in studying the dynamics of scattering layers in the troposphere and lower stratosphere. Using this method, the effective altitude resolution of the MU radar has been improved.

  16. Automated frequency domain system identification of a large space structure

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Bayard, D. S.; Hadaegh, F. Y.; Mettler, E.; Milman, M. H.

    1989-01-01

    This paper presents the development and experimental results of an automated on-orbit system identification method for large flexible spacecraft that yields estimated quantities to support on-line design and tuning of robust high performance control systems. The procedure consists of applying an input to the plant, obtaining an output, and then conducting nonparametric identification to yield the spectral estimate of the system transfer function. A parametric model is determined by curve fitting the spectral estimate to a rational transfer function. The identification method has been demonstrated experimentally on the Large Spacecraft Control Laboratory in JPL.

  17. Frequency-domain fluorescence lifetime measurements via frequency segmentation and recombination as applied to pyrene with dissolved humic materials.

    PubMed

    Marwani, Hadi M; Lowry, Mark; Xing, Baoshan; Warner, Isiah M; Cook, Robert L

    2009-01-01

    In this study, the association behavior of pyrene with different dissolved humic materials (DHM) was investigated utilizing the recently developed segmented frequency-domain fluorescence lifetime method. The humic materials involved in this study consisted of three commercially available International Humic Substances Society standards (Suwannee River fulvic acid reference, SRFAR, Leonardite humic acid standard, LHAS, and Florida peat humic acid standard, FPHAS), the peat derived Amherst humic acid (AHA), and a chemically bleached Amherst humic acid (BAHA). It was found that the three commercial humic materials displayed three lifetime components, while both Amherst samples displayed only two lifetime components. In addition, it was found that the chemical bleaching procedure preferentially removed red wavelength emitting fluorophores from AHA. In regards to pyrene association with the DHM, different behavior was found for all commercially available humics, while AHA and BAHA, which displayed strikingly similar behavior in terms of fluorescence lifetimes. It was also found that there was an enhancement of pyrene's measured lifetime (combined with a decrease in pyrene emission) in the presence of FPHAS. The implications of this long lifetime are discussed in terms of (1) quenching mechanism and (2) use of the fluorescence quenching method used to determine the binding of compounds to DHM. PMID:18546063

  18. Application of frequency-domain helicopter-borne electromagnetics for groundwater exploration in urban areas

    NASA Astrophysics Data System (ADS)

    Siemon, Bernhard; Steuer, Annika; Ullmann, Angelika; Vasterling, Margarete; Voß, Wolfgang

    Airborne geophysical methods have been used successfully in groundwater exploration over the last decades. Particularly airborne electromagnetics is appropriate for large-scale and efficient groundwater surveying. Due to the dependency of the electrical conductivity on both the clay content of the host material and the mineralisation of the water, airborne electromagnetics is suitable for providing information on groundwater resources, water quality, aquifer conditions and protection levels. Frequency-domain helicopter-borne electromagnetic systems are used to investigate near-surface groundwater occurrences in detail even in rough terrain and populated areas. In order to reveal the subsurface conductivity distribution, the quantities measured, the secondary magnetic fields, are generally inverted into resistivity-depth models. Due to the skin-effect the penetration depths of the electromagnetic fields depend on the system characteristics used: high-frequency data describe the shallower parts of the conducting subsurface and the low-frequency data the deeper parts. Typical maximum investigation depths range from some ten metres (highly conductive saltwater saturated sediments) to several hundred metres (resistive hard rocks). In urban areas there are a number of man-made sources affecting the electromagnetic measurements. These effects on the secondary field values are discussed on the basis of synthetic data as well as uncorrected and corrected field data. The case histories of different hydrogeological setups in Indonesia, The Netherlands and Germany demonstrate that airborne electromagnetics can be applied to groundwater exploration purposes even in urban areas.

  19. Real-time frequency domain temperature and oxygen sensor with a single optical fiber.

    PubMed

    Liao, S C; Xu, Z; Izatt, J A; Alcala, J R

    1997-11-01

    The combined excited-state phosphorescence life-times of an alexandrite crystal and platinum tetraphenylporphyrin Pt(TPP) in a single-fiber sensor are used to monitor temperature and oxygen concentration in the physiological range from 15-45 degrees C and 0-50% O2 with precision of 0.24 degree C and 0.15% O2 and accuracy of 0.28 degree C and 0.2% O2. A 500-micron cubic alexandrite crystal bound to the distal end of a 750-micron-diameter optical fiber core and the Pt(TPP) coated circumferentially with a length of 1 cm from the end of the same fiber are excited with pulsed super-bright blue LED light. This apparatus uses a 125-kHz sampler for data acquisition and frequency domain methods for signal processing. The instrument amplifies both the dc and ac components of the photomultiplier output and band limits the signal to 20 kHz. The fundamental frequency of the excitation is set to 488.3 Hz and the highest harmonic used is the 35th. This bandlimited signal is sampled and averaged over a few hundred cycles in the time domain. The frequency domain representation of the data is obtained by employing fast Fourier transform algorithms. The phase delay and the modulation ratio of each sampled harmonic are then computed. At least four log-spaced harmonic phases or modulations are averaged before decoding the two lifetimes of temperature and oxygen phosphorescent sensors. A component of zero lifetime is introduced to account for the excitation backscatter leakage through optical interference filters seen by the photodetector. Linear and second-order empirical polynomials are employed to compute the temperatures and oxygen concentrations from the inverse lifetimes. In the situation of constant oxygen concentration, the lifetime of Pt(TPP) changes with temperature but can be compensated using the measured temperature lifetime. The system drift is 0.24 degree C for the temperature measurement and 0.59% for the oxygen concentration measurement over 30 h of continuous operation

  20. Time- and frequency domain spectroscopy using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Rettig, Wolfgang; Wiggenhauser, Herbert; Hebert, Thomas; Ding, Adalbert

    1989-05-01

    Time-correlated single photon counting experiments show that the time structure of the synchrotron radiation from BESSY can be usefully applied for subnanosecond and nanosecond time-resolved experiments both in the single-bunch (4.8 MHz) and multibunch (500 MHz, 62.5 MHz) operation modes. Also experiments without the need for time resolution can profit by application of these correlation techniques. The possible use of transformation methods using Hadamard sequences is discussed.

  1. Iterative Receiver in Time-Frequency Domain for Shallow Water Acoustic Channel

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Ge, Jianhua

    2012-03-01

    Inter-symbol interference (ISI) caused by multi-path propagation, especially in shallow water channel, degrades the performance of underwater acoustic (UWA) communication systems. In this paper, we combine soft minimum mean squared error (MMSE) equalization and the serially concatenated trellis coded modulation (SCTCM) decoding to develop an iterative receiver in time-frequency domain (TFD) for underwater acoustic point to point communications. Based on sound speed profile (SSP) measured in the lake and finite-element ray (FER) tracing method (Bellhop), the shallow water channel is constructed to evaluate the performance of the proposed iterative receiver. The results suggest that the proposed iterative receiver can reduce the calculation complexity of the equalizer and obtain better performance using less receiving elements.

  2. Transformation Optics: A Time- and Frequency-Domain Analysis of Electron-Energy Loss Spectroscopy.

    PubMed

    Kraft, Matthias; Luo, Yu; Pendry, J B

    2016-08-10

    Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) play a pivotal role in many of the cutting edge experiments in plasmonics. EELS and CL experiments are usually supported by numerical simulations, which-though accurate-may not provide as much physical insight as analytical calculations do. Fully analytical solutions to EELS and CL systems in plasmonics are rare and difficult to obtain. This paper aims to narrow this gap by introducing a new method based on transformation optics that allows to calculate the quasistatic frequency- and time-domain response of plasmonic particles under electron beam excitation. We study a nonconcentric annulus (and ellipse in the Supporting Information ) as an example. PMID:27380143

  3. Compensation of motion artifacts in catheter-based optical frequency domain imaging

    PubMed Central

    Ha, J. Y.; Shishkov, M.; Colice, M.; Oh, W. Y.; Yoo, H.; Liu, L.; Tearney, G. J.; Bouma, B. E.

    2010-01-01

    A novel heterodyne Doppler interferometer method for compensating motion artifacts caused by cardiac motion in intracoronary optical frequency domain imaging (OFDI) is demonstrated. To track the relative motion of a catheter with regard to the vessel, a motion tracking system is incorporated with a standard OFDI system by using wavelength division multiplexing (WDM) techniques. Without affecting the imaging beam, dual WDM monochromatic beams are utilized for tracking the relative radial and longitudinal velocities of a catheter-based fiber probe. Our results demonstrate that tracking instantaneous velocity can be used to compensate for distortion in the images due to motion artifacts, thus leading to accurate reconstruction and volumetric measurements with catheter-based imaging. PMID:20589002

  4. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain

    NASA Astrophysics Data System (ADS)

    Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Shi, Yan

    2016-06-01

    In this paper, an electromagnetic metasurface is designed, fabricated, and experimentally demonstrated to generate multiple orbital angular momentum (OAM) vortex beams in radio frequency domain. Theoretical formula of compensated phase-shift distribution is deduced and used to design the metasurface to produce multiple vortex radio waves in different directions with different OAM modes. The prototype of a practical configuration of square-patch metasurface is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that multiple OAM vortex waves can be simultaneously generated by using a single electromagnetic metasurface. The proposed method paves an effective way to generate multiple OAM vortex waves in radio and microwave wireless communication applications.

  5. Time and frequency domain analysis of sampled data controllers via mixed operation equations

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1981-01-01

    Specification of the mathematical equations required to define the dynamic response of a linear continuous plant, subject to sampled data control, is complicated by the fact that the digital components of the control system cannot be modeled via linear ordinary differential equations. This complication can be overcome by introducing two new mathematical operations; namely, the operation of zero order hold and digial delay. It is shown that by direct utilization of these operations, a set of linear mixed operation equations can be written and used to define the dynamic response characteristics of the controlled system. It also is shown how these linear mixed operation equations lead, in an automatable manner, directly to a set of finite difference equations which are in a format compatible with follow on time and frequency domain analysis methods.

  6. Comparison of DSP schemes with frequency domain equalization for passive optical networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Ye, Jia; Liu, Yanhe; Yan, Lianshan

    2015-08-01

    In recent years, digital signal processing (DSP) has been widely investigated for the applications in future next generation passive optical networks (PONs). In this paper, we compare four transmission technologies based on DSP with frequency domain equalization (FDE) for PON transmission with double-side band (DSB) intensity modulation and direct detection. These schemes include orthogonal frequency division multiplexing (OFDM), single-carrier frequency domain equalization (SCFDE), discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) and interleaved frequency division multiplexing (IFDM). We analyze their computational complexity and flexibility in PON applications, and compare their transmission performance by experiments. Based on above work, we propose and experimentally demonstrate a hybrid DSP-enhanced PON architecture with downstream OFDM modulation and upstream SCFDE modulation.

  7. SPECTRON, a neutron noise measurement system in frequency domain

    SciTech Connect

    Izarra, G. de; Jammes, C. Destouches, C.; Geslot, B.; Di Salvo, J.

    2015-11-15

    This paper is dedicated to the presentation and validation of SPECTRON, a novel neutron noise measurement system developed at CEA Cadarache. The device is designed for the measurement of the β{sub eff} parameter (effective fraction of delayed neutrons) of experimental nuclear reactors using the Cohn-α method. An integrated electronic system is used to record the current from fission chambers. Spectra computed from measurement data are processed by a dedicated software in order to estimate the reactor transfer function and then the effective fraction of delayed neutrons as well as the prompt neutron generation time. After a review of the pile noise measurement method in current mode, the SPECTRON architecture is presented. Then, the validation procedure is described and experimental results are shown, supporting the proper functioning of this new measurement system. It is shown that every technical requirement needed for correct measurement of neutron noise is fulfilled. Measurements performed at MINERVE and EOLE, two experimental nuclear reactors at CEA Cadarache, in real conditions allowed us to validate SPECTRON.

  8. SPECTRON, a neutron noise measurement system in frequency domain

    NASA Astrophysics Data System (ADS)

    de Izarra, G.; Jammes, C.; Geslot, B.; Di Salvo, J.; Destouches, C.

    2015-11-01

    This paper is dedicated to the presentation and validation of SPECTRON, a novel neutron noise measurement system developed at CEA Cadarache. The device is designed for the measurement of the βeff parameter (effective fraction of delayed neutrons) of experimental nuclear reactors using the Cohn-α method. An integrated electronic system is used to record the current from fission chambers. Spectra computed from measurement data are processed by a dedicated software in order to estimate the reactor transfer function and then the effective fraction of delayed neutrons as well as the prompt neutron generation time. After a review of the pile noise measurement method in current mode, the SPECTRON architecture is presented. Then, the validation procedure is described and experimental results are shown, supporting the proper functioning of this new measurement system. It is shown that every technical requirement needed for correct measurement of neutron noise is fulfilled. Measurements performed at MINERVE and EOLE, two experimental nuclear reactors at CEA Cadarache, in real conditions allowed us to validate SPECTRON.

  9. SPECTRON, a neutron noise measurement system in frequency domain.

    PubMed

    de Izarra, G; Jammes, C; Geslot, B; Di Salvo, J; Destouches, C

    2015-11-01

    This paper is dedicated to the presentation and validation of SPECTRON, a novel neutron noise measurement system developed at CEA Cadarache. The device is designed for the measurement of the β(eff) parameter (effective fraction of delayed neutrons) of experimental nuclear reactors using the Cohn-α method. An integrated electronic system is used to record the current from fission chambers. Spectra computed from measurement data are processed by a dedicated software in order to estimate the reactor transfer function and then the effective fraction of delayed neutrons as well as the prompt neutron generation time. After a review of the pile noise measurement method in current mode, the SPECTRON architecture is presented. Then, the validation procedure is described and experimental results are shown, supporting the proper functioning of this new measurement system. It is shown that every technical requirement needed for correct measurement of neutron noise is fulfilled. Measurements performed at MINERVE and EOLE, two experimental nuclear reactors at CEA Cadarache, in real conditions allowed us to validate SPECTRON. PMID:26628176

  10. Frequency-Domain Intravascular Optical Coherence Tomography of the Femoropopliteal Artery

    SciTech Connect

    Karnabatidis, Dimitris Katsanos, Konstantinos; Paraskevopoulos, Ioannis; Diamantopoulos, Athanasios; Spiliopoulos, Stavros; Siablis, Dimitris

    2011-12-15

    Purpose: Optical coherence tomography (OCT) is a catheter-based imaging method that employs near-infrared light to produce high-resolution intravascular images. The authors report the safety and feasibility and illustrate common imaging findings of frequency-domain OCT (FD-OCT) imaging of the femoropopliteal artery in a series of 20 patients who underwent infrainguinal angioplasty. Methods: After crossing the lesion of interest, OCT was performed with a dextrose saline flush technique with simultaneous obstructive manual groin compression. An automatic pullback FD-OCT device was employed (each scan acquiring 54 mm of vessel lumen in 271 consecutive frames). OCT images were acquired before and after balloon dilatation and following provisional stenting if necessary and were evaluated for baseline characteristics of plaque or in-stent restenosis (ISR), vessel wall trauma after angioplasty, presence of thrombus, stent apposition, and tissue prolapse. Imaging follow-up was not included in this study's protocol. Results: Twenty-seven obstructive lesions (18 cases of de novo atherosclerosis and 9 of ISR) of the femoropopliteal artery were imaged and 148 acquisitions were analyzed in total. High-resolution intravascular OCT imaging with effective blood clearance was achieved in 93.9%. Failure was mainly attributed to preocclusive proximal lesions and/or collateral flow. Mixed features of lipid pool areas, calcium deposits, necrotic core, and fibrosis were identified in all of the imaged atherosclerotic lesions, whereas ISR was purely fibrotic. After balloon angioplasty, OCT identified extensive intimal tears in all cases and one case of severe dissection that biplane subtraction angiography failed to identify. Conclusions: Infrainguinal frequency-domain optical coherence tomography is safe and feasible and may provide intravascular high-resolution imaging of the femoropopliteal artery during infrainguinal angioplasty procedures.

  11. Investigating ultrasound imaging in the frequency domain for tissue characterisation

    NASA Astrophysics Data System (ADS)

    Stromer, Jeremy; Ladani, Leila

    2016-07-01

    The potential of ultrasound imaging for use in distinguishing structures present in soft materials is investigated. In this study, images were reconstructed using non-standard parameters, which have been shown to vary according to different tissue structures. Due to the previously determined dependence on material microstructure, we investigate the possibility of these parameters as a basis for imaging soft materials. The feasibility of imaging methods was first tested on a large scale using 0.5-MHz ultrasound transducers. Imaging was then extended to a smaller scale using small-diameter 25-MHz transducers. The resulting images were compared to conventional C-scans with minimal data processing and were found to be of at least similar quality. These initial results show the possibility of using nonconventional ultrasound measurements as another means of imaging tissue and other soft materials for the presence of internal inclusions.

  12. User`s guide for the frequency domain algorithms in the LIFE2 fatigue analysis code

    SciTech Connect

    Sutherland, H.J.; Linker, R.L.

    1993-10-01

    The LIFE2 computer code is a fatigue/fracture analysis code that is specialized to the analysis of wind turbine components. The numerical formulation of the code uses a series of cycle count matrices to describe the cyclic stress states imposed upon the turbine. However, many structural analysis techniques yield frequency-domain stress spectra and a large body of experimental loads (stress) data is reported in the frequency domain. To permit the analysis of this class of data, a Fourier analysis is used to transform a frequency-domain spectrum to an equivalent time series suitable for rainflow counting by other modules in the code. This paper describes the algorithms incorporated into the code and their numerical implementation. Example problems are used to illustrate typical inputs and outputs.

  13. Weighted least-squares algorithm for phase unwrapping based on confidence level in frequency domain

    NASA Astrophysics Data System (ADS)

    Wang, Shaohua; Yu, Jie; Yang, Cankun; Jiao, Shuai; Fan, Jun; Wan, Yanyan

    2015-12-01

    Phase unwrapping is a key step in InSAR (Synthetic Aperture Radar Interferometry) processing, and its result may directly affect the accuracy of DEM (Digital Elevation Model) and ground deformation. However, the decoherence phenomenon such as shadows and layover, in the area of severe land subsidence where the terrain is steep and the slope changes greatly, will cause error transmission in the differential wrapped phase information, leading to inaccurate unwrapping phase. In order to eliminate the effect of the noise and reduce the effect of less sampling which caused by topographical factors, a weighted least-squares method based on confidence level in frequency domain is used in this study. This method considered to express the terrain slope in the interferogram as the partial phase frequency in range and azimuth direction, then integrated them into the confidence level. The parameter was used as the constraints of the nonlinear least squares phase unwrapping algorithm, to smooth the un-requirements unwrapped phase gradient and improve the accuracy of phase unwrapping. Finally, comparing with interferometric data of the Beijing subsidence area obtained from TerraSAR verifies that the algorithm has higher accuracy and stability than the normal weighted least-square phase unwrapping algorithms, and could consider to terrain factors.

  14. Characterization of ZnSe(Te) scintillators by frequency domain luminescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Mickevičius, J.; Tamulaitis, G.; Vitta, P.; Žukauskas, A.; Starzhinskiy, N.; Ryzhikov, V.

    2009-10-01

    Dynamics of photoluminescence (PL) decay in Te-doped ZnSe scintillator crystal is studied using frequency domain luminescence lifetime measurement technique, which enables simultaneous characterization of components in multicomponent PL decay in a wide time window ranging from millisecond to nanosecond domain. Evolution of decay times and relative contributions of the decay components corresponding to different PL decay mechanisms was revealed as a function of temperature.

  15. Frequency-domain fluorometry in the presence of high in-phase background

    NASA Astrophysics Data System (ADS)

    Vitta, P.; Reklaitis, I.; Žukauskas, A.

    2012-03-01

    We report on an approach to the measurement of fluorescence lifetimes in the frequency domain in the presence of high levels of background that is in phase with the sine-wave excitation. At high background levels, the frequency response of fluorescence waveform phase shift is shown to translate into a multicomponent function, which allows for deducing fluorescence lifetimes from the peak frequencies and magnitude of the components without explicitly knowing the level of background. Examples of the simple estimation of fluorescence lifetimes from the analysis of fluorescence frequency response for a single-exponent and two-exponent decay in inorganic phosphors within operating white light-emitting diodes are presented.

  16. A frequency-domain channel model and emulator for aeronautical communications

    NASA Astrophysics Data System (ADS)

    Yang, Xiaopeng; Liang, Jun; Yao, Kun; Shi, Haoshan

    2005-11-01

    In this paper, we propose a frequency domain simulation structure for aeronautical wideband frequency-selective channel, which features ground-air and air-air wireless links. With appropriate channel parameters, the emulator can model the parking, taxi and en-route scenarios. The wideband frequency-selective channel consists of some parallel sub-channels in frequency domain, which are assumed to be independent to each other and have Rayleigh-distributed envelopes. The sub-channel models and emulators are based on a simple structure and characterized by flat fading. Through such decomposition approach, a frequency domain frequency-selective channel model can be achieved, which is suitable for an implementation of orthogonal frequency-division multiplexing (OFDM) or multi-carrier code-division multi-access (MC-CDMA) channel emulator on computer. Some appropriate emulator parameters have been proposed through channel sounding data collected for different scenarios. Particularly, in order to emulate the time-varying fading model well, the parameter sets are generated from time to time before the simulation with the same statistics.

  17. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network.

    PubMed

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%. PMID:26351656

  18. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    PubMed Central

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%. PMID:26351656

  19. Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation.

    PubMed

    Vakoc, B J; Yun, S H; Tearney, G J; Bouma, B E

    2006-02-01

    A novel optical frequency-domain imaging system is demonstrated that employs a passive optical demodulation circuit and a chirped digital acquisition clock derived from a voltage-controlled oscillator. The demodulation circuit allows the separation of signals from positive and negative depths to better than 50 dB, thereby eliminating depth degeneracy and doubling the imaging depth range. Our system design is compatible with dual-balanced and polarization-diverse detection, important techniques in the practical biomedical application of optical frequency-domain imaging. PMID:16480209

  20. Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators.

    PubMed

    Merrer, Pierre-Henri; Saleh, Khaldoun; Llopis, Olivier; Berneschi, Simone; Cosi, Franco; Conti, Gualtiero Nunzi

    2012-07-10

    Optical Q factor measurements are performed on a whispering gallery mode (WGM) disk resonator using a microwave frequency domain approach instead of using an optical domain approach. An absence of hysteretic behavior and a better linearity are obtained when performing linewidth measurements by using a microwave modulation for scanning the resonances instead of the piezoelectric-based frequency tuning capability of the laser. The WGM resonator is then used to stabilize a microwave optoelectronic oscillator. The microwave output of this system generates a 12.48 GHz signal with -94 dBc/Hz phase noise at 10 kHz offset. PMID:22781250

  1. Gastric Emptying Assessment in Frequency and Time Domain Using Bio-impedance: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Huerta-Franco, R.; Vargas-Luna, M.; Hernández, E.; Córdova, T.; Sosa, M.; Gutiérrez, G.; Reyes, P.; Mendiola, C.

    2006-09-01

    The impedance assessment to measure gastric emptying and in general gastric activity has been reported since 1985. The physiological interpretation of these measurements, is still under research. This technique usually uses a single frequency, and the conductivity parameter. The frequency domain and the Fourier analysis of the time domain behavior of the gastric impedance in different gastric conditions (fasting state, and after food administration) has not been explored in detail. This work presents some insights of the potentiality of these alternative methodologies to measure gastric activity.

  2. Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data.

    PubMed

    Wang, Jia; Davis, Scott C; Srinivasan, Subhadra; Jiang, Shudong; Pogue, Brian W; Paulsen, Keith D

    2008-01-01

    Near-infrared (NIR) region-based spectroscopy is examined for accuracy with spectral recovery using frequency domain data at a discrete number of wavelengths, as compared to that with broadband continuous wave data. Data with more wavelengths in the frequency domain always produce superior quantitative spectroscopy results with reduced noise and error in the chromophore concentrations. Performance of the algorithm in the situation of doing region-guided spectroscopy within the MRI is also considered, and the issue of false positive prior regions being identified is examined to see the effect of added wavelengths. The results indicate that broadband frequency domain data are required for maximal accuracy. A broadband frequency domain experimental system was used to validate the predictions, using a mode-locked Ti:sapphire laser for the source between 690- and 850-nm wavelengths. The 80-MHz pulsed signal is heterodyned with photomultiplier tube detection, to lower frequency for data acquisition. Tissue-phantom experiments with known hemoglobin absorption and tissue-like scatter values are used to validate the system, using measurements every 10 nm. More wavelengths clearly provide superior quantification of total hemoglobin values. The system and algorithms developed here should provide an optimal way to quantify regions with the goal of image-guided breast tissue spectroscopy within the MRI. PMID:19021313

  3. Applying an FSK Based Transmission Scheme to Broadband Channels Using Frequency Domain Equalization

    NASA Astrophysics Data System (ADS)

    Georgi, Sebastian, Dr.; Peissig, Dr. Jürgen, Prof.

    2012-05-01

    Equalization of broadband signals can be efficiently realized in frequency domain. One prominent example is the orthogonal frequency division multiplexing (OFDM) transmission technique. With the introduction of a cyclic prefix and a modulation onto orthogonal subcarriers the equalization can be performed in frequency domain with one tap only. However the extremely high peak to average power ratio of OFDM modulated transmit signals and the demand of linearity inside the signal transmission chain results in a poor energy efficiency at the power amplifier. This paper claims, that as long as a cyclic prefix exists, any receive signal can be equalized in frequency domain. In this paper a transmission scheme with constant envelope is chosen for energy efficiency reasons. Therefore an FSK modulation and gaussian pulse shaping is used to create the transmit signal. Equalization at the receiver is done in frequency domain as known in OFDM. To simplify the equalization, a cyclic prefix is added to the transmit signal as well. This transmission scheme is introduced and evaluated in terms of spectral efficiency and bit error rate (BER) performance in this paper. The comparison is done with a typical OFDM system. In particular the characteristics of a nonlinear power amplifier are considered. It will be shown, that signals with constant envelope such as FSK modulated signals can also make use of an OFDM like equalization procedure with comparable BER performance and spectral requirements.

  4. Unsteady aerodynamics in time and frequency domains for finite time arbitrary motion of rotary wings in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Dinyavari, M. A. H.; Friedmann, P. P.

    1984-01-01

    Several incompressible finite-time arbitrary-motion airfoil theories suitable for coupled flap-lag-torsional aeroelastic analysis of helicopter rotors in hover and forward flight are derived. These theories include generalized Greenberg's theory, generalized Loewy's theory, and a staggered cascade theory. The generalized Greenberg's and staggered cascade theories were derived directly in Laplace domain considering the finite length of the wake and using operational methods. The load expressions are presented in Laplace, frequency, and time domains. Approximate time domain loads for the various generalized theories, discussed in the paper, are obtained by developing finite state models using the Pade approximant of the appropriate lift deficiency functions. Three different methods for constructing Pade approximants of the lift deficiency functions were considered and the more flexible one was used. Pade approximants of Loewy's lift deficiency function, for various wake spacing and radial location parameters of a helicopter typical rotor blade section, are presented.

  5. Frequency domain fluorescence lifetime microwell-plate platform for respirometry measurements

    NASA Astrophysics Data System (ADS)

    Chatni, M. R.; Yale, G.; Van Ryckeghem, A.; Porterfield, D. M.

    2010-04-01

    Traditionally micro-well plate based platforms used in biology utilize fluorescence intensity based methods to measure processes of biological relevance. However, fluorescence intensity measurements suffer from calibration drift due to a variety of factors. Photobleaching and self-quenching of the fluorescent dyes cause the intensity signal to drop over the lifetime of sensor immobilized inside the well. Variation in turbidity of the sample during the course of the measurement affects the measured fluorescence intensity. In comparison, fluorescence lifetime measurements are not significantly affected by these factors because fluorescence lifetime is a physico-chemical property of the fluorescent dye. Reliable and inexpensive frequency domain fluorescence lifetime instrumentation platforms are possible because the greater tolerance for optical alignment, and because they can be performed using inexpensive light sources such as LEDs. In this paper we report the development of a frequency domain fluorescence lifetime well-plate platform utilizing an oxygen sensitive transition-metal ligand complex fluorophore with a lifetime in the microsecond range. The fluorescence lifetime dye is incorporated in a polymer matrix and immobilized on the base of micro-well of a 60 well micro-well plate. Respiration measurements are performed in both aqueous and non-aqueous environment. Respirometry measurements were recorded from single Daphnia magna egg in hard water. Daphnia is an aquatic organism, important in environmental toxicology as a standard bioassay and early warning indicator for water quality monitoring. Also respirometry measurements were recorded from Tribolium castaneum eggs, which are common pests in the processed flour industry. These eggs were subjected to mitochondrial electron transport chain inhibitor such as potassium cyanide (KCN) and its effects on egg respiration were measured in real-time.

  6. Doppler imaging with dual-detection full-range frequency domain optical coherence tomography

    PubMed Central

    Meemon, Panomsak; Lee, Kye-Sung; Rolland, Jannick P.

    2010-01-01

    Most of full-range techniques for Frequency Domain Optical Coherence Tomography (FD-OCT) reported to date utilize the phase relation between consecutive axial lines to reconstruct a complex interference signal and hence may exhibit degradation in either mirror image suppression performance or detectable velocity dynamic range or both when monitoring a moving sample such as flow activity. We have previously reported a technique of mirror image removal by simultaneous detection of the quadrature components of a complex spectral interference called a Dual-Detection Frequency Domain OCT (DD-FD-OCT) [Opt. Lett. 35, 1058-1060 (2010)]. The technique enables full range imaging without any loss of acquisition speed and is intrinsically less sensitive to phase errors generated by involuntary movements of the subject. In this paper, we demonstrate the application of the DD-FD-OCT to a phase-resolved Doppler imaging without degradation in either mirror image suppression performance or detectable velocity dynamic range that were observed in other full-range Doppler methods. In order to accommodate for Doppler imaging, we have developed a fiber-based DD-FD-OCT that more efficiently utilizes the source power compared with the previous free-space DD-FD-OCT. In addition, the velocity sensitivity of the phase-resolved DD-FD-OCT was investigated, and the relation between the measured Doppler phase shift and set flow velocity of a flow phantom was verified. Finally, we demonstrate the Doppler imaging using the DD-FD-OCT in a biological sample. PMID:21258488

  7. Computational Methods for Domain Partitioning of Protein Structures

    NASA Astrophysics Data System (ADS)

    Veretnik, Stella; Shindyalov, Ilya

    Analysis of protein structures typically begins with decomposition of structure into more basic units, called "structural domains". The underlying goal is to reduce a complex protein structure to a set of simpler yet structurally meaningful units, each of which can be analyzed independently. Structural semi-independence of domains is their hallmark: domains often have compact structure and can fold or function independently. Domains can undergo so-called "domain shuffling"when they reappear in different combinations in different proteins thus implementing different biological functions (Doolittle, 1995). Proteins can then be conceived as being built of such basic blocks: some, especially small proteins, consist usually of just one domain, while other proteins possess a more complex architecture containing multiple domains. Therefore, the methods for partitioning a structure into domains are of critical importance: their outcome defines the set of basic units upon which structural classifications are built and evolutionary analysis is performed. This is especially true nowadays in the era of structural genomics. Today there are many methods that decompose the structure into domains: some of them are manual (i.e., based on human judgment), others are semiautomatic, and still others are completely automatic (based on algorithms implemented as software). Overall there is a high level of consistency and robustness in the process of partitioning a structure into domains (for ˜80% of proteins); at least for structures where domain location is obvious. The picture is less bright when we consider proteins with more complex architectures—neither human experts nor computational methods can reach consistent partitioning in many such cases. This is a rather accurate reflection of biological phenomena in general since domains are formed by different mechanisms, hence it is nearly impossible to come up with a set of well-defined rules that captures all of the observed cases.

  8. Signal generation and mixing electronics for frequency-domain lifetime and spectral fluorometry

    NASA Technical Reports Server (NTRS)

    Cruce, Tommy C. (Inventor); Hallidy, William H. (Inventor); Chin, Robert C. (Inventor)

    1999-01-01

    The present invention additionally comprises a method and apparatus for generating and mixing signals for frequency-domain lifetime and spectral fluorometry. The present invention comprises a plurality of signal generators that generate a plurality of signals where the signal generators modulate the amplitude and/or the frequency of the signals. The present invention uses one of these signals to drive an excitation signal that the present invention then directs and transmits at a target mixture, which absorbs the energy from the excitation signal. The property of fluorescence causes the target mixture to emit an emitted signal that the present invention detects with a signal detector. The present invention uses a plurality of mixers to produce a processor reference signal and a data signal. The present invention then uses a processor to compare the processor reference signal with the data signal by analyzing the differences in the phase and the differences in the amplitude between the two signals. The processor then extracts the fluorescence lifetime and fluorescence spectrum of the emitted signal from the phase and amplitude information using a chemometric analysis.

  9. Frequency-Domain Models for Nonlinear Microwave Devices Based on Large-Signal Measurements

    PubMed Central

    Jargon, Jeffrey A.; DeGroot, Donald C.; Gupta, K. C.

    2004-01-01

    In this paper, we introduce nonlinear large-signal scattering ( S) parameters, a new type of frequency-domain mapping that relates incident and reflected signals. We present a general form of nonlinear large-signal S-parameters and show that they reduce to classic S-parameters in the absence of nonlinearities. Nonlinear large-signal impedance ( Z) and admittance ( D) parameters are also introduced, and equations relating the different representations are derived. We illustrate how nonlinear large-signal S-parameters can be used as a tool in the design process of a nonlinear circuit, specifically a single-diode 1 GHz frequency-doubler. For the case where a nonlinear model is not readily available, we developed a method of extracting nonlinear large-signal S-parameters obtained with artificial neural network models trained with multiple measurements made by a nonlinear vector network analyzer equipped with two sources. Finally, nonlinear large-signal S-parameters are compared to another form of nonlinear mapping, known as nonlinear scattering functions. The nonlinear large-signal S-parameters are shown to be more general. PMID:27366621

  10. Signal generation and mixing electronics for frequency-domain lifetime and spectral fluorometry

    NASA Technical Reports Server (NTRS)

    Cruce, Tommy Clay (Inventor); Hallidy, William H. (Inventor); Chin, Robert C. (Inventor)

    2007-01-01

    The present invention additionally comprises a method and apparatus for generating and mixing signals for frequency-domain lifetime and spectral fluorometry. The present invention comprises a plurality of signal generators that generate a plurality of signals where the signal generators modulate the amplitude and/or the frequency of the signals. The present invention uses one of these signals to drive an excitation signal that the present invention then directs and transmits at a target mixture, which absorbs the energy from the excitation signal. The property of fluorescence causes the target mixture to emit an emitted signal that the present invention detects with a signal detector. The present invention uses a plurality of mixers to produce a processor reference signal and a data signal. The present invention then uses a processor to compare the processor reference signal with the data signal by analyzing the differences in the phase and the differences in the amplitude between the two signals. The processor then extracts the fluorescence lifetime and fluorescence spectrum of the emitted signal from the phase and amplitude information using a chemometric analysis.

  11. Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Vinogradov, Sergei A.; Fernandez-Searra, Maria A.; Dugan, Benjamin W.; Wilson, David F.

    2001-08-01

    The luminescence lifetime distribution can be used to determine the distribution of quencher concentrations in a heterogeneous sample. We describe a frequency domain instrument for real-time measurements of phosphorescence lifetime distributions in microheterogeneous objects. In this system (1) an array of harmonics (typically 100-200 frequencies) is used to modulate the excitation source, a light emitting diode. Due to the relatively long triplet state lifetimes, the frequencies required for the modulation are typically below 40 000 kHz, which allows direct digitization of both excitation and emission signals. (2) The dependence of the phase/amplitude factor on the modulation frequency is determined by linear least-squares analysis of the emission signal, which is sampled and summed over the multiple excitation cycles. (3) The phase/amplitude relationship obtained is analyzed in real time using a "light" version of the maximum entropy algorithm, which provides a complete phosphorescence lifetime distribution. (4) The lifetime distribution is converted into the distribution of quencher concentrations using an appropriate model of quenching. The instrument is also capable of measuring phosphorescence in "single-frequency" mode, which is useful for rapid evaluation of apparent luminescence lifetimes. In this mode, a correction for an in-phase signal, which is due to backscattering and fluorescence, is applied to improve the accuracy of lifetime measurements. The instruments were tested in Stern-Volmer calibrations of Pd-porphyrin based phosphors for oxygen measurements and used for preliminary evaluation of oxygen distributions in rat tumor tissues. The instruments were found to be capable of accurate determination of lifetimes in the range of 10-3000 μs. The average duration of a single lifetime distribution measurement was about 15 s, depending on the sample and on the density of the lifetime grid in the maximum entropy method analysis. In the single-frequency

  12. Flight testing and frequency domain analysis for rotorcraft handling qualities characteristics

    NASA Technical Reports Server (NTRS)

    Ham, Johnnie A.; Gardner, Charles K.; Tischler, Mark B.

    1993-01-01

    A demonstration of frequency domain flight testing techniques and analyses was performed on a U.S. Army OH-58D helicopter in support of the OH-58D Airworthiness and Flight Characteristics Evaluation and the Army's development and ongoing review of Aeronautical Design Standard 33C, Handling Qualities Requirements for Military Rotorcraft. Hover and forward flight (60 knots) tests were conducted in 1 flight hour by Army experimental test pilots. Further processing of the hover data generated a complete database of velocity, angular rate, and acceleration frequency responses to control inputs. A joint effort was then undertaken by the Airworthiness Qualification Test Directorate (AQTD) and the U.S. Army Aeroflightdynamics Directorate (AFDD) to derive handling qualities information from the frequency response database. A significant amount of information could be extracted from the frequency domain database using a variety of approaches. This report documents numerous results that have been obtained from the simple frequency domain tests; in many areas, these results provide more insight into the aircraft dynamics that affect handling qualities than to traditional flight tests. The handling qualities results include ADS-33C bandwidth and phase delay calculations, vibration spectral determinations, transfer function models to examine single axis results, and a six degree of freedom fully coupled state space model. The ability of this model to accurately predict aircraft responses was verified using data from pulse inputs. This report also documents the frequency-sweep flight test technique and data analysis used to support the tests.

  13. Hamilton-Jacobi method for curved domain walls and cosmologies

    NASA Astrophysics Data System (ADS)

    Skenderis, Kostas; Townsend, Paul K.

    2006-12-01

    We use Hamiltonian methods to study curved domain walls and cosmologies. This leads naturally to first-order equations for all domain walls and cosmologies foliated by slices of maximal symmetry. For Minkowski and AdS-sliced domain walls (flat and closed FLRW cosmologies) we recover a recent result concerning their (pseudo)supersymmetry. We show how domain-wall stability is consistent with the instability of AdS vacua that violate the Breitenlohner-Freedman bound. We also explore the relationship to Hamilton-Jacobi theory and compute the wave-function of a 3-dimensional closed universe evolving towards de Sitter spacetime.

  14. A Load Balanced Domain Decomposition Method Using Wavelet Analysis

    SciTech Connect

    Jameson, L; Johnson, J; Hesthaven, J

    2001-05-31

    Wavelet Analysis provides an orthogonal basis set which is localized in both the physical space and the Fourier transform space. We present here a domain decomposition method that uses wavelet analysis to maintain roughly uniform error throughout the computation domain while keeping the computational work balanced in a parallel computing environment.

  15. Space-frequency analysis with parallel computing in a phase-sensitive optical time-domain reflectometer distributed sensor.

    PubMed

    Hui, Xiaonan; Ye, Taihang; Zheng, Shilie; Zhou, Jinhai; Chi, Hao; Jin, Xiaofeng; Zhang, Xianmin

    2014-10-01

    For a phase-sensitive optical time-domain reflectometer (ϕ-OTDR) distributed sensor system, space-frequency analysis can reduce the false alarm by analyzing the frequency distribution compared with the traditional difference value method. We propose a graphics processing unit (GPU)-based parallel computing method to perform multichannel fast Fourier transform (FFT) and realize the real-time space-frequency analysis. The experiment results show that the time taken by the multichannel FFT decreased considerably based on this GPU parallel computing. The method can be completed with a sensing fiber up to 16 km long and an entry-level GPU. Meanwhile, the GPU can reduce the computing load of the central processing unit from 70% down to less than 20%. We carried out an experiment on a two-point space-frequency analysis, and the results clearly and simultaneously show the vibration point locations and frequency components. The sensor system outputs the real-time space-frequency spectra continuously with a spatial resolution of 16.3 m and frequency resolution of 2.25 Hz. PMID:25322248

  16. A hybrid method for identification of structural domains

    NASA Astrophysics Data System (ADS)

    Hua, Yongpan; Zhu, Min; Wang, Yuelong; Xie, Zhaoyang; Li, Menglong

    2014-12-01

    Structural domains in proteins are the basic units to form various proteins. In the protein's evolution and functioning, domains play important roles. But the definition of domain is not yet precisely given, and the update cycle of structural domain databases is long. The automatic algorithms identify domains slowly, while protein entities with great structural complexity are on the rise. Here, we present a method which recognizes the compact and modular segments of polypeptide chains to identify structural domains, and contrast some data sets to illuminate their effect. The method combines support vector machine (SVM) with K-means algorithm. It is faster and more stable than most current algorithms and performs better. It also indicates that when proteins are presented as some Alpha-carbon atoms in 3D space, it is feasible to identify structural domains by the spatially structural properties. We have developed a web-server, which would be helpful in identification of structural domains (http://vis.sculab.org/~huayongpan/cgi-bin/domainAssignment.cgi).

  17. A hybrid method for identification of structural domains.

    PubMed

    Hua, Yongpan; Zhu, Min; Wang, Yuelong; Xie, Zhaoyang; Li, Menglong

    2014-01-01

    Structural domains in proteins are the basic units to form various proteins. In the protein's evolution and functioning, domains play important roles. But the definition of domain is not yet precisely given, and the update cycle of structural domain databases is long. The automatic algorithms identify domains slowly, while protein entities with great structural complexity are on the rise. Here, we present a method which recognizes the compact and modular segments of polypeptide chains to identify structural domains, and contrast some data sets to illuminate their effect. The method combines support vector machine (SVM) with K-means algorithm. It is faster and more stable than most current algorithms and performs better. It also indicates that when proteins are presented as some Alpha-carbon atoms in 3D space, it is feasible to identify structural domains by the spatially structural properties. We have developed a web-server, which would be helpful in identification of structural domains (http://vis.sculab.org/~huayongpan/cgi-bin/domainAssignment.cgi). PMID:25503992

  18. Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal

    NASA Astrophysics Data System (ADS)

    Husa, Sascha; Khan, Sebastian; Hannam, Mark; Pürrer, Michael; Ohme, Frank; Forteza, Xisco Jiménez; Bohé, Alejandro

    2016-02-01

    In this paper we discuss the anatomy of frequency-domain gravitational-wave signals from nonprecessing black-hole coalescences with the goal of constructing accurate phenomenological waveform models. We first present new numerical-relativity simulations for mass ratios up to 18, including spins. From a comparison of different post-Newtonian approximants with numerical-relativity data we select the uncalibrated SEOBNRv2 model as the most appropriate for the purpose of constructing hybrid post-Newtonian/numerical-relativity waveforms, and we discuss how we prepare time-domain and frequency-domain hybrid data sets. We then use our data together with results in the literature to calibrate simple explicit expressions for the final spin and radiated energy. Equipped with our prediction for the final state we then develop a simple and accurate merger-ringdown model based on modified Lorentzians in the gravitational-wave amplitude and phase, and we discuss a simple method to represent the low frequency signal augmenting the TaylorF2 post-Newtonian approximant with terms corresponding to higher orders in the post-Newtonian expansion. We finally discuss different options for modelling the small intermediate frequency regime between inspiral and merger ringdown. A complete phenomenological model based on the present work is presented in a companion paper [S. Khan et al., following paper, Phys. Rev. D 93 044007 (2016)].

  19. REVIEWS OF TOPICAL PROBLEMS: New phenomena in the low-frequency dynamics of magnetic domain ensembles

    NASA Astrophysics Data System (ADS)

    Kandaurova, Gerta S.

    2002-10-01

    Research into the phenomenon of dynamic self-organization and the excited ('anger') state of multidomain magnetic films with perpendicular anisotropy is reviewed. The phenomenon was dicsovered in 1988 when studying the domain structure of iron garnet films in low-frequency (0.1-10 kHz) ac magnetic fields.

  20. Postural Analysis in Time and Frequency Domains in Patients with Ehlers-Danlos Syndrome

    ERIC Educational Resources Information Center

    Galli, Manuela; Rigoldi, Chiara; Celletti, Claudia; Mainardi, Luca; Tenore, Nunzio; Albertini, Giorgio; Camerota, Filippo

    2011-01-01

    The goal of this work is to analyze postural control in Ehlers-Danlos syndrome (EDS) participants in time and frequency domain. This study considered a pathological group composed by 22 EDS participants performing a postural test consisting in maintaining standing position over a force platform for 30 s in two conditions: open eyes (OE) and closed…

  1. Apparatuses and methods for tuning center frequencies

    DOEpatents

    Wojciechowski, Kenneth; Olsson, Roy H.

    2016-02-23

    Apparatuses and methods for tuning center frequencies are described herein. Examples of tuning described herein including tuning using feedback from the resonator. Variable gain feedback for tuning of acoustic wave resonators is provided in some examples. An example apparatus may include a resonator and a feedback loop. The resonator may be configured to receive a tuning signal and to provide a feedback signal. The feedback signal may be based on the tuning signal. The feedback loop may be configured to receive the feedback signal from the resonator. The feedback loop further may be configured to provide the tuning signal to actively tune a center frequency of the resonator. The tuning signal may be based on the feedback signal.

  2. Control system design using frequency domain models and parameter optimization, with application to supersonic inlet controls

    NASA Technical Reports Server (NTRS)

    Seidel, R. C.; Lehtinen, B.

    1974-01-01

    A technique is described for designing feedback control systems using frequency domain models, a quadratic cost function, and a parameter optimization computer program. FORTRAN listings for the computer program are included. The approach is applied to the design of shock position controllers for a supersonic inlet. Deterministic or random system disturbances, and the presence of random measurement noise are considered. The cost function minimization is formulated in the time domain, but the problem solution is obtained using a frequency domain system description. A scaled and constrained conjugate gradient algorithm is used for the minimization. The approach to a supersonic inlet included the calculations of the optimal proportional-plus integral (PI) and proportional-plus-integral-plus-derivative controllers. A single-loop PI controller was the most desirable of the designs considered.

  3. Modeling XV-15 tilt-rotor aircraft dynamics by frequency and time-domain identification techniques

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Kaletka, Juergen

    1987-01-01

    Models of the open-loop hover dynamics of the XV-15 Tilt-Rotor Aircraft are extracted from flight data using two approaches: frequency domain and time-domain identification. Both approaches are reviewed and the identification results are presented and compared in detail. The extracted models are compared favorably, with the differences associated mostly with the inherent weighing of each technique. Step responses are used to show that the predictive capability of the models from both techniques is excellent. Based on the results of this study, the relative strengths and weaknesses of the frequency and time-domain techniques are summarized and a proposal for a coordinated parameter identification approach is presented.

  4. Perturbative approach in the frequency domain for the intensity correlation spectrum in electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Florez, H. M.; González, C.; Martinelli, M.

    2016-07-01

    Correlation spectroscopy has been proposed as a spectroscopic technique for measuring the coherence between the ground states in electromagnetically induced transparency (EIT). While in the time domain the steep dispersion in the EIT condition accounts for the robustness of the correlation linewidth against power broadening, such physical insight was not directly established in the frequency domain. We propose a perturbative approach to describe the correlation spectroscopy of two noisy lasers coupled to a Λ transition in cold atoms, leading to EIT. Such approach leads to an analytical expression that maps the intensity correlation directly in terms of the absorption and dispersion of the light fields. Low and high perturbative regimes are investigated and demonstrate that, for coherent light sources, the first-order term in perturbation expansion represents a sufficient description for the correlation. Sideband resonances are also observed, showing the richness of the frequency domain approach.

  5. Progress on Frequency-Domain Multiplexing Development for High Count rate X-ray Microcalorimeters

    SciTech Connect

    Kuur, J. van der; Boersma, D.; Bruin, M.; Gottardi, L.; Hartog, R. den; Hoevers, H.; Hou, R.; Korte, P. J. de; Leeuwen, B.-J. van; Beyer, J.; Kiviranta, M.

    2009-12-16

    Frequency-domain multiplexing is one of the candidates for the readout of TES-based imaging microcalorimeter arrays for applications such as IXO. The readout system uses the TES as the modulating element, a bandpass LC filter to separate the signals in frequency space, and a customized SQUID with a low input inductance and high dynamic range as cryogenic amplifier. We will show the latest experimental progress on the development of this system. The paper concentrates on our first results on multiplexing 2-7 channels at bias frequencies below 5 MHz using discrete LC filters and baseband feedback electronics. In addition to that, the scalability of the system will be addressed.

  6. Quantitative modulated imaging of turbid media in the high spatial frequency domain

    NASA Astrophysics Data System (ADS)

    Lin, Weihao; Cao, Zili; Zeng, Bixin; Xu, M.

    2016-03-01

    The Spatial-frequency dependence of turbid media reflectance encodes both optical properties and depth information. The high spatial frequency domain imaging (HSFDI) can, in particular, extract key characteristics of the phase function of the scattering medium which carries the ultimate structural information of the medium. We first outline the principle of HSFDI and then present here a compact optical configuration integrating the modulated illumination and imaging systems, facilitating quantitative wide-field optical properties mapping at high spatial frequencies. The performance of HSFDI is assessed on both tissue phantoms and in vivo.

  7. Technological aspects of frequency domain data storage using persistent spectral hole burning

    NASA Astrophysics Data System (ADS)

    Schellenberg, F. M.; Lenth, W.; Bjorklund, G. C.

    1986-09-01

    Persistent spectral hole burning permits use of optical frequency for encoding digital information at cryogenic temperatures, with storage densities far beyond the limits of conventional laser-disk recording. In the work presented here, several key technological issues of such a storage system have been investigated. Data were encoded with high spatial and spectral resolution using a specially designed cryostat. The fast tuning characteristics of semiconductor diode lasers were studied to test the feasibility of fast data access in the frequency domain. Fast readout was investigated in a simulation experiment using heterodyne detection with frequency modulated diode lasers.

  8. An Efficient Audio Watermarking Algorithm in Frequency Domain for Copyright Protection

    NASA Astrophysics Data System (ADS)

    Dhar, Pranab Kumar; Khan, Mohammad Ibrahim; Kim, Cheol-Hong; Kim, Jong-Myon

    Digital Watermarking plays an important role for copyright protection of multimedia data. This paper proposes a new watermarking system in frequency domain for copyright protection of digital audio. In our proposed watermarking system, the original audio is segmented into non-overlapping frames. Watermarks are then embedded into the selected prominent peaks in the magnitude spectrum of each frame. Watermarks are extracted by performing the inverse operation of watermark embedding process. Simulation results indicate that the proposed watermarking system is highly robust against various kinds of attacks such as noise addition, cropping, re-sampling, re-quantization, MP3 compression, and low-pass filtering. Our proposed watermarking system outperforms Cox's method in terms of imperceptibility, while keeping comparable robustness with the Cox's method. Our proposed system achieves SNR (signal-to-noise ratio) values ranging from 20 dB to 28 dB, in contrast to Cox's method which achieves SNR values ranging from only 14 dB to 23 dB.

  9. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging

    NASA Astrophysics Data System (ADS)

    Singh-Moon, Rajinder P.; Roblyer, Darren M.; Bigio, Irving J.; Joshi, Shailendra

    2014-09-01

    We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtained by a previously validated variation of diffuse reflectance spectroscopy, the method of optical pharmacokinetics (OP). We demonstrate a cross-correlation between the two methods for absorption extraction and drug concentration determination in both experimental tissue phantoms and freshly extracted rodent brain tissue. These methods were first used to assess intra-arterial (IA) delivery of cationic liposomes to brain tissue in Sprague Dawley rats under transient cerebral hypoperfusion. Results were found to be in agreement with previously published experimental data and pharmacokinetic models of IA drug delivery. We then applied the same scheme to evaluate IA mitoxantrone delivery to glioma-bearing rats. Good correlation was seen between OP and SFDI determined concentrations taken from normal and tumor averaged sites. This study shows the feasibility of mapping drug/tracer distributions and encourages the use of SFDI for spatial imaging of tissues for drug/tracer-tagged carrier deposition and pharmacokinetic studies.

  10. Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media

    USGS Publications Warehouse

    Ellefsen, K.J.; Croize, D.; Mazzella, A.T.; McKenna, J.R.

    2009-01-01

    Green's functions for radar waves propagating in heterogeneous 2.5D media might be calculated in the frequency domain using a hybrid method. The model is defined in the Cartesian coordinate system, and its electromagnetic properties might vary in the x- and z-directions, but not in the y-direction. Wave propagation in the x- and z-directions is simulated with the finite-difference method, and wave propagation in the y-direction is simulated with an analytic function. The absorbing boundaries on the finite-difference grid are perfectly matched layers that have been modified to make them compatible with the hybrid method. The accuracy of these numerical Greens functions is assessed by comparing them with independently calculated Green's functions. For a homogeneous model, the magnitude errors range from -4.16% through 0.44%, and the phase errors range from -0.06% through 4.86%. For a layered model, the magnitude errors range from -2.60% through 2.06%, and the phase errors range from -0.49% through 2.73%. These numerical Green's functions might be used for forward modeling and full waveform inversion. ?? 2009 Society of Exploration Geophysicists. All rights reserved.

  11. Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging

    PubMed Central

    2013-01-01

    Introduction Nationally, 25% to 50% of patients undergoing lumpectomy for local management of breast cancer require a secondary excision because of the persistence of residual tumor. Intraoperative assessment of specimen margins by frozen-section analysis is not widely adopted in breast-conserving surgery. Here, a new approach to wide-field optical imaging of breast pathology in situ was tested to determine whether the system could accurately discriminate cancer from benign tissues before routine pathological processing. Methods Spatial frequency domain imaging (SFDI) was used to quantify near-infrared (NIR) optical parameters at the surface of 47 lumpectomy tissue specimens. Spatial frequency and wavelength-dependent reflectance spectra were parameterized with matched simulations of light transport. Spectral images were co-registered to histopathology in adjacent, stained sections of the tissue, cut in the geometry imaged in situ. A supervised classifier and feature-selection algorithm were implemented to automate discrimination of breast pathologies and to rank the contribution of each parameter to a diagnosis. Results Spectral parameters distinguished all pathology subtypes with 82% accuracy and benign (fibrocystic disease, fibroadenoma) from malignant (DCIS, invasive cancer, and partially treated invasive cancer after neoadjuvant chemotherapy) pathologies with 88% accuracy, high specificity (93%), and reasonable sensitivity (79%). Although spectral absorption and scattering features were essential components of the discriminant classifier, scattering exhibited lower variance and contributed most to tissue-type separation. The scattering slope was sensitive to stromal and epithelial distributions measured with quantitative immunohistochemistry. Conclusions SFDI is a new quantitative imaging technique that renders a specific tissue-type diagnosis. Its combination of planar sampling and frequency-dependent depth sensing is clinically pragmatic and appropriate for

  12. Investigation on broadband propagation characteristic of terahertz electromagnetic wave in anisotropic magnetized plasma in frequency and time domain

    SciTech Connect

    Tian, Yuan; Han, Yiping; Ai, Xia; Liu, Xiuxiang

    2014-12-15

    In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.

  13. Flight-testing and frequency-domain analysis for rotorcraft handling qualities

    NASA Technical Reports Server (NTRS)

    Ham, Johnnie A.; Gardner, Charles K.; Tischler, Mark B.

    1995-01-01

    A demonstration of frequency-domain flight-testing techniques and analysis was performed on a U.S. Army OH-58D helicopter in support of the OH-58D Airworthiness and Flight Characteristics Evaluation and of the Army's development and ongoing review of Aeronautical Design Standard 33C, Handling Qualities Requirements for Military Rotorcraft. Hover and forward flight (60 kn) tests were conducted in 1 flight hour by Army experimental test pilots. Further processing of the hover data generated a complete database of velocity, angular-rate, and acceleration-frequency responses to control inputs. A joint effort was then undertaken by the Airworthiness Qualification Test Dirtectorate and the U.S. Army Aeroflightdynamics Directorate to derive handling-quality information from the frequency-domain database using a variety of approaches. This report documents numerous results that have been obtained from the simple frequency-domain tests; in many areas, these results provide more insight into the aircraft dynmamics that affect handling qualities than do traditional flight tests. The handling-quality results include ADS-33C bandwidth and phase-delay calculations, vibration spectral determinations, transfer-function models to examine single-axis results, and a six-degree-of-freedom fully coupled state-space model. The ability of this model to accurately predict responses was verified using data from pulse inputs. This report also documents the frequency-sweep flight-test technique and data analysis used to support the tests.

  14. Frequency domain modeling and dynamic characteristics evaluation of existing wind turbine systems

    NASA Astrophysics Data System (ADS)

    Chiang, Chih-Hung; Yu, Chih-Peng

    2016-04-01

    It is quite well accepted that frequency domain procedures are suitable for the design and dynamic analysis of wind turbine structures, especially for floating offshore wind turbines, since random wind loads and wave induced motions are most likely simulated in the frequency domain. This paper presents specific applications of an effective frequency domain scheme to the linear analysis of wind turbine structures in which a 1-D spectral element was developed based on the axially-loaded member. The solution schemes are summarized for the spectral analyses of the tower, the blades, and the combined system with selected frequency-dependent coupling effect from foundation-structure interactions. Numerical examples demonstrate that the modal frequencies obtained using spectral-element models are in good agreement with those found in the literature. A 5-element mono-pile model results in less than 0.3% deviation from an existing 160-element model. It is preliminarily concluded that the proposed scheme is relatively efficient in performing quick verification for test data obtained from the on-site vibration measurement using the microwave interferometer.

  15. High order expanding domain methods for the solution of Poisson's equation in infinite domains

    NASA Astrophysics Data System (ADS)

    Anderson, Christopher R.

    2016-06-01

    In this paper we present a discrete Fourier transform based procedure to evaluate the infinite domain solution of Poisson's equation at points in a rectangular computational region. The numerical procedure is a modification of an "expanding domain" type method where one obtains approximations of increasing accuracy by expanding the computational domain. The modification presented here is one that leads to approximations that converge with high order rates of convergence with respect to domain size. Spectrally accurate approximations are used to approximate differential operators and so the method possesses very high rates of convergence with respect to mesh size as well. Computational results on both two and three dimensional test problems are presented that demonstrate the accuracy and computational efficiency of the procedure.

  16. Frequency-domain stress prediction algorithm for the LIFE2 fatigue analysis code

    SciTech Connect

    Sutherland, H.J.

    1992-01-01

    The LIFE2 computer code is a fatigue/fracture analysis code that is specialized to the analysis of wind turbine components. The numerical formulation of the code uses a series of cycle mount matrices to describe the cyclic stress states imposed upon the turbine. However, many structural analysis techniques yield frequency-domain stress spectra and a large body of experimental loads (stress) data is reported in the frequency domain. To permit the analysis of this class of data, a Fourier analysis module has been added to the code. The module transforms the frequency spectrum to an equivalent time series suitable for rainflow counting by other modules in the code. This paper describes the algorithms incorporated into the code and uses experimental data to illustrate their use. 10 refs., 11 figs.

  17. Frequency-domain readout multiplexing of transition-edge sensor arrays

    NASA Astrophysics Data System (ADS)

    Lanting, T. M.; Arnold, K.; Cho, Hsiao-Mei; Clarke, John; Dobbs, Matt; Holzapfel, William; Lee, Adrian T.; Lueker, M.; Richards, P. L.; Smith, A. D.; Spieler, H. G.

    2006-04-01

    We have demonstrated frequency-domain readout multiplexing of eight channels for superconducting transition-edge sensor bolometer arrays. The multiplexed readout noise is 6.5 pA/√Hz, well below the bolometer dark noise of 15-20 pA/√Hz. We measure an upper limit on crosstalk of 0.004 between channels adjacent in frequency which meets our design requirement of 0.01. We have observed vibration insensitivity in our frequency-domain multiplexed transition-edge sensors, making this system very attractive for telescope and satellite observations. We also discuss extensions to our multiplexed readout. In particular, we are developing a SQUID flux-locked loop that is entirely cold and collaborating on digital multiplexer technology in order to scale up the number of multiplexed channels.

  18. Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain

    PubMed Central

    Nadeau, Kyle P.; Durkin, Anthony J.; Tromberg, Bruce J.

    2014-01-01

    Abstract. We have developed a method for extracting spatial frequency information content from biological tissue, which is used to calculate tissue optical properties and determine tissue structural orientation. This demodulation method employs a two-dimensional Hilbert transform using a spiral phase function in Fourier space. The approach presented here allows for the determination of tissue optical properties using a single frame of data for each modulation frequency, increasing imaging speed by two to threefold versus conventional, three-phase spatial frequency domain imaging (SFDI). This new single-phase Hilbert transform approach recovers optical property and scattering orientation index values within 1% and 10% of three-phase SFDI, respectively. These results suggest that, using the Hilbert demodulation technique, SFDI data acquisition speed can be increased significantly while preserving data quality, which will help us move forward toward the implementation of a real-time SFDI platform. PMID:24858131

  19. Fiber Bragg grating sensors array based on optical frequency domain reflectometry technology

    NASA Astrophysics Data System (ADS)

    Xiong, Yanling; He, Lijuan; Chen, Tao; Wang, Xuan; Yang, Wenlong

    2007-01-01

    In this paper, the optimized Fiber Bragg Grating Sensor Arrays system, which was based on Optical Frequency Domain Reflectometry(OFDR) Multiplexing and Fabry-Perot Tunable Optical Filter(TOF) Demodulation Technology was Introduced, that FBG sensors in the same operating waveband can be used in different beat frequencies positions was proposed, and then a simulation was made for this proposition. As a result, in the case of duty ratio of the modulation signal w=1, the maximum amplitude B=4OMHz, and saw-tooth frequency f s=5kHz,the maximum measurement range can reach 4000m and , the minimum resolution can be reduced to 2.58m. In addition, A/D converting circuits and a DSP COMS chip were suggested to be designed for the function of frequency mixing, wavelength filtering and Fast Fourier Transform so that instead of expensive frequency analyzer, so that the system cost can be reduced.

  20. Difference-frequency generation in the field of a few-cycle laser pulse propagating in a GaAs crystal with a domain structure

    SciTech Connect

    Oganesyan, David L; Vardanyan, Aleksandr O; Oganesyan, G D

    2013-06-30

    Difference-frequency generation in a GaAs crystal with a periodic domain structure in the field of a few-cycle laser pulse is considered for the case of weakly pronounced material dispersion. The straight-line method is used to solve numerically the system of coupled nonlinear partial differential equations describing the evolution of the electric field of this laser pulse in GaAs crystals with periodic and chirped domain structures. It is shown that application of a GaAs crystal with a chirped domain structure makes it possible to control the frequency-modulation law for a broadband differencefrequency pulse. (nonlinear optical phenomena)

  1. A multi-domain method for subsonic viscous flows

    NASA Technical Reports Server (NTRS)

    Chan, Daniel C.; Sindir, Munir M.

    1992-01-01

    We have developed a Schwarz type domain decomposition method for a pressure base, two- and three-dimensional Navier-Stokes solver. This technique allows one to partition a flow path, which can be characterized by complex geometry and/or complicated flow physics, into smaller sub-domains according to the local geometric simplicity or estimated flow scales. We can, then, sweep the sub-domains in some order and solve the Navier-Stokes equations using as boundary conditions, along the domain interfaces, the Dirichlet conditions which are taken from the most recent update of the solution in the adjacent neighboring domains. With this technique, one can minimize the adverse effects caused by grid skewness and the stiffness problem caused by disparate flow scales. Here, we report the results of a few fundamental flow cases to demonstrate that a judicious use of the multi-domain method can offer a significant convergence acceleration over the traditional one-domain method. This method can be extended to exploit the architecture of a parallel computer to further improve the speed.

  2. An adaptive selective frequency damping method

    NASA Astrophysics Data System (ADS)

    Jordi, Bastien; Cotter, Colin; Sherwin, Spencer

    2015-03-01

    The selective frequency damping (SFD) method is used to obtain unstable steady-state solutions of dynamical systems. The stability of this method is governed by two parameters that are the control coefficient and the filter width. Convergence is not guaranteed for arbitrary choice of these parameters. Even when the method does converge, the time necessary to reach a steady-state solution may be very long. We present an adaptive SFD method. We show that by modifying the control coefficient and the filter width all along the solver execution, we can reach an optimum convergence rate. This method is based on successive approximations of the dominant eigenvalue of the flow studied. We design a one-dimensional model to select SFD parameters that enable us to control the evolution of the least stable eigenvalue of the system. These parameters are then used for the application of the SFD method to the multi-dimensional flow problem. We apply this adaptive method to a set of classical test cases of computational fluid dynamics and show that the steady-state solutions obtained are similar to what can be found in the literature. Then we apply it to a specific vortex dominated flow (of interest for the automotive industry) whose stability had never been studied before. Seventh Framework Programme of the European Commission - ANADE project under Grant Contract PITN-GA-289428.

  3. Large-scale 3D inversion of frequency domain controlled-source electromagnetic data

    NASA Astrophysics Data System (ADS)

    Miller, C. R.; Routh, P. S.; Donaldson, P.; Oldenburg, D. W.

    2005-05-01

    Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain EM sounding technique. The CSAMT source is a grounded horizontal electric dipole approximately one to two kilometers in length. This dipole source generates both inductive and galvanic currents so that the observed electric field arises due to both the static the vector potentials. At low frequencies, the behavior of the fields is similar to that observed in a geometric sounding such as a direct current experiment. At higher frequencies, the inductive character of the source modifies the behavior of the fields so that the experiment becomes more like a frequency sounding. Higher frequency data are useful for imaging near-surface features and lower frequency data are sensitive to deeper structure. Inversion of controlled source EM data provides a means to image the subsurface electrical conductivity structure. We consider a 3D CSAMT data set acquired over a known geothermal resource area in Western Idaho. The data are amplitudes and phases of the electric and magnetic fields acquired at 25 frequencies. The conductivity contrast between the geothermal fluid conduits and the resistive host material allows us to relate the inverted conductivity image to the distribution of fluid flow pathways in the geothermal system. Our 1D CSAMT inversion of the 3D data set indicates regions of conductive fluid pathways in the subsurface. Our next step is to invert these data using the full Maxwell's equations in 3D. Inversion of a single frequency data set at 2 Hz using the 3D frequency domain inversion algorithm (Haber et. al, 2004) shows regions of fluid circulation indicated by zones of higher conductivity. Comparing the images from different single frequency inversions allows us to identify persistent features in the conductivity image that adequately satisfy the data. With the aid of synthetic modeling we are investigating what frequencies? and what geometries? are appropriate to better resolve

  4. Method of joint frame synchronization and data-aided channel estimation for 100-Gb/s polarization-division multiplexing-single carrier frequency domain equalization coherent optical transmission systems

    NASA Astrophysics Data System (ADS)

    Cheng, Yun; Tan, Jun; Liu, Liu; He, Jing; Tang, Jin; Chen, Lin; Zhang, Jun; Li, Qiang; Xiao, Minlei

    2016-02-01

    To improve the performance of channel estimation (CE), a method of joint frame synchronization and data-aided CE using less training overhead is proposed. A 100-Gb/s polarization-division multiplexing coherent transmission system with quaternary phase-shift keying based on the proposed method is demonstrated by simulation. The simulation results show that the proposed method could achieve accurate timing offset and CE in the presence of strong amplified spontaneous emission noise.

  5. Flight test validation of a frequency-based system identification method on an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.; Orme, John S.; Hreha, Mark A.

    1995-01-01

    A frequency-based performance identification approach was evaluated using flight data from the NASA F-15 Highly Integrated Digital Electronic Control aircraft. The approach used frequency separation to identify the effectiveness of multiple controls simultaneously as an alternative to independent control identification methods. Fourier transformations converted measured control and response data into frequency domain representations. Performance gradients were formed using multiterm frequency matching of control and response frequency domain models. An objective function was generated using these performance gradients. This function was formally optimized to produce a coordinated control trim set. This algorithm was applied to longitudinal acceleration and evaluated using two control effectors: nozzle throat area and inlet first ramp. Three criteria were investigated to validate the approach: simultaneous gradient identification, gradient frequency dependency, and repeatability. This report describes the flight test results. These data demonstrate that the approach can accurately identify performance gradients during simultaneous control excitation independent of excitation frequency.

  6. Performance analysis of image fusion methods in transform domain

    NASA Astrophysics Data System (ADS)

    Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram

    2013-05-01

    Image fusion involves merging two or more images in such a way as to retain the most desirable characteristics of each. There are various image fusion methods and they can be classified into three main categories: i) Spatial domain, ii) Transform domain, and iii) Statistical domain. We focus on the transform domain in this paper as spatial domain methods are primitive and statistical domain methods suffer from a significant increase of computational complexity. In the field of image fusion, performance analysis is important since the evaluation result gives valuable information which can be utilized in various applications, such as military, medical imaging, remote sensing, and so on. In this paper, we analyze and compare the performance of fusion methods based on four different transforms: i) wavelet transform, ii) curvelet transform, iii) contourlet transform and iv) nonsubsampled contourlet transform. Fusion framework and scheme are explained in detail, and two different sets of images are used in our experiments. Furthermore, various performance evaluation metrics are adopted to quantitatively analyze the fusion results. The comparison results show that the nonsubsampled contourlet transform method performs better than the other three methods. During the experiments, we also found out that the decomposition level of 3 showed the best fusion performance, and decomposition levels beyond level-3 did not significantly affect the fusion results.

  7. Estimation of Resolution of Shallow Layers by Frequency Domain Airborne Electromagnetic Measurements

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Minsley, B. J.; Kass, M. A.; Abraham, J. D.; Sams, J. I.; Veloski, G. A.; Esfahani, A.; Hodges, G.

    2012-12-01

    Helicopter frequency domain electromagnetic (HFDEM) that were conducted in two very different geoelectrical settings, permafrost and conductive alluvium, have been used to examine and quantify some aspects of the resolution of shallow layers (less than 5 meters). The surveys have used the Resolve system with six frequencies ranging from 400 Hz to 140 kHz. Though most discussion of the resolution of earth resistivity for airborne EM systems has concentrated on estimating the maximum depth of mapping or the resolution of deep layers, there are important applications for mapping shallow layers and it is useful to understand the capabilities and limitations of the HFDEM system in different environments. In permafrost terrains, mapping of the shallow active layer is important in understanding its distribution relative to surface processes such as thermal history, fires and carbon storage as well as in monitoring applications. Here the shallow active layer is a conductor relative to the very resistive permafrost. Mapping shallow layers in alluvial environments has been the focus of a study of subsurface drip irrigation in the Powder River of Wyoming. Here the focus of the HFDEM study has been in mapping the distribution of conductive clays and naturally occurring saline waters. Mapping of shallow layers in alluvial environments is important in agricultural applications to map recharge, soil salinity, and thickness of alluvium. Parameters for layered models (layer resistivity and thickness) have been estimated by inversion methods and the resolution of parameters has been evaluated using stochastic methods and an evaluation of linear estimates of resolution and uncertainty. Statistical estimates of resolution of parameters are compared with estimates from ground surveys.

  8. Computer-aided classification of rheumatoid arthritis in finger joints using frequency domain optical tomography

    NASA Astrophysics Data System (ADS)

    Klose, C. D.; Kim, H. K.; Netz, U.; Blaschke, S.; Zwaka, P. A.; Mueller, G. A.; Beuthan, J.; Hielscher, A. H.

    2009-02-01

    Novel methods that can help in the diagnosis and monitoring of joint disease are essential for efficient use of novel arthritis therapies that are currently emerging. Building on previous studies that involved continuous wave imaging systems we present here first clinical data obtained with a new frequency-domain imaging system. Three-dimensional tomographic data sets of absorption and scattering coefficients were generated for 107 fingers. The data were analyzed using ANOVA, MANOVA, Discriminant Analysis DA, and a machine-learning algorithm that is based on self-organizing mapping (SOM) for clustering data in 2-dimensional parameter spaces. Overall we found that the SOM algorithm outperforms the more traditional analysis methods in terms of correctly classifying finger joints. Using SOM, healthy and affected joints can now be separated with a sensitivity of 0.97 and specificity of 0.91. Furthermore, preliminary results suggest that if a combination of multiple image properties is used, statistical significant differences can be found between RA-affected finger joints that show different clinical features (e.g. effusion, synovitis or erosion).

  9. Voltage-clamp frequency domain analysis of NMDA-activated neurons.

    PubMed

    Moore, L E; Hill, R H; Grillner, S

    1993-02-01

    1. Voltage and current-clamp steps were added to a sum of sine waves to measure the tetrodotoxin-insensitive membrane properties of neurons in the intact lamprey spinal cord. A systems analysis in the frequency domain was carried out on two types of cells that have very different morphologies in order to investigate the structural dependence of their electrophysiological properties. The method explicitly takes into account the geometrical shapes of (i) nearly spherical dorsal cells with one or two processes and (ii) motoneurons and interneurons that have branched dendritic structures. Impedance functions were analysed to obtain the cable properties of these in situ neurons. These measurements show that branched neurons are not isopotential and, therefore, a conventional voltage-clamp analysis is not valid. 2. The electrophysiological data from branched neurons were curve-fitted with a lumped soma-equivalent cylinder model consisting of eight equal compartments coupled to an isopotential cell body to obtain membrane parameters for both passive and active properties. The analysis provides a quantitative description of both the passive electrical properties imposed by the geometrical structure of neurons and the voltage-dependent ionic conductances determined by ion channel kinetics. The model fitting of dorsal cells was dominated by a one-compartment resistance and capacitance in parallel (RC) corresponding to the spherical, non-branched shape of these cells. Branched neurons required a model that contained both an RC compartment and a cable that reflected the structure of the cells. At rest, the electrotonic length of the cable was about two. Uniformly distributed voltage-dependent ionic conductance sites were adequate to describe the data at different membrane potentials. 3. The frequency domain admittance method in conjunction with a step voltage clamp was used to control and measure the oscillatory behavior induced by N-methyl-D-aspartate (NMDA) on lamprey spinal

  10. Rapid Transient Pressure Field Computations in the Nearfield of Circular Transducers using Frequency Domain Time-Space Decomposition

    PubMed Central

    Alles, E. J.; Zhu, Y.; van Dongen, K. W. A.; McGough, R. J.

    2013-01-01

    The fast nearfield method, when combined with time-space decomposition, is a rapid and accurate approach for calculating transient nearfield pressures generated by ultrasound transducers. However, the standard time-space decomposition approach is only applicable to certain analytical representations of the temporal transducer surface velocity that, when applied to the fast nearfield method, are expressed as a finite sum of products of separate temporal and spatial terms. To extend time-space decomposition such that accelerated transient field simulations are enabled in the nearfield for an arbitrary transducer surface velocity, a new transient simulation method, frequency domain time-space decomposition (FDTSD), is derived. With this method, the temporal transducer surface velocity is transformed into the frequency domain, and then each complex-valued term is processed separately. Further improvements are achieved by spectral clipping, which reduces the number of terms and the computation time. Trade-offs between speed and accuracy are established for FDTSD calculations, and pressure fields obtained with the FDTSD method for a circular transducer are compared to those obtained with Field II and the impulse response method. The FDTSD approach, when combined with the fast nearfield method and spectral clipping, consistently achieves smaller errors in less time and requires less memory than Field II or the impulse response method. PMID:23160476

  11. Multipixel system for gigahertz frequency-domain optical imaging of finger joints

    NASA Astrophysics Data System (ADS)

    Netz, Uwe J.; Beuthan, Jürgen; Hielscher, Andreas H.

    2008-03-01

    Frequency-domain optical imaging systems have shown great promise for characterizing blood oxygenation, hemodynamics, and other physiological parameters in human and animal tissues. However, most of the frequency domain systems presented so far operate with source modulation frequencies below 150MHz. At these low frequencies, their ability to provide accurate data for small tissue geometries such as encountered in imaging of finger joints or rodents is limited. Here, we present a new system that can provide data up to 1GHz using an intensity modulated charged coupled device camera. After data processing, the images show the two-dimensional distribution of amplitude and phase of the light modulation on the finger surface. The system performance was investigated and test measurements on optical tissue phantoms were taken to investigate whether higher frequencies yield better signal-to-noise ratios (SNRs). It could be shown that local changes in optical tissue properties, as they appear in the initial stages of rheumatoid arthritis in a finger joint, are detectable by simple image evaluation, with the range of modulation frequency around 500MHz proving to yield the highest SNR.

  12. Adaptive grid artifact reduction in the frequency domain with spatial properties for x-ray images

    NASA Astrophysics Data System (ADS)

    Kim, Dong Sik; Lee, Sanggyun

    2012-03-01

    By applying band-rejection filters (BRFs) in the frequency domain, we can efficiently reduce the grid artifacts, which are caused by using the antiscatter grid in obtaining x-ray digital images. However, if the frequency component of the grid artifact is relatively close to that of the object, then simply applying a BRF may seriously distort the object and cause the ringing artifacts. Since the ringing artifacts are quite dependent on the shape of the object to be recovered in the spatial domain, the spatial property of the x-ray image should be considered in applying BRFs. In this paper, we propose an adaptive filtering scheme, which can cooperate such different properties in the spatial domain. In the spatial domain, we compare several approaches, such as the mangnitude, edge, and frequency-modulation (FM) model-based algorithms, to detect the ringing artifact or the grid artifact component. In order to perform a robust detection whether the ringing artifact is strong or not, we employ the FM model for the extracted signal, which corresponds to a specific grid artifact. A detection of the position for the ringing artifact is then conducted based on the slope detection algorithm, which is commonly used as an FM discriminator in the communication area. However, the detected position of the ringing artifact is not accurate. Hence, in order to obtain an accurate detection result, we combine the edge-based approach with the FM model approach. Numerical result for real x-ray images shows that applying BRFs in the frequency domain in conjunction with the spatial property of the ringing artifact can successfully remove the grid artifact, distorting the object less.

  13. Resonant frequency method for bearing ball inspection

    DOEpatents

    Khuri-Yakub, B.T.; Chungkao Hsieh.

    1993-11-02

    The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection. 5 figures.

  14. Resonant frequency method for bearing ball inspection

    DOEpatents

    Khuri-Yakub, B. T.; Hsieh, Chung-Kao

    1993-01-01

    The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection.

  15. An Alternative Realization of Gauss-Newton for Frequency-Domain Acoustic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yang, J.; Chi, B.; Dong, L.

    2014-12-01

    Since FWI was studied under the least-square misfit optimization proposed by Tarantola (1984) in time domain, it has been greatly improved by many researchers. Pratt (1998) developed FWI in frequency domain using a Gauss-Newton optimization. In recent years, FWI has been widely studied under the framework of adjoint-state methods, as summarized by Plessix (2006). Preconditioning and high order gradients are important for FWI. Many researches have focused on the Newton optimization, in which the calculation of inverse Hessian is the key problem. Pseudo Hessian such as the diagonal Hessian was firstly used to approximate inverse Hessian (Choi & Shin, 2007). Then Gauss-Newton or l-BFGS method was widely studied to iteratively calculate the inverse approximate Hessian Haor full Hessian (Sheen et al., 2006). Full Hessian is the base of the exact Newton optimization. Fichtner and Trampert (2011) presented an extension of the adjoint-state method to directly compute the full Hessian; Métivier et al. (2012) proposed a general second-order adjoint-state formula for Hessian-vector product to tackle Gauss-Newton and exact Newton. Liu et al. (2014) proposed a matrix-decomposition FWI (MDFWI) based on Born kernel. They used the Born Fréchet kernel to explicitly calculate the gradient of the objective function through matrix decomposition, no full Fréchet kernel being stored in memory beforehand. However, they didn't give a method to calculate the Gauss-Newton. In this paper, We propose a method based on Born Fréchet kernel to calculate the Gauss-Newton for acoustic full waveform inversion (FWI). The Gauss-Newton is iteratively constructed without needing to store the huge approximate Hessian (Ha) or Fréchet kernel beforehand, and the inverse of Ha is not need to be calculated either. This procedure can be efficiently accomplished through matrix decomposition. More resolved result and faster convergence are obtained when this Gauss-Newton is applied in FWI based on the Born

  16. Feedback Allocation for OFDMA Systems With Slow Frequency-Domain Scheduling

    NASA Astrophysics Data System (ADS)

    Ganapathy, Harish; Banerjee, Siddhartha; Dimitrov, Nedialko B.; Caramanis, Constantine

    2012-12-01

    We study the problem of allocating limited feedback resources across multiple users in an orthogonal-frequency-division-multiple-access downlink system with slow frequency-domain scheduling. Many flavors of slow frequency-domain scheduling (e.g., persistent scheduling, semi-persistent scheduling), that adapt user-sub-band assignments on a slower time-scale, are being considered in standards such as 3GPP Long-Term Evolution. In this paper, we develop a feedback allocation algorithm that operates in conjunction with any arbitrary slow frequency-domain scheduler with the goal of improving the throughput of the system. Given a user-sub-band assignment chosen by the scheduler, the feedback allocation algorithm involves solving a weighted sum-rate maximization at each (slow) scheduling instant. We first develop an optimal dynamic-programming-based algorithm to solve the feedback allocation problem with pseudo-polynomial complexity in the number of users and in the total feedback bit budget. We then propose two approximation algorithms with complexity further reduced, for scenarios where the problem exhibits additional structure.

  17. Connection of electromagnetic degrees of coherence in space-time and space-frequency domains.

    PubMed

    Leppänen, Lasse-Petteri; Friberg, Ari T; Setälä, Tero

    2016-04-15

    We study the relationship between the electromagnetic degrees of coherence of stationary random fields in the space-time and space-frequency domains. In contrast to a known result on scalar fields, it appears that, due to the structure of the electromagnetic degree of coherence, no general closed-form relationship exists for the electromagnetic degrees in the two domains. However, relations that illustrate the similarities and differences between the two quantities can be established by specific considerations covering quasi-monochromatic and broadband situations of electromagnetic Gaussian Schell-model beams and blackbody radiation. PMID:27082354

  18. Simultaneous storage of patient information with medical images in the frequency domain.

    PubMed

    Acharya, Rajendra; Niranjan, U C; Iyengar, S S; Kannathal, N; Min, Lim Choo

    2004-10-01

    Digital watermarking is a technique of hiding specific identification data for copyright authentication. Most of the medical images are compressed by joint photographic experts group (JPEG) standard for storage. The watermarking is adapted here for interleaving patient information with medical images during JPEG compression, to reduce storage and transmission overheads. The text data is encrypted before interleaving with images in the frequency domain to ensure greater security. The graphical signals are also interleaved with the image. The result of this work is tabulated for a specific example and also compared with the spatial domain interleaving. PMID:15313538

  19. Deep level domain spectroscopy of low frequency oscillations in semi-insulating InP

    NASA Astrophysics Data System (ADS)

    Backhouse, C.; Young, L.

    1992-11-01

    It is known that low frequency current oscillations occur in semi-insulating GaAs due to the formation and transit of high field domains caused by enhanced trapping of hot electrons by deep levels and that power density spectra of the current show peaks whose temperature dependence gives information on deep levels. In the present work Fe-compensated InP was investigated. The peaks rose from an approximately {1}/{f}{3}/{2} background and by estimating and removing this and by averaging many spectra, no less than 14 frequency peaks were resolved which gave straight lines on an Arrhenius plot of log( {T 2}/{2f}) vs{1}/{T}. Although the amplitude of the current oscillations is not so large as to preclude multiple domain propagation, it seems more likely that the domains are caused by hot electron trapping by one level only, rather than that several traps should have the necessary characteristics to launch domains. The multiplicity of peaks could be partly due to harmonics of the basic high field domain oscillation and partly due to conductivity modulation by other levels whose occupancies are changed by the passage of the domains: the task, if so, is to determine which peaks are which. The activation energies from the Arrhenius plots fell into groups close to 0.30, 0.39, 0.41, 0.44 and 0.49 eV. The 14 peaks thus are believed to arise from 5 deep levels. Evidence was found that the 0.49 eV level is iron-related and is responsible for producing the high field domains and for drain current drift in InP metal-insulator-semiconductor field-effect transistors.

  20. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  1. Item Selection Methods for the Adolescent Domain Screening Inventory

    ERIC Educational Resources Information Center

    Corrigan, Matthew J.

    2009-01-01

    Objective: The purpose of this article is to describe the method of item selection tested in the development of the Adolescent Domain Screening Inventory. Method: The convenience sampling frame used for these analyses consisted of 26,781 Communities That Care Youth Surveys. The three item selection methods were used to assess known instrument,…

  2. Fictitious domain method for unsteady problems: Application to electromagnetic scattering

    SciTech Connect

    Collino, F.; Joly, P.; Millot, F.

    1997-12-01

    This paper investigates the use of a fictitious domain method as an alternative numerical method (compared to finite difference and finite element methods) for handling problems dealing with two-dimensional scattering by an obstacle. An example of this would be electromagnetic waves scattered from a perfectly conducting boundaries.

  3. Spectral residual method of saliency detection based on the two-dimensional fractional Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Tian, Jiangxue; Qi, Lin; Wang, Yaxing

    2015-12-01

    As one of classic methods of frequency domain based saliency detection, Spectral residual (SR) method has shown several advantages. However, it usually produces higher saliency values at object edges instead of generating maps that uniformly cover the whole object, which results from failing to exploit all the spatial frequency content of the original image. The Two-Dimensional Fractional Fourier transform (2D-FRFT) is a generalized form of the traditional Fourier Transform (FT) which can abstract more meaningful information of the image under certain conditions. Based on this property, we propose a new method which detects the salient region based on 2D-FRFT domain. Moreover, we also use Hough transform detection and a band-pass filter to refine the saliency map. We conduct experiments on a common used dataset: MSRA. The proposed method is compared with several other saliency detection methods and shown to achieve superior result.

  4. A Study on Channel Estimation Methods for Time-Domain Spreading MC-CDMA Systems

    NASA Astrophysics Data System (ADS)

    Nagate, Atsushi; Fujii, Teruya

    As a candidate for the transmission technology of next generation mobile communication systems, time-domain spreading MC-CDMA systems have begun to attract much attention. In these systems, data and pilot symbols are spread in the time domain and code-multiplexed. To combat fading issues, we need to conduct channel estimation by using the code-multiplexed pilot symbols. Especially in next generation systems, frequency bands higher than those of current systems, which raise the maximum Doppler frequency, are expected to be used, so that a more powerful channel estimation method is expected. Considering this, we propose a channel estimation method for highly accurate channel estimation; it is a combination of a two-dimensional channel estimation method and an impulse response-based channel estimation method. We evaluate the proposed method by computer simulations.

  5. A Domain Decomposition Parallelization of the Fast Marching Method

    NASA Technical Reports Server (NTRS)

    Herrmann, M.

    2003-01-01

    In this paper, the first domain decomposition parallelization of the Fast Marching Method for level sets has been presented. Parallel speedup has been demonstrated in both the optimal and non-optimal domain decomposition case. The parallel performance of the proposed method is strongly dependent on load balancing separately the number of nodes on each side of the interface. A load imbalance of nodes on either side of the domain leads to an increase in communication and rollback operations. Furthermore, the amount of inter-domain communication can be reduced by aligning the inter-domain boundaries with the interface normal vectors. In the case of optimal load balancing and aligned inter-domain boundaries, the proposed parallel FMM algorithm is highly efficient, reaching efficiency factors of up to 0.98. Future work will focus on the extension of the proposed parallel algorithm to higher order accuracy. Also, to further enhance parallel performance, the coupling of the domain decomposition parallelization to the G(sub 0)-based parallelization will be investigated.

  6. Comparison of misfit functions for phase-only inversion in the frequency domain

    NASA Astrophysics Data System (ADS)

    Jeong, G.; Jeong, W.; Min, D. J.

    2014-12-01

    Full waveform inversion suffers from non-uniqueness and non-linearity problems. By using kinematic property of wavefield rather than dynamic property, we can mitigate such problems because the phase is linear and robust (Kamei et al. 2013). For the phase-only inversion, several misfit functions were suggested. Bednar et al. (2007) compared the logarithmic phase-only inversion proposed by Shin and Min (2006) with the conventional phase-only inversion. On the other hand, Kamei et al. (2014) introduced another method that uses the exponential of phase by normalizing the wavefield with respect to the amplitude. In this study, we compare the aforementioned three phase-only inversion methods in the frequency domain: i) the logarithmic phase-only inversion, ii) the conventional phase-only inversion I (briefly conventional I method) that normalizes wavefield with respect to the amplitude variation, and iii) the conventional phase-only inversion II (briefly conventional II method) that replaces the amplitude of the modeled data with that of field data. In the cases of the logarithmic and conventional I methods, if the modeled signal function is close to 0 or becomes large, the gradients of the misfit function diverge to infinity or converge to 0, respectively. In contrast, the conventional II method does not suffer from these problems. For fair comparison, we removed extremely small or large values with Gaussian filtering to avoid the instability problem in the logarithmic and conventional I methods. In addition, we assumed that the phase of the field data is unwrapped to the same degree as the phase of the modeled data in all the cases. On the other hand, the logarithmic and conventional II methods require the additional assumption that amplitudes of the field data are the same as those of the modeled data. However, the conventional I method does not require such an assumption. Our numerical examples show that the conventional I method yields more robust and accurate

  7. Frequency domain tomography in small animals with the equation of radiative transfer

    NASA Astrophysics Data System (ADS)

    Ren, Kui; Moa-Anderson, Bryte; Bal, Guillaume; Gu, Xuejun; Hielscher, Andreas H.

    2005-04-01

    We have developed a model-based iterative image reconstruction scheme based on the equation of radiative transfer in the frequency domain for the applications in small animal optical tomographic imaging. To test the utility of such a code in small animal imaging we have furthermore developed a numerical phantom of a mouse. In simulation studies using this and other phantoms, we found that to make truly use of phase information in the reconstruction process modulation frequencies well above 100 MHz are necessary. Only at these higher frequencies the phase shifts introduced by the lesions of interest are large enough to be measured. For smaller frequencies no substantial improvements over steady-state systems are achieved in small geometries typical for small animal imaging.

  8. Multi-frequency communication system and method

    DOEpatents

    Carrender, Curtis Lee; Gilbert, Ronald W.

    2004-06-01

    A multi-frequency RFID remote communication system is provided that includes a plurality of RFID tags configured to receive a first signal and to return a second signal, the second signal having a first frequency component and a second frequency component, the second frequency component including data unique to each remote RFID tag. The system further includes a reader configured to transmit an interrogation signal and to receive remote signals from the tags. A first signal processor, preferably a mixer, removes an intermediate frequency component from the received signal, and a second processor, preferably a second mixer, analyzes the IF frequency component to output data that is unique to each remote tag.

  9. Generalized Frequency Domain State-Space Models for Analyzing Flexible Rotating Spacecraft

    NASA Astrophysics Data System (ADS)

    Turner, James D.; Elgohary, Tarek A.

    2012-06-01

    The mathematical model for a flexible spacecraft that is rotating about a single axis rotation is described by coupled rigid and flexible body degrees-of-freedom, where the equations of motion are modeled by integro-partial differential equations. Beam-like structures are often useful for analyzing boom-like flexible appendages. The equations of motion are analyzed by introducing generalized Fourier series that transform the governing equations into a system of ordinary differential equations. Though technically straightforward, two problems arise with this approach: (1) the model is frequency-truncated because a finite number of series terms are retained in the model, and (2) computationally intense matrix-valued transfer function calculations are required for understanding the frequency domain behavior of the system. Both of these problems are resolved by: (1) computing the Laplace transform of the governing integro-partial differential equation of motion; and (2) introducing a generalized state space (consisting of the deformational coordinate and three spatial partial derivatives, as well as single and double spatial integrals of the deformational coordinate). The resulting math model is cast in the form of a linear state-space differential equation that is solved in terms of a matrix exponential and convolution integral. The structural boundary conditions defined by Hamilton's principle are enforced on the closed-form solution for the generalized state space. The generalized state space model is then manipulated to provide analytic scalar transfer function models for original integro-partial differential system dynamics. Symbolic methods are used to obtain closed-form eigen decomposition- based solutions for the matrix exponential/convolution integral algorithm. Numerical results are presented that compare the classical series based approach with the generalized state space approach for computing representative spacecraft transfer function models.

  10. Comparison between power-law rheological parameters of living cells in frequency and time domains measured by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryosuke; Okajima, Takaharu

    2016-08-01

    We investigated how stress relaxation mapping is quantified compared with the force modulation mapping of confluent epithelial cells using atomic force microscopy (AFM). Using a multi-frequency AFM technique, we estimated the power-law rheological behaviors of cells simultaneously in time and frequency domains. When the power-law exponent α was low (<0.1), the α values were almost the same in time and frequency domains. On the other hand, we found that at the high values (α > 0.1), α in the time domain was underestimated relative to that in the frequency domain, and the difference increased with α, whereas the cell modulus was overestimated in the time domain. These results indicate that power-law rheological parameters estimated by stress relaxation are sensitive to lag time during initial indentation, which is inevitable in time-domain AFM experiments.

  11. Assessment of smoke inhalation injury using volumetric optical frequency domain imaging in sheep models

    NASA Astrophysics Data System (ADS)

    Applegate, Matthew B.; Hariri, Lida P.; Beagle, John; Tan, Khay Ming; Chee, Chunmin; Hales, Charles A.; Suter, Melissa J.

    2012-02-01

    Smoke inhalation injury is a serious threat to victims of fires and explosions, however accurate diagnosis of patients remains problematic. Current evaluation techniques are highly subjective, often involving the integration of clinical findings with bronchoscopic assessment. It is apparent that new quantitative methods for evaluating the airways of patients at risk of inhalation injury are needed. Optical frequency domain imaging (OFDI) is a high resolution optical imaging modality that enables volumetric microscopy of the trachea and upper airways in vivo. We anticipate that OFDI may be a useful tool in accurately assessing the airways of patients at risk of smoke inhalation injury by detecting injury prior to the onset of symptoms, and therefore guiding patient management. To demonstrate the potential of OFDI for evaluating smoke inhalation injury, we conducted a preclinical study in which we imaged the trachea/upper airways of 4 sheep prior to, and up to 60 minutes post exposure to cooled cotton smoke. OFDI enabled the visualization of increased mucus accumulation, mucosal thickening, epithelial disruption and sloughing, and increased submucosal signal intensity attributed to polymorphonuclear infiltrates. These results were consistent with histopathology findings. Bronchoscopic inspection of the upper airways appeared relatively normal with only mild accumulation of mucus visible within the airway lumen. The ability of OFDI to not only accurately detect smoke inhalation injury, but to quantitatively assess and monitor the progression or healing of the injury over time may provide new insights into the management of patients such as guiding clinical decisions regarding the need for intubation and ventilator support.

  12. Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging

    PubMed Central

    Desjardins, A. E.; Vakoc, B. J.; Tearney, G. J.; Bouma, B. E.

    2009-01-01

    Speckle noise significantly limits the information content provided by coherent optical imaging methods such as optical coherence tomography and its recent derivative, optical frequency-domain imaging (OFDI). In this paper, we demonstrate a novel OFDI system that simultaneously acquires hundreds of angularly resolved images, which can be compounded to reduce speckle noise. The system comprises an InGaAs line-scan camera and an interferometer, configured so that the elements of the detector array simultaneously capture light spanning a backscattering angular range of 32 degrees. On successive read-outs of the array, the wavelength of the laser source was stepped through a range of 130 nm centered at 1295 nm to concurrently generate 400 angle-resolved OFDI images. A theory of angle-resolved OFDI and the design equations of the system are presented. Incoherent averaging of the angle-resolved data is shown to yield substantial speckle reduction (as high as an 8 dB SNR improvement) in images of a tissue phantom and esophageal tissue ex vivo. PMID:19516630

  13. Frequency domain measurements on turbid media with strong absorption using the PN approximation.

    PubMed

    Baltes, Christof; Faris, Gregory W

    2009-06-01

    We have applied the frequency-domain technique to measurement of the optical properties of turbid media with strong absorption in the infinite medium limit. Absorption coefficients up to 2.3 cm(-1) for a modified scattering coefficient of 4.3 cm(-1) are studied, which corresponds to a reduced scattering albedo of 0.65. Low phase noise and good phase stability are required for these low albedo conditions. As the degree of absorption increases, the phase changes are reduced while amplitude changes increase. For this reason, correction of amplitude-phase cross talk is essential to achieve accurate measurements with strong absorption. Careful control of stray reflections is required to properly measure amplitude-phase cross talk. Because the diffusion approximation becomes less accurate, measurements are compared to calculations performed in the PN approximation, which is essentially an exact solution for the infinite medium limit. Agreement between theory and experiment is only obtained when correction for amplitude-phase cross talk is performed. These measurements can provide a good method for testing amplitude-phase cross talk. PMID:19488110

  14. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    NASA Astrophysics Data System (ADS)

    Haverkort, Maurits W.

    2016-05-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty, a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org.

  15. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging.

    PubMed

    Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2016-10-01

    A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer. PMID:26822943

  16. Clinical skin imaging using color spatial frequency domain imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Lesicko, John; Moy, Austin J.; Reichenberg, Jason; Tunnell, James W.

    2016-02-01

    Skin diseases are typically associated with underlying biochemical and structural changes compared with normal tissues, which alter the optical properties of the skin lesions, such as tissue absorption and scattering. Although widely used in dermatology clinics, conventional dermatoscopes don't have the ability to selectively image tissue absorption and scattering, which may limit its diagnostic power. Here we report a novel clinical skin imaging technique called color spatial frequency domain imaging (cSFDI) which enhances contrast by rendering color spatial frequency domain (SFD) image at high spatial frequency. Moreover, by tuning spatial frequency, we can obtain both absorption weighted and scattering weighted images. We developed a handheld imaging system specifically for clinical skin imaging. The flexible configuration of the system allows for better access to skin lesions in hard-to-reach regions. A total of 48 lesions from 31 patients were imaged under 470nm, 530nm and 655nm illumination at a spatial frequency of 0.6mm^(-1). The SFD reflectance images at 470nm, 530nm and 655nm were assigned to blue (B), green (G) and red (R) channels to render a color SFD image. Our results indicated that color SFD images at f=0.6mm-1 revealed properties that were not seen in standard color images. Structural features were enhanced and absorption features were reduced, which helped to identify the sources of the contrast. This imaging technique provides additional insights into skin lesions and may better assist clinical diagnosis.

  17. An analog baseband feedback circuit for TES signals in frequency domain multiplexing

    NASA Astrophysics Data System (ADS)

    Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Takei, Yoh; Masui, Kensuke; Hagihara, Toshishige; Kimura, Shunsuke; Koshiishi, Masaki; Mitsuishi, Ikuyuki; Shinozaki, Keisuke; Tsuchiya, Akihiro; Yoshino, Tomotaka; Yoshitake, Hiroshi; Fujimoto, Ryuichi; Ishisaki, Yoshitaka

    2008-07-01

    Multiplexed readout of TES (Transition Edge Sensor) signals is one of the key technologies needed to realize large format arrays of microcalorimeters in future X-ray missions. In the FDM (Frequency-Domain Multiplexing) approach using MHz biasing frequencies, a wide band-width FLL (Flux Locked Loop) circuit is essential to compensate the phase delay between the TES sensor and the room temperature circuits. An analog feedback circuit using a lock-in amplifier technique and phase shifters with a very low noise pre-amplifier is being developed. This circuit will be tested with an actual TES array and an 8-input SQUID in the EURECA project.

  18. Frequency domain synthesis of optimal inputs for adaptive identification and control

    NASA Technical Reports Server (NTRS)

    Fu, Li-Chen; Sastry, Shankar

    1987-01-01

    The input design problem of selecting appropriate inputs for use in SISO adaptive identification and model reference adaptive control algorithms is considered. Averaging theory is used to characterize the optimal inputs in the frequency domain. The design problem is formulated as an optimization problem which maximizes the smallest eigenvalue of the average information matrix over power constrained signals, and the global optimal solution is obtained using a convergent numerical algorithm. A bound on the frequency search range required in the design algorithm has been determined in terms of the desired performance.

  19. High-capacity method for hiding data in the discrete cosine transform domain

    NASA Astrophysics Data System (ADS)

    Qazanfari, Kazem; Safabakhsh, Reza

    2013-10-01

    Steganography is the art and science of hiding data in different media such as texts, audios, images, and videos. Data hiding techniques are generally divided into two groups: spatial and frequency domain techniques. Spatial domain methods generally have low security and, as a result, are less attractive to researchers. Discrete cosine transform (DCT) is the most common transform domain used in steganography and JPEG compression. Since a large number of the DCT coefficients of JPEG images are zero, the capacity of DCT domain-based steganography methods is not very high. We present a high-capacity method for hiding messages in the DCT domain. We describe the method in two classes where the receiver has and where the receiver does not have the cover image. In each class, we consider three cases for each coefficient. By considering n coefficients, there are 3n different situations. The method embeds ⌊log2 3n⌋ bits in these n coefficients. We show that the maximum reachable capacity by our method is 58% higher than the other general steganography methods. Experimental results show that the histogram-based steganalysis methods cannot detect the stego images produced by the proposed method while the capacity is increased significantly.

  20. Note: A simple broad bandwidth undersampling frequency-domain digital diffuse optical spectroscopy system.

    PubMed

    Jung, Justin; Istfan, Raeef; Roblyer, Darren

    2014-07-01

    Near-Infrared frequency-domain technologies, such as Diffuse Optical Spectroscopy (DOS), have demonstrated growing potential in a number of clinical applications. The broader dissemination of this technology is limited by the complexity and cost of instrumentation. We present here a simple system constructed with off-the-shelf components that utilizes undersampling for digital frequency-domain dDOS measurements. Broadband RF sweeps (50-300 MHz) were digitally sampled at 25 MSPS; amplitude, phase, and optical property extractions were within 5% of network analyzer derived values. The use of undersampling for broad bandwidth dDOS provides a significant reduction in complexity, power consumption, and cost compared with high-speed ADCs and analog techniques. PMID:25085193

  1. Note: A simple broad bandwidth undersampling frequency-domain digital diffuse optical spectroscopy system

    NASA Astrophysics Data System (ADS)

    Jung, Justin; Istfan, Raeef; Roblyer, Darren

    2014-07-01

    Near-Infrared frequency-domain technologies, such as Diffuse Optical Spectroscopy (DOS), have demonstrated growing potential in a number of clinical applications. The broader dissemination of this technology is limited by the complexity and cost of instrumentation. We present here a simple system constructed with off-the-shelf components that utilizes undersampling for digital frequency-domain dDOS measurements. Broadband RF sweeps (50-300 MHz) were digitally sampled at 25 MSPS; amplitude, phase, and optical property extractions were within 5% of network analyzer derived values. The use of undersampling for broad bandwidth dDOS provides a significant reduction in complexity, power consumption, and cost compared with high-speed ADCs and analog techniques.

  2. Note: A simple broad bandwidth undersampling frequency-domain digital diffuse optical spectroscopy system

    PubMed Central

    Jung, Justin; Istfan, Raeef; Roblyer, Darren

    2014-01-01

    Near-Infrared frequency-domain technologies, such as Diffuse Optical Spectroscopy (DOS), have demonstrated growing potential in a number of clinical applications. The broader dissemination of this technology is limited by the complexity and cost of instrumentation. We present here a simple system constructed with off-the-shelf components that utilizes undersampling for digital frequency-domain dDOS measurements. Broadband RF sweeps (50–300 MHz) were digitally sampled at 25 MSPS; amplitude, phase, and optical property extractions were within 5% of network analyzer derived values. The use of undersampling for broad bandwidth dDOS provides a significant reduction in complexity, power consumption, and cost compared with high-speed ADCs and analog techniques. PMID:25085193

  3. Distributed vibration sensing with time-resolved optical frequency-domain reflectometry.

    PubMed

    Zhou, Da-Peng; Qin, Zengguang; Li, Wenhai; Chen, Liang; Bao, Xiaoyi

    2012-06-01

    The distributed vibration or dynamic strain information can be obtained using time-resolved optical frequency-domain reflectometry. Time-domain information is resolved by measuring Rayleigh backscatter spectrum in different wavelength ranges which fall in successive time sequence due to the linear wavelength sweep of the tunable laser source with a constant sweeping rate. The local Rayleigh backscatter spectrum shift of the vibrated state with respect to that of the non-vibrated state in time sequence can be used to determine dynamic strain information at a specific position along the fiber length. Standard single-mode fibers can be used as sensing head, while the measurable frequency range of 0-32 Hz with the spatial resolution of 10 cm can be achieved up to the total length of 17 m. PMID:22714342

  4. Surrogate model reduction for linear dynamic systems based on a frequency domain modal analysis

    NASA Astrophysics Data System (ADS)

    Kim, T.

    2015-10-01

    A novel model reduction methodology for linear dynamic systems with parameter variations is presented based on a frequency domain formulation and use of the proper orthogonal decomposition. For an efficient treatment of parameter variations, the system matrices are divided into a nominal and an incremental part. It is shown that the perturbed part is modally equivalent to a new system where the incremental matrices are isolated into the forcing term. To account for the continuous changes in the parameters, the single-composite-input is invoked with a finite number of predetermined incremental matrices. The frequency-domain Karhunen-Loeve procedure is used to calculate a rich set of basis modes accounting for the variations. For demonstration, the new procedure is applied to a finite element model of the Goland wing undergoing oscillations and shown to produce extremely accurate reduced-order surrogate model for a wide range of parameter variations.

  5. High speed 3D endoscopic optical frequency domain imaging probe for lung cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Jianan; Feroldi, Fabio; Mo, Jianhua; Helderman, Frank; de Groot, Mattijs; de Boer, Johannes F.

    2013-06-01

    We present a miniature motorized endoscopic probe for Optical Frequency Domain Imaging with an outer diameter of 1.65 mm and a rotation speed of 3,000 - 12,500 rpm. The probe has a motorized distal end which provides a significant advantage over proximally driven probes since it does not require a drive shaft to transfer the rotational torque to the distal end of the probe and functions without a fiber rotary junction. The probe has a focal Full Width at Half Maximum of 9.6 μm and a working distance of 0.47 mm. We analyzed the non-uniform rotation distortion and found a location fluctuation of only 1.87° in repeated measurements of the same object. The probe was integrated in a high-speed Optical Frequency Domain Imaging setup at 1310 nm. We demonstrated its performance with imaging ex vivo pig bronchial and in vivo goat lung.

  6. Nonuniform strain measurement in composite material based on optical frequency domain reflection

    NASA Astrophysics Data System (ADS)

    Li, Huajun; Zhang, Dongsheng; Li, Litong; Wu, Mengqi; Wen, Xiaoyan

    2016-06-01

    Traditional electrical sensor or traditional fiber Bragg grating sensing technology is not applicable to the measurement of nonuniform strain in composite material. Therefore, the distributed nonuniform strain in the lap plate position of composite interlining material is measured using a single fiber with optical frequency domain reflection technology in this study. The experimental results show consistency with the experiment phenomena, and the measurement accuracy could be increased to the submillimeter level.

  7. Full field frequency domain common path optical coherence tomography with annular aperture

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.; Friedman, Ron; Liraz, Lior; Dadon, Ronen

    2007-07-01

    Theoretical and experimental results are presented using the common path Mirau interference microscope and using the Linnik microscope with annular masks to increase the depth of field. The competence between the spatial and temporal coherence was investigated theoretically and confirmed experimentally. Phase imaging of onion epidermis cells was presented showing the possibility of obtaining profiles of the cells. Frequency domain OCT was shown to be possible using full field setup.

  8. Characterization of nonmelanoma skin cancer for light therapy using spatial frequency domain imaging

    PubMed Central

    Rohrbach, Daniel J.; Zeitouni, Nathalie C.; Muffoletto, Daniel; Saager, Rolf; Tromberg, Bruce J.; Sunar, Ulas

    2015-01-01

    The dosimetry of light-based therapies critically depends on both optical and vascular parameters. We utilized spatial frequency domain imaging to quantify optical and vascular parameters, as well as estimated light penetration depth from 17 nonmelanoma skin cancer patients. Our data indicates that there exist substantial spatial variations in these parameters. Characterization of these parameters may inform understanding and optimization of the clinical response of light-based therapies. PMID:26137378

  9. Independent vector analysis based on overlapped cliques of variable width for frequency-domain blind signal separation

    NASA Astrophysics Data System (ADS)

    Lee, Intae; Jang, Gil-Jin

    2012-12-01

    A novel method is proposed to improve the performance of independent vector analysis (IVA) for blind signal separation of acoustic mixtures. IVA is a frequency-domain approach that successfully resolves the well-known permutation problem by applying a spherical dependency model to all pairs of frequency bins. The dependency model of IVA is equivalent to a single clique in an undirected graph; a clique in graph theory is defined as a subset of vertices in which any pair of vertices is connected by an undirected edge. Therefore, IVA imposes the same amount of statistical dependency on every pair of frequency bins, which may not match the characteristics of real-world signals. The proposed method allows variable amounts of statistical dependencies according to the correlation coefficients observed in real acoustic signals and, hence, enables more accurate modeling of statistical dependencies. A number of cliques constitutes the new dependency graph so that neighboring frequency bins are assigned to the same clique, while distant bins are assigned to different cliques. The permutation ambiguity is resolved by overlapped frequency bins between neighboring cliques. For speech signals, we observed especially strong correlations across neighboring frequency bins and a decrease in these correlations with an increase in the distance between bins. The clique sizes are either fixed, or determined by the reciprocal of the mel-frequency scale to impose a wider dependency on low-frequency components. Experimental results showed improved performances over conventional IVA. The signal-to-interference ratio improved from 15.5 to 18.8 dB on average for seven different source locations. When we varied the clique sizes according to the observed correlations, the stability of the proposed method increased with a large number of cliques.

  10. Domain identification in impedance computed tomography by spline collocation method

    NASA Technical Reports Server (NTRS)

    Kojima, Fumio

    1990-01-01

    A method for estimating an unknown domain in elliptic boundary value problems is considered. The problem is formulated as an inverse problem of integral equations of the second kind. A computational method is developed using a splice collocation scheme. The results can be applied to the inverse problem of impedance computed tomography (ICT) for image reconstruction.

  11. Laser noise measurement techniques and applications of femtosecond encoding in the frequency domain

    NASA Astrophysics Data System (ADS)

    Scott, Ryan Patrick

    This dissertation investigates mode-locked laser noise measurement techniques, the concept and measurement of a laser's noise transfer function, and then two applications of spectral encoding of optical pulses. The one application is optical code division multiple access (O-CDMA) and the other is optical arbitrary waveform generation (OAWG). The relationship between source stability, encoding, and overall system performance in O-CDMA is also discussed. Techniques for making sensitive and high-dynamic-range measurements of laser amplitude and envelope phase noise (timing jitter) in the frequency domain at the shot-noise limit are described. The short term stability of a Kerr-lens modelocked (KLM) Ti:sapphire laser is shown to be close to that of the precision crystal oscillators used in its characterization. The amplitude and envelope phase noise of a KLM Ti:sapphire laser are shown to depend directly on the pump laser amplitude stability. The sensitivity of this process is described by a noise transfer function (NTF) which represents the magnitude of the amplitude-to-amplitude modulation and amplitude-to-phase modulation conversion gain of the pump-induced amplitude and phase noise, respectively. A spectral phase-encoded time-spreading (SPECTS) O-CDMA testbed is described. The testbed employs a fiber-pigtailed, bulk-optics arrangement that utilizes a two-dimensional spatial light phase modulator for encoding multiple channels. The time-gated SPECTS O-CDMA receiver is composed of a nonlinear optical loop mirror (NOLM) and a nonlinear thresholder Experimentally measured performance is compared to numerical simulations. Finally, an optical frequency comb with 20-GHz spacing is shaped by an integrated silica arrayed-waveguide grating (AWG) pair to produce optical waveforms with high fidelity. Characterization of both the intensity and phase of the crafted opitical fields is accomplished with cross-correlation frequency-resolved optical gating (XFROG) which has been

  12. Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging

    NASA Astrophysics Data System (ADS)

    Kujala, Naresh Gandhi

    Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The

  13. Time and Frequency-Domain Cross-Verification of SLS 6DOF Trajectory Simulations

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen; Johnson, Matthew D.; McCullough, John P.; Gilligan, Eric T.

    2014-01-01

    The SLS GNC team and its partners have developed several time- and frequency-based simulations for development and analysis of the proposed SLS launch vehicle. The simulations differ in fidelity and some have unique functionality that allows them to perform specific analyses. Some examples of the purposes of the various models are: trajectory simulation, multi-body separation, Monte Carlo, hardware in the loop, loads, and frequency domain stability analyses. While no two simulations are identical, many of the models are essentially six degree-of-freedom (6DOF) representations of the SLS plant dynamics, hardware implementation, and flight software. Thus at a high level all of those models should be in agreement. Comparison of outputs from several SLS trajectory and stability analysis tools are ongoing as part of the program's current verification effort. The purpose of these comparisons is to highlight modeling and analysis differences, verify simulation data sources, identify inconsistencies and minor errors, and ultimately to verify output data as being a good representation of the vehicle and subsystem dynamics. This paper will show selected verification work in both the time and frequency domain from the current design analysis cycle of the SLS for several of the design and analysis simulations. In the time domain, the tools that will be compared are MAVERIC, CLVTOPS, SAVANT, STARS, ARTEMIS, and POST 2. For the frequency domain analysis, the tools to be compared are FRACTAL, SAVANT, and STARS. The paper will include discussion of these tools including their capabilities, configurations, and the uses to which they are put in the SLS program. Determination of the criteria by which the simulations are compared (matching criteria) requires thoughtful consideration, and there are several pitfalls that may occur that can severely punish a simulation if not considered carefully. The paper will discuss these considerations and will present a framework for responding to

  14. Embedding multiple watermarks in the DFT domain using low- and high-frequency bands

    NASA Astrophysics Data System (ADS)

    Ganic, Emir; Dexter, Scott D.; Eskicioglu, Ahmet M.

    2005-03-01

    Although semi-blind and blind watermarking schemes based on Discrete Cosine Transform (DCT) or Discrete Wavelet Transform (DWT) are robust to a number of attacks, they fail in the presence of geometric attacks such as rotation, scaling, and translation. The Discrete Fourier Transform (DFT) of a real image is conjugate symmetric, resulting in a symmetric DFT spectrum. Because of this property, the popularity of DFT-based watermarking has increased in the last few years. In a recent paper, we generalized a circular watermarking idea to embed multiple watermarks in lower and higher frequencies. Nevertheless, a circular watermark is visible in the DFT domain, providing a potential hacker with valuable information about the location of the watermark. In this paper, our focus is on embedding multiple watermarks that are not visible in the DFT domain. Using several frequency bands increases the overall robustness of the proposed watermarking scheme. Specifically, our experiments show that the watermark embedded in lower frequencies is robust to one set of attacks, and the watermark embedded in higher frequencies is robust to a different set of attacks.

  15. An improved scattering-integral approach for frequency-domain full waveform inversion

    NASA Astrophysics Data System (ADS)

    Liu, Yuzhu; Yang, Jizhong; Chi, Benxin; Dong, Liangguo

    2015-09-01

    This paper proposes an improvement on the scattering-integral (SI) approach for acoustic frequency-domain full waveform inversion (FWI) based on the individual Born kernels. The main development is a method for calculating the steepest-descent direction and the pseudo-Newton direction by vector operations with definite physical meaning, without needing to store the huge Fréchet kernels in memory beforehand. The Gauss-Newton descent direction can therefore be iteratively constructed without needing to store the huge approximate Hessian matrix or to calculate its inverse. The banded pseudo-Hessian and its inverse can be obtained in this way as well. This approach is efficient and makes the traditional SI approach more practical. At the same time, it keeps the advantages of the SI approach which can generate exact gradient of the objective function, enables separation of forward and inverse computation and provides straightforward access to Gauss-Newton iteration. This approach is called Born kernel full waveform inversion (BKFWI). Its effectiveness using the steepest-descent direction has been proved through 2-D numerical experiments. More fully resolved results and faster convergence are obtained when the Gauss-Newton direction is used. Because no additional forward simulations are needed for the Gauss-Newton direction, BKFWI is a highly valid alternative to traditional adjoint-state full waveform inversion (ADFWI) when the number of source stations is more than a few percent of the number of receiver stations. Such conditions are common in controlled source exploration, OBS (Ocean Bottom Seismometer) exploration, earthquake seismology, and even certain traditional seismic explorations. This method is also shown to be a convenient way to obtain accurate Gauss-Newton directions for multiparameter FWI because kernel coupling in the Hessian matrix can be easily handled.

  16. Noninvasive absolute cerebral oximetry with frequency-domain near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hallacoglu, Bertan

    Near-infrared spectroscopy (NIRS) measurements of absolute concentrations of oxy-hemoglobin and deoxy-hemoglobin in the human brain can provide critical information about cerebral physiology in terms of cerebral blood volume, blood flow, oxygen delivery, and metabolic rate of oxygen. We developed several frequency domain NIRS data acquisition and analysis methods aimed at absolute measurements of hemoglobin concentration and saturation in cerebral tissue of adult human subjects. Extensive experimental investigations were carried out in various homogenous and two-layered tissue-mimicking phantoms, and biological tissues. The advantages and limitations of commonly used homogenous models and inversion strategies were thoroughly investigated. Prior to human subjects, extensive studies were carried out in in vivo animal models. In rabbits, absolute hemoglobin oxygen desaturation was shown to depend strongly on surgically induced testicular torsion. Methods developed in this study were then adapted for measurements in the rat brain. Absolute values were demonstrated to discern cerebrovascular impairment in a rat model of diet-induced vascular cognitive impairment. These results facilitated the development of clinically useful optical measures of cerebrovascular health. In a large group of human subjects, employing a homogeneous model for absolute measurements was shown to be reliable and robust. However, it was also shown to be limited due to the relatively thick extracerebral tissue. The procedure we develop in this work and the thesis thereof performs a nonlinear inversion procedure with six unknown parameters with no other prior knowledge for the retrieval of the optical coefficients and top layer thickness with high accuracy on two-layered media. Our absolute measurements of cerebral hemoglobin concentration and saturation are based on the discrimination of extracerebral and cerebral tissue layers, and they can enhance the impact of NIRS for cerebral hemodynamics and

  17. Development of a portable frequency-domain angle-resolved low coherence interferometry system

    NASA Astrophysics Data System (ADS)

    Pyhtila, John W.; Wax, Adam

    2007-02-01

    Improved methods for detecting dysplasia, or pre-cancerous growth, are a current clinical need. Random biopsy and subsequent diagnosis through histological analysis is the current gold standard in endoscopic surveillance for dysplasia. However, this approach only allows limited examination of the at-risk tissue and has the drawback of a long delay in time-to-diagnosis. In contrast, optical scattering spectroscopy methods offer the potential to assess cellular structure and organization in vivo, thus allowing for instantaneous diagnosis and increased coverage of the at-risk tissue. Angle-resolved low coherence interferometry (a/LCI), a novel scattering spectroscopy technique, combines the ability of low-coherence interferometry to isolate scattered light from sub-surface tissue layers with the ability of light scattering spectroscopy to obtain structural information on sub-wavelength scales, specifically by analyzing the angular distribution of the backscattered light. In application to examining tissue, a/LCI enables depthresolved quantitative measurements of changes in the size and texture of cell nuclei, which are characteristic biomarkers of dysplasia. The capabilities of a/LCI were demonstrated initially by detecting pre-cancerous changes in epithelial cells within intact, unprocessed, animal tissues. Recently, we have developed a new frequency-domain a/LCI system, with sub-second acquisition time and a novel fiber optic probe. Preliminary results using the fa/LCI system to examine human esophageal tissue in Barrett's esophagus patients demonstrate the clinical viability of the approach. In this paper, we present a new portable system which improves upon the design of the fa/LCI system to allow for higher quality data to be collected in the clinic. Accurate sizing of polystyrene microspheres and cell nuclei from ex vivo human esophageal tissue is presented. These results demonstrate the promise of a/LCI as a clinically viable diagnostic tool.

  18. Punch stretching process monitoring using acoustic emission signal analysis. II - Application of frequency domain deconvolution

    NASA Technical Reports Server (NTRS)

    Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.

    1987-01-01

    The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.

  19. A compact frequency domain fluorometer with a directly modulated deuterium light source

    NASA Astrophysics Data System (ADS)

    Morgan, C. G.; Hua, Y.; Mitchell, A. K.; Murray, J. G.; Boardman, A. D.

    1996-01-01

    A phase fluorometer based on a low-cost and versatile high-frequency modulated light source and a fast gain-modulated photomultiplier is described. The apparatus is particularly well-suited to high-sensitivity frequency-domain fluorescence measurements requiring ultraviolet excitation. The system is very compact since it features a directly modulated light source, a miniature photomultiplier tube, and an rf synthesizer on a PC board. Equipped with a suitable fiber optic probe sensor, the device has potential as a portable unit for a wide range of remote sensing applications. The lamp can be modulated at frequencies up to 120 MHz and the phase fluorometer has been tested at up to 70 MHz with a range of fluorescent lifetime standards containing quinine sulfate quenched with sodium chloride.

  20. Spectral analysis of GEOS-3 altimeter data and frequency domain collocation. [to estimate gravity anomalies

    NASA Technical Reports Server (NTRS)

    Eren, K.

    1980-01-01

    The mathematical background in spectral analysis as applied to geodetic applications is summarized. The resolution (cut-off frequency) of the GEOS 3 altimeter data is examined by determining the shortest wavelength (corresponding to the cut-off frequency) recoverable. The data from some 18 profiles are used. The total power (variance) in the sea surface topography with respect to the reference ellipsoid as well as with respect to the GEM-9 surface is computed. A fast inversion algorithm for matrices of simple and block Toeplitz matrices and its application to least squares collocation is explained. This algorithm yields a considerable gain in computer time and storage in comparison with conventional least squares collocation. Frequency domain least squares collocation techniques are also introduced and applied to estimating gravity anomalies from GEOS 3 altimeter data. These techniques substantially reduce the computer time and requirements in storage associated with the conventional least squares collocation. Numerical examples given demonstrate the efficiency and speed of these techniques.

  1. Treatment of domain integrals in boundary element methods

    SciTech Connect

    Nintcheu Fata, Sylvain

    2012-01-01

    A systematic and rigorous technique to calculate domain integrals without a volume-fitted mesh has been developed and validated in the context of a boundary element approximation. In the proposed approach, a domain integral involving a continuous or weakly-singular integrand is first converted into a surface integral by means of straight-path integrals that intersect the underlying domain. Then, the resulting surface integral is carried out either via analytic integration over boundary elements or by use of standard quadrature rules. This domain-to-boundary integral transformation is derived from an extension of the fundamental theorem of calculus to higher dimension, and the divergence theorem. In establishing the method, it is shown that the higher-dimensional version of the first fundamental theorem of calculus corresponds to the well-known Poincare lemma. The proposed technique can be employed to evaluate integrals defined over simply- or multiply-connected domains with Lipschitz boundaries which are embedded in an Euclidean space of arbitrary but finite dimension. Combined with the singular treatment of surface integrals that is widely available in the literature, this approach can also be utilized to effectively deal with boundary-value problems involving non-homogeneous source terms by way of a collocation or a Galerkin boundary integral equation method using only the prescribed surface discretization. Sample problems associated with the three-dimensional Poisson equation and featuring the Newton potential are successfully solved by a constant element collocation method to validate this study.

  2. Diagnosis of pit and fissure caries using frequency-domain infrared photothermal radiometry and modulated laser luminescence.

    PubMed

    Jeon, R J; Han, C; Mandelis, A; Sanchez, V; Abrams, S H

    2004-01-01

    Non-intrusive, non-contacting frequency-domain photothermal radiometry (FD-PTR or PTR) and frequency-domain luminescence (FD-LUM or LUM) have been used with 659- and 830-nm laser sources to assess the pits and fissures on the occlusal surfaces of human teeth. Fifty-two human teeth were examined with simultaneous measurements of PTR and LUM and were compared to conventional diagnostic methods including continuous (dc) luminescence (DIAGNOdent), visual inspection and radiographs. To compare each method to the others, sensitivities and specificities were calculated by using histological observations as the gold standard. With the combined criteria of four PTR and LUM signals (two amplitudes and two phases), it was found that the sensitivity of this method was much higher than any of the other methods used in this study, whereas the specificity was comparable to that of dc luminescence diagnostics. Therefore, PTR and LUM, as a combined technique, has the potential to be a reliable tool to diagnose early pit and fissure caries and could provide detailed information about deep lesions. Using the longer wavelength (830-nm) laser source, it has been shown that detection of deeper subsurface lesions than the 659-nm probe provides is possible. PMID:15528904

  3. Phase Analysis for Frequency Standards in the Microwave and Optical Domains.

    PubMed

    Kazda, Michael; Gerginov, Vladislav; Huntemann, Nils; Lipphardt, Burghard; Weyers, Stefan

    2016-07-01

    Coherent manipulation of atomic states is a key concept in high-precision spectroscopy and used in atomic fountain clocks and a number of optical frequency standards. Operation of these standards can involve a number of cyclic switching processes, which may induce cycle-synchronous phase excursions of the interrogation signal and thus lead to shifts in the output of the frequency standard. We have built a field-programmable gate array (FPGA)-based phase analyzer to investigate these effects and conducted measurements on two kinds of frequency standards. For the caesium fountains PTB-CSF1 and PTB-CSF2, we were able to exclude phase variations of the microwave source at the level of a few microradians, corresponding to relative frequency shifts of less than [Formula: see text]. In the optical domain, we investigated phase variations in PTB's Yb (+) optical frequency standard and made detailed measurements of acousto-optic modulator (AOM) chirps and their scaling with duty cycle and driving power. We ascertained that cycle-synchronous as well as long-term phase excursion do not cause frequency shifts larger than [Formula: see text]. PMID:26761607

  4. Research on the key parameters influencing the anti-vibration capability of time-frequency-domain interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Fanghua; Hao, Qun; Hu, Yao; Zhu, Qiudong

    2012-11-01

    This paper introduces a time-and-frequency-domain (TFD) anti-noise phase-shifting interferometry, and designs an experimental system to test the anti-vibration ability of this method. In the system, a plane mirror is measured under the external vibrations simulated by the standard mirror propelled by PZT. During the measurement, each of the key parameters is assigned different values. By analyzing the testing results, the law of the parameters' influence on system anti-vibration capability can be obtained. According to the law, the optimization parameters can be determined so that the system has the maximum anti- vibration capability.

  5. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain

    NASA Astrophysics Data System (ADS)

    Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Zhou, Xiaoxiao; Shi, Yan

    2016-03-01

    In this paper, a reflective metasurface is designed, fabricated, and experimentally demonstrated to generate an orbital angular momentum (OAM) vortex wave in radio frequency domain. Theoretical formula of phase-shift distribution is deduced and used to design the metasurface producing vortex radio waves. The prototype of a practical configuration is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that the vortex waves with different OAM mode numbers can be flexibly generated by using sub-wavelength reflective metasurfaces. The proposed method and metasurface pave a way to generate the OAM vortex waves for radio and microwave wireless communication applications.

  6. Radiation and scattering by thin-wire structures in the complex frequency domain. [electromagnetic theory for thin-wire antennas

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.

    1974-01-01

    Piecewise-sinusoidal expansion functions and Galerkin's method are employed to formulate a solution for an arbitrary thin-wire configuration in a homogeneous conducting medium. The analysis is performed in the real or complex frequency domain. In antenna problems, the solution determines the current distribution, impedance, radiation efficiency, gain and far-field patterns. In scattering problems, the solution determines the absorption cross section, scattering cross section and the polarization scattering matrix. The electromagnetic theory is presented for thin wires and the forward-scattering theorem is developed for an arbitrary target in a homogeneous conducting medium.

  7. Experimental measure of transmission characteristics of low-frequency surface plasmon polaritons in frequency and time domains.

    PubMed

    Hou, Da Jun; Wu, Jin-Jei; Wu, Chien-Jang; Shen, Jian Qi; Chiueh, Her-Lih; Cheng, Li-Yi; Lin, Hung-Erh

    2016-04-01

    In this work, based on the use of the concept of spoof surface plasmon polaritons (spoof SPPs), we propose a novel kind of microstrips to suppress the interference between bended parallel microstrips. This novel structure is implemented by introducing subwavelength periodic structures onto the sides of a conventional microstrip. We numerically analyze the transmission characteristics of such new microstrips. We also measure the suppression arising from crosstalk between the bended corrugated microstrip and the conventional microstrip in both frequency and time domains. Experimental results show that such transmission line structure has superb interference restraining properties. Additionally, transmission properties have been investigated using circuit model. It is found that the coupling effect between the corrugated microstrip and the conventional microstrip can be efficiently suppressed in high speed digital signal transmission application. PMID:27137029

  8. Approximation method to compute domain related integrals in structural studies

    NASA Astrophysics Data System (ADS)

    Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.

    2015-11-01

    Various engineering calculi use integral calculus in theoretical models, i.e. analytical and numerical models. For usual problems, integrals have mathematical exact solutions. If the domain of integration is complicated, there may be used several methods to calculate the integral. The first idea is to divide the domain in smaller sub-domains for which there are direct calculus relations, i.e. in strength of materials the bending moment may be computed in some discrete points using the graphical integration of the shear force diagram, which usually has a simple shape. Another example is in mathematics, where the surface of a subgraph may be approximated by a set of rectangles or trapezoids used to calculate the definite integral. The goal of the work is to introduce our studies about the calculus of the integrals in the transverse section domains, computer aided solutions and a generalizing method. The aim of our research is to create general computer based methods to execute the calculi in structural studies. Thus, we define a Boolean algebra which operates with ‘simple’ shape domains. This algebraic standpoint uses addition and subtraction, conditioned by the sign of every ‘simple’ shape (-1 for the shapes to be subtracted). By ‘simple’ shape or ‘basic’ shape we define either shapes for which there are direct calculus relations, or domains for which their frontiers are approximated by known functions and the according calculus is carried out using an algorithm. The ‘basic’ shapes are linked to the calculus of the most significant stresses in the section, refined aspect which needs special attention. Starting from this idea, in the libraries of ‘basic’ shapes, there were included rectangles, ellipses and domains whose frontiers are approximated by spline functions. The domain triangularization methods suggested that another ‘basic’ shape to be considered is the triangle. The subsequent phase was to deduce the exact relations for the

  9. Renormalized scattering series for frequency domain waveform modelling of strong velocity contrasts

    NASA Astrophysics Data System (ADS)

    Jakobsen, M.; Wu, R. S.

    2016-04-01

    An improved description of scattering and inverse scattering processes in reflection seismology may be obtained on the basis of a scattering series solution to the Helmoltz equation, which allows one to separately model primary and multiple reflections. However, the popular scattering series of Born is of limited seismic modelling value, since it is only garantied to converge if the global contrast is relatively small. For frequency domain waveform modelling of realistic contrasts, some kind of renormalization may be reguired. The concept of renormalization is normally associated with quantum field theory, where it is absolutely essential for the treatment of infinities in connection with observable quantities. However, the renormalization program is also highly relevant for classical systems, especially when there are interaction effects that acts across different length scales. In the scattering series of De Wolf, a renormalization of the Green functions is achieved by a split of the scattering potential operator into fore- and back-scattering parts; which leads to an effective reorganization and partially re-summation of the different terms in the Born series, so that their order better reflects the physics of reflection seismology. It has been demonstrated that the leading (single return) term in the De Wolf series (DWS) gives much more accurate results than the corresponding Born approximation, especially for models with high contrasts that lead to a large accumulation of phase changes in the forward direction. However, the higher-order terms in the DWS that are associated with internal multiples have not been studied numerically before. In this paper, we report from a systematic numerical investigation of the convergence properties of the DWS which is based on two new operator representations of the DWS. The first operator representation is relatively similar to the original scattering potential formulation, but more global and explicit in nature. The second

  10. A finite-difference frequency-domain code for electromagnetic induction tomography

    SciTech Connect

    Sharpe, R M; Berryman, J G; Buettner, H M; Champagne, N J.,II; Grant, J B

    1998-12-17

    We are developing a new 3D code for application to electromagnetic induction tomography and applications to environmental imaging problems. We have used the finite-difference frequency- domain formulation of Beilenhoff et al. (1992) and the anisotropic PML (perfectly matched layer) approach (Berenger, 1994) to specify boundary conditions following Wu et al. (1997). PML deals with the fact that the computations must be done in a finite domain even though the real problem is effectively of infinite extent. The resulting formulas for the forward solver reduce to a problem of the form Ax = y, where A is a non-Hermitian matrix with real values off the diagonal and complex values along its diagonal. The matrix A may be either symmetric or nonsymmetric depending on details of the boundary conditions chosen (i.e., the particular PML used in the application). The basic equation must be solved for the vector x (which represents field quantities such as electric and magnetic fields) with the vector y determined by the boundary conditions and transmitter location. Of the many forward solvers that could be used for this system, relatively few have been thoroughly tested for the type of matrix encountered in our problem. Our studies of the stability characteristics of the Bi-CG algorithm raised questions about its reliability and uniform accuracy for this application. We have found the stability characteristics of Bi-CGSTAB [an alternative developed by van der Vorst (1992) for such problems] to be entirely adequate for our application, whereas the standard Bi-CG was quite inadequate. We have also done extensive validation of our code using semianalytical results as well as other codes. The new code is written in Fortran and is designed to be easily parallelized, but we have not yet tested this feature of the code. An adjoint method is being developed for solving the inverse problem for conductivity imaging (for mapping underground plumes), and this approach, when ready, will

  11. Renormalized scattering series for frequency-domain waveform modelling of strong velocity contrasts

    NASA Astrophysics Data System (ADS)

    Jakobsen, M.; Wu, R. S.

    2016-08-01

    An improved description of scattering and inverse scattering processes in reflection seismology may be obtained on the basis of a scattering series solution to the Helmoltz equation, which allows one to separately model primary and multiple reflections. However, the popular scattering series of Born is of limited seismic modelling value, since it is only guaranteed to converge if the global contrast is relatively small. For frequency-domain waveform modelling of realistic contrasts, some kind of renormalization may be required. The concept of renormalization is normally associated with quantum field theory, where it is absolutely essential for the treatment of infinities in connection with observable quantities. However, the renormalization program is also highly relevant for classical systems, especially when there are interaction effects that act across different length scales. In the scattering series of De Wolf, a renormalization of the Green's functions is achieved by a split of the scattering potential operator into fore- and backscattering parts; which leads to an effective reorganization and partially re-summation of the different terms in the Born series, so that their order better reflects the physics of reflection seismology. It has been demonstrated that the leading (single return) term in the De Wolf series (DWS) gives much more accurate results than the corresponding Born approximation, especially for models with high contrasts that lead to a large accumulation of phase changes in the forward direction. However, the higher order terms in the DWS that are associated with internal multiples have not been studied numerically before. In this paper, we report from a systematic numerical investigation of the convergence properties of the DWS which is based on two new operator representations of the DWS. The first operator representation is relatively similar to the original scattering potential formulation, but more global and explicit in nature. The second

  12. Not extinct yet: innovations in frequency domain HEM triggered by sea ice studies

    NASA Astrophysics Data System (ADS)

    Pfaffhuber, Andreas A.; Hendricks, Stefan

    2015-10-01

    The last 15 years have brought major innovations in helicopter towed time domain electromagnetics (EM), while few further developments have been made within the classic frequency domain segment. Operational use of frequency domain EM for sea ice thickness mapping acted as a driving force to develop new concepts such as the system under our consideration. Since its introduction we have implemented new concepts aiming at noise reduction and drift elimination. We decreased signal noise base levels by one to two orders of magnitude with changes to the signal transmission concept. Further, we increased the receiver coil dynamic range creating an EM setup without the need for primary field bucking. Finally, we implemented control signals inside the receiver coils to potentially eliminate system drift. Ground tests demonstrate the desired noise reduction and demonstrate drift control, leading to essentially drift free data. Airborne field data confirm these results, yet also show that the procedures can still be improved. The remaining quest is whether these specialised system improvements could also be implemented in exploration helicopter EM (HEM) systems to increase accuracy and efficiency.

  13. A hybrid absorbing boundary condition for frequency-domain finite-difference modelling

    NASA Astrophysics Data System (ADS)

    Ren, Zhiming; Liu, Yang

    2013-10-01

    Liu and Sen (2010 Geophysics 75 A1-6 2012 Geophys. Prospect. 60 1114-32) proposed an efficient hybrid scheme to significantly absorb boundary reflections for acoustic and elastic wave modelling in the time domain. In this paper, we extend the hybrid absorbing boundary condition (ABC) into the frequency domain and develop specific strategies for regular-grid and staggered-grid modelling, respectively. Numerical modelling tests of acoustic, visco-acoustic, elastic and vertically transversely isotropic (VTI) equations show significant absorptions for frequency-domain modelling. The modelling results of the Marmousi model and the salt model also demonstrate the effectiveness of the hybrid ABC. For elastic modelling, the hybrid Higdon ABC and the hybrid Clayton and Engquist (CE) ABC are implemented, respectively. Numerical simulations show that the hybrid Higdon ABC gets better absorption than the hybrid CE ABC, especially for S-waves. We further compare the hybrid ABC with the classical perfectly matched layer (PML). Results show that the two ABCs cost the same computation time and memory space for the same absorption width. However, the hybrid ABC is more effective than the PML for the same small absorption width and the absorption effects of the two ABCs gradually become similar when the absorption width is increased.

  14. Frequency and time-domain inspiral templates for comparable mass compact binaries in eccentric orbits

    NASA Astrophysics Data System (ADS)

    Tanay, Sashwat; Haney, Maria; Gopakumar, Achamveedu

    2016-03-01

    Inspiraling compact binaries with non-negligible orbital eccentricities are plausible gravitational wave (GW) sources for the upcoming network of GW observatories. In this paper, we present two prescriptions to compute post-Newtonian (PN) accurate inspiral templates for such binaries. First, we adapt and extend the postcircular scheme of Yunes et al. [Phys. Rev. D 80, 084001 (2009)] to obtain a Fourier-domain inspiral approximant that incorporates the effects of PN-accurate orbital eccentricity evolution. This results in a fully analytic frequency-domain inspiral waveform with Newtonian amplitude and 2PN-order Fourier phase while incorporating eccentricity effects up to sixth order at each PN order. The importance of incorporating eccentricity evolution contributions to the Fourier phase in a PN-consistent manner is also demonstrated. Second, we present an accurate and efficient prescription to incorporate orbital eccentricity into the quasicircular time-domain TaylorT4 approximant at 2PN order. New features include the use of rational functions in orbital eccentricity to implement the 1.5PN-order tail contributions to the far-zone fluxes. This leads to closed form PN-accurate differential equations for evolving eccentric orbits, and the resulting time-domain approximant is accurate and efficient to handle initial orbital eccentricities ≤0.9 . Preliminary GW data analysis implications are probed using match estimates.

  15. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  16. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  17. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  18. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  19. Time and frequency domain analyses of high-frequency hydrologic and chloride data in an east Tennessee watershed

    SciTech Connect

    Koirala, Shesh R; Gentry, Randall W; Mulholland, Patrick J; Perfect, Edmund; Schwartz, John S

    2010-01-01

    In the realm of sustainability science, it is becoming increasingly important to understand the basal condition of a natural system as well as its long-term behavior. Research is needed to better explain the temporal scaling of water chemistry in streams and watersheds and its relationship with the hydrologic factors that influence its behavior. Persistence of dissolved chemicals in streams has been demonstrated to be linked to certain hydrologic processes, such as interaction between hydrologic units and storage in surface or sub-surface systems. In this study, spectral and wavelet analyses provided a novel theoretical basis for insights into long-term chloride behavior in an east Tennessee watershed. Temporal scaling analyses were conducted on weekly time series data of chloride collected from November 1995 to December 2005 at the West Fork of Walker Branch in Oak Ridge, Tennessee. The objectives of the study were to: evaluate chloride concentration (a conservative solute) to determine the presence of statistical persistence and the relationship of the persistence to hydrologic variables (discharge and rainfall) using time and frequency domain analyses of high-frequency hydrologic and chloride concentration data. Results demonstrated that chloride showed some level of statistical persistence that was influenced by rainfall and/or discharge. Short-term statistical persistence (less than a year) was related to the persistence of rainfall and discharge, whereas long-term statistical persistence (more than a year) was related to the persistence of discharge.

  20. Tissue blood flow and oxygen consumption measured with near-infrared frequency-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Paunescu, Lelia Adelina

    2001-12-01

    For decades, researchers have contributed with new ways of applying physics' principles to medicine. Moreover, researchers were involved in developing new, non-invasive instrumentation for medical applications. Recently, application of optical techniques in biology and medicine became an important field. Researchers found a non- invasive approach of using visible and near-infrared light as a probe for tissue investigation. Optical methods can contribute to medicine by offering the possibility of rapid, low-resolution, functional images and real-time devices. Near-infrared spectroscopy (NIRS) is a useful technique for the investigation of biological tissues because of the relatively low absorption of water and high absorption of oxy- and deoxy-hemoglobin in the near- infrared region of 750-900 nm. Due to these properties, the near-infrared light can penetrate biological tissues in the range of 0.5-2 cm, offering investigation possibility of deep tissues and differentiate among healthy and diseased tissues. This work represents the initial steps towards understanding and improving of the promising near- infrared frequency-domain technique. This instrument has a very important advantage: it can be used non-invasively to investigate many parts of the human body, including the brain. My research consists primarily of in vivo measurements of optical parameters such as absorption and reduced scattering coefficients and consequently, blood parameters such as oxy, deoxy, and total hemoglobin concentrations, tissue oxygen saturation, blood flow and oxygen consumption of skeletal muscle of healthy and diseased subjects. This research gives a solid background towards a ready- to-use instrument that can continuously, in real-time, measure blood parameters and especially blood oxygenation. This is a very important information in emergency medicine, for persons under intensive care, or undergoing surgery, organ transplant or other interventions.

  1. Frequency domain holography of laser wakefield accelerators in the nonlinear bubble regime

    NASA Astrophysics Data System (ADS)

    Yi, S. A.; Kalmykov, S.; Dong, P.; Reed, S. A.; Downer, M.; Shvets, G.

    2009-11-01

    We present the theoretical basis of frequency domain holography (FDH), a technique for single-shot visualization of laser driven plasma wakes. In FDH, the nonlinear index modulations of the plasma wake are recorded as phase shifts in a co-propagating probe pulse, and interference with a reference allows for the reconstruction of the wake structure. Earlier experimental work [N. H. Matlis et al., Nature Phys. 2, 749 (2006)] has shown that reconstruction of the probe phase is sufficient for imaging weakly nonlinear periodic wakes. In the highly nonlinear regime, the laser ponderomotive force blows out plasma electrons and forms a density ``bubble'' that strongly focuses the probe light. We show that imaging the bubble requires full (amplitude and phase) reconstruction of the probe pulse, and find reconstructions of simulated frequency domain holograms in full agreement with direct PIC modeling of the probe pulse. We also assess the sensitivity of the technique to the spectral bandwidth of the probe and reference pulses. In combination with ray-tracing techniques which help evaluate the localized frequency up- and down-shifts of the probe light (``photon acceleration''), FDH appears to be a unique tool for visualization of plasma wakes. This work is supported by the US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.

  2. Comparison of geometrical and diffraction imaging in the space and frequency domains.

    PubMed

    Mahajan, Virendra N; Díaz, José A

    2016-04-20

    The geometrical and diffraction point-spread functions of an optical imaging system have been reviewed and compared in the past [Proc. SPIE3729, 434 (1999)PSISDG0277-786X10.1117/12.346821]. In this paper, we review and compare corresponding optical transfer functions. While the truth lies with the diffraction optical-transfer functions (OTF), it is considered easier and quicker to calculate the geometrical OTF, especially for large aberrations. We describe the theory of the two OTFs and explore the range of spatial frequencies and the magnitude of the primary aberrations over which the geometrical OTF may provide a reasonable approximation of the diffraction OTF. Moreover, balancing of spherical aberration with defocus for optimum diffraction OTF is studied as a function of both the aberration value as well as the spatial frequency. How to gauge the progress of an optical design in the frequency domain based on the geometrical OTF is outlined as the ray spot size is used in the space domain. PMID:27140094

  3. Time-domain electromagnetic energy in a frequency-dispersive left-handed medium

    SciTech Connect

    Cui Tiejun; Kong Jinau

    2004-11-15

    From Maxwell's equations and the Poynting theorem, the time-domain electric and magnetic energy densities are generally defined in the frequency-dispersive media based on the conservation of energy. As a consequence, a general definition of electric and magnetic energy is proposed. Comparing with existing formulations of electric and magnetic energy in frequency-dispersive media, the new definition is more reasonable and is valid in any case. Using the new definition and staring from the equation of motion, we have shown rigorously that the total energy density and the individual electric and magnetic energy densities are always positive in a realistic artificial left-handed medium (LHM) [R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)], which obeys actually the Lorentz medium model, although such a LHM has negative permittivity and negative permeability simultaneously in a certain frequency range. We have also shown that the conservation of energy is not violated in LHM. The earlier conclusions can be easily extended to the Drude medium model and the cold plasma medium model. Through an exact analysis of a one-dimensional transient current source radiating in LHM, numerical results are given to demonstrate that the work done by source, the power flowing outwards a surface, and the electric and magnetic energy stored in a volume are all positive in the time domain.

  4. P(N) approximation for frequency-domain measurements in scattering media.

    PubMed

    Faris, Gregory W

    2005-04-10

    Presented here are expressions for the P(N) approximation for light propagation in scattering media in the frequency domain. To elucidate parametric dependencies, the derivation uses normalization of the resulting expressions to either the total interaction coefficient or the reduced total interaction coefficient. For the latter case, a set of reduced phase function coefficients are introduced. Expression of the P(N) approximation as a conventional eigenvalue problem facilitates computation of the eigenvalues or attenuation coefficients. This approach is used to determine the attenuation coefficients in the asymptotic regime over the full values of the scattering albedo and reduced scattering albedo (0 to 1) and all positive values of the asymmetry factor (0 to 1). Frequency-domain measurements yield a sensitivity to turbid media optical properties for reduced scattering albedos as small as 0.2. P(N) calculations are used to assess the magnitude of errors associated with the P1 and P3 approximations over a range of scattering albedo, phase function, and modulation frequency. PMID:15835355

  5. A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging.

    PubMed

    Lu, Yujie; Zhu, Banghe; Shen, Haiou; Rasmussen, John C; Wang, Ge; Sevick-Muraca, Eva M

    2010-08-21

    Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-domain parallel adaptive finite element solver is developed with simplified spherical harmonics (SP(N)) approximations. To fully evaluate the performance of the SP(N) approximations, a fast time-resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous geometries is developed using a convolution strategy to realize the simulation of the fluorescence excitation and emission. The validation results show that high-order SP(N) can effectively correct the modeling errors of the diffusion equation, especially when the tissues have high absorption characteristics or when high modulation frequency measurements are used. Furthermore, the parallel adaptive mesh evolution strategy improves the modeling precision and the simulation speed significantly on a realistic digital mouse phantom. This solver is a promising platform for fluorescence molecular tomography using high-order approximations to the radiative transfer equation. PMID:20671350

  6. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM).

    PubMed Central

    Clayton, Andrew H A; Hanley, Quentin S; Arndt-Jovin, Donna J; Subramaniam, Vinod; Jovin, Thomas M

    2002-01-01

    We describe a novel variant of fluorescence lifetime imaging microscopy (FLIM), denoted anisotropy-FLIM or rFLIM, which enables the wide-field measurement of the anisotropy decay of fluorophores on a pixel-by-pixel basis. We adapted existing frequency-domain FLIM technology for rFLIM by introducing linear polarizers in the excitation and emission paths. The phase delay and intensity ratios (AC and DC) between the polarized components of the fluorescence signal are recorded, leading to estimations of rotational correlation times and limiting anisotropies. Theory is developed that allows all the parameters of the hindered rotator model to be extracted from measurements carried out at a single modulation frequency. Two-dimensional image detection with a sensitive CCD camera provides wide-field imaging of dynamic depolarization with parallel interrogation of different compartments of a complex biological structure such as a cell. The concepts and technique of rFLIM are illustrated with a fluorophore-solvent (fluorescein-glycerol) system as a model for isotropic rotational dynamics and with bacteria expressing enhanced green fluorescent protein (EGFP) exhibiting depolarization due to homotransfer of electronic excitation energy (emFRET). The frequency-domain formalism was extended to cover the phenomenon of emFRET and yielded data consistent with a concentration depolarization mechanism resulting from the high intracellular concentration of EGFP. These investigations establish rFLIM as a powerful tool for cellular imaging based on rotational dynamics and molecular proximity. PMID:12202387

  7. Guided wave mode selection for inhomogeneous elastic waveguides using frequency domain finite element approach.

    PubMed

    Chillara, Vamshi Krishna; Ren, Baiyang; Lissenden, Cliff J

    2016-04-01

    This article describes the use of the frequency domain finite element (FDFE) technique for guided wave mode selection in inhomogeneous waveguides. Problems with Rayleigh-Lamb and Shear-Horizontal mode excitation in isotropic homogeneous plates are first studied to demonstrate the application of the approach. Then, two specific cases of inhomogeneous waveguides are studied using FDFE. Finally, an example of guided wave mode selection for inspecting disbonds in composites is presented. Identification of sensitive and insensitive modes for defect inspection is demonstrated. As the discretization parameters affect the accuracy of the results obtained from FDFE, effect of spatial discretization and the length of the domain used for the spatial fast Fourier transform are studied. Some recommendations with regard to the choice of the above parameters are provided. PMID:26746160

  8. A microcomputer based frequency-domain processor for laser Doppler anemometry

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Adair, Desmond

    1988-01-01

    A prototype multi-channel laser Doppler anemometry (LDA) processor was assembled using a wideband transient recorder and a microcomputer with an array processor for fast Fourier transform (FFT) computations. The prototype instrument was used to acquire, process, and record signals from a three-component wind tunnel LDA system subject to various conditions of noise and flow turbulence. The recorded data was used to evaluate the effectiveness of burst acceptance criteria, processing algorithms, and selection of processing parameters such as record length. The recorded signals were also used to obtain comparative estimates of signal-to-noise ratio between time-domain and frequency-domain signal detection schemes. These comparisons show that the FFT processing scheme allows accurate processing of signals for which the signal-to-noise ratio is 10 to 15 dB less than is practical using counter processors.

  9. Measuring frequency domain granger causality for multiple blocks of interacting time series.

    PubMed

    Faes, Luca; Nollo, Giandomenico

    2013-04-01

    In the past years, several frequency-domain causality measures based on vector autoregressive time series modeling have been suggested to assess directional connectivity in neural systems. The most followed approaches are based on representing the considered set of multiple time series as a realization of two or three vector-valued processes, yielding the so-called Geweke linear feedback measures, or as a realization of multiple scalar-valued processes, yielding popular measures like the directed coherence (DC) and the partial DC (PDC). In the present study, these two approaches are unified and generalized by proposing novel frequency-domain causality measures which extend the existing measures to the analysis of multiple blocks of time series. Specifically, the block DC (bDC) and block PDC (bPDC) extend DC and PDC to vector-valued processes, while their logarithmic counterparts, denoted as multivariate total feedback [Formula: see text] and direct feedback [Formula: see text], represent into a full multivariate framework the Geweke's measures. Theoretical analysis of the proposed measures shows that they: (i) possess desirable properties of causality measures; (ii) are able to reflect either direct causality (bPDC, [Formula: see text] or total (direct + indirect) causality (bDC, [Formula: see text] between time series blocks; (iii) reduce to the DC and PDC measures for scalar-valued processes, and to the Geweke's measures for pairs of processes; (iv) are able to capture internal dependencies between the scalar constituents of the analyzed vector processes. Numerical analysis showed that the proposed measures can be efficiently estimated from short time series, allow to represent in an objective, compact way the information derived from the causal analysis of several pairs of time series, and may detect frequency domain causality more accurately than existing measures. The proposed measures find their natural application in the evaluation of directional

  10. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbo; Ge, Hao; Li, Zhe; Ding, Zhanming

    2015-01-01

    This study develops a method to internally preheat lithium-ion batteries at low temperatures with sinusoidal alternating current (AC). A heat generation rate model in frequency domain is developed based on the equivalent electrical circuit. Using this model as the source term, a lumped energy conservation model is adopted to predict the temperature rise. These models are validated against the experimental results of preheating an 18650 cell at different thermal insulation conditions. The effects of current amplitude and frequency on the heating rate are illustrated with a series of simulated contours of heating time. These contours indicate that the heating rate increases with higher amplitude, lower frequency and better thermal insulation. The cell subjected to an alternating current with an amplitude of 7 A (2.25 C) and a frequency of 1 Hz, under a calibrated heat transfer coefficient of 15.9 W m-2 K-1, can be heated from -20 °C to 5 °C within 15 min and the temperature distribution remains essentially uniform. No capacity loss is found after repeated AC preheating tests, indicating this method incurs little damage to the battery health. These models are computationally-efficient and can be used in real time to control the preheating devices in electric vehicles.

  11. On the implementation of a real-time information security architecture in frequency domain

    NASA Astrophysics Data System (ADS)

    Basu, Abhishek; Sarkar, Souvik; Sarkar, Subir Kumar

    2015-12-01

    This paper presents the real-time implementation of a watermarking-based information security architecture in frequency domain. The scheme emphasises on the human visual system (HVS)-supported watermarking approach using wavelet-lifting technique. In addition to HVS, image registration algorithm is also introduced in order to increase the resiliency as well as the security of the estimated recovered watermark image. The algorithmic steps with optimisation considerations about the real-time implementation on TMS320CDSK6416/6713 fixed/floating point digital signal processor are also projected.

  12. Improvements in frequency-domain based NIRF optical tomography modality for preclinical studies

    NASA Astrophysics Data System (ADS)

    Darne, Chinmay D.; Sevick-Muraca, Eva M.

    2014-05-01

    Herein we present recent improvements in system design and performance evaluation of near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system developed for small animal fluorescence tomography and installed within a commercial micro-CT/PET scanner. We improved system performance by increasing signal-to-noise ratio (SNR) through use of high powered rf modulation, novel data collection scheme, and data discrimination based on the associated noise levels. Noise characteristics show improvement with these techniques and are currently being employed to improve 3-D fluorescence for tomographic reconstructions in phantoms before incorporating into hybrid scanner.

  13. 24 mm depth range discretely swept optical frequency domain imaging in dentistry

    NASA Astrophysics Data System (ADS)

    Kakuma, Hideo; Choi, DongHak; Furukawa, Hiroyuki; Hiro-Oka, Hideaki; Ohbayashi, Kohji

    2009-02-01

    A large depth range is needed if optical coherence tomography (OCT) is to be used to observe multiple teeth simultaneously. A discretely swept optical frequency domain imaging system with a 24-mm depth range was made by using a superstructure-grating distributed Bragg reflector (SSG-DBR) laser as the light source and setting the frequencystep interval to be 3.13 GHz (λ ~ 0.026 nm). The swept wavelength range was 40 nm centered at 1580 nm, the resolution was 29 μm, and the A-scan rate was 1.3 kHz. Application of the OCT system to a dental phantom was demonstrated.

  14. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    SciTech Connect

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-15

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  15. Time-resolved experiments in the frequency domain using synchrotron radiation (invited)

    SciTech Connect

    De Stasio, G. ); Giusti, A.M.; Parasassi, T.; Ravagnan, G. ); Sapora, O. )

    1992-01-01

    PLASTIQUE is the only synchrotron radiation beam line in the world that performs time-resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and the dynamics of molecules. This technique measures fluorescence lifetimes with picosecond resolution in the near UV spectral range. Such accurate measurements are rendered possible by taking phase and modulation data, and by the advantages of the cross-correlation technique. A successful experiment demonstrated the radiation damage induced by low doses of radiation on rabbit blood cell membranes.

  16. Automated on-orbit frequency domain identification for large space structures

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Hadaegh, F. Y.; Yam, Y.; Scheid, R. E.; Mettler, E.; Milman, M. H.

    1991-01-01

    Recent experiences in the field of flexible structure control in space have indicated a need for on-orbit system identification to support robust control redesign to avoid in-flight instabilities and maintain high spacecraft performance. This paper highlights an automated frequency domain system identification methodology recently developed to fulfill this need. The methodology is focused to support (1) the estimation of system quantities useful for robust control analysis and design; (2) experiment design tailored to performing system identification in a typically constrained on-orbit environment; and (3) the automation of operations to reduce 'human in the loop' requirements.

  17. Vertical-cavity surface-emitting laser (VCSEL) sources for frequency domain photon migration

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Thomas D.; No, Keun-Sik; Matlock, Alex; Hill, Brian; Cerussi, Albert E.; Tromberg, Bruce J.

    2015-03-01

    Frequency domain photon migration (FDPM) uses modulated laser light to measure the bulk optical properties of turbid media and is increasingly being applied for noninvasive functional medical imaging. Though semiconductor edge emitting laser diodes (EELs) have been traditionally used for this application, we show that VCSELs exhibit performance characteristics suitable for FDPM measurements of tissue optical properties. Their output power and modulation characteristics are more than sufficient for optical property recovery. In addition, their small size, high efficiency, low cost, and simple packaging make them an attractive choice as components in clinical FDPM systems. We demonstrate a unique, compact optical probe that was enabled by VCSEL technology.

  18. Frequency-domain stimulated and spontaneous light emission signals at molecular junctions

    SciTech Connect

    Harbola, Upendra; Agarwalla, Bijay Kumar; Mukamel, Shaul

    2014-08-21

    Using a diagrammatic superoperator formalism we calculate optical signals at molecular junctions where a single molecule is coupled to two metal leads which are held at different chemical potentials. The molecule starts in a nonequilibrium steady state whereby it continuously exchanges electrons with the leads with a constant electron flux. Expressions for frequency domain optical signals measured in response to continuous laser fields are derived by expanding the molecular correlation functions in terms of its many-body states. The nonunitary evolution of molecular states is described by the quantum master equation.

  19. Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments.

    PubMed

    Benuzzi-Mounaix, A; Koenig, M; Boudenne, J M; Hall, T A; Batani, D; Scianitti, F; Masini, A; Di Santo, D

    1999-09-01

    We show the simultaneous applicability of the frequency domain interferometry and the chirped pulse reflectometry techniques to measure shock parameters. The experiment has been realized with the laser at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) with a 550-ps pulse duration and an intensity on target approximately 5 x 10(13) W/cm(2) to produce a shock in a layered aluminum-fused silica target. A second low energy, partially compressed chirped probe beam was used to irradiate the target rear side and the reflected light has been analyzed with a spectrometer, achieving a temporal resolution of the order of 1 ps. PMID:11970183

  20. Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments

    NASA Astrophysics Data System (ADS)

    Benuzzi-Mounaix, A.; Koenig, M.; Boudenne, J. M.; Hall, T. A.; Batani, D.; Scianitti, F.; Masini, A.; di Santo, D.

    1999-09-01

    We show the simultaneous applicability of the frequency domain interferometry and the chirped pulse reflectometry techniques to measure shock parameters. The experiment has been realized with the laser at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) with a 550-ps pulse duration and an intensity on target ~5×1013 W/cm2 to produce a shock in a layered aluminum-fused silica target. A second low energy, partially compressed chirped probe beam was used to irradiate the target rear side and the reflected light has been analyzed with a spectrometer, achieving a temporal resolution of the order of 1 ps.