These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Second Harmonic and Sum Frequency Generation Imaging of Fibrous Astroglial Filaments in Ex Vivo Spinal Tissues  

E-print Network

structures in a complex biological system. INTRODUCTION Constituting the largest cell population deficiency have shown that astroglial filaments act as strong inhibitors of CNS regeneration (4). Because brain tumors (3,5). Current techniques for imaging glial filaments include immunostaining of GFAP

Cheng, Ji-Xin

2

Physics of tissue harmonic imaging by ultrasound  

NASA Astrophysics Data System (ADS)

Tissue Harmonic Imaging (THI) is an imaging modality that is currently deployed on diagnostic ultrasound scanners. In THI the amplitude of the ultrasonic pulse that is used to probe the tissue is large enough that the pulse undergoes nonlinear distortion as it propagates into the tissue. One result of the distortion is that as the pulse propagates energy is shifted from the fundamental frequency of the source pulse into its higher harmonics. These harmonics will scatter off objects in the tissue and images formed from the scattered higher harmonics are considered to have superior quality to the images formed from the fundamental frequency. Processes that have been suggested as possibly responsible for the improved imaging in THI include: (1) reduced sensitivity to reverberation, (2) reduced sensitivity to aberration, and (3) reduction in side lobes. By using a combination of controlled experiments and numerical simulations, these three reasons have been investigated. A single element transducer and a clinical ultrasound scanner with a phased array transducer were used to image a commercial tissue-mimicking phantom with calibrated targets. The higher image quality achieved with THI was quantified in terms of spatial resolution and "clutter" signals. A three-dimensional model of the forward propagation of nonlinear sound beams in media with arbitrary spatial properties (a generalized KZK equation) was developed. A time-domain code for solving the KZK equation was validated with measurements of the acoustic field generated by the single element transducer and the phased array transducer. The code was used to investigate the impact of aberration using tissue-like media with three-dimensional variations in all acoustic properties. The three-dimensional maps of tissue properties were derived from the datasets available through the Visible Female project. The experiments and simulations demonstrated that second harmonic imaging (1) suffers less clutter associated with reverberation; (2) is not immune to aberration effects and (3) suffers less clutter due to reduced side-lobe levels. The results indicate that side lobe suppression is the most significant reason for the improvement of second harmonic imaging.

Jing, Yuan

3

High-resolution frequency domain second harmonic optical coherence tomography  

NASA Astrophysics Data System (ADS)

We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain SH-OCT to 12?m. The acquisition time was shortened by more than two orders of magnitude compared to time domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on second harmonic has been used to obtain polarization resolved images.

Su, Jianping; Tomov, I. V.; Jiang, Yi; Chen, Zhongping

2007-02-01

4

Harmonic segregation through mistuning can improve fundamental frequency discrimination  

PubMed Central

This study investigated the relationship between harmonic frequency resolution and fundamental frequency (f0) discrimination. Consistent with earlier studies, f0 discrimination of a diotic bandpass-filtered harmonic complex deteriorated sharply as the f0 decreased to the point where only harmonics above the tenth were presented. However, when the odd harmonics were mistuned by 3%, performance improved dramatically, such that performance nearly equaled that found with only even harmonics present. Mistuning also improved performance when alternating harmonics were presented to opposite ears (dichotic condition). In a task involving frequency discrimination of individual harmonics within the complexes, mistuning the odd harmonics yielded no significant improvement in the resolution of individual harmonics. Pitch matches to the mistuned complexes suggested that the even harmonics dominated the pitch for f0’s at which a benefit of mistuning was observed. The results suggest that f0 discrimination performance can benefit from perceptual segregation based on inharmonicity, and that poor performance when only high-numbered harmonics are present is not due to limited peripheral harmonic resolvability. Taken together with earlier results, the findings suggest that f0 discrimination may depend on auditory filter bandwidths, but that spectral resolution of individual harmonics is neither necessary nor sufficient for accurate f0 discrimination. PMID:19045656

Bernstein, Joshua G.W.; Oxenham, Andrew J.

2008-01-01

5

Higher Harmonic Imaging of Tight Cracks in Glass Plates and Weld Interface with Mode-Converted Transverse Waves  

NASA Astrophysics Data System (ADS)

Higher harmonic imaging technique is applied for delineate the weld interface of thin metal plates and detecting tight cracks in glass plates. The technique of mode-converted shear wave is used for extracting higher harmonics and imaging the harmonic amplitudes. The backscattered higher harmonic wave is captured by a focused transducer in water immersion. High-pass filters of different cut-off frequencies are inserted in the reception circuit to extract higher harmonics and reduce the fundamental frequency component.

Kawashima, Koichiro; Sekino, Kouichi; Ichigo, Kazuyoshi

2008-06-01

6

Use of harmonic imaging without echocardiographic contrast to improve two-dimensional image quality  

Microsoft Academic Search

The aim of this study was to determine whether harmonic imaging (HI) improves endocardial visualization during 2-dimensional echocardiography without echocardiographic contrast. HI differs from fundamental imaging (FI) by transmitting ultrasound at one frequency and receiving at twice the transmitted frequency. This technique has been used in conjunction with contrast echocardiography to enhance myocardial contrast visualization. HI and FI were sequentially

KirkT Spencer; James Bednarz; PatrickG Rafter; Claudia Korcarz; RobertoM Lang

1998-01-01

7

Perfusion harmonic imaging of the human brain  

NASA Astrophysics Data System (ADS)

The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

2003-05-01

8

High-order harmonics with frequency-varying polarization within each harmonic  

E-print Network

We predict high-order harmonics in which the polarization within the spectral bandwidth of each harmonic varies continuously and significantly. For example, the interaction of counter-rotating circularly-polarized bichromatic drivers having close central frequencies with isotropic gas leads to the emission of polarization-fan harmonics which are nearly circularly-polarized in one tail of the harmonic peak, linear in the center of the peak and nearly circular with the opposite helicity in the opposite tail. Polarization fan harmonics are obtained as a result of multiple (at least two) head-on recollisions of electrons with their parent ions occurring from different angles. The process can be phase-matched using standard methods (e.g. pressure tuning phase matching) and maintains the single-atom polarization property through propagation. These polarization-fan harmonics may be used for exploring non-repetitive ultrafast chiral phenomena, e.g. dynamics of magnetic domains, in a single shot

Fleischer, Avner; Sidorenko, Pavel; Cohen, Oren

2014-01-01

9

Frequency-resolved optical grating using third-harmonic generation  

SciTech Connect

We demonstrate the first frequency-resolved optical gating measurement of an laser oscillator without the time ambiguity using third-harmonic generation. The experiment agrees well with the phase-retrieved spectrograms.

Tsang, T. [Brookhaven National Laboratory, Upton, NY (United States); Krumbuegel, M.A.; Delong, K.W. [Sandia National Laboratories, Livermore, CA (United States)] [and others

1995-12-01

10

Harmonic Motion Imaging (HMI) for Tumor Imaging and Treatment Monitoring  

PubMed Central

Palpation is an established screening procedure for the detection of several superficial cancers including breast, thyroid, prostate, and liver tumors through both self and clinical examinations. This is because solid masses typically have distinct stiffnesses compared to the surrounding normal tissue. In this paper, the application of Harmonic Motion Imaging (HMI) for tumor detection based on its stiffness as well as its relevance in thermal treatment is reviewed. HMI uses a focused ultrasound (FUS) beam to generate an oscillatory acoustic radiation force for an internal, non-contact palpation to internally estimate relative tissue hardness. HMI studies have dealt with the measurement of the tissue dynamic motion in response to an oscillatory acoustic force at the same frequency, and have been shown feasible in simulations, phantoms, ex vivo human and bovine tissues as well as animals in vivo. Using an FUS beam, HMI can also be used in an ideal integration setting with thermal ablation using high-intensity focused ultrasound (HIFU), which also leads to an alteration in the tumor stiffness. In this paper, a short review of HMI is provided that encompasses the findings in all the aforementioned areas. The findings presented herein demonstrate that the HMI displacement can accurately depict the underlying tissue stiffness, and the HMI image of the relative stiffness could accurately detect and characterize the tumor or thermal lesion based on its distinct properties. HMI may thus constitute a non-ionizing, cost-efficient and reliable complementary method for noninvasive tumor detection, localization, diagnosis and treatment monitoring.

Maleke, Caroline; Vappou, Jonathan

2014-01-01

11

Excitation of electron Langmuir frequency harmonics in the solar atmosphere  

SciTech Connect

An alternative mechanism for the excitation of electron Langmuir frequency harmonics as a result of the development of explosive instability in a weakly relativistic beam-plasma system in the solar atmosphere is proposed. The efficiency of the new mechanism as compared to the previously discussed ones is analyzed.

Fomichev, V. V.; Fainshtein, S. M.; Chernov, G. P. [Russian Academy of Sciences, Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (Russian Federation)

2013-05-15

12

Imaging theory of nonlinear second harmonic and third harmonic generations in confocal microscopy  

Microsoft Academic Search

The imaging theory of nonlinear second harmonic generation (SHG) and third harmonic generation (THG) in confocal microscopy\\u000a is presented in this paper. The nonlinear effect of SHG and THG on the imaging properties of confocal microscopy has been\\u000a analyzed in detail by the imaging theory. It is proved that the imaging process of SHG and THG in confocal microscopy, which

Zhilie Tang; Da Xing; Songhao Liu

2004-01-01

13

Detecting the harmonics of oscillations with time-variable frequencies  

NASA Astrophysics Data System (ADS)

A method is introduced for the spectral analysis of complex noisy signals containing several frequency components. It enables components that are independent to be distinguished from the harmonics of nonsinusoidal oscillatory processes of lower frequency. The method is based on mutual information and surrogate testing combined with the wavelet transform, and it is applicable to relatively short time series containing frequencies that are time variable. Where the fundamental frequency and harmonics of a process can be identified, the characteristic shape of the corresponding oscillation can be determined, enabling adaptive filtering to remove other components and nonoscillatory noise from the signal. Thus the total bandwidth of the signal can be correctly partitioned and the power associated with each component then can be quantified more accurately. The method is first demonstrated on numerical examples. It is then used to identify the higher harmonics of oscillations in human skin blood flow, both spontaneous and associated with periodic iontophoresis of a vasodilatory agent. The method should be equally relevant to all situations where signals of comparable complexity are encountered, including applications in astrophysics, engineering, and electrical circuits, as well as in other areas of physiology and biology.

Sheppard, L. W.; Stefanovska, A.; McClintock, P. V. E.

2011-01-01

14

Corneal imaging by second and third harmonic generation microscopy  

Microsoft Academic Search

Advanced imaging methods are essential tools for improved outcome of refractive surgery. Second harmonic generation (SHG) and third harmonic generation (THG) microscopy are noninvasive high-resolution imaging methods, which can discriminate the different layers of the cornea, thus having strong impact on the outcome of laser surgery. In this work, we use an Ytterbium femtosecond laser as the laser source, the

Arnaud Brocas; Louis Jay; Eric Mottay; Isabelle Brunette; Tsuneyuki Ozaki

2008-01-01

15

High-resolution frequency-domain second-harmonic optical coherence tomography  

NASA Astrophysics Data System (ADS)

We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain second-harmonic optical coherence tomography (SH-OCT) to 12 ?m. The acquisition time was shortened by more than 2 orders of magnitude compared to the time-domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon, and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on the SH has been used to obtain polarization resolved images.

Su, Jianping; Tomov, Ivan V.; Jiang, Yi; Chen, Zhongping

2007-04-01

16

Bond length, dipole moment, and harmonic frequency of CO  

NASA Technical Reports Server (NTRS)

A detailed comparison of some properties of CO is given, at the modified coupled-pair functional, single and double excitation coupled-cluster (CCSD), and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), using a variety of basis sets. With very large one-particle basis sets, the CCSD(T) method gives excellent results for the bond distance, dipole moment, and harmonic frequency of CO. In a (6s 5p 4d 3f 2g 1h) + (1s 1p 1d) basis set, the bond distance is about 0.005a0 too large, the dipole moment about 0.005 a.u. too small, and the frequency about 6/cm too small, when compared with experimental results.

Barnes, Leslie A.; Liu, Bowen; Lindh, Roland

1993-01-01

17

Second Harmonic Generation Imaging Microscopy: Applications to Diseases Diagnostics  

PubMed Central

Second Harmonic Generation microscopy has emerged as a powerful new optical imaging modality. This Feature describes its chemical and physical principles and highlights current applications in disease diagnostics. PMID:21446646

Campagnola, Paul

2011-01-01

18

Qualitative and quantitative effects of harmonic echocardiographic imaging on endocardial edge definition and side-lobe artifacts  

NASA Technical Reports Server (NTRS)

Harmonic imaging is a new ultrasonographic technique that is designed to improve image quality by exploiting the spontaneous generation of higher frequencies as ultrasound propagates through tissue. We studied 51 difficult-to-image patients with blinded side-by-side cineloop evaluation of endocardial border definition by harmonic versus fundamental imaging. In addition, quantitative intensities from cavity versus wall were compared for harmonic versus fundamental imaging. Harmonic imaging improved left ventricular endocardial border delineation over fundamental imaging (superior: harmonic = 71.1%, fundamental = 18.7%; similar: 10.2%; P <.001). Quantitative analysis of 100 wall/cavity combinations demonstrated brighter wall segments and more strikingly darker cavities during harmonic imaging (cavity intensity on a 0 to 255 scale: fundamental = 15.6 +/- 8.6; harmonic = 6.0 +/- 5.3; P <.0001), which led to enhanced contrast between the wall and cavity (1.89 versus 1.19, P <.0001). Harmonic imaging reduces side-lobe artifacts, resulting in a darker cavity and brighter walls, thereby improving image contrast and endocardial delineation.

Rubin, D. N.; Yazbek, N.; Garcia, M. J.; Stewart, W. J.; Thomas, J. D.

2000-01-01

19

Multi-Channel Microstrip Transceiver Arrays Using Harmonics for High Field MR Imaging in Humans  

PubMed Central

RF transceiver array design using primary and higher order harmonics for in-vivo parallel MR imaging and spectroscopic imaging is proposed. The improved electromagnetic decoupling performance, unique magnetic field distributions and high-frequency operation capabilities of higher-order harmonics of resonators would benefit transceiver arrays for parallel MRI, especially for ultrahigh field parallel MRI. To demonstrate this technique, microstrip transceiver arrays using first and second harmonic resonators were developed for human head parallel imaging at 7T. Phantom and human head images were acquired and evaluated using the GRAPPA reconstruction algorithm. The higher-order harmonic transceiver array design technique was also assessed numerically using FDTD simulation. Compared with regular primary-resonance transceiver designs, the proposed higher-order harmonic technique provided an improved g-factor and increased decoupling among resonant elements without using dedicated decoupling circuits, which would potentially lead to a better parallel imaging performance and ultimately faster and higher quality imaging. The proposed technique is particularly suitable for densely spaced transceiver array design where the increased mutual inductance among the elements becomes problematic. In addition, it also provides a simple approach to readily upgrade the channels of a conventional primary resonator microstrip array to a larger number for faster imaging. PMID:21878410

Wu, Bing; Wang, Chunsheng; Lu, Jonathan; Pang, Yong; Nelson, Sarah J; Vigneron, Daniel B; Zhang, Xiaoliang

2012-01-01

20

Mitigation of harmonic disturbance at pumped storage power station with static frequency converter  

Microsoft Academic Search

This paper investigates the harmonic distortion problem and mitigation method at the Mingtan pumped storage power station in Taiwan, where six 300 MVA synchronous generator\\/motors are started by a static frequency converter (SFC) before the pumping stage. Since the SFC uses a 6-pulse rectifier technique, a large amount of harmonic currents are produced during the starting period. The harmonic distortion

Jung-Chen Chiang; Chi-Jui Wu; Shih-Shong Yen

1997-01-01

21

Harmonic Spatial Coherence Imaging: An Ultrasonic Imaging Method Based on Backscatter Coherence  

PubMed Central

HSCI and SLSC imaging less sensitive to clutter because it has low spatial coherence. The method is based on the coherence of the second harmonic backscatter. Because the same signals that are used to construct harmonic B-mode images are also used to construct HSCI images, the benefits obtained with harmonic imaging are also applicable to HSCI. Harmonic imaging has been the primary tool for suppressing clutter in diagnostic ultrasound imaging, however second harmonic echoes are not necessarily immune to the effects of clutter. HSCI and SLSC imaging are less sensitive to clutter because it has low spatial coherence. Harmonic Spatial Coherence Imaging shows favorable imaging characteristics such as improved contrast-to-noise ratio (CNR), improved speckle signal-to-noise ratio (SNR), and better delineation of borders and other structures compared to fundamental and harmonic B-mode imaging. CNRs of up to 1.9 were obtained from in vivo imaging of human cardiac tissue with HSCI, compared to 0.6, 0.9, and 1.5 in fundamental B-mode, harmonic B-mode, and SLSC imaging, respectively. In vivo experiments in human liver tissue demonstrated SNRs of up to 3.4 for HSCI compared to 1.9 for harmonic B-mode. Nonlinear simulations of a heart chamber model were consistent with the in vivo experiments. PMID:22547276

Dahl, Jeremy J; Jakovljevic, Marko; Pinton, Gianmarco F.; Trahey, Gregg E.

2012-01-01

22

Frequency-sum passive cavitation imaging.  

PubMed

Passive cavitation imaging (PCI) is a method for spatially mapping acoustic emissions caused by microbubble activity, including subharmonic and ultraharmonic emissions that denote stable cavitation. The point spread function (PSF) of passive cavitation images is diffraction limited. When typical clinical diagnostic linear arrays are used for PCI, the diffraction limit results in high azimuthal resolution but low axial resolution. Abadi et al. (2013)recently demonstrated a method called frequency-sum beamforming, which employs second-order or higher products of the acoustic emissions to manufacture higher frequencies, thereby reducing the size of the PSF. We applied this approach to cavitation emissions recorded from albumin-shelled bubbles insonified by 2 MHz ultrasound. Cavitation emissions were recorded on a 5 MHz, 128 element linear array using a Vantage scanner (Verasonics Inc.). Quadratic and fourth-order frequency-sum beamforming was applied to both harmonic and ultraharmonic cavitation emissions. Corresponding simulations were also performed to illustrate frequency-sum passive cavitation imaging of multiple bubbles. In comparison to delay-and-sum PCI, apparent areas of cavitation activity decreased when products of the emissions were used to perform frequency-sum beamforming. However, frequency-sum beamforming also produced artifacts, including the appearance of spurious emission sources. PMID:25235673

Haworth, Kevin J; Radhakrishnan, Kirthi; Mast, T Douglas

2014-04-01

23

Frequency-tunable second-harmonic submillimeter-wave gyrotron oscillators  

E-print Network

This thesis reports the design and experimental demonstration of frequency-tunable submillimeter-wave gyrotrons operating in continuous wave (CW) at the second harmonic of the electron cyclotron frequency. An unprecedented ...

Sousa, Antonio C. Torrezan de (Antonio Carlos Torrezan de)

2010-01-01

24

Cerebral perfusion imaging with bolus harmonic imaging (Honorable Mention Poster Award)  

NASA Astrophysics Data System (ADS)

Fast visualisation of cerebral microcirculation supports diagnosis of acute stroke. However, the commonly used CT/MRI-based methods are time consuming, costly and not applicable to every patient. The bolus perfusion harmonic imaging (BHI) method is an ultrasound imaging technique which makes use of the fact, that ultrasound contrast agents unlike biological tissues resonate at harmonic frequencies. Exploiting this effect, the contrast between perfused and non-perfused areas can be improved. Thus, BHI overcomes the low signal-to-noise ratio of transcranial ultrasound and the high impedance of the skull. By analysing image sequences, visualising the qualitative characteristics of an US contrast agent bolus injection becomes possible. The analysis consists of calculating four perfusion-related parameters, Local Peak Intensity, Time To Peak, Area Under Curve, and Average Rising, from the time/intensity curve and providing them as colour-coded images. For calculating these parameters the fundamental assumption is that image intensity corresponds to contrast agent concentration which in turn shows the perfusion of the corresponding brain region. In a clinical study on patients suffering from acute ischemic stroke it is shown that some of the parameters correlate significantly to the infarction area. Thus, BHI becomes a less time-consuming and inexpensive bedside method for diagnosis of cerebral perfusion deficits.

Kier, Christian; Toth, Daniel; Meyer-Wiethe, Karsten; Schindler, Angela; Cangur, Hakan; Seidel, Gunter; Aach, Til

2005-04-01

25

Confocal Imaging of Biological Tissues Using Second Harmonic Generation  

SciTech Connect

A confocal microscopy imaging system was devised to selectively detect Second harmonic signals generated by biological tissues. Several types of biological tissues were examined using this imaging system, including human teeth, bovine blood vessels, and chicken skin. All these tissues generated strong second harmonic signals. There is considerable evidence that the source of these signals in tissue is collagen. Collagen, the predominant component of most tissues, is known to have second order nonlinear susceptibility. This technique may have diagnostic usefulness in pathophysiological conditions characterized by changes in collagen structure including malignant transformation of nevi, progression of diabetic complications, and abnormalities in wound healing.

Kim, B-M.; Stoller, P.; Reiser, K.; Eichler, J.; Yan, M.; Rubenchik, A.; Da Silva, L.

2000-03-06

26

Rapid vibrational imaging with sum frequency generation microscopy  

PubMed Central

We demonstrate rapid vibrational imaging based on sum frequency generation (SFG) microscopy with a collinear excitation geometry. Using the tunable picosecond pulses from a high-repetition-rate optical parametric oscillator, vibrationally selective imaging of collagen fibers is achieved with submicrometer lateral resolution. We furthermore show simultaneous SFG and second harmonic generation imaging to emphasize the compatibility of the microscope with other nonlinear optical modalities. PMID:21964132

Raghunathan, Varun; Han, Yang; Korth, Olaf; Ge, Nien-Hui; Potma, Eric Olaf

2014-01-01

27

Second harmonic imaging and scoring of collagen in fibrotic tissues  

E-print Network

). 3. G. Cox, E. Kable, A. Jones, I. Fraser, K. Marconi and M. D. Gorrell, "3-dimensional imaging. Hoppe, C. J. Malone and W. A. Mohler, "Three- dimensional high-resolution Second-Harmonic Generation," Appl. Opt. 42, 5209-5219 (2003). 6. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T

Paris-Sud XI, Université de

28

Spherical harmonics as a shape descriptor for hyperspectral image classification  

NASA Astrophysics Data System (ADS)

Hyperspectral images have traditionally been analyzed by pixel based methods. Invariant methods that consider surface and shape geometry have not been used with these images. However, there is a need for such methods due to the spectral and spatial variability present in these images. In this paper, we develop a method for classifying these images invariant to translation and rotation. The method is based on developing shape descriptors using spherical harmonics. These orthogonal functions have been widely used as a powerful tool for 3D shape recognition and are better suited for hyperspectral images due to its inherent dimensionality. A spherical function defined on the surface of a shape extracts rotation invariant features. In this case, the hyperspectral image is converted to spherical coordinates, decomposed as a sum of its harmonics and then converted to Cartesian coordinates. A classifier is trained with spherical harmonic descriptors computed from training samples. Support vector machines and Maximum Likelihood are considered for classification. The method is tested with hyperspectral image from AISA, AVIRIS and HYDICE sensors. The results show that the descriptors are effective in improving the accuracy of classification.

Nina-Paravecino, Fanny; Manian, Vidya

2010-04-01

29

Improving AFM images with harmonic interference by spectral analysis.  

PubMed

Atomic force microscopy (AFM) is one of the most sensitive tools for nanoscale imaging. As such, it is very sensitive to external noise sources that can affect the quality of collected data. The intensity of the disturbance depends on the noise source and the mode of operation. In some cases, the internal noise from commercial AFM controllers can be significant and difficult to remove. Thus, a new method based on spectrum analysis of the scanned images is proposed to reduce harmonic disturbances. The proposal is a post-processing method and can be applied at any time after measurements. This article includes a few methods of harmonic cancellation (e.g., median filtering, wavelet denoising, Savitzky-Golay smoothing) and compares their effectiveness. The proposed method, based on Fourier transform of the scanned images, was more productive than the other methods mentioned before. The presented data were achieved for images of conductive layers taken in a contact AFM mode. PMID:22214544

Kiwilszo, Marek; Zieli?ski, Artur; Smulko, Janusz; Darowicki, Kazimierz

2012-02-01

30

Corneal imaging by second and third harmonic generation microscopy  

NASA Astrophysics Data System (ADS)

Advanced imaging methods are essential tools for improved outcome of refractive surgery. Second harmonic generation (SHG) and third harmonic generation (THG) microscopy are noninvasive high-resolution imaging methods, which can discriminate the different layers of the cornea, thus having strong impact on the outcome of laser surgery. In this work, we use an Ytterbium femtosecond laser as the laser source, the longer wavelength of which reduces scattering, and allows simultaneous SHG and THG imaging. We present SHG and THG images and profiles of pig corneas that clearly show the anterior surface of the cornea, the entry in the stroma and its end, and the posterior surface of the cornea. These observations allow localizing the epithelium, the stroma and the endothelium. Other experiments give information about the structure and cytology of the corneal layers.

Brocas, Arnaud; Jay, Louis; Mottay, Eric; Brunette, Isabelle; Ozaki, Tsuneyuki

2008-02-01

31

LOCALIZED HARMONIC MOTION IMAGING: THEORY, SIMULATIONSAND EXPERIMENTS  

E-print Network

the spatial and temporal variation of the locally induced displacement was used. In experiments with gels frequencies. Four agar gelswere utilized in orderto determinethe effect of stiffness on the motion amplitude, is a combination of the mechanical and acoustical properties of the tissue, the resonance characteristics

Konofagou, Elisa E.

32

Passive harmonic filter design scheme for subsea cable applications with 6-pulse variable frequency drives  

Microsoft Academic Search

Parallel resonance is common in offshore distribution systems with lengthy subsea cables and variable frequency drives (VFDs). Traditional passive harmonic filter design scheme for 6-pulse VFDs is general acceptable when all filters are functioning properly, but when the interlocking control switches off all filters due to individual filter failure, the offshore system is exposed to rich harmonic content and could

Xiaodong Liang; Obinna Ilochonwu

2009-01-01

33

Critical US visibility with tissue harmonic imaging of subcutaneous nodules?  

PubMed Central

Introduction Assessment of US ability to identify subcutaneous nodular lesions using conventional B mode imaging (CBMI) and tissue second harmonic imaging (THI). Materials and Methods Three different types of equipment were used (Philips Envisor HDC, Philips HD 11 XE and GE Logic E) with 12–13 MHz probes and THI probes with variable frequency. One experienced operator studied 31 patients (24 women, 7 men, mean age 49 ± 15) with 52 subcutaneous nodular lesions of which 43 were palpable and 9 were nonpalpable. Statistical analysis was carried out using chi-square test. Results 19/52 subcutaneous nodular lesions were hyperechoic, 10/52 were isoechoic and 23/52 were hypoechoic. Of the hyperechoic nodules, 8/19 (42%) (p < 0.005) were not detected using THI, as they “disappeared” when THI was activated. Of the isoechoic nodules only 1/10 was not detected using THI, and of the hypoechoic nodules only 2/23 were not detected. Of the nodular lesions detected using CBMI and also using THI (41/52), 16/41 were shown more clearly using THI than using BMCI. No nodule was detected with the exclusive use of THI. Conclusions The statistical significance of the “disappearing” lesions (p < 0.005), mainly hyperechoic (42%), at the activation of THI must lead to a reconsideration of routine activation of THI during the entire US examination in the evaluation of subcutaneous lesions in order to avoid the risk of missing important lesions. The present results suggest that both BMCI and THI should be used in the study of subcutaneous lesions. PMID:23396896

Stella, S.M.; Ciampi, B.; Melchiorre, D.; Benedetti, E.; Orsitto, E.; Lippolis, P.V.

2011-01-01

34

Frequency-resolved optical grating using surface third-harmonic generation  

SciTech Connect

We demonstrate the frequency-resolved optical grating technique using third-harmonic generation on the surface of a cover glass with ultra-short optical pulses and compare that with the phase-retrieved spectrogram.

Tsang, T. [Brookhaven National Lab., Upton, NY (United States); Krumbuegel, M.A.; Delong, K.W.; Fittinghoff, D.N.; Trebino, R. [Sandia National Labs., Livermore, CA (United States)

1995-11-01

35

Coherent states and uncertainty relations for the damped harmonic oscillator with time-dependent frequency  

NASA Technical Reports Server (NTRS)

Starting with evaluations of propagator and wave function for the damped harmonic oscillator with time-dependent frequency, exact coherent states are constructed. These coherent states satisfy the properties which coherent states should generally have.

Yeon, Kyu-Hwang; Um, Chung-In; George, Thomas F.; Pandey, Lakshmi N.

1993-01-01

36

Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues  

Microsoft Academic Search

We find that several key endogenous protein structures give rise to intense second-harmonic generation (SHG)—nonabsorptive frequency doubling of an excitation laser line. Second-harmonic imaging microscopy (SHIM) on a laser-scanning system proves, therefore, to be a powerful and unique tool for high-resolution, high-contrast, three-dimensional studies of live cell and tissue architecture. Unlike fluorescence, SHG suffers no inherent photobleaching or toxicity and

Paul J. Campagnola; Andrew C. Millard; Mark Terasaki; Pamela E. Hoppe; Christian J. Malone; William A. Mohler

2002-01-01

37

Dot patterns from second-harmonic and sum-frequency generation in polycrystalline ZnSe  

Microsoft Academic Search

During a comparative study of second-harmonic generation (SHG) and sum-frequency generation (SFG) in single-crystal and polycrystalline ZnSe, the polycrystalline material showed a dot pattern in the SHG as well as in the SFG output. No such pattern was found in the output from the single-crystal ZnSe sample. The second-harmonic and also the sum-frequency dot pattern, resembling a diffraction pattern, could

Tran Duc Chinh; Wolfgang Seibt; Kai Siegbahn

2001-01-01

38

Multiple-frequency three-phase load flow for harmonic analysis  

Microsoft Academic Search

A multiple-frequency three-phase load-flow model was developed in this paper. There are two new submodels including the fundamental power flow (FPF) and harmonic frequency power-flow (HPF) model. In FPF, models of electrical elements and PV buses were treated in the form of current injections in a transmission system. The standard Fourier analysis was used to deal with the harmonic loads

Whei-Min Lin; Tung-Sheng Zhan; Ming-Tong Tsay

2004-01-01

39

Second-harmonic imaging of ferroelectric domain walls  

Microsoft Academic Search

Domain walls in periodically poled ferroelectric KTiOPO4 and LiNbO3 crystals are observed by making use of second-harmonic (SH) generation enhancement in the transition regions between neighboring domains. SH images of domain walls obtained with various samples for different polarization configurations are presented. The SH generation enhancement is found especially pronounced for the polarization of the SH radiation being perpendicular to

Sergey I. Bozhevolnyi; Jørn M. Hvam; Kjeld Pedersen; Fredrik Laurell; Kan; Torben Skettrup; Michele Belmonte

1998-01-01

40

Single pulse frequency compounding protocol for superharmonic imaging  

NASA Astrophysics Data System (ADS)

Second harmonic imaging is currently accepted as the standard in commercial echographic systems. A new imaging technique, coined as superharmonic imaging (SHI), combines the third till the fifth harmonics, arising during nonlinear sound propagation. It could further enhance the resolution and quality of echographic images. To meet the bandwidth requirement for SHI a dedicated phased array has been developed: a low frequency subarray, intended for transmission, interleaved with a high frequency subarray, used in reception. As the bandwidth of the elements is limited, the spectral gaps in between the harmonics cause multiple (ghost) reflection artifacts. A dual-pulse frequency compounding method aims at suppressing those artifacts at a price of a reduced frame rate. In this study we explore a possibility of performing frequency compounding within a single transmission. The traditional frequency compounding method suppresses the ripples by consecutively emitting two short Gaussian bursts with a slightly different center frequency. In the newly proposed method, the transmit aperture is divided into two parts: the first half is used to send a pulse at the lower center frequency, while the other half simultaneously transmits at a slightly higher center frequency. The suitability of the protocol for medical imaging applications in terms of the steering capabilities was performed in a simulation study with INCS and the hydrophone measurements. Moreover, an experimental study was carried out to find the optimal parameters for the clinical imaging protocol. The latter was subsequently used to obtain the images of a tissue mimicking phantom containing strongly reflecting wires. Additionally, the images of a human heart in the parasternal projection were acquired. The scanning aperture with the developed protocol amounts to approximately 90°, which is sufficient to capture the cardiac structures in the standard anatomical projections. The theoretically estimated and experimentally measured grating lobe levels are equal to -28.3 dB and -35.9 dB, respectively. A considerable improvement in the axial resolution of the SHI component (0.73 mm) at -6 dB in comparison with the third harmonic (2.23 mm) was observed. A similar comparison in terms of the lateral resolution slightly favored the superharmonic component by 0.2 mm. Additionally, the images of the tissue mimicking phantom exhibited the absence of the multiple reflection artifacts. The in-vivo acquisition allows one to clearly observe the dynamic of the mitral valve leaflets. The new method is equally effective in eliminating the ripple artifacts associated with SHI as the dual-pulse technique, while the full frame rate is maintained.

Danilouchkine, M. G.; van Neer, P. L. M. J.; Verweij, M. D.; Matte, G. M.; Vletter, W. B.; van der Steen, A. F. W.; de Jong, N.

2013-07-01

41

Single pulse frequency compounding protocol for superharmonic imaging.  

PubMed

Second harmonic imaging is currently accepted as the standard in commercial echographic systems. A new imaging technique, coined as superharmonic imaging (SHI), combines the third till the fifth harmonics, arising during nonlinear sound propagation. It could further enhance the resolution and quality of echographic images. To meet the bandwidth requirement for SHI a dedicated phased array has been developed: a low frequency subarray, intended for transmission, interleaved with a high frequency subarray, used in reception. As the bandwidth of the elements is limited, the spectral gaps in between the harmonics cause multiple (ghost) reflection artifacts. A dual-pulse frequency compounding method aims at suppressing those artifacts at a price of a reduced frame rate. In this study we explore a possibility of performing frequency compounding within a single transmission. The traditional frequency compounding method suppresses the ripples by consecutively emitting two short Gaussian bursts with a slightly different center frequency. In the newly proposed method, the transmit aperture is divided into two parts: the first half is used to send a pulse at the lower center frequency, while the other half simultaneously transmits at a slightly higher center frequency. The suitability of the protocol for medical imaging applications in terms of the steering capabilities was performed in a simulation study with INCS and the hydrophone measurements. Moreover, an experimental study was carried out to find the optimal parameters for the clinical imaging protocol. The latter was subsequently used to obtain the images of a tissue mimicking phantom containing strongly reflecting wires. Additionally, the images of a human heart in the parasternal projection were acquired. The scanning aperture with the developed protocol amounts to approximately 90°, which is sufficient to capture the cardiac structures in the standard anatomical projections. The theoretically estimated and experimentally measured grating lobe levels are equal to -28.3 dB and -35.9 dB, respectively. A considerable improvement in the axial resolution of the SHI component (0.73 mm) at -6 dB in comparison with the third harmonic (2.23 mm) was observed. A similar comparison in terms of the lateral resolution slightly favored the superharmonic component by 0.2 mm. Additionally, the images of the tissue mimicking phantom exhibited the absence of the multiple reflection artifacts. The in-vivo acquisition allows one to clearly observe the dynamic of the mitral valve leaflets. The new method is equally effective in eliminating the ripple artifacts associated with SHI as the dual-pulse technique, while the full frame rate is maintained. PMID:23787259

Danilouchkine, M G; van Neer, P L M J; Verweij, M D; Matte, G M; Vletter, W B; van der Steen, A F W; de Jong, N

2013-07-21

42

A new frequency domain arc furnace model for iterative harmonic analysis  

SciTech Connect

This paper presents a new frequency domain Arc Furnace model for Iterative Harmonic Analysis (IHA) by means of a Newton method. Powerful analytical expressions for harmonic currents and their derivatives are obtained under the balanced conditions of the system. The model offers a three phase configuration where there is no path for homopolar currents. Moreover, it contemplates continuous and discontinuous evolution of the arc current. The solution obtained is validated by means of time domain simulations. Finally, the model was integrated in a harmonic power flow where studies have been performed in a network with more than 700 busbars and 7 actual Arc Furnace Loads.

Mayordomo, J.G.; Beites, L.F.; Asensi, R.; Izzeddine, M. [Univ. Politecnica de Madrid (Spain). Escuela Tecnica Superior de Ingenieros Industriales] [Univ. Politecnica de Madrid (Spain). Escuela Tecnica Superior de Ingenieros Industriales; Zabala, L.; Amantegui, J. [Iberdrola S.A., Bilbao (Spain)] [Iberdrola S.A., Bilbao (Spain)

1997-10-01

43

Fluid simulations of frequency effects on nonlinear harmonics in inductively coupled plasma  

SciTech Connect

A fluid model is self-consistently established to investigate the harmonic effects in an inductively coupled plasma, where the electromagnetic field is solved by the finite difference time domain technique. The spatiotemporal distribution of harmonic current density, harmonic potential, and other plasma quantities, such as radio frequency power deposition, plasma density, and electron temperature, have been investigated. Distinct differences in current density have been observed when calculated with and without Lorentz force, which indicates that the nonlinear Lorentz force plays an important role in the harmonic effects, especially at low frequencies. Moreover, the even harmonics are larger than the odd harmonics both in the current density and the potential. Finally, the dependence of various plasma quantities with and without the Lorentz force on various driving frequencies is also examined. It is shown that the deposited power density decreases and the depth of penetration increases slightly because of the Lorentz force. The electron density increases distinctly while the electron temperature remains almost the same when the Lorentz force is taken into account.

Si Xuejiao; Xu Xiang; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Zhao Shuxia [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp (Belgium); Bogaerts, A. [Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp (Belgium)

2011-03-15

44

Effects of ion cyclotron harmonic damping on current drive in the lower hybrid frequency range  

SciTech Connect

We investigate the ion cyclotron harmonic damping effects on slow and fast waves in the lower hybrid frequency range for tokamak reactor parameters. Inclusion of the higher order terms in the hot plasma dielectric tensor introduces ion cyclotron harmonic damping; these terms also contribute to the real part of the dispersion relation and affect the wave trajectories. However, wave absorption by 15 keV deuterium and tritium ions can be avoided by choosing the slow wave frequency above the lower hybrid frequency and the fast wave frequency below the lower hybrid frequency. But preliminary estimates show that energetic alpha particles tend to absorb both the slow and the fast waves. This absorption may become a serious obstacle for fusion-reactor current drive in the lower hybrid frequency range.

Wong, K.L.; Ono, M.

1983-11-01

45

Variable Frequency Motor Drives: Harmonics, Power Factor, and Energy Efficiency  

E-print Network

Variable frequency motor drives (VFD's) have been on the market for many years. Early versions were unreliable and prone to failure. Relatively recent developments in Pulse-Width Modulated (PWM) waveform technology have improved VFD reliability...

Massey, G. W.

46

Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells.  

PubMed

Haemodynamic variations are inherent to blood vessel geometries (such as bifurcations) and correlate with regional development of inflammation and atherosclerosis. However, the complex frequency spectrum characteristics from these haemodynamics have never been exploited to test whether frequency variations are critical determinants of endothelial inflammatory phenotype. Here we utilize an experimental Fourier transform analysis to systematically manipulate individual frequency harmonics from human carotid shear stress waveforms applied in vitro to human endothelial cells. The frequency spectrum, specifically the 0 th and 1st harmonics, is a significant regulator of inflammation, including NF-?B activity and downstream inflammatory phenotype. Further, a harmonic-based regression-model predicts eccentric NF-?B activity observed in the human internal carotid artery. Finally, short interfering RNA-knockdown of the mechanosensor PECAM-1 reverses frequency-dependent regulation of NF-?B activity. Thus, PECAM-1 may have a critical role in the endothelium's exquisite sensitivity to complex shear stress frequency harmonics and provide a mechanism for the focal development of vascular inflammation. PMID:23443553

Feaver, Ryan E; Gelfand, Bradley D; Blackman, Brett R

2013-01-01

47

Research of second harmonic generation images based on texture analysis  

NASA Astrophysics Data System (ADS)

Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.

Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan

2014-09-01

48

Electron cyclotron harmonic resonances in high-frequency heating of the ionosphere  

SciTech Connect

Electron acceleration by upper hybrid waves under cyclotron harmonic resonance interaction is studied. Theory is formulated; the analytical solutions in the second and fourth harmonic cyclotron resonance cases are obtained, and in the third harmonic case, a first order differential equation governing the evolution of the electron energy is derived. The theory is applied for explaining the generation of artificial ionization layers observed in high-frequency (HF) ionospheric heating experiments. The upper hybrid waves are assumed to be excited parametrically by the O-mode HF heating wave. As the decay mode is the lower hybrid wave, the excited upper hybrid waves have wavelengths ranging from 0.25 to 0.5 m, which are short enough to effectively incorporate the finite Larmour radius effect for the harmonic cyclotron resonance interactions as well as have a frequency bandwidth of about 20 kHz, which provides an altitude region of about 10 km for continuous harmonic cyclotron resonance interaction between electrons and descending waves in the slightly inhomogeneous geomagnetic field. The numerical results on electron acceleration show that electron fluxes with energies larger than 14 eV are generated in the three harmonic cases. These energetic electrons cause impact ionizations, which are descending to form artificial ionization layers at the bottom of the ionospheric F region.

Kuo, Spencer P. [Polytechnic Institute of New York University, 6 MetroTech Center, Brooklyn, New York 11201 (United States)] [Polytechnic Institute of New York University, 6 MetroTech Center, Brooklyn, New York 11201 (United States)

2013-09-15

49

The energy level spacing for two harmonic oscillators with golden mean ratio of frequencies  

NASA Astrophysics Data System (ADS)

Berry and Tabor discussed, among other things, a beautiful problem about the energy level spacing distribution for a system of two harmonic oscillators. They gave some interesting theoretical arguments which show that there is no level clustering for generic harmonic oscillators, and various numerical experiments were exposed and discussed. But the main question they posed about the existence of the limit distribution of the level spacing remained open. The present paper discusses this question in the case when the ratio of the frequencies is the golden mean ?=(?5-1)/2. The approach enables one to study the generic case of the frequency ratio as well, which is done elsewhere.

Bleher, P. M.

1990-11-01

50

Cerebral Perfusion Imaging with Bolus Harmonic Imaging Christian Kiera, Daniel Totha, Karsten Meyer-Wietheb,  

E-print Network

- sion, cerebrovascular diagnostics, acute ischemic stroke. 1. INTRODUCTION Successful treatment of acute ischemic stroke depends on early and reliable diagnosis of areas with critically reduced brain tissueCerebral Perfusion Imaging with Bolus Harmonic Imaging Christian Kiera, Daniel Totha, Karsten Meyer

Lübeck, Universität zu

51

Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction  

NASA Technical Reports Server (NTRS)

A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

2012-01-01

52

In vivo localized harmonic motion imaging of VX2 tumors  

NASA Astrophysics Data System (ADS)

We evaluated the feasibility of localized harmonic motion (LHM) imaging for tumor detection in vivo. LHM was induced using a single-element focused ultrasound (FUS) transducer (80 mm focal, 100 mm diameter, 1.54 MHz) and a separate transducer (5 kHz PRF, 5 MHz) was used to track motion by cross-correlating RF signals. A scan was performed with the transducers assembly and LHM was induced 5 times per location. Images were formed averaging the calculated LHM amplitudes. Ten New Zealand rabbits had VX2 tumors implanted on their thighs. Tumors were located using Magnetic resonance images and LHM images were obtained. Eight out of ten tumors were visualized on LHM images as a region with lower amplitude (5.7±1.3?m in tumors and 19.5±5.8?m in muscle). All tumors had an elongated shape running along the muscle fibers. It was possible to detect tumors larger than 4mm in width (short axis of the tumor). We performed a FUS ablation of one tumor and the ablated region was detected as well on LHM images as a reduced LHM amplitude region.

Curiel, Laura; Hynynen, Kullervo

2012-10-01

53

Automated cardiac sarcomere analysis from second harmonic generation images.  

PubMed

Automatic quantification of cardiac muscle properties in tissue sections might provide important information related to different types of diseases. Second harmonic generation (SHG) imaging provides a stain-free microscopy approach to image cardiac fibers that, combined with our methodology of the automated measurement of the ultrastructure of muscle fibers, computes a reliable set of quantitative image features (sarcomere length, A-band length, thick-thin interaction length, and fiber orientation). We evaluated the performance of our methodology in computer-generated muscle fibers modeling some artifacts that are present during the image acquisition. Then, we also evaluated it by comparing it to manual measurements in SHG images from cardiac tissue of fetal and adult rabbits. The results showed a good performance of our methodology at high signal-to-noise ratio of 20 dB. We conclude that our automated measurements enable reliable characterization of cardiac fiber tissues to systematically study cardiac tissue in a wide range of conditions. PMID:24853145

Garcia-Canadilla, Patricia; Gonzalez-Tendero, Anna; Iruretagoyena, Igor; Crispi, Fatima; Torre, Iratxe; Amat-Roldan, Ivan; Bijnens, Bart H; Gratacos, Eduard

2014-05-01

54

Sum frequency and second harmonics generation of copper vapor laser by nonlinear crystals.  

National Technical Information Service (NTIS)

We have demonstrated sum frequency and second harmonic generation using green (510 nm) and yellow (578 nm) laser light of copper vapor lasers (CVL) by nonlinear crystals of KDP and BBO. The beam patterns of the converted UV laser light become stripe due t...

A. Sugiyama, A. Ohzu, M. Kato, Y. Maruyama

1996-01-01

55

Multi-frequency imaging in VLBI  

E-print Network

The new technique, multi-frequency imaging (MFI) is developed. In VLBI, Multi-Frequency Imaging (MFI) consists of multi-frequency synthesis (MFS) and multi-frequency analysis (MFA) of the VLBI data obtained from observations on various frequencies. A set of linear deconvolution MFI algorithms is described. The algorithms make it possible to obtain high quality images interpolated on any given frequency inside any given bandwidth, and to derive reliable estimates of spectral indexes for radio sources with continuum spectrum. Thus MFI approach makes it is possible not only to improve the quality and fidelity of the images and also essentially to derive the morphology of the observed radio sources.

S. Likhachev

2004-12-17

56

Imaging articular cartilage using second harmonic generation microscopy  

NASA Astrophysics Data System (ADS)

Sub cellular resolution images of equine articular cartilage have been obtained using both second harmonic generation microscopy (SHGM) and two-photon fluorescence microscopy (TPFM). The SHGM images clearly map the distribution of the collagen II fibers within the extracellular matrix while the TPFM images show the distribution of endogenous two-photon fluorophores in both the cells and the extracellular matrix, highlighting especially the pericellular matrix and bright 2-3?m diameter features within the cells. To investigate the source of TPF in the extracellular matrix experiments have been carried out to see if it may originate from the proteoglycans. Pure solutions of the following proteoglycans hyaluronan, chondroitin sulfate and aggrecan have been imaged, only the aggrecan produced any TPF and here the intensity was not great enough to account for the TPF in the extracellular matrix. Also cartilage samples were subjected to a process to remove proteoglycans and cellular components. After this process the TPF from the samples had decreased by a factor of two, with respect to the SHG intensity.

Mansfield, Jessica C.; Winlove, C. Peter; Knapp, Karen; Matcher, Stephen J.

2006-02-01

57

Far and near-field second-harmonic imaging of ferroelectric domain walls  

Microsoft Academic Search

Domain walls in periodically poled ferroelectric LiNbO3 crystals are observed with both far- and near-field imaging techniques that make use of second harmonic generation in the transition regions between neighbouring domains. Second harmonic images of domain walls represent bright lines of ?0.5 ?m in width (as measured with a near-field microscope) for the polarization of the second harmonic radiation perpendicular

Sergey I. Bozhevolnyi; Kjeld Pedersen; Torben Skettrup; Xiangsu Zhang; Michele Belmonte

1998-01-01

58

Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations  

NASA Astrophysics Data System (ADS)

The accuracy of the commonly used diffusion approximation as used in diffuse optical tomography is known to be limited in cases involving strong absorption and in these situations a higher ordered approximation is necessary. In this study, a light transport model has been developed based upon the three-dimensional frequency-domain simplified spherical harmonics (SPN) approximation for orders up to N = 7. The SPN data are tested against a semi-infinite multi-layered Monte Carlo model. It has been shown that the SPN approximation for higher orders (N >1) provides an increase in accuracy over the diffusion equation specifically near sources and at boundaries of regions with increased optical absorption. It is demonstrated that the error of fluence calculated near the sources between the diffusion approximation and the SPN model (N = 7) can be as large as 60%, therefore limiting the use of the diffusion approximation for small animal imaging and in situations where optical changes near sources are critical for tomographic reconstructions.

Chu, Michael; Vishwanath, Karthik; Klose, Alexander D.; Dehghani, Hamid

2009-04-01

59

Second harmonic generating (SHG) nanoprobes for in vivo imaging  

PubMed Central

Fluorescence microscopy has profoundly changed cell and molecular biology studies by permitting tagged gene products to be followed as they function and interact. The ability of a fluorescent dye to absorb and emit light of different wavelengths allows it to generate startling contrast that, in the best cases, can permit single molecule detection and tracking. However, in many experimental settings, fluorescent probes fall short of their potential due to dye bleaching, dye signal saturation, and tissue autofluorescence. Here, we demonstrate that second harmonic generating (SHG) nanoprobes can be used for in vivo imaging, circumventing many of the limitations of classical fluorescence probes. Under intense illumination, such as at the focus of a laser-scanning microscope, these SHG nanocrystals convert two photons into one photon of half the wavelength; thus, when imaged by conventional two-photon microscopy, SHG nanoprobes appear to generate a signal with an inverse Stokes shift like a fluorescent dye, but with a narrower emission. Unlike commonly used fluorescent probes, SHG nanoprobes neither bleach nor blink, and the signal they generate does not saturate with increasing illumination intensity. The resulting contrast and detectability of SHG nanoprobes provide unique advantages for molecular imaging of living cells and tissues. PMID:20668245

Pantazis, Periklis; Maloney, James; Wu, David; Fraser, Scott E.

2010-01-01

60

Cochlear implant melody recognition as a function of melody frequency range, harmonicity, and number of electrodes  

PubMed Central

Objective The primary goal of the present study was to determine how cochlear implant melody recognition was affected by the frequency range of the melodies, the harmonicity of these melodies, and the number of activated electrodes. The secondary goal was to investigate whether melody recognition and speech recognition were differentially affected by the limitations imposed by cochlear implant processing. Design Four experiments were conducted. In the first experiment, eleven cochlear implant users used their clinical processors to recognize melodies of complex harmonic tones with their fundamental frequencies being in the low (104-262 Hz), middle (207-523 Hz), and high (414-1046 Hz) ranges. In the second experiment, melody recognition with pure tones was compared to melody recognition with complex harmonic tones in 4 subjects. In the third experiment, melody recognition was measured as a function of the number of electrodes in 5 subjects. In the fourth experiment, vowel and consonant recognition were measured as a function of the number of electrodes in the same 5 subjects who participated in the third experiment. Results Frequency range significantly affected cochlear implant melody recognition with higher frequency ranges producing better performance. Pure tones produced significantly better performance than complex harmonic tones. Increasing the number of activated electrodes did not affect performance with low- and middle-frequency melodies, but produced better performance with high-frequency melodies. Large individual variability was observed for melody recognition but its source seemed to be different from the source of the large variability observed in speech recognition. Conclusion Contemporary cochlear implants do not adequately encode either temporal pitch or place pitch cues. Melody recognition and speech recognition require different signal processing strategies in future cochlear implants. PMID:19194298

Singh, Sonya; Kong, Ying-Yee; Zeng, Fan-Gang

2009-01-01

61

Second harmonic generation imaging microscopy of cellular structure and function  

NASA Astrophysics Data System (ADS)

Second harmonic generation (SHG) imaging microscopy is an important emerging technique for biological research, with many advantages over existing one- or two-photon fluorescence techniques. A non-linear phenomenon employing mode-locked Ti:sapphire or fiber-based lasers, SHG results in intrinsic optical sectioning without the need for a confocal aperture. Furthermore, as a second-order process SHG is confined to loci lacking a center of symmetry. Many important structural proteins such as collagen and cellulose show intrinsic SHG, thus providing access to sub-resolution information on symmetry. However, we are particularly interested here in "resonance-enhanced" SHG from styryl dyes. In general SHG is a combination of a true second-order process and a third-order process dependent on a static electric field, such that SHG from membrane-bound dyes depends on a cell's trans-membrane potential. With simultaneous patch-clamping and non-linear imaging of cells, we have found that SHG is a sensitive probe of trans-membrane potential with sensitivities that are up to four times better than those obtained under optimal conditions using one-photon fluorescence imaging. With the sensitivity of SHG to local electric fields from other sources such as the membrane dipole potential as well as the quadratic dependence of SHG on concentration, we have found that SHG imaging of styryl dyes is also a powerful technique for the investigation of lipid phases and rafts and for the visualization of the dynamics of membrane-vesicle fusion following fertilization of an ovum.

Millard, Andrew C.; Jin, Lei; Loew, Leslie M.

2005-03-01

62

A comparison of left ventricular mass between two-dimensional echocardiography, using fundamental and tissue harmonic imaging, and cardiac MRI in patients with hypertension  

Microsoft Academic Search

Purpose: To compare left ventricular mass (LVM) as measured by two-dimensional (2D) echocardiography using two different calculation methods: truncated ellipse (TE) and area length (AL), in both fundamental and tissue harmonic imaging frequencies, to LVM as measured by, the current gold standard, cardiac magnetic resonance imaging (MRI). Turbo gradient echo (TGE) pulse sequence was utilized for MRI. Materials and methods:

Khaled Alfakih; Tim Bloomer; Samantha Bainbridge; Gavin Bainbridge; John Ridgway; Gordon Williams; Mohan Sivananthan

2004-01-01

63

Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging  

Microsoft Academic Search

This article introduces a new image processing technique for rapid analysis of tagged cardiac magnetic resonance image sequences. The method uses isolated spectral peaks in SPAMM- tagged magnetic resonance images, which contain information about cardiac motion. The inverse Fourier transform of a spectral peak is a complex image whose calculated angle is called a harmonic phase (HARP) image. It is

Nael F. Osman; William S. Kerwin; Elliot R. McVeigh; Jerry L. Prince

1999-01-01

64

Frequency-resolved optical-gating measurements of ultrashort pulses using surface third-harmonic generation  

SciTech Connect

We demonstrate what is to our knowledge the first frequency-resolved optical gating (FROG) technique to measure ultrashort pulses from an unamplified Ti:sapphire laser oscillator without direction-of-time ambiguity. This technique utilizes surface third-harmonic generation as the nonlinear-optical effect and, surprisingly, is the most sensitive third-order FROG geometry yet. {copyright} {ital 1996 Optical Society of America.}

Tsang, T. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Krumbuegel, M.A.; DeLong, K.W.; Fittinghoff, D.N.; Trebino, R. [Combustion Research Facility, MS9057, Sandia National Laboratories, Livermore, California 94551-0969 (United States)

1996-09-01

65

Spectral compression and frequency tuning of femtosecond pulses by second harmonic generation  

Microsoft Academic Search

We propose and experimentally demonstrate a new, aberration-free method of pulse spectral compression, based on second harmonic generation. The technique is self-reference by the use of a nonlinear-spectronic reference pulse self-shaped in a single-mode fiber without gain. As compared with the traditional spectral compression, the proposed method is free of demand to separate the reference and signal radiation by frequency

T. Mansuryan; A. Zeytunyan; M. Kalashyan; G. Yesayan; L. Mouradian

2008-01-01

66

Automatic recognition of harmonic bird sounds using a frequency track extraction algorithm.  

PubMed

This paper demonstrates automatic recognition of vocalizations of four common bird species (herring gull [Larus argentatus], blue jay [Cyanocitta cristata], Canada goose [Branta canadensis], and American crow [Corvus brachyrhynchos]) using an algorithm that extracts frequency track sets using track properties of importance and harmonic correlation. The main result is that a complex harmonic vocalization is rendered into a set of related tracks that is easily applied to statistical models of the actual bird vocalizations. For each vocalization type, a statistical model of the vocalization was created by transforming the training set frequency tracks into feature vectors. The extraction algorithm extracts sets of frequency tracks from test recordings that closely approximate harmonic sounds in the file being processed. Each extracted set in its final form is then compared with the statistical models generated during the training phase using Mahalanobis distance functions. If it matches one of the models closely, the recognizer declares the set an occurrence of the corresponding vocalization. The method was evaluated against a test set containing vocalizations of both the 4 target species and 16 additional species as well as background noise containing planes, cars, and various natural sounds. PMID:19045673

Heller, Jason R; Pinezich, John D

2008-09-01

67

Second harmonic generation imaging and Fourier transform spectral analysis reveal damage in fatigue-loaded tendons.  

PubMed

Conventional histologic methods provide valuable information regarding the physical nature of damage in fatigue-loaded tendons, limited to thin, two-dimensional sections. We introduce an imaging method that characterizes tendon microstructure three-dimensionally and develop quantitative, spatial measures of damage formation within tendons. Rat patellar tendons were fatigue loaded in vivo to low, moderate, and high damage levels. Tendon microstructure was characterized using multiphoton microscopy by capturing second harmonic generation signals. Image stacks were analyzed using Fourier transform-derived computations to assess frequency-based properties of damage. Results showed 3D microstructure with progressively increased density and variety of damage patterns, characterized by kinked deformations at low, fiber dissociation at moderate, and fiber thinning and out-of-plane discontinuities at high damage levels. Image analysis generated radial distributions of power spectral gradients, establishing a "fingerprint" of tendon damage. Additionally, matrix damage was mapped using local, discretized orientation vectors. The frequency distribution of vector angles, a measure of damage content, differed from one damage level to the next. This study established an objective 3D imaging and analysis method for tendon microstructure, which characterizes directionality and anisotropy of the tendon microstructure and quantitative measures of damage that will advance investigations of the microstructural basis of degradation that precedes overuse injuries. PMID:20232150

Fung, David T; Sereysky, Jedd B; Basta-Pljakic, Jelena; Laudier, Damien M; Huq, Rumana; Jepsen, Karl J; Schaffler, Mitchell B; Flatow, Evan L

2010-05-01

68

Depth-resolved structural imaging by third-harmonic generation microscopy  

E-print Network

Depth-resolved structural imaging by third-harmonic generation microscopy Dan Oron,a,* Dvir Yelin microscopy is shown to be a robust method for obtaining structural information on a variety of biological surrounding homogeneous media. With an appropriate illumination geometry, third harmonic generation microscopy

Silberberg, Yaron

69

Probing nuclear motion by frequency modulation of molecular high-order harmonic generation.  

PubMed

Molecular high-order harmonic generation (MHOHG) in a non-Born-Oppenheimer treatment of H_{2}^{+}, D_{2}^{+}, is investigated by numerical simulations of the corresponding time-dependent Schro?dinger equations in full dimensions. As opposed to previous studies on amplitude modulation of intracycle dynamics in MHOHG, we demonstrate redshifts as frequency modulation (FM) of intercycle dynamics in MHOHG. The FM is induced by nuclear motion using intense laser pulses. Compared to fixed-nuclei approximations, the intensity of MHOHG is much higher due to the dependence of enhanced ionization on the internuclear distance. The width and symmetry of the spectrum of each harmonic in MHOHG encode rich information on the dissociation process of molecules at the rising and falling parts of the laser pulses, which can be used to retrieve the nuclear dynamics. Isotope effects are studied to confirm the FM mechanism. PMID:25415907

Bian, Xue-Bin; Bandrauk, André D

2014-11-01

70

Third and second harmonic generation imaging of human articular cartilage  

NASA Astrophysics Data System (ADS)

Cartilage matrix is damaged in diseased states such as osteoarthritis, while adult articular cartilage does not have the capacity to repair structural damage. A least invasive mean to diagnose these diseased states of human articular cartilage with a high spatial resolution is thus highly desired. In this paper, we present our harmonic generation microscopic studies on the human articular cartilage samples. Without any staining, third and second harmonic generation can provide strong contrast in chondrocytes and collagen matrix, respectively. Our study indicates the high capability of harmonic generation microscopy for future articular cartilage disease diagnosis.

Tsai, Ming-Rung; Chen, Chih-Hwa; Sun, Chi-Kuang

2009-02-01

71

Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance  

PubMed Central

The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

2012-01-01

72

Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance  

PubMed Central

The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:21243088

Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Barnes, Alexander B.; Griffin, Robert G.

2011-01-01

73

Extracting tidal frequencies using multivariate harmonic analysis of sea level height time series  

NASA Astrophysics Data System (ADS)

This contribution is seen as a first attempt to extract the tidal frequencies using a multivariate spectral analysis method applied to multiple time series of tide-gauge records. The existing methods are either physics-based in which the ephemeris of Moon, Sun and other planets are used, or are observation-based in which univariate analysis methods—Fourier and wavelet for instance—are applied to tidal observations. The existence of many long tide-gauge records around the world allows one to use tidal observations and extract the main tidal constituents for which efficient multivariate methods are to be developed. This contribution applies the multivariate least-squares harmonic estimation (LS-HE) to the tidal time series of the UK tide-gauge stations. The first 413 harmonics of the tidal constituents and their nonlinear components are provided using the multivariate LS-HE. A few observations of the research are highlighted: (1) the multivariate analysis takes information of multiple time series into account in an optimal least- squares sense, and thus the tidal frequencies have higher detection power compared to the univariate analysis. (2) Dominant tidal frequencies range from the long-term signals to the sixth-diurnal species interval. Higher frequencies have negligible effects. (3) The most important tidal constituents (the first 50 frequencies) ordered from their amplitudes range from 212 cm (M2) to 1 cm (OQ2) for the data set considered. There are signals in this list that are not available in the 145 main tidal frequencies of the literature. (4) Tide predictions using different lists of tidal frequencies on five different data sets around the world are compared. The prediction results using the first significant 50 constituents provided promising results on these locations of the world.

Amiri-Simkooei, A. R.; Zaminpardaz, S.; Sharifi, M. A.

2014-10-01

74

Enhanced efficiency of UV second harmonic and sum frequency generation from copper vapor lasers  

SciTech Connect

Enhanced efficiency for nonlinear second harmonic and sum frequency generation in {beta}-BBO from the two copper vapor laser (CVL) outputs (511 and 578 nm) is reported. Over 460 mW UV output at 255 nm (SHG of 511 nm) and 271 nm (SFG), and up to 300 mW at 289 nm (SHG of 578 nm) have been obtained with wall plug efficiencies up to 0.016% for a 16 W CVL with an {ital M} = 2.65 off-axis unstable cavity.

Coutts, D.W.; Ainsworth, M.D.; Piper, J.A. (Centre for Lasers and Applications, Macquarie University NSW 2109 (AU))

1990-09-01

75

Correlated ab initio harmonic frequencies and infrared intensities for furan, pyrrole, and thiophene  

SciTech Connect

Equilibrium geometries, harmonic vibrational frequencies, and infrared intensities are calculated analytically at the second-order Moeller-Plesset level (MP2) with a DZP basis for the five-membered heterocyclic aromatics furan, pyrrole, and thiophene. The results are of an accuracy to show up misassignments in the original experimental interpretation of the spectra. They also give confidence that ab initio calculations including electron correlation and using flexible basis sets can describe accurately the quadratic part of the potential energy surface. For such systems, these ab initio studies will aid the spectroscopic determination of force constants.

Simandiras, E.D.; Handy, N.C.; Amos, R.D.

1988-04-07

76

P0-1 High Resolution Fundamental and Harmonic Imaging Using a MEMS Fabricated Ultrasonic Transducer  

Microsoft Academic Search

Intravascular ultrasound (IVUS) imaging is increasingly employed to assist in selecting and evaluating therapeutic intervention. Recent work in IVUS backscatter analysis demonstrates the capability of IVUS to characterize specific lesions and identify plaques that lead to various clinical syndromes. Correct identification of plaque types depends on their structure, composition and sufficient image resolution (< 30 mum axially). Tissue harmonic imaging

Chaitanya Chandrana; Nikolay A. Kharin; Anuja Nair; Kendall R. Waters; D. Geoffrey Vince; B. Kuban; G. R. Lockwood; S. Roy; A. J. Fleischman

2007-01-01

77

In vivo structural imaging of the cornea by polarization-resolved second harmonic  

E-print Network

. To overcome this limitation, we performed polarization-resolved SHG imaging, which is highly sensitive incisions imaging with micrometer scale resolution full-field optical coherence tomography," J. Biomed. OptIn vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy Gaël

Paris-Sud XI, Université de

78

Conformation, orientation and interaction in molecular monolayers: A surface second harmonic and sum frequency generation study  

SciTech Connect

We have used sum frequency generation (SFG) to study the order in a silane monolayer before and after the deposition of a coadsorbed liquid crystal monolayer. We observe an increase in the order of the chain of the silane molecule induced by the interpenetration of the liquid crystal molecules. By using second harmonic generation (SHG) and SFG, we have studied the orientation and conformation of the liquid crystal molecule on clean and silane coated glass surfaces. On both surfaces, the biphenyl group is tilted by 70{degree} with the alkyl chain end pointing away from the surface. The shift in the C-H stretch frequencies in the coadsorbed system indicates a significant interaction between molecules. 9 refs., 3 figs.

Superfine, R.; Huang, J.Y.; Shen, Y.R.

1988-12-01

79

Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays  

Microsoft Academic Search

This report presents a fast-imaging technique that al- lows some fraction of signal data points to be acquired in parallel, rather than sequentially in time. Previously, several fast imaging schemes have been proposed using simultaneous data acquisition in multiple RF coils (8- 13). The technique described here, dubbed simultaneous acquisition of spatial harmonics (SMASH), reduces im- age acquisition times by

Daniel K. Sodickson; Warren J. Manning

1997-01-01

80

A new bound on excess frequency noise in second harmonic generation in PPKTP at the 10-19 level  

NASA Astrophysics Data System (ADS)

Several experiments at the forefront of precision metrology and frequency standards use optical harmonic generation in their experiments. These include iodine stabilized Nd:YAG lasers, optical frequency combs, measurement of optical frequency ratios, and precision atomic spectroscopy. We present an experimental bound on the relative frequency fluctuations introduced in the nonlinear second harmonic generation process using PPKTP to double a 1064nm Nd:YAG laser. We report a measured amplitude spectral density of frequency noise with total RMS frequency deviation of 3mHz and a minimum value of 20 ?Hz/Hz^1/2 over 250 seconds with a measurement bandwidth of 128 Hz, corresponding to an Allan deviation of 10-19 at 20 seconds.

Yeaton-Massey, David; Adhikari, Rana

2013-03-01

81

Enhanced Higher Harmonic Imaging of Heterogeneities and Local Plastic Deformation in Steel Plates  

NASA Astrophysics Data System (ADS)

Conventional ultrasonic imaging based on the difference in acoustic impedance fails to detect and visualize small heterogeneities and local plastic deformation in metals. Nonlinear ultrasonic imaging technique visualizes higher harmonic amplitudes which are generated at the heterogeneities by finite amplitude sinusoidal burst waves, therefore, it can be applied for detecting small non-metallic inclusions, local plastic deformation and micro cracks. By transmitting 35 MHz sine burst waves and receiving harmonics of 105 MHz in the maximum, non-metallic inclusions in stainless steel of some ten in size and crack tip plastic zone of 2 mm in diameter are visualized.

Kawashima, K.; Imanishi, R.; Aida, T.; Zhou, Y.

2014-06-01

82

Ultrahigh 22-nm resolution EUV coherent diffraction imaging using a tabletop 13-nm high harmonic source  

NASA Astrophysics Data System (ADS)

We implement coherent diffractive imaging (CDI) using a phase-matched high-harmonic generation (HHG) source at 13 nm, demonstrating reconstructed images with a record 22 nm resolution for any tabletop, light-based microscope. We also demonstrate the first reflection-mode CDI using a compact extreme ultraviolet (EUV) source, achieving ~100 nm resolution. A clear path towards even higher spatial resolution reflection-mode tabletop imaging using apertured-illumination schemes will be discussed.

Seaberg, Matthew D.; Adams, Daniel E.; Zhang, Bosheng; Gardner, Dennis F.; Murnane, Margaret M.; Kapteyn, Henry C.

2012-03-01

83

Integration of the denoising, inpainting and local harmonic Bz algorithm for MREIT imaging of intact animals  

NASA Astrophysics Data System (ADS)

Conductivity imaging based on the current-injection MRI technique has been developed in magnetic resonance electrical impedance tomography. Current injected through a pair of surface electrodes induces a magnetic flux density distribution inside an imaging object, which results in additional magnetic field inhomogeneity. We can extract phase changes related to the current injection and obtain an image of the induced magnetic flux density. Without rotating the object inside the bore, we can measure only one component Bz of the magnetic flux density B = (Bx, By, Bz). Based on a relation between the internal conductivity distribution and Bz data subject to multiple current injections, one may reconstruct cross-sectional conductivity images. As the image reconstruction algorithm, we have been using the harmonic Bz algorithm in numerous experimental studies. Performing conductivity imaging of intact animal and human subjects, we found technical difficulties that originated from the MR signal void phenomena in the local regions of bones, lungs and gas-filled tubular organs. Measured Bz data inside such a problematic region contain an excessive amount of noise that deteriorates the conductivity image quality. In order to alleviate this technical problem, we applied hybrid methods incorporating ramp-preserving denoising, harmonic inpainting with isotropic diffusion and ROI imaging using the local harmonic Bz algorithm. These methods allow us to produce conductivity images of intact animals with best achievable quality. We suggest guidelines to choose a hybrid method depending on the overall noise level and existence of distinct problematic regions of MR signal void.

Jeon, Kiwan; Kim, Hyung Joong; Lee, Chang-Ock; Seo, Jin Keun; Woo, Eung Je

2010-12-01

84

Harmonic analysis of irradiation asymmetry for cylindrical implosions driven by high-frequency rotating ion beams  

E-print Network

Cylindrical implosions driven by intense heavy ions beams should be instrumental in a near future to study High Energy Density Matter. By rotating the beam by means of a high frequency wobbler, it should be possible to deposit energy in the outer layers of a cylinder, compressing the material deposited in its core. The beam temporal profile should however generate an inevitable irradiation asymmetry likely to feed the Rayleigh-Taylor instability (RTI) during the implosion phase. In this paper, we compute the Fourier components of the target irradiation in order to make the junction with previous works on RTI performed in this setting. Implementing a 1D and 2D beam models, we find these components can be expressed exactly in terms of the Fourier transform of the temporal beam profile. If $T$ is the beam duration and $\\Omega$ its rotation frequency, "magic products" $\\Omega T$ can be identified which cancel the first harmonic of the deposited density, resulting in an improved irradiation symmetry.

Bret, Antoine; Tahir, Naeem

2012-01-01

85

Efficient procedure for the numerical calculation of harmonic vibrational frequencies based on internal coordinates  

SciTech Connect

We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson’s GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described with a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding number using double differentiation in Cartesian coordinates. For molecules of C1 symmetry the computational savings amount to 36! ? 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters are presented. In all cases the frequencies based on internal coordinates differ on average by < 1 cm-1 from those obtained from Cartesian coordinates.

Miliordos, Evangelos; Xantheas, Sotiris S.

2013-08-15

86

Frequency distribution of the nanoparticle magnetization in the presence of a static as well as a harmonic magnetic field  

PubMed Central

We explore the properties of the signal from magnetic nanoparticles. The nanoparticle signal has been used to generate images in magnetic particle imaging (MPI). MPI promises to be one of the most sensitive methods of imaging small numbers magnetic nanoparticles and therefore shows promise for molecular imaging. The nanoparticle signal is generated with a pure sinusoidal magnetic field that repeatedly saturates the nanoparticles creating harmonics in the induced magnetization that are easily isolated from the driving field. Signal from a selected position is isolated using a static magnetic field to completely saturate all of the particles outside a voxel enabling an image to be formed voxel by voxel. The signal produced by the magnetization of the nanoparticles contains only odd harmonics. However, it is demonstrated experimentally that with the addition of a static magnetic field bias even harmonics are introduced which increase the total signal significantly. Further, the distribution of signal among the harmonics depends on the static bias field so that information might be used to localize the nanoparticle distribution. Finally, the field required to completely saturate nanoparticles can be quite large and theory predicts that the field required is determined by the smallest nanoparticles in the sample. PMID:18561675

Weaver, John B.; Rauwerdink, Adam M.; Sullivan, Charles R.; Baker, Ian

2008-01-01

87

Real-Time Monitoring Of Regional Tissue Elasticity During FUS Focused Ultrasound Therapy Using Harmonic Motion Imaging  

NASA Astrophysics Data System (ADS)

The feasibility of the Harmonic Motion Imaging (HMI) technique for simultaneous monitoring and generation of focused ultrasound therapy using two separate focused ultrasound transducer elements has previously been shown. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force induced using a single focused ultrasound element. First, wave propagation simulation models were used to compare the use of a single Amplitude-Modulated (AM) focused beam versus two overlapping focused beams as previously implemented for HMI. Simulation results indicated that, unlike in the two-beam configuration, the AM beam produced a consistent, stable focus for the applied harmonic radiation force. The AM beam thus offered the unique advantage of sustaining the application of the spatially-invariant radiation force. Experiments were then performed on gelatin gel phantoms and tissue in vitro bovine liver. The radiation force was generated by a 4.68 MHz focused transducer using a low-frequency Amplitude-Modulated (AM) RF-signal. RF data were acquired at 7.5 MHz with a PRF of 6.5 kHz and displacements were estimated using a 1D cross-correlation algorithm on successive RF signals. Furthermore, taking advantage of the real-time capability of our method, the change in the elastic properties was monitored during focused ultrasound (FUS) ablation of tissue in vitro bovine liver. Based on the harmonic displacements, their temperature-dependence, and the calculated acoustic radiation force, the change in the relative, regional stiffness could be monitored during heating and ablation, both using the displacement amplitude and the resulting phase shift change of the displacement relative to the radiation force temporal profile. In conclusion, the feasibility of using an AM radiation force for HMI for simultaneous monitoring and treatment during ultrasound therapy was demonstrated in phantoms and tissues in vitro. Further study of this method will include, ex vivo and in vivo, stiffness and temperature.

Maleke, Caroline; Pernot, Mathieu; Konofagou, Elisa

2006-05-01

88

Bolus Harmonic Imaging zur automatischen Erkennung ischmiebedingter Perfusionsdefizite  

E-print Network

der Abstract ! Purpose: The diagnosis of ischemic stroke relies increasingly on the usage to analyze BHI image sequences automatically for the detection of ischemic brain tissue. Materials and Method by an unsupervised classification method in well-perfused and ischemic tissue by regarding the parametric images

Lübeck, Universität zu

89

Second harmonic generation imaging of fascia within thick tissue block  

NASA Astrophysics Data System (ADS)

Comparing the SHG image formation for thin sections of tail tendon fascia and skeletal muscle fascia, we demonstrate that the forward (F) and backward (B) SHG images are vastly different. In addition, despite the different arrangement of the collagen Type I fibrillar architecture forming these two fascias, their ratios of forward over backward signal (F/B) are nearly equal. SHG images of thick tissue blocks of the fascia-muscle unit show only backward features, as opposed to SHG images of tissue blocks of the fascia-tendon unit. These images are an amalgamation of forward and backward features due to the backscattering of forward components within tendon. These forward features disappear when this tissue block is immersed in glycerol as backscattering is hereby suppressed.

Pfeffer, Christian P.; Olsen, Bjorn R.; Légaré, François

2007-06-01

90

Contrast-enhanced harmonic endoscopic ultrasound imaging: Basic principles, present situation and future perspectives  

PubMed Central

Over the last decade, the development of stabilised microbubble contrast agents and improvements in available ultrasonic equipment, such as harmonic imaging, have enabled us to display microbubble enhancements on a greyscale with optimal contrast and spatial resolution. Recent technological advances made contrast harmonic technology available for endoscopic ultrasound (EUS) for the first time in 2008. Thus, the evaluation of microcirculation is now feasible with EUS, prompting the evolution of contrast-enhanced EUS from vascular imaging to images of the perfused tissue. Although the relevant experience is still preliminary, several reports have highlighted contrast-enhanced harmonic EUS (CH-EUS) as a promising noninvasive method to visualise and characterise lesions and to differentiate benign from malignant focal lesions. Even if histology remains the gold standard, the combination of CH-EUS and EUS fine needle aspiration (EUS-FNA) can not only render EUS more accurate but may also assist physicians in making decisions when EUS-FNA is inconclusive, increasing the yield of EUS-FNA by guiding the puncture with simultaneous imaging of the vascularity. The development of CH-EUS has also opened up exciting possibilities in other research areas, including monitoring responses to anticancer chemotherapy or to ethanol-induced pancreatic tissue ablation, anticancer therapies based on ultrasound-triggered drug and gene delivery, and therapeutic adjuvants by contrast ultrasound-induced apoptosis. Contrast harmonic imaging is gaining popularity because of its efficacy, simplicity and non-invasive nature, and many expectations are currently resting on this technique. If its potential is confirmed in the near future, contrast harmonic imaging will become a standard practice in EUS.

Alvarez-Sanchez, Maria-Victoria; Napoleon, Bertrand

2014-01-01

91

Temporal Coherence Effects on Coherent Diffractive Imaging of a Binary Sample by a High Harmonic Source  

NASA Astrophysics Data System (ADS)

Coherent Diffractive Imaging (CDI) is performed with single and multiple harmonics from an ultrafast HHG source. The effect of HHG source bandwidth on the effectiveness of the reconstruction algorithms is compared. A low quality reconstruction from broadband data is achieved assuming full coherence in the algorithm.

Parsons, A. D.; Chapman, R. T.; Mills, B.; Bajt, S.; Frey, J. G.; Brocklesby, W. S.

2013-03-01

92

Third harmonic order imaging as a focal spot diagnostic for high intensity laser-solid interactions  

E-print Network

for near solid density interactions (plasma density scale length ,llaser, the laser wavelengthThird harmonic order imaging as a focal spot diagnostic for high intensity laser-solid interactions performance is laser spot size on a solid target during an intense interaction in the tight focus regime (,10

Strathclyde, University of

93

Pulse-modulated second harmonic imaging microscope quantitatively demonstrates marked increase of collagen in tumor after chemotherapy  

E-print Network

Pulse-modulated second harmonic imaging microscopes (PM-SHIMs) exhibit improved signal-to-noise ratio (SNR) over conventional SHIMs on sensitive imaging and quantification of weak collagen signals inside tissues. We quantify ...

Raja, Anju M.

94

High-resolution imaging of a corneal incision by second- and third-harmonic generation microscopy  

NASA Astrophysics Data System (ADS)

We demonstrate high spatial resolution imaging of a stromal cut in the ex-vivo pig cornea, using second- and third-harmonic generation microscopy. From these images, we see in detail how the cut affects the corneal layers. In the beginning of the cut, the anterior layers, in which the blade is passing through, are disorganized, which could explain the shadows observed on the images. In the stroma, the cut can be imaged by third harmonic microscopy, probably due to the ?3 contrast. Although the current results were obtained from the healthy ex-vivo cornea, it already allows one to understand the effects of the cut on the tissue characteristics (such as scattering).

Jay, L.; Dion, C.; Brocas, A.; Singh, K.; Kieffer, J.-C.; Brunette, I.; Ozaki, T.

2010-02-01

95

Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues.  

PubMed Central

We find that several key endogenous protein structures give rise to intense second-harmonic generation (SHG)-nonabsorptive frequency doubling of an excitation laser line. Second-harmonic imaging microscopy (SHIM) on a laser-scanning system proves, therefore, to be a powerful and unique tool for high-resolution, high-contrast, three-dimensional studies of live cell and tissue architecture. Unlike fluorescence, SHG suffers no inherent photobleaching or toxicity and does not require exogenous labels. Unlike polarization microscopy, SHIM provides intrinsic confocality and deep sectioning in complex tissues. In this study, we demonstrate the clarity of SHIM optical sectioning within unfixed, unstained thick specimens. SHIM and two-photon excited fluorescence (TPEF) were combined in a dual-mode nonlinear microscopy to elucidate the molecular sources of SHG in live cells and tissues. SHG arose not only from coiled-coil complexes within connective tissues and muscle thick filaments, but also from microtubule arrays within interphase and mitotic cells. Both polarization dependence and a local symmetry cancellation effect of SHG allowed the signal from species generating the second harmonic to be decoded, by ratiometric correlation with TPEF, to yield information on local structure below optical resolution. The physical origin of SHG within these tissues is addressed and is attributed to the laser interaction with dipolar protein structures that is enhanced by the intrinsic chirality of the protein helices. PMID:11751336

Campagnola, Paul J; Millard, Andrew C; Terasaki, Mark; Hoppe, Pamela E; Malone, Christian J; Mohler, William A

2002-01-01

96

Frequency domain analysis of knock images  

NASA Astrophysics Data System (ADS)

High speed imaging-based knock analysis has mainly focused on time domain information, e.g. the spark triggered flame speed, the time when end gas auto-ignition occurs and the end gas flame speed after auto-ignition. This study presents a frequency domain analysis on the knock images recorded using a high speed camera with direct photography in a rapid compression machine (RCM). To clearly visualize the pressure wave oscillation in the combustion chamber, the images were high-pass-filtered to extract the luminosity oscillation. The luminosity spectrum was then obtained by applying fast Fourier transform (FFT) to three basic colour components (red, green and blue) of the high-pass-filtered images. Compared to the pressure spectrum, the luminosity spectra better identify the resonant modes of pressure wave oscillation. More importantly, the resonant mode shapes can be clearly visualized by reconstructing the images based on the amplitudes of luminosity spectra at the corresponding resonant frequencies, which agree well with the analytical solutions for mode shapes of gas vibration in a cylindrical cavity.

Qi, Yunliang; He, Xin; Wang, Zhi; Wang, Jianxin

2014-12-01

97

Temporal frequency analysis for improved dynamic imaging  

NASA Astrophysics Data System (ADS)

Dynamic magnetic resonance imaging (MRI) involves acquiring a time series of images to resolve the variations experienced by the imaged object. These dynamic studies include cardiac imaging, functional MRI (fMRI), time-resolved angiography, and contrast agent uptake studies. When dynamic objects are imaged, an ideal approach would be completely filling the k-t space, such that the desired spatial information can be provided at any moment in time. However, usually the imaging speed is too slow to catch all this information. In this dissertation, temporal frequency spectra of both the k-space and the image space have been used to evaluate and develop dynamic sampling and reconstruction strategies. A temporal frequency power spectrum of the k-space data has been used to predict the minimum error of the dynamic imaging for the different sampling strategies. Furthermore, the temporal frequency power spectrum of the k-space data provides the possibility of predicting the locations in k-space where the dynamic changes will occur. Using this information, the most effective sampling strategy can be determined. Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD) applies a low-pass filter in the temporal frequency spectrum of the image space to resolve the aliased and nonaliased pixels because of undersampling. However, low-pass filter resolution of the nonaliased images fails if there is overlap between the spatially aliased temporal spectra. A subtraction method has been used to remove the static portion of the image. The aliased and nonaliased dynamic portions are then resolved by comparing the temporal energy of bands in the power spectrum. MR angiography has benefited from use of a contrast agent since 1992, such as increased signal-to-noise ratio (SNR) and reduced flow-related artifacts. However, there is a trade-off between spatial resolution and acquisition speed. We describe a strategy for combining SENSE with various time-resolved sampling strategies during the phase when the injected contrast bolus passes through the arteries, thereby enabling the acquisition of a time series of high temporal resolution images. To improve the spatial resolution, high spatial frequencies are then acquired during the venous phase and combined with the previous time-resolved measurements. Arteries and veins can be separated by temporal correlation analysis, which calculates the correlation between a measured arterial or venous reference time curve and the local signal time course to highlight image locations with a time curve similar to the reference function. However, in the cases when the arterial and venous curves are too close in time and similar in shape, the correlation cannot completely separate the artery and vein. For better separation of arteries and veins, temporal correlation analysis was applied to the prewhitened time course with amplified differences between the arterial and venous time curves to obtain clearer masks of arteries and veins.

Wu, Yijing

98

Long-term imaging of mouse embryos using adaptive harmonic generation microscopy  

PubMed Central

We present a detailed description of an adaptive harmonic generation (HG) microscope and culture techniques that permit long-term, three-dimensional imaging of mouse embryos. HG signal from both pre- and postimplantation stage (0.5–5.5 day-old) mouse embryos are fully characterized. The second HG images reveal central spindles during cytokinesis whereas third HG images show several features, such as lipid droplets, nucleoli, and plasma membranes. The embryos are found to develop normally during one-day-long discontinuous HG imaging, permitting the observation of several dynamic events, such as morula compaction and blastocyst formation. PMID:21529087

Thayil, Anisha; Watanabe, Tomoko; Jesacher, Alexander; Wilson, Tony; Srinivas, Shankar; Booth, Martin

2012-01-01

99

Graphics processing unit-based quantitative second-harmonic generation imaging.  

PubMed

We adapt a graphics processing unit (GPU) to dynamic quantitative second-harmonic generation imaging. We demonstrate the temporal advantage of the GPU-based approach by computing the number of frames analyzed per second from SHG image videos showing varying fiber orientations. In comparison to our previously reported CPU-based approach, our GPU-based image analysis results in ?10× improvement in computational time. This work can be adapted to other quantitative, nonlinear imaging techniques and provides a significant step toward obtaining quantitative information from fast in vivo biological processes. PMID:25223706

Kabir, Mohammad Mahfuzul; Jonayat, A S M; Patel, Sanjay; Toussaint, Kimani C

2014-09-01

100

Sum frequency and second harmonic generation from the surface of a liquid microjet  

NASA Astrophysics Data System (ADS)

The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.

Smolentsev, Nikolay; Chen, Yixing; Jena, Kailash C.; Brown, Matthew A.; Roke, Sylvie

2014-11-01

101

The effect of Neel relaxation on the properties of the third harmonic signal of magnetic nanoparticles for use in narrow-band magnetic nanoparticle imaging  

NASA Astrophysics Data System (ADS)

We study the third harmonic signal of magnetic nanoparticles (MNPs) for use in narrow-band magnetic nanoparticle imaging. We measured the properties of the third harmonic signal, such as frequency and magnetic field dependencies, when the behavior of MNPs was dominated by Neel relaxation. It was shown that the third harmonic signal had both real and imaginary parts, although only the real part is expected from the conventional Langevin function. The real and imaginary parts exhibited different dependences on the frequency and magnetic field. The dynamic behavior of MNPs was analyzed by taking into account the Neel relaxation of MNPs. It was shown that the imaginary part was generated due to Neel relaxation. We obtain an analytical expression for the third harmonic signal, in which distributions of magnetic moment and anisotropic energy of MNPs in the sample were also considered. We show that the analytical results quantitatively explain the experimental results. Our results indicate that the properties of the third harmonic signal of immobilized MNPs are significantly affected by Neel relaxation.

Enpuku, Keiji; Bai, Shi; Hirokawa, Aiki; Tanabe, Kazuhiro; Sasayama, Teruyoshi; Yoshida, Takashi

2014-10-01

102

Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy  

PubMed Central

We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

Carriles, Ramon; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

2009-01-01

103

Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy.  

PubMed

We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

Carriles, Ramón; Schafer, Dawn N; Sheetz, Kraig E; Field, Jeffrey J; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W; Squier, Jeffrey A

2009-08-01

104

UHF Radar observations at HAARP with HF pump frequencies near electron gyro-harmonics and associated ionospheric effects  

NASA Astrophysics Data System (ADS)

Results for HF modification experiments at the HAARP facility in Alaska are presented for experiments with the HF pump frequency near third and fourth electron gyro-harmonics. A UHF diagnostic radar with range resolution of 600 m was used to determine time-dependent altitudes of scattering from plasma turbulence during heating experiments. Experiments were conducted with multiple HF frequencies stepped by 20 kHz above and below the gyro-harmonic values. During times of HF heating the HAARP facility has sufficient power to enhance large-scale ionospheric densities in the lower ionosphere (about 150-200 km altitude) and also in the topside ionosphere (above about 350 km). In the lower ionosphere, time-dependent decreases of the altitude of radar scatter result from electron density enhancements. The effects are substantially different even for relatively small frequency steps of 20 kHz. In all cases the time-varying altitude decrease of radar scatter stops about 5-10 km below the gyro-harmonic altitude that is frequency dependent; we infer that electron density enhancements stop at this altitude where the radar signals stop decreasing with altitude. Experiments with corresponding total electron content (TEC) data show that for HF interaction altitudes above about 170 km there is substantial topside electron density increases due to upward electron thermal conduction. For lower altitudes of HF interaction the majority of the thermal energy is transferred to the neutral gas and no significant topside density increases are observed. By selecting an appropriate HF frequency a little greater than the gyro-harmonic value we have demonstrated that the ionospheric response to HF heating is a self-oscillating mode where the HF interaction altitude moves up and down with a period of several minutes. If the interaction region is above about 170 km this also produces a continuously enhanced topside electron density and upward plasma flux. Experiments using an FM scan with the HF frequency increasing near the gyro-harmonic value were conducted. The FM scan rate was sufficiently slow that the electron density was approximately in an equilibrium state. For these experiments the altitude of the HF interaction follows a near straight line downward parallel to the altitude-dependent gyro-harmonic level.

Watkins, Brenton; Fallen, Christopher; Secan, James

105

Spectral imaging of breast fibroadenoma using second-harmonic generation  

NASA Astrophysics Data System (ADS)

Fibroadenoma (FA), typically composed of stroma and epithelial cells, is a very common benign breast disease. Women with FA are associated with an increased risk of future breast cancer. The objective of this study was to demonstrate the potential of multiphoton laser scanning microscopy (MPLSM) for characterizing the morphology of collagen in the human breast fibroadenomas. In the study, high-contrast SHG images of human normal breast tissues and fibroadenoma tissues were obtained for comparison. The morphology of collagen was different between normal breast tissue and fibroadenoma. This study shows that MPLSM has the ability to distinguish fibroadenoma tissues from the normal breast tissues based on the noninvasive SHG imaging. With the advent of the clinical portability of miniature MPLSM, we believe that the technique has great potential to be used in vivo studies and for monitoring the treatment responses of fibroadenomas in clinical.

Zheng, Liqin; Wang, Yuhua

2014-09-01

106

Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy  

NASA Astrophysics Data System (ADS)

We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei

2014-09-01

107

A Multivariate, Multitaper Approach to Detecting and Estimating Harmonic Response in Cortical Optical Imaging Data  

PubMed Central

The efficiency and accuracy of cortical maps from optical imaging experiments have been improved using periodic stimulation protocols. The resulting data analysis requires the detection and estimation of periodic information in a multivariate dataset. To date, these analyses have relied on discrete Fourier transform (DFT) sinusoid estimates. Multitaper methods have become common statistical tools in the analysis of univariate time series that can give improved estimates. Here, we extend univariate multitaper harmonic analysis methods to the multivariate, imaging context. Given the hypothesis that a coherent oscillation across many pixels exists within a specified bandwidth, we investigate the problem of its detection and estimation in noisy data by constructing Hotelling’s generalized T2-test. We then extend the investigation of this problem in two contexts, that of standard Canonical Variate Analysis (CVA) and that of Generalized Indicator Function Analysis (GIFA) which is often more robust in extracting a signal in spatially correlated noise. We provide detailed information on the fidelities of the mean estimates found with our methods and comparison with DFT estimates. Our results indicate that GIFA provides particularly good estimates of harmonic signals in spatially correlated noise and is useful for detecting small amplitude harmonic signals in applications such as biological imaging measurements where spatially correlated noise is common. We demonstrate the power of our methods with an optical imaging dataset of the periodic response to a periodically rotating oriented drifting grating stimulus experiment in cat visual cortex. PMID:21970814

Sornborger, A.T.; Yokoo, T.

2011-01-01

108

Single Image Frequency Measurements Of Camera Lenses  

NASA Astrophysics Data System (ADS)

Image characteristics of 35mm still camera lenses have been measured at the Laboratory of Modern Photography Magazine for more than fifteen years. In an attempt to speed up measurements and quantitative evaluations, a single image frequency was selected for those measurements on a photoelectric contrast-transfer optical bench. Comparisons were made of MTF curves obtained for a group of lenses, and comparisons were also made of subjectively judged photographic color transparencies and enlarged prints of black-and-white negatives taken with these lenses. When the MTFs and the relative rankings were correlated, it was found that an image frequency of 30 lines (or cycles) per millimeter yields good comparative judgements and good discrimination among the lenses tested. Similar correlations were tried for MTF values at 15 and 45 lines per mm. It was observed that better correlation is obtained when picture rankings and measured contrast at 30 lines per mm are used. When combined with resolving power obtained from measurements of fine-grained black-and-white negative film, a consistent and repeatable relative evaluation is achieved.

Sherman, Bennett

1980-09-01

109

Frequency-resolved optical gating with the use of second-harmonic generation  

SciTech Connect

We discuss the use of second-harmonic generation (SHG) as the nonlinearity in the technique of frequency-resolved optical gating (FROG) for measuring the full intensity and phase evolution of an arbitrary ultrashort pulse. FROG that uses a third-order nonlinearity in the polarization-gate geometry has proved extremely successful, and the algorithm required for extraction of the intensity and the phase from the experimental data is quite robust. However, for pulse intensities less than [similar to] 1 MW, third-order nonlinearities generate insufficient signal strength, and therefore SHG FROG appears necessary. We discuss the theoretical, algorithmic, and experimental considerations of SHG FROG in detail. SHG FROG has an ambiguity in the direction of time, and its traces are somewhat unintuitive. Also, previously published algorithms are generally ineffective at extracting the intensity and the phase of an arbitrary laser pulse from the SHG FROG trace. We present an improved pulse-retrieval algorithm, based on the method of generalized projections, that is far superior to the previously published algorithms, although it is still not so robust as the polarization-gate algorithm. We discuss experimental sources of error such as pump depletion and group-velocity mismatch. We also present several experimental examples of pulses measured with SHG FROG and show that the derived intensities and phases are in agreement with more conventional diagnostic techniques, and we demonstrate the high-dynamic-range capability of SHG FROG. We conclude that, despite the above drawbacks, SHG FROG should be useful in measuring low-energy pulses.

DeLong, K.W.; Trebino, R. (Combustion Research Facility, MS-9057, Sandia National Laboratories, Livermore, California 94551-0969 (United States)); Hunter, J.; White, W.E. (Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

1994-11-01

110

Fundamental and Harmonic-Frequency Circuit-Model Analysis of Lnterdigital Transducers with Arbitralry Metallization Ratios and Polarity Sequences  

Microsoft Academic Search

A three-port circuit model is developed that describes the operation of interdigital transducers with arbitrary metallization ratios and electrode-polarity sequences at fundamental and higher harmonic frequencies. The electric fields that excite surface acoustic waves are found on an electrode-by-electrode basis using the approximation that the local electric fields are not influenced by electrodes more distant than the next-nearest neighbors. The

W. RICHARD SMITH; WILLIAM F. PEDLER

1975-01-01

111

Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes.  

PubMed

The second harmonic generation (SHG) active nanocrystals have been demonstrated as attractive imaging probes in nonlinear microscopy due to their coherent, non-bleaching and non-blinking signals with a broad flexibility in the choice of excitation wavelength. For the use of these nanocrystals as biomarkers, it is essential to prepare a chemical interface for specific labeling. We developed a specific labeling scheme for barium titanate (BaTiO3) nanocrystals which we use as second harmonic radiation imaging probes. The specificity was achieved by covalently coupling antibodies onto the nanocrystals. We demonstrate highly specific labeling of the nanocrystal conjugates in an antibody microarray and also the membrane proteins of live biological cells in vitro. The development of surface functionalization and bioconjugation of SHG active nanocrystals provides the opportunities of applying them to biological studies. PMID:20004017

Hsieh, Chia-Lung; Grange, Rachel; Pu, Ye; Psaltis, Demetri

2010-03-01

112

Second Harmonic Imaging In Acute Middle Cerebral Artery Infarction Preliminary Results  

Microsoft Academic Search

Background—Second harmonic imaging (SHI) is a new ultrasound technique that is able to detect microbubbles in the tissue vascular space. The aim of this pilot study was to prove that this technique may detect focal abnormalities of cerebral echo-contrast enhancement in acute hemispheric stroke. Case Descriptions—Two male patients (aged 72 and 64 years) were included who presented with acute onset

Thomas Postert; Jens Federlein; Sepp Weber; Horst Przuntek; Thomas Buttner

113

Contribution of third-harmonic and negative frequency polarization fields to self-phase modulation in nonlinear media  

E-print Network

We study the influence of third-harmonic generation (THG) and negative frequency polarization terms in the self-phase modulation (SPM) of short and intense pulses in Kerr media. We find that THG induces additional symmetric lobes in the SPM process. The amplitude of these new sidebands are greatly enhanced by the contributions of the negative frequency Kerr (NFK) term and the shock operator. We compare our theoretical predictions based on the analytical nonlinear phase with simulations carried out by using the full unidirectional pulse propagation equation (UPPE).

Loures, Cristian Redondo; Biancalana, Fabio

2014-01-01

114

Efficient 2(nd) and 4(th) harmonic generation of a single-frequency, continuous-wave fiber amplifier.  

PubMed

We demonstrate efficient cavity-enhanced second and fourth harmonic generation of an air-cooled, continuous-wave (cw), single-frequency 1064 nm fiber-amplifier system. The second harmonic generator achieves up to 88% total external conversion efficiency, generating more than 20-W power at 532 nm wavelength in a diffraction-limited beam (M(2) < 1.05). The nonlinear medium is a critically phase-matched, 20-mm long, anti-reflection (AR) coated LBO crystal operated at 25 degrees C. The fourth harmonic generator is based on an AR-coated, Czochralski-grown beta-BaB(2)O(4) (BBO) crystal optimized for low loss and high damage threshold. Up to 12.2 W of 266-nm deep-UV (DUV) output is obtained using a 6-mm long critically phase-matched BBO operated at 40 degrees C. This power level is more than two times higher than previously reported for cw 266-nm generation. The total external conversion efficiency from the fundamental at 1064 nm to the fourth harmonic at 266 nm is >50%. PMID:18542230

Sudmeyer, Thomas; Imai, Yutaka; Masuda, Hisashi; Eguchi, Naoya; Saito, Masaki; Kubota, Shigeo

2008-02-01

115

Modeling of large aperture third harmonic frequency conversion of high power Nd:glass laser systems  

SciTech Connect

To provide high-energy, high-power beams at short wavelengths for inertial-confinement-fusion experiments, we routinely convert the 1.053-{mu}m output of the Nova, Nd:phosphate-glass, laser system to its third-harmonic wavelength. We describe performance and conversion efficiency modeling of the 3 {times} 3 arrays potassium-dihydrogen-phosphate crystal plates used for type II/type II phase-matched harmonic conversion of Nova 0.74-m diameter beams, and an alternate type I/type II phase-matching configuration that improves the third-harmonic conversion efficiency. These arrays provide energy conversion of up to 65% and intensity conversion to 70%. 19 refs., 11 figs.

Henesian, M.A.; Wegner, P.J.; Speck, D.R.; Bibeau, C.; Ehrlich, R.B.; Laumann, C.W.; Lawson, J.K.; Weiland, T.L.

1991-03-13

116

Image enhancement by non-linear extrapolation in frequency space  

NASA Technical Reports Server (NTRS)

An input image is enhanced to include spatial frequency components having frequencies higher than those in an input image. To this end, an edge map is generated from the input image using a high band pass filtering technique. An enhancing map is subsequently generated from the edge map, with the enhanced map having spatial frequencies exceeding an initial maximum spatial frequency of the input image. The enhanced map is generated by applying a non-linear operator to the edge map in a manner which preserves the phase transitions of the edges of the input image. The enhanced map is added to the input image to achieve a resulting image having spatial frequencies greater than those in the input image. Simplicity of computations and ease of implementation allow for image sharpening after enlargement and for real-time applications such as videophones, advanced definition television, zooming, and restoration of old motion pictures.

Anderson, Charles H. (Inventor); Greenspan, Hayit K. (Inventor)

1998-01-01

117

Spike-Mode Oscillation of a Single Frequency, Neodymium: YAG Ring Laser with Intracavity Second Harmonic Generation  

NASA Astrophysics Data System (ADS)

Spike-mode oscillation of a single-frequency, internally-doubled Nd:YAG laser under conditions of square -wave pump modulation is a potentially interesting technique for increasing the average harmonic conversion efficiency. To investigate this mode of operation, we have designed and built a unidirectional, Nd:YAG ring laser prototype which is capable of single-longitudinal mode oscillation at pump powers which are substantially above threshold. Initial study of this laser with diode-laser-array pumping yielded a maximum continuous-wave (cw) 1064-nm output power of 72 mW at an optical conversion efficiency exceeding 14%. Intracavity second harmonic generation was studied by inserting a crystal of potassium titanyl phosphate (KTP) inside the resonator and replacing the infrared output coupler with a mirror which was highly reflecting at 1064 nm and had high transmission at the 532-nm second harmonic. A maximum cw harmonic output power of 12 mW was observed from the laser at a pump power of 473 mW. Spike-mode oscillation could be achieved in the intracavity-doubled laser through square wave current modulation of the diode laser pump. Under optimal conditions, the average harmonic conversion efficiency was increased by over 100% under spiked conditions. Spike-mode oscillation with significant intracavity nonlinear coupling was observed to differ substantially from that of laser without the nonlinear crystal. The power-dependent harmonic output coupling had the effect of damping out relaxation oscillations and substantially limiting the peak spiked power. It was also observed to increase the amplitude and temporal stability of the spike pulse train and significantly increase the frequency range over which spiked oscillation would occur. A set of coupled rate equations relating the single -mode intracavity field to the gain in the laser medium was used to model the spike-mode oscillations of the intracavity -doubled ring. Numerical methods were used to obtain solutions corresponding to experimentally measured output parameters. Excellent agreement between theory and experiment was obtained, indicating that computer simulations based on this model can be used to further optimize the laser design for specific applications.

Dixon, George Jefferies

118

Modulation Extension Control for Multilevel Converters Using Triplen Harmonic Injection with Low Switching Frequency  

E-print Network

-based PWM methods to help to optimize or balance the switch utilization in multilevel inverters [12, 13Modulation Extension Control for Multilevel Converters Using Triplen Harmonic Injection with Low@utk.edu Abstract--This paper presents a modulation extension control method for multilevel converters with low

Tolbert, Leon M.

119

Harmonic wave analysis of conductor corona current based on wide frequency band measurement  

Microsoft Academic Search

Corona current is one of important corona characteristic research contents. In order to analyze conductor corona current harmonic wave characteristic, a corona current measurement system is developed. The synchronous collect of the voltage and current signal is realized by the GPS technology. The corona current signal is transmitted to the lower computer through the wireless network. And the current signal

Fangcheng Lu; Shaohua You; Yunpeng Liu; Lei Zhu

2011-01-01

120

Membrane potential dynamics of axons in cultured hippocampal neurons probed by second-harmonic-generation imaging  

NASA Astrophysics Data System (ADS)

The electrical properties of axons critically influence the nature of communication between neurons. However, due to their small size, direct measurement of membrane potential dynamics in intact and complex mammalian axons has been a challenge. Furthermore, quantitative optical measurements of axonal membrane potential dynamics have not been available. To characterize the basic principles of somatic voltage signal propagation in intact axonal arbors, second-harmonic-generation (SHG) imaging is applied to cultured mouse hippocampal neurons. When FM4-64 is applied extracellularly to dissociated neurons, whole axonal arbors are visualized by SHG imaging. Upon action potential generation by somatic current injection, nonattenuating action potentials are recorded in intact axonal arbors. Interestingly, however, both current- and voltage-clamp recordings suggest that nonregenerative subthreshold somatic voltage changes at the soma are poorly conveyed to these axonal sites. These results reveal the nature of membrane potential dynamics of cultured hippocampal neurons, and further show the possibility of SHG imaging in physiological investigations of axons.

Nuriya, Mutsuo; Yasui, Masato

2010-03-01

121

[Harmonic analysis fusion of hyperspectral image and its spectral information fidelity evaluation].  

PubMed

Combined with the Hyperion hyperspectral image and ALI high spatial resolution band of the EO-1 satellite, the paper puts forward the harmonic analysis fusion (HAF) algorithm of hyperspectral image and the derivative spectral d-value's information entropy (DSD-IE) model of the spectral-fused information fidelity evaluation. Through calculating and evaluating some parameters such as the DSD-IE values, average gradient and standard deviation of the sample spectra meanwhile compared with the fused hyperspectral images by the traditional methods like the principal component analysis (PCA), Gram-Schmidt and wavelet, the fused hyperspectral iamge by the HAF has proved to have the higher information degree of spatial integration and spectral fidelity, and the better superiorities in the reliability, accuracy and applicability. PMID:24369660

Yang, Keming; Zhang, Tao; Wang, Li-bo; Qian, Xiao-li; Wang, Lin-wei; Liu, Shi-wen

2013-09-01

122

Quantitative analysis of thermally-induced alterations of corneal stroma by second-harmonic generation imaging  

NASA Astrophysics Data System (ADS)

Thermal modifications induced in the corneal stroma were investigated by means of second harmonic generation (SHG) imaging. Whole fresh cornea samples were heated in a water bath at temperatures in the 35-80 °C range for a 4-min time. SHG images of the structural modifications induced at each temperature were acquired from different areas of cross-sectioned corneal stroma by using an 880 nm linearly- and circularly-polarized excitation light emitted by a mode-locked Ti:Sapphire laser. The SHG images were then analyzed by means of both an empirical approach and a 2D-theoretical model. The proposed analyses provide a detailed description of the changes occurring in the structural architecture of the cornea during the thermal treatment. Our results allow us to depict a temperature-dependent biochemical model for the progressive destructuration occurring to collagen fibrils and nonfibrillar components of the stroma.

Matteini, P.; Rossi, F.; Ratto, F.; Cicchi, R.; Kapsokalyvas, D.; Pavone, F. S.; Pini, R.

2010-02-01

123

Phase-inversion-based selective harmonic elimination (PI-SHE) in multi-level switched-mode tone- and frequency-modulated excitation.  

PubMed

Switched-mode operation allows the miniaturization of excitation circuitry but suffers from high harmonic distortion. This paper presents a method of phase-inversion-based selective harmonic elimination (PI-SHE) and the use of multiple switching levels. PI-SHE is shown to enable multiples of any selected harmonic to be eliminated through controlled timing of the transition between different excitation voltage levels. Multiples of the third harmonic are shown to be eliminated in three-level tone waveforms. In addition, multiples of the fifth harmonic are shown to be eliminated using five-level tone waveforms. A method of calculating the expected amplitude of each harmonic is presented. The application of PI-SHE in linear frequency-modulated (LFM) excitation is proposed. A heuristic derivation of the spectral properties of multilevel switched LFM waveforms is presented. The performance of the proposed PI-SHE method is confirmed through experimental measurement of the harmonics present in an ultrasound wave using two, three, and five levels for both tone and LFM excitation. The proposed method of controlling harmonics through the use of multilevel switched excitation is especially suitable for applications in which portability, high channel counts, and precise harmonic control are required. PMID:25004472

Cowell, David M J; Smith, Peter R; Freear, Steven

2013-06-01

124

Optimal frequency coverages and parsings for imaging interferometric lithography  

E-print Network

Optimal frequency coverages and parsings for imaging interferometric lithography Thanis M to subwavelength regimes but only in isolated parameter settings. The frequency parsing scheme plays a critical with an obscured center results in a tilted frequency cover- age. Two particular frequency parsing strategies

Santhanam, Balu

125

Imaging the noncentrosymmetric structural organization of tendon with Interferometric Second Harmonic Generation microscopy.  

PubMed

We report the imaging of tendon with Interferometric Second Harmonic Generation microscopy. We observe that the noncentrosymmetric structural organization can be maintained along the fibrillar axis over more than 150 ?m, while in the transverse direction it is ?1-15 ?m. Those results are explained by modeling tendon as a heterogeneous distribution of noncentrosymmetric nano-cylinders (collagen fibrils) oriented along the fibrillar axis. The preservation of the noncentrosymmetric structural organization over multiple tens of microns reveals that tendon is made of domains in which the ratio between fibrils with positive and negative polarity is unbalanced. PMID:23894135

Rivard, Maxime; Popov, Konstantin; Couture, Charles-André; Laliberté, Mathieu; Bertrand-Grenier, Antony; Martin, François; Pépin, Henri; Pfeffer, Christian P; Brown, Cameron; Ramunno, Lora; Légaré, François

2014-08-01

126

Selective imaging in second-harmonic-generation microscopy by polarization manipulation  

NASA Astrophysics Data System (ADS)

Second-harmonic-generation (SHG) has proved itself as an important contrast mechanism in microscopic applications. Its noninvasiveness, optical sectioning capability, and high-penetrability provide attractive features in observation of thick biological tissues. Fibrous proteins, such as myosin and collagen, are dominant SHG harmonophores in vertebrates. Due to their biophotonic crystal nature, SHGs from these proteins are known to exhibit specific polarization dependencies, reflecting local molecule arrangements. Here the authors demonstrate a scheme to distinguish SHG from myosin-based muscle fibers and intertwined collagenous perimysium through polarization selection, without complicated staining or sample/image processing required.

Chu, Shi-Wei; Tai, Shih-Peng; Sun, Chi-Kuang; Lin, Chi-Hung

2007-09-01

127

Optical frequency standard based on a Nd:YAG laser stabilised by saturated absorption resonances in molecular iodine using second-harmonic radiation  

SciTech Connect

The results of studies devoted to the development of the optical frequency standard based on a diode-pumped 1064-nm single-frequency ring Nd:YAG laser with intracavity frequency doubling are presented. The laser frequency was stabilised by saturated absorption resonances in molecular iodine at the second-harmonic frequency of the laser (at 532 nm). The saturated absorption resonances were observed in an external luminescent cell. The relative long-term frequency stability achieved in experiments was {approx}6x10{sup -15}. The physical and technical factors affecting the long-term frequency stability and reproducibility are investigated. (optical metrology and quantum frequency standards)

Skvortsov, Mikhail N; Okhapkin, M V; Nevsky, A Yu; Bagaev, Sergei N [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

2004-12-31

128

Fast Arbitrary BRDF Shading for Low-Frequency Lighting Using Spherical Harmonics  

Microsoft Academic Search

Real-time shading using general (e.g., anisotropic) BRDFs has so far been limited to a few point or directional light sources. We extend such shading to smooth, area lighting using a low-order spherical harmonic basis for the lighting environment. We represent the 4D product function of BRDF times the cosine factor (dot product of the incident lighting and surface normal vectors)

Jan Kautz; John Snyder; Peter-Pike J. Sloan

2002-01-01

129

In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy  

PubMed Central

The transparency and mechanical strength of the cornea are related to the highly organized three-dimensional distribution of collagen fibrils. It is of great interest to develop specific and contrasted in vivo imaging tools to probe these collagenous structures, which is not available yet. Second Harmonic Generation (SHG) microscopy is a unique tool to reveal fibrillar collagen within unstained tissues, but backward SHG images of cornea fail to reveal any spatial features due to the nanometric diameter of stromal collagen fibrils. To overcome this limitation, we performed polarization-resolved SHG imaging, which is highly sensitive to the sub-micrometer distribution of anisotropic structures. Using advanced data processing, we successfully retrieved the orientation of the collagenous fibrils at each depth of human corneas, even in backward SHG homogenous images. Quantitative information was also obtained about the submicrometer heterogeneities of the fibrillar collagen distribution by measuring the SHG anisotropy. All these results were consistent with numerical simulation of the polarization-resolved SHG response of cornea. Finally, we performed in vivo SHG imaging of rat corneas and achieved structural imaging of corneal stroma without any labeling. Epi-detected polarization-resolved SHG imaging should extend to other organs and become a new diagnosis tool for collagen remodeling. PMID:22254163

Latour, Gael; Gusachenko, Ivan; Kowalczuk, Laura; Lamarre, Isabelle; Schanne-Klein, Marie-Claire

2011-01-01

130

Inter- and Intra-Observer Variability in Prostate Definition With Tissue Harmonic and Brightness Mode Imaging  

SciTech Connect

Purpose: The objective of this study was to compare the relative utility of tissue harmonic (H) and brightness (B) transrectal ultrasound (TRUS) images of the prostate by studying interobserver and intraobserver variation in prostate delineation. Methods and Materials: Ten patients with early-stage disease were randomly selected. TRUS images of prostates were acquired using B and H modes. The prostates on all images were contoured by an experienced radiation oncologist (RO) and five equally trained observers. The observers were blinded to information regarding patient and imaging mode. The volumes of prostate glands and areas of midgland slices were calculated. Volumes contoured were compared among the observers and between observer group and RO. Contours on one patient were repeated five times by four observers to evaluate the intraobserver variability. Results: A one-sample Student t-test showed the volumes outlined by five observers are in agreement (p > 0.05) with the RO. Paired Student t-test showed prostate volumes (p = 0.008) and midgland areas (p = 0.006) with H mode were significantly smaller than that with B mode. Two-factor analysis of variances showed significant interobserver variability (p < 0.001) in prostate volumes and areas. Inter- and intraobserver consistency was quantified as the standard deviation of mean volumes and areas, and concordance indices. It was found that for small glands ({<=}35 cc) H mode provided greater interobserver consistency; however, for large glands ({>=}35 cc), B mode provided more consistent estimates. Conclusions: H mode provided superior inter- and intraobserver agreement in prostate volume definition for small to medium prostates. In large glands, H mode does not exhibit any additional advantage. Although harmonic imaging has not proven advantageous for all cases, its utilization seems to be judicious for small prostates.

Sandhu, Gurpreet Kaur, E-mail: Gurpreet.Sandhu2@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta (Canada); Dunscombe, Peter [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta (Canada); Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta (Canada); Meyer, Tyler [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta (Canada); Pavamani, Simon [Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta (Canada); Department of Radiation Oncology, Christian Medical College, Vellore (India); Khan, Rao [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta (Canada); Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta (Canada)

2012-01-01

131

Biomechanical assessment and monitoring of thermal ablation using Harmonic Motion Imaging for Focused Ultrasound (HMIFU)  

NASA Astrophysics Data System (ADS)

Cancer remains, one of the major public health problems in the United States as well as many other countries worldwide. According to According to the World Health Organization, cancer is currently the leading cause of death worldwide, accounting for 7.6 million deaths annually, and 25% of the annual death was due to Cancer during the year of 2011. In the long history of the cancer treatment field, many treatment options have been established up to date. Traditional procedures include surgical procedures as well as systemic therapies such as biologic therapy, chemotherapy, hormone therapy, and radiation therapy. Nevertheless, side-effects are often associated with such procedures due to the systemic delivery across the entire body. Recently technologies have been focused on localized therapy under minimally or noninvasive procedure with imaging-guidance, such as cryoablation, laser ablation, radio-frequency (RF) ablation, and High Intensity F-ocused Ultrasound (HIFU). HIFU is a non-invasive procedure aims to coagulate tissue thermally at a localized focal zone created with noninvasively emitting a set of focused ultrasound beams while the surrounding healthy tissues remain relatively untreated. Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a dynamic, radiation-force-based imaging technique, which utilizes a single HIFU transducer by emitting an Amplitude-modulated (AM) beam to both thermally ablate the tumor while inducing a stable oscillatory tissue displacement at its focal zone. The oscillatory response is then estimated by a cross-correlation based motion tracking technique on the signal collected by a confocally-aligned diagnostic transducer. HMIFU addresses the most critical aspect and one of the major unmet needs of HIFU treatment, which is the ability to perform real-time monitoring and mapping of tissue property change during the HIFU treatment. In this dissertation, both the assessment and monitoring aspects of HMIFU have been investigated fundamentally and experimentally through development of both a 1-D and 2-D based system. The performance assessment of HMIFU technique in depicting the lesion size increase as well as the lesion-to-background displacement contrast was first demonstrated using a 3D, FE-based interdisciplinary simulation framework. Through the development of 1-D HMIFU system, a multi-parametric monitoring approach was presented where presented where the focal HMI displacement, phase shift (Delta?), and correlation coefficients were monitored along with thermocouple and PCD under the HIFU treatment sequence with boiling and slow denaturation. For HIFU treatments with slow denaturation, consistent displacement increase-then-decrease trend was observed, indicating tissue softening-then-stiffening and phase shift increased with treatment time in agreement with mechanical testing outcomes. The correlation coefficient remained high throughout the entire treatment time under a minimized broadband energy and boiling mechanism. Contrarily, both displacement and phase shift changes lacked consistency under HIFU treatment sequences with boiling due to the presence of strong boiling mechanism confirmed by both PCD and thermocouple monitoring. In order to facilitate its clinical translation, a fully-integrated, clinically 2D real-time HMIFU system was also developed, which is capable of providing 2D real-time streaming during HIFU treatment up to 15 Hz without interruption. Reproducibility studies of the system showed consistent displacement estimation on tissue-mimicking phantoms as well as monitoring of tissue-softening-then-stiffening phase change across 16 out of 19 liver specimens (Increasing rate in phase shift (Delta?): 0.73+/-0.69 %/s, Decreasing rate in phase shift (Delta?): 0.60+/-0.19 %/s) along with thermocouple monitoring (Increasing: 0.84+/-1.15 %/ °C, Decreasing: 2.03+/- 0.93%/ °C) and validation of tissue stiffening using mechanical testing. In addition, the 2-D HMIFU system feasibility on preclinical pancreatic tumor mice model was also demonstrated in vivo, where HMI displa

Hou, Gary Yi

132

Real-time imaging of two-dimensional cardiac strain using a harmonic phase magnetic resonance imaging (HARP-MRI) pulse sequence  

Microsoft Academic Search

The harmonic phase (HARP) method provides automatic and rapid analysis of tagged magnetic resonance (MR) images for quantification and visualization of myocardial strain. In this article, the development and implementation of a pulse se- quence that acquires HARP images in real time are described. In this pulse sequence, a CINE sequence of images with 1-1 spatial modulation of magnetization (SPAMM)

Smita Sampath; J. Andrew Derbyshire; Ergin Atalar; Nael F. Osman; Jerry L. Prince

2003-01-01

133

Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer.  

PubMed

Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of collagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by comparing length, angle and position of the automatically extracted fibers with those of manually extracted fibers in twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer. PMID:24407500

Bredfeldt, Jeremy S; Liu, Yuming; Pehlke, Carolyn A; Conklin, Matthew W; Szulczewski, Joseph M; Inman, David R; Keely, Patricia J; Nowak, Robert D; Mackie, Thomas R; Eliceiri, Kevin W

2014-01-01

134

In vivo multiphoton imaging of the cornea: polarization-resolved second harmonic generation from stromal collagen  

NASA Astrophysics Data System (ADS)

Multiphoton microscopy provides specific and contrasted images of unstained collagenous tissues such as tendons or corneas. Polarization-resolved second harmonic generation (SHG) measurements have been implemented in a laserscanning multiphoton microscope. Distortion of the polarimetric response due to birefringence and diattenuation during propagation of the laser excitation has been shown in rat-tail tendons. A model has been developed to account for these effects and correct polarization-resolved SHG images in thick tissues. This new modality is then used in unstained human corneas to access two quantitative parameters: the fibrils orientation within the collagen lamellae and the ratio of the main second-order nonlinear tensorial components. Orientation maps obtained from polarization resolution of the trans-detected SHG images are in good agreement with the striated features observed in the raw images. Most importantly, polarization analysis of the epi-detected SHG images also enables to map the fibrils orientation within the collagen lamellae while epi-detected SHG images of corneal stroma are spatially homogenous and do not enable direct visualization of the fibrils orientation. Depth profiles of the polarimetric SHG response are also measured and compared to models accounting for orientation changes of the collagen lamellae within the focal volume. Finally, in vivo polarization-resolved SHG is performed in rat corneas and structural organization of corneal stroma is determined using epi-detected signals.

Latour, G.; Gusachenko, I.; Kowalczuk, L.; Lamarre, I.; Schanne-Klein, M.-C.

2012-03-01

135

Label-Free Imaging of Lipid Depositions in C. elegans Using Third-Harmonic Generation Microscopy  

PubMed Central

Elucidation of the molecular mechanisms regulating lipid storage and metabolism is essential for mitigating excess adiposity and obesity, which has been associated with increased prevalence of severe pathological conditions such as cardiovascular disorders and type II diabetes, worldwide. However, imaging fatty acid distribution and dynamics in vivo, at the cellular or organismal level is challenging. We developed a label-free method for visualizing lipid depositions in vivo, based on third harmonic generation (THG) microscopy. THG imaging requires a single pulsed-laser light source, alleviating the technical challenges of implementing coherent anti-Stokes Raman scattering spectroscopy (CARS) to detect fat stores in living cells. We demonstrate that THG can be used to efficiently and reliably visualize lipid droplets in Caenorhabditis elegans. Thus, THG microscopy offers a versatile alternative to fluorescence and dye-based approaches for lipid biology research. PMID:24392137

Filippidis, George; Petanidou, Barbara; Fotakis, Costas; Tavernarakis, Nektarios

2014-01-01

136

Frequencies of standing Alfvén wave harmonics and their implication for plasma mass distribution along geomagnetic field lines: Statistical analysis of CRRES data  

Microsoft Academic Search

The relationship among the frequencies of the harmonics of standing Alfvén waves depends on the variation of plasma mass density along the geomagnetic field line. This in turn means that observed standing wave frequencies may be used to infer the mass density variation, which is difficult to measure with particle instruments on spacecraft. Determination of the density variation is important

Kazue Takahashi; Richard E. Denton; Roger R. Anderson; W. Jeffrey Hughes

2004-01-01

137

Low-power analog processing for sensing applications: low-frequency harmonic signal classification.  

PubMed

A low-power analog sensor front-end is described that reduces the energy required to extract environmental sensing spectral features without using Fast Fouriér Transform (FFT) or wavelet transforms. An Analog Harmonic Transform (AHT) allows selection of only the features needed by the back-end, in contrast to the FFT, where all coefficients must be calculated simultaneously. We also show that the FFT coefficients can be easily calculated from the AHT results by a simple back-substitution. The scheme is tailored for low-power, parallel analog implementation in an integrated circuit (IC). Two different applications are tested with an ideal front-end model and compared to existing studies with the same data sets. Results from the military vehicle classification and identification of machine-bearing fault applications shows that the front-end suits a wide range of harmonic signal sources. Analog-related errors are modeled to evaluate the feasibility of and to set design parameters for an IC implementation to maintain good system-level performance. Design of a preliminary transistor-level integrator circuit in a 0.13 µm complementary metal-oxide-silicon (CMOS) integrated circuit process showed the ability to use online self-calibration to reduce fabrication errors to a sufficiently low level. Estimated power dissipation is about three orders of magnitude less than similar vehicle classification systems that use commercially available FFT spectral extraction. PMID:23892765

White, Daniel J; William, Peter E; Hoffman, Michael W; Balkir, Sina

2013-01-01

138

Low-Power Analog Processing for Sensing Applications: Low-Frequency Harmonic Signal Classification  

PubMed Central

A low-power analog sensor front-end is described that reduces the energy required to extract environmental sensing spectral features without using Fast Fouriér Transform (FFT) or wavelet transforms. An Analog Harmonic Transform (AHT) allows selection of only the features needed by the back-end, in contrast to the FFT, where all coefficients must be calculated simultaneously. We also show that the FFT coefficients can be easily calculated from the AHT results by a simple back-substitution. The scheme is tailored for low-power, parallel analog implementation in an integrated circuit (IC). Two different applications are tested with an ideal front-end model and compared to existing studies with the same data sets. Results from the military vehicle classification and identification of machine-bearing fault applications shows that the front-end suits a wide range of harmonic signal sources. Analog-related errors are modeled to evaluate the feasibility of and to set design parameters for an IC implementation to maintain good system-level performance. Design of a preliminary transistor-level integrator circuit in a 0.13 ?m complementary metal-oxide-silicon (CMOS) integrated circuit process showed the ability to use online self-calibration to reduce fabrication errors to a sufficiently low level. Estimated power dissipation is about three orders of magnitude less than similar vehicle classification systems that use commercially available FFT spectral extraction. PMID:23892765

White, Daniel J.; William, Peter E.; Hoffman, Michael W.; Balkir, Sina

2013-01-01

139

Ex vivo imaging and quantification of liver fibrosis using second-harmonic generation microscopy  

NASA Astrophysics Data System (ADS)

Conventionally, liver fibrosis is diagnosed using histopathological techniques. The traditional method is time-consuming in that the specimen preparation procedure requires sample fixation, slicing, and labeling. Our goal is to apply multiphoton microscopy to efficiently image and quantitatively analyze liver fibrosis specimens bypassing steps required in histological preparation. In this work, the combined imaging modality of multiphoton autofluorescence (MAF) and second-harmonic generation (SHG) was used for the qualitative imaging of liver fibrosis of different METAVIR grades under label-free, ex vivo conditions. We found that while MAF is effective in identifying cellular architecture in the liver specimens, it is the spectrally distinct SHG signal that allows the characterization of the extent of fibrosis. We found that qualitative SHG imaging can be used for the effective identification of the associated features of liver fibrosis specimens graded METAVIR 0 to 4. In addition, we attempted to associate quantitative SHG signal to the different METAVIR grades and found that an objective determination of the extent of disease progression can be made. Our approach demonstrates the potential of using multiphoton imaging in rapid classification of ex vivo liver fibrosis in the clinical setting and investigation of liver fibrosis-associated physiopathology in animal models in vivo.

Sun, Tzu-Lin; Liu, Yuan; Sung, Ming-Chin; Chen, Hsiao-Ching; Yang, Chun-Hui; Hovhannisyan, Vladimir; Lin, Wei-Chou; Jeng, Yung-Ming; Chen, Wei-Liang; Chiou, Ling-Ling; Huang, Guan-Tarn; Kim, Ki-Hean; So, Peter T. C.; Chen, Yang-Fang; Lee, Hsuan-Shu; Dong, Chen-Yuan

2010-05-01

140

Frequency Synthesizers and Oscillator Architectures Based on Multi-Order Harmonic Generation  

E-print Network

. This places stringent requirements on the performance metrics of frequency synthesizers. They are required to run at higher speeds, cover a wide range of frequencies, provide a low jitter/phase noise output and consume minimum power and area. In this work, we...

Abdul-Latif, Mohammed

2012-02-14

141

The harmonic inversion of the field-swept fixed-frequency resonance spectrum.  

PubMed

When the spin Hamiltonian is a linear function of the magnetic field intensity the resonance fields can be determined, in principle, by an eigenfield equation. In this report, we show a new technical approach to the resonance field problem where the eigenfield equation leads to a dynamic equation or, more specifically, to a first order differential equation of a variable L(x), where x is associated with the magnetic field h. Such differential equation has the property that: its stationary solution is the eigenfield equation and the spectral information contained in L(x) is directly related to the resonance spectrum. Such procedure, known as the "harmonic inversion problem" (HIP), can be solved by the "filter diagonalization method" (FDM) providing sufficient precision and resolution for the spectral analysis of the dynamic signals. Some examples are shown where the resonance fields are precisely determined in a single procedure, without the need to solve eigenvalue equations. PMID:17056289

Magon, Claudio José; Lima, José Fernando; Ribeiro, Ronny Rocha; Martins, Mateus José

2007-01-01

142

Theoretical analysis of dynamic chemical imaging with lasers using high-order harmonic generation  

SciTech Connect

We report theoretical investigations of the tomographic procedure suggested by Itatani et al. [Nature (London) 432, 867 (2004)] for reconstructing highest occupied molecular orbitals (HOMOs) using high-order harmonic generation (HHG). Due to the limited range of harmonics from the plateau region, we found that even under the most favorable assumptions, it is still very difficult to obtain accurate HOMO wave functions using the tomographic procedure, but the symmetry of the HOMOs and the internuclear separation between the atoms can be accurately extracted, especially when lasers of longer wavelengths are used to generate the HHG. Since the tomographic procedure relies on approximating the continuum wave functions in the recombination process by plane waves, the method can no longer be applied upon the improvement of the theory. For future chemical imaging with lasers, we suggest that one may want to focus on how to extract the positions of atoms in molecules instead, by developing an iterative method such that the theoretically calculated macroscopic HHG spectra can best fit the experimental HHG data.

Van-Hoang Le [J. R. Macdonald Laboratory, Department of Physics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506 (United States); Department of Physics, University of Pedagogy, 280 An Duong Vuong, Ward 5, Ho Chi Minh City (Viet Nam); Anh-Thu Le; Xie Ruihua; Lin, C. D. [J. R. Macdonald Laboratory, Department of Physics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506 (United States)

2007-07-15

143

Connections between U(N), O(N+1) and Anisotropic Harmonic Oscillators with Rational Ratios of Frequencies  

NASA Astrophysics Data System (ADS)

The concept of bisection ^1 of a harmonic oscillator or hydrogen atom, used in the past in establishing the connection between U and O(4), is generalized into multisection (trisection, tetrasection, etc). It is then shown that all symmetries of the N-dimensional anisotropic harmonic oscillator with rational ratios of frequencies (RHO) ^2, some of which are underlying the structure of superdeformed and hyperdeformed nuclei, can be obtained from the U(N) symmetry of the corresponding isotropic oscillator with an appropriate combination of multisections. Furthermore, it is seen that bisections of the N-dimensional hydrogen atom, which possesses an O(N+1) symmetry, lead to the U(N) symmetry, so that further multisections of the hydrogen atom lead to the symmetries of the N-dim RHO. The opposite is in general not true, i.e. multisections of U(N) do not lead to O(N+1) symmetries, the only exception being the occurence of O(4) after the bisection of U(3). l ^1 D. G. Ravenhall, R. T. Sharp and W. J. Pardee, Phys. Rev. 164, 1950 (1967). l ^2 D. Bonatsos, C. Daskaloyannis, P. Kolokotronis and D. Lenis, hep-th/9411218.

Lenis, D.; Kolokotronis, P.; Bonatsos, Dennis; Daskaloyannis, C.

1996-05-01

144

Efficient sum-frequency and second harmonic generation in a two-pass copper vapour laser amplifier  

SciTech Connect

New results are presented on the efficient generation of UV radiation by using nonlinear DKDP and BBO crystals and a two-pass copper vapour laser amplifier with the enhanced peak power. The average power (average optical efficiency) of laser radiation at the sum frequency ({lambda}=0.271 {mu}m) was 3.6 W (24%) for the BBO crystal and 2.1 W (14%) for the DKDP crystal. The maximum average second-harmonic power generated by using the BBO crystal was 3.4 W (44%) at 0.289 {mu}m and 2.1 W (27%) at 0.255 {mu}m. (nonlinear optical phenomena)

Batenin, V M; Karpukhin, Vyacheslav T; Malikov, Mikhail M [Scientific Association for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation)

2005-09-30

145

130 Comparison of harmonic phase imaging with local sine wave modelling for the assessment of circumferential myocardial strain using tagged cardiovascular magnetic resonance images  

Microsoft Academic Search

IntroductionAssessment of myocardial strain promises to become an important quantitative tool in early diagnosis of cardiac disease and treatment monitoring. Advances in image processing software have facilitated rapid and clinically feasible analysis of strain from tagged cardiac magnetic resonance (CMR) images. Harmonic Phase Analysis (HARP) or Local Sine Wave Modelling (SinMod) can be used for automated derivation of strain. We

A N Borg; C A Miller; C D Steadman; G P McCann; M Schmitt

2011-01-01

146

phi2FLIM: a technique for alias-free frequency domain fluorescence lifetime imaging.  

PubMed

A new approach to alias-free wide-field fluorescence lifetime imaging in the frequency domain is demonstrated using a supercontinuum source for fluorescence excitation and a phase-modulated image intensifier for detection. This technique is referred to as phi-squared fluorescence lifetime imaging (phi(2)FLIM). The phase modulation and square-wave gating of the image intensifier eliminate aliasing by the effective suppression of higher harmonics. The ability to use picosecond excitation pulses without aliasing expands the range of excitation sources available for frequency-domain fluorescence lifetime imaging (fd-FLIM) and improves the modulation depth of conventional homodyne fd-FLIM measurements, which use sinusoidal intensity modulation of the excitation source. The phi(2)FLIM results are analyzed using AB-plots, which facilitate the identification of mono-exponential and multi-exponential fluorescence decays and provide measurements of the fluorophore fractions in two component mixtures. The rapid acquisition speed of the technique enables lifetime measurements in dynamic systems, such as temporally evolving samples and samples that are sensitive to photo-bleaching. Rapid phi(2)FLIM measurements are demonstrated by imaging the dynamic mixing of two different dye solutions at 5.5 Hz. The tunability of supercontinuum radiation enables excitation wavelength resolved FLIM measurements, which facilitates analysis of samples containing multiple fluorophores with different absorption spectra. PMID:20052246

Elder, Alan D; Kaminski, Clemens F; Frank, Jonathan H

2009-12-01

147

Synergy in Two-Frequency Fast Wave Cyclotron Harmonic Absorption in DIII-D  

SciTech Connect

Fast waves (FWs) at 60 MHz and at 90 MHz are coupled to DIII-D discharges for central heating and current drive at net FW power up to 3.5 MW. The primary absorption mechanism is intended to be direct electron damping in the plasma core. In discharges at B = 2 T with fast deuteron populations from neutral beam injection, 4th and 6th deuterium cyclotron harmonic absorption on the fast ions competes with direct electron damping. Previous experiments have shown that the 6{omega}{sub D} absorption of the 90 MHz FWs is weaker than the 4{omega}{sub D} absorption of 60 MHz FWs, in agreement with a model that includes unspecified edge losses. Recent experiments have shown that if the fast deuterons are accelerated by absorption of 60 MHz (4{omega}{sub D}) FWs, adding 90 MHz power (6{omega}{sub D}) can increase the fusion neutron rate by a larger increment than is obtained with 90 MHz power alone. Details of this synergy between 4{omega}{sub D} and 6{omega}{sub D} absorption are presented.

Pinsker, R. I.; Choi, M. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Heidbrink, W. W.; Zhu, Y. [University of California-Irvine, Irvine, California (United States); Porkolab, M. [Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Baity, F. W. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States); Hosea, J. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States)

2009-11-26

148

Quantitative evaluation of skeletal muscle defects in second harmonic generation images  

PubMed Central

Abstract. Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health. PMID:23377006

Liu, Wenhua; Raben, Nina; Ralston, Evelyn

2013-01-01

149

Real-time Focused Ultrasound Surgery (FUS) Monitoring Using Harmonic Motion Imaging (HMI)  

NASA Astrophysics Data System (ADS)

Monitoring changes in tissue mechanical properties to optimally control thermal exposure is important in thermal therapies. The amplitude-modulated (AM) harmonic motion imaging (HMI) for focused ultrasound (HMIFU) technique is a radiation force technique, which has the capability of tracking tissue stiffness during application of an oscillatory force. The feasibility of HMIFU for assessing mechanical tissue properties has been previously demonstrated. In this paper, a confocal transducer, combining a 4.5 MHz FUS transducer and a 3.3 MHz phased array imaging transducer, was used. The FUS transducer was driven by AM wave at 15 Hz with an acoustic intensity (Ispta) was equal to 1050 W/cm2. A lowpass digital filter was used to remove the spectrum of the higher power beam prior to displacement estimation. The resulting axial tissue displacement was estimated using 1D cross-correlation with a correlation window of 2 mm and a 92.5% overlap. A thermocouple was also used to measure the temperature near the ablated region. 2D HMI-images from six-bovine-liver specimens indicated the onset of coagulation necrosis through changes in amplitude displacement after coagulation due to its simultaneous probing and heating capability. The HMI technique can thus be used to monitor temperature-related stiffness changes of tissues during thermal therapies in real-time, i.e., without interrupting or modifying the treatment protocol.

Maleke, Caroline; Konofagou, Elisa E.

2009-04-01

150

Imaging elastic and collagen fibers with sulforhodamine B and second-harmonic generation  

NASA Astrophysics Data System (ADS)

Since the early nineties, multiphoton microscopy has become a powerful tool to investigate morphological and physiological parameters in vivo or on thick ex vivo sections. To stain structures of interest many dyes have been developed and two-photon properties (cross section, excitation and emission spectra) of existing ones have been characterized. Recently, our team has shown a new property of sulforhodamine B (SRB). This dye has the ability to bind specifically elastic fibers. The observation of elastin using its endofluorescence properties was already widely described but required long exposition delays up to 10s and the imaging depth was limited to approximately 50 ?m. With a multiphoton microscope and SRB, it is possible to observe elastic fibers directly in the living animal or on thick tissue sections with a micrometric spatial resolution in less than one second per image with an imaging depth of ~ 200 ?m. Moreover, with an appropriate set of filters, we can acquire simultaneously the SRB and the second harmonic generation (SHG) signals of collagen fibers. Here, we report various applications of this new staining method on different arterial rings. The layers of the arterial wall, as well as, the elastic lamellae are observed and are numbered. With the addition of a nuclear stain such as the Hoechst 33342, a more accurate morphological study of the arterial walls can be accomplished. Finally, an intravital observation of the saphenous artery morphology is presented.

Ricard, Clément; Vial, Jean-Claude; Douady, Julien; van der Sanden, Boudewijn

2008-02-01

151

Initial rotor position detection in PMSM based on low frequency harmonic current injection  

Microsoft Academic Search

This paper presents an approach for the initial rotor position detection in permanent magnet synchronous machine (PMSM) drives. It is based on injection of low frequency current and excitation of small rotor speed oscillations. In this way information about spatial position of the rotor flux can be retrieved from the stator voltage response regardless of the rotor (average) speed. The

Francois Malrait; Pierre Rouchon

2010-01-01

152

Second Harmonic Imaging of the Human Brain The Practicability of Coronal Insonation Planes and Alternative Perfusion Parameters  

Microsoft Academic Search

Background and Purpose—Second harmonic imaging (SHI) is a novel ultrasound technique that allows the evaluation of brain tissue perfusion. The purpose of this study was to assess normal cerebral echo contrast characteristics in 3 regions of interest (ROIs) in the transverse axial and coronal insonation planes through the temporal bone window. Materials and Methods—SHI examinations were performed in 25 patients

Judith U. Harrer; Christof Klötzsch

2010-01-01

153

The imaging capabilities of the Frequency Agile Solar Radiotelescope  

E-print Network

The imaging capabilities of the Frequency Agile Solar Radiotelescope Stephen M. White a , Jeongwoo@njit.edu, Address: Dept. of Physics, NJIT, 323 King Blvd, Newark NJ 07102­1982 MJA: E­mail: aschwanden

White, Stephen

154

Harmonic nanoparticles for regenerative research.  

PubMed

In this visualized experiment, protocol details are provided for in vitro labeling of human embryonic stem cells (hESC) with second harmonic generation nanoparticles (HNPs). The latter are a new family of probes recently introduced for labeling biological samples for multi-photon imaging. HNPs are capable of doubling the frequency of excitation light by the nonlinear optical process of second harmonic generation with no restriction on the excitation wavelength. Multi-photon based methodologies for hESC differentiation into cardiac clusters (maintained as long term air-liquid cultures) are presented in detail. In particular, evidence on how to maximize the intense second harmonic (SH) emission of isolated HNPs during 3D monitoring of beating cardiac tissue in 3D is shown. The analysis of the resulting images to retrieve 3D displacement patterns is also detailed. PMID:24836220

Ronzoni, Flavio; Magouroux, Thibaud; Vernet, Remi; Extermann, Jérôme; Crotty, Darragh; Prina-Mello, Adriele; Ciepielewski, Daniel; Volkov, Yuri; Bonacina, Luigi; Wolf, Jean-Pierre; Jaconi, Marisa

2014-01-01

155

Holographic Radar Imaging Privacy Techniques Utilizing Dual-Frequency Implementation  

SciTech Connect

Over the last 15 years, the Pacific Northwest National Laboratory has performed significant research and development activities to enhance the state of the art of holographic radar imaging systems to be used at security checkpoints for screening people for concealed threats hidden under their garments. These enhancement activities included improvements to privacy techniques to remove human features and providing automatic detection of body-worn concealed threats. The enhanced privacy and detection methods used both physical and software imaging techniques. The physical imaging techniques included polarization-diversity illumination and reception, dual-frequency implementation, and high-frequency imaging at 60 GHz. Software imaging techniques to enhance the privacy of the person under surveillance included extracting concealed threat artifacts from the imagery to automatically detect the threat. This paper will focus on physical privacy techniques using dual-frequency implementation.

McMakin, Douglas L.; Hall, Thomas E.; Sheen, David M.

2008-04-18

156

Harmonic vibrational frequencies and infrared intensities from analytic fourth-order many-body perturbation theory gradients  

NASA Astrophysics Data System (ADS)

Recently developed fourth-order many-body perturbation theory [MBPT(4)] analytic gradient techniques are applied to a study of the harmonic vibrational frequencies and infrared intensities of prototype small polyatomic molecules. Results are presented for the complete fourth-order model as well as for the SDQ-MBPT(4) scheme, which neglects the contribution of triple excitations. These results are also compared to frequencies and intensities obtained at both higher and lower levels of theory. Differences between the fourth-order results and those obtained with the infinite order coupled-cluster (CC) counterparts of SDQ-MBPT(4) and MBPT(4) [CCSD and CC models including triple excitations, the latter approximated here by CCSDT-1 and the UCC(4) model] are found to be negligible for all bending modes and stretches involving single bonds. However, the infinite order effects included in CC models are important for describing stretching modes of multiple bonds. Therefore, iterative CC calculations are needed to accurately characterize these regions of the potential surface.

Stanton, John F.; Watts, John D.; Bartlett, Rodney J.

1991-01-01

157

Forward- and backward-second harmonic generation imaging of corneal and scleral collagen  

NASA Astrophysics Data System (ADS)

Collagen is the most abundant protein in mammalian and forms various types of tissues. On ocular surface, sclera, limbus and cornea are composed with fibril form collagen. However, unlike other connective tissues with high opacity, cornea has extraordinary high transparency which originates from the regular arrangement of collagen fibers within cornea. Cornea is responsible for 80% of focusing power of our vision and any corneal damage can cause severe vision loss. The high transparency of cornea makes it difficult to probe it without invasive processes, especially stromal structure alternations. Collagen, however, is an effective second harmonic generator due to its non-centrosymmetric molecule structure and can be visualized with nonlinear optical process without labeling. In addition, the deeper penetration and point like effective volume of SHG can also provide 3-dimensional information with minimum invasion. Backward SHG imaging has been approved effectively demonstrating structure alternation in infective keratitis, thermal damage in cornea, corneal scar, post refractive surgery wound healing and keratoconus which is also a main complication after refractive surgery[1-6]. In practical, backward SHG has the potentiality to be developed as clinical examination modality. However, Han et al also demonstrated that backward SHG (BSHG) imaging provides collagen bundle information while forward SHG (FSHG) provides more detailed, submicron fibril structure visualization within corneal stroma[7]. In sclera, which also has type I collagen as its main composition, BSHG and FSHG imaging reveal similar morphology. Comparing with what Legare et al demonstrated that BSHG in bulk tissue mainly originate from backscattered FSHG[8], the huge difference between corneal BSHG and FSHG imaging originate from the high transparency of cornea. However, only BSHG could be applied in practical. Therefore, if the correlation of BSHG and FSHG, which reveals more architecture details, can be established, BSHG may be used in clinical examination in the future.

Lo, Wen; Tan, Hsin-Yuan; Lin, Ming-Guo; Hsueh, Chu-Mei; Chen, Wei-Liang; Lin, Sung-Jan; Jee, Shiou-Hwa; Dong, Chen-Yuan

2008-02-01

158

Interest of second harmonic generation imaging to study collageneous matrix modification in osteoarthritis disease  

NASA Astrophysics Data System (ADS)

Cartilage degenerative diseases like osteoarthritis affect the organization of the biological extracellular matrix (ECM) surrounding chondrocytes. This ECM is mainly composed by collagen giving rise to a strong Second Harmonic Generation (SHG) Signal, due to its high non linear susceptibility. Mechanical stress leads to perturbation of the collagen network comparable to modification occurring in disease. To be sure that SHG signal comes specifically from the collagen network, the enzymatical action of Collagenase was followed. We clearly noted the decrease of the collagen specific signal according to incubation time due to enzymatic degradation. To characterize structural modification on the arrangement of collagen fibers in the ECM, we used image analysis based on co-occurrence matrix (Haralick). Textural features give information like homogeneity ('Angular Second Moment') or size of textural elements ('Inverse Difference Moment', 'Correlation'). Samples submitted to compression are characterized by higher 'Correlation', associated with a decrease of 'IDM' and 'ASM'. Those evolutions suggest the presence of long linear structures, an effect of packing of collagen fibrils and the apparition of nodes where the density of collagen is important versus areas showing a lack of molecules. Collagen I, II and VI are biomarkers characterising disease states since its presence is increased in pathological cartilage (osteoarthritis). Fluorescence Lifetime Imaging Microscopy (FLIM) associated to Spectral and SHG analysis confirmed the presence of Collagen I and II in the extracellular and Collagen VI in the pericellular matrix of chondrocytes. SHG, FLIM and Spectral Imaging combined with multiphoton excitation enable tissue imaging at deep penetration. We pointed out a local modification of the ECM of cartilage without any labelling (SHG) under mechanical stress. Thus the association of all these techniques represents a potential diagnosis tool for disorganization of collagen.

Werkmeister, Elisabeth; de Isla, Natalia; Marchal, Luc; Mainard, Didier; Stoltz, Jean-François; Dumas, Dominique

2008-04-01

159

DC Link Voltage and Supply-Side Current HarmonicsMinimization of Three Phase PWM BoostRectifiers Using Frequency Domain BasedRepetitive Current Controllers  

Microsoft Academic Search

This paper presents a digital plug-in frequency domain based repetitive control scheme for minimizing the odd order harmonics in the supply line side currents of the three phase pulsewidth modulation (PWM) boost rectifier under the distorted and unbalanced supply voltage conditions. Based on the mathematical model of the three-phase PWM boost rectifier under the generalized supply voltage conditions, the control

X. H. Wu; S. K. Panda; J. X. Xu

2008-01-01

160

Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth  

PubMed Central

We use second harmonic generation (SHG) microscopy to assess changes in collagen structure of murine cervix during cervical remodeling of normal pregnancy and in a preterm birth model. Visual inspection of SHG images revealed substantial changes in collagen morphology throughout normal gestation. SHG images collected in both the forward and backward directions were analyzed quantitatively for changes in overall mean intensity, forward to backward intensity ratio, collagen fiber size, and porosity. Changes in mean SHG intensity and intensity ratio take place in early pregnancy, suggesting that submicroscopic changes in collagen fibril size and arrangement occur before macroscopic changes become evident. Fiber size progressively increased from early to late pregnancy, while pores between collagen fibers became larger and farther apart. Analysis of collagen features in premature cervical remodeling show that changes in collagen structure are dissimilar from normal remodeling. The ability to quantify multiple morphological features of collagen that characterize normal cervical remodeling and distinguish abnormal remodeling in preterm birth models supports future studies aimed at development of SHG endoscopic devices for clinical assessment of collagen changes during pregnancy in women and for predicting risk of preterm labor which occurs in 12.5% of all pregnancies. PMID:20459265

Akins, Meredith L.; Luby-Phelps, Katherine; Mahendroo, Mala

2010-01-01

161

In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging  

NASA Astrophysics Data System (ADS)

Skin wounds heal when a series of cell lineages are triggered, followed by collagen deposition, to reconstruct damaged tissues. This study evaluates the regeneration of collagen and change in cellular metabolic rate in vivo during wound healing in rats, with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy respectively. The metabolic rate of cells is reflected through the lifetime of the autofluorescence from the co-enzyme protein, reduced nicotinamide adenine dinucleotide, due to its change in the relative concentration of bound and free forms. A higher than normal cellular metabolic rate is observed during the first week of healing, which decreases gradually after eight days of wound formation. SHG signal intensity change indicates the net degradation of collagen during the inflammatory phase, and net regeneration begins on day five. Eventually, the quantity of collagen increases gradually to form a scar tissue as the final product. Importantly, this work demonstrates the feasibility of an in vivo imaging approach for a normal wound on rat skin, which has the potential to supplement the noninvasive clinical diagnosis of wounds.

Deka, Gitanjal; Wu, Wei-Wen; Kao, Fu-Jen

2013-06-01

162

Image based adaptive optics through optimisation of low spatial frequencies  

E-print Network

Image based adaptive optics through optimisation of low spatial frequencies Delphine D adaptive optics scheme for an incoherent imaging system. Aberration correction is performed through of America OCIS codes: (010.1080) Adaptive Optics; (010.7350) Wave-front sensing; (110.4850) Optical transfer

Paris-Sud XI, Université de

163

Image transmission in tactical radio frequency shared network propagation environments  

Microsoft Academic Search

The need to transmit images across tactical radio frequency (rf) links has been identified in army digitization applications. For example, military doctrine requires that tactical functions like identification of battlefield entities as potential targets and battle damage assessment be performed by the soldier. Currently, a key input to these processes is imagery. Therefore, the quality and timeliness of the image

Kent H. White; Kerry A. Wagner; Scott O'Hanian

1997-01-01

164

Applications of time-frequency processing to radar imaging  

Microsoft Academic Search

Due to the time-varying behavior of the Doppler frequency of radar returns, and due to the multiple backscattering behavior of radar targets, the resolution of radar images can be significantly degraded and those images may be blurred. Conventional radar processors use the Fourier transform to retrieve Doppler information. To use the Fourier transform properly, some restrictions must be applied: the

Victor C. Chen

1997-01-01

165

Harmonic Tracking of Acoustic Radiation Force Induced Displacements  

PubMed Central

Ultrasound-based elasticity imaging methods rely upon accurate estimates of tissue deformation to characterize the mechanical properties of soft tissues. These methods are corrupted by clutter, which can bias and/or increase variance in displacement estimates. Harmonic imaging methods are routinely used for clutter suppression and improved image quality in conventional B-mode ultrasound, but have not been utilized in ultrasound-based elasticity imaging methods. We introduce a novel, fully-sampled pulse inversion harmonic method for tracking tissue displacements that corrects the loss in temporal sampling frequency associated with conventional pulse inversion techniques. The method is implemented with Acoustic Radiation Force Impulse (ARFI) imaging to monitor the displacements induced by an impulsive acoustic radiation force excitation. Custom pulse sequences were implemented on a diagnostic ultrasound scanner to collect spatially-matched fundamental and harmonic information within a single acquisition. B-mode and ARFI images created from fundamental data collected at 4 MHz and 8 MHz are compared with 8 MHz harmonic images created using a bandpass filter approach and the fully sampled pulse inversion method. In homogeneous, tissue-mimicking phantoms, where no visible clutter was observed, there was little difference in the axial displacements, estimated jitter, and normalized cross-correlation among the fundamental and harmonic tracking methods. The similarity of the lower and higher frequency methods suggests that any improvement due to the increased frequency of the harmonic components is negligible. The harmonic tracking methods demonstrated a marked improvement in B-mode and ARFI image quality of in vivo carotid arteries. Improved feature detection and decreased variance in estimated displacements were observed in the arterial walls of harmonic ARFI images, especially in the pulse inversion harmonic ARFI images. Within the lumen, the harmonic tracking methods improved the discrimination of the blood–vessel interface, making it easier to visualize plaque boundaries. Improvements in harmonic ARFI images in vivo were consistent with suppressed clutter supported by improved contrast and CNR in the matched harmonic B-mode images compared to the fundamental B-mode images. These results suggest that harmonic tracking methods can improve the clinical utility and diagnostic accuracy of ultrasound-based elasticity imaging methods. PMID:24158290

Doherty, Joshua R.; Dahl, Jeremy J.; Trahey, Gregg E.

2014-01-01

166

Far-field imaging with a multi-frequency metalens  

NASA Astrophysics Data System (ADS)

A metalens, i.e., a dense array of identical resonators, allows to image an object pattern at subwavelength scale from far field radiation field. Here, we show that the efficiency can be improved when the resonant frequencies of the cell are distributed over a given frequency range. Because in such systems each eigen mode is localized, the subwavelength image is built from a spectral analysis of the radiated field. A simple model based on coupled resonant dipoles is used to find the best frequency distribution. This multifrequency metalens approach is validated using a flat array of split ring resonators. We experimentally demonstrate the subwavelength resolution of such a device at microwave range.

Jouvaud, C.; Ourir, A.; de Rosny, J.

2014-06-01

167

Analytical Bistatic k Space Images Compared to Experimental Swept Frequency EAR Images  

NASA Technical Reports Server (NTRS)

A case study of flat plate scattering images obtained by the analytical bistatic k space and experimental swept frequency ISAR methods is presented. The key advantage of the bistatic k space image is that a single excitation is required, i.e., one frequency I one angle. This means that prediction approaches such as MOM only need to compute one solution at a single frequency. Bistatic image Fourier transform data are obtained by computing the scattered field at various bistatic positions about the body in k space. Experimental image Fourier transform data are obtained from the measured response to a bandwidth of frequencies over a target rotation range.

Shaeffer, John; Cooper, Brett; Hom, Kam

2004-01-01

168

Image Deconvolution by Means of Frequency Blur Invariant Concept  

PubMed Central

Different blur invariant descriptors have been proposed so far, which are either in the spatial domain or based on the properties available in the moment domain. In this paper, a frequency framework is proposed to develop blur invariant features that are used to deconvolve a degraded image caused by a Gaussian blur. These descriptors are obtained by establishing an equivalent relationship between the normalized Fourier transforms of the blurred and original images, both normalized by their respective fixed frequencies set to one. Advantage of using the proposed invariant descriptors is that it is possible to estimate both the point spread function (PSF) and the original image. The performance of frequency invariants will be demonstrated through experiments. An image deconvolution is done as an additional application to verify the proposed blur invariant features. PMID:25202743

2014-01-01

169

Coherent states and geometric phases of a generalized damped harmonic oscillator with time-dependent mass and frequency  

NASA Astrophysics Data System (ADS)

In this paper, we study the generalized harmonic oscillator with arbitrary time-dependent mass and frequency subjected to a linear velocity-dependent frictional force from classical and quantum points of view. We obtain the solution of the classical equation of motion of this system for some particular cases and derive an equation of motion that describes three different systems. Furthermore, with the help of the quantum invariant method and using quadratic invariants we solve analytically and exactly the time-dependent Schrödinger equation for this system. Afterwards, we construct coherent states for the quantized system and employ them to investigate some of the system's quantum properties such as quantum fluctuations of the coordinate and the momentum as well as the corresponding uncertainty product. In addition, we derive the geometric, dynamical and Berry phases for this nonstationary system. Finally, we evaluate the dynamical and Berry phases for three special cases and surprisingly find identical expressions for the dynamical phase and the same formulae for the Berry's phase.

Pedrosa, I. A.; de Lima, D. A. P.

2014-07-01

170

Third harmonic frequency generation by type-I critically phase-matched LiB3O5 crystal by means of optically active quartz crystal.  

PubMed

We present a method of third harmonic generation at 355 nm by frequency mixing of fundamental and second harmonic radiation of an ytterbium nanosecond pulsed all-fiber laser in a type-I phase-matched LiB(3)O(5) (LBO) crystal where originally orthogonal polarization planes of the fundamental and second harmonic beams are aligned by an optically active quartz crystal. 8 W of ultraviolet light at 355 nm were achieved with 40% conversion efficiency from 1064 nm radiation. The conversion efficiency obtained in a type-I phase-matched LBO THG crystal was 1.6 times higher than the one achieved in a type-II LBO crystal at similar experimental conditions. In comparison to half-wave plates traditionally used for polarization alignment the optically active quartz crystal has much lower temperature dependence and requires simpler optical alignment. PMID:23481827

Gapontsev, Valentin P; Tyrtyshnyy, Valentin A; Vershinin, Oleg I; Davydov, Boris L; Oulianov, Dmitri A

2013-02-11

171

Quasi-phase-matched second-harmonic Talbot self-imaging in a 2D periodically-poled LiTaO3 crystal.  

PubMed

We demonstrate the improved second-harmonic Talbot self-imaging through the quasi-phase-matching technique in a 2D periodically-poled LiTaO(3) crystal. The domain structure not only composes a nonlinear optical grating which is necessary to realize nonlinear Talbot self-imaging, but also provides reciprocal vectors to satisfy the phase-matching condition for second-harmonic generation. Our experimental results show that quasi-phase-matching can improve the intensity of the second-harmonic Talbot self-imaging by a factor of 21. PMID:23787586

Liu, Dongmei; Wei, Dunzhao; Zhang, Yong; Zou, Jiong; Hu, X P; Zhu, S N; Xiao, Min

2013-06-17

172

Quantitative Second Harmonic Generation Imaging of the Diseased State Osteogenesis Imperfecta: Experiment and Simulation  

PubMed Central

We report the integrated use of 3D second harmonic generation (SHG) imaging microscopy and Monte Carlo simulation as a combined metric to quantifiably differentiate normal and diseased tissues based on the physical properties of the respective extracellular matrix. To achieve this, we have identified a set of parameters comprised of the SHG creation attributes and the bulk optical parameters, which are used collectively via comparative analysis. Monte Carlo simulations of the SHG axial directional and attenuation responses allow their decomposition into the underlying factors that are not readily obtainable through experimental techniques. Specifically, this approach allows for estimation of the SHG creation attributes (directionality and relative conversion efficiency) and separation of primary and secondary filter effects, collectively that form the observed SHG contrast. The quantitative metric is shown for the connective tissue disorder Osteogenesis Imperfecta (characterized by abnormal assembly of type I collagen) using a murine model that expresses the disease in the dermis layer of skin. Structural dissimilarities between the osteogenesis imperfecta mouse and wild-type tissues lead to significant differences in the SHG depth-dependent directionality and signal attenuation. The Monte Carlo simulations of these responses using measured bulk optical parameters reproduce the experimental data trends, and the extracted emission directionality and conversion efficiencies are consistent with independent determinations. The simulations also illustrate the dominance of primary filter affects on overall SHG generation and attenuation. Thus, the combined method of 3D SHG imaging and modeling forms an essential foundation for parametric description of the matrix properties that are not distinguishable by sole consideration of either bulk optical parameters or SHG alone. Moreover, due to the quasi-coherence of the SHG process in tissues, we submit that this approach contains unique information not possible by purely scattering based methods and that these methods will be applicable in the general case where the complex fibrillar structure is difficult to fully quantify via morphological analysis. PMID:18281387

LaComb, Ronald; Nadiarnykh, Oleg; Campagnola, Paul J.

2008-01-01

173

Time-Frequency Analysis in Terahertz-Pulsed Imaging  

Microsoft Academic Search

Recent advances in laser and electro-optical technologies have made the previously underutilized terahertz frequency band\\u000a of the electromagnetic spectrum accessible for practical imaging. Applications are emerging, notably in the biomedical domain.\\u000a In this chapter the technique of terahertz-pulsed imaging is introduced in some detail. The need for special computer vision\\u000a methods, which arises from the use of pulses of radiation

Elizabeth Berry; Roger D Boyle; Anthony J Fitzgerald; James Handley

174

Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency  

NASA Astrophysics Data System (ADS)

We propose a non-iterative MUSIC (MUltiple SIgnal Classification)-type algorithm for the time-harmonic electromagnetic imaging of one or more perfectly conducting, arc-like cracks found within a homogeneous space R2. The algorithm is based on a factorization of the Multi-Static Response (MSR) matrix collected in the far-field at a single, nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition), followed by the calculation of a MUSIC cost functional expected to exhibit peaks along the crack curves each half a wavelength. Numerical experimentation from exact, noiseless and noisy data shows that this is indeed the case and that the proposed algorithm behaves in robust manner, with better results in the TM mode than in the TE mode for which one would have to estimate the normal to the crack to get the most optimal results.

Park, Won-Kwang; Lesselier, Dominique

2009-11-01

175

Stepped frequency imaging for flaw monitoring: Final report  

SciTech Connect

This report summarizes the results of research into the usefulness of stepped frequency imaging (SFI) to nuclear power plant inspection. SFI is a method for producing ultrasonic holographic images without the need to sweep a two-dimensional aperture with the transducer. Instead, the transducer may be translated along a line. At each position of the transducer the frequency is stepped over a finite preselected bandwidth. The frequency stepped data is then processed to synthesize the second dimension. In this way it is possible to generate images in regions that are relatively inaccessible to two-dimensional scanners. This report reviews the theory and experimental work verifying the technique, and then explores its possible applications in the nuclear power industry. It also outlines how this new capability can be incorporated into the SDL-1000 Imaging System previously developed for EPRI. The report concludes with five suggestions for uses for the SFI method. These are: monitoring suspect or repaired regions of feedwater nozzles; monitoring pipe cracks repaired by weld overlay; monitoring crack depth during test block production; imaging flaws where access is difficult; and imaging flaws through cladding without distortion.

Hildebrand, B.P.

1988-09-01

176

Fundamental and low frequency harmonic components of leakage current as a diagnostic tool to study aging of RTV and HTV silicone rubber in salt-fog  

Microsoft Academic Search

The paper presents the results of using the fundamental and the low frequency harmonic components of leakage current to study aging of silicone rubber in salt-fog. Experiments have been conducted on RTV and HTV coated rods at different fields (0.25-0.6 kV\\/cm) and conductivities (1000 to 2500 ?S\\/cm). The onset of dry-band arcing on samples could be determined by measuring the

Ayman H. El-Hag; Shesha H. Jayaram; Edward A. Cherney

2003-01-01

177

Spatial frequency, phase, and the contrast of natural images  

E-print Network

Spatial frequency, phase, and the contrast of natural images Peter J. Bex Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK Walter Makous Center for Visual Science, University, 2001; accepted November 28, 2001 We examined contrast sensitivity and suprathreshold apparent contrast

Makous, Walter

178

Imaging of point scatterers from step-frequency ISAR data  

Microsoft Academic Search

A high-resolution method for imaging of point scatterers from step-frequency inverse synthetic-aperture radar (ISAR) data is presented. An analysis of the noise sensitivity of the method is provided to show the high performance of the method. Simulation results are given to show the robustness of the method against model errors

Y. Hua; F. A. Baqai; Y. Zhu; D. J. Heilbronn

1993-01-01

179

Continuous-wave operation of a frequency-tunable 460-GHz second-harmonic gyrotron for enhanced nuclear magnetic resonance  

E-print Network

The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic ...

Torrezan de Sousa, Antonio Carlos

180

Impact of filmless imaging on the frequency of clinician review of radiology images  

Microsoft Academic Search

The purpose of this study was to determine the impact of filmless imaging on the frequency with which physicians access radiology\\u000a images and to assess clinician perception of image accessibility using a hospital-wide Picture Archival and Communication\\u000a System (PACS). Quantitative data were collected at the Baltimore VA Medical Center (BVAMC), prior to and after conversion\\u000a to filmless imaging, to determine

Bruce I. Reiner; Eliot L. Siegel; Frank Hooper; Zenon Protopapas

1998-01-01

181

Determination of collagen fiber orientation in histological slides using Mueller microscopy and validation by second harmonic generation imaging.  

PubMed

We studied the azimuthal orientations of collagen fibers in histological slides of uterine cervical tissue by two different microscopy techniques, namely Mueller polarimetry (MP) and Second Harmonic Generation (SHG). SHG provides direct visualization of the fibers with high specificity, which orientations is then obtained by suitable image processing. MP provides images of retardation (among other polarimetric parameters) due to the optical anisotropy of the fibers, which is enhanced by Picrosirius Red staining. The fiber orientations are then assumed to be those of the retardation slow axes. The two methods, though fully different from each other, provide quite similar maps of average fiber orientations. Overall, our results confirm that MP microscopy provides reliable images of dominant fiber orientations at a much lower cost that SHG, which remains the "gold standard" for specific imaging of collagen fibers using optical microscopy. PMID:25321725

Bancelin, Stéphane; Nazac, André; Ibrahim, Bicher Haj; Dokládal, Petr; Decencière, Etienne; Teig, Benjamin; Haddad, Huda; Fernandez, Hervé; Schanne-Klein, Marie-Claire; De Martino, Antonello

2014-09-22

182

Harmonic engine  

SciTech Connect

A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

Bennett, Charles L. (Livermore, CA)

2009-10-20

183

Three frequency false-color image of Prince Albert, Canada  

NASA Technical Reports Server (NTRS)

This is a three-frequency, false color image of Prince Albert, Canada, centered at 53.91 north latitude and 104.69 west longitude. It was produced using data from the X-band, C-band and L-band radars that comprise the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). SIR-C/X-SAR acquired this image on the 20th orbit of the Shuttle Endeavour. The area is located 40 km north and 30 km east of the town of Prince Albert in the Saskatchewan province of Canada. The image covers the area east of the Candle Lake, between gravel surface highways 120 and 106 and west of 106. The area in the middle of the image covers the entire Nipawin (Narrow Hills) provincial park. Most of the dark blue areas in the image are the ice covered lakes. The dark area on the top right corner of the image is the White Gull Lake north of the intersection of highway 120 and 913. The right middle part of the image shows Lake Ispuchaw and Lower Fishing Lake. The deforested areas are shown by light

1994-01-01

184

High-frequency ultrasonic arrays for ocular imaging  

NASA Astrophysics Data System (ADS)

High-resolution ultrasound imaging of the anterior portion of the eye has been shown to provide important information for sizing of intraocular lens implants, diagnosis of pathological conditions, and creation of detailed maps of corneal topography to guide refractive surgery. Current ultrasound imaging systems rely on mechanical scanning of a single acoustic element over the surface of the eye to create the three-dimensional information needed by clinicians. This mechanical scanning process is time-consuming and subject to errors caused by eye movement during the scanning period. This paper describes development of linear ultrasound imaging arrays intended to increase the speed of image acquisition and reduce problems associated with ocular motion. The arrays consist of a linear arrangement of high-frequency transducer elements designed to operate in the 50 - 75 MHz frequency range. The arrays are produced using single-crystal lithium niobate piezoelectric material, thin film electrodes, and epoxy-based acoustic layers. The array elements have been used to image steel test structures and bovine cornea.

Jaeger, M. D.; Kline-Schoder, R. J.; Douville, G. M.; Gagne, J. R.; Morrison, K. T.; Audette, W. E.; Kynor, D. B.

2007-03-01

185

Performance assessment of HIFU lesion detection by Harmonic Motion Imaging for Focused Ultrasound (HMIFU): A 3D finite-element-based framework with experimental validation  

PubMed Central

Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on Amplitude-modulated (AM) - Harmonic Motion Imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module, and an image-formation model. The objective of this study is to develop such a framework in order to 1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and 2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6, and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69, 5.39 and 1.65, 3.19, 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28, and 1.78 at 10-s, 20-s, and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was also found in both simulations (16.2, 73.1 and 334.7 mm2) and experiments (26.2, 94.2 and 206.2 mm2). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo. PMID:22036637

Hou, Gary Y.; Luo, Jianwen; Marquet, Fabrice; Maleke, Caroline; Vappou, Jonathan; Konofagou, Elisa E.

2014-01-01

186

Nonlinear time-harmonic finite-element analysis of coupled circuits and fields in low frequency electromagnetic devices  

Microsoft Academic Search

Many electromagnetic devices operate under sinusoidal excitation, in which case a time-harmonic (TH) analysis may be applied; in particular, a TH field solution is much more economic than a time-transient field solution. Although the material nonlinearity cannot be strictly taken into account in the TH case, it determines the true operating condition of the device, together with the external circuit

Rafael Escarela-Perez; E. Melgoza; Jose Alvarez-Ramirez; Ana Lilia Laureano-Cruces

2010-01-01

187

ACCURATE SHORT-TERM ANALYSIS OF THE FUNDAMENTAL FREQUENCY AND THE HARMONICS-TO-NOISE RATIO OF A SAMPLED SOUND  

Microsoft Academic Search

We present a straightforward and robust algorithm for periodicity detection, working in the lag (autocorrelation) domain. When it is tested for periodic signals and for signals with additive noise or jitter, it proves to be several orders of magnitude more accurate than the methods commonly used for speech analysis. This makes our method capable of measuring harmonics-to-noise ratios in the

Paul Boersma

1993-01-01

188

Voltage transformer frequency response. Measuring harmonics in Norwegian 300 kV and 132 kV power systems  

Microsoft Academic Search

Measuring harmonics in high voltage power systems with inductive and in particular capacitive voltage transformers, CVTs, may cause large errors. Test carried out by The Norwegian National Grid Company (Statnett), Bergenshalvoens Kommunale Kraftselskap (BKK) and The Norwegian Electric Power Research Institute (now SINTEF Energy Research) revealed errors from 80% to +1200% (0,2-12 pu) of correct values. Inductive voltage transformers did

H. Seljeseth; E. A. Saethre; T. Ohnstad; I. Lien

1998-01-01

189

Design of variable frequency endoscope ultrasonic digital imaging system  

NASA Astrophysics Data System (ADS)

This paper presented a real-time endoscope ultrasonic digital imaging system, which was based on FPGA and applied for gastrointestinal examination. Four modules, scan-line data processing module, coordinate transformation and interpolation algorithm module, cache reading and writing control module and transmitting and receiving control module were included in this FPGA based system. Through adopting different frequency ultrasound probes in a single insertion of endoscope, the system showed a high speed data processing mechanism capable of achieving images with various display effects. A high-precision modified coordinate calibration CORDIC (HMCC-CORDIC) algorithm was employed to realize coordinate transformation and interpolation simultaneously, while the precision and reliability of the algorithm could be greatly improved through utilizing the pipeline structure based on temporal logic. Also, system real-time control by computer could be achieved through operating under the condition of USB2.0 interface. The corresponding experimental validations proved the feasibility and the correctness of the proper data processing mechanism, the HMCC-CORDIC algorithm and the USB real-time control. Finally, the specific experimental sample, a tissue mimicking phantom, was imaged in real-time (25 frames per second) by an endoscope ultrasonic imaging system with image size 1024×1024. The requirements for clinical examination could be well satisfied with the imaging parameters discussed above.

Li, Ya-nan; Bai, Bao-ping; Chen, Xiao-dong; Zhao, Qiang; Deng, Hao-ran; Wang, Yi; Yu, Dao-yin

2013-12-01

190

High-frequency ultrasonographic imaging of the gastrointestinal wall.  

PubMed

The gastrointestinal (GI) tract, with its layered structure, can be imaged by ultrasound using a transabdominal approach or intraluminal high-frequency probes. New ultrasound technology can be used to characterize tissue hardness, study motility in real-time, direct diagnostic and therapeutic intervention, evaluate GI wall perfusion and tissue viability, and perform 3D imaging. Ultrasound is a safe imaging modality, and development of smaller devices has improved its application as a flexible clinical tool, which also can be used bedside. Recently, microbubbles have been injected into the blood stream loaded with contrast agents, or other diagnostic and therapeutic agents. Such bubbles can be destroyed by ultrasound waves, thus releasing their content at a given area of interest. In this article, we present a review of the GI wall anatomy and discuss currently available ultrasound technology for diagnosis and treatment of GI wall disorders. PMID:22702257

Ødegaard, Svein; Nesje, Lars B; Lærum, Ole Didrik; Kimmey, Michael B

2012-05-01

191

Concealed weapons detection using low-frequency magnetic imaging  

NASA Astrophysics Data System (ADS)

Military personnel, law-enforcement officers, and civilians face ever-increasing dangers from persons carrying concealed handguns and other weapons. In direct correspondence with this danger is a need for more sophisticated means of detecting concealed weapons. We have developed a novel concealed-weapons detector based on the principle of low- frequency magnetic imaging. The detector is configured as a portal, and constructs an image of electrically conductive objects transported through it with a potential spatial resolution of approximately 1 inch. Measurements on a breadboard version of the weapons detector have, to date, yielded a resolution of 2 inches. In operation, magnetic dipole radiation, emitted by transmitting antennas in the perimeter of the portal, is scattered from conductive objects and is picked up by receive antennas, also positioned around the portal. With sufficient measurements, each with a different geometry, a solution to the inverse scattering problem can be found. The result is an image of conductive objects in the detector. The detector is sensitive to all metals, semiconductors, and conductive composites. The measured conductivity image formed by the detector is combined with the video signal from a visible CCD camera to form a composite image of persons transiting the detector portal and the conductive objects they are carrying. Accompanying image recognition software could be used to determine the threat level of objects based upon shape, conductivity, and placement on the person of the carrier, and provide cueing, logging, or alarm functions to the operator if suspect weapons are identified. The low- power, low-frequency emissions from the detector are at levels considered safe to humans and medical implants..

Zollars, Byron G.; Sallee, Bradley; Durrett, Michael G.; Cruce, Clay; Hallidy, William

1997-02-01

192

Characteristics of the mode converter of Gyrotron FU CW GII radiating Gaussian beams in both the fundamental and second harmonic frequency bands  

NASA Astrophysics Data System (ADS)

Gyrotron FU CW GII, the second gyrotron of the Gyrotron FU CW G-series with an internal quasi-optical mode converter, was recently developed at the Research Center for Development of Far-Infrared Region, University of Fukui (FIR FU) [Y. Tatematsu et al., J. Infrared, Millimeter, Terahertz Waves 35, 169 (2014)]. The design oscillation mode of this gyrotron is TE8,3 with a corresponding frequency of 393.4 GHz in the second harmonic cyclotron resonance. We observed oscillations of different modes including fundamental harmonic modes in the 200-GHz band upon varying the strength of the magnetic field in the cavity. Radiation patterns corresponding to these modes emitted from the window were Gaussian although the internal mode converter was designed for the TE8,3 mode. The directions of the radiated Gaussian beams were found to depend on the oscillation modes with a relation similar to that obtained for another gyrotron that was also equipped with a mode converter. This relation is explained based on geometrical optics. Moreover, numerical calculation with the electromagnetic wave code developed in FIR FU confirmed the same relation. The observed features of the Gyrotron FU CW GII show that it can serve as a unique power source with two frequency bands at 200 and 400 GHz. This result provides a way of developing multiple-frequency gyrotrons.

Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Idehara, Toshitaka; Kawase, Tatsuru; Ogawa, Isamu; Saito, Teruo; Fujiwara, Toshimichi

2014-07-01

193

Quantification of collagen fiber organization in biological tissues at cellular and molecular scales using second-harmonic generation imaging  

NASA Astrophysics Data System (ADS)

Collagen is the most abundant structural protein found in the human body, and is responsible for providing structure and function to tissues. Collagen molecules organize naturally into structures called fibers on the scale of the wavelength of light and lack inversion symmetry, thus allowing for the process of second harmonic generation (SHG) when exposed to intense incident light. We have developed two quantitative techniques: Fourier transform-second-harmonic generation (FT-SHG) imaging and generalized chi2 second-harmonic generation (chi2-SHG) imaging. In order to show that FT-SHG imaging can be used as a valuable diagnostic tool for real-world biological problems, we first investigate collagenase-induced injury in horse tendons. Clear differences in collagen fiber organization between normal and injured tendon are quantified. In particular, we observe that the regularly oriented organization of collagen fibers in normal tendons is disrupted in injured tendons leading to a more random organization. We also observe that FT-SHG microscopy is more sensitive in assessing tendon injury compared to the conventional polarized light microscopy. The second study includes quantifying collagen fibers in cortical bone using FT-SHG imaging and comparing it with scanning electron microscopy (SEM). Further, as an example study, we show how FT-SHG imaging could be used to quantify changes in bone structure as a function of age. Some initial work and future directions for extending FT-SHG to 3D are also discussed. The second technique, chi2-SHG imaging, takes advantage of the coherent nature of SHG and utilizes polarization to extract the second-order susceptibility (d elements) which provides information on molecular organization, i.e., it provides access to sub-diffractional changes "optically". We use chi2-SHG in combination with FT-SHG imaging to investigate a couple of biological problems. First, we quantify differences in collagen fiber organization between cornea and sclera of the eye in order to investigate their properties of transparency and opacity, respectively. We find from chi2-SHG imaging that there is no statistical difference in the values of d elements between cornea and sclera, indicating that the underlying collagen structure generating SHG from the two is similar at the level of detection of SHG microscopy. However, the difference lies in the spatial organization of these collagen fibers as observed from FT-SHG imaging. We find that cornea contains lamellae with patches of ordered and uniform diameter collagen fibers with axial order, which could be the reason for its transparent behavior. Conversely, there are no lamellae in sclera (i.e., no axial order), and fibers are thicker, denser, have inconsistent diameters, and possess relatively inhomogeneous orientations, leading to its opaque nature. We also utilized the two techniques to assess differences in stromal collagen fibers for several human breast tissue conditions: normal, hyperplasia, dysplasia, and malignant. Using FT-SHG imaging, we note differences between malignant and other pathological conditions through the metric A.I. ratio. Using generalized chi2-SHG imaging, we observe structural changes in collagen at the molecular scale, and a particular d element showed a more sensitive differentiation between breast tissue conditions, except between hyperplasia and normal/dysplasia. We also find that the trigonal symmetry (3m) is a more appropriate model to describe collagen fibers in malignant tissues as opposed to the conventionally used hexagonal symmetry (C6). Furthermore, the percentage of abnormal collagen fibers could potentially be used as a metric for differentiating breast tissue conditions. We also introduce a technique for extending chi2-SHG to fibers with curvature which is useful for generating chi2-image maps (in terms of d elements) instead of the conventional SHG intensity images. The spatial variations in d elements will provide additional information. For example, in breast cancer tissues, it may help in observing how fibers chang

Ambekar Ramachandra Rao, Raghu

194

Linewidth of the harmonics in a microwave frequency comb generated by focusing a mode-locked ultrafast laser on a tunneling junction  

SciTech Connect

Previous analyses suggest that microwave frequency combs (MFCs) with harmonics having extremely narrow linewidths could be produced by photodetection with a mode-locked ultrafast laser. In the MFC generated by focusing a passively mode-locked ultrafast laser on a tunneling junction, 200 harmonics from 74.254?MHz to 14.85?GHz have reproducible measured linewidths approximating the 1?Hz resolution bandwidth (RBW) of the spectrum analyzer. However, in new measurements at a RBW of 0.1?Hz, the linewidths are distributed from 0.12 to 1.17?Hz. Measurements and analysis suggest that, because the laser is not stabilized, the stochastic drift in the pulse repetition rate is the cause for the distribution in measured linewidths. It appears that there are three cases in which the RBW is (1) greater than, (2) less than, or (3) comparable with the intrinsic linewidth. The measured spectra in the third class are stochastic and may show two or more peaks at a single harmonic.

Hagmann, Mark J. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Stenger, Frank S. [School of Computing, University of Utah, Salt Lake City, Utah 84112 (United States); Yarotski, Dmitry A. [Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2013-12-14

195

Frequency-radial duality based photoacoustic image reconstruction.  

PubMed

Photoacoustic image reconstruction algorithms are usually slow due to the large sizes of data that are processed. This paper proposes a method for exact photoacoustic reconstruction for the spherical geometry in the limiting case of a continuous aperture and infinite measurement bandwidth that is faster than existing methods namely (1) backprojection method and (2) the Norton-Linzer method [S. J. Norton and M. Linzer, "Ultrasonic reflectivity imaging in three dimensions: Exact inverse scattering solution for plane, cylindrical and spherical apertures," Biomedical Engineering, IEEE Trans. BME 28, 202-220 (1981)]. The initial pressure distribution is expanded using a spherical Fourier Bessel series. The proposed method estimates the Fourier Bessel coefficients and subsequently recovers the pressure distribution. A concept of frequency-radial duality is introduced that separates the information from the different radial basis functions by using frequencies corresponding to the Bessel zeros. This approach provides a means to analyze the information obtained given a measurement bandwidth. Using order analysis and numerical experiments, the proposed method is shown to be faster than both the backprojection and the Norton-Linzer methods. Further, the reconstructed images using the proposed methodology were of similar quality to the Norton-Linzer method and were better than the approximate backprojection method. PMID:22779464

Akramus Salehin, S M; Abhayapala, Thushara D

2012-07-01

196

Harmonic and sum-frequency generation of pulsed laser radiation in BBO, LBO, and KD*P  

Microsoft Academic Search

The optical properties of the nonlinear crystals lithium borate (LBO), barium borate (BBO) and deuterated potassium phosphate (KD*P) are compared for second and third harmonic generation of Nd:YAG laser radiation. In an experimental investigation the conversion efficiency has been measured as a function of the energy density of 8 ns long laser pulses, generated by a commercial Nd:YAG oscillator-amplifier system.

A. Borsutzky; R. Brünger; Ch. Huang; R. Wallenstein

1991-01-01

197

Method for imaging with low frequency electromagnetic fields  

DOEpatents

A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

Lee, K.H.; Xie, G.Q.

1994-12-13

198

Method for imaging with low frequency electromagnetic fields  

DOEpatents

A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

Lee, Ki H. (Lafayette, CA); Xie, Gan Q. (Berkeley, CA)

1994-01-01

199

Is tissue harmonic ultrasound imaging (THI) of the prostatic urethra and rectum superior to brightness (B) mode imaging? An observer study.  

PubMed

Quality ultrasound images are an essential part of prostate brachytherapy procedure. The authors have previously reported that tissue harmonic ultrasound images (THI) are superior to brightness (B) mode for the prostate. The objective of the current study was to compare both imaging modes for visualization of the prostatic urethra and rectum. B and THI mode transrectal ultrasound images were acquired for ten patients. The prostatic urethra and rectal wall were contoured by a radiation oncologist (RO) and five observers on randomly presented images. The contours on one patient were repeated four additional times by four observers. All the images were qualitatively scored using a five-level Likert scale. The values of the Pearson product-moment correlation coefficients showed that the observers were in close agreement with the RO. Two sample paired student t-test showed that the rectum volumes with THI were significantly smaller than B-mode, but no significant difference for urethra. Two-factor analysis of variances showed significant observer variability in defining the rectum and urethra in both imaging modes. Observer consistency of the rectum volumes, estimated by standard deviations as percentages of means was significantly improved for THI. The Likert scale based qualitative assessment supported quantitative observations. The significant improvement in image quality of the prostate (reported previously) and rectum with THI may offer better-quality treatment plans for prostate brachytherapy and potential improvement in local control. PMID:24792688

Sandhu, Gurpreet K; Angyalfi, Steve; Dunscombe, Peter B; Khan, Rao F

2014-09-01

200

Imaging Ripples on Phononic Crystals Reveals Acoustic Band Structure and Bloch Harmonics  

NASA Astrophysics Data System (ADS)

Broadband surface phonon wave packets on a phononic crystal made up of a microstructured line pattern are tracked in two dimensions and in real time with an ultrafast optical technique. The eigenmode distribution and the 2D acoustic band structure are obtained from spatiotemporal Fourier transforms of the data up to 1 GHz. We find stop bands at the zone boundaries for both leaky-longitudinal and Rayleigh waves, and show how the structure of individual acoustic eigenmodes in k space depends on Bloch harmonics and on mode coupling.

Profunser, Dieter M.; Wright, Oliver B.; Matsuda, Osamu

2006-08-01

201

Time-frequency analysis of functional optical mammographic images  

NASA Astrophysics Data System (ADS)

We have introduced working technology that provides for time-series imaging of the hemoglobin signal in large tissue structures. In this study we have explored our ability to detect aberrant time-frequency responses of breast vasculature for subjects with Stage II breast cancer at rest and in response to simple provocations. The hypothesis being explored is that time-series imaging will be sensitive to the known structural and functional malformations of the tumor vasculature. Mammographic studies were conducted using an adjustable hemisheric measuring head containing 21 source and 21 detector locations (441 source-detector pairs). Simultaneous dual-wavelength studies were performed at 760 and 830 nm at a framing rate of ~2.7 Hz. Optical measures were performed on women lying prone with the breast hanging in a pendant position. Two class of measures were performed: (1) 20- minute baseline measure wherein the subject was at rest; (2) provocation studies wherein the subject was asked to perform some simple breathing maneuvers. Collected data were analyzed to identify the time-frequency structure and central tendencies of the detector responses and those of the image time series. Imaging data were generated using the Normalized Difference Method (Pei et al., Appl. Opt. 40, 5755-5769, 2001). Results obtained clearly document three classes of anomalies when compared to the normal contralateral breast. 1) Breast tumors exhibit altered oxygen supply/demand imbalance in response to an oxidative challenge (breath hold). 2) The vasomotor response of the tumor vasculature is mainly depressed and exhibits an altered modulation. 3) The affected area of the breast wherein the altered vasomotor signature is seen extends well beyond the limits of the tumor itself.

Barbour, Randall L.; Graber, Harry L.; Schmitz, Christoph H.; Tarantini, Frank; Khoury, Georges; Naar, David J.; Panetta, Thomas F.; Lewis, Theophilus; Pei, Yaling

2003-07-01

202

Image transmission in tactical radio frequency shared network propagation environments  

NASA Astrophysics Data System (ADS)

The need to transmit images across tactical radio frequency (rf) links has been identified in army digitization applications. For example, military doctrine requires that tactical functions like identification of battlefield entities as potential targets and battle damage assessment be performed by the soldier. Currently, a key input to these processes is imagery. Therefore, the quality and timeliness of the image directly impact tactical performance. The military is investigating the employment of remote sensors and advanced communications systems to meet this requirement as part of its digitization effort. Army communications systems exist that partially meet this requirement. However, many existing solutions employ these legacy systems in the context of a point-to-point communications architecture. Solutions to the problem of transmitting images across a rf network have not been fully explored. The term network implies that the rf transmission media is common to and shared by multiple subscribers. It is a suite of capabilities that collectively manage media access and information transfer for its subscribers thus providing substantial improvements in effectiveness, efficiency, and robustness. This paper discusses the challenges of transmitting images using one army legacy communications system in a tactical rf network, presents a conceptual framework for attacking the problem, and discusses one solution.

White, Kent H.; Wagner, Kerry A.; O'Hanian, Scott

1997-06-01

203

Imaging interplanetary CMEs at radio frequency from solar polar orbit  

NASA Astrophysics Data System (ADS)

Coronal mass ejections (CMEs) represent a great concentration of mass and energy input into the lower corona. They have come to be recognized as the major driver of physical conditions change in the Sun-Earth system. Consequently, observations of CMEs are important for understanding and ultimately predicting space weather conditions. This paper discusses a proposed mission, the Solar Polar Orbit Radio Telescope (SPORT) mission, which will observe the propagation of interplanetary CMEs to distances of near 0.35 AU from the Sun. The orbit of SPORT is an elliptical solar polar orbit. The inclination angle between the orbit and ecliptic plane should be about 90°. The main payload on board SPORT will be an imaging radiometer working at the meter wavelength band (radio telescope), which can follow the propagation of interplanetary CMEs. The images that are obtained by the radio telescope embody the brightness temperature of the objectives. Due to the very large size required for the antenna aperture of the radio telescope, we adopt interferometric imaging technology to reduce it. Interferometric imaging technology is based on indirect spatial frequency domain measurements plus Fourier transformation. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind ion instrument, an energetic particle detector, a magnetometer, a wave detector and a solar radio burst spectrometer.

Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Liu, Hao; Yan, Jingye; Wang, Chi; Wang, Chuanbing; Wang, Shui

2011-09-01

204

Molecular structure, Normal Coordinate Analysis, harmonic vibrational frequencies, Natural Bond Orbital, TD-DFT calculations and biological activity analysis of antioxidant drug 7-hydroxycoumarin  

NASA Astrophysics Data System (ADS)

In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the ?* and ?* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.

Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.

2013-01-01

205

Demonstration of An Image Rejection Mixer for High Frequency Applications (26-36 GHz)  

NASA Technical Reports Server (NTRS)

A new high frequency image-rejection mixer was successfully tested in a 26-36 GHz band receiver. This paper briefly describes the motivation for implementation of an image rejection mixer in a receiver system, the basic operation of an image rejection mixer, and the development and testing of an image rejection mixer for a high frequency, cryogenic receiver system.

Bankston, Cheryl D.; Carlstrom, John E.

1999-01-01

206

Imaging lifetime and anisotropy spectra in the frequency domain.  

PubMed

We report the development of a system combining the capabilities of fluorescence imaging spectroscopy (x, lambda, I), fluorescence lifetime (tau) and static and dynamic fluorescence anisotropy (r), enabling the wide-field measurement of the spectroscopic parameters of fluorophores: (x, lambda, I, tau, r). The system employs a frequency domain data collection strategy with a modulated light emitting diode as the light source. A polarization rotator placed in the excitation path after a polarizer allows alternating parallel and perpendicular images to be collected without moving parts. A second polarizer on the emission side serves as the analyzer, leading to estimations of the wavelength-dependent dynamic anisotropies. The spectrograph has a nominal range of 365-920 nm; however, the light-emitting diodes and filter sets used in this study restricted the usable range from about 510 to 700 nm. The system was tested on rhodamine 6G (R6G) solutions containing 0, 15, 37, 45, 59, 74 and 91 glycerol. These experiments gave rotational diffusion results comparing favourably with literature values while also demonstrating a trend towards shorter measured lifetimes at high refractive index. The ability of the system to resolve mixtures was tested on mixtures of anti-human IgG-FITC (gamma-chain-specific) and R6G. These fluorophores have similar lifetimes but could be separated using anisotropy parameters. The imaging capabilities of the system were tested on mixtures of fluorescent beads with glycerol solutions of R6G. PMID:19335458

Zhou, Y; Dickenson, J M; Hanley, Q S

2009-04-01

207

Direct Observation of Anisotropic Carrier Transport in Organic Semiconductor by Time-Resolved Microscopic Optical Second-Harmonic Imaging  

NASA Astrophysics Data System (ADS)

In-plane anisotropic carrier transport in single-crystalline grains of the dip-coated 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene film is studied by using the time-resolved microscopic optical second-harmonic generation (TRM-SHG). The TRM-SHG imaging directly visualizes the directional dependence of the carrier velocity, indicating the anisotropic carrier mobility of the TIPS pentacene single crystal. Results showed that the mobility anisotropy is smaller than that obtained from the current-voltage (I-V) characteristics. Overestimation of the mobility anisotropy using the I-V characteristics, compared with that obtained from the TRM-SHG measurement, is ascribed to the effect of the grain boundary on the carrier transport.

Manaka, Takaaki; Matsubara, Kohei; Abe, Kentaro; Iwamoto, Mitsumasa

2013-10-01

208

Second Harmonic Generation Spectroscopy and Domain Imaging of the High-Temperature Multiferroic CuO  

NASA Astrophysics Data System (ADS)

An analysis of the magnetically induced ferroelectric phase in the high-temperature multiferroic CuO by optical second harmonic generation (SHG) reveals a rich variety of contributions coupling to the multiferroic order. Observation of a ``giant'' SHG efficiency points to the presence of electronic contributions to the spontaneous polarization. The SHG spectra are dominated by transitions within the Cu2+ band and by SHG resonance enhancement. An investigation of the multiferroic domain structure by SHG shows an isotropic distribution of domains with a lateral extension of about 10 ?m. This value is 1--2 orders of magnitude smaller than in other multiferroics and emphasizes the outstanding position CuO takes in the family of magnetically induced ferroelectrics.

Hoffmann, Tim; Kimura, Kenta; Kimura, Tsuyoshi; Fiebig, Manfred

2012-12-01

209

Polarization-resolved second-harmonic generation imaging for liver fibrosis assessment without labeling  

NASA Astrophysics Data System (ADS)

We apply the polarization-resolved second-harmonic generation (PR-SHG) microscopy to investigate the changes of collagen typings (type I vs type III) and collagen fibril orientations of liver tissue in bile-duct-ligation (BDL) rat models. The PR-SHG results show that the second-order susceptibility tensor ratios (?31/?15 and ?33/?15) of collagen fibers increase with liver fibrotic progression after BDL surgery, reflecting an increase of the type III collagen component with the severity of liver fibrosis; and the square root of the collagen type III to type I ratio linearly correlates (R2 = 0.98) with histopathological scores. Furthermore, the collagen fibril orientations become more random with liver fibrosis transformation as compared to normal liver tissue. This work demonstrates that PR-SHG microscopy has the potential for label-free diagnosis and characterization of liver fibrosis based on quantitative analysis of collagen typings and fibril orientations.

Lin, Jian; Pan, Shiying; Zheng, Wei; Huang, Zhiwei

2013-10-01

210

Investigation of Photonic Devices using Second-Harmonic-Generation Frequency-Resolved Optical Gating (SHG-FROG)  

E-print Network

Gating (SHG-FROG) Brian R. Washburn The heart of an experiment in ultrafast optics is the pulsed laser be used to determine the pulse duration. Frequency-resolved optical gating (FROG) is a technique autocorrelation. Plus, due to the overdetermination of the pulse in the time- frequency domain, FROG has built

Washburn, Brian

211

Feasibility of High Frequency Acoustic Imaging for Inspection of Containments  

SciTech Connect

The Nuclear Regulatory Commission has a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and Ieaktightness of metal containment vessels and steel liners of concrete containment in nuclear power plants. One of the program objectives is to identify a technique(s) for inspection of inaccessible portions of the containment pressure boundary. Acoustic imaging has been identified as one of these potential techniques. A numerical feasibility study investigated the use of high-frequency bistatic acoustic imaging techniques for inspection of inaccessible portions of the metallic pressure boundary of nuclear power plant containment. The range-dependent version of the OASES Code developed at the Massachusetts Institute of Technology was utilized to perform a series of numerical simulations. OASES is a well developed and extensively tested code for evaluation of the acoustic field in a system of stratified fluid and/or elastic layers. Using the code, an arbitrary number of fluid or solid elastic layers are interleaved, with the outer layers modeled as halfspaces. High frequency vibrational sources were modeled to simulate elastic waves in the steel. The received field due to an arbitrary source array can be calculated at arbitrary depth and range positions. In this numerical study, waves that reflect and scatter from surface roughness caused by modeled degradations (e.g., corrosion) are detected and used to identify and map the steel degradation. Variables in the numerical study included frequency, flaw size, interrogation distance, and sensor incident angle.Based on these analytical simulations, it is considered unlikely that acoustic imaging technology can be used to investigate embedded steel liners of reinforced concrete containment. The thin steel liner and high signal losses to the concrete make this application difficult. Results for portions of steel containment embedded in concrete are more encouraging in that they indicate that the intrinsic backscatter from degradations representing thickness reductions from 10 to 80% the shell thickness are sufficient to permit detection. It is recommended that a controlled experimental program be conducted in which sensor levels are calibrated against degradations to determine if current sensor technology can input sufficient power into the system to provide return levels within the dynamic range of the receivers.

C.N. Corrado; J.E. Bondaryk; V. Godino

1998-08-01

212

Time selection for ISAR imaging based on time-frequency analysis  

NASA Astrophysics Data System (ADS)

Because of target's complicated movement, conventional ISAR imaging algorithm can not meet the demands of maneuvering target imaging. On the basis of analyzing the phase model of target scatterer, a new time selection method for maneuvering target imaging is proposed. Based on adaptive optimal kernel (AOK) time-frequency representation, instantaneous Doppler frequencies of echoes in range bins are estimated. According to the estimated Doppler frequencies, imaging time can be selected. Raw radar data verify the effectiveness of the proposed method.

Li, Rui; Tao, Jiang; Shi, Wang D.

2013-03-01

213

Optical second-harmonic imaging of Pb{sub x}Cd{sub 1-x}Te ternary alloys  

SciTech Connect

We employ femtosecond laser pulses (80 fs, 1.59 eV, and 80 MHz) to study the optical second-harmonic (SH) response of Pb{sub x}Cd{sub 1-x}Te ternary alloys (x about 0.2) grown by the vertical Bridgman method. The alloy segregates into a Pb-rich and a Cd-rich phase, the latter dominating the SH response of the ternary alloy by at least two orders of magnitude. Several sample regions show a regular layer-by-layer accommodation of the Pb-rich and Cd-rich phases as seen by a periodic alternation of the alloy's SH response on a {approx}10-{mu}m length scale. Furthermore, we employ polarization-resolved SH imaging as well as SH imaging at different azimuthal angles to obtain spatially resolved mappings of the sample, which are sensitive to the composition as well as the growth orientation of the Pb{sub x}Cd{sub 1-x}Te material system. We observe an azimuthal phase shift of approximately 30 deg. between coherent macroscopic regions (several mm{sup 2}) in the Cd-rich phase of the ternary alloy. We interpret these regions as large area crystalline grains of (111) and (411) crystal orientations and approximately equal composition. Hence, SH imaging is shown to spatially resolve regions of different growth directions within the Pb{sub x}Cd{sub 1-x}Te sample.

Scheidt, T.; Rohwer, E.G.; Bergmann, H.M. von; Saucedo, E.; Dieguez, E.; Fornaro, L.; Stafast, H. [Laser Research Institute, Physics Department, University of Stellenbosch, Private Bag XI, Maticland 7602 (South Africa); Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Madrid 28049 (Spain); Grupo de Semiconductores Compuestos, Facultad de Quimica, Universidad de la Republica, Montevideo 11800 (Uruguay); Institut fuer Physikalische Hochtechnologie (IPHT), P.O. Box 100239, 07702 Jena (Germany)

2005-05-15

214

Orbital-optimized coupled-electron pair theory and its analytic gradients: Accurate equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions  

NASA Astrophysics Data System (ADS)

Orbital-optimized coupled-electron pair theory [or simply ``optimized CEPA(0),'' OCEPA(0), for short] and its analytic energy gradients are presented. For variational optimization of the molecular orbitals for the OCEPA(0) method, a Lagrangian-based approach is used along with an orbital direct inversion of the iterative subspace algorithm. The cost of the method is comparable to that of CCSD [O(N6) scaling] for energy computations. However, for analytic gradient computations the OCEPA(0) method is only half as expensive as CCSD since there is no need to solve the ?2-amplitude equation for OCEPA(0). The performance of the OCEPA(0) method is compared with that of the canonical MP2, CEPA(0), CCSD, and CCSD(T) methods, for equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions between radicals. For bond lengths of both closed and open-shell molecules, the OCEPA(0) method improves upon CEPA(0) and CCSD by 25%-43% and 38%-53%, respectively, with Dunning's cc-pCVQZ basis set. Especially for the open-shell test set, the performance of OCEPA(0) is comparable with that of CCSD(T) (?R is 0.0003 A? on average). For harmonic vibrational frequencies of closed-shell molecules, the OCEPA(0) method again outperforms CEPA(0) and CCSD by 33%-79% and 53%-79%, respectively. For harmonic vibrational frequencies of open-shell molecules, the mean absolute error (MAE) of the OCEPA(0) method (39 cm-1) is fortuitously even better than that of CCSD(T) (50 cm-1), while the MAEs of CEPA(0) (184 cm-1) and CCSD (84 cm-1) are considerably higher. For complete basis set estimates of hydrogen transfer reaction energies, the OCEPA(0) method again exhibits a substantially better performance than CEPA(0), providing a mean absolute error of 0.7 kcal mol-1, which is more than 6 times lower than that of CEPA(0) (4.6 kcal mol-1), and comparing to MP2 (7.7 kcal mol-1) there is a more than 10-fold reduction in errors. Whereas the MAE for the CCSD method is only 0.1 kcal mol-1 lower than that of OCEPA(0). Overall, the present application results indicate that the OCEPA(0) method is very promising not only for challenging open-shell systems but also for closed-shell molecules.

Bozkaya, U?ur; Sherrill, C. David

2013-08-01

215

Multi-parametric monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for focused ultrasound (HMIFU)  

NASA Astrophysics Data System (ADS)

Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and relative phase-shift during high energy HIFU where tissue boiling occurs. Forty three (n=18) thermal lesions were formed in ex vivo canine liver specimens. Two dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10-, 20-and 30-s HIFU durations at three different acoustic powers of 8, 10, and 11W. For the 10-, 20-, and 30-s treatment cases, a steady decrease in the displacement (-8.67±4.80, -14.44±7.77, 24.03±12.11?m), compressive strain -0.16±0.06, -0.71±0.30, -0.68±0.36 %, and phase shift +1.80±6.80, -15.80±9.44, -18.62±13.14 ° were obtained, respectively, indicating overall increase of relative stiffness and decrease of the viscosity-to-stiffness ratio during heating. After treatment, 2D HMI displacement images of the thermal lesions showed an increased lesion-to-background contrast of 1.34±0.19, 1.98±0.30, 2.26±0.80 and lesion size of 40.95±8.06, 47.6±4.87, and 52.23±2.19 mm2, respectively, which was validated again with pathology 25.17±6.99, 42.17±1.77, 47.17±3.10 mm2. Additionally, studies also investigated the performance of mutli-parametric monitoring under the influence of boiling and attenuation change due to tissue boiling, where discrepancies were found such as deteriorated displacement SNR and reversed lesion-to-background displacement contrast with indication on possible increase in attenuation and tissue gelatification or pulverization. Despite the challenge of the boiling mechanism, the relative phase shift served as consist biomechanical tissue response independent of changes in acoustic properties throughout the HIFU treatment. In addition, the 2D HMI displacement images were able to confirm and quantify the change in dimensions of the thermal lesion site. Therefore, the multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU treatment.

Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa

2012-11-01

216

Frequency spectrum spatially resolved acoustic spectroscopy for microstructure imaging  

NASA Astrophysics Data System (ADS)

The microstructure of a material influences the characteristics of a component such as its strength and stiffness. A previously described laser ultrasonic technique known as spatially resolved acoustic spectroscopy (SRAS) can image surface microstructure, using the local surface acoustic wave (SAW) velocity as a contrast mechanism. The technique is robust and tolerant of acoustic aberrations. Compared to other existing methods such as electron backscattered diffraction, SRAS is completely non-contact, non-destructive (as samples do not need to be polished and sectioned), fast, and is capable of inspecting very large components. The SAW velocity, propagating in multiple directions, can in theory be used to determine the crystallographic orientation of grains. SRAS can be implemented by using a fixed grating period with a broadband laser excitation source; the velocity is determined by analysing the measured frequency spectrum. Experimental results acquired using this "frequency spectrum SRAS" (f-SRAS) method are presented. The instrumentation has been improved such that velocity data can be acquired at 1000 points per second. The results are illustrated as velocity maps of material microstructure in two orthogonal directions. We compare velocities measured in multiple propagation direction with those predicted by the numerical model, for several cubic crystals of known orientations.

Li, Wenqi; Sharples, Steve D.; Clark, Matt; Somekh, Michael G.

2011-01-01

217

Four-frequency polarizing microscope for recording plasma images in the wavelength range 0.4-1.1 {mu}m  

SciTech Connect

The optical scheme and design of a four-frequency polarizing microscope intended for simultaneous recording of plasma images in the wavelength range 0.4-1.1 {mu}m with the spatial resolution 12 {mu}m in the entire spectral range are described. The effectiveness of such a microscope in studies of plasmas produced on interaction of laser radiation with a target is demonstrated. The plasma images are obtained at the frequencies {omega}{sub 0}, (3/2){omega}{sub 0}, 2{omega}{sub 0}, and (5/2){omega}{sub 0}, where {omega}{sub 0} corresponds to the frequency of heating radiation. The transformation coefficient that characterizes the efficiency of conversion of heating radiation into the 2{omega}{sub 0}, (3/2){omega}{sub 0}, and (5/2){omega}{sub 0} harmonics generated in the plasma is determined.

Vasin, B. L.; Mal'kova, S. V.; Osipov, M. V.; Puzyrev, V. N.; Saakyan, A. T.; Starodub, A. N.; Fedotov, S. I.; Fronya, A. A.; Shutyak, V. G. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2010-12-15

218

Parallel adaptive finite element simulation for optical molecular imaging with simplified spherical harmonics approximation  

Microsoft Academic Search

Whole-body optical molecular imaging is rapidly developing for preclinical research. It is essential and necessary to develop novel simulation methods of light propagation for optical imaging, especially when a priori knowledge, large-volume domain and wide-range optical properties need to be considered in the reconstruction algorithm. In this paper, we develop a three dimensional parallel adaptive finite element method with simplified

Yujie Lu; Arion F. Chatziioannou

2008-01-01

219

Visible spatial frequency domain imaging with a digital light microprojector.  

PubMed

There is a need for cost effective, quantitative tissue spectroscopy and imaging systems in clinical diagnostics and pre-clinical biomedical research. A platform that utilizes a commercially available light-emitting diode (LED) based projector, cameras, and scaled Monte Carlo model for calculating tissue optical properties is presented. These components are put together to perform spatial frequency domain imaging (SFDI), a model-based reflectance technique that measures and maps absorption coefficients (?a) and reduced scattering coefficients (?s') in thick tissue such as skin or brain. We validate the performance of the flexible LED and modulation element (FLaME) system at 460, 530, and 632 nm across a range of physiologically relevant ?a values (0.07 to 1.5??mm-1) in tissue-simulating intralipid phantoms, showing an overall accuracy within 11% of spectrophotometer values for ?a and 3% for ?s'. Comparison of oxy- and total hemoglobin fits between the FLaME system and a spectrophotometer (450 to 1000 nm) is differed by 3%. Finally, we acquire optical property maps of a mouse brain in vivo with and without an overlying saline well. These results demonstrate the potential of FLaME to perform tissue optical property mapping in visible spectral regions and highlight how the optical clearing effect of saline is correlated to a decrease in ?s' of the skull. PMID:24005154

Lin, Alexander J; Ponticorvo, Adrien; Konecky, Soren D; Cui, Haotian; Rice, Tyler B; Choi, Bernard; Durkin, Anthony J; Tromberg, Bruce J

2013-09-01

220

Imaging Interplanetary CMEs at Radio Frequency From Solar Polar Orbit  

NASA Astrophysics Data System (ADS)

Coronal mass ejections (CMEs) are violent discharges of plasma and magnetic fields from the Sun's corona. They have come to be recognized as the major driver of physical conditions in the Sun-Earth system. Consequently, the detection of CMEs is important for un-derstanding and ultimately predicting space weather conditions. The Solar Polar Orbit Radio Telescope (SPORT) is a proposed mission to observe the propagation of interplanetary CMEs from solar polar orbit. The main payload (radio telescope) on board SPORT will be an in-terferometric imaging radiometer working at the meter wavelength band, which will follow the propagation of interplanetary CMEs from a distance of a few solar radii to near 1 AU from solar polar orbit. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind plasma experiment, a solar wind ion composition instrument, an energetic particle detector, a wave detector, a mag-netometer and an interplanetary radio burst tracker. In this paper, we first describe the current shortage of interplanetary CME observations. Next, the scientific motivation and objectives of SPORT are introduced. We discuss the basic specifications of the main radio telescope of SPORT with reference to the radio emission mechanisms and the radio frequency band to be observed. Finally, we discuss the key technologies of the SPORT mission, including the con-ceptual design of the main telescope, the image retrieval algorithm and the solar polar orbit injection. Other payloads and their respective observation objectives are also briefly discussed. Key words: Interplanetary CMEs; Interferometric imaging; Solar polar orbit; Radiometer.

Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Wang, Chi; Wang, C. B.; Wang, S.

221

Fusion in frequency-domain of instantaneous laser assistant vision image and low-light-level image  

Microsoft Academic Search

The area of low light level (LLL) night vision, improving the LLL image quality by using infrared laser assistant vision technology has been proposed as an important subject. In this paper, we realized the fusion of the instantaneous laser assistant vision image and LLL image in frequency-domain. The features of the two kinds of images are different because the spectrums

Shaoyuan Sun; Liping Wang; Baomin Zhang

2000-01-01

222

Femtosecond two-photon LIF imaging of atomic species using a frequency-quadrupled Ti:sapphire laser  

NASA Astrophysics Data System (ADS)

Femtosecond (fs)-duration laser pulses are well suited for two-photon laser-induced-fluorescence (TPLIF) imaging of key atomic species such as H, N, and O in gas-phase reacting flows. Ultrashort pulses enable efficient nonlinear excitation, while reducing interfering photochemical processes. Furthermore, amplified fs lasers enable high-repetition-rate imaging (typically 1-10 kHz) for capturing the dynamics of turbulent flow fields. However, two-dimensional (2D), single-laser-shot fs-TPLIF imaging of the above species is challenging in most practical flow fields because of the limited ultraviolet pulse energy available in commercial optical parametric amplifier (OPA)-based tunable laser sources. In this work, we report the development of an efficient, fs frequency-quadrupling unit [i.e., fourth-harmonic generator (FHG)] with overall conversion efficiency more than six times greater than that of commercial OPA-based systems. The development, characterization, and application of the fs-FHG system for 2D imaging of H atoms in flames are described in detail. The potential application of the same laser system for 2D imaging of N and O atoms is also discussed.

Kulatilaka, Waruna D.; Gord, James R.; Roy, Sukesh

2014-07-01

223

Inverse transport with isotropic time-harmonic sources Guillaume Bal  

E-print Network

phase arguments, which allow us to exhibit decay of solutions (see also [6]) and errors-harmonic. This is a practical setting in the medical imaging modality called Optical Tomography. As the modulation frequency the convergence of an iterative reconstruction scheme and in particular to prove that certain error operators

Bal, Guillaume

224

186 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 3, MARCH 2000 Imaging Heart Motion Using Harmonic Phase MRI  

E-print Network

tagged image acquisition methodology has occurred [6], [8]­[12], lack of fast quantitative analysis, 1999. This research was supported by the National Heart, Lung, and Blood Institute under Grant R01-HL image processing and matched filtering techniques [13], Young and Axel [1] and Kumar and Goldgof [14

Prince, Jerry L.

225

Compound imaging of ocular tissues with backward second harmonic generation and two-photon excitation fluorescence  

NASA Astrophysics Data System (ADS)

We report the implementation of compound imaging with backward second harnionic generation (SHG) and two-photon excitation fluorescence (TPEF) in a standard confocal microscope. Various biological tissues, including skin, muscle and ocular tissues (e.g. cornea. iris, choroid, and sclera) have been investigated with different sample preparation methods (fresh, fixation). The results show that collagen-rich ocular tissues, like cornea, iris, choroids, and sclera can produce strong SHG signals. In sclera, there are not only plenty of collagen, but also various endogenous fluorophores. The organization of collagen fibers in sclera is clearly distinguishable from its SHG images viewed transversely and horizontally respectively. We also find that fixation of the sample with formaldehyde has reduced the intensity of SHG intensity by almost 5O%. As the SHG and TPEF can provide complementary information about collagen and fluorophores rich biological tissues, compound imaging of SHG and TPEF presented in this study is believed to have potential applications in biomedicine and clinical diagnosis.

Chen, Danni; Qu, Junle; Xu, Gaixia; Liu, Lixin; Lin, Ziyang; Niu, Hanben

2006-09-01

226

Combined nonlinear laser imaging (two-photon excitation fluorescence, second and third-harmonic generation, and fluorescence lifetime imaging microscopies) in ovarian tumors  

NASA Astrophysics Data System (ADS)

We applied Two-photon Excited Fluorescence (TPEF), Second/Third Harmonic Generation (SHG and THG) and Fluorescence Lifetime Imaging (FLIM) Non Linear Optics (NLO) Laser-Scanning Microscopy within the same imaging platform to evaluate their use as a diagnostic tool in ovarian tumors. We assess of applicability of this multimodal approach to perform a pathological evaluation of serous and mucinous tumors in human samples. The combination of TPEF-SHG-THG imaging provided complementary information about the interface epithelium/stromal, such as the transformation of epithelium surface (THG) and the overall fibrillar tissue architecture (SHG). The fact that H&E staining is the standard method used in clinical pathology and that the stored samples are usually fixed makes it important a re-evaluation of these samples with NLO microscopy to compare new results with a library of already existing samples. FLIM, however, depends on the chemical environment around the fluorophors that was completely changed after fixation; therefore it only makes sense in unstained samples. Our FLIM results in unstained samples demonstrate that it is possible to discriminate healthy epithelia from serous or mucinous epithelia. Qualitative and quantitative analysis of the different imaging modalities used showed that multimodal nonlinear microscopy has the potential to differentiate between cancerous and healthy ovarian tissue.

Adur, J.; Pelegati, V. B.; de Thomaz, A. A.; Bottcher-Luiz, F.; Andrade, L. A. L. A.; Almeida, D. B.; Carvalho, H. F.; Cesar, C. L.

2012-03-01

227

Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle  

NASA Astrophysics Data System (ADS)

The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle may be associated to a quasi-11-year solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Spörer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial three-frequency beat cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900-1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature modulation since 1850. The model forecasts a new prolonged solar minimum during 2020-2045, which would be produced by the minima of both the 61 and 115-year reconstructed cycles. Finally, the model predicts that during low solar activity periods, the solar cycle length tends to be longer, as some researchers have claimed. These results clearly indicate that both solar and climate oscillations are linked to planetary motion and, furthermore, their timing can be reasonably hindcast and forecast for decades, centuries and millennia. The demonstrated geometrical synchronicity between solar and climate data patterns with the proposed solar/planetary harmonic model rebuts a major critique (by Smythe and Eddy, 1977) of the theory of planetary tidal influence on the Sun. Other qualitative discussions are added about the plausibility of a planetary influence on solar activity.

Scafetta, Nicola

2012-05-01

228

Super-Resolution Image with Estimated High Frequency Compensated Algorithm  

E-print Network

concept is to use signal processing techniques to obtain a high resolution (HR) image from observed single including video surveillance, medical imaging, satellite imaging, and video delivery and playback. SR image interpolation methods to enlarge the image, and then process it according to Iterative Back

Chang, Pao-Chi

229

In vivo time-lapse imaging of skin burn wound healing using second-harmonic generation microscopy  

NASA Astrophysics Data System (ADS)

Wound healing is a process to repair the damaged tissue caused by thermal burn, incised wound, or stab wound. Although the wound healing has many aspects, it is common for dynamics of collagen fiber, such as decomposition, production, or growth, to be closely related with wound healing. If such the healing process can be visualized as a timelapse image of the collagen fiber in the same subject, one may obtain new findings regarding biological repairing mechanisms in the healing process. In this article, to investigate the temporal modoification of dermal collagen fiber in the burn wound healing, we used second-harmonic-generation (SHG) microscopy, showing high selectivity and good image contrast to collagen molecules as well as high spatial resolution, optical three-dimensional sectioning, minimal invasiveness, deep penetration, the absence of interference from background light, and in vivo measurement without additional staining. Since SHG light arises from a non-centrosymmetric triple helix of three polypeptide chains in the collagen molecule, SHG intensity sensitively reflects the structure maturity of collagen molecule and its aggregates. A series of time-lapse SHG images during the wound healing process of 2 weeks clearly indicated that condensation and melting of dermal collagen fibers by the deep dermal burn, decomposition of the damaged collagen fibers in the inflammation phase, production of new collagen fibers in the proliferation phase, and the growth of the new collagen fibers in the remodeling phase. These results show a high potential of SHG microscopy for optical assessment of the wound healing process in vivo.

Yasui, Takeshi; Tanaka, Ryosuke; Hase, Eiji; Fukushima, Shu-ichiro; Araki, Tsutomu

2014-02-01

230

The ISAR imaging of ship based on adaptive optimal kernel time-frequency representation  

NASA Astrophysics Data System (ADS)

For ship targets at sea, because of their complicated ship movement, the conventional ISAR imaging algorithm can not be satisfied the needs of ship imaging. On the basis of analyzing the echo's Doppler frequency caused by the complicated ship movements, a new method based on adaptive optimal kernel time-frequency representation for ship imaging is proposed. The instantaneous ship images at different moment are obtained. Simulation and real radar data verify its effectiveness.

Li, Rui; Tao, Jiang; Tang, Zi Yue

2013-03-01

231

Arithmetic and Frequency Filtering Methods of Pixel-Based Image Fusion Techniques  

E-print Network

In remote sensing, image fusion technique is a useful tool used to fuse high spatial resolution panchromatic images (PAN) with lower spatial resolution multispectral images (MS) to create a high spatial resolution multispectral of image fusion (F) while preserving the spectral information in the multispectral image (MS).There are many PAN sharpening techniques or Pixel-Based image fusion techniques that have been developed to try to enhance the spatial resolution and the spectral property preservation of the MS. This paper attempts to undertake the study of image fusion, by using two types of pixel-based image fusion techniques i.e. Arithmetic Combination and Frequency Filtering Methods of Pixel-Based Image Fusion Techniques. The first type includes Brovey Transform (BT), Color Normalized Transformation (CN) and Multiplicative Method (MLT). The second type include High-Pass Filter Additive Method (HPFA), High-Frequency-Addition Method (HFA) High Frequency Modulation Method (HFM) and The Wavelet transform-base...

Al-Wassai, Firouz Abdullah; Al-Zuky, Ali A

2011-01-01

232

Spatial and frequency-based super-resolution of ultrasound images  

PubMed Central

Modern ultrasound systems can output video images containing more spatial and temporal information than still images. Super-resolution techniques can exploit additional information but face two challenges: image registration and complex motion. In addition, information from multiple available frequencies is unexploited. Herein, we utilised these information sources to create better ultrasound images and videos, extending existing technologies for image capture. Spatial and frequency-based super-resolution processing using multiple motion estimation and frequency combination was applied to ultrasound videos of deforming models. Processed images are larger, have greater clarity and detail, and less variability in intensity between frames. Significantly, strain measurements are more accurate and precise than those from raw videos, and have a higher contrast ratio between ‘tumour’ and ‘surrounding tissue’ in a phantom model. We attribute improvements to reduced noise and increased resolution in processed images. Our methods can significantly improve quantitative and qualitative assessments of ultrasound images when compared assessments of standard images.

Wu, Mon-Ju; Karls, Joseph; Duenwald-Kuehl, Sarah; Vanderby, Ray; Sethares, William

2014-01-01

233

Applications of time-frequency processing to radar imaging  

Microsoft Academic Search

High resolution radar image is always demanded. To achieve high resolution, wideband signal and longer imaging time are required. However, due to time-varying behavior of returned radar signals and due to multiple backscattering behavior of targets, radar image resolution can be significantly degraded and images become blurred. The conventional radar processor uses the Fourier transform to retrieve Doppler information. In

Victor C. Chen

1996-01-01

234

Second harmonic generation imaging of collagen matrix remodeling in a stimulated 3D cellular environment: forward versus backward detection  

NASA Astrophysics Data System (ADS)

The structural remodeling of collagen is important in several biological processes such as wound healing, tendon repair, fibrosis and developmental morphogenesis. Multiphoton microscopy, which uses ultra-short femto-second laser pulses as an excitation source, is efficient in the multiphoton excitation fluorescence (MPEF) of exogenous fluorescent labels tagged to various cellular macromolecular objects, as well as in the induction of a highly specific second harmonic generation (SHG) signal from non-centrosymmetric macromolecules such as fibrillar collagens. Although the non-descanned detectors in the reflection geometry have normally been employed for capturing the backward scattered SHG as well as the MPEF signals, considering the wide range of engineered thick tissue imaging applications, there are still un-answered questions about the generated 3D collagen structures because of the directional pattern of SHG signals. The present study dealt with an in vitro collagen-fibroblast raft model in which the stimulation of fibroblast cells induced the lateral orientation of collagen molecules. The SHG signals originating from the 3D collagen matrix were captured simultaneously in both forward and backward scattering directions to understand the collagen structural differences and to generate a comprehensive understanding of collagen matrix remodeling.

Abraham, Thomas; Scott, Alex; Carthy, Jon; McManus, Bruce

2011-03-01

235

Imaging in electrically conductive porous media without frequency encoding  

NASA Astrophysics Data System (ADS)

Understanding multi-phase fluid flow and transport processes under various pressure, temperature, and salinity conditions is a key feature in many remote monitoring applications, such as long-term storage of carbon dioxide (CO2) or nuclear waste in geological formations. We propose a low-field NMR tomographic method to non-invasively image the water-content distribution in electrically conductive formations in relatively large-scale experiments (˜1 m3 sample volumes). Operating in the weak magnetic field of Earth entails low Larmor frequencies at which electromagnetic fields can penetrate electrically conductive material. The low signal strengths associated with NMR in Earth's field are enhanced by pre-polarization before signal recording. To localize the origin of the NMR signal in the sample region we do not employ magnetic field gradients, as is done in conventional NMR imaging, because they can be difficult to control in the large sample volumes that we are concerned with, and may be biased by magnetic materials in the sample. Instead, we utilize the spatially dependent inhomogeneity of fields generated by surface coils that are installed around the sample volume. This relatively simple setup makes the instrument inexpensive and mobile (it can be potentially installed in remote locations outside of a laboratory), while allowing spatial resolution of the order of 10 cm. We demonstrate the general feasibility of our approach in a simulated CO2 injection experiment, where we locate and quantify the drop in water content following gas injection into a water-saturated cylindrical sample of 0.45 m radius and 0.9 m height. Our setup comprises four surface coils and an array consisting of three volume coils surrounding the sample. The proposed tomographic NMR methodology provides a more direct estimate of fluid content and properties than can be achieved with acoustic or electromagnetic methods alone. Therefore, we expect that our proposed method is relevant for geophysical applications, such as for monitoring CO2 injections in saline aquifers or detecting water leakage into nuclear waste deposit sites installed in electrically conductive formations.

Lehmann-Horn, J. A.; Walbrecker, J. O.

2012-07-01

236

Effects of density functionals and dispersion interactions on geometries, bond energies and harmonic frequencies of EUX3 (E=N, P, CH; X=H, F, Cl).  

PubMed

Quantum-chemical calculations have been performed to evaluate the geometries, bonding nature and harmonic frequencies of the compounds [EUX3] at DFT, DFT-D3, DFT-D3(BJ) and DFT-dDSc levels using different density functionals BP86, BLYP, PBE, revPBE, PW91, TPSS and M06-L. The stretching frequency of UN bond in [NUF3] calculated with DFT/BLYP closely resembles with the experimental value. The performance of different density functionals for accurate UN vibrational frequencies follows the order BLYP>revPBE>BP86>PW91>TPSS>PBE>M06-L. The BLYP functional gives accurate value of the UE bond distances. The uranium atom in the studied compounds [EUX3] is positively charged. Upon going from [EUF3] to [EUCl3], the partial Hirshfeld charge on uranium atom decreases because of the lower electronegativity of chlorine compared to flourine. The Gopinathan-Jug bond order for UE bonds ranges from 2.90 to 3.29. The UE bond dissociation energies vary with different density functionals as M06-L

Pandey, Krishna Kumar; Patidar, Pankaj; Patidar, Sunil Kumar; Vishwakarma, Ravi

2014-12-10

237

Near-infrared frequency-domain optical spectroscopy and magnetic resonance imaging: a combined  

E-print Network

noninvasive near-IR frequency-domain optical spectroscopy (NIRS) and magnetic resonance imaging (MRI in the diffu- sion tensor MRI. Mean optical coefficients (reduced scattering) re- mained unchanged in allNear-infrared frequency-domain optical spectroscopy and magnetic resonance imaging: a combined

238

Current density imaging using directly measured harmonic Bz data in MREIT.  

PubMed

Magnetic resonance electrical impedance tomography (MREIT) measures magnetic flux density signals through the use of a magnetic resonance imaging (MRI) in order to visualize the internal conductivity and/or current density. Understanding the reconstruction procedure for the internal current density, we directly measure the second derivative of Bz data from the measured k-space data, from which we can avoid a tedious phase unwrapping to obtain the phase signal of Bz . We determine optimal weighting factors to combine the derivatives of magnetic flux density data, [Symbol: see text](2) Bz , measured using the multi-echo train. The proposed method reconstructs the internal current density using the relationships between the induced internal current and the measured [Symbol: see text](2) Bz data. Results from a phantom experiment demonstrate that the proposed method reduces the scanning time and provides the internal current density, while suppressing the background field inhomogeneity. To implement the real experiment, we use a phantom with a saline solution including a balloon, which excludes other artifacts by any concentration gradient in the phantom. PMID:23573168

Park, Chunjae; Kwon, Oh In

2013-01-01

239

In-vivo corneal nonlinear optical tomography based on second harmonic and multiphoton autofluorescence imaging induced by near-infrared femtosecond lasers with rabbits  

Microsoft Academic Search

The intratissue multiphoton autofluorescence imaging (MAI) and the second harmonic generation (SHG) based on nonlinear process of femtosecond nanojoule laser pulses at wave length of 750-850 nm emitted from solid-state Titanium: Sapphire Chameleon have been used as a highly precise non-destructive tool to realize the in-vivo differentiation of corneal layers with the assistance of intratissue optical tomography and to visualize

Baogui Wang; Karl-Juergen Halbhuber; Iris Riemann; Karsten Koenig

2005-01-01

240

Sparse Matrix Beamforming and Image Reconstruction for 2-D HIFU Monitoring Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) With In Vitro Validation.  

PubMed

Harmonic motion imaging for focused ultrasound (HMIFU) utilizes an amplitude-modulated HIFU beam to induce a localized focal oscillatory motion simultaneously estimated. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system. A single divergent transmit beam was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface with frame rates up to 15 Hz, a 100-fold increase compared to conventional CPU-based processing. The real-time feedback rate does not require interrupting the HIFU treatment. Results in phantom experiments showed reproducible HMI images and monitoring of 22 in vitro HIFU treatments using the new 2-D system demonstrated reproducible displacement imaging, and monitoring of 22 in vitro HIFU treatments using the new 2-D system showed a consistent average focal displacement decrease of 46.7 ±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15%/(°)C, and 2.03±0.93%/(°)C , respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications. PMID:24960528

Hou, Gary Y; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E

2014-11-01

241

Matching Rules for Collective Behaviors on Complex Networks: Optimal Configurations for Vibration Frequencies of Networked Harmonic Oscillators  

PubMed Central

The structure-dynamics-function has become one of central problems in modern sciences, and it is a great challenge to unveil the organization rules for different dynamical processes on networks. In this work, we study the vibration spectra of the classical mass spring model with different masses on complex networks, and pay our attention to how the mass spatial configuration influences the second-smallest vibrational frequency () and the largest one (). For random networks, we find that becomes maximal and becomes minimal if the node degrees are point-to-point-positively correlated with the masses. In these cases, we call it point-to-point matching. Moreover, becomes minimal under the condition that the heaviest mass is placed on the lowest-degree vertex, and is maximal as long as the lightest mass is placed on the highest-degree vertex, and in both cases all other masses can be arbitrarily settled. Correspondingly, we call it single-point matching. These findings indicate that the matchings between the node dynamics (parameter) and the node position rule the global systems dynamics, and sometimes only one node is enough to control the collective behaviors of the whole system. Therefore, the matching rules might be the common organization rules for collective behaviors on networks. PMID:24386088

Zhan, Meng; Liu, Shuai; He, Zhiwei

2013-01-01

242

Dual aperture dipole magnet with second harmonic component  

SciTech Connect

An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

Praeg, Walter F. (Palos Park, IL)

1985-01-01

243

Dual aperture dipole magnet with second harmonic component  

DOEpatents

An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

Praeg, W.F.

1983-08-31

244

High frequency nonlinear B-scan imaging of microbubble contrast agents  

Microsoft Academic Search

It was previously shown that it is possible to produce nonlinear scattering from microbubble contrast agents using transmit frequencies in the 14-32 MHz range, suggesting the possibility of performing high-frequency, nonlinear microbubble imaging. In this study, we describe the development of nonlinear microbubble B-scan imaging instrumentation capable of operating at transmit center frequencies between 10 and 50 MHz. The system

David E. Goertz; Emmanuel Cherin; Andrew Needles; Raffi Karshafian; Allison S. Brown; Peter N. Burns; F. Stuart Foster

2005-01-01

245

Multi-Frequency Synthesis of VLBI Images Using a Generalized Maximum Entropy Method  

E-print Network

A new multi-frequency synthesis algorithm for reconstructing images from multi-frequency VLBI data is proposed. The algorithm is based on a generalized maximum-entropy method, and makes it possible to derive an effective spectral correction for images over a broad frequency bandwidth, while simultaneously reconstructing the spectral-index distribution over the source. The results of numerical simulations demonstrating the capabilities of the algorithm are presented.

Anisa T. Bajkova

2008-10-18

246

A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography  

NASA Astrophysics Data System (ADS)

The work presented herein describes the system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens micro positron emission tomography/computed tomography (microPET/CT) commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 µM IRDye800CW and 68Ga containing inclusion was used to associate PET and NIRF tomography. Three-dimensional mesh generation and anatomical referencing was accomplished through CT. A third-order simplified spherical harmonics approximation (SP3) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate the FDPM approach. Finally, the PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The obtained results validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging.

Darne, Chinmay D.; Lu, Yujie; Tan, I.-Chih; Zhu, Banghe; Rasmussen, John C.; Smith, Anne M.; Yan, Shikui; Sevick-Muraca, Eva M.

2012-12-01

247

A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography.  

PubMed

The work presented herein describes the system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens micro positron emission tomography/computed tomography (microPET/CT) commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 µM IRDye800CW and ??Ga containing inclusion was used to associate PET and NIRF tomography. Three-dimensional mesh generation and anatomical referencing was accomplished through CT. A third-order simplified spherical harmonics approximation (SP?) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate the FDPM approach. Finally, the PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The obtained results validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging. PMID:23171509

Darne, Chinmay D; Lu, Yujie; Tan, I-Chih; Zhu, Banghe; Rasmussen, John C; Smith, Anne M; Yan, Shikui; Sevick-Muraca, Eva M

2012-12-21

248

Parametric Estimation of Harmonically Related Sinusoids  

E-print Network

algorithm proves quite robust and successfully tracks both stationary and slowly varying frequency signals. Later, we propose an algorithm for fundamental frequency estimation which relies on the initial harmonic frequency estimate. The results of tests...

Dixit, Richa

2010-04-01

249

Myocardial first-pass perfusion imaging with hybrid-EPI: frequency-offsets and potential artefacts  

PubMed Central

Background First-pass myocardial perfusion is often imaged with a tailored hybrid centric interleaved echo-planar-imaging sequence, providing rapid image acquisition with good contrast enhancement. The centric interleaved phase-encode order minimises the effective time-of-echo but it is sensitive to frequency-offsets. This short article aims to show possible artefacts that might originate with this sequence, in the context of first-pass perfusion imaging, when frequency-offsets are present. Non-uniform magnitude modulation effects were also analysed. Methods Numerical and phantom simulations were used to illustrate the effects of frequency-offsets and non-uniform magnitude modulation with this sequence in a typical perfusion protocol. In vivo data was post-processed to analyse the h-EPI’s sensitivity to the frequency-offsets. Results The centric phase-order was shown to be highly sensitive to frequency-offsets due to its symmetrical phase slope. Resulting artefacts include blurring, and splitting of the image into two identical copies along the phase-encode direction. It was also shown that frequency-offsets can introduce signal loss and ghosting of the right ventricle signal into the myocardium. The in vivo results were confirmed by numerical and phantom simulations. Magnitude modulation effects were found to be small. Conclusions Imaging first-pass myocardial perfusion with an hybrid centric echo-planar-imaging sequence can be corrupted with ghosting and splitting of the image due to frequency-offsets. PMID:22731814

2012-01-01

250

The interaction between a single two-level atom and the combination of a frequency converter and the sub-harmonic generation  

NASA Astrophysics Data System (ADS)

The problem of a time-dependent quantum system, which consists of coupled sub-harmonic generation with the parametric down conversion injected within a single cavity containing an atom, is considered. The problem is transformed into the interaction between the su(1,1) quantum system and a single two-level atom. The wave function is calculated and the expectation values for the dynamical operators are obtained. It is shown that the phenomenon of collapses and revivals are sensitive to the variation of the Bargmann index k and the Perelomov parameter ?; moreover, a coherent trapping behavior is seen at the atomic coherence angle ? = ?/2. The phenomena of bunching and anti-bunching are reported where the atomic angle ? and the phase angle ? as well as ? are the most effective parameters. They are also effective for the variance squeezing, however the Bargmann index k increases the fluctuations and decreases the amount of squeezing. For the linear entropy we have observed that the index k has no effect, but the main effective parameters are ?, ? and ? in addition to the ratio between the atomic frequency and the coupling parameter.

Sebawe Abdalla, M.; Ahmed, M. M. A.; Obada, A. S.-F.; Khalil, E. M.

2014-09-01

251

Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography  

Microsoft Academic Search

We present images of heterogeneous turbid media derived from measurements of diffuse photon-density waves traveling through highly scattering tissue phantoms. To our knowledge, the images are the first experimental reconstruction based on data collected in the frequency domain. We demonstrate images of both absorbing and scattering heterogeneities and show that this method is sensitive to the optical properties of the

M. A. O'Leary; D. A. Boas; B. Chance; A. G. Yodh

252

Fast simulation of nonlinear radio frequency ultrasound images in inhomogeneous nonlinear media: CREANUIS  

E-print Network

Fast simulation of nonlinear radio frequency ultrasound images in inhomogeneous nonlinear media et traitement de l'image pour la sant´e, 7 avenue Jean Capelle, Bat Blaise Pascal, 69621 Villeurbanne, Nantes, France 91 #12;The simulation of ultrasound images is usually based on two main strategies: either

Paris-Sud XI, Université de

253

Tracking harmonic notch filter  

SciTech Connect

An electronic filter for automatically tracking and removing harmonically related interfering electrical signals such as power-line interference harmonics without attenuating other signals of interest even though the signals are frequency stable and/or near the interference signal frequencies. The filter comprises a very narrow band electronic commutated capacitor-bank comb-notch filter driven by a counter/decoder circuit which is in turn driven by a phase locked loop. The filter also comprises two narrow-band analog filters tuned to the two lowest harmonics of the interfering signal. The summed output of these two filters is applied to the input of the phase-locked loop. The phase-locked loop locks to the proper multiple of the interfering signal and drives the comb notch filter at a frequency which causes it to generate notches at unit multiples of the fundamental of the interference frequency. This action is continuous such that center frequencies of the notches are automatically adjusted to compensate for small variations in the interference frequency.

Eno, F.

1989-03-20

254

FREQUENCY-BASED SIGNAL PROCESSING FOR ULTRASOUND COLOR FLOW IMAGING  

Microsoft Academic Search

In ultrasound color flow imaging, the computation of flow estimates is well-recognized as a challenging problem from a signal processing perspective. The flow visualization performance of this imaging tool is often affected by error sources such as the lack of abundant signal samples available for processing, the presence of wideband clutter in the acquired signals, and the flow signal distortions

Alfred C. H. Yu; K. Wayne Johnston; Richard S. C. Cobbold

2007-01-01

255

Diffuse reflection imaging at terahertz frequencies for security applications  

NASA Astrophysics Data System (ADS)

We report diffuse reflection imaging of concealed powdered samples in atmospheric air using a quantum cascade laser operating at 2.83 THz. The imaging system uses a helium-cooled silicon bolometer for mapping radiation diffusely reflected and scattered from samples, and a room-temperature pyroelectric sensor for simultaneously acquiring a specular image. A range of powders concealed within plastic packaging and standard FedEx envelopes was imaged with a resolution of better than 0.5 mm, and it was possible to detect powdered samples concealed within packaging from which there was a strong component of surface reflection. The feasibility of performing dual-wavelength diffuse reflection imaging for identification of illicit drugs and explosives is discussed.

Dean, P.; Khanna, S.; Chakraborty, S.; Lachab, M.; Davies, A. G.; Linfield, E. H.

2007-10-01

256

Sum-frequency spectroscopy and imaging of aligned helical polypeptides  

Microsoft Academic Search

The sum-frequency spectroscopy signatures of NH- (amide A) and C=O (amide I) groups, the amide segments in all proteins, are measured in thin films that consist of an ensemble of right-handed, helical poly-?-benzyl-L-glutamate (PBLG) macromolecules that are endgrafted and self-organized into a monomolecular film with a large degree of unidirectional order. Distinct sum-frequency spectral signatures associated with the amide A

André Knoesen; Saulius Pakalnis; Mingshi Wang; William D. Wise; Nancy Lee; Curt W. Frank

2004-01-01

257

A tunable EBG absorber for radio-frequency power imaging  

Microsoft Academic Search

Absorption characteristics of a tunable electromagnetic band-gap (EBG) absorber are analyzed, which is designed to capture 2d radio-frequency (RF) power distributions incident on the absorber surface. The EBG absorber has lumped resistors interconnecting the mushroom-type surface patches to absorb the incident RF power at the resonance frequency where the EBG structure exhibits a high-impedance feature. The absorbed RF power distribution

Satoshi Yagitani; Keigo Katsuda; Ryo Tanaka; Masayuki Nojima; Yoshiyuki Yoshimura; Hirokazu Sugiura

2011-01-01

258

Current collapse imaging of Schottky gate AlGaN/GaN high electron mobility transistors by electric field-induced optical second-harmonic generation measurement  

NASA Astrophysics Data System (ADS)

Two-dimensional current collapse imaging of a Schottky gate AlGaN/GaN high electron mobility transistor device was achieved by optical electric field-induced second-harmonic generation (EFISHG) measurements. EFISHG measurements can detect the electric field produced by carriers trapped in the on-state of the device, which leads to current collapse. Immediately after (e.g., 1, 100, or 800 ?s) the completion of drain-stress voltage (200 V) in the off-state, the second-harmonic (SH) signals appeared within 2 ?m from the gate edge on the drain electrode. The SH signal intensity became weak with time, which suggests that the trapped carriers are emitted from the trap sites. The SH signal location supports the well-known virtual gate model for current collapse.

Katsuno, Takashi; Manaka, Takaaki; Ishikawa, Tsuyoshi; Ueda, Hiroyuki; Uesugi, Tsutomu; Iwamoto, Mitsumasa

2014-06-01

259

Harmonic Convergence  

NSDL National Science Digital Library

Harmonic convergence refers to a day back in 1987 where there was a particular planetary alignment. New Agers went crazy over the event, and if you want to get a taste of what it was like, enter harmonic convergence into your favorite Internet search engine and sit back and enjoy. This chapter adds to the previous discussion of resonance by expanding the list of vibrating things to metal rods and columns of air.

Robertson, William C.

2003-01-01

260

Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging  

NASA Astrophysics Data System (ADS)

We separated the component spatial patterns of frequency-dependent absorption in chemicals and frequency-independent components such as plastic, paper, and measurement noise in terahertz (THz) spectroscopic images, using known spectral curves. Our measurement system, which uses a widely tunable coherent THz-wave parametric oscillator source, can image at a specific frequency in the range 1-2 THz. The component patterns of chemicals can easily be extracted by use of the frequency-independent components. This method could be successfully used for nondestructive inspection for the detection of illegal drugs and devices of bioterrorism concealed, e.g., inside mail and packages.

Watanabe, Yuuki; Kawase, Kodo; Ikari, Tomofumi; Ito, Hiromasa; Ishikawa, Youichi; Minamide, Hiroaki

2003-10-01

261

Multi-frequency imaging of perfectly conducting cracks via boundary measurements  

E-print Network

Imaging of perfectly conducting crack(s) in a 2-D homogeneous medium using boundary data is studied. Based on the singular structure of the Multi-Static Response (MSR) matrix whose elements are normalized by an adequate test function at several frequencies, an imaging functional is introduced and analyzed. A non-iterative imaging procedure is proposed. Numerical experiments from noisy synthetic data show that acceptable images of single and multiple cracks are obtained.

Won-Kwang Park; Dominique Lesselier

2012-07-07

262

Optical frequency domain imaging of human retina and choroid  

E-print Network

Optical coherence tomography (OCT) has emerged as a practical noninvasive technology for imaging the microstructure of the human eye in vivo. Using optical interferometry to spatially-resolve backreflections from within ...

Lee, Edward Chin Wang

2006-01-01

263

Development of a digital high frequency ultrasound array imaging system  

Microsoft Academic Search

In order to improve the lateral resolution and extend the image view of the previously developed 16-channel digital beamformer for a 30MHz ultrasound linear array, the design of an ultrasound imaging system with a higher frame rate and increased channel count is reported in this paper. The system is composed of 256 channels of analog front-end pulser\\/receiver, 64 channels of

ChangHong Hu; Lequan Zhang; Jonathan M. Cannata; K. Kirk Shung

2010-01-01

264

Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters (H2O)n, n=2-6, and several hexamer local minima at the CCSD(T) level of theory  

SciTech Connect

We report the first optimum geometries and harmonic vibrational frequencies for the ring pentamer and several water hexamer (prism, cage, cyclic and two book) at the CCSD(T)/aug-cc-pVDZ level of theory. All five hexamer isomer minima previously reported by MP2 are also minima on the CCSD(T) potential energy surface (PES). In addition, all CCSD(T) minimum energy structures for the n=2-6 cluster isomers are quite close to the ones previously obtained by MP2 on the respective PESs, as confirmed by a modified Procrustes analysis that quantifies the difference between any two cluster geometries. The CCSD(T) results confirm the cooperative effect of the homodromic ring networks (systematic contraction of the nearest-neighbor (nn) intermolecular separations with cluster size) previously reported by MP2, albeit with O-O distances shorter by ~0.02 Å, indicating that MP2 overcorrects this effect. The harmonic frequencies at the minimum geometries were obtained by the double differentiation of the CCSD(T) energy using an efficient scheme based on internal coordinates that reduces the number of required single point energy evaluations by ~15% when compared to the corresponding double differentiation using Cartesian coordinates. Negligible differences between MP2 and CCSD(T) are found for the librational modes, while uniform increases of ~15 and ~25 cm-1 are observed for the bending and “free” OH harmonic frequencies. The largest differences between MP2 and CCSD(T) are observed for the harmonic hydrogen bonded frequencies. The CCSD(T) red shifts from the monomer frequencies (??) are smaller than the MP2 ones, due to the fact that the former produces shorter elongations (?R) of the respective hydrogen bonded OH lengths from the monomer value with respect to the latter. Both the MP2 and CCSD(T) results for the hydrogen bonded frequencies were found to closely follow the relation - ?? = s ? ?R, with a rate of s = 20.3 cm-1 / 0.001 Å. The CCSD(T) harmonic frequencies, when corrected using the MP2 anharmonicities obtained from second order vibrational perturbation theory (VPT2), produce anharmonicCCSD(T) estimates that are within < 60 cm-1 from the measured infrared (IR) active bands of the n=2-6 clusters and furthermore trace the observed red shifts with respect to the monomer (??) quite accurately. The energetic order between the various hexamer isomers on the PES (prism has the lowest energy) previously reported at MP2 was found to be preserved at the CCSD(T) level, whereas the inclusion of anharmonic corrections further stabilizes the cage among the hexamer isomers.

Miliordos, Evangelos; Apra, Edoardo; Xantheas, Sotiris S.

2013-09-21

265

Millimeter-wave imaging with frequency scanning antenna and optical arrayed waveguide gratings  

NASA Astrophysics Data System (ADS)

The principle of a novel passive millimeter-wave (MMW) imaging method using frequency scanning antenna (FSA) and arrayed waveguide grating (AWG) is analyzed theoretically. The imaging processes are divided to three stages and discussed respectively. Then the FSA with 33~ 43GHz frequency scanning range is designed carefully with a field of view of +/-25°for the MMW imaging system. An AWG of 1×24 is then simply designed with a channel spacing of 0.5GHz. The designing and simulating demonstrated the feasibility to build such an imaging system which is progressing.

He, Yuntao; Yu, Guoxin; Fu, Xinyu; Jiang, Yuesong

2012-12-01

266

The designated harmonic suppression for SPWM  

NASA Astrophysics Data System (ADS)

SPWM is a critical method used in asynchronous motor-driven area. But harmonic components of inverter output wave impair its application in motor speed control. A new mixed algorithm was proposed for SPWM, which was a designated harmonic suppression technology by way of improved regular sampling in low voltage and low frequency and harmonic elimination in high voltage and high frequency. This algorithm was based on both analysis of sampled SPWM and Fourier series transform method and aimed at eliminating some odd harmonic components to obtain an identical sine wave. After explication of the harmonic elimination procedure and real time calculation process, an effective control mode and its control circuit were put forward so that the designated harmonic suppression made a reality. Applied it in whole speed adjusting range, the voltage can be conveniently controlled and high frequency harmonic components of SPWM are also improved.

Ping, Yang; Yang, Shi-ping

2005-12-01

267

Discovery of deep and shallow trap states from step structures of rutile TiO{sub 2} vicinal surfaces by second harmonic and sum frequency generation spectroscopy  

SciTech Connect

In this report, local electronic structures of steps and terraces on rutile TiO{sub 2} single crystal faces were studied by second harmonic and sum frequency generation (SHG/SFG) spectroscopy. We attained selective measurement of the local electronic states of the step bunches formed on the vicinal (17 18 1) and (15 13 0) surfaces using a recently developed step-selective probing technique. The electronic structures of the flat (110)-(1x1) (the terrace face of the vicinal surfaces) and (011)-(2x1) surfaces were also discussed. The SHG/SFG spectra showed that step structures are mainly responsible for the formation of trap states, since significant resonances from the trap states were observed only from the vicinal surfaces. We detected deep hole trap (DHT) states and shallow electron trap (SET) states selectively from the step bunches on the vicinal surfaces. Detailed analysis of the SHG/SFG spectra showed that the DHT and SET states are more likely to be induced at the top edges of the step bunches than on their hillsides. Unlike the SET states, the DHT states were observed only at the step bunches parallel to [1 1 1][equivalent to the step bunches formed on the (17 18 1) surface]. Photocatalytic activity for each TiO{sub 2} sample was also measured through methylene blue photodegradation reactions and was found to follow the sequence: (110) < (17 18 1) < (15 13 0) < (011), indicating that steps along [0 0 1] are more reactive than steps along [1 1 1]. This result implies that the presence of the DHT states observed from the step bunches parallel to [1 1 1] did not effectively contribute to the methylene blue photodegradation reactions.

Takahashi, Hiroaki; Watanabe, Ryosuke; Miyauchi, Yoshihiro; Mizutani, Goro [School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomi, Ishikawa 923-1292 (Japan)

2011-04-21

268

Extending the ICRF to Higher Radio Frequencies: Imaging and Source Structure  

NASA Technical Reports Server (NTRS)

We present imaging results and source structure analysis of extragalactic radio sources observed using the Very Long Baseline Array (VLBA) at 24 GHz and 43 GHz as part of an ongoing NASA, USNO, NRAO and Bordeaux Observatory collaboration to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies. The K/Q-band image database now includes images of 108 sources at 43 GHz (Q-braid) and images of 230 sources at 24 GHz (K-band). Preliminary analysis of the observations taken to date shows that the sources are generally more compact as one goes from the ICRF frequency of 8.4 GHz to 24 GHz. This result is consistent with the standard theory of compact extragalactic radio sources and suggests that reference frames defined at these higher radio frequencies will be less susceptible to the effects of intrinsic source structure than those defined at lower frequencies.

Boboltz, David A.; Fey, Alan L.; Charlot, Patrick; Fomalont, Edward B.; Lanyi, Gabor E.; Zhang, Li-Wei

2004-01-01

269

Digital parallel frequency-domain spectroscopy for tissue imaging.  

PubMed

Near-infrared (NIR) (650 to 1000 nm) optical properties of turbid media can be quantified accurately and noninvasively using methods based on diffuse reflectance or transmittance, such as frequency-domain photon migration (FDPM). Conventional FDPM techniques based on white-light steady-state (SS) spectral measurements in conjunction with the acquisition of frequency-domain (FD) data at selected wavelengths using laser diodes are used to measure broadband NIR scattering-corrected absorption spectra of turbid media. These techniques are limited by the number of wavelength points used to obtain FD data and by the sweeping technique used to collect FD data over a relatively large range. We have developed a method that introduces several improvements in the acquisition of optical parameters, based on the digital parallel acquisition of a comb of frequencies and on the use of a white laser as a single light source for both FD and SS measurements. The source, due to the high brightness, allows a higher penetration depth with an extremely low power on the sample. The parallel acquisition decreases the time required by standard serial systems that scan through a range of modulation frequencies. Furthermore, all-digital acquisition removes analog noise, avoids the analog mixer, and does not create radiofrequency interference or emission. PMID:23085915

Arnesano, Cosimo; Santoro, Ylenia; Gratton, Enrico

2012-09-01

270

Digital parallel frequency-domain spectroscopy for tissue imaging  

NASA Astrophysics Data System (ADS)

Near-infrared (NIR) (650 to 1000 nm) optical properties of turbid media can be quantified accurately and noninvasively using methods based on diffuse reflectance or transmittance, such as frequency-domain photon migration (FDPM). Conventional FDPM techniques based on white-light steady-state (SS) spectral measurements in conjunction with the acquisition of frequency-domain (FD) data at selected wavelengths using laser diodes are used to measure broadband NIR scattering-corrected absorption spectra of turbid media. These techniques are limited by the number of wavelength points used to obtain FD data and by the sweeping technique used to collect FD data over a relatively large range. We have developed a method that introduces several improvements in the acquisition of optical parameters, based on the digital parallel acquisition of a comb of frequencies and on the use of a white laser as a single light source for both FD and SS measurements. The source, due to the high brightness, allows a higher penetration depth with an extremely low power on the sample. The parallel acquisition decreases the time required by standard serial systems that scan through a range of modulation frequencies. Furthermore, all-digital acquisition removes analog noise, avoids the analog mixer, and does not create radiofrequency interference or emission.

Arnesano, Cosimo; Santoro, Ylenia; Gratton, Enrico

2012-09-01

271

Digital parallel frequency-domain spectroscopy for tissue imaging  

PubMed Central

Abstract. Near-infrared (NIR) (650 to 1000 nm) optical properties of turbid media can be quantified accurately and noninvasively using methods based on diffuse reflectance or transmittance, such as frequency-domain photon migration (FDPM). Conventional FDPM techniques based on white-light steady-state (SS) spectral measurements in conjunction with the acquisition of frequency-domain (FD) data at selected wavelengths using laser diodes are used to measure broadband NIR scattering-corrected absorption spectra of turbid media. These techniques are limited by the number of wavelength points used to obtain FD data and by the sweeping technique used to collect FD data over a relatively large range. We have developed a method that introduces several improvements in the acquisition of optical parameters, based on the digital parallel acquisition of a comb of frequencies and on the use of a white laser as a single light source for both FD and SS measurements. The source, due to the high brightness, allows a higher penetration depth with an extremely low power on the sample. The parallel acquisition decreases the time required by standard serial systems that scan through a range of modulation frequencies. Furthermore, all-digital acquisition removes analog noise, avoids the analog mixer, and does not create radiofrequency interference or emission. PMID:23085915

Arnesano, Cosimo; Santoro, Ylenia; Gratton, Enrico

2012-01-01

272

Face recognition in global harmonic subspace  

Microsoft Academic Search

In this paper, a novel pattern recognition scheme, global harmonic subspace analysis (GHSA), is developed for face recognition. In the proposed scheme, global harmonic features are extracted at the semantic scale to capture the 2-D semantic spatial structures of a face image. Laplacian Eigenmap is applied to discriminate faces in their global harmonic subspace. Experimental results on the Yale and

Richard M. Jiang; Danny Crookes; Nie Luo

2010-01-01

273

Evaluation of quantitative contrast harmonic imaging to assess malignancy of liver tumors: A prospective controlled two-center study  

PubMed Central

AIM: To establish the extent to which contrast enhancement with SonoVue in combination with quantitative evaluation of contrast-medium dynamics facilitates the detection of hepatic tumors. METHODS: One hundred patients with histologically confirmed malignant or benign hepatic tumor (maximum size 5 cm) were analyzed. Contrast-enhanced ultrasound (bolus injection 2.5 mL SonoVue) was carried out with intermittent breath-holding technique using a multifrequency transducer (2.5-4 MHz). Native vascularization was analyzed with power Doppler. The contrast-enhanced dynamic ultrasound investigation was carried out with contrast harmonic imaging in true detection mode during the arterial, portal venous and late phases. Mechanical index was set at 0.15. Perfusion analysis was performed by post-processing of the raw data [time intensity curve (TIC) analysis]. The cut-off of the gray value differences between tumor and normal liver tissue was established using Receiver Operating Characteristic (ROC) analysis 64-line multi-slice computed tomography served as reference method in all cases. Magnetic resonance tomography was used additionally in 19 cases. RESULTS: One hundred patients with 59 malignant (43 colon, 5 breast, 2 endocrine metastases, 7 hepatocellular carcinomas and 2 kidney cancers) and 41 benign (15 hemangiomas, 7 focal nodular hyperplasias, 5 complicated cysts, 2 abscesses and 12 circumscribed fatty changes) tumors were included. The late venous phase proved to be the most sensitive for classification of the tumor type. Fifty-eight of the 59 malignant tumors were classified as true positive, and one as false negative. This resulted in a sensitivity of 98.3%. Of the 41 benign tumors, 37 were classified as true negative and 4 as false negative, which corresponds to a specificity of 90.2%. Altogether, 95.0% of the diagnoses were classified as correct on the basis of the histological classification. No investigator-dependency (P = 0.23) was noted. CONCLUSION: The results show the possibility of accurate prediction of malignancy of hepatic tumors with a positive prognostic value of 93.5% using advanced contrast-enhanced ultrasound. Contrast enhancement with SonoVue in combination with quantitative evaluation of contrast-medium dynamics is a valuable tool to discriminate hepatic tumors. PMID:18081224

Jung, EM; Clevert, DA; Schreyer, AG; Schmitt, S; Rennert, J; Kubale, R; Feuerbach, S; Jung, F

2007-01-01

274

Simultaneous sum-frequency and vibro-acoustography imaging for nondestructive evaluation and testing applications  

SciTech Connect

High-resolution ultrasound imaging systems for inspection of defects and flaws in materials are of great demand in many industries. Among these systems, Vibro-acoustography (VA) has shown excellent capabilities as a noncontact method for nondestructive high-resolution imaging applications. This method consists of mixing two confocal ultrasound beams, slightly shifted in frequency, to produce a dynamic (oscillatory) radiation force in the region of their intersection. This force vibrates the object placed at the focus of the confocal transducer. As a result of the applied force, an acoustic emission field at the difference frequency of the primary incident ultrasound beams is produced. In addition to the difference frequency acoustic emission signal, there exists another signal at the sum frequency, formed in the intersection region of the two primary beams. The goal of this study is to investigate the formation of high-resolution images using the sum frequency of ultrasound waves in VA while concurrently forming the conventional difference-frequency VA image, thereby increasing the amount of information acquired during a single scan. A theoretical model describing the sum-frequency wave propagation, including beam forming and image formation in the confocal configuration, is developed and verified experimentally. Moreover, sample experiments are performed on a flawed fiber-reinforced ceramic composite plate. Images at both the difference and sum frequencies are compared and discussed. Results show that the sum-frequency image produces a high-resolution C scan of the plate by which the flaws and structural details of the plate can be detected.

Mitri, F. G.; Silva, G. T.; Greenleaf, J. F.; Fatemi, M. [Department of Physiology and Biomedical Engineering, Ultrasound Research Laboratory, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905 (United States); Instituto Nacional de Matematica Pura e Aplicada-IMPA, Rio de Janeiro, RJ 22460-320 (Brazil); Department of Physiology and Biomedical Engineering, Ultrasound Research Laboratory, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905 (United States)

2007-12-01

275

Space-frequency quantization for wavelet image coding  

Microsoft Academic Search

Recently, a new class of image coding algorithms coupling standard scalar quantization offrequency coefficients with tree-structured quantization (related to spatial structures) has attractedwide attention because its good performance appears to confirm the promised efficienciesof hierarchical representation [1, 2]. This paper addresses the problem of how spatial quantizationmodes and standard scalar quantization can be applied in a jointly optimal fashion inan

Zixiang Xiong; Kannan Ramchandran; Michael T. Orchard

1997-01-01

276

Visible spatial frequency domain imaging with a digital light  

E-print Network

coefficients (a) and reduced scattering coefficients (0 s) in thick tissue such as skin or brain. We validate, we acquire optical property maps of a mouse brain in vivo with and without an overlying saline well imaging include in vivo monitoring of burn wounds,3,4 determining flap perfusion dur- ing surgical

Choi, Bernard

277

Acoustic imaging of harmonic near-field sources from surface pressure measurements on a body using singular value decomposition  

Microsoft Academic Search

An inverse or backward projection method based on a combined Greens function and singular value decomposition method is developed to locate and to determine the strength of near field harmonic sources from the acoustic field on the surface of a nearby rigid body. A resolution matrix, which is based on the free space Greens function, the geometry of the measurement

Peter R. Stepanishen; Irsan Brodjonegoro

2002-01-01

278

OBJECTIVE: Investigate the use of microbolometer infrared technology for real time imaging at THz frequencies.  

E-print Network

OBJECTIVE: Investigate the use of microbolometer infrared technology for real time imaging at THz microbolometer pixels for sensing at THz frequencies. PHASE 1: During the initial phase of research, a detailed study of real-time THz imaging character- istics of a microbolometer infrared camera will be carried out

279

Correlation-autofocusing-spectral 2-D ISAR image reconstruction from linear frequency modulated signals  

Microsoft Academic Search

In this paper, by applying an analytic geometric approach, a model of an ISAR (inverse synthetic aperture radar) signal with linear frequency modulation is developed. An ISAR scenario of the rectilinear movement of a 2D target in the 3D coordinate system is described. An image reconstruction procedure, independent of the trajectory parameters of the target is suggested. The image processing

A. D. Lazarov; C. N. Minchev

2002-01-01

280

A new reference-free image quality index for blur estimation in the frequency domain  

Microsoft Academic Search

A new reference-free image quality index based on spectral analysis is proposed. The main idea is based on exploiting the limitations of the Human Visual System (HVS) in blur detection. The proposed method consists of adding blur to the test image and measuring its impact. The impact is measured using radial analysis in the frequency domain. The efficiency of the

A. Chetouani; A. Beghdadi; M. Deriche

2009-01-01

281

High frequency atmospheric gravity-wave properties using Fe-lidar and OH-imager observations  

E-print Network

. [1] Simultaneous iron resonance lidar density profiles, OH intensity images and MF-radar wind the vertical component of the wave or the background wind is required. Lidars resonant with atoms or moleculesHigh frequency atmospheric gravity-wave properties using Fe-lidar and OH-imager observations J. C

Chu, Xinzhao

282

Appearance-based exercise motivation moderates the relationship between exercise frequency and positive body image.  

PubMed

Individuals with a positive body image appreciate their bodies, hold an internal perspective of their bodies, and are satisfied with the functionality of their bodies. Research shows that positive body image is more complex than the absence of body dissatisfaction. Although exercise reduces women's body dissatisfaction, very little research has explored how, or even whether, exercise is associated with positive body image. Therefore, we examined whether exercise frequency was positively related to three aspects of positive body image (body appreciation, internal body orientation, and functional body satisfaction) among 321 college women. Appearance-based exercise motivation (the extent exercise is pursued to influence weight or shape) was hypothesized to moderate these associations. Hierarchical moderated regression analyses showed that exercise frequency was related to higher positive body image, but high levels of appearance-based exercise motivation weakened these relationships. Thus, messages promoting exercise need to de-emphasize weight loss and appearance for positive body image. PMID:24529336

Homan, Kristin J; Tylka, Tracy L

2014-03-01

283

High-speed stroboscopic imaging with frequency-doubled supercontinuum.  

PubMed

We present a supercontinuum (SC) light source designed for stroboscopic white light interferometry. The compact, cost-effective SC source is built from off-the-shelf optical components and operates both in the visible and near-IR at arbitrary repetition rates in the 10 kHz-1 MHz frequency range. We estimate that our source allows performing dynamic white-light interferometric characterization of rapidly oscillating objects up to several tens of megahertz. Its current potential is demonstrated by capturing the movement of a microelectromechanical system oscillating at 2.16 MHz with sub-100 nm accuracy. PMID:23455256

Ryczkowski, Piotr; Nolvi, Anton; Kassamakov, Ivan; Genty, Goëry; Hæggström, Edward

2013-03-01

284

High-efficiency intra-cavity sum-frequency-generation in a self-seeded image-rotating nanosecond optical parametric oscillator.  

SciTech Connect

We have built and tested a highly efficient source of pulsed 320 nm light based on intra-cavity sum-frequency-generation in a self-injection-seeded image-rotating nanosecond optical parametric oscillator. The four-mirror nonplanar ring optical cavity uses the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. The cavity contains a type-II xz-cut KTP crystal pumped by the 532 nm second harmonic of Nd:YAG to generate an 803{approx}nm signal and 1576 nm idler, and a type-II BBO crystal to sum-frequency mix the 532 nm pump and cavity-resonant 803 nm signal to generate 320 nm light. The cavity is configured so pump light passes first through the BBO crystal and then through the KTP crystal with the 320 nm light exiting through the output coupler following the BBO sum-frequency crystal. The cavity output coupler is designed to be a high reflector at 532 nm, have high transmission at 320 nm, and reflect approximately 85% at 803 nm. With this configuration we've obtained 1064 nm to 320 nm optical-to-optical conversion efficiency of 24% and generated single-frequency {lambda} = 320 nm pulses with energies up to 140 mJ.

Armstrong, Darrell Jewell; Smith, Arlee Virgil

2005-02-01

285

High frequency resonant waveguide grating imager for assessing drug-induced cardiotoxicity  

NASA Astrophysics Data System (ADS)

We report a high-frequency resonant waveguide grating imager for assessing compound-induced cardiotoxicity. The imager sweeps the wavelength range from 823 nm to 838 nm every 3 s to identify and monitor compound-induced shifts in resonance wavelength and then switch to the intensity-imaging mode to detect the beating rhythm and proarrhythmic effects of compounds on induced pluripotent stem cell-derived cardiomyocytes. This opens possibility to study cardiovascular biology and compound-induced cardiotoxicity.

Ferrie, Ann M.; Wu, Qi; Deichmann, Oberon D.; Fang, Ye

2014-05-01

286

Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation.  

PubMed

A novel optical frequency-domain imaging system is demonstrated that employs a passive optical demodulation circuit and a chirped digital acquisition clock derived from a voltage-controlled oscillator. The demodulation circuit allows the separation of signals from positive and negative depths to better than 50 dB, thereby eliminating depth degeneracy and doubling the imaging depth range. Our system design is compatible with dual-balanced and polarization-diverse detection, important techniques in the practical biomedical application of optical frequency-domain imaging. PMID:16480209

Vakoc, B J; Yun, S H; Tearney, G J; Bouma, B E

2006-02-01

287

Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging.  

PubMed

The standard of care for clinical assessment of burn severity and extent lacks a quantitative measurement. In this work, spatial frequency domain imaging (SFDI) was used to measure 48 thermal burns of graded severity (superficial partial, deep partial, and full thickness) in a porcine model. Functional (total hemoglobin and tissue oxygen saturation) and structural parameters (tissue scattering) derived from the SFDI measurements were monitored over 72 h for each burn type and compared to gold standard histological measurements of burn depth. Tissue oxygen saturation (stO?) and total hemoglobin (ctHbT) differentiated superficial partial thickness burns from more severe burn types after 2 and 72 h, respectively (p < 0.01), but were unable to differentiate deep partial from full thickness wounds in the first 72 h. Tissue scattering parameters separated superficial burns from all burn types immediately after injury (p < 0.01), and separated all three burn types from each other after 24 h (p < 0.01). Tissue scattering parameters also showed a strong negative correlation to histological burn depth as measured by vimentin immunostain (r² > 0.89). These results show promise for the use of SFDI-derived tissue scattering as a correlation to burn depth and the potential to assess burn depth via a combination of SFDI functional and structural parameters. PMID:25147961

Mazhar, Amaan; Saggese, Steve; Pollins, Alonda C; Cardwell, Nancy L; Nanney, Lillian; Cuccia, David J

2014-08-01

288

Dual-frequency continuous-wave terahertz transmission imaging of nonmelanoma skin cancers  

NASA Astrophysics Data System (ADS)

Continuous wave terahertz imaging has the potential for diagnosing and delineating skin cancers. While contrast has been observed between cancerous and normal tissue at terahertz frequencies, the source mechanism behind this contrast is not clearly understood.1Transmission measurements of 240?m thick sections of nonmelanoma skin cancer were taken at two frequencies of 1.39 THz and 1.63 THz that lie within and outside the tryptophan absorption band, respectively. Two CO2 pumped Far-Infrared molecular gas lasers were used for illuminating the tissue while the transmitted signals were detected using a liquid Helium cooled Silicon bolometer. At both THz frequencies 2-dimensional THz transmission images of nonmelanoma skin cancers were acquired with better than 0.5mm spatial resolution. The resulting images were compared to the sample histology and showed a correlation between cancerous tissue and decreased transmission. The results of the imaging experiments will be presented and discussed.

Joseph, Cecil S.; Yaroslavsky, Anna N.; Lagraves, Julie L.; Goyette, Thomas M.; Giles, Robert H.

2010-02-01

289

Lasing on the third harmonic  

SciTech Connect

The Los Alamos Free-Electron Laser has recently lased near 4 {mu}m on the third harmonic of the fundamental frequency of about 12 {mu}m. By choice of intercavity apertures and cavity length, lasing can be forced to occur on both frequencies simultaneously or on either one alone. 8 refs., 3 figs., 1 tab.

Warren, R.W.; Haynes, L.C.; Feldman, D.W.; Stein, W.E.; Gitomer, S.J.

1989-01-01

290

Effects of constant frequency noise in magnetic resonance imaging with nonuniform k-space sampling.  

PubMed

Magnetic resonance images can be compromised by constant frequency (CF) noise, such as radio frequency (RF) noise. We investigate the effects of CF noise in four imaging methods with non-uniform k-space sampling: single-shot echo-planar imaging (EPI) with sinusoidal readout gradients, phase-encoded echo-planar spectroscopic imaging (EPSI) with sinusoidal readout gradients, projection-reconstruction imaging, and single-shot spiral imaging. The characteristics of the CF artifacts in each imaging method are studied with numerical simulations. CF noise is found to cause artifacts of nonclassic forms in the reconstructed images. Specifically, dashed-line, streak, and spiral patterns of CF noise appear in EPI/EPSI with sinusoidal readout gradients, projection-reconstruction imaging, and spiral imaging, respectively. The analytical expression for dashed-line artifacts is found to be a weighted sum of Bessel functions and is verified with in vivo experiments. The CF artifacts can be removed during post-processing by eliminating the noise spikes in the Fourier domain of the raw data. PMID:12201430

Du, Weiliang; Karczmar, Gregory S; Pan, Xiaochuan

2002-08-01

291

Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study.  

PubMed

Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (??) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes. PMID:24556974

Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

2014-03-01

292

Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study  

NASA Astrophysics Data System (ADS)

Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (??) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes.

Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E.

2014-03-01

293

Generating an image of dispersive energy by frequency decomposition and slant stacking  

USGS Publications Warehouse

We present a new algorithm for calculating an image of dispersive energy in the frequency-velocity (f-v) domain. The frequency decomposition is first applied to a shot gather in the offset-time domain to stretch impulsive data into pseudo-vibroseis data or frequency-swept data. Because there is a deterministic relationship between frequency and time in a sweep used in the frequency decomposition, the first step theoretically completes the transform from time to frequency. The slant stacking is then performed on the frequency-swept data to complete the transform from offset to velocity. This simple two-step algorithm generates an image of dispersive energy in the f-v domain. The straightforward transform only uses offset information of data so that this algorithm can be applied to data acquired with arbitrary geophone-acquisition geometry. Examples of synthetic and real-world data demonstrate that this algorithm generates accurate images of dispersive energy of the fundamental as well as higher modes. ?? Birkha??user Verlag, Basel, 2007.

Xia, J.; Xu, Y.; Miller, R.D.

2007-01-01

294

Supplementary Material for In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy  

E-print Network

. Schaffer Supplementary Text The appearance of "holes" in THG images of white matter tracts in the spinal, and appear as dark holes (black arrows) in the THG image (b). Overlaying the images revealed some axons (red simultaneously. Some of the "holes" in the THG image of myelin are seen to correspond to fluorescently labeled

Schaffer, Chris B.

295

Towards spatial frequency domain optical imaging of neurovascular coupling in a mouse model of Alzheimer's disease  

NASA Astrophysics Data System (ADS)

Early neurovascular coupling (NVC) changes in Alzheimer's disease can potentially provide imaging biomarkers to assist with diagnosis and treatment. Previous efforts to quantify NVC with intrinsic signal imaging have required assumptions of baseline optical pathlength to calculate changes in oxy- and deoxy-hemoglobin concentrations during evoked stimuli. In this work, we present an economical spatial frequency domain imaging (SFDI) platform utilizing a commercially available LED projector, camera, and off-the-shelf optical components suitable for imaging dynamic optical properties. The fast acquisition platform described in this work is validated on silicone phantoms and demonstrated in neuroimaging of a mouse model.

Lin, Alexander J.; Konecky, Soren D.; Rice, Tyler B.; Green, Kim N.; Choi, Bernard; Durkin, Anthony J.; Tromberg, Bruce J.

2012-02-01

296

Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances  

PubMed Central

Using conventional materials, the resolution of focusing and imaging devices is limited by diffraction to about half the wavelength of light, as high spatial frequencies do not propagate in isotropic materials. Wire array metamaterials, because of their extreme anisotropy, can beat this limit; however, focusing with these has only been demonstrated up to microwave frequencies and using propagation over a few wavelengths only. Here we show that the principle can be scaled to frequencies orders of magnitudes higher and to considerably longer propagation lengths. We demonstrate imaging through straight and tapered wire arrays operating in the terahertz spectrum, with unprecedented propagation of near field information over hundreds of wavelengths and focusing down to 1/28 of the wavelength with a net increase in power density. Applications could include in vivo terahertz-endoscopes with resolution compatible with imaging individual cells. PMID:24162458

Tuniz, Alessandro; Kaltenecker, Korbinian J.; Fischer, Bernd M.; Walther, Markus; Fleming, Simon C.; Argyros, Alexander; Kuhlmey, Boris T.

2013-01-01

297

Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances.  

PubMed

Using conventional materials, the resolution of focusing and imaging devices is limited by diffraction to about half the wavelength of light, as high spatial frequencies do not propagate in isotropic materials. Wire array metamaterials, because of their extreme anisotropy, can beat this limit; however, focusing with these has only been demonstrated up to microwave frequencies and using propagation over a few wavelengths only. Here we show that the principle can be scaled to frequencies orders of magnitudes higher and to considerably longer propagation lengths. We demonstrate imaging through straight and tapered wire arrays operating in the terahertz spectrum, with unprecedented propagation of near field information over hundreds of wavelengths and focusing down to 1/28 of the wavelength with a net increase in power density. Applications could include in vivo terahertz-endoscopes with resolution compatible with imaging individual cells. PMID:24162458

Tuniz, Alessandro; Kaltenecker, Korbinian J; Fischer, Bernd M; Walther, Markus; Fleming, Simon C; Argyros, Alexander; Kuhlmey, Boris T

2013-01-01

298

Tip-induced deformation of a phospholipid bilayer: Theoretical perspective of sum frequency generation imaging.  

PubMed

The paper addresses theory of Sum Frequency Generation imaging of an atomic force microscopy tip-induced deformation of a bilayer phospholipid membrane deposited over a pore: known as a nano-drum system. Image modeling employed nonlinearities of the normal modes specific to hydrocarbon terminal methyls, which are distributed about the deformed surfaces of inner and outer leaflets. The deformed profiles are according to the solutions of shape equation for Canham-Helfrich Hamiltonian accounting properties of four membranes, which differ in elasticity and adhesion. The results indicate that in continuous deformed surfaces, the difference in the curvature of the outer and inner leaflets dominates in the imaged nonlinearity. This is different comparing to the results for a perfect bilayer spherical cap system (the subject of previous study), where nonlinear image response is dominated by the mismatch of the inner and outer leaflets' surface areas (as projected to the image plane) at the edge of perfectly spherical structure. The results of theoretical studies, here, demonstrate that Sum Frequency Generation imaging in continuous and deformed bilayer surfaces are helpful to address curvature locally and anticipate mechanical properties of membrane. The articles discuss applicability and practical limitations of the approach. Combination of Atomic Force Microscopy and Sum Frequency Generation imaging under controlled tip-induced deformation provides a good opportunity to probe and test membranes physical properties with rigor of adopted theory. PMID:25338888

Volkov, Victor

2014-10-21

299

Tip-induced deformation of a phospholipid bilayer: Theoretical perspective of sum frequency generation imaging  

NASA Astrophysics Data System (ADS)

The paper addresses theory of Sum Frequency Generation imaging of an atomic force microscopy tip-induced deformation of a bilayer phospholipid membrane deposited over a pore: known as a nano-drum system. Image modeling employed nonlinearities of the normal modes specific to hydrocarbon terminal methyls, which are distributed about the deformed surfaces of inner and outer leaflets. The deformed profiles are according to the solutions of shape equation for Canham-Helfrich Hamiltonian accounting properties of four membranes, which differ in elasticity and adhesion. The results indicate that in continuous deformed surfaces, the difference in the curvature of the outer and inner leaflets dominates in the imaged nonlinearity. This is different comparing to the results for a perfect bilayer spherical cap system (the subject of previous study), where nonlinear image response is dominated by the mismatch of the inner and outer leaflets' surface areas (as projected to the image plane) at the edge of perfectly spherical structure. The results of theoretical studies, here, demonstrate that Sum Frequency Generation imaging in continuous and deformed bilayer surfaces are helpful to address curvature locally and anticipate mechanical properties of membrane. The articles discuss applicability and practical limitations of the approach. Combination of Atomic Force Microscopy and Sum Frequency Generation imaging under controlled tip-induced deformation provides a good opportunity to probe and test membranes physical properties with rigor of adopted theory.

Volkov, Victor

2014-10-01

300

High frame-rate intravascular optical frequency-domain imaging in vivo  

PubMed Central

Intravascular optical frequency-domain imaging (OFDI), a second-generation optical coherence tomography (OCT) technology, enables imaging of the three-dimensional (3D) microstructure of the vessel wall following a short and nonocclusive clear liquid flush. Although 3D vascular visualization provides a greater appreciation of the vessel wall and intraluminal structures, a longitudinal imaging pitch that is several times bigger than the optical imaging resolution of the system has limited true high-resolution 3D imaging, mainly due to the slow scanning speed of previous imaging catheters. Here, we demonstrate high frame-rate intravascular OFDI in vivo, acquiring images at a rate of 350 frames per second. A custom-built, high-speed, and high-precision fiber-optic rotary junction provided uniform and high-speed beam scanning through a custom-made imaging catheter with an outer diameter of 0.87 mm. A 47-mm-long rabbit aorta was imaged in 3.7 seconds after a short contrast agent flush. The longitudinal imaging pitch was 34 ?m, comparable to the transverse imaging resolution of the system. Three-dimensional volume-rendering showed greatly enhanced visualization of tissue microstructure and stent struts relative to what is provided by conventional intravascular imaging speeds. PMID:24466489

Cho, Han Saem; Jang, Sun-Joo; Kim, Kyunghun; Dan-Chin-Yu, Alexey V.; Shishkov, Milen; Bouma, Brett E.; Oh, Wang-Yuhl

2013-01-01

301

High frame-rate intravascular optical frequency-domain imaging in vivo.  

PubMed

Intravascular optical frequency-domain imaging (OFDI), a second-generation optical coherence tomography (OCT) technology, enables imaging of the three-dimensional (3D) microstructure of the vessel wall following a short and nonocclusive clear liquid flush. Although 3D vascular visualization provides a greater appreciation of the vessel wall and intraluminal structures, a longitudinal imaging pitch that is several times bigger than the optical imaging resolution of the system has limited true high-resolution 3D imaging, mainly due to the slow scanning speed of previous imaging catheters. Here, we demonstrate high frame-rate intravascular OFDI in vivo, acquiring images at a rate of 350 frames per second. A custom-built, high-speed, and high-precision fiber-optic rotary junction provided uniform and high-speed beam scanning through a custom-made imaging catheter with an outer diameter of 0.87 mm. A 47-mm-long rabbit aorta was imaged in 3.7 seconds after a short contrast agent flush. The longitudinal imaging pitch was 34 ?m, comparable to the transverse imaging resolution of the system. Three-dimensional volume-rendering showed greatly enhanced visualization of tissue microstructure and stent struts relative to what is provided by conventional intravascular imaging speeds. PMID:24466489

Cho, Han Saem; Jang, Sun-Joo; Kim, Kyunghun; Dan-Chin-Yu, Alexey V; Shishkov, Milen; Bouma, Brett E; Oh, Wang-Yuhl

2013-12-16

302

Automatic classification of sleep stages based on the time-frequency image of EEG signals.  

PubMed

In this paper, a new method for automatic sleep stage classification based on time-frequency image (TFI) of electroencephalogram (EEG) signals is proposed. Automatic classification of sleep stages is an important part for diagnosis and treatment of sleep disorders. The smoothed pseudo Wigner-Ville distribution (SPWVD) based time-frequency representation (TFR) of EEG signal has been used to obtain the time-frequency image (TFI). The segmentation of TFI has been performed based on the frequency-bands of the rhythms of EEG signals. The features derived from the histogram of segmented TFI have been used as an input feature set to multiclass least squares support vector machines (MC-LS-SVM) together with the radial basis function (RBF), Mexican hat wavelet, and Morlet wavelet kernel functions for automatic classification of sleep stages from EEG signals. The experimental results are presented to show the effectiveness of the proposed method for classification of sleep stages from EEG signals. PMID:24008250

Bajaj, Varun; Pachori, Ram Bilas

2013-12-01

303

A High-Frequency High Frame Rate Duplex Ultrasound Linear Array Imaging System for Small Animal Imaging  

PubMed Central

High-frequency (HF) ultrasound imaging has been shown to be useful for non-invasively imaging anatomical structures of the eye and small animals in biological and pharmaceutical research, achieving superior spatial resolution. Cardiovascular research utilizing mice requires not only real-time B-scan imaging, but also ultrasound Doppler to evaluate both anatomy and blood flow of the mouse heart. This paper reports the development of a high frequency ultrasound duplex imaging system capable of both B-mode imaging and Doppler flow measurements, using a 64-element linear array. The system included a HF pulsed-wave Doppler module, a 32-channel HF B-mode imaging module, a PC with a 200 MS/s 14-bit A/D card, and real-time LabView software. A 50dB signal-to-noise ratio (SNR) and a depth of penetration of larger than 12 mm were achieved using a 35 MHz linear array with 50 ?m pitch. The two-way beam widths were determined to be 165 ?m to 260 ?m and the clutter energy to total energy ratio (CTR) were 9.1 dB to 12 dB, when the array was electronically focused at different focal points at depths from 4.8 mm to 9.6 mm. The system is capable of acquiring real-time B-mode images at a rate greater than 400 frames per second (fps) for a 4.8 × 13 mm field of view, using a 30 MHz 64-element linear array with 100 ?m pitch. Sample in vivo cardiac high frame rate images and duplex images of mouse hearts are shown to assess its current imaging capability and performance for small animals. PMID:20639149

Zhang, Lequan; Xu, Xiaochen; Hu, Changhong; Sun, Lei; Yen, Jesse T.; Cannata, Jonathan M.; Shung, K. Kirk

2010-01-01

304

Three-dimensional ground penetrating radar imaging using multi-frequency diffraction tomography  

SciTech Connect

In this paper we present results from a three-dimensional image reconstruction algorithm for impulse radar operating in monostatic pulse-echo mode. The application of interest to us is the nondestructive evaluation of civil structures such as bridge decks. We use a multi-frequency diffraction tomography imaging technique in which coherent backward propagations of the received reflected wavefield form a spatial image of the scattering interfaces within the region of interest. This imaging technique provides high-resolution range and azimuthal visualization of the subsurface region. We incorporate the ability to image in planarly layered conductive media and apply the algorithm to experimental data from an offset radar system in which the radar antenna is not directly coupled to the surface of the region. We present a rendering in three-dimensions of the resulting image data which provides high-detail visualization.

Mast, J.E.; Johansson, E.M.

1994-07-01

305

A Modified Frequency Scaling Algorithm for Missile-Borne SAR Imaging  

Microsoft Academic Search

The researches of imaging algorithms for synthetic aperture radar (SAR) is focused on the air- and space-borne SAR from the theory of SAR was formed . In this paper, we propose a modified frequency scaling algorithm for missile-borne SAR imaging. According to the characters of missile-borne SAR including high flight speed, non-straight movement with non-constant velocity and big squint angle,

Jian Zheng; Jun-yong Cheng; Chao-hui Chen

2008-01-01

306

Airplane detection in remote sensing image with a circle-frequency filter  

Microsoft Academic Search

This paper presents a new approach to detect airplanes in panchromatic remote-sensing images. A circle-frequency filter(CF- filter) is given to locate airplane centers from the background. The filter extracts candidate points of airplane centers first. Then through a simple clustering method, airplane centers can be located. 8 panchromatic images of 1.0m~4.0m resolution, including 65 airplanes, are tested with this approach.

Hongping Cai; Yi Su

2005-01-01

307

Spatial Frequency Multiple Access Technique in Three-Dimensional Integral Imaging  

Microsoft Academic Search

The trade-off between the aliasing in integral imaging (II) and the level of interference among adjacent elemental images is mathematically studied in this paper. It is then shown that the multiple-access techniques successfully used in communication systems, e.g. frequency-division multiple access (FDMA), can be invoked to ease the trade-off. Implementation of spatial FDMA technique in three-dimensional II is discussed together

Zahra Kavehvash; Khashayar Mehrany; Saeed Bagheri

2012-01-01

308

Electrical tissue property imaging using MRI at dc and Larmor frequency  

NASA Astrophysics Data System (ADS)

Cross-sectional imaging of conductivity and permittivity distributions inside the human body has been actively investigated in impedance imaging areas such as electrical impedance tomography (EIT) and magnetic induction tomography (MIT). Since the conductivity and permittivity values exhibit frequency-dependent changes, it is worthwhile to perform spectroscopic imaging from almost dc to hundreds of MHz. To probe the human body, we may inject current using surface electrodes or induce current using external coils. In EIT and MIT, measured data are only available on the boundary or exterior of the body unless we invasively place sensors inside the body. Their image reconstruction problems are nonlinear and ill-posed to result in images with a relatively low spatial resolution. Noting that an MRI scanner can noninvasively measure magnetic fields inside the human body, electrical tissue property imaging methods using MRI have lately been proposed. Magnetic resonance EIT (MREIT) performs conductivity imaging at dc or below 1 kHz by externally injecting current into the human body and measuring induced internal magnetic flux density data using an MRI scanner. Magnetic resonance electrical property tomography (MREPT) produces both conductivity and permittivity images at the Larmor frequency of an MRI scanner based on B1-mapping techniques. Since internal data are only available in MREIT and MREPT, we may formulate well-posed inverse problems for image reconstructions. To develop related imaging techniques, we should clearly understand the basic principles of MREIT and MREPT, which are based on coupled physics of bioelectromagnetism and MRI as well as associated mathematical methods. In this paper, we describe the physical principles of MREIT and MREPT in a unified way and associate measurable quantities with the conductivity and permittivity. Clarifying the key relations among them, we examine existing image reconstruction algorithms to reveal their capabilities and limitations. We discuss technical issues in MREIT and MREPT and suggest future research directions to improve the quality of cross-sectional images of the electrical tissue properties.

Seo, Jin Keun; Kim, Dong-Hyun; Lee, Joonsung; In Kwon, Oh; Sajib, Saurav Z. K.; Woo, Eung Je

2012-08-01

309

Image Frequency Analysis for Testing of Fire Service Thermal Imaging Cameras  

Microsoft Academic Search

A growing number of first responders are purchasing infrared cameras (thermal imagers). Thermal imagers provide critical information\\u000a for many firefighting operations: size up, tracking of fire growth, location of victims and egress routes, overhaul, etc….\\u000a Although thermal imagers have proven to be useful tools for the fire service over the past 10–15 years, there is no existing\\u000a comprehensive performance standard for

Francine Amon; Alfred Ducharme

2009-01-01

310

Intramolecular Dynamics Probed using High Harmonic Generation  

NASA Astrophysics Data System (ADS)

We observed intramolecular dynamics as a modulation in high harmonic emission. We excite coherent vibrations in CF3Cl using impulsive Raman scattering with a short laser pulse. A second laser pulse generates high harmonics. The harmonic yield is observed to oscillate at frequencies corresponding to three vibrational modes of CF3Cl. In a second experiment, we used UV light to excite and dissociate CF3I, and follow the dynamic evolution by monitoring the harmonic yield. We observe a large modulation of the harmonic yield, likely due to resonance excitation and subsequent dissociation of the molecule. We speculate that the less-than full baseline recovery after the UV pulse is due to ionization, and that the harmonic yield is sensitive to the bond length during dissociation. By these two experiments, we confirm that high harmonic generation is a sensitive probe of intramolecular dynamics and may yield more information simultaneously than conventional ultrafast spectroscopic techniques.

Hooper, Robynne; Zhou, Xibin; Li, Wen; Wagner, Nick; Kapteyn, Henry; Murnane, Margaret

2007-06-01

311

Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals  

PubMed Central

Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (<196 GB). The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG) signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz) and high-frequency (70~200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2–3 days and used 1–2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory. PMID:24904402

Xiang, Jing; Luo, Qian; Kotecha, Rupesh; Korman, Abraham; Zhang, Fawen; Luo, Huan; Fujiwara, Hisako; Hemasilpin, Nat; Rose, Douglas F.

2014-01-01

312

Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals.  

PubMed

Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (<196 GB). The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG) signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz) and high-frequency (70~200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2-3 days and used 1-2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory. PMID:24904402

Xiang, Jing; Luo, Qian; Kotecha, Rupesh; Korman, Abraham; Zhang, Fawen; Luo, Huan; Fujiwara, Hisako; Hemasilpin, Nat; Rose, Douglas F

2014-01-01

313

Extraction of small boat harmonic signatures from passive sonar.  

PubMed

This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures. PMID:21682400

Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

2011-06-01

314

Aircraft Detection from VHR Images Based on Circle-Frequency Filter and Multilevel Features  

PubMed Central

Aircraft automatic detection from very high-resolution (VHR) images plays an important role in a wide variety of applications. This paper proposes a novel detector for aircraft detection from very high-resolution (VHR) remote sensing images. To accurately distinguish aircrafts from background, a circle-frequency filter (CF-filter) is used to extract the candidate locations of aircrafts from a large size image. A multi-level feature model is then employed to represent both local appearance and spatial layout of aircrafts by means of Robust Hue Descriptor and Histogram of Oriented Gradients. The experimental results demonstrate the superior performance of the proposed method. PMID:24163637

Gao, Feng; Li, Bo

2013-01-01

315

Aircraft detection from VHR images based on circle-frequency filter and multilevel features.  

PubMed

Aircraft automatic detection from very high-resolution (VHR) images plays an important role in a wide variety of applications. This paper proposes a novel detector for aircraft detection from very high-resolution (VHR) remote sensing images. To accurately distinguish aircrafts from background, a circle-frequency filter (CF-filter) is used to extract the candidate locations of aircrafts from a large size image. A multi-level feature model is then employed to represent both local appearance and spatial layout of aircrafts by means of Robust Hue Descriptor and Histogram of Oriented Gradients. The experimental results demonstrate the superior performance of the proposed method. PMID:24163637

Gao, Feng; Xu, Qizhi; Li, Bo

2013-01-01

316

Region Segmentation in the Frequency Domain Applied to Upper Airway Real-Time Magnetic Resonance Images  

PubMed Central

We describe a method for unsupervised region segmentation of an image using its spatial frequency domain representation. The algorithm was designed to process large sequences of real-time magnetic resonance (MR) images containing the 2-D midsagittal view of a human vocal tract airway. The segmentation algorithm uses an anatomically informed object model, whose fit to the observed image data is hierarchically optimized using a gradient descent procedure. The goal of the algorithm is to automatically extract the time-varying vocal tract outline and the position of the articulators to facilitate the study of the shaping of the vocal tract during speech production. PMID:19244005

Narayanan, Shrikanth

2009-01-01

317

Nonlinear spectral imaging of human normal skin, basal cell carcinoma and squamous cell carcinoma based on two-photon excited fluorescence and second-harmonic generation  

NASA Astrophysics Data System (ADS)

In this work, we use nonlinear spectral imaging based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) for analyzing the morphology of collagen and elastin and their biochemical variations in basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and normal skin tissue. It was found in this work that there existed apparent differences among BCC, SCC and normal skin in terms of their thickness of the keratin and epithelial layers, their size of elastic fibers, as well as their distribution and spectral characteristics of collagen. These differences can potentially be used to distinguish BCC and SCC from normal skin, and to discriminate between BCC and SCC, as well as to evaluate treatment responses.

Xiong, S. Y.; Yang, J. G.; Zhuang, J.

2011-10-01

318

Frequency-domain imaging through heavily scattering media: a comparison of diffusion and Monte Carlo simulations  

Microsoft Academic Search

A semi-analytic diffusion model to describe frequency domain imaging through heavily scattering media has been validated by a quantitative comparison with Monte Carlo simulations and experimental results. Although the model is not an exact solution it can deal with situations where exact analysis fails. The method lends itself to modeling responses from restricted objects and deals with the fact that

Stephen P. Morgan; M. C. Pitter; Michael G. Somekh; J. G. Walker

1997-01-01

319

A High Dynamic Range CMOS Image Sensor with In-Pixel Light-To-Frequency Conversion  

E-print Network

A High Dynamic Range CMOS Image Sensor with In-Pixel Light-To-Frequency Conversion by Xiuling Wang-micron CMOS technology exaggerates this problem due to the decreased voltage swing, the scaling induced noise sensor that overcomes the quality degradation of the conventional APSs due to the scaled supply voltage

Hornsey, Richard

320

Sum frequency generation image reconstruction: Aliphatic membrane under spherical cap geometry  

NASA Astrophysics Data System (ADS)

The article explores an opportunity to approach structural properties of phospholipid membranes using Sum Frequency Generation microscopy. To establish the principles of sum frequency generation image reconstruction in such systems, at first approach, we may adopt an idealistic spherical cap uniform assembly of hydrocarbon molecules. Quantum mechanical studies for decanoic acid (used here as a representative molecular system) provide necessary information on transition dipole moments and Raman tensors of the normal modes specific to methyl terminal - a typical moiety in aliphatic (and phospholipid) membranes. Relative degree of localization and frequencies of the normal modes of methyl terminals make nonlinearities of this moiety to be promising in structural analysis using Sum Frequency Generation imaging. Accordingly, the article describes derivations of relevant macroscopic nonlinearities and suggests a mapping procedure to translate amplitudes of the nonlinearities onto microscopy image plane according to geometry of spherical assembly, local molecular orientation, and optical geometry. Reconstructed images indicate a possibility to extract local curvature of bilayer envelopes of spherical character. This may have practical implications for structural extractions in membrane systems of practical relevance.

Volkov, Victor

2014-10-01

321

Frequency, Prognosis and Surgical Treatment of Structural Abnormalities Seen with Magnetic Resonance Imaging in Childhood Epilepsy  

ERIC Educational Resources Information Center

The epidemiology of lesions identified by magnetic resonance imaging (MRI), along with the use of pre-surgical evaluations and surgery in childhood-onset epilepsy patients has not previously been described. In a prospectively identified community-based cohort of children enrolled from 1993 to 1997, we examined (i) the frequency of lesions…

Berg, Anne T.; Mathern, Gary W.; Bronen, Richard A.; Fulbright, Robert K.; DiMario, Francis; Testa, Francine M.; Levy, Susan R.

2009-01-01

322

Time and Frequency Domain CCD-Based Thermoreflectance Techniques for High-Resolution Transient Thermal Imaging  

E-print Network

Time and Frequency Domain CCD-Based Thermoreflectance Techniques for High-Resolution Transient-fast, high-resolution, CCD 1. Introduction Thermoreflectance imaging offers an interesting tool for ac a microscope, while a charge coupled device (CCD) camera cap- tures the reflected light. From the difference

323

Localized regulatory frequencies of human skin temperature derived from the analysis of series of infrared images  

Microsoft Academic Search

The physiological function of human skin in body temperature regulation is reviewed, and methods for measuring skin temperature are described. Different ways to extract diagnostic data from thermal images, focusing on dynamic studies that provide valuable information on the physiological and pathological functions of the autonomous nervous system, are presented. Using fast-Fourier-transform analysis, the frequencies of the different regulatory processes

Michael Anbar; Sean D'Arcy

1991-01-01

324

Stepped-frequency continuous-wave microwave-induced thermoacoustic imaging  

NASA Astrophysics Data System (ADS)

Microwave-induced thermoacoustic (TA) imaging combines the dielectric contrast of microwave imaging with the resolution of ultrasound imaging. Prior studies have only focused on time-domain techniques with short but powerful microwave pulses that require a peak output power in excess of several kilowatts to achieve sufficient signal-to-noise ratio (SNR). This poses safety concerns as well as to render the imager expensive and bulky with requiring a large vacuum radio frequency source. Here, we propose and demonstrate a coherent stepped-frequency continuous-wave (SFCW) technique for TA imaging which enables substantial improvements in SNR and consequently a reduction in peak power requirements for the imager. Constructive and destructive interferences between TA signals are observed and explained. Full coherency across microwave and acoustic domains, in the thermo-elastic response, is experimentally verified and this enables demonstration of coherent SFCW microwave-induced TA imaging. Compared to the pulsed technique, an improvement of 17 dB in SNR is demonstrated.

Nan, Hao; Arbabian, Amin

2014-06-01

325

Three Dimensional Endoscopic Image of a Blood Vessel Using High Frequency Ultrasound  

NASA Astrophysics Data System (ADS)

This paper describes a high frequency ultrasound (US) imaging system for observation of small tissues and a virtual endoscopic image of a blood vessel. This system consists of a US probe with a central frequency of 32 MHz, a microscope table designed to collect some slices of US brightness mode (B-mode) images, a transmitter containing control logic and a receiver circuit and a personal computer (PC) with an analog to digital (AD) converter. First, US B-mode images with high spatial resolution were obtained by shifting a measurement plane at a constant step of 0.075 mm. Second, three-dimensional (3-D) image reconstruction was performed with linear interpolation and a volume rendering technique. Finally, the point of view of the 3-D image was set in the human body and a virtual endoscopic image was presented. The experimental results present a blood vessel as if an ultrasound probe were inserted in it and reveal the anatomical structure under skin.

Oshiro, Osamu; Kamada, Kumi; Chihara, Kunihiro; Secomski, Wojciech; Nowicki, Andrzej

2000-05-01

326

Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range  

NASA Astrophysics Data System (ADS)

Optical frequency domain imaging (OFDI) in the 800-nm biological imaging window is demonstrated by using a novel wavelength-swept laser source. The laser output is tuned continuously from 815 to 870 nm at a 43.2-kHz repetition rate with 7-mW average power. Axial resolution of 10-?m in biological tissue and peak sensitivity of 96 dB are achieved. In vivo imaging of Xenopus laevis is demonstrated with an acquisition speed of 84 frames per second (512 axial lines per frame). This new imaging technique may prove useful in comprehensive retinal screening for medical diagnosis and contrast-agent-based imaging for biological investigations.

Lim, H.; de Boer, J. F.; Park, B. H.; Lee, E. C.; Yelin, R.; Yun, S. H.

2006-06-01

327

Molecular structure, normal coordinate analysis, harmonic vibrational frequencies, NBO, HOMO-LUMO analysis and detonation properties of (S)-2-(2-oxopyrrolidin-1-yl) butanamide by density functional methods  

NASA Astrophysics Data System (ADS)

Density functional theory (DFT) computations have become an efficient tool in the prediction of molecular structure, harmonic force fields, vibrational wave numbers as well as the IR and Raman intensities of pharmaceutically important molecule. In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis and detonation properties of (S)-2-(2-oxopyrrolidin-1-yl) butanamide. The solid phase FT-IR and FT-Raman spectra of (S)-2-(2-oxopyrrolidin-1-yl) butanamide were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Harmonic frequencies of this compound were determined and analyzed by DFT utilizing 6-31G(d,p), 6-31+G(d,p) basis sets. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The calculated infrared and Raman spectra of the title compounds were also stimulated utilizing the scaled force fields and the computed dipole derivatives for IR intensities and polarizability derivatives for Raman intensities. The change in electron density (ED) in the ?* and ?* antibonding orbital's and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. Heat of formation (HOF) and calculated density were estimated to evaluate detonation properties using Kamlet-Jacobs equations. The linear polarizability (?) and the first order hyperpolarizability (?) values of the investigated molecule have been computed using DFT calculations. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The observed and calculated wave numbers are found to be in good agreement. On the basis of vibrational analyses, the thermodynamic properties of title compound at different temperatures have been calculated.

Renuga, S.; Muthu, S.

2014-01-01

328

Molecular structure, normal coordinate analysis, harmonic vibrational frequencies, NBO, HOMO-LUMO analysis and detonation properties of (S)-2-(2-oxopyrrolidin-1-yl) butanamide by density functional methods.  

PubMed

Density functional theory (DFT) computations have become an efficient tool in the prediction of molecular structure, harmonic force fields, vibrational wave numbers as well as the IR and Raman intensities of pharmaceutically important molecule. In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis and detonation properties of (S)-2-(2-oxopyrrolidin-1-yl) butanamide. The solid phase FT-IR and FT-Raman spectra of (S)-2-(2-oxopyrrolidin-1-yl) butanamide were recorded in the region 4000-450 cm(-1) and 4000-50 cm(-1) respectively. Harmonic frequencies of this compound were determined and analyzed by DFT utilizing 6-31G(d,p), 6-31+G(d,p) basis sets. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The calculated infrared and Raman spectra of the title compounds were also stimulated utilizing the scaled force fields and the computed dipole derivatives for IR intensities and polarizability derivatives for Raman intensities. The change in electron density (ED) in the ?(*) and ?(*) antibonding orbital's and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. Heat of formation (HOF) and calculated density were estimated to evaluate detonation properties using Kamlet-Jacobs equations. The linear polarizability (?) and the first order hyperpolarizability (?) values of the investigated molecule have been computed using DFT calculations. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The observed and calculated wave numbers are found to be in good agreement. On the basis of vibrational analyses, the thermodynamic properties of title compound at different temperatures have been calculated. PMID:24096066

Renuga, S; Muthu, S

2014-01-24

329

Comparison of ultrasound temperature imaging with infrared thermometry during radio frequency ablation  

NASA Astrophysics Data System (ADS)

Radio frequency ablation (RFA) is a widely used alternative modality in the treatment of tumors. During RFA, temperature monitoring is essential to ensure accurate and appropriate thermal dosage. Ultrasound temperature imaging based on the detection of echo time-shift has been demonstrated to have good ability to monitor the temperature distribution. However, no study has proven that the region of ultrasound temperature imaging can correspond well to the practical temperature distribution in the tissue. In this study, we aim to combine ultrasound and infrared systems to clarify the correlation between ultrasound temperature imaging and the practical temperature distribution in a tissue. Five porcine livers (n = 5) were ablated using an RFA system and monitored with an ultrasound system to acquire raw backscattered data for temperature imaging. Meanwhile, an infrared imaging system was used to obtain the practical temperature map of the tissue. The results showed that the temperature distribution detected by ultrasound echo time-shift agreed with those obtained from the infrared image. When the tissue temperature was higher than 45 °C, ultrasound temperature imaging is difficult to describe the behavior of the heat transfer in a homogeneous medium. In this study, we used the experimental setup based on combining ultrasound and infrared systems to confirm the reliability and limitations of ultrasound temperature imaging in RFA monitoring. Such an experimental design may be considered as an indispensable platform for the development and optimization of ultrasound temperature imaging techniques in RFA monitoring.

Geng, Xiaonan; Zhou, Zhuhuang; Li, Qiang; Wu, Shuicai; Wang, Chiao-Yin; Liu, Hao-Li; Chuang, Ching-Cheng; Tsui, Po-Hsiang

2014-04-01

330

High-speed camera with real time processing for frequency domain imaging  

PubMed Central

We describe a high-speed camera system for frequency domain imaging suitable for applications such as in vivo diffuse optical imaging and fluorescence lifetime imaging. 14-bit images are acquired at 2 gigapixels per second and analyzed with real-time pipeline processing using field programmable gate arrays (FPGAs). Performance of the camera system has been tested both for RF-modulated laser imaging in combination with a gain-modulated image intensifier and a simpler system based upon an LED light source. System amplitude and phase noise are measured and compared against theoretical expressions in the shot noise limit presented for different frequency domain configurations. We show the camera itself is capable of shot noise limited performance for amplitude and phase in as little as 3 ms, and when used in combination with the intensifier the noise levels are nearly shot noise limited. The best phase noise in a single pixel is 0.04 degrees for a 1 s integration time. PMID:21750770

Shia, Victor; Watt, David; Faris, Gregory W.

2011-01-01

331

Multi-Frequency Synthesis - a New Technique in Radio Interferometric Imaging  

NASA Astrophysics Data System (ADS)

We describe an extension to aperture synthesis, multi-frequency synthesis or MFS, whose principal goal is to allow high-quality radio images to be obtained from spars interferometric arrays. The idea is to use data from a relatively narrow range of frequencies (typically +/- 10 per cent) to produce a major improvement in the aperture-plane coverage of an array. From these data one can reconstruct an image at a single reference frequency in which the 'reconstruction errors', which normally occur as a result of large 'holes' in the aperture plane, are much reduced. The obvious problem to -be overcome is that the source brightness distribution is slightly different at each frequency. We analyse the 'spectral errors' introduced into the reconstructed image by this frequency-dependent structure. For a +/- 1 2.5 per cent range of frequencies we show that typically, spectral errors will be below the thermal noise level provided that the ratio of the peak brightness (excluding any compact component such as a radio core) to rms noise is less than a thousand-to-one, Unresolved features can be identified easily and effectively removed from the data a each frequency and hence they need not be a source of spectral errors. When this spectral errors are above the noise they can be recognized and removed by an extension to the well-established CLEAN deconvolution methodi We call the new method 'double deconvolution', or DD, and demonstrate its effectiveness 0 simulated data. The primary motivation beyond narrow-band MFS observations is to produce improved intensity images, rather than to determine spectral index distributions. Although the DD algorithm effectively estimates the spectral index distribution in the course of removing spectral effects, these estimates will be crude and not generally of astrophysical use. We briefly consider the practical problems involved in making MFS observations and conclude that the major limiting factor is likely to be radio-frequency interference. However, MFS is currently feasible between 1.4 an 1.7 GHz and at higher frequencies in the UK.

Conway, J. E.; Cornwell, T. J.; Wilkinson, P. N.

1990-10-01

332

Spatial frequencies from human periosteum at different depths using two-photon microscopic images  

NASA Astrophysics Data System (ADS)

The outer layer of human bone, the periosteum, was studied using two-photon (2P) fluorescence microscopy. This layer of the periosteum is composed mostly of fibrous collagen. The inner cambium layer has less collagen and contains osteoblasts necessary for bone remodeling. The spatial frequencies from the layers of the periosteum of human bone at different depths were investigated using images acquired with two-photon excitation microscopy. This 2P spectroscopic method offers deeper depth penetration into samples, high fluorescence collection efficiency, and a reduction in photobleaching and photodamage. Using 130 femtosecond pulses with an 800 nm wavelength excitation, a 40× microscope objective, and a photomultiplier tube (PMT) detector, high contrast images of the collagen present in the periosteum at various micrometers depths from the surface were obtained. Fourier transform analysis of the 2P images was used to assess the structure of the periosteum at different depths in terms of spatial frequencies. The spatial frequency spectra from the outer and inner periosteal regions show significant spectral peak differences which can provide information on the structure of the layers of the periosteum. One may be able to use spatial frequency spectra for optical detection of abnormalities of the periosteum which can occur in disease.

Sordillo, Laura A.; Shi, Lingyan; Bhagroo, Stephen; Nguyen, Theinan; Lubicz, Stephanie; Pu, Yang; Budansky, Yuri; Hatak, Noella; Alfano, R. R.

2014-03-01

333

3D imaging of tomato seeds using frequency domain optical coherence tomography  

NASA Astrophysics Data System (ADS)

A fast imaging system that can reveal internal sample structures is important for research and quality controls of seeds. Optical coherence tomography (OCT) is a non-invasive optical imaging technique that can acquire high speed, high resolution depth-resolved images in scattering samples. It has found numerous applications in studying various biological tissues and other materials in vivo. A few studies have reported the use of OCT in studying seed morphology. However, 3D imaging of internal seed structure has not been reported before. In this study, we used a frequency domain OCT system to image tomato seeds. The system has a central wavelength of 844nm with a 46.8 nm FWHM bandwidth. The requirement for depth scan was eliminated by using a Fourier domain implementation. The B-scan imaging speed was limited by the spectroscopic imaging CCD at 52 kHz. The calibrated system has a 6.7?m depth resolution and a 15.4?m lateral resolution. Our results show that major seed structures can be clearly visualized in OCT images.

Fan, Chuanmao; Yao, Gang

2012-05-01

334

Development of Multiple-Frequency Ultrasonic Imaging System Using Multiple Resonance Piezoelectric Transducer  

NASA Astrophysics Data System (ADS)

The authors have developed a multiple frequency imaging system using a multiple resonance transducer (MRT) consisting of 1-3 composite materials with a low mechanical quality factor Q bonded together. The MRT has a structure consisting of thin and thick piezoelectric plates, two matching layers, and a backing layer. This makes it possible to obtain B-mode images of satisfactory resolution using ultrasonic pulses owing to their short duration. In this paper, the vibration property of the MRT derived through equivalent-circuit analysis is first shown. By utilizing the result, an MRT capable of transmitting ultrasonic pulses for generation of the images of biological tissues with satisfactory resolution is designed and prototyped. Setting the prototype transducer in the mechanical sector probe of commercial ultrasonic diagnosis equipment, the speckle reduction effect is demonstrated using images of various phantoms to mimic biological tissues and a human thyroid.

Akiyama, Iwaki; Yoshizumi, Natsuki; Saito, Shigemi; Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

2012-07-01

335

Sources of errors in spatial frequency domain imaging of scattering media  

NASA Astrophysics Data System (ADS)

Knowledge of the impact of potential sources of error in spatial frequency domain imaging (SFDI) is essential for the quantitative characterization of absorption and scattering in tissue and other turbid media. We theoretically investigate the error in the derived absorption and scattering parameter, subject to typical experimental and theoretical sources of errors. This provides a guideline to properly assess the significance of various parameters related to the measurement and the theoretical evaluation of spatial frequency domain reflectance data. At the same time, this study serves as a reference to estimate the overall precision of derived optical parameters of semi-infinite scattering media using SFDI.

Bodenschatz, Nico; Brandes, Arnd; Liemert, André; Kienle, Alwin

2014-07-01

336

Sources of errors in spatial frequency domain imaging of scattering media.  

PubMed

Knowledge of the impact of potential sources of error in spatial frequency domain imaging (SFDI) is essential for the quantitative characterization of absorption and scattering in tissue and other turbid media. We theoretically investigate the error in the derived absorption and scattering parameter, subject to typical experimental and theoretical sources of errors. This provides a guideline to properly assess the significance of various parameters related to the measurement and the theoretical evaluation of spatial frequency domain reflectance data. At the same time, this study serves as a reference to estimate the overall precision of derived optical parameters of semi-infinite scattering media using SFDI. PMID:24474551

Bodenschatz, Nico; Brandes, Arnd; Liemert, André; Kienle, Alwin

2014-07-01

337

Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging  

PubMed Central

Introduction Nationally, 25% to 50% of patients undergoing lumpectomy for local management of breast cancer require a secondary excision because of the persistence of residual tumor. Intraoperative assessment of specimen margins by frozen-section analysis is not widely adopted in breast-conserving surgery. Here, a new approach to wide-field optical imaging of breast pathology in situ was tested to determine whether the system could accurately discriminate cancer from benign tissues before routine pathological processing. Methods Spatial frequency domain imaging (SFDI) was used to quantify near-infrared (NIR) optical parameters at the surface of 47 lumpectomy tissue specimens. Spatial frequency and wavelength-dependent reflectance spectra were parameterized with matched simulations of light transport. Spectral images were co-registered to histopathology in adjacent, stained sections of the tissue, cut in the geometry imaged in situ. A supervised classifier and feature-selection algorithm were implemented to automate discrimination of breast pathologies and to rank the contribution of each parameter to a diagnosis. Results Spectral parameters distinguished all pathology subtypes with 82% accuracy and benign (fibrocystic disease, fibroadenoma) from malignant (DCIS, invasive cancer, and partially treated invasive cancer after neoadjuvant chemotherapy) pathologies with 88% accuracy, high specificity (93%), and reasonable sensitivity (79%). Although spectral absorption and scattering features were essential components of the discriminant classifier, scattering exhibited lower variance and contributed most to tissue-type separation. The scattering slope was sensitive to stromal and epithelial distributions measured with quantitative immunohistochemistry. Conclusions SFDI is a new quantitative imaging technique that renders a specific tissue-type diagnosis. Its combination of planar sampling and frequency-dependent depth sensing is clinically pragmatic and appropriate for breast surgical-margin assessment. This study is the first to apply SFDI to pathology discrimination in surgical breast tissues. It represents an important step toward imaging surgical specimens immediately ex vivo to reduce the high rate of secondary excisions associated with breast lumpectomy procedures. PMID:23915805

2013-01-01

338

Extremely High-Frequency Holographic Radar Imaging of Personnel and Mail  

SciTech Connect

The awareness of terrorists covertly transporting chemical warfare (CW) and biological warfare (BW) agents into government, military, and civilian facilities to harm the occupants has increased dramatically since the attacks of 9/11. Government and civilian security personnel have a need for innovative surveillance technology that can rapidly detect these lethal agents, even when they are hidden away in sealed containers and concealed either under clothing or in hand-carried items such as mailed packages or handbags. Sensor technology that detects BW and CW agents in mail or sealed containers carried under the clothing are under development. One promising sensor technology presently under development to defeat these threats is active millimeter-wave holographic radar imaging, which can readily image concealed items behind paper, cardboard, and clothing. Feasibility imaging studies at frequencies greater than 40 GHz have been conducted to determine whether simulated biological or chemical agents concealed in mail packages or under clothing could be detected using this extremely high-frequency imaging technique. The results of this imaging study will be presented in this paper.

McMakin, Douglas L.; Sheen, David M.; Griffin, Jeffrey W.; Lechelt, Wayne M.

2006-08-01

339

Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser.  

PubMed

Fourier-transform infrared (FT-IR) imaging is a well-established modality but requires the acquisition of a spectrum over a large bandwidth, even in cases where only a few spectral features may be of interest. Discrete frequency infrared (DF-IR) methods are now emerging in which a small number of measurements may provide all the analytical information needed. The DF-IR approach is enabled by the development of new sources integrating frequency selection, in particular of tunable, narrow-bandwidth sources with enough power at each wavelength to successfully make absorption measurements. Here, we describe a DF-IR imaging microscope that uses an external cavity quantum cascade laser (QCL) as a source. We present two configurations, one with an uncooled bolometer as a detector and another with a liquid nitrogen cooled mercury cadmium telluride (MCT) detector and compare their performance to a commercial FT-IR imaging instrument. We examine the consequences of the coherent properties of the beam with respect to imaging and compare these observations to simulations. Additionally, we demonstrate that the use of a tunable laser source represents a distinct advantage over broadband sources when using a small aperture (narrower than the wavelength of light) to perform high-quality point mapping. The two advances highlight the potential application areas for these emerging sources in IR microscopy and imaging. PMID:23113653

Kole, Matthew R; Reddy, Rohith K; Schulmerich, Matthew V; Gelber, Matthew K; Bhargava, Rohit

2012-12-01

340

Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser  

PubMed Central

Fourier-transform infrared imaging (FT-IR) is a well-established modality but requires the acquisition of a spectrum over a large bandwidth, even in cases where only a few spectral features may be of interest. Discrete frequency infrared (DF-IR) methods are now emerging in which a small number of measurements may provide all the analytical information needed. The DF-IR approach is enabled by the development of new sources integrating frequency selection, in particular of tunable, narrow-bandwidth sources with enough power at each wavelength to successfully make absorption measurements. Here, we describe a DF-IR imaging microscope that uses an external cavity quantum cascade laser (QCL) as a source. We present two configurations, one with an uncooled bolometer as a detector and another with a liquid nitrogen cooled Mercury Cadmium Telluride (MCT) detector and compare their performance to a commercial FT-IR imaging instrument. We examine the consequences of the coherent properties of the beam with respect to imaging and compare these observations to simulations. Additionally, we demonstrate that the use of a tunable laser source represents a distinct advantage over broadband sources when using a small aperture (narrower than the wavelength of light) to perform high-quality point mapping. The two advances highlight the potential application areas for these emerging sources in IR microscopy and imaging. PMID:23113653

Kole, Matthew R.; Reddy, Rohith K.; Schulmerich, Matthew V.; Gelber, Matthew K.; Bhargava, Rohit

2012-01-01

341

Extremely high-frequency holographic radar imaging of personnel and mail  

NASA Astrophysics Data System (ADS)

The awareness of terrorists covertly transporting chemical warfare (CW) and biological warfare (BW) agents into government, military, and civilian facilities to harm the occupants has increased dramatically since the attacks of 9/11. Government and civilian security personnel have a need for innovative surveillance technology that can rapidly detect these lethal agents, even when they are hidden away in sealed containers and concealed either under clothing or in hand-carried items such as mailed packages or handbags. Sensor technology that detects BW and CW agents in mail or sealed containers carried under the clothing are under development. One promising sensor technology presently under development to detect these threats is active millimeter-wave holographic radar imaging, which can readily image concealed items behind paper, cardboard, and clothing. Feasibility imaging studies at frequencies greater than 40 GHz have been conducted to determine whether simulated biological or chemical agents concealed in mail packages or under clothing could be detected using this extremely high-frequency imaging technique. The results of this imaging study will be presented in this paper.

McMakin, Douglas L.; Sheen, David M.; Griffin, Jeffery W.; Lechelt, Wayne M.

2006-05-01

342

A high-frame rate high-frequency ultrasonic system for cardiac imaging in mice.  

PubMed

We report the development of a high-frequency (30-50 MHz), real-time ultrasonic imaging system for cardiac imaging in mice. This system is capable of producing images at 130 frames per second (fps) with a spatial resolution of less than 50 microm. A novel mechanical sector probe was developed that utilizes a magnetic drive mechanism and custom-built servo controller for high speed and accuracy. Additionally, a very light-weight (< 0.28 g), single-element transducer was constructed and used to reduce the mass load on the motor. The imaging electronics were triggered according to the angular position of the transducer in order to compensate for the varying speed of the sector motor. This strategy ensured the production of equally spaced scan lines with minimal jitter. Wire phantom testing showed that the system axial and lateral resolutions were 48 microm and 72 microm, respectively. In vivo experiments showed that high-frequency ultrasonic imaging at 130 fps is capable of showing a detailed depiction of a beating mouse heart. PMID:17703669

Sun, Lei; Richard, William D; Cannata, Jonathan M; Feng, Ching C; Johnson, Jeffrey A; Yen, Jesse T; Shung, K Kirk

2007-08-01

343

Three-dimensional phantoms for curvature correction in spatial frequency domain imaging  

PubMed Central

The sensitivity to surface profile of non-contact optical imaging, such as spatial frequency domain imaging, may lead to incorrect measurements of optical properties and consequently erroneous extrapolation of physiological parameters of interest. Previous correction methods have focused on calibration-based, model-based, and computation-based approached. We propose an experimental method to correct the effect of surface profile on spectral images. Three-dimensional (3D) phantoms were built with acrylonitrile butadiene styrene (ABS) plastic using an accurate 3D imaging and an emergent 3D printing technique. In this study, our method was utilized for the correction of optical properties (absorption coefficient ?a and reduced scattering coefficient ?s?) of objects obtained with a spatial frequency domain imaging system. The correction method was verified on three objects with simple to complex shapes. Incorrect optical properties due to surface with minimum 4 mm variation in height and 80 degree in slope were detected and improved, particularly for the absorption coefficients. The 3D phantom-based correction method is applicable for a wide range of purposes. The advantages and drawbacks of the 3D phantom-based correction methods are discussed in details. PMID:22741068

Nguyen, Thu T. A.; Le, Hanh N. D.; Vo, Minh; Wang, Zhaoyang; Luu, Long; Ramella-Roman, Jessica C.

2012-01-01

344

Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases  

NASA Astrophysics Data System (ADS)

For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 ?m and a lateral resolution down to 32 ?m. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 ?m tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

2010-02-01

345

Brain connectivity study of joint attention using frequency-domain optical imaging technique  

NASA Astrophysics Data System (ADS)

Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic populations. In this study, diffuse optical imaging is being used to study brain connectivity for the first time in response to joint attention experience in normal adults. The prefrontal region of the brain was non-invasively imaged using a frequency-domain based optical imager. The imaging studies were performed on 11 normal right-handed adults and optical measurements were acquired in response to joint-attention based video clips. While the intensity-based optical data provides information about the hemodynamic response of the underlying neural process, the time-dependent phase-based optical data has the potential to explicate the directional information on the activation of the brain. Thus brain connectivity studies are performed by computing covariance/correlations between spatial units using this frequency-domain based optical measurements. The preliminary results indicate that the extent of synchrony and directional variation in the pattern of activation varies in the left and right frontal cortex. The results have significant implication for research in neural pathways associated with autism that can be mapped using diffuse optical imaging tools in the future.

Chaudhary, Ujwal; Zhu, Banghe; Godavarty, Anuradha

2010-02-01

346

Development and Testing of a Single Frequency Terahertz Imaging System for Breast Cancer Detection  

PubMed Central

The ability to discern malignant from benign tissue in excised human breast specimens in Breast Conservation Surgery (BCS) was evaluated using single frequency terahertz radiation. Terahertz (THz) images of the specimens in reflection mode were obtained by employing a gas laser source and mechanical scanning. The images were correlated with optical histological micrographs of the same specimens, and a mean discrimination of 73% was found for five out of six samples using Receiver Operating Characteristic (ROC) analysis. The system design and characterization is discussed in detail. The initial results are encouraging but further development of the technology and clinical evaluation is needed to evaluate its feasibility in the clinical environment. PMID:25055306

St. Peter, Benjamin; Yngvesson, Sigfrid; Siqueira, Paul; Kelly, Patrick; Khan, Ashraf; Glick, Stephen; Karellas, Andrew

2013-01-01

347

Measurement of the quadratic hyperpolarizability of the collagen triple helix and application to second harmonic imaging of natural and biomimetic collagenous tissues  

NASA Astrophysics Data System (ADS)

Collagen is a major protein of the extracellular matrix that is characterized by triple helical domains. It plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) so that SHG microscopy proved to be a sensitive tool to probe the three-dimensional architecture of fibrillar collagen and to assess the progression of fibrotic pathologies. We obtained sensitive and reproducible measurements of the fibrosis extent, but we needed quantitative data at the molecular level to further process SHG images. We therefore performed Hyper- Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its aminoacid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro- Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagenous biomimetic matrices.

Deniset-Besseau, A.; Strupler, M.; Duboisset, J.; De Sa Peixoto, P.; Benichou, E.; Fligny, C.; Tharaux, P.-L.; Mosser, G.; Brevet, P.-F.; Schanne-Klein, M.-C.

2009-09-01

348

Characterization of collagen fibers by means of texture analysis of second harmonic generation images using orientation-dependent gray level co-occurrence matrix method  

NASA Astrophysics Data System (ADS)

Collagen is the most prominent protein in the human body, making up 30% of the total protein content. Quantitative studies have shown structural differences between collagen fibers of the normal and diseased tissues, due to the remodeling of the extracellular matrix during the pathological process. The dominant orientation, which is an important characteristic of collagen fibers, has not been taken into consideration for quantitative collagen analysis. Based on the conventional gray level co-occurrence matrix (GLCM) method, the authors proposed the orientation-dependent GLCM (OD-GLCM) method by estimating the dominant orientation of collagen fibers. The authors validated the utility of the OD-GLCM method on second harmonic generation (SHG) microscopic images of tendons from rats with different ages. Compared with conventional GLCM method, the authors' method has not only improved the discrimination between different tissues but also provided additional texture information of the orderliness of collagen fibers and the fiber size. The OD-GLCM method was further applied to the differentiation of the preliminary SHG images of normal and cancerous human pancreatic tissues. The combination of SHG microscopy and the OD-GLCM method might be helpful for the evaluation of diseases marked with abnormal collagen morphology.

Hu, Wenyan; Li, Hui; Wang, Chunyou; Gou, Shanmiao; Fu, Ling

2012-02-01

349

In-vivo corneal nonlinear optical tomography based on second harmonic and multiphoton autofluorescence imaging induced by near-infrared femtosecond lasers with rabbits  

NASA Astrophysics Data System (ADS)

The intratissue multiphoton autofluorescence imaging (MAI) and the second harmonic generation (SHG) based on nonlinear process of femtosecond nanojoule laser pulses at wave length of 750-850 nm emitted from solid-state Titanium: Sapphire Chameleon have been used as a highly precise non-destructive tool to realize the in-vivo differentiation of corneal layers with the assistance of intratissue optical tomography and to visualize the keratocyte structures and collagen lamellas with submicron resolution. Multiphoton nonlinear imaging occurs only with high light intensity on an order of MG-GW/cm2 and photon flux density of more than 1024 photons cm-2s-1 in a 0.1femtoliter intrastromal focus volume obtained by diffraction-limited focussing with high-numerical objectives. This technique, acting as a novel diagnostic tool, proved to be essential for femtosecond (fs) nanojoule (nJ) cornea surgery to determine the interest of region preoperation, to visualize and verify the outcomes immediately after the laser surgery and has potential to become a powerful tool in advancing understanding of corneal biomechnics and cellular reactions after laser induced lesion.

Wang, Baogui; Halbhuber, Karl-Juergen; Riemann, Iris; Koenig, Karsten

2005-10-01

350

Characterization of collagen fibers by means of texture analysis of second harmonic generation images using orientation-dependent gray level co-occurrence matrix method.  

PubMed

Collagen is the most prominent protein in the human body, making up 30% of the total protein content. Quantitative studies have shown structural differences between collagen fibers of the normal and diseased tissues, due to the remodeling of the extracellular matrix during the pathological process. The dominant orientation, which is an important characteristic of collagen fibers, has not been taken into consideration for quantitative collagen analysis. Based on the conventional gray level co-occurrence matrix (GLCM) method, the authors proposed the orientation-dependent GLCM (OD-GLCM) method by estimating the dominant orientation of collagen fibers. The authors validated the utility of the OD-GLCM method on second harmonic generation (SHG) microscopic images of tendons from rats with different ages. Compared with conventional GLCM method, the authors' method has not only improved the discrimination between different tissues but also provided additional texture information of the orderliness of collagen fibers and the fiber size. The OD-GLCM method was further applied to the differentiation of the preliminary SHG images of normal and cancerous human pancreatic tissues. The combination of SHG microscopy and the OD-GLCM method might be helpful for the evaluation of diseases marked with abnormal collagen morphology. PMID:22463039

Hu, Wenyan; Li, Hui; Wang, Chunyou; Gou, Shanmiao; Fu, Ling

2012-02-01

351

Combined spectrally encoded confocal microscopy and optical frequency domain imaging system  

NASA Astrophysics Data System (ADS)

Spectrally encoded confocal microscopy (SECM) and optical frequency domain imaging (OFDI) are two reflectancebased imaging technologies that may be utilized for high-resolution microscopic screening of internal organs. SECM provides en face images of tissues with a high lateral resolution of 1-2 ?m, and a penetration depth of up to 300 ?m. OFDI generates cross-sectional images of tissue architecture with a resolution of 10-20 ?m and a penetration depth of 1- 2 mm. Since the two technologies yield complementary microscopic information on two different size scales (SECM-cellular and OFDI-architectural) that are commonly used for histopathologic evaluation, their combination may allow for more accurate optical diagnosis. Here, we report the integration of these two imaging modalities in a single bench top system. SECM images of swine small intestine showed the presence of goblet cells, and OFDI images revealed the finger-shaped villous architecture. In clinical study of 9 gastroesophageal biopsies from 8 patients, a diverse set of architectural and cellular features was observed, including squamous mucosa with mild hyperplasia and gastric antral mucosa with gastric pits and crypts. The capability of this multimodality device to enable the visualization of microscopic features on these two size scales supports our hypothesis that improved diagnostic accuracy may be obtained by merging these two technologies into a single instrument.

Kang, DongKyun; Suter, Melissa J.; Boudoux, Caroline; Yachimski, Patrick S.; Bouma, Brett E.; Nishioka, Norman S.; Tearney, Guillermo J.

2009-02-01

352

Imaging fall Chinook salmon redds in the Columbia River with a dual-frequency identification sonar  

USGS Publications Warehouse

We tested the efficacy of a dual-frequency identification sonar (DIDSON) for imaging and enumeration of fall Chinook salmon Oncorhynchus tshawytscha redds in a spawning area below Bonneville Dam on the Columbia River. The DIDSON uses sound to form near-video-quality images and has the advantages of imaging in zero-visibility water and possessing a greater detection range and field of view than underwater video cameras. We suspected that the large size and distinct morphology of a fall Chinook salmon redd would facilitate acoustic imaging if the DIDSON was towed near the river bottom so as to cast an acoustic shadow from the tailspill over the redd pocket. We tested this idea by observing 22 different redds with an underwater video camera, spatially referencing their locations, and then navigating to them while imaging them with the DIDSON. All 22 redds were successfully imaged with the DIDSON. We subsequently conducted redd searches along transects to compare the number of redds imaged by the DIDSON with the number observed using an underwater video camera. We counted 117 redds with the DIDSON and 81 redds with the underwater video camera. Only one of the redds observed with the underwater video camera was not also documented by the DIDSON. In spite of the DIDSON's high cost, it may serve as a useful tool for enumerating fall Chinook salmon redds in conditions that are not conducive to underwater videography.

Tiffan, K. F.; Rondorf, D. W.; Skalicky, J. J.

2004-01-01

353

Nanoscale subsurface imaging via resonant difference-frequency atomic force ultrasonic microscopy  

NASA Astrophysics Data System (ADS)

A scanning probe microscope methodology, called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), has been developed. It employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features. An analytical model is presented for assessing the RDF-AFUM phase signal resulting from near-surface variations in the sample contact stiffness and from the interaction of the bulk wave with subsurface structures. The application of the model to RDF-AFUM phase measurements of a 12.7?m thick film of LaRC™-CP2 polyimide polymer containing a monolayer of gold nanoparticles embedded 7?m below the specimen surface reveals variations in the Young modulus of the material of approximately 24% over regions roughly 10-35nm wide. The magnitude of the modulus variations suggests the occurrence of contiguous amorphous and crystalline phases within the bulk of the polymer. The RDF-AFUM micrograph indicates a preferential growth of the crystalline phase in the vicinity of the gold nanoparticles.

Cantrell, Sean A.; Cantrell, John H.; Lillehei, Peter T.

2007-06-01

354

Tracking Comb Filter Suppresses Welder Harmonics  

NASA Technical Reports Server (NTRS)

Tracking comb filter includes charge-coupled-device delay line and phase-locked loop. Filter removes harmonics of frequency of repetition of welding-current pulses from acoustic-emission signal. Spurious signals reduced almost to fundamental limit.

Delcher, Ray C.

1992-01-01

355

Sunspots and their simple harmonic motion  

NASA Astrophysics Data System (ADS)

In this paper an example of a simple harmonic motion, the apparent motion of sunspots due to the Sun’s rotation, is described, which can be used to teach this subject to high-school students. Using real images of the Sun, students can calculate the star’s rotation period with the simple harmonic motion mathematical expression.

Ribeiro, C. I.

2013-09-01

356

Sunspots and Their Simple Harmonic Motion  

ERIC Educational Resources Information Center

In this paper an example of a simple harmonic motion, the apparent motion of sunspots due to the Sun's rotation, is described, which can be used to teach this subject to high-school students. Using real images of the Sun, students can calculate the star's rotation period with the simple harmonic motion mathematical expression.

Ribeiro, C. I.

2013-01-01

357

Mesospheric wind measurements using a medium-frequency imaging Doppler interferometer  

NASA Technical Reports Server (NTRS)

Wind results from a medium-frequency radar operated as an imaging Doppler interferometer are presented. Ten independent antennas, together with mesospheric wind motions, were used to Doppler-sort and then echo-locate individual scattering points. The three-dimensional location and radial velocity of each discrete scattering point was determined. Mean winds were then determined by a least squares fit to the radial velocities of the ensemble of scatterers.

Adams, G. W.; scatterers.

1986-01-01

358

A Nonlinear Harmonic Model for Fitting Satellite Image Time Series: Analysis and Prediction of Land Cover Dynamics  

Microsoft Academic Search

Numerous efforts have been made to develop models to fit multispectral reflectance and vegetation index (VI) time series from satellite images for diverse land cover classes. The common objective of these models is to derive a set of measurable parameters that are able to characterize and to reproduce the land cover dynamics of natural- and human-induced ecosystems. Good-fitting models should

Hugo Carrao; P. Gonalves; Mário Caetano

2010-01-01

359

Doppler imaging with dual-detection full-range frequency domain optical coherence tomography  

PubMed Central

Most of full-range techniques for Frequency Domain Optical Coherence Tomography (FD-OCT) reported to date utilize the phase relation between consecutive axial lines to reconstruct a complex interference signal and hence may exhibit degradation in either mirror image suppression performance or detectable velocity dynamic range or both when monitoring a moving sample such as flow activity. We have previously reported a technique of mirror image removal by simultaneous detection of the quadrature components of a complex spectral interference called a Dual-Detection Frequency Domain OCT (DD-FD-OCT) [Opt. Lett. 35, 1058-1060 (2010)]. The technique enables full range imaging without any loss of acquisition speed and is intrinsically less sensitive to phase errors generated by involuntary movements of the subject. In this paper, we demonstrate the application of the DD-FD-OCT to a phase-resolved Doppler imaging without degradation in either mirror image suppression performance or detectable velocity dynamic range that were observed in other full-range Doppler methods. In order to accommodate for Doppler imaging, we have developed a fiber-based DD-FD-OCT that more efficiently utilizes the source power compared with the previous free-space DD-FD-OCT. In addition, the velocity sensitivity of the phase-resolved DD-FD-OCT was investigated, and the relation between the measured Doppler phase shift and set flow velocity of a flow phantom was verified. Finally, we demonstrate the Doppler imaging using the DD-FD-OCT in a biological sample. PMID:21258488

Meemon, Panomsak; Lee, Kye-Sung; Rolland, Jannick P.

2010-01-01

360

Children's Computation of Complex Linguistic Forms: A Study of Frequency and Imageability Effects  

PubMed Central

This study investigates the storage vs. composition of inflected forms in typically-developing children. Children aged 8–12 were tested on the production of regular and irregular past-tense forms. Storage (vs. composition) was examined by probing for past-tense frequency effects and imageability effects – both of which are diagnostic tests for storage – while controlling for a number of confounding factors. We also examined sex as a factor. Irregular inflected forms, which must depend on stored representations, always showed evidence of storage (frequency and/or imageability effects), not only across all children, but also separately in both sexes. In contrast, for regular forms, which could be either stored or composed, only girls showed evidence of storage. This pattern is similar to that found in previously-acquired adult data from the same task, with the notable exception that development affects which factors influence the storage of regulars in females: imageability plays a larger role in girls, and frequency in women. Overall, the results suggest that irregular inflected forms are always stored (in children and adults, and in both sexes), whereas regulars can be either composed or stored, with their storage a function of various item- and subject-level factors. PMID:24040318

Dye, Cristina D.; Walenski, Matthew; Prado, Elizabeth L.; Mostofsky, Stewart; Ullman, Michael T.

2013-01-01

361

High-frame-rate 2-D vector blood flow imaging in the frequency domain.  

PubMed

Conventional ultrasound Doppler techniques estimate the blood velocity exclusively in the axial direction to produce the sonograms and color flow maps needed for diagnosis of cardiovascular diseases. In this paper, a novel method to produce bi-dimensional maps of 2-D velocity vectors is proposed. The region of interest (ROI) is illuminated by plane waves transmitted at the pulse repetition frequency (PRF) in a fixed direction. For each transmitted plane wave, the backscattered echoes are recombined offline to produce the radio-frequency image of the ROI. The local 2-D phase shifts between consecutive speckle images are efficiently estimated in the frequency domain, to produce vector maps up to 15 kHz PRF. Simulations and in vitro steady-flow experiments with different setup conditions have been conducted to thoroughly evaluate the method's performance. Bias is proved to be lower than 10% in most simulations and lower than 20% in experiments. Further simulations and in vivo experiments have been made to test the approach's feasibility in pulsatile flow conditions. It has been estimated that the computation of the frequency domain algorithm is more than 50 times faster than the computation of the reference 2-D cross-correlation algorithm. PMID:25167150

Lenge, Matteo; Ramalli, Alessandro; Boni, Enrico; Liebgott, Hervé; Cachard, Christian; Tortoli, Piero

2014-09-01

362

Transmission characteristics of cyclotron harmonic waves in plasma  

Microsoft Academic Search

In recent years the importance of cyclotron harmonic waves has become apparent in many branches of plasma physics. For example, it has been demonstrated that they are involved in the anomalously high noise radiation near the electron cyclotron harmonic frequencies that has been observed from thermonuclear fusion study devices, and that they can explain the cyclotron harmonic resonances observed in

F. W. Crawford; H. H. Weiss

1966-01-01

363

Multi-frequency synthetic-aperture imaging with a lightweight ground penetrating radar system  

NASA Astrophysics Data System (ADS)

The detection of buried objects, particularly hazardous waste containers and unexploded ordnance (UXO), has gained significant interest in the Unites States in the late 1990s. The desire to remediate the thousands of sites worldwide has become an increasing concern and the application of radar to this problem has received renewed attention. The US Department of Energy's Special Technologies Laboratory (STL), operated by Bechtel Nevada, has developed several frequency-modulated, continuous-wave (FM-CW) ground penetrating radar (GPR) units. To meet technical requirements for higher-resolution data, STL and the University of California, Santa Barbara (UCSB) is investigating advanced GPR hardware, signal processing, and synthetic-aperture imaging with the development of an innovative system. The goal is to design and fabricate a lightweight, battery-operated unit that does not require surface contact, can be operated by a novice user, and can achieve improved resolution. The latter is accomplished by using synthetic-aperture imaging, which forms the subsurface images by fully utilizing the data sequences collectively along a scan path. We also present the backward propagation algorithm as the basic structure of the multiple-frequency tomographic imaging technique, and the conventional fast Fourier transform (FFT) method which can be described as a degenerated case of the model where the computation procedure is approximated under the narrow-beam assumption.

Koppenjan, Steven K.; Allen, Curt M.; Gardner, Duane; Wong, Howard R.; Lee, Hua; Lockwood, Stephanie J.

2000-03-01

364

High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry  

PubMed Central

There is considerable interest in the interrogation of biological tissue at terahertz (THz) frequencies, largely due to the contrast in the optical properties of different biological tissues which occur in this electro-magnetic radiation band. Of particular interest are THz biomedical images, which have the potential to highlight different information than those acquired in other frequency bands, thereby providing an augmented picture of biological structures. In this work, we demonstrate the feasibility of an interferometric biological imaging technique using a THz quantum cascade laser (QCL) operating at 2.59 THz to perform coherent imaging of porcine tissue samples. We show the potential of this new THz biomedical imaging technique for in vivo studies, by virtue of its reflection geometry and useful tissue penetration depth enabled by the large THz powers emitted by the quantum cascade laser used in this work. The observed clustering of interferometric tissue signatures opens a pathway towards automatic techniques for the discrimination of healthy tissue types for the study of normal physiology and possible therapeutic approaches.

Lim, Yah Leng; Taimre, Thomas; Bertling, Karl; Dean, Paul; Indjin, Dragan; Valavanis, Alexander; Khanna, Suraj P.; Lachab, Mohammad; Schaider, Helmut; Prow, Tarl W.; Peter Soyer, H.; Wilson, Stephen J.; Linfield, Edmund H.; Giles Davies, A.; Raki?, Aleksandar D.

2014-01-01

365

Development of a 64 channel ultrasonic high frequency linear array imaging system  

PubMed Central

In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20 MHz–120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom images acquired with this system show a spatial resolution of 146 ?m (lateral) and 54 ?m (axial). Images with excised rabbit and pig eyeball as well as mouse embryo were also acquired to demonstrate its imaging capability. PMID:21684568

Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M.; Yen, Jesse; Shung, K. Kirk

2011-01-01

366

Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization  

NASA Astrophysics Data System (ADS)

Optical image reconstruction in heterogeneous turbid media is sensitive to noise, especially when the signal-to-noise ratio of a measurement system is low. A total-variation-minimization-based iterative algorithm is described in this paper that enhances the quality of reconstructed images with frequency-domain data over that obtained previously with a regularized least-squares approach. Simulation experiments in an 8.6-cm-diameter circular heterogeneous region with low- and high-contrast levels between the target and the background show that the quality of the reconstructed images can be improved considerably when total-variation minimization is included. These simulated results are further verified and confirmed by images reconstructed from experimental data by the use of the same geometry and optically tissue-equivalent phantoms. Measures of imaging performance, including the location, size, and shape of the reconstructed heterogeneity, along with absolute errors in the predicted optical-property values are used to quantify the enhancements afforded by this new approach to optical image reconstruction with diffuse light. The results show improvements of up to 5 mm in terms of geometric information and an order of magnitude or more decrease in the absolute errors in the reconstructed optical-property values for the test cases examined.

Paulsen, Keith D.; Jiang, Huabei

1996-07-01

367

Hardware architecture design of image restoration based on time-frequency domain computation  

NASA Astrophysics Data System (ADS)

The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.

Wen, Bo; Zhang, Jing; Jiao, Zipeng

2013-10-01

368

Harmonic power flow for unbalanced systems  

SciTech Connect

In this paper a harmonic power flow that analyzes harmonics in unbalanced systems is presented. The developed algorithm has two steps which are executed successively: the first is a fundamental frequency power flow for the ac linear network in which non-linear loads are represented by current sources. The second is a frequency-domain iterative Newton-Raphson method to calculate the harmonics generated by non-linear loads. In this second step, the ac linear network is represented by a generalized Thevenin equivalent with respect to the non-linear loads, obtained from the power flow solution. Both linear and non-linear loads are considered in terms of power.

Valcarcel, M.; Mayordomo, J.G. (Univ. Politecnica de Madrid (Spain). Dept. de Ingenieria Electrica)

1993-10-01

369

Power Quality/Harmonic Detection: Harmonic Control in Electric Power Systems for the Telecommunications Industry  

E-print Network

if harmonics are present both in the voltage and current waveforms. There are a range of instruments that can be used to indicate harmonic distortion from a general purpose Oscilloscope to a specially designed Harmonic Analyzer. A general purpose low...-Linear Components Some Motors DC drives/power supplies Incandescent Variable frequency drives lighting Programmable controllers Heating loads Induction furnaces Solid-state uninterrupt ible power supplies (UPS) Arc furnaces and Arc welders Electronic power...

Felkner, L. J.; Waggoner, R. M.

370

Image watermarking based on the space/spatial-frequency analysis and Hermite functions expansion  

NASA Astrophysics Data System (ADS)

An image watermarking scheme that combines Hermite functions expansion and space/spatial-frequency analysis is proposed. In the first step, the Hermite functions expansion is employed to select busy regions for watermark embedding. In the second step, the space/spatial-frequency representation and Hermite functions expansion are combined to design the imperceptible watermark, using the host local frequency content. The Hermite expansion has been done by using the fast Hermite projection method. Recursive realization of Hermite functions significantly speeds up the algorithms for regions selection and watermark design. The watermark detection is performed within the space/spatial-frequency domain. The detection performance is increased due to the high information redundancy in that domain in comparison with the space or frequency domains, respectively. The performance of the proposed procedure has been tested experimentally for different watermark strengths, i.e., for different values of the peak signal-to-noise ratio (PSNR). The proposed approach provides high detection performance even for high PSNR values. It offers a good compromise between detection performance (including the robustness to a wide variety of common attacks) and imperceptibility.

Stankovi?, Srdjan; Orovi?, Irena; Chabert, Marie; Mobasseri, Bijan

2013-01-01

371

Harmonic ratcheting for fast acceleration  

NASA Astrophysics Data System (ADS)

A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

Cook, N.; Brennan, J. M.; Peggs, S.

2014-04-01

372

Low-frequency quantitative ultrasound imaging of cell death in vivo  

SciTech Connect

Purpose: Currently, no clinical imaging modality is used routinely to assess tumor response to cancer therapies within hours to days of the delivery of treatment. Here, the authors demonstrate the efficacy of ultrasound at a clinically relevant frequency to quantitatively detect changes in tumors in response to cancer therapies using preclinical mouse models.Methods: Conventional low-frequency and corresponding high-frequency ultrasound (ranging from 4 to 28 MHz) were used along with quantitative spectroscopic and signal envelope statistical analyses on data obtained from xenograft tumors treated with chemotherapy, x-ray radiation, as well as a novel vascular targeting microbubble therapy.Results: Ultrasound-based spectroscopic biomarkers indicated significant changes in cell-death associated parameters in responsive tumors. Specifically changes in the midband fit, spectral slope, and 0-MHz intercept biomarkers were investigated for different types of treatment and demonstrated cell-death related changes. The midband fit and 0-MHz intercept biomarker derived from low-frequency data demonstrated increases ranging approximately from 0 to 6 dBr and 0 to 8 dBr, respectively, depending on treatments administrated. These data paralleled results observed for high-frequency ultrasound data. Statistical analysis of ultrasound signal envelope was performed as an alternative method to obtain histogram-based biomarkers and provided confirmatory results. Histological analysis of tumor specimens indicated up to 61% cell death present in the tumors depending on treatments administered, consistent with quantitative ultrasound findings indicating cell death. Ultrasound-based spectroscopic biomarkers demonstrated a good correlation with histological morphological findings indicative of cell death (r{sup 2}= 0.71, 0.82; p < 0.001).Conclusions: In summary, the results provide preclinical evidence, for the first time, that quantitative ultrasound used at a clinically relevant frequency, in addition to high-frequency ultrasound, can detect tissue changes associated with cell death in vivo in response to cancer treatments.

Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J. [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada) [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Papanicolau, Naum; Tadayyon, Hadi [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada)] [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Lee, Justin [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada)] [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Zubovits, Judit [Department of Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada)] [Department of Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Sadeghian, Alireza [Department of Computer Science, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)] [Department of Computer Science, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Karshafian, Raffi [Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)] [Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Al-Mahrouki, Azza; Giles, Anoja [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada)] [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Kolios, Michael C. [Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5, Canada and Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)] [Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5, Canada and Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)

2013-08-15

373

Factors governing selection of operating frequency for subsurface- imaging synthetic-aperture radar  

SciTech Connect

A subsurface-imaging synthetic-aperture radar (SISAR) has potential for application in areas as diverse as non-proliferation programs for nuclear weapons to environmental monitoring. However, subsurface imaging is complicated by propagation loss in the soil and surface-clutter response. Both the loss and surface-clutter response depend on the operating frequency. This paper examines several factors which provide a basis for determining optimum frequencies and frequency ranges which will allow synthetic-aperture imaging of buried targets. No distinction can be made between objects at different heights when viewed with a conventional imaging radar (which uses a one-dimensional synthetic aperture), and the return from a buried object must compete with the return from the surface clutter. Thus, the signal-to-clutter ratio is an appropriate measure of performance for a SISAR. A parameter-based modeling approach is used to model the complex dielectric constant of the soil from measured data obtained from the literature. Theoretical random-surface scattering models, based on statistical solutions to Maxwell`s equations, are used to model the clutter. These models are combined to estimate the signal-to-clutter ratio for canonical targets buried in several soil configurations. Results indicate that the HF spectrum (3--30), although it could be used to detect certain targets under some conditions, has limited practical value for use with SISAR, while the upper VIHF through UHF spectrum ({approximately}100 MHz - 1 GHz) shows the most promise for a general purpose SISAR system. Recommendations are included for additional research.

Brock, B.C.; Patitz, W.E.

1993-12-31

374

Simultaneous determination of the second-harmonic generation emission directionality and reduced scattering coefficient from three-dimensional imaging of thick tissues  

PubMed Central

Abstract. Second-harmonic generation (SHG) microscopy has intrinsic contrast for imaging fibrillar collagen and has shown great promise for disease characterization and diagnostics. In addition to morphology, additional information is achievable as the initially emitted SHG radiation directionality is related to subresolution fibril size and distribution. We show that by two parameter fittings, both the emission pattern (FSHG/BSHG)creation and the reduced scattering coefficient ?s?, can be obtained from the best fits between three-dimensional experimental data and Monte Carlo simulations. The improved simulation framework accounts for collection apertures for the detected forward and backward components. We apply the new simulation framework to mouse tail tendon for validation and show that the spectral slope of ?s? obtained is similar to that from bulk optical measurements and that the (FSHG/BSHG)creation values are also similar to previous results. Additionally, we find that the SHG emission becomes increasingly forward directed at longer wavelengths, which is consistent with decreased dispersion in refractive index between the laser and SHG wavelengths. As both the spectral slope of ?s? and (FSHG/BSHG)creation have been linked to the underlying tissue structure, simultaneously obtaining these parameters on a microscope platform from the same tissue provides a powerful method for tissue characterization. PMID:24220726

Hall, Gunnsteinn; Eliceiri, Kevin W.; Campagnola, Paul J.

2013-01-01

375

IN VIVO MONITORING OF FOCUSED ULTRASOUND SURGERY USING LOCAL HARMONIC MOTION  

PubMed Central

The present study established the feasibility of a technique for monitoring FUS lesion formation in vivo using localized harmonic motion (LHM) measurements. Oscillatory motion (frequencies between 50 and 300 Hz) was generated within tissues by induction of a periodic radiation force with a focused ultrasound (FUS) transducer. The harmonic motion was estimated using cross-correlation of RF ultrasonic signals acquired at different instances during the motion by using a confocal diagnostic ultrasound transducer. The technique was evaluated in vivo in rabbit muscle (14 locations) in an MR imager for simultaneous ultrasound harmonic motion tracking and MR thermometry. The measured maximum amplitude of the induced harmonic motion before and after the lesion formation was significantly different for all the tested motion frequencies and decreased between 17 and 81% depending on the frequency and location. During the FUS exposure a drop in the maximum amplitude value was observed and a threshold value could be associated to the formation of a thermal lesion. A series of controlled sonications was performed by stopping the exposure when the threshold value in LHM amplitude was reached and the presence of a thermal lesion was confirmed by MR imaging. LHM measurements were also used to perform a spatial scan of the tissues across the exposure region and the thermal lesions could be detected as a reduction in the maximum motion amplitude value at the sonication region. PMID:18805626

Curiel, Laura; Chopra, Rajiv; Hynynen, Kullervo

2009-01-01

376

Microstructure Imaging Using Frequency Spectrum Spatially Resolved Acoustic Spectroscopy F-Sras  

NASA Astrophysics Data System (ADS)

Material microstructure can have a profound effect on the mechanical properties of a component, such as strength and resistance to creep and fatigue. SRAS—spatially resolved acoustic spectroscopy—is a laser ultrasonic technique which can image microstructure using highly localized surface acoustic wave (SAW) velocity as a contrast mechanism, as this is sensitive to crystallographic orientation. The technique is noncontact, nondestructive, rapid, can be used on large components, and is highly tolerant of acoustic aberrations. Previously, the SRAS technique has been demonstrated using a fixed frequency excitation laser and a variable grating period (?-vector) to determine the most efficiently generated SAWs, and hence the velocity. Here, we demonstrate an implementation which uses a fixed grating period with a broadband laser excitation source. The velocity is determined by analyzing the measured frequency spectrum. Experimental results using this "frequency spectrum SRAS" (f-SRAS) method are presented. Images of microstructure on an industrially relevant material are compared to those obtained using the previous SRAS method ("k-SRAS"), excellent agreement is observed. Moreover, f-SRAS is much simpler and potentially much more rapid than k-SRAS as the velocity can be determined at each sample point in one single laser shot, rather than scanning the grating period.

Sharples, S. D.; Li, W.; Clark, M.; Somekh, M. G.

2010-02-01

377

Measuring myofiber orientations from high-frequency ultrasound images using multiscale decompositions  

NASA Astrophysics Data System (ADS)

High-frequency ultrasound (HFU) has the ability to image both skeletal and cardiac muscles. The quantitative assessment of these myofiber orientations has a number of applications in both research and clinical examinations; however, difficulties arise due to the severe speckle noise contained in the HFU images. Thus, for the purpose of automatically measuring myofiber orientations from two-dimensional HFU images, we propose a two-step multiscale image decomposition method. It combines a nonlinear anisotropic diffusion filter and a coherence enhancing diffusion filter to extract myofibers. This method has been verified by ultrasound data from simulated phantoms, excised fiber phantoms, specimens of porcine hearts, and human skeletal muscles in vivo. The quantitative evaluations of both phantoms indicated that the myofiber measurements of our proposed method were more accurate than other methods. The myofiber orientations extracted from different layers of the porcine hearts matched the prediction of an established cardiac mode and demonstrated the feasibility of extracting cardiac myofiber orientations from HFU images ex vivo. Moreover, HFU also demonstrated the ability to measure myofiber orientations in vivo.

Qin, Xulei; Fei, Baowei

2014-07-01

378

First-in-human pilot study of a spatial frequency domain oxygenation imaging system  

PubMed Central

Oxygenation measurements are widely used in patient care. However, most clinically available instruments currently consist of contact probes that only provide global monitoring of the patient (e.g., pulse oximetry probes) or local monitoring of small areas (e.g., spectroscopy-based probes). Visualization of oxygenation over large areas of tissue, without a priori knowledge of the location of defects, has the potential to improve patient management in many surgical and critical care applications. In this study, we present a clinically compatible multispectral spatial frequency domain imaging (SFDI) system optimized for surgical oxygenation imaging. This system was used to image tissue oxygenation over a large area (16×12 cm) and was validated during preclinical studies by comparing results obtained with an FDA-approved clinical oxygenation probe. Skin flap, bowel, and liver vascular occlusion experiments were performed on Yorkshire pigs and demonstrated that over the course of the experiment, relative changes in oxygen saturation measured using SFDI had an accuracy within 10% of those made using the FDA-approved device. Finally, the new SFDI system was translated to the clinic in a first-in-human pilot study that imaged skin flap oxygenation during reconstructive breast surgery. Overall, this study lays the foundation for clinical translation of endogenous contrast imaging using SFDI. PMID:21895327

Gioux, Sylvain; Mazhar, Amaan; Lee, Bernard T.; Lin, Samuel J.; Tobias, Adam M.; Cuccia, David J.; Stockdale, Alan; Oketokoun, Rafiou; Ashitate, Yoshitomo; Kelly, Edward; Weinmann, Maxwell; Durr, Nicholas J.; Moffitt, Lorissa A.; Durkin, Anthony J.; Tromberg, Bruce J.; Frangioni, John V.

2011-01-01

379

Application of optical coherence tomography and high-frequency ultrasound imaging during noninvasive laser vasectomy  

NASA Astrophysics Data System (ADS)

A noninvasive approach to vasectomy may eliminate male fear of complications related to surgery and increase its acceptance. Noninvasive laser thermal occlusion of the canine vas deferens has recently been reported. Optical coherence tomography (OCT) and high-frequency ultrasound (HFUS) are compared for monitoring laser thermal coagulation of the vas in an acute canine model. Bilateral noninvasive laser coagulation of the vas was performed in six dogs (n=12 vasa) using a Ytterbium fiber laser wavelength of 1075 nm, incident power of 9.0 W, pulse duration of 500 ms, pulse rate of 1 Hz, and 3-mm-diameter spot. Cryogen spray cooling was used to prevent skin burns during the procedure. An OCT system with endoscopic probe and a HFUS system with 20-MHz transducer were used to image the vas immediately before and after the procedure. Vasa were then excised and processed for gross and histologic analysis for comparison with OCT and HFUS images. OCT provided high-resolution, superficial imaging of the compressed vas within the vas ring clamp, while HFUS provided deeper imaging of the vas held manually in the scrotal fold. Both OCT and high HFUS are promising imaging modalities for real-time confirmation of vas occlusion during noninvasive laser vasectomy.

Cilip, Christopher M.; Allaf, Mohamad E.; Fried, Nathaniel M.

2012-04-01

380

Feasibility demonstration of frequency domain terahertz imaging in breast cancer margin determination  

NASA Astrophysics Data System (ADS)

In breast conservation surgery, surgeons attempt to remove malignant tissue along with a surrounding margin of healthy tissue. Subsequent pathological analysis determines if those margins are clear of malignant tissue, a process that typically requires at least one day. Only then can it be determined whether a follow-up surgery is necessary. This possibility of re-excision is undesirable in terms of reducing patient morbidity, emotional stress and healthcare. It has been shown that terahertz (THz) images of breast specimens can accurately differentiate between breast carcinoma, normal fibroglandular tissue, and adipose tissue. That study employed the Time-Domain Spectroscopy (TDS) technique. We are instead developing a new technique, Frequency-Domain Terahertz Imaging (FDTI). In this joint project between UMass/Amherst and UMass Medical School/Worcester (UMMS), we are investigating the feasibility of the FDTI technique for THz reflection imaging of breast cancer margins. Our system, which produces mechanically scanned images of size 2cm x 2cm, uses a THz gas laser. The system is calibrated with mixtures of water and ethanol and reflection coefficients as low as 1% have been measured. Images from phantoms and specimens cut from breast cancer lumpectomies at UMMS will be presented. Finally, there will be a discussion of a possible transition of this FDTI setup to a compact and inexpensive CMOS THz camera for use in the operating room.

Yngvesson, Sigfrid K.; St. Peter, Benjamin; Siqueira, Paul; Kelly, Patrick; Glick, Stephen; Karellas, Andrew; Khan, Ashraf

2012-03-01

381

Fast radio imaging of Jupiter's magnetosphere at low-frequencies with LOFAR  

NASA Astrophysics Data System (ADS)

Jupiter emits intense decameter (DAM) radio waves, detectable from the ground in the range ˜10-40 MHz. They are produced by energetic electron precipitations in its auroral regions (auroral-DAM), as well as near the magnetic footprints of the Galilean satellite Io (Io-DAM). Radio imaging of these decameter emissions with arcsecond angular resolution and millisecond time resolution should provide: an improved mapping of the surface planetary magnetic field, via imaging of instantaneous cyclotron sources of highest frequency; measurements of the beaming angle of the radiation relative to the local magnetic field, as a function of frequency; detailed information on the Io-Jupiter electrodynamic interaction, in particular the lead angle between the Io flux tube and the radio emitting field line; direct information on the origin of the sporadic drifting decameter S-bursts, thought to be electron bunches propagating along magnetic field lines, and possibly revealing electric potential drops along these field lines; direct observation of DAM emission possibly related to the Ganymede-Jupiter, Europa-Jupiter and/or Callisto-Jupiter interactions, and their energetics; information on the magnetospheric dynamics, via correlation of radio images with ultraviolet and infrared images of the aurora as well as of the Galilean satellite footprints, and study of their temporal variations; an improved mapping of the Jovian plasma environment (especially the Io torus) via the propagation effects that it induces on the radio waves propagating through it (Faraday rotation, diffraction fringes, etc.); possibly on the long-term a better accuracy on the determination of Jupiter's rotation period. Fast imaging should be permitted by the very high intensity of Jovian decameter bursts. LOFAR's capability to measure the full polarization of the incoming waves will be exploited. The main limitation will come from the maximum angular resolution reachable. We discuss several approaches for bringing it close to the value of ˜1? at 30-40 MHz, as required for the above studies.

Zarka, P.

2004-12-01

382

The Impact of Voltage Generation on Harmonic Spectra of Current and Flux Density in the Welding Transformer for a Middle Frequency Resistance Spot Welding System  

Microsoft Academic Search

This paper deals with a middle frequency direct current (MFDC) resistance spot welding system (RSWS). It consists of a semiconductor input converter, a single-phase welding transformer with one primary coil and two secondary coils, and a full-wave output rectifier connected to the transformer's secondary coils. The unwanted current spikes in the input converter, caused by interaction among the asymmetrical design

G. Stumberger; K. Dezelak; B. Polajzer; D. Dolinar; B. Klopcic

2008-01-01

383

Simultaneous storage of medical images in the spatial and frequency domain: A comparative study  

PubMed Central

Background Digital watermarking is a technique of hiding specific identification data for copyright authentication. This technique is adapted here for interleaving patient information with medical images, to reduce storage and transmission overheads. Methods The patient information is encrypted before interleaving with images to ensure greater security. The bio-signals are compressed and subsequently interleaved with the image. This interleaving is carried out in the spatial domain and Frequency domain. The performance of interleaving in the spatial, Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) coefficients is studied. Differential pulse code modulation (DPCM) is employed for data compression as well as encryption and results are tabulated for a specific example. Results It can be seen from results, the process does not affect the picture quality. This is attributed to the fact that the change in LSB of a pixel changes its brightness by 1 part in 256. Spatial and DFT domain interleaving gave very less %NRMSE as compared to DCT and DWT domain. Conclusion The Results show that spatial domain the interleaving, the %NRMSE was less than 0.25% for 8-bit encoded pixel intensity. Among the frequency domain interleaving methods, DFT was found to be very efficient. PMID:15180899

Nayak, Jagadish; Bhat, P Subbanna; Acharya U, Rajendra; UC, Niranjan

2004-01-01

384

Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging  

NASA Astrophysics Data System (ADS)

Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The optical molecular probe AF750 BBN peptide exhibits optimal pharmacokinetic properties for targeting GRPr in mice. Fluorescent microscopic imaging of the molecular probe in PC-3 prostate and T-47D breast cancer cell lines indicated specific uptake, internalization, and receptor blocking of these probes. In vivo investigations in severely compromised immunodeficient (SCID) mice bearing xenografted PC-3 prostate and T47-D breast cancer lesions demonstrated the ability of this new molecular probe to specifically target tumor tissue with high selectively and affinity.

Kujala, Naresh Gandhi

385

High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging  

NASA Astrophysics Data System (ADS)

This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 ?m diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 ?m for HFU and 150 ?m for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature.

Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V.; Aristizábal, Orlando; Ketterling, Jeffrey A.

2013-05-01

386

High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging  

PubMed Central

This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 ?m diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 ?m for HFU and 150 ?m for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature. PMID:23742556

Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V.; Aristizabal, Orlando; Ketterling, Jeffrey A.

2013-01-01

387

Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes  

Microsoft Academic Search

Laguerre-Gaussian modes of various order are frequency doubled. The azimuthal phase structure of the second-harmonic light is measured directly by interfering the beam with its mirror image. We show that the orbital angular momentum per photon is doubled, so conserving the orbital angular momentum in the light beam. The frequency-doubled output beam is shown to have a Gegenbauer-Gaussian amplitude distribution

J. Courtial; K. Dholakia; L. Allen; M. J. Padgett

1997-01-01

388

Sources of difference frequency sound in a dual-frequency imaging system with implications for monitoring thermal surgery  

E-print Network

(cont.) parametric effect, which can be considered an imaging artifact. Additionally, it may be possible to use the nonlinear interaction of scattered waves to form images that rely on the presence of small scatterers; a ...

Thierman, Jonathan S. (Jonathan Sidney), 1976-

2004-01-01

389

First Spectroscopic Imaging Observations of the Sun at Low Radio Frequencies with the Murchison Widefield Array Prototype  

E-print Network

We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9–201.6 MHz. ...

Oberoi, Divya

390

Distinguishing between Camera and Scanned Images by Means of Frequency Analysis  

NASA Astrophysics Data System (ADS)

Distinguishing the kind of sensor which has acquired a digital image could be crucial in many scenarios where digital forensic techniques are called to give answers. In this paper a new methodology which permits to determine if a digital photo has been taken by a camera or has been scanned by a scanner is proposed. Such a technique exploits the specific geometrical features of the sensor pattern noise introduced by the sensor in both cases and by resorting to a frequency analysis can infer if a periodicity is present and consequently which is the origin of the digital content. Experimental results are presented to support the theoretical framework.

Caldelli, Roberto; Amerini, Irene; Picchioni, Francesco

391

Designing shielded radio-frequency phased-array coils for magnetic resonance imaging  

NASA Astrophysics Data System (ADS)

In this paper, an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed. The target field method is used to find current densities distributed on primary and shield coils. The stream function technique is used to discretize current densities and to obtain the winding patterns of the coils. The corresponding highly ill-conditioned integral equation is solved by the Tikhonov regularization with a penalty function related to the minimum curvature. To balance the simplicity and smoothness with the homogeneity of the magnetic field of the coil's winding pattern, the selection of a penalty factor is discussed in detail.

Xu, Wen-Long; Zhang, Ju-Cheng; Li, Xia; Xu, Bing-Qiao; Tao, Gui-Sheng

2013-01-01

392

Effect of ultrasonic transducer frequency on the registration of ultrasound to CT vertebral images  

NASA Astrophysics Data System (ADS)

Researchers of computer-assisted surgical systems are seeking to reduce the invasiveness of spinal procedures through the use of intra-operative ultrasound (US). Given a favorable registration of vertebral US images to pre-operative CT scans, the individual vertebrae in physical space would be mapped to the patient's corresponding image space. In this work a method is proposed for transcutaneous localization of a lumbar vertebra in US images and a subsequent registration of vertebral surfaces from US and CT. In this study, US scans of a life-size plastic spine phantom were obtained using B-mode transducers of frequencies 3.5 and 4.5 MHz. The spine was immersed in a water tank and images from the L2 vertebra were captured in the transverse plane. A point-to-surface registration that is a modification of the Besl/McKay algorithm was applied to extracted US vertebral surface points and a triangulated surface representation of corresponding CT scans. The results of this registration have been qualitatively assessed, and both data sets visually algin along the entire L2 vertebra. Presently, more than 250,000 lumbo-sacral spinal surgeries are performed annually; consequently, minimizing the intervention in this region could have an extensive positive effect for both the procedure and the patient.

Muratore, Diane M.; Herring, Jeannette L.; Dawant, Benoit M.; Galloway, Robert L., Jr.

1999-05-01

393

repulsion and quantization in almost-harmonic maps, and asymptotics of the harmonic map flow  

E-print Network

.5.3 Neck surgery and energy quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2 a surface, their energy is precisely the area of their image, and thus E(u) = 4#25;j deg(u)j 2 4#25;Z, it is known that u will resemble a harmonic `body' map h : S 2 ! S 2 with a #12;nite number of harmonic

Mitchener, Paul

394

Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and fourier-transform sum-frequency vibrational spectroscopy  

SciTech Connect

The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of {approx} 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm{sup -1} occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach.

McGuire, John Andrew

2004-11-24

395

Frequency-selective quantification of skin perfusion behavior during allergic testing using photoplethysmography imaging  

NASA Astrophysics Data System (ADS)

Diagnosis of allergic immediate-type reactions is dependent on the visual assessment of the attending physician. With our novel non-obtrusive, camera-based photoplethysmography imaging (PPGI) setup, perfusion in the allergic testing area can be quantified and results displayed with spatial resolution in functional mappings. Thereby, each PPGI camera pixel can be assumed to be a classical (skin-based) reflective mode PPG sensor. An algorithm for post-processing of collected PPGI video sequences was developed to transfer black-and-white PPGI images into virtual 3D perfusion maps. For the first time, frequency selected perfusion quantification was assessed. For the presented evaluation, PPGI data from our clinical study were used [1]. For this purpose, different concentrations of histamine dilutions were administered to 27 healthy volunteers. Our results show clear trends in an increase in heartbeat synchronous perfusion rhythms and, simultaneously, a decrease of lower frequency vasomotor rhythms in these areas. These results, published for the first time, allow new insight into the distribution of skin perfusion dynamics and demonstrate the intuitive clinical usability of the proposed system.

Blanik, Nikolai; Blazek, Claudia; Pereira, Carina; Blazek, Vladimir; Leonhardt, Steffen

2014-03-01

396

Body Image and Marital Satisfaction: Evidence for the Mediating Role of Sexual Frequency and Sexual Satisfaction  

PubMed Central

How does women’s body image shape their interpersonal relationships? Based on recent theories of risk regulation and empirical evidence that sex is an emotionally risky behavior for women, we predicted that women’s body image would predict increased sexual frequency and thus increased sexual and marital satisfaction for both partners. The current study of 53 recently married couples provided results consistent with this prediction. Specifically, wives’ perceptions of their sexual attractiveness were positively associated with both wives’ and husbands’ marital satisfaction, controlling for wives’ body size, wives’ global self-esteem, wives’ neuroticism, and reports of whether or not the couple was trying to get pregnant, and both of these associations were mediated by increased sexual frequency and higher sexual satisfaction. Notably, wives’ perceptions of their sexual attractiveness uniquely accounted for 6% of the variance in husbands’ marital satisfaction and 19% of the variance in wives’ marital satisfaction. Accordingly, marital interventions may greatly benefit by addressing women’s body esteem. PMID:20438191

Meltzer, Andrea L.; McNulty, James K.

2010-01-01

397

Preoperative Mapping of Nonmelanoma Skin Cancer Using Spatial Frequency Domain and Ultrasound Imaging  

PubMed Central

Rationale and Objectives The treatment of nonmelanoma skin cancer (NMSC) is usually by surgical excision or Mohs micrographic surgery and alternatively may include photodynamic therapy (PDT). To guide surgery and to optimize PDT, information about the tumor structure, optical parameters, and vasculature is desired. Materials and Methods Spatial frequency domain imaging (SFDI) can map optical absorption, scattering, and fluorescence parameters that can enhance tumor contrast and quantify light and photosensitizer dose. High frequency ultrasound (HFUS) imaging can provide high-resolution tumor structure and depth, which is useful for both surgery and PDT planning. Results Here, we present preliminary results from our recently developed clinical instrument for patients with NMSC. We quantified optical absorption and scattering, blood oxygen saturation (StO2), and total hemoglobin concentration (THC) with SFDI and lesion thickness with ultrasound. These results were compared to histological thickness of excised tumor sections. Conclusions SFDI quantified optical parameters with high precision, and multiwavelength analysis enabled 2D mappings of tissue StO2 and THC. HFUS quantified tumor thickness that correlated well with histology. The results demonstrate the feasibility of the instrument for noninvasive mapping of optical, physiological, and ultrasound contrasts in human skin tumors for surgery guidance and therapy planning. PMID:24439339

Rohrbach, Daniel J.; Muffoletto, Daniel; Huihui, Jonathan; Saager, Rolf; Keymel, Kenneth; Paquette, Anne; Morgan, Janet; Zeitouni, Nathalie; Sunar, Ulas

2014-01-01

398

Unlocking higher harmonics in atomic force microscopy with gentle interactions  

PubMed Central

Summary In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity. PMID:24778948

Font, Josep; Verdaguer, Albert

2014-01-01

399

* Cecil_Joseph@student.uml.edu; Ph. 978-934-1372 Dual Frequency Continuous Wave Terahertz Transmission Imaging of  

E-print Network

Transmission Imaging of Nonmelanoma Skin Cancers Cecil S. Joseph1* , Anna N. Yaroslavsky2, 3 , Julie L thick sections of nonmelanoma skin cancer were taken at two frequencies of 1.39 THz and 1.63 THz of nonmelanoma skin cancers were acquired with better than 0.5mm spatial resolution. The resulting images were

Massachusetts at Lowell, University of

400

Comparison of Focused and Near-Field Imaging of Spray on Foam Insulation (SOFI) at Millimeter Wave Frequencies  

NASA Technical Reports Server (NTRS)

Millimeter wave imaging techniques can provide high spatial-resolution images of various composites. Lens antennas may be incorporated into the imaging system to provide a small incident beam footprint. Another approach may involve the use of horn antennas, which if operating in their near-fields, images with reasonably high spatial-resolutions may also be obtained. This paper gives a comparison between such near-field and focused far-field imaging of the Space Shuttle Spray on Foam Insulation (SOFI) used in its external fuel tank at millimeter wave frequencies. Small horn antennas and lens antennas with relatively long depth of focus were used in this investigation.

Kharkovshy, S.; Zoughi, R.; Hepburn, F. L.

2007-01-01

401

Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs  

DOEpatents

A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

Goloshubin, Gennady M. (Sugar Land, TX); Korneev, Valeri A. (Lafayette, CA)

2005-09-06

402

Harmonic analysis of industrial power systems  

SciTech Connect

When large harmonic producing loads are added to an industrial plant power system it is good engineering practice to analyze the impact on the power system by performing harmonic modeling analysis of the system at the design stage. Such a study can identify any potentially harmful resonances or other harmonic levels that are predicted to be in excess of IEEE 519 recommended limits and suggest corrective measures (if necessary). This paper discusses the impact of the harmonic limits of IEEE 519-1992 on the industrial power consumer and addresses the differences between the 1992 and 1981 versions of the standard. Harmonics produced by variable frequency drives are discussed. The data required to conduct a harmonic study, the types of analyses that can be performed, and some of the mitigating measures that can be taken to alleviate a potential harmonic problem are detailed. A case study is presented based on a typical paper mill where a large variable frequency drive was added to the power system.

Ellis, R.G. [Allen-Bradley Canada Ltd., Cambridge, Ontario (Canada)] [Allen-Bradley Canada Ltd., Cambridge, Ontario (Canada)

1996-03-01

403

A new x-ray scatter reduction method based on frequency division multiplexing x-ray imaging technique  

NASA Astrophysics Data System (ADS)

X-ray scatter may significantly degrade imaging performance in x-ray radiography applications, including flatpanel detector-based x-ray