Science.gov

Sample records for frequency magnetoelectric coupling

  1. Strong magnetoelectric coupling at microwave frequencies in metallic magnetic film/lead zirconate titanate multiferroic composites

    NASA Astrophysics Data System (ADS)

    Pettiford, C.; Lou, J.; Russell, L.; Sun, N. X.

    2008-03-01

    Strong magnetoelectric coupling was observed at microwave frequencies in metallic magnetic film/lead zirconate titanate [Pb(Zr,Ti)O3] multiferroic composites, in which the magnetic films were either FeCoB or FeGaB with relatively high saturation magnetostriction constants between 40 and 70ppm and narrow ferromagnetic resonance linewidths of ˜20Oe at 10GHz. Large electrostatically induced ferromagnetic resonance frequency shifts of 50-110MHz at ˜2.3GHz were observed. These metallic magnetic film/Pb(Zr ,Ti)O3 multiferroic composites with large electrostatic tunability of the ferromagnetic resonance frequency provide great opportunities for integrated microwave multiferroic devices.

  2. Acoustic wave coupled magnetoelectric effect

    NASA Astrophysics Data System (ADS)

    Gao, J. S.; Zhang, N.

    2016-07-01

    Magnetoelectric (ME) coupling by acoustic waveguide was developed. Longitudinal and transversal ME effects of larger than 44 and 6 (V cm-1 Oe-1) were obtained with the waveguide-coupled ME device, respectively. Several resonant points were observed in the range of frequency lower than 47 kHz. Analysis showed that the standing waves in the waveguide were responsible for those resonances. The frequency and size dependence of the ME effects were investigated. A resonant condition about the geometrical size of the waveguide was obtained. Theory and experiments showed the resonant frequencies were closely influenced by the diameter and length of the waveguide. A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially.

  3. Magnetoelectric coupling at metal surfaces

    SciTech Connect

    Gerhard, Lukas; Yamada, T.K.; Balashov, T.; Takacs, A. F.; Wesselink, R.J.H.; Daene, Markus W; Fechner, M.; Ostanin, S.; Ernst, Arthur; Mertig, I.; Wulfhekel, Wulf

    2010-10-01

    Magnetoelectric coupling allows the magnetic state of a material to be changed by an applied electric field. To date, this phenomenon has mainly been observed in insulating materials such as complex multiferroic oxides. Bulk metallic systems do not exhibit magnetoelectric coupling, because applied electric fields are screened by conduction electrons. We demonstrate strong magnetoelectric coupling at the surface of thin iron films using the electric field from a scanning tunnelling microscope, and are able to write, store and read information to areas with sides of a few nanometres. Our work demonstrates that high-density, non-volatile information storage is possible in metals.

  4. Magnetoelectric coupling by acoustic wave guide

    NASA Astrophysics Data System (ADS)

    Li, X. Y.; Liu, J.; Zhang, N.

    2016-04-01

    Magnetoelectric (ME) coupling by acoustic waveguide was developed. A very strong axial ME response was observed. The dependences of the sample size and the frequency of the ac field on the ME coupling were investigated. Several resonant points were observed in the frequency range applied (<50 kHz). Analysis shows that the standing waves transmitted in the waveguide were responsible for those resonances. And the resonant frequencies were closely influenced by the geometrical size of the waveguide. A resonant condition related to the size of the sample was obtained. The axial (or longitudinal) and transversal ME coefficients were observed to be up to 62 and 6 (V cm-1 Oe-1) at resonant points, respectively, indicating that the axial ME effect in this device was much higher than its transversal ones. A series of double-peak curves of axial ME coefficient versus magnetic field were observed. The significance of the double-peak curves was discussed.

  5. Thermally mediated mechanism to enhance magnetoelectric coupling in multiferroics.

    PubMed

    Chang, C-M; Mani, B K; Lisenkov, S; Ponomareva, I

    2015-05-01

    The main roadblock on the way to practical realization of magnetoelectric devices is the lack of multiferroics with strong magnetoelectric coupling. We propose an unusual route to dramatically enhance this coupling through a thermally mediated mechanism. Such a thermally mediated magnetoelectric effect is quantified by an isentropic rather than isothermal magnetoelectric response and is computed here from first principles. A robust enhancement of the magnetoelectric coupling is predicted for both naturally occurring and heterostructured materials. PMID:25978260

  6. Spin waves in a thin film with magnetoelectric coupling at the surfaces

    NASA Astrophysics Data System (ADS)

    Moore, T.; Camley, R. E.; Livesey, K. L.

    2014-12-01

    The standing spin waves in a thin ferromagnetic film are calculated when the surface magnetization is influenced by magnetoelectric coupling. At the interfaces, inversion symmetry is broken allowing for an energy term that is linear in the electric polarization in the film. For the two film surfaces, the magnetoelectric coupling is opposite in sign and therefore results in asymmetric pinning of the dynamic magnetization. The magnetoelectric pinning alters the spin wave frequencies and also the power absorbed by the material at these resonances.

  7. Synthetic magnetoelectric coupling in a nanocomposite multiferroic

    DOE PAGESBeta

    Jain, P.; Wang, Q.; Roldan, M.; Glavic, A.; Lauter, V.; Urban, C.; Bi, Z.; Ahmed, T.; Zhu, J.; Varela, M.; et al

    2015-03-13

    Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution to realize magnetoelectric coupling between ferromagnetic and ferroelectric order parameters. Despite having antiferromagnetic order, BiFeO₃ (BFO) has nevertheless been a key material due to excellent ferroelectric properties at room temperature. We studied a superlattice composed of 8 repetitions of 6 unit cells of La₀.₇Sr₀.₃MnO₃ (LSMO) grown on 5 unit cells of BFO. Significant net uncompensated magnetization in BFO, an insulating superlattice, is demonstrated using polarized neutron reflectometry. Remarkably, the magnetization enables magnetic field to change the dielectric properties of the superlattice, whichmore » we cite as an example of synthetic magnetoelectric coupling. Importantly, controlled creation of magnetic moment in BFO is a much needed path toward design and implementation of integrated oxide devices for next generation magnetoelectric data storage platforms.« less

  8. Synthetic magnetoelectric coupling in a nanocomposite multiferroic.

    PubMed

    Jain, P; Wang, Q; Roldan, M; Glavic, A; Lauter, V; Urban, C; Bi, Z; Ahmed, T; Zhu, J; Varela, M; Jia, Q X; Fitzsimmons, M R

    2015-01-01

    Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution to realize magnetoelectric coupling between ferromagnetic and ferroelectric order parameters. Despite having antiferromagnetic order, BiFeO3 (BFO) has nevertheless been a key material due to excellent ferroelectric properties at room temperature. We studied a superlattice composed of 8 repetitions of 6 unit cells of La0.7Sr0.3MnO3 (LSMO) grown on 5 unit cells of BFO. Significant net uncompensated magnetization in BFO, an insulating superlattice, is demonstrated using polarized neutron reflectometry. Remarkably, the magnetization enables magnetic field to change the dielectric properties of the superlattice, which we cite as an example of synthetic magnetoelectric coupling. Importantly, controlled creation of magnetic moment in BFO is a much needed path toward design and implementation of integrated oxide devices for next generation magnetoelectric data storage platforms. PMID:25766205

  9. Driving ferromagnetic resonance frequency of FeCoB/PZN-PT multiferroic heterostructures to Ku-band via two-step climbing: composition gradient sputtering and magnetoelectric coupling.

    PubMed

    Li, Shandong; Xue, Qian; Duh, Jenq-Gong; Du, Honglei; Xu, Jie; Wan, Yong; Li, Qiang; Lü, Yueguang

    2014-01-01

    RF/microwave soft magnetic films (SMFs) are key materials for miniaturization and multifunctionalization of monolithic microwave integrated circuits (MMICs) and their components, which demand that the SMFs should have higher self-bias ferromagnetic resonance frequency fFMR, and can be fabricated in an IC compatible process. However, self-biased metallic SMFs working at X-band or higher frequency were rarely reported, even though there are urgent demands. In this paper, we report an IC compatible process with two-step superposition to prepare SMFs, where the FeCoB SMFs were deposited on (011) lead zinc niobate-lead titanate substrates using a composition gradient sputtering method. As a result, a giant magnetic anisotropy field of 1498 Oe, 1-2 orders of magnitude larger than that by conventional magnetic annealing method, and an ultrahigh fFMR of up to 12.96 GHz reaching Ku-band, were obtained at zero magnetic bias field in the as-deposited films. These ultrahigh microwave performances can be attributed to the superposition of two effects: uniaxial stress induced by composition gradient and magnetoelectric coupling. This two-step superposition method paves a way for SMFs to surpass X-band by two-step or multi-step, where a variety of magnetic anisotropy field enhancing methods can be cumulated together to get higher ferromagnetic resonance frequency. PMID:25491374

  10. Driving ferromagnetic resonance frequency of FeCoB/PZN-PT multiferroic heterostructures to Ku-band via two-step climbing: composition gradient sputtering and magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Li, Shandong; Xue, Qian; Duh, Jenq-Gong; Du, Honglei; Xu, Jie; Wan, Yong; Li, Qiang; Lü, Yueguang

    2014-12-01

    RF/microwave soft magnetic films (SMFs) are key materials for miniaturization and multifunctionalization of monolithic microwave integrated circuits (MMICs) and their components, which demand that the SMFs should have higher self-bias ferromagnetic resonance frequency fFMR, and can be fabricated in an IC compatible process. However, self-biased metallic SMFs working at X-band or higher frequency were rarely reported, even though there are urgent demands. In this paper, we report an IC compatible process with two-step superposition to prepare SMFs, where the FeCoB SMFs were deposited on (011) lead zinc niobate-lead titanate substrates using a composition gradient sputtering method. As a result, a giant magnetic anisotropy field of 1498 Oe, 1-2 orders of magnitude larger than that by conventional magnetic annealing method, and an ultrahigh fFMR of up to 12.96 GHz reaching Ku-band, were obtained at zero magnetic bias field in the as-deposited films. These ultrahigh microwave performances can be attributed to the superposition of two effects: uniaxial stress induced by composition gradient and magnetoelectric coupling. This two-step superposition method paves a way for SMFs to surpass X-band by two-step or multi-step, where a variety of magnetic anisotropy field enhancing methods can be cumulated together to get higher ferromagnetic resonance frequency.

  11. Quantitative investigation of magnetoelectric coupling in various forms of multiferroics

    NASA Astrophysics Data System (ADS)

    Kim, Kee Hoon

    2009-03-01

    Magnetoelectric susceptibility (MES) is probably the most direct way of estimating the magnitude of magnetoelectric coupling in many forms of magnetoelectric and/or multiferroic materials. Historically, the MES has been measured in numerous existing magnetoelectric materials in broad field, frequency, and temperature ranges and their MES values have been tabulated [1]. With growing interest worldwide toward applications of multiferroics for novel memory and sensor devices, however, there have been ever-increasing demands to measure quantitatively the MES of multiferroic thin films. Yet, the measurements of thin film MES become challenging in spite of its large MES value because the magnetoelectric voltages, proportional to the film thickness, usually get too small to be measured reliably. Herein, we introduce a highly sensitive magnetoelectric susceptometer that can detect the charge variation down to ˜10-17C in a few gauss oscillating magnetic field. Using this specific setup, we could measure the MES of multiferroic thin films or single crystals with unprecedented accuracy and sensitivity in cryogenic (down to 2 K) and magnetic field (up to 9 T) environments. In this talk, we summarize a number of key results based on this technique; (1) MES of a 300 nm BiFeO3-CoFe2O4 nanopillar structure as well as those of a 250 nm BiFeO3 film and of a BiFeO3 single crystal. (2) MES of (Pb,Zr)TiO3-NiFe2O4 nanocomposite films, and (3) temperature- and field-dependent MES in representative multiferroic crystals/films including TbMn2O5 , GaFeO3, and Cr2O3. In particular, we demonstrate that the MES of the film with the nanopillar structure is enhanced by approximately one order of magnitude reaching 2×10-10 s/m at room temperature, compared with those of a pure BiFeO3 film and a single crystal. Furthermore, based on detailed field and temperature dependent MES studies, we show that magnetoelectric coupling in TbMn2O5 has been mediated and amplified by the large magnetoelastic

  12. Magnetoelectric Coupling in Composite Multiferroic Heterostructures

    NASA Astrophysics Data System (ADS)

    Hoffman, Jason

    In this work, we demonstrate a large charge-mediated magnetoelectric coupling in a PbZr0.2Ti0.8O3 / La0.8 Sr0.2MnO3 (PZT/LSMO) composite structure resulting from direct control of magnetism via charge carrier density. This approach has the advantage that its physical mechanism is transparent and the size of the effect can be quantified and understood qualitatively within the double-exchange model. Direct quantification of the charge-driven magnetic changes based on electronic, magnetic, and spectroscopic measurements show that both the spin state and spin configuration of LSMO are modulated. Using a combination of advanced physical vapor deposition techniques, we have grown epitaxial PZT/LSMO bilayer heterostructures on (001) SrTiO 3 substrates with excellent crystallinity, atomically smooth surfaces, low leakage current density, and abrupt interfaces. Magneto-optic Kerr effect (MOKE) magnetometry was used to directly interrogate the local magnetic state of the LSMO as a function of the PZT polarization state. We show direct control of magnetism via applied electric fields, including modulation of the magnetotransport behavior and magnetic-ordering temperature, on/off switching of magnetism, and hysteretic magnetization versus electric field (M-E) characteristics. The magnetoelectric coupling strength, which relates the change in magnetization to the applied electric field, is found to vary strongly with temperature, reaching a low temperature saturation value of +6 Oe cm / kV, much larger than observed in single-phase magnetoelectrics and too large to be explained by a simple band-filling model. To clarify the origin of the magnetoelectric coupling, we carried out near edge x-ray absorption measurements that revealed a well defined change in the position of the Mn absorption edge with the ferroelectric polarization, giving a direct measure of the change in Mn valency in LSMO. We explain these results in terms of an interfacial magnetic reconstruction, whereby the

  13. Magnetoelectric coupling effects in multiferroic complex oxide composite structures.

    PubMed

    Vaz, Carlos A F; Hoffman, Jason; Ahn, Charles H; Ramesh, Ramamoorthy

    2010-07-20

    The study of magnetoelectric materials has recently received renewed interest, in large part stimulated by breakthroughs in the controlled growth of complex materials and by the search for novel materials with functionalities suitable for next generation electronic devices. In this Progress Report, we present an overview of recent developments in the field, with emphasis on magnetoelectric coupling effects in complex oxide multiferroic composite materials. PMID:20414887

  14. Giant magnetoelectric effect at low frequencies in polymer-based thin film composites

    SciTech Connect

    Kulkarni, A.; Meurisch, K.; Strunskus, T.; Faupel, F.; Teliban, I.; Jahns, R.; Knöchel, R.; Piorra, A.

    2014-01-13

    A polymer-based magnetoelectric 2-2 composite was fabricated in a thin film approach by direct spin coating of polyvinylidenefluoride-co-trifluoroethylene onto a Metglas substrate without the usage of an adhesive for the mechanical coupling between the piezoelectric and magnetostrictive materials. For a prototype single-sided clamped cantilever, a magnetoelectric coefficient as high as 850 V cm{sup −1} Oe{sup −1} is observed at its fundamental bending mode resonance frequency at 27.8 Hz and a detection limit of 10 pTHz{sup −1/2} at its second bending mode resonance frequency at 169.5 Hz.

  15. Large magnetoelectric coupling in Co4Nb2O9

    PubMed Central

    Fang, Y.; Song, Y. Q.; Zhou, W. P.; Zhao, R.; Tang, R. J.; Yang, H.; Lv, L. Y.; Yang, S. G.; Wang, D. H.; Du, Y. W.

    2014-01-01

    Magnetoelectric materials which simultaneously exhibit electric polarization and magnetism have attracted more and more attention due to their novel physical properties and promising applications for next-generation devices. Exploring new materials with outstanding magnetoelectric performance, especially the manipulation of magnetization by electric field, is of great importance. Here, we demonstrate the cross-coupling between magnetic and electric orders in polycrystalline Co4Nb2O9, in which not only magnetic-field-induced electric polarization but also electric field control of magnetism is observed. These results reveal rich physical phenomenon and potential applications in this compound. PMID:24463631

  16. Nomograph method for predicting magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Bichurin, Mirza; Petrov, Vladimir; Petrov, Roman; Tatarenko, Alexander; Leontiev, Viktor; Lavrentieva, Ksenia

    2016-08-01

    Magnetoelectric (ME) composites are known to enable the achievement of ME voltage coefficients many orders of magnitude larger than previously reported values for single phase materials. The advancements have opened up many possibilities in applications of sensors, transformers, and microwave devices. We presented here a new quick test of ME composites using nomographs and showed its use in applications where an approximate answer is appropriate and useful. To draw the graphs for ME voltage coefficients, we derived approximate expressions in explicit form for magnetically induced ME effect for different operational modes and laminate composite configurations including symmetrical and asymmetrical structures.

  17. Interface Magnetoelectric Coupling in Co/Pb(Zr,Ti)O3.

    PubMed

    Vlašín, Ondřej; Jarrier, Romain; Arras, Rémi; Calmels, Lionel; Warot-Fonrose, Bénédicte; Marcelot, Cécile; Jamet, Matthieu; Ohresser, Philippe; Scheurer, Fabrice; Hertel, Riccardo; Herranz, Gervasi; Cherifi-Hertel, Salia

    2016-03-23

    Magnetoelectric coupling at multiferroic interfaces is a promising route toward the nonvolatile electric-field control of magnetization. Here, we use optical measurements to study the static and dynamic variations of the interface magnetization induced by an electric field in Co/PbZr0.2Ti0.8O3 (Co/PZT) bilayers at room temperature. The measurements allow us to identify different coupling mechanisms. We further investigate the local electronic and magnetic structure of the interface by means of transmission electron microscopy, soft X-ray magnetic circular dichroism, and density functional theory to corroborate the coupling mechanism. The measurements demonstrate a mixed linear and quadratic optical response to the electric field, which results from a magneto-electro-optical effect. We propose a decomposition method of the optical signal to discriminate between different components involved in the electric field-induced polarization rotation of the reflected light. This allows us to extract a signal that we can ascribe to interface magnetoelectric coupling. The associated surface magnetization exhibits a clear hysteretic variation of odd symmetry with respect to the electric field and nonzero remanence. The interface coupling is remarkably stable over a wide frequency range (1-50 kHz), and the application of a bias magnetic field is not necessary for the coupling to occur. These results show the potential of exploiting interface coupling with the prospect of optimizing the performance of magnetoelectric memory devices in terms of stability, as well as fast and dissipationless operation. PMID:26939641

  18. Magnetoelectricity coupled exchange bias in BaMnF4.

    PubMed

    Zhou, Shuang; Wang, Ji; Chang, Xiaofeng; Wang, Shuangbao; Qian, Bin; Han, Zhida; Xu, Qingyu; Du, Jun; Wang, Peng; Dong, Shuai

    2015-01-01

    Multiferroic BaMnF4 powder was prepared by hydrothermal method. Hysteretic field dependent magnetization curve at 5 K confirms the weak ferromagnetism aroused from the canted antiferromagnetic spins by magnetoelectric coupling. The blocking temperature of 65 K for exchange bias coincides well with the peak at 65 K in the zero-field cooled temperature-dependent magnetization curve, which has been assigned to the onset temperature of two-dimensional antiferromagnetism. An upturn kink of exchange field and coercivity with decreasing temperature was observed from 40 K to 20 K, which is consistent with the two-dimensional to three-dimensional antiferromagnetic transition at Néel temperature (~26 K). In contrast to the conventional mechanism of magnetization pinned by interfacial exchange coupling in multiphases, the exchange bias in BaMnF4 is argued to be a bulk effect in single phase, due to the magnetization pinned by the polarization through magnetoelectric coupling. PMID:26671575

  19. Magnetoelectricity coupled exchange bias in BaMnF4

    PubMed Central

    Zhou, Shuang; Wang, Ji; Chang, Xiaofeng; Wang, Shuangbao; Qian, Bin; Han, Zhida; Xu, Qingyu; Du, Jun; Wang, Peng; Dong, Shuai

    2015-01-01

    Multiferroic BaMnF4 powder was prepared by hydrothermal method. Hysteretic field dependent magnetization curve at 5 K confirms the weak ferromagnetism aroused from the canted antiferromagnetic spins by magnetoelectric coupling. The blocking temperature of 65 K for exchange bias coincides well with the peak at 65 K in the zero-field cooled temperature-dependent magnetization curve, which has been assigned to the onset temperature of two-dimensional antiferromagnetism. An upturn kink of exchange field and coercivity with decreasing temperature was observed from 40 K to 20 K, which is consistent with the two-dimensional to three-dimensional antiferromagnetic transition at Néel temperature (~26 K). In contrast to the conventional mechanism of magnetization pinned by interfacial exchange coupling in multiphases, the exchange bias in BaMnF4 is argued to be a bulk effect in single phase, due to the magnetization pinned by the polarization through magnetoelectric coupling. PMID:26671575

  20. Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Li, Ping; Wen, Yu-Mei; Zhu, Yong

    2013-07-01

    As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation, the ME effect is significantly enhanced in the vicinity of resonance frequency. The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied, and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the ΔE effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses. The experimental results show that with Hdc increasing from 0 Oe (1 Oe=79.5775 A/m) to 700 Oe, the bending resonance frequency can be shifted in a range of 32.68 kHz <= fr <= 33.96 kHz. In addition, with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm, the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz. This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite, which plays a guiding role in the ME composite design for real applications.

  1. Negative refraction with low absorption using Raman transitions with magnetoelectric coupling

    SciTech Connect

    Sikes, D. E.; Yavuz, D. D.

    2010-07-15

    We suggest a scheme for obtaining negative refraction that does not require the simultaneous presence of an electric-dipole and a magnetic-dipole transition near the same transition frequency. The key idea of the scheme is to obtain a strong electric response by using far-off-resonant Raman transitions. We propose to use a pair of electric-dipole Raman transitions and utilize magneto-electric cross coupling to achieve a negative index of refraction without requiring negative permeability. The interference of the two Raman transitions allows tunable negative refraction with low absorption.

  2. Inversion of Ferrimagnetic Magnetization by Ferroelectric Switching via a Novel Magnetoelectric Coupling.

    PubMed

    Weng, Yakui; Lin, Lingfang; Dagotto, Elbio; Dong, Shuai

    2016-07-15

    Although several multiferroic materials or heterostructures have been extensively studied, finding strong magnetoelectric couplings for the electric field control of the magnetization remains challenging. Here, a novel interfacial magnetoelectric coupling based on three components (ferroelectric dipole, magnetic moment, and antiferromagnetic order) is analytically formulated. As an extension of carrier-mediated magnetoelectricity, the new coupling is shown to induce an electric-magnetic hysteresis loop. Realizations employing BiFeO_{3} bilayers grown along the [111] axis are proposed. Without involving magnetic phase transitions, the magnetization orientation can be switched by the carrier modulation driven by the field effect, as confirmed using first-principles calculations. PMID:27472140

  3. Inversion of Ferrimagnetic Magnetization by Ferroelectric Switching via a Novel Magnetoelectric Coupling

    NASA Astrophysics Data System (ADS)

    Weng, Yakui; Lin, Lingfang; Dagotto, Elbio; Dong, Shuai

    2016-07-01

    Although several multiferroic materials or heterostructures have been extensively studied, finding strong magnetoelectric couplings for the electric field control of the magnetization remains challenging. Here, a novel interfacial magnetoelectric coupling based on three components (ferroelectric dipole, magnetic moment, and antiferromagnetic order) is analytically formulated. As an extension of carrier-mediated magnetoelectricity, the new coupling is shown to induce an electric-magnetic hysteresis loop. Realizations employing BiFeO3 bilayers grown along the [111] axis are proposed. Without involving magnetic phase transitions, the magnetization orientation can be switched by the carrier modulation driven by the field effect, as confirmed using first-principles calculations.

  4. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface.

    PubMed

    Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M; Brown, Gail J; Sun, Nian X

    2014-01-01

    Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling. PMID:24418911

  5. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface

    PubMed Central

    Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A.; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M.; Brown, Gail J.; Sun, Nian X.

    2014-01-01

    Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling. PMID:24418911

  6. Interfacial Charge Induced Magnetoelectric Coupling at BiFeO₃/BaTiO₃ Bilayer Interface.

    PubMed

    Gupta, Rekha; Chaudhary, Sujeet; Kotnala, R K

    2015-04-29

    Bilayer thin films of BiFeO3-BaTiO3 at different thicknesses of BiFeO3 were prepared by RF-magnetron sputtering technique. A pure phase polycrystalline growth of thin films was confirmed from XRD results. Significantly improved ferroelectric polarization (2Pr ∼ 30 μC/cm(2)) and magnetic moment (Ms ∼ 33 emu/cc) were observed at room temperature. Effect of ferroelectric polarization on current conduction across the interface has been explored. Accumulation and depletion of charges at the bilayer interface were analyzed by current-voltage measurements which were further confirmed from hysteretic dynamic resistance and capacitance voltage profiles. Magnetoelectric coupling due to induced charges at grain boundaries of bilayer interface was further investigated by room temperature magnetocapacitance analysis. A room temperature magnetocapacitance was found to originate from induced charge at the bilayer interface which can be manipulated by varying the thickness of BFO to obtain higher ME coupling coefficient. Dynamic magnetoelectric coupling was investigated, and maximum longitudinal magnetoelectric coupling was observed to be 61 mV/cm·Oe at 50 nm thickness of BiFeO3. The observed magnetoelectric properties are potentially useful for novel room temperature magnetoelectric and spintronic device applications. PMID:25856737

  7. Electromagnetic wave propagation in time-dependent media with antisymmetric magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Rong; Zhang, Ruo-Yang; Ma, Yi-Rong; Jia, Wei; Zhao, Qing

    2016-07-01

    This paper deals with electromagnetic wave propagation in time-dependent media with an antisymmetric magnetoelectric coupling and an isotropic time-dependent permittivity. We identify a new mechanism of linear birefringence, originated from the combined action of the time-dependent permittivity and the antisymmetric magnetoelectric coupling. Permittivity with linear and exponential temporal variations exemplifies the creation and control of these two distinct types of linear birefringent modes. As a novel nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed for the realization of the predicted birefringence.

  8. Magnetoelectric Coupling, Ferroelectricity, and Magnetic Memory Effect in Double Perovskite La3Ni2NbO9.

    PubMed

    Dey, K; Indra, A; De, D; Majumdar, S; Giri, S

    2016-05-25

    We observe ferroelectricity in an almost unexplored double perovskite La3Ni2NbO9. Ferroelectricity appears below ∼60 K, which is found to be correlated with the significant magnetostriction. A reasonably large value of spontaneous electric polarization is recorded to be ∼260 μC/m(2) at 10 K for E = 5 kV/cm, which decreases signifi- cantly upon application of a magnetic field (H), suggesting considerable magnetoelectric coupling. The dielectric permittivity is also influenced by H below the ferroelectric transition. The magnetodielectric response scales linearly to the squared magnetization, as described by the Ginzburg-Landau theory. Meticulous studies of static and dynamic features of dc magnetization and frequency dependent ac susceptibility results suggest spin-glass state below 29 K. Intrinsic magnetic memory effect is observed from zero-field cooled magnetization and isothermal remanent magnetization studies, also pointing spin-glass state below 29 K. Appearance of ferroelectricity together with a significant magnetoelectric coupling in absence of conventional long-range magnetic order is promising for searching new magnetoelectric materials. PMID:27136317

  9. Multiferroicity and Magnetoelectric Coupling in TbMnO3 Thin Films.

    PubMed

    Hu, Ni; Lu, Chengliang; Xia, Zhengcai; Xiong, Rui; Fang, Pengfei; Shi, Jing; Liu, Jun-Ming

    2015-12-01

    In this work, we report the growth and functional characterizations of multiferroic TbMnO3 thin films grown on Nb-doped SrTiO3 (001) substrates using pulsed laser deposition. By performing detailed magnetic and ferroelectric properties measurements, we demonstrate that the multiferroicity of spin origin known in the bulk crystals can be successfully transferred to TbMnO3 thin films. Meanwhile, anomalous magnetic transition and unusual magnetoelectric coupling related to Tb moments are observed, suggesting a modified magnetic configuration of Tb in the films as compared to the bulk counterpart. In addition, it is found that the magnetoelectric coupling enabled by Tb moments can even be seen far above the Tb spin ordering temperature, which provides a larger temperature range for the magnetoelectric control involving Tb moments. PMID:26573085

  10. Resonant magnetoelectric coupling in trilayers of ferromagnetic alloys and piezoelectric lead zirconate titanate: The influence of bias magnetic field

    NASA Astrophysics Data System (ADS)

    Srinivasan, G.; de Vreugd, C. P.; Laletin, V. M.; Paddubnaya, N.; Bichurin, M. I.; Petrov, V. M.; Filippov, D. A.

    2005-05-01

    We present the first data and theory for the bias magnetic field dependence of magnetoelectric coupling in the electromechanical resonance (EMR) region for ferromagnetic-piezoelectric heterostructures. Trilayers of Permendur, a Co-Fe-V alloy, and lead zirconate titanate were studied. Measurements of the magnetoelectric (ME) voltage coefficient αE indicate a strong ME coupling in the low-frequency range and a giant ME effect due to EMR at 200-300kHz for radial modes and at ˜2.7MHz for thickness modes. Data were obtained for the bias field H dependence of two key parameters, the EMR frequency fr and the ME coefficient αE,R at resonance. With increasing H , an increase in fr and a rapid rise and fall in αE,R are measured. In our model we consider two mechanisms for the magnetic field influence on ME interactions: (i) a shift in the EMR frequency due to changes in compliance coefficients ( ΔE effect) and (ii) variation in the piezomagnetic coefficient that manifests as a change in αE,R . Theoretical profiles of αE vs frequency and estimates of frequency shift based on the ΔE effect are in excellent agreement with the data.

  11. Magnetoelectric coupling characteristics in multiferroic heterostructures with different thickness of nanocrystalline soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Wang, Yao

    2016-05-01

    Magnetoelectric(ME) coupling characteristics in multiferroic heterostructures with different thickness of nanocrystalline soft magnetic alloy has been investigated at low frequency. The ME response with obvious hysteresis, self-biased and dual-peak phenomenon is observed for multiferroic heterostructures, which results from strong magnetic interactions between two ferromagnetic materials with different magnetic properties, magnetostrictions and optimum bias magnetic fields Hdc,opti. The proposed multiferroic heterostructures not only enhance ME coupling significantly, but also broaden dc magnetic bias operating range and overcomes the limitations of narrow bias range. By optimizing the thickness of nanocrystalline soft magnetic alloy Tf, a significantly zero-biased ME voltage coefficient(MEVC) of 14.8mV/Oe (185 mV/cmṡ Oe) at Tf = 0.09 mm can be obtained, which is about 10.8 times as large as that of traditional PZT/Terfenol-D composite with a weak ME coupling at zero bias Hdc,zero. Furthermore, when Tf increases from 0.03 mm to 0.18 mm, the maximum MEVC increases nearly linearly with the increased Tf at Hdc,opti. Additionally, the experimental results demonstrate the ME response for multiferroic heterostructures spreads over a wide magnetic dc bias operating range. The excellent ME performance provides a promising and practicable application for both highly sensitive magnetic field sensors without bias and ME energy harvesters.

  12. Low Frequency Magnetoelectric Interactions in Single Crystal YIG/PMN-PT Bilayers

    NASA Astrophysics Data System (ADS)

    Devreugd, C. P.; Srinivasan, G.; Mantese, J. V.

    2004-03-01

    This work is concerned with magnetoelectric (ME) coupling in novel layered ferromagnetic-ferroelectric composites. The heterostructures are capable of electric-to-magnetic field conversion that is mediated by mechanical stress [1]. We recently developed a theoretical model for low frequency effects that predicts an order of magnitude enhancement in ME coupling in single crystals compared to polycrystalline samples [2]. Use of single crystals is critical for probing the influence of piezomagnetism, ac magnetostriction, and ferroelasticity of the magnetic component and similar parameters for the ferroelectric component. The studies are also important for the creation of an optimal interface to accomplish strong ME interactions. Bilayers were prepared by bonding epitaxial (100), (110), and (111) films of YIG and (001) single crystals of PMN-PT. Low frequency ME voltage coefficients were measured for transverse (dc magnetic field H and ac field in-plane) and longitudinal (magnetic fields out-of-plane) fields. Important results are as follows. (i) The ME voltage coupling is the largest for H along <111> of YIG and is the weakest for H along <100>. (ii) The voltage coefficient increases with increasing volume of YIG. (iii) The transverse coefficient is an order of magnitude higher than the longitudinal coefficient. (iv) Studies on bilayers with (111) YIG films reveal a significant influence of in-plane anisotropy on ME coupling. 1. G. Srinivasan, E. T. Rasmussen, and R. Hayes, Phys. Rev. B. 67, 014418 (2003). 2. M. I. Bichurin, V. M. Petrov, and G. Srinivasan, Phys. Rev. B 68, 054402 (2003). This work was supported by a grant from the National Science Foundation (DMR-0322254)

  13. Parallel multilayer magnetoelectric composite based on (1-x)Pb(Mg1/3Nb2/3)-xPbTiO3 and Terfenol-D coupled with charge mode amplifier

    NASA Astrophysics Data System (ADS)

    Jiao, Jie; Li, Lingying; Ren, Bo; Guo, Hao; Deng, Hao; Di, Wenning; Zhao, Xiangyong; Jing, Weiping; Luo, Haosu

    2012-02-01

    In this paper, the sources and categories of noise regarding a charge mode magnetoelectric (ME) sensor are analyzed and simulated. A series of parallel multilayer magnetoelectric composites of Terfenol-D and (1-x)Pb(Mg1/3Nb2/3)-xPbTiO3 with different numbers of layers have been developed. The high magnetoelectric charge coefficients of these composites have been measured. By coupling different parallel multilayer magnetoelectric composites with a low noise-level charge amplifier, we found that the noise equivalent magnetic induction (NEB) of the ME sensor based on the charge mode is in accordance with the theoretical prediction, and multilayers can reduce the NEB at low frequency and hardly at high frequency. At last we have established a new method of using high g31 piezoelectric material that can effectively reduce the influence of the operational amplifier voltage noise component and enhance resolution.

  14. Magnetoelectric coupling and exchange bias effects in multiferroic NdCrO3.

    PubMed

    Indra, A; Dey, K; Midya, A; Mandal, P; Gutowski, O; Rütt, U; Majumdar, S; Giri, S

    2016-04-27

    We report ferroelectricity around  ∼88 K that appears well below T N (∼25 K), unlike other members of RCrO3 series. A synchrotron diffraction study suggests that the occurrence of ferroelectricity in NdCrO3 is coupled to the structural transformation from centrosymmetric Pnma to a non-centrosymmetric Pna21 space group. A strong magnetoelectric coupling is observed in the electric polarization [P(T)]. This coupling is significantly influenced by the magnetic field cooling effect, suggesting an exchange bias effect in P(T). This exchange bias effect is also revealed by the systematic shift of the magnetic hysteresis loops below T N. The rare occurrence of an exchange bias effect in both the magnetic and electric polarizations associated with a strong magnetoelectric coupling is of fundamental interest, as well as being attractive for technological applications close to liquid nitrogen temperature. PMID:27009362

  15. Magnetoelectric coupling and exchange bias effects in multiferroic NdCrO3

    NASA Astrophysics Data System (ADS)

    Indra, A.; Dey, K.; Midya, A.; Mandal, P.; Gutowski, O.; Rütt, U.; Majumdar, S.; Giri, S.

    2016-04-01

    We report ferroelectricity around  ∼88 K that appears well below T N (∼25 K), unlike other members of RCrO3 series. A synchrotron diffraction study suggests that the occurrence of ferroelectricity in NdCrO3 is coupled to the structural transformation from centrosymmetric Pnma to a non-centrosymmetric Pna21 space group. A strong magnetoelectric coupling is observed in the electric polarization [P(T)]. This coupling is significantly influenced by the magnetic field cooling effect, suggesting an exchange bias effect in P(T). This exchange bias effect is also revealed by the systematic shift of the magnetic hysteresis loops below T N. The rare occurrence of an exchange bias effect in both the magnetic and electric polarizations associated with a strong magnetoelectric coupling is of fundamental interest, as well as being attractive for technological applications close to liquid nitrogen temperature.

  16. Magnetoelectric coupling in the honeycomb antiferromagnet Co4Nb2O9

    NASA Astrophysics Data System (ADS)

    Khanh, N. D.; Abe, N.; Sagayama, H.; Nakao, A.; Hanashima, T.; Kiyanagi, R.; Tokunaga, Y.; Arima, T.

    2016-02-01

    The magnetic structure and magnetoelectric effect have been investigated for single crystals of the antiferromagnet Co4Nb2O9 . Single-crystal neutron diffraction and magnetic susceptibility measurement have revealed that the magnetic structure is different from a collinear arrangement with spin parallel to the trigonal axis as proposed previously. Co2 + magnetic moments are found to be almost lying in the basal plane, which lowers the magnetic symmetry to C 2 /c' with the propagation vector k =0 . Associated with the magnetic phase transition, a sharp anomaly in the dielectric constant and displacement current indicate the appearance of the magnetoelectric below Néel temperature TN with a large coupling constant up to 30 ps/m. The existence of off-diagonal components in a magnetoelectric tensor indicate the formation of ferrotoroidic order in Co4Nb2O9 . Such a magnetoelectric effect can be ascribed to the reduction of symmetry caused by simple antiferromagnetic order in a honeycomb network.

  17. Controlling magnetoelectric coupling by nanoscale phase transformation instrain engineered bismuth ferrite

    SciTech Connect

    Liu, Y. Y.; Vasudevan, Rama K; Pan, K.; Xie, S. H.; Liang, W. -I.; Kumar, Amit; Jesse, Stephen; Chen, Y. -C.; Chu, Y.-H.; Nagarajan, Valanoor; Kalinin, Sergei V; Li, J. Y.

    2012-01-01

    The magnetoelectric coupling in multiferroic materials is promising for a wide range of applications, yet manipulating magnetic ordering by electric field proves elusive to obtain and difficult to control. In this paper, we explore the prospect of controlling magnetic ordering in misfit strained bismuth ferrite (BiFeO3, BFO) films, combining theoretical analysis, numerical simulations, and experimental characterizations. Electric field induced transformation from a tetragonal phase to a distorted rhombohedral one in strain engineered BFO films has been identified by thermodynamic analysis, and realized by scanning probe microscopy (SPM) experiment. By breaking the rotational symmetry of a tip-induced electric field as suggested by phase field simulation, the morphology of distorted rhombohedral variants has been delicately controlled and regulated. Such capabilities enable nanoscale control of magnetoelectric coupling in strain engineered BFO films that is difficult to achieve otherwise, as demonstrated by phase field simulations.

  18. Dipolar glass and strong magneto-electric coupling within a purely organic system

    NASA Astrophysics Data System (ADS)

    Berlie, Adam; Terry, Ian; Liu, Yun; Szablewski, Marek

    There is much interest in the search for novel materials that show ferroelectric as well as magneto-electric coupling, such as that observed in multiferroics. Within organic based materials the electronic polarisation can come from a charge distribution across a molecule or molecules and so one must search for systems that have a electronic (and magnetic) dipole that is intrinsic. One such material is tetraethylammonium bis-7,7,8,8-tetracyanoquinodimethane (TEA(TCNQ)2) which is a charge transfer system where there is a single electron delocalised across a TCNQ dimer. We show that dielectric measurements yield anomalies at the Peierls structural distortion and on going through the spin-Peierls transition. In both cases the electric response is glassy and at low temperature the corresponding magnetic measurements evidence the strong magneto-electric coupling within the material showing analogies to spin glass systems.

  19. Strong Magnetoelectric Coupling of Pb1-xSrx(Fe0.012Ti0.988)O3 Nanoparticles.

    PubMed

    Verma, Kuldeep Chand; Shah, Jyoti; Kotnala, R K

    2015-02-01

    Pb1-xSrx(Fe012Ti0.988)O3 (PSFT) nanoparticles were prepared by a chemical synthesis using polyvinyl alcohol as surfactant. X-ray diffraction pattern has been used to analyze the phase structure and average particles size. Transmission electron microscopy is used to confirm the nano size of the PSFT particles. The magnetoelectric (ME) coupling is observed at room temperature by measuring the ME coefficient (αE) as the function of applied dc magnetizing field under the influence of ac magnetic field of 2 Oe and frequency 800 Hz. The maximal value of αE is observed in PSFT3. The ME coupling is also studied by observing the variation of polarization hysteresis measured in the presence of zero and 0.2 T of external magnetic field. PMID:26353695

  20. Mesoporous bismuth ferrite with amplified magnetoelectric coupling and electric field-induced ferrimagnetism

    NASA Astrophysics Data System (ADS)

    Quickel, Thomas E.; Schelhas, Laura T.; Farrell, Richard A.; Petkov, Nikolay; Le, Van H.; Tolbert, Sarah H.

    2015-03-01

    Coupled ferromagnetic and ferroelectric materials, known as multiferroics, are an important class of materials that allow magnetism to be manipulated through the application of electric fields. Bismuth ferrite, BiFeO3, is the most-studied intrinsic magnetoelectric multiferroic because it maintains both ferroelectric and magnetic ordering to well above room temperature. Here we report the use of epitaxy-free wet chemical methods to create strained nanoporous BiFeO3. We find that the strained material shows large changes in saturation magnetization on application of an electric field, changing from 0.04 to 0.84 μb per Fe. For comparison, non-porous films produced using analogous methods change from just 0.002 to 0.01 μb per Fe on application of the same electric field. The results indicate that nanoscale architecture can complement strain-layer epitaxy as a tool to strain engineer magnetoelectric materials.

  1. Mesoporous bismuth ferrite with amplified magnetoelectric coupling and electric field-induced ferrimagnetism.

    PubMed

    Quickel, Thomas E; Schelhas, Laura T; Farrell, Richard A; Petkov, Nikolay; Le, Van H; Tolbert, Sarah H

    2015-01-01

    Coupled ferromagnetic and ferroelectric materials, known as multiferroics, are an important class of materials that allow magnetism to be manipulated through the application of electric fields. Bismuth ferrite, BiFeO3, is the most-studied intrinsic magnetoelectric multiferroic because it maintains both ferroelectric and magnetic ordering to well above room temperature. Here we report the use of epitaxy-free wet chemical methods to create strained nanoporous BiFeO3. We find that the strained material shows large changes in saturation magnetization on application of an electric field, changing from 0.04 to 0.84 μb per Fe. For comparison, non-porous films produced using analogous methods change from just 0.002 to 0.01 μb per Fe on application of the same electric field. The results indicate that nanoscale architecture can complement strain-layer epitaxy as a tool to strain engineer magnetoelectric materials. PMID:25754622

  2. Enhanced Magnetoelectric Coupling in Layered Structure of Piezoelectric Bimorph and Metallic Alloy

    NASA Astrophysics Data System (ADS)

    Petrov, V. M.; Bichurin, M. I.; Lavrentyeva, K. V.; Leontiev, V. S.

    2016-08-01

    We have investigated the enhanced magnetoelectric (ME) coupling in a layered structure of piezoelectric bimorph and magnetostrictive metallic alloy. The observed ME coefficient in the piezoelectric bimorph-based structure was found to be two times higher than in the traditional piezoelectric/magnetostrictive bilayer. The observed enhancement in ME coupling strength is related to equal signs of induced voltage in both lead zirconate titanate layers with opposite poling directions due to the flexural deformations. The piezoelectric bimorph-based structure has promising potential for sensor and technological applications.

  3. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology.

    PubMed

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling-the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field-is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams-which, for instance, may be used in stretchable electronics-we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism. PMID:24229099

  4. Magnetoelectric coupling in ordered arrays of multilayered heteroepitaxial BaTiO₃/CoFe₂O₄ nanodots.

    PubMed

    Lu, Xiaoli; Kim, Yunseok; Goetze, Silvana; Li, Xiaoguang; Dong, Sining; Werner, Peter; Alexe, Marin; Hesse, Dietrich

    2011-08-10

    Fully epitaxial BaTiO(3)/CoFe(2)O(4) ferroelectric/ferromagnetic multilayered nanodot arrays, a new type of magnetoelectric (ME) nanocomposite with both horizontal and vertical orderings, were fabricated via a stencil-derived direct epitaxy technique. By reducing the clamping effect, ferroelectric domain modification and distinct magnetization change proportional to different interfacial area around the BaTiO(3) phase transition temperatures were found, which may pave the way to quantitative introducing of ME coupling at nanoscale and build high density multistate memory devices. PMID:21749120

  5. A generalized lumped-element equivalent circuit for tunable magnetoelectric microwave devices with multi-magnetoelectric laminates

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Miao; Lian, Jing

    2014-05-01

    According to the microwave transmission principle and the mechanism of ferromagnetic resonance, a generalized lumped element model for electrically and magnetically magnetoelectric tunable microwave devices with multi-magnetoelectric laminates is established. This model is introduced the RLC series resonant circuit and an ideal transformer model to characterize the ferromagnetic resonance effect and the coupling between microstrip line and the magnetoelectric laminates. Then, the model is degenerated to an existing microwave resonator, which contains only a single block magnetoelectric laminate, and transmission characteristics results predicted by the lumped element model are compared with the experimental results and the electromagnetic simulated results. It is found that the lumped circuit model can effectively predict the center frequency and bandwidth of the resonator. After that, the lumped element model is used to predict the band characteristics and the magnetic and electric tunability of the filter with multi-magnetoelectric laminates. The results show that the application of multi-magnetoelectric laminates in filters can not only broaden bandwidth, but also control the work frequency band by tuning the external electrostatic and magnetostatic field on the magnetoelectric laminates. Therefore, considering the practicality and versatility of microwave devices with multi-magnetoelectric laminates, the effective lumped element model can provide the theoretical basis for the design of novel magnetoelectric devices.

  6. The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X.; Yang, Xi; Liu, Ming

    2016-02-01

    Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also “store” the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities.

  7. The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure.

    PubMed

    Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X; Yang, Xi; Liu, Ming

    2016-01-01

    Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also "store" the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities. PMID:26847469

  8. The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure

    PubMed Central

    Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X.; Yang, Xi; Liu, Ming

    2016-01-01

    Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also “store” the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities. PMID:26847469

  9. Magnetoelectric control of spin currents

    NASA Astrophysics Data System (ADS)

    Gómez, J. E.; Vargas, J. M.; Avilés-Félix, L.; Butera, A.

    2016-06-01

    The ability to control the spin current injection has been explored on a hybrid magnetoelectric system consisting of a (011)-cut ferroelectric lead magnesium niobate-lead titanate (PMNT) single crystal, a ferromagnetic FePt alloy, and a metallic Pt. With this PMNT/FePt/Pt structure we have been able to control the magnetic field position or the microwave excitation frequency at which the spin pumping phenomenon between FePt and Pt occurs. We demonstrate that the magnetoelectric heterostructure operating in the L-T (longitudinal magnetized-transverse polarized) mode couples the PMNT crystal to the magnetostrictive FePt/Pt bilayer, displaying a strong magnetoelectric coefficient of ˜140 Oe cm kV-1. Our results show that this mechanism can be effectively exploited as a tunable spin current intensity emitter and open the possibility to create an oscillating or a bistable switch to effectively manipulate spin currents.

  10. Increased Sensitivity of Magnetoelectric Sensors at Low Frequencies Using Magnetic Field Modulation

    NASA Astrophysics Data System (ADS)

    Petrie, Jonathan; Viehland, Dwight; Gray, David; Mandal, Sanjay; Sreenivasulu, Gollapudi; Srinivasan, Gopalan; Edelstein, Alan

    2012-02-01

    Magnetoelectric (ME) laminate sensors are vector magnetometers that can detect pT magnetic fields at 1 kHz, although sensitivity may be reduced at lower frequencies. These passive sensors consist of alternating layers of magnetostrictive and piezoelectric materials. A magnetic field causes the magnetostrictive layer to strain the piezoelectric material and create measurable charge. We have shownootnotetextTo be published in Journal of Applied Physics. that since the strain response is a nonlinear function of the bias field, sweeping the magnetic bias on the magnetostrictive layer can modulate the ME response and increase the operating frequency of the sensor. This upward shift lowers the 1/f noise and increases the signal amplitude if the new operating frequency is near a mechanical resonance mode of the sensor. Using this modulation technique, the low frequency sensitivity has been improved by more than an order of magnitude and we have achieved a detectivity of 7 pT/Hz at1 Hz. In addition to increasing the magnetic signal frequency, we can use magnetic modulation to increase the operating frequency of acoustic signals detected by these sensors. This occurs because the ME sensors are nonlinear devices. In these cases using magnetic field modulation, the signal appears as sidebands around the modulation frequency.

  11. Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Yadav, K. L.

    2006-10-01

    Dielectric, magnetic, and magnetoelectric properties of Ti substituted bismuth ferrite (BiFeO3) ceramic synthesized by solid state reaction are reported. Ti substitution for Fe in BiFeO3 increased the room temperature electrical resistivity by approximately six orders of magnitude and also increased the dielectric constant and reduced the loss tangent. The remanent polarization, coercive field, and maximum polarization were 0.081μC /cm2, 2.571kV/cm, and 0.658μC/cm2, respectively at 20kV/cm. An anomaly in the dielectric constant and loss tangent around Néel temperature was observed. The ferroelectric and magnetic hysteresis loops were measured which are not really saturated in BiFe0.75Ti0.25O3 compound and represented a partial reversal. The magnetoelectric coupling between electric dipoles and magnetic dipoles at room temperature was demonstrated by measuring the effect of magnetic poling on ferroelectric hysteresis loop and the change in the dielectric constant with the external magnetic field.

  12. Piezoelectric single crystal langatate and ferromagnetic composites: Studies on low-frequency and resonance magnetoelectric effects

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, G.; Fetisov, L. Y.; Fetisov, Y. K.; Srinivasan, G.

    2012-01-01

    Mechanical strain mediated magnetoelectric (ME) effects are studied in bilayers and trilayers of piezoelectric single-crystal lanthanum gallium tantalate (LGT) and magnetostrictive permendur (P). The ME voltage coefficient ranges from 2.3 V/cm Oe at 20 Hz to 720 V/cm Oe at bending resonance and is higher by an order of magnitude than in composites with ferroelectric lead zirconate titanate or lead magnesium niobate-lead titanate. The low-frequency magnetic noise for P-LGT-P is a factor of 2-10 smaller than for ferroelectrics based composites. Langatate is free of ferroelectric hysteresis, pyroelectric effects, and phase transitions up to 1450 °C and is of interest for ultrasensitive, high temperature magnetic sensors.

  13. First principles study of magnetoelectric coupling in Co2FeAl/BaTiO3 tunnel junctions.

    PubMed

    Yu, Li; Gao, Guoying; Zhu, Lin; Deng, Lei; Yang, Zhizong; Yao, Kailun

    2015-06-14

    Critical thickness for ferroelectricity and the magnetoelectric effect of Co2FeAl/BaTiO3 multiferroic tunnel junctions (MFTJs) are investigated using first-principles calculations. The ferroelectric polarization of the barriers can be maintained upto a critical thickness of 1.7 nm for both the Co2/TiO2 and FeAl/TiO2 interfaces. The magnetoelectric effect is derived from the difference in the magnetic moments on interfacial atoms, which is sensitive to the reversal of electric polarization. The magnetoelectric coupling is found to be dependent on the interfacial electronic hybridizations. Compared with the Co2/TiO2 interface, more net magnetization change is achieved at the FeAl/TiO2 interface. In addition, the in-plane strain effect shows that in-plane compressive strain can lead to the enhancement of ferroelectric polarization stability and intensity of magnetoelectric coupling. These findings suggest that Co2FeAl/BaTiO3 MFTJs could be utilized in the area of electrically controlled magnetism, especially the MFTJ with loaded in-plane compressive strain with the FeAl/TiO2 interface. PMID:25987345

  14. Magnetoelectric coupling of multiferroic chromium doped barium titanate thin film probed by magneto-impedance spectroscopy

    SciTech Connect

    Shah, Jyoti Kotnala, Ravinder K. E-mail: rkkotnala@gmail.com

    2014-04-07

    Thin film of BaTiO{sub 3} doped with 0.1 at. % Cr (Cr:BTO) has been prepared by pulsed laser deposition technique. Film was deposited on Pt/SrTiO{sub 3} substrate at 500 °C in 50 mTorr Oxygen gas pressure using KrF (298 nm) laser. Polycrystalline growth of single phase Cr:BTO thin film has been confirmed by grazing angle X-ray diffraction. Cr:BTO film exhibited remnant polarization 6.4 μC/cm{sup 2} and 0.79 MV/cm coercivity. Magnetization measurement of Cr:BTO film showed magnetic moment 12 emu/cc. Formation of weakly magnetic domains has been captured by magnetic force microscopy. Theoretical impedance equation fitted to experimental data in Cole-Cole plot for thin film in presence of transverse magnetic field resolved the increase in grain capacitance from 4.58 × 10{sup −12} to 5.4 × 10{sup −11} F. Film exhibited high value 137 mV/cm-Oe magneto-electric (ME) coupling coefficient at room temperature. The high value of ME coupling obtained can reduce the typical processing steps involved in multilayer deposition to obtain multiferrocity in thin film. Barium titanate being best ferroelectric material has been tailored to be multiferroic by non ferromagnetic element, Cr, doping in thin film form opens an avenue for more stable and reliable spintronic material for low power magnetoelectric random excess memory applications.

  15. Direct and converse magneto-electric coupling in ferromagnetic shape memory alloys based thin film multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Singh, Kirandeep; Kaur, Davinder

    2015-12-01

    The ferromagnetic shape memory driven alterations in strain mediated direct and converse magnetoelectric coupling (DME & CME) was realized in sputtered deposited PZT/Ni-Mn-In multiferroic hetero-junctions. The ferroelectric (P-E loops), dielectric (ɛ vs frequency, ɛ-E), and voltage modulated magnetic anisotropy measurements (M-E curves) were executed in the plane (hard axis) and out of the plane (easy axis) of the functional magnetic material based PZT/Ni-Mn-In bilayer structure. A gain of ˜16 μC/cm2 in maximum polarization (Pmax) and ˜12% in tunability (nr) were observed along an easy magnetic axis of Ni-Mn-In. The butterfly shaped normalized magnetization (M/Ms) vs electric field (applied across the heterostructure) [M-E] plots evident the strain character of CME coupling. The co-action of (i) dissimilar carrier concentration between high symmetric austenitic cubic phase and low symmetry martensite phase of ferromagnetic shape memory alloys and (ii) martensitic transformation induced magnetization change in Ni-Mn-In cause an electrical field modulated hall resistivity; a change of ˜42% in hall resistivity was observed at 60 kV/cm electric field and 0.2 T magnetic field at 270 K. The reversible manipulation of remnant magnetization (Mr) with applied electric field was demonstrated as on/off switch using a square pulse of 60 kV/cm amplitude.

  16. Tuning the competition between ferromagnetism and antiferromagnetism in a half-doped manganite through magnetoelectric coupling

    SciTech Connect

    Yi, Di; Liu, Jian; Okamoto, Satoshi; Jagannatha, Suresha; Chen, Yi-Chun; Yu, Pu; Chu, Ying-Hao; Arenholz, Elke; Ramesh, Ramamoorthy

    2013-01-01

    We investigate the possibility of controlling the magnetic phase transition of the heterointerface between a half-doped manganite La0:5Ca0:5MnO3 and a multiferroic BiFeO3 (BFO) through magnetoelectric coupling. Using macroscopic magnetometry and element-selective x-ray magnetic circular dichroism at the Mn and Fe L edges, we discover that the ferroelectric polarization of BFO controls simultaneously the magnetization of BFO and La0.5Ca0.5MnO3 (LCMO). X-ray absorption spectra at the oxygen K edge and linear dichroism at the Mn L edge suggest that the interfacial coupling is mainly derived from the superexchange between Mn and Fe t2g spins. The combination of x-ray absorption spectroscopy and mean-field theory calculations reveals that the d-electron modulation of Mn cations changes the magnetic coupling in LCMO, which controls the enhanced canted moments of interfacial BFO via the interfacial coupling. Our results demonstrate that the competition between ferromagnetic and antiferromagnetic instability can be modulated by an electric field at the heterointerface, providing another pathway for the electrical field control of magnetism.

  17. Proximate transition temperatures amplify linear magnetoelectric coupling in strain-disordered multiferroic BiMnO3

    NASA Astrophysics Data System (ADS)

    Mickel, Patrick R.; Jeen, Hyoungjeen; Kumar, Pradeep; Biswas, Amlan; Hebard, Arthur F.

    2016-04-01

    We report a giant linear magnetoelectric coupling in strained BiMnO3 thin films in which the disorder associated with an islanded morphology gives rise to extrinsic relaxor ferroelectricity that is not present in bulk centrosymmetric ferromagnetic crystalline BiMnO3. Strain associated with the disorder is treated as a local variable, which couples to the two ferroic order parameters, magnetization M ⃗ and polarization P ⃗. A straightforward "gas under a piston" thermodynamic treatment explains the observed correlated temperature dependencies of the product of susceptibilities and the magnetoelectric coefficient together with the enhancement of the coupling by the proximity of the ferroic transition temperatures close to the relaxor freezing temperature. Our interpretation is based on a trilinear coupling term in the free energy of the form L ⃗.(P ⃗×M ⃗) , where L ⃗ is a hidden antiferromagnetic order parameter, previously postulated by theory for BiMnO3. This phenomenological invariant not only preserves inversion and time-reversal symmetry of the strain-induced interactions but also explains the pronounced linear magnetoelectric coupling without using the more conventional higher order biquadratic interaction proportional to (P⃗.M ⃗) 2.

  18. Strain-mediated converse magnetoelectric coupling strength manipulation by a thin titanium layer

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Gang; Morley, Nicola A.; Sharp, Joanne; Tian, Ye; Rainforth, W. Mark

    2016-01-01

    The manipulation of the strain-mediated magnetoelectric (ME) coupling strength is investigated by inserting a thin Ti layer (0-10 nm) between a 50 nm Co50Fe50 layer and a (011) oriented lead magnesium niobate-lead titanate (PMN-PT) substrate. A record high remanence ratio (Mr/Ms) tunability of 100% has been demonstrated in the 50 nm CoFe/8 nm Ti/PMN-PT heterostructure, when a total in-plane piezoelectric strain of -1821 ppm was applied at an electric field (E-field) of 16 kV/cm. The ME coupling strength is gradually optimized as the Ti layer thickness increases. Magnetic energy calculation showed that with increasing Ti layer thickness the uniaxial magnetic anisotropy energy (Euni) was reduced from 43 ± 1 kJ/m3 to 29.8 ± 1 kJ/m3. The reduction of Euni makes the strain effect dominant in the total magnetic energy, thus gives an obvious enhanced ME coupling strength.

  19. Magneto-electric coupling in Ca3CoMnO6 thin films

    NASA Astrophysics Data System (ADS)

    Saha, J.; Sharma, G.; Kaushik, S. D.; Rani, V.; Sudesh; Siruguri, V.; Patnaik, S.

    2016-02-01

    We report on the growth and magneto-electric (ME) coupling of Ca3CoMnO6 thin films deposited by pulsed laser deposition technique. Ca3CoMnO6 is interesting because of its tunable inter-chain magnetic interactions that affect its ME coupling. An optical band gap of 1.73 eV was estimated by UV visible spectroscopy. The magnetic transition is surprisingly increased to 40 K, much above its bulk value (15 K). The increase in magnetic transition temperature is possibly due to stronger inter-chain interaction and strain caused by lattice mismatch. Due to canting the thin films show weak ferromagnetic like behavior at low temperature. The dielectric measurements show anomaly at 10 K and 40 K which are clearly visible at the first derivative of dielectric data. From direct polarization measurements we associate the 10 K transition to a magnetic structure driven ferroelectric phase. The magnetocapacitance data at 5 K shows substantial change in dielectric constant with magnetic field. The large ME coupling is also verified by polarization measurement, where a 5% change in polarization is observed on the application of 5 T external magnetic field.

  20. Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film

    PubMed Central

    Zhao, Hongyang; Kimura, Hideo; Cheng, Zhenxiang; Osada, Minoru; Wang, Jianli; Wang, Xiaolin; Dou, Shixue; Liu, Yan; Yu, Jianding; Matsumoto, Takao; Tohei, Tetsuya; Shibata, Naoya; Ikuhara, Yuichi

    2014-01-01

    Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi5Ti3FeO15 with high ferroelectric Curie temperature of ~1000 K. Bi5Ti3FeO15 thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi5Ti3FeO15 with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature. PMID:24918357

  1. Reinterpreting the magnetoelectric coupling of polarizability tensors of infinite cylinders using symmetry: A simple TM/TE view

    NASA Astrophysics Data System (ADS)

    Chen, Parry Y.; Ben-Yakar, Jacob; Sivan, Yonatan

    2016-07-01

    Recently, Strickland et al. [Phys. Rev. B 91, 085104 (2015), 10.1103/PhysRevB.91.085104] retrieved dynamic polarizabilities of infinitely long wires at oblique incidence, reporting nonzero magnetoelectric coupling, seemingly defying existing theorems which forbid this in centrosymmetric scatterers. We reconcile this finding with existing symmetry restrictions on microscopic polarizabilities using a property of line dipoles. This motivates a reformulation of cylinder polarizability, yielding diagonal tensors that decompose the response into TM and TE contributions, simplifying subsequent treatment by homogenization theories. A transformation is derived between the formulation of Strickland et al. and our reformulation, allowing magnetoelectric coupling to be identified as the contrast between TM and TE responses, and enabling simple geometric insights into all its scaling and symmetry properties.

  2. Room temperature magnetoelectric coupling in BaTi1-xCrxO3 multiferroic thin films

    NASA Astrophysics Data System (ADS)

    Sundararaj, Anuraj; Chandrasekaran, Gopalakrishnan; Therese, Helen Annal; Annamalai, Karthigeyan

    2016-01-01

    We report on room temperature (RT) magnetoelectric coupling in tetragonal BaTi1-xCrxO3 thin film multiferroics (BTCO) sputter deposited on (100) SrTiO3 (where x = 0.005, 0.01, 0.02, and 0.03). As-deposited thin films are vacuum annealed by electron beam rapid thermal annealing technique. 50 nm thick BTCO with "x = 0.01" shows RT ferromagnetic and ferroelectric response with saturation magnetic moment of 1120 emu/cc and polarization of 14.7 microcoulomb/cm2. Piezoresponse/magnetic force microscope images shows RT magnetoelectric coupling in BTCO with "x = 0.01," which is confirmed using magnetocapacitance measurement where an increase in capacitance from 17.5 pF to 18.4 pF is observed with an applied magnetic field.

  3. Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection.

    PubMed

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X

    2013-01-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields. PMID:23760520

  4. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    PubMed Central

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-01-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields. PMID:23760520

  5. Phase transition and magneto-electric coupling of BiFeO3-YMnO3 multiferroic nanoceramics

    NASA Astrophysics Data System (ADS)

    Narayan Tripathy, Satya; Mishra, K. K.; Sen, S.; Mishra, B. G.; Pradhan, Dhiren K.; Palai, R.; Pradhan, Dillip K.

    2013-10-01

    We report the crystal structure, dielectric, magnetic, and magneto-electric properties of (1-x) BiFeO3-xYMnO3 (0.00 ≤ x ≤ 0.2) multiferroic nanoceramics prepared by auto-combustion technique. YMnO3 substitution is found to induce a structural phase transition from R3c to R3c+Pbnm after x ≈ 0.1 using Rietveld refinement technique. Field emission scanning electron micrographs show decrease in grain size with increase in YMnO3 content. The dielectric permittivity and loss tangent are found to be increased with composition x. The anomalies noticed from the temperature dependent dielectric analysis reveal the signature of magneto-electric coupling in the system. A decrease in magnetic ordering temperature as a function of composition is found from dielectric study. At room temperature, the dielectric permittivity of all the YMnO3 modified samples decrease with increasing magnetic field. The maximum value of magneto-electric coupling coefficient (ɛ(H)-ɛ(0))/ɛ(0) is found to be ˜ -5.5% at H = 2 T for x = 0.2. The behaviour of the magnetic hysteresis loop observed at room temperature suggests the suppression of space modulated spin structure.

  6. Multiferroic Ni0.6Zn0.4Fe2O4-BaTiO3 nanostructures: Magnetoelectric coupling, dielectric, and fluorescence

    NASA Astrophysics Data System (ADS)

    Verma, Kuldeep Chand; Singh, Sukhdeep; Tripathi, S. K.; Kotnala, R. K.

    2014-09-01

    Multiferroic nanostructures of Ni0.6Zn0.4Fe2O4-BaTiO3 (NZF/BT) have been prepared by two synthesis routes, i.e., chemical combustion (CNZF/BT) and hydrothermal (HNZF/BT). The synthesis of CNZF/BT results in nanoparticles of average size 4 nm at 500 °C annealing. However, the synthesis of HNZF/BT with hydrolysis temperature 180 °C/48 h shows nanowires of diameter 3 nm and length >150 nm. A growth mechanism in the fabrication of nanoparticles and wires is given. X-ray diffraction is used to identify the crystalline phase. The transmission electron microscopy shows the dimensions of NZF/BT nanostructures. The ferromagnetism, ferroelectricity, and magnetoelectric coupling show more enhancements in HNZF/BT nanowires than CNZF/BT nanoparticles. The observed polarization depends upon shape of nanostructures, tetragonal phase, and epitaxial strain. The tension induced by the surface curvature of nanowire counteracts the near-surface depolarizing effect and meanwhile leads to unusual enhancement of polarization. The ferromagnetism depends upon superficial spin canting, spin pinning of nanocomposite, and oxygen vacancy clusters. The magnetoelectric coefficient as the function of applied dc magnetizing field under ac magnetic field 5 Oe and frequency 1093 Hz is measured. The nanodimensions of NZF/BT are observed dielectric constant up to 120 MHz. The optical activity of NZF/BT nanostructures is shown by Fluorescence spectra.

  7. Giant magnetoelectric coupling interaction in BaTiO{sub 3}/BiFeO{sub 3}/BaTiO{sub 3} trilayer multiferroic heterostructures

    SciTech Connect

    Kotnala, R. K. E-mail: rkkotnala@gmail.com; Gupta, Rekha; Chaudhary, Sujeet

    2015-08-24

    Multiferroic trilayer thin films of BaTiO{sub 3}/BiFeO{sub 3}/BaTiO{sub 3} were prepared by RF-magnetron sputtering technique at different thicknesses of BiFeO{sub 3} layer. A pure phase polycrystalline growth of thin films was confirmed from X-ray diffraction results. The film showed maximum remnant electric polarization (2P{sub r}) of 13.5 μC/cm{sup 2} and saturation magnetization (M{sub s}) of 61 emu/cc at room temperature. Thermally activated charge transport dominated via oxygen vacancies as calculated by their activation energy, which was consistent with current–voltage characteristics. Magnetic field induced large change in resistance and capacitance of grain, and grain boundary was modeled by combined impedance and modulus spectroscopy in the presence of varied magnetic fields. Presence of large intrinsic magnetoelectric coupling was established by a maximum 20% increase in grain capacitance (C{sub g}) with applied magnetic field (2 kG) on trilayer having 20 nm BiFeO{sub 3} layer. Substantially higher magnetoelectric coupling in thinner films has been observed due to bonding between Fe and Ti atoms at interface via oxygen atoms. Room temperature magnetoelectric coupling was confirmed by dynamic magnetoelectric coupling, and maximum longitudinal magnetoelectric coupling of 515 mV/cm-Oe was observed at 20 nm thickness of BiFeO{sub 3}. The observed magnetoelectric properties are potentially useful for novel room temperature magnetoelectric and spintronic device applications for obtaining higher voltage at lower applied magnetic field.

  8. Magnetoelectric Heterostructures for Spintronics and Magnetic Sensing

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang

    Magnetoelectric heterostructures with coupled magnetization and electric polarization across their interfaces enable significantly improvement of performance of many devices such as magnetic sensors, microwave magnetic devices, and spintronics. I will first show that by utilizing a unique ferroelastic polarization switching pathway, one can achieve non-volatile electric-field-switching of magnetism in multiferroic heterostructures with different ferroelectric single crystals through a strain-mediated magnetoelectric coupling. In the same system, with atomically-thin ferromagnets, the interfacial charge-mediated should also be taken into account. The charge- and strain-mediated coupling mechanisms are demonstrated and precisely quantified by the electric-field-tuning of ferromagnetic resonance. With the same technique, magnetic relaxation including intrinsic and extrinsic damping has also been shown to be strongly correlated to the strain, which is attributed to the electric-field-modification of spin-orbit coupling. Moreover, I will also show the tuning of spin-orbit torques from the spin-Hall effect with applied voltage probed with spin-torque ferromagnetic resonance and show the possible application on voltage tunable spin-Hall nano-oscillators. In the second part of my thesis, I will show an ultra-miniaturized magnetoelectric nano-electromechanical system (NEMS) resonator based on an AlN/FeGaB magnetoelectric heterostructure for detecting wide band magnetic fields. With the high Quality factor and the ultra-high resonance frequency, a low DC magnetic field detection limit of 300 pT has been demonstrated.

  9. Charge mediated room temperature magnetoelectric coupling in Zn1-xSmxO/BaTiO3 bilayer thin film.

    PubMed

    Sundararaj, Anuraj; Chandrasekaran, Gopalakrishnan; Therese, Helen Annal; Annamalai, Karthigeyan

    2015-08-01

    We present a room-temperature magnetoelectrically coupled bilayer thin film multiferroic system (BTS) 'Zn1-xSmxO/BaTiO3 (where x = 0.02 and 0.04)' grown on a SrTiO3 (100) substrate. The thin film layers are polycrystalline and continuous with an average roughness of 3.2 nm. At room temperature, the BTSs with x = 0.02 (BTS2) and x = 0.04 (BTS4) are ferromagnetic with a saturation magnetic moment (Ms) of 5.1 memu and 8.6 memu respectively, while the latter shows a paramagnetic trace. Both BTS2 and BTS4 are ferroelectric at room temperature with a saturation polarization (Ps) of 12.51 μC cm(-2) and 6.75 μC cm(-2), respectively. The coercive (electric) field required to polarize BTSs increases as a function of x (25.2 kV cm(-1) for BTS2 and 62.3 kV cm(-1) for BTS4). The change in degree of polarization/magnetization (domain contrast of the piezoresponse/magnetic force microscopy images), permittivity and resistance, as a function of external magnetic/electric field, directly suggests that the Zn0.98Sm0.02O/BaTiO3 BTS is magnetoelectrically coupled at room temperature. PMID:26184425

  10. Dynamic behavior of magnetoelectric coupling of CuFeO2 induced by a high magnetic field

    NASA Astrophysics Data System (ADS)

    Xia, Nianming; Shi, Liran; Xia, Zhengcai; Chen, Borong; Jin, Zhao; Wang, Yeshuai; Ouyang, Zhongwen; Zuo, Huakun; Shen, Yining

    2014-03-01

    Magnetoelectric effects and their dynamic behavior in a CuFeO2 single crystal grown by the floating zone technique are investigated at low temperature in pulsed high magnetic fields. Experimental results show that the magnetization, dielectric polarization, and magnetoelectric coupling are anisotropic. In the magnetization, a field-induced multi-step-like transition with hysteresis is observed, in which the critical magnetic fields are independent of the field sweep rate. In the dielectric polarization, the field-induced dielectric polarization with hysteresis (or partial irreversible) is only observed in the incommensurate-noncollinear phase. In particular, no obvious spontaneous dielectric polarization is observed in the lower magnetic field regime. Using a pulsed high magnetic field with various magnetic field strength and field sweep rates, the coupling behavior between the magnetic moment and the dielectric polarization is investigated. Experimental results show that the dielectric polarization is weakly related to the field sweep rate. In the field-decreasing branch, the magnetic field is higher, the magnetic field region of the dielectric polarization remains is lower, indicating that the pulsed high magnetic field has an effect on the enhancement of the spontaneous dielectric polarization.

  11. Ferrimagnetic resonance and magnetoelastic excitations in magnetoelectric hexaferrites

    NASA Astrophysics Data System (ADS)

    Vittoria, Carmine

    2015-08-01

    Static field properties of magnetoelectric hexaferrites have been explored extensively in the past five years. In this paper, dynamic properties of magnetoelectric hexaferrites are being explored. In particular, effects of the linear magnetoelectric coupling (α ) on ferrimagnetic resonance (FMR) and magnetoelastic excitations are being investigated. A magnetoelastic free energy which includes Landau-Lifshitz mathematical description of a spin spiral configuration is proposed to calculate FMR and magnetoelastic excitations in magnetoelectric hexaferrites. It is predicted that the ordinary uniform precession FMR mode contains resonance frequency shifts that are proportional to magnetoelectric static and dynamic fields. The calculated FMR fields are in agreement with experiments. Furthermore, it is predicted at low frequencies (approximately megahertz ranges), near zero magnetic field FMR frequencies, there is an extra uniform precession FMR mode besides the ordinary FMR mode which can only be accounted by dynamic magnetoelectric fields. Whereas the FMR frequency shifts in the ordinary FMR mode due to the α coupling scale as α , the shifts in the new discovered FMR mode scale as α2. Also, magnetoelastic dispersions were calculated, and it is predicted that the effect of the α coupling are the following: (1) The strength of admixture of modes and splitting in energy between spin waves and transverse acoustic waves is proportional to α . (2) The degeneracy of the two transverse acoustic wave modes is lifted even for relatively low values of α . Interestingly, at low frequencies near zero field FMR frequencies, the surface spin wave mode branch flip-flops with the volume spin wave branch whereby one branch assumes real values of the propagation constant and the other purely imaginary upon the application of a static electric field.

  12. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling—the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field—is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams—which, for instance, may be used in stretchable electronics—we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism.

  13. Zigzag-shaped piezoelectric based high performance magnetoelectric laminate composite

    NASA Astrophysics Data System (ADS)

    Cho, Kyung-Hoon; Yan, Yongke; Folgar, Christian; Priya, Shashank

    2014-06-01

    We demonstrate a 33-mode piezoelectric structure with zigzag shape for high sensitivity magnetoelectric laminates. In contrast to the 33-mode macro fiber composite (MFC), this zigzag shape piezoelectric layer excludes epoxy bonding layer between the electrode and piezoelectric materials, thereby, significantly improving the polarization degree, electromechanical coupling, and the stability of loss characteristics. The polarization degree was monitored from the change in phase angle near resonance, and the loss stability was determined from the changes in dielectric loss and rate of capacitance variation defined by (C - Cf)/Cf, where C is capacitance at a given frequency and Cf is capacitance at 100 Hz. Magnetoelectric composite with zigzag patterned piezoelectric layer was found to exhibit giant magnetoelectric response both in low frequency off-resonance region (6.75 V cm-1 Oe-1 at 1 kHz) and at anti-resonance frequency (357 V cm-1 Oe-1).

  14. Negative index of refraction in a four-level system with magnetoelectric cross coupling and local field corrections

    SciTech Connect

    Bello, F.

    2011-07-15

    This research focuses on a coherently driven four-level atomic medium with the aim of inducing a negative index of refraction while taking into consideration local field corrections as well as magnetoelectric cross coupling (i.e.,chirality) within the material's response functions. Two control fields are used to render the medium transparent for a probe field which simultaneously couples to an electric and a magnetic dipole transition, thus allowing one to test the permittivity and permeability of the material at the same time. Numerical simulations show that a negative index of refraction with low absorption can be obtained for a range of probe detunings while depending on number density and the ratio between the intensities of the control fields.

  15. Magnetoelectric coupling and spin-dependent tunneling in Fe/PbTiO{sub 3}/Fe multiferroic heterostructure with a Ni monolayer inserted at one interface

    SciTech Connect

    Dai, Jian-Qing Zhang, Hu; Song, Yu-Min

    2015-08-07

    We report on first-principles calculations of a Ni monolayer inserted at one interface in the epitaxial Fe/PbTiO{sub 3}/Fe multiferroic heterostructure, focusing on the magnetoelectric coupling and the spin-dependent transport properties. The results of magnetoelectric coupling calculations reveal an attractive approach to realize cumulative magnetoelectric effects in the ferromagnetic/ferroelectric/ferromagnetic superlattices. The underlying physics is attributed to the combinations of several different magnetoelectric coupling mechanisms such as interface bonding, spin-dependent screening, and different types of magnetic interactions. We also demonstrate that inserting a Ni monolayer at one interface in the Fe/PbTiO{sub 3}/Fe multiferroic tunnel junction is an efficient method to produce considerable tunneling electroresistance effect by modifying the tunnel potential barrier and the interfacial electronic structure. Furthermore, coexistence of tunneling magnetoresistance and tunneling electroresistance leads to the emergence of four distinct resistance states, which can be served as a multistate-storage device. The complicated influencing factors including bulk properties of the ferromagnetic electrodes, decay rates of the evanescent states in the tunnel barrier, and the specific interfacial electronic structure provide us promising opportunities to design novel multiferroic tunnel junctions with excellent performances.

  16. The Origin and Coupling Mechanism of the Magnetoelectric Effect in TM Cl 2 -4SC(NH 2 ) 2 ( TM = Ni and Co)

    DOE PAGESBeta

    Mun, Eundeok; Wilcox, Jason; Manson, Jamie L.; Scott, Brian; Tobash, Paul; Zapf, Vivien S.

    2014-01-01

    Most research on multiferroics and magnetoelectric effects to date has focused on inorganic oxides. Molecule-based materials are a relatively new field in which to search for magnetoelectric multiferroics and to explore new coupling mechanisms between electric and magnetic order. We present magnetoelectric behavior in NiCl 2 -4SC(NH 2 ) 2 (DTN) and CoCl 2 -4SC(NH 2 ) 2 (DTC). These compounds form tetragonal structures where the transition metal ion (Ni or Co) is surrounded by four electrically polar thiourea molecules [SC(NH 2 ) 2 ]. By tracking the magnetic and electric properties of these compounds as a function ofmore » magnetic field, we gain insights into the coupling mechanism by observing that, in DTN, the electric polarization tracks the magnetic ordering, whereas in DTC it does not. For DTN, all electrically polar thiourea molecules tilt in the same direction along the c -axis, breaking spatial-inversion symmetry, whereas, for DTC, two thiourea molecules tilt up and two tilt down with respect to c -axis, perfectly canceling the net electrical polarization. Thus, the magnetoelectric coupling mechanism in DTN is likely a magnetostrictive adjustment of the thiourea molecule orientation in response to magnetic order.« less

  17. Annular bilayer magnetoelectric composites: theoretical analysis.

    PubMed

    Guo, Mingsen; Dong, Shuxiang

    2010-01-01

    The laminated bilayer magnetoelectric (ME) composites consist of magnetostrictive and piezoelectric layers are known to have giant ME coefficient due to the high coupling efficiency in bending mode. In our previous report, the bar-shaped bilayer composite has been investigated by using a magnetoelectric-coupling equivalent circuit. Here, we propose an annular bilayer ME composite, which consists of magnetostrictive and piezoelectric rings. This composite has a much lower resonance frequency of bending mode compared with its radial mode. In addition, the annular bilayer ME composite is expected to respond to vortex magnetic field as well as unidirectional magnetic field. In this paper, we investigate the annular bilayer ME composite by using impedance-matrix method and predict the ME coefficients as a function of geometric parameters of the composites. PMID:20178914

  18. Magnetoelectric coupling effect in lead-free Bi4Ti3O12/CoFe2O4 composite films derived from chemistry solution deposition

    NASA Astrophysics Data System (ADS)

    Tang, Zhehong; Chen, Jieyu; Bai, Yulong; Zhao, Shifeng

    2016-08-01

    Lead-free magnetoelectric composite films combining Bi4Ti3O12 and CoFe2O4 were synthesized by chemical solution deposition on Pt (100)/Ti/SiO2/Si substrate. Morphological and electrical domain structure, ferroelectric, leakage, dielectric, piezoelectric, magnetic and magnetoelectric properties were investigated for Bi4Ti3O12/CoFe2O4 composite films. Well-defined interfaces between Bi4Ti3O12 and CoFe2O4 film layers and electrical domain structure were observed. The composite films show the coexistence of ferroelectric and ferromagnetic orders at room temperature. Larger piezoelectric coefficient and magnetization are obtained for the composite films, which is contributed to the magnetoelectric effect since it originates from the interface coupling through mechanical strain transfer. This work presents a feasible way to modulate the magnetoelectric coupling in ferromagnetic/ferroelectric composite films for developing lead-free micro-electro-mechanical system and information storage devices.

  19. Modeling of resonant magneto-electric effect in a magnetostrictive and piezoelectric laminate composite structure coupled by a bonding material

    NASA Astrophysics Data System (ADS)

    Hasanyan, D.; Wang, Y.; Gao, J.; Li, M.; Shen, Y.; Li, J.; Viehland, D.

    2012-09-01

    The harmonic magneto-electro-elastic vibration of a thin laminated composite was considered. A theoretical model, including shear lag and vibration effects was developed for predicting the magneto-electric (ME) effect in a laminate composite consisting of magnetostrictive and piezoelectric layers. To avoid bending, we assumed that the composite was geometrically symmetric. For finite length symmetrically fabricated laminates, we derived the dynamic strain-stress field and ME coefficients, including shear lag and vibration effects for several boundary conditions. Parametric studies are presented to evaluate the influences of material properties and geometries on the strain distribution and the ME coefficient. Analytical expressions indicate that the shear lag and the vibration frequency strongly influence the strain distribution in the laminates and these effects strongly influence the ME coefficients.

  20. Theoretical and experimental investigation of magnetoelectric effect for bending-tension coupled modes in magnetostrictive-piezoelectric layered composites

    NASA Astrophysics Data System (ADS)

    Hasanyan, D.; Gao, J.; Wang, Y.; Viswan, R.; Li, M.; Shen, Y.; Li, J.; Viehland, D.

    2012-07-01

    In this paper, we discuss a theoretical model with experimental verification for the resonance enhancement of magnetoelectric (ME) interactions at frequencies corresponding to bending-tension oscillations. A dynamic theory of arbitrary laminated magneto-elasto-electric bars was constructed. The model included bending and longitudinal vibration effects for predicting ME coefficients in laminate bar composite structures consisting of magnetostrictive, piezoelectric, and pure elastic layers. The thickness dependence of stress, strain, and magnetic and electric fields within a sample are taken into account, as such the bending deformations should be considered in an applied magnetic or electric field. The frequency dependence of the ME voltage coefficients has obtained by solving electrostatic, magnetostatic, and elastodynamic equations. We consider boundary conditions corresponding to free vibrations at both ends. As a demonstration, our theory for multilayer ME composites was then applied to ferromagnetic-ferroelectric bilayers, specifically Metglas-PZT ones. A theoretical model is presented for static (low-frequency) ME effects in such bilayers. We also performed experiments for these Metglas-PZT bilayers and analyzed the influence of Metglas geometry (length and thickness) and Metglas/PZT volume fraction on the ME coefficient. The frequency dependence of the ME coefficient is also presented for different geometries (length, thickness) of Metglas. The theory shows good agreement with experimental data, even near the resonance frequency.

  1. Diverse interface effects on ferroelectricity and magnetoelectric coupling in asymmetric multiferroic tunnel junctions: the role of the interfacial bonding structure.

    PubMed

    Liu, X T; Chen, W J; Jiang, G L; Wang, B; Zheng, Yue

    2016-01-28

    Interface and size effects on electric/magnetic orders and magnetoelectric coupling are vital in the modern application of quantum-size functional devices based on multiferroic tunnel junctions. In order to give a comprehensive study of the interface and size effects, the properties of a typical asymmetric multiferroic tunnel junction, i.e., Fe/BaTiO3/Co, have been calculated using the first-principles simulations. Most importantly, all of the eight possible structures with four combinations of electrode/ferroelectric interfaces (i.e., Fe/BaO, Fe/TiO2, Co/BaO and Co/TiO2) and a series of barrier thicknesses have been taken into account. In this work, the equilibrium configurations, polarization, charge density, spin density and magnetic moments, etc., have been completely simulated and comprehensively analyzed. It is found that the ferroelectric stability is determined as a competition outcome of the strength of short-range chemical bondings and long-range depolarization/built-in fields. M/BaO (M = magnetic metal) terminations show an extraordinary enhancement of local polarization near the interface and increase the critical thickness of ferroelectricity. The bistability of polarization is well kept at the M/TiO2 interface. At the same time, the induced magnetic moment on atoms at the interfaces is rather localized and dominated by the local interfacial configuration. Reversing electric polarization can switch the induced magnetic moments, wherein atoms in M-O-Ti and M-Ti-O chains show preference for being magnetized. In addition, the difference between the sum of the interfacial magnetic moments is also enlarged with the increase of the barrier thickness. Our study provides a comprehensive and detailed reference to the manipulation and utilization of the interface, size and magnetoelectric effects in asymmetric multiferroic tunnel junctions. PMID:26732894

  2. Electrically modulated magnetoelectric sensors

    NASA Astrophysics Data System (ADS)

    Hayes, P.; Salzer, S.; Reermann, J.; Yarar, E.; Röbisch, V.; Piorra, A.; Meyners, D.; Höft, M.; Knöchel, R.; Schmidt, G.; Quandt, E.

    2016-05-01

    Magnetoelectric thin film composites have demonstrated their potential to detect sub-pT magnetic fields if mechanical resonances (typically few hundred Hz to a few kHz) are utilized. At low frequencies (1-100 Hz), magnetic field-induced frequency conversion has enabled wideband measurements with resonance-enhanced sensitivities by using the nonlinear characteristics of the magnetostriction curve. Nevertheless, the modulation with a magnetic field with a frequency close to the mechanical resonance results in a number of drawbacks, which are, e.g., size and energy consumption of the sensor as well as potential crosstalk in sensor arrays. In this work, we demonstrate the feasibility of an electric frequency conversion of a magnetoelectric sensor which would overcome the drawbacks of magnetic frequency conversion. This magnetoelectric sensor consists of three functional layers: an exchange biased magnetostrictive multilayer showing a high piezomagnetic coefficient without applying a magnetic bias field, a non-linear piezoelectric actuation layer and a linear piezoelectric sensing layer. In this approach, the low frequency magnetic signal is shifted into the mechanical resonance of the sensor, while the electric modulation frequency is chosen to be either the difference or the sum of the resonance and the signal frequency. Using this electric frequency conversion, a limit of detection in the low nT/Hz1/2 range was shown for signals of low frequency.

  3. Determination of the magnetoelectric coupling coefficient from temperature dependences of the dielectric permittivity for multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15}

    SciTech Connect

    Bartkowska, J. A. Dercz, J.

    2013-11-15

    In the multiferroic materials, the dielectric and magnetic properties are closely correlated through the coupling interaction between the ferroelectric and magnetic order. We attempted to determine the magnetoelectric coupling coefficient from the temperature dependences of the dielectric permittivity for multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15}. Multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15} belong to materials of the Aurivillius-type structure. Multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15} was synthesized via sintering the Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} mixture and TiO{sub 2} oxides. The precursor material was ground in a high-energy attritorial mill for 5 hours. This material was obtained by a solid-state reaction process at T = 1313 K. We investigated the temperature dependences of the dielectric permittivity for the different frequencies. From the dielectric measurements, we determined the temperature of phase transition of the ferroelectric-to-paraelectric type at about 1013 K. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified.

  4. Magnetoelectric coupling in multiferroic BaTiO3-CoFe2O4 composite nanofibers via electrospinning

    NASA Astrophysics Data System (ADS)

    Fu, Bi; Lu, Ruie; Gao, Kun; Yang, Yaodong; Wang, Yaping

    2015-07-01

    Magnetoelectric (ME) coupling in Pb-based multiferroic composites has been widely investigated due to the excellent piezoelectric property of lead zirconate titanate (PZT). In this letter, we report a strategy to create a hybrid Pb-free ferroelectric and ferromagnetic material and detect its ME coupling at the nanoscale. Hybrid Pb-free multiferroic BaTiO3-CoFe2O4 (BTO-CFO) composite nanofibers (NFs) were generated by sol-gel electrospinning. The perovskite structure of BTO and the spinel structure of CFO nanograins were homogenously distributed in the composite NFs and verified by bright-field transmission electron microscopy observations along the perovskite [111] zone axis. Multiferroicity was confirmed by amplitude-voltage butterfly curves and magnetic hysteresis loops. ME coupling was observed in terms of a singularity on a dM/dT curve at the ferroelectric Curie temperature (TC) of BaTiO3. The lateral ME coefficient was investigated by the evolution of the piezoresponse under an external magnetic field of 1000 Oe and was estimated to be α31 =0.78× 104 \\text{mV cm}-1 \\text{Oe}-1 . These findings could enable the creation of nanoscale Pb-free multiferroic composite devices.

  5. Magnetoelectric coupling in multiferroic heterostructure of rf-sputtered Ni-Mn-Ga thin film on PMN-PT

    NASA Astrophysics Data System (ADS)

    Teferi, M. Y.; Amaral, V. S.; Lounrenco, A. C.; Das, S.; Amaral, J. S.; Karpinsky, D. V.; Soares, N.; Sobolev, N. A.; Kholkin, A. L.; Tavares, P. B.

    2012-06-01

    In this paper, we report a preparation of multiferroic heterostructure from thin film of Ni-Mn-Ga (NMG) alloy and lead magnesium niobate-lead titanate (PMN-PT) with effective magnetoelectric (ME) coupling between the film as ferromagnetic material and PMN-PT as piezoelectric material. The heterostructure was prepared by relatively low temperature (400 °C) deposition of the film on single crystal of piezoelectric PMN-PT substrate using rf magnetron co-sputtering of Ni50Mn50 and Ni50Ga50 targets. Magnetic measurements by Superconducting Quantum Interference Design (SQIUD) Magnetometer and Vibrating Sample Magnetometer (VSM) on the film revealed that the film is in ferromagnetically ordered martensitic state at room temperature with saturation magnetization of ˜240 emu/cm3 and Curie temperature of ˜337 K. Piezoresponse force microscopy (PFM) measurement done at room temperature on the substrate showed the presence of expected hysteresis loop confirming the stability of the piezoelectric state of the substrate after deposition. Room temperature ME voltage coefficient (αME) of the heterostructure was measured as a function of applied bias dc magnetic field in Longitudinal-Transverse (L-T) ME coupling mode by lock-in technique. A maximum ME coefficient αME of 3.02 mV/cm Oe was measured for multiferroic NMG/PMN-PT heterostructure which demonstrates that there is ME coupling between the film as ferromagnetic material and PMN-PT as piezoelectric material.

  6. First principles prediction of interfacial magnetoelectric coupling in tetragonal La2/3Sr1/3MnO3/BiFeO3 multiferroic superlattices.

    PubMed

    Feng, Nan; Mi, Wenbo; Wang, Xiaocha

    2015-05-28

    The electronic structure and magnetic properties of the tetragonal La2/3Sr1/3MnO3/BiFeO3 multiferroic superlattices with different interfacial terminations have been studied by first-principles calculations. Our results for all the models of the tetragonal La2/3Sr1/3MnO3/BiFeO3 superlattices exhibit a metallic electronic structure. More importantly, we find that the magnetoelectric coupling can be realized in the tetragonal La2/3Sr1/3MnO3/BiFeO3 heterostructures by means of exchange bias, which can be attributed to the interfacial exchange coupling. These findings are useful for magnetoelectrically controlled spintronic devices. PMID:25940540

  7. Multipeak self-biased magnetoelectric coupling characteristics in four-phase Metglas/Terfenol-D/Be-bronze/PMN-PT structure

    NASA Astrophysics Data System (ADS)

    Huang, Dongyan; Lu, Caijiang; Bing, Han

    2015-04-01

    This letter develops a self-biased magnetoelectric (ME) structure Metglas/Terfenol-D/Be-bronze/PMN-PT (MTBP) consisting of a magnetization-graded Metglas/Terfenol-D layer, a elastic Be-bronze plate, and a piezoelectric 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) plate. By using the magnetization-graded Metglas/Terfenol-D layer and the elastic Be-bronze plate, multi-peak self-biased ME responses are obtained in MTBP structure. The experimental results show that the MTBP structure with two layers of Metglas foil has maximum zero-biased ME voltage coefficient (MEVC). As frequency increases from 0.5 to 90 kHz, eleven large peaks of MEVC with magnitudes of 0.75-33 V/(cm Oe) are observed at zero-biased magnetic field. The results demonstrate that the proposed multi-peak self-biased ME structure may be useful for multifunctional devices such as multi-frequency energy harvesters or low-frequency ac magnetic field sensors.

  8. Phase separation enhanced magneto-electric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films

    PubMed Central

    Alberca, A.; Munuera, C.; Azpeitia, J.; Kirby, B.; Nemes, N. M.; Perez-Muñoz, A. M.; Tornos, J.; Mompean, F. J.; Leon, C.; Santamaria, J.; Garcia-Hernandez, M.

    2015-01-01

    We study the origin of the magnetoelectric coupling in manganite films on ferroelectric substrates. We find large magnetoelectric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films in experiments based on the converse magnetoelectric effect. The magnetization changes by around 30–40% upon applying electric fields on the order of 1 kV/cm to the BaTiO3 substrate, corresponding to magnetoelectric coupling constants on the order of α = (2–5)·10−7 s/m. Magnetic anisotropy is also affected by the electric field induced strain, resulting in a considerable reduction of coercive fields. We compare the magnetoelectric effect in pre-poled and unpoled BaTiO3 substrates. Polarized neutron reflectometry reveals a two-layer behavior with a depressed magnetic layer of around 30 Å at the interface. Magnetic force microscopy (MFM) shows a granular magnetic structure of the La0.7Ca0.3MnO3. The magnetic granularity of the La0.7Ca0.3MnO3 film and the robust magnetoelastic coupling at the La0.7Ca0.3MnO3/BaTiO3 interface are at the origin of the large magnetoelectric coupling, which is enhanced by phase separation in the manganite. PMID:26648002

  9. Phase separation enhanced magneto-electric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films.

    PubMed

    Alberca, A; Munuera, C; Azpeitia, J; Kirby, B; Nemes, N M; Perez-Muñoz, A M; Tornos, J; Mompean, F J; Leon, C; Santamaria, J; Garcia-Hernandez, M

    2015-01-01

    We study the origin of the magnetoelectric coupling in manganite films on ferroelectric substrates. We find large magnetoelectric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films in experiments based on the converse magnetoelectric effect. The magnetization changes by around 30-40% upon applying electric fields on the order of 1 kV/cm to the BaTiO3 substrate, corresponding to magnetoelectric coupling constants on the order of α = (2-5) · 10(-7) s/m. Magnetic anisotropy is also affected by the electric field induced strain, resulting in a considerable reduction of coercive fields. We compare the magnetoelectric effect in pre-poled and unpoled BaTiO3 substrates. Polarized neutron reflectometry reveals a two-layer behavior with a depressed magnetic layer of around 30 Å at the interface. Magnetic force microscopy (MFM) shows a granular magnetic structure of the La0.7Ca0.3MnO3. The magnetic granularity of the La0.7Ca0.3MnO3 film and the robust magnetoelastic coupling at the La0.7Ca0.3MnO3/BaTiO3 interface are at the origin of the large magnetoelectric coupling, which is enhanced by phase separation in the manganite. PMID:26648002

  10. Controlled extrinsic magnetoelectric coupling in BaTiO3/Ni nanocomposites: Effect of compaction pressure on interfacial anisotropy

    NASA Astrophysics Data System (ADS)

    Brosseau, C.; Castel, V.; Potel, M.

    2010-07-01

    The dynamical control of the dielectric response in magnetoelectric (ME) nanocomposites (NCs) renders an entire additional degree of freedom to the functionality of miniaturized magnetoelectronics and spintronics devices. In composite materials, the ME effect is realized by using the concept of product properties. Through the investigation of the microwave properties of a series of BaTiO3/Ni NCs fabricated by compaction of nanopowders, we present experimental evidence that the compaction (uniaxial) pressure in the range 33-230 MPa affects significantly the ME features. The Ni loading was varied from zero (BaTiO3 only) to 63 vol %. Our findings revealed that the ME coupling coefficient exhibits a large enhancement for specific values of the Ni volume fraction and compaction pressure. The coupling effects in the NCs were studied by looking at the relationships among the crystallite orientation and the magnetic properties. The magnetization curves for different directions of the applied magnetic field cannot be superimposed. We suggest that the average magnetization measurements on these NCs under compressive stress are dominated by strain anisotropy rather than magnetocrystalline anisotropy. Overall, these observations are considered to be evidence of stress-induced microstructural changes under pressure which strongly affect the elastic interaction between the magnetostrictive and piezoelectric phases in these NCs. These results have a potential technological impact for designing precise tunable ME NCs for microwave devices such as tunable phase shifters, resonators, and delay lines.

  11. Electro-optic switching in iron oxide nanoparticle embedded paramagnetic chiral liquid crystal via magneto-electric coupling

    SciTech Connect

    Goel, Puja; Arora, Manju; Biradar, Ashok M.

    2014-03-28

    The variation in optical texture, electro-optic, and dielectric properties of iron oxide nanoparticles (NPs) embedded ferroelectric liquid crystal (FLC) with respect to change in temperature and electrical bias conditions are demonstrated in the current investigations. Improvement in spontaneous polarization and response time in nanocomposites has been attributed to magneto-electric (ME) coupling resulting from the strong interaction among the ferromagnetic nanoparticle's exchange field (due to unpaired e{sup −}) and the field of liquid crystal molecular director. Electron paramagnetic resonance spectrum of FLC material gives a broad resonance signal with superimposed components indicating the presence of a source of spin. This paramagnetic behavior of host FLC material had been a major factor in strengthening the guest host interaction by giving an additional possibility of (a) spin-spin interaction and (b) interactions between magnetic-dipole and electric-dipole moments (ME effects) in the composite materials. Furthermore, the phenomenon of dielectric and static memory effect in these composites are also observed which yet again confirms the coupling of magnetic NP's field with FLC's director orientation. We therefore believe that such advanced soft materials holding the optical and electrical properties of conventional LCs with the magnetic and electronic properties of ferromagnetic nanoparticles are going to play a key role in the development of futuristic multifunctional optical devices.

  12. Electro-optic switching in iron oxide nanoparticle embedded paramagnetic chiral liquid crystal via magneto-electric coupling

    NASA Astrophysics Data System (ADS)

    Goel, Puja; Arora, Manju; Biradar, Ashok M.

    2014-03-01

    The variation in optical texture, electro-optic, and dielectric properties of iron oxide nanoparticles (NPs) embedded ferroelectric liquid crystal (FLC) with respect to change in temperature and electrical bias conditions are demonstrated in the current investigations. Improvement in spontaneous polarization and response time in nanocomposites has been attributed to magneto-electric (ME) coupling resulting from the strong interaction among the ferromagnetic nanoparticle's exchange field (due to unpaired e-) and the field of liquid crystal molecular director. Electron paramagnetic resonance spectrum of FLC material gives a broad resonance signal with superimposed components indicating the presence of a source of spin. This paramagnetic behavior of host FLC material had been a major factor in strengthening the guest host interaction by giving an additional possibility of (a) spin-spin interaction and (b) interactions between magnetic-dipole and electric-dipole moments (ME effects) in the composite materials. Furthermore, the phenomenon of dielectric and static memory effect in these composites are also observed which yet again confirms the coupling of magnetic NP's field with FLC's director orientation. We therefore believe that such advanced soft materials holding the optical and electrical properties of conventional LCs with the magnetic and electronic properties of ferromagnetic nanoparticles are going to play a key role in the development of futuristic multifunctional optical devices.

  13. Giant magnetoelectric effect in thin magnetic films utilizing inter-ferroelectric transitions

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Staruch, Margo

    There has recently been much interest to multiferroic magnetoelectric composites based on relaxor ferroelectric single crystals as potential candidates for devices such as magnetic field sensors, energy harvesters, or transducers. Large magnetoelectric coupling coefficient is prerequisite for superior device performance in a broad range of frequencies and functioning conditions. In magnetoelectric heterostructures based on ternary relaxors Pb(In1/2Nb1/2) O3-Pb(Mg1/3Nb2/3) O3-PbTiO3 (PIN-PMN-PT) crystal better operational range and temperature stability as compared to binary relaxors can be achieved. Giant linear converse magnetoelectric coupling up to 2 x 10-6 s m-1 were observed in heterostructural composites with multilayered FeCo/Ag deposited on (011) PIN-PMN-PT crystals. Further enhancement of magnetoelectric coupling is demonstrated by utilizing inter-ferroelctric rhombohedral - orthorhombic phase transitions in PIN-PMN-PT Mechanical clamping was a precondition to utilize this inter-ferroelectric transition mode to bring the crystal to a point just below its transformation threshold when very small perturbations at the input will cause large swings at the output generating a sharp uniaxial increase in strain (~0.5 %) and polarization change, giving rise to nonlinear effects. Details of these results and their implications will be presented. Giant magnetoelectric effect in thin magnetic fillms utilizing inter-ferroelectric transitions.

  14. Piezoelectric single crystal and magnetostrictive Metglas composites: Linear and nonlinear magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Finkel, P.; Li, Jiefang; Viehland, D.

    2014-04-01

    Both the linear (αV) and nonlinear (αV,n) magnetoelectric coefficients were systemically studied in laminated composites of Metglas and [001]-orientated piezoelectric single crystals of Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) and Mn-doped PMN-PT. The coefficients were close in value in both cases at quasistatic mode (i.e., 3.8 V/Oe relative to 3.5 V/Oe) and were enhanced by factors of ×18 (Metglas/PMN-PT) and ×32 (Metglas/Mn-doped PMN-PT) at the electromechanical resonance (EMR). The use of Mn-doped PMN-PT crystals results in a higher gain factor due to a larger mechanical quality factor (i.e., 20.9 relative to 40.6). Accordingly, both types of laminates had similar values of αV,n when modulated at 1 kHz, but Mn-doped PMN-PT ones had a higher value when modulated at the EMR.

  15. Dynamical magnetoelectric phenomena of multiferroic skyrmions.

    PubMed

    Mochizuki, Masahito; Seki, Shinichiro

    2015-12-23

    Magnetic skyrmions, vortex-like swirling spin textures characterized by a quantized topological invariant, realized in chiral-lattice magnets are currently attracting intense research interest. In particular, their dynamics under external fields is an issue of vital importance both for fundamental science and for technical application. Whereas observations of magnetic skyrmions has been limited to metallic magnets so far, their realization was also discovered in a chiral-lattice insulating magnet Cu2OSeO3 in 2012. Skyrmions in the insulator turned out to exhibit multiferroic nature with spin-induced ferroelectricity. Strong magnetoelectric coupling between noncollinear skyrmion spins and electric polarizations mediated by relativistic spin-orbit interaction enables us to drive motion and oscillation of magnetic skyrmions by application of electric fields instead of injection of electric currents. Insulating materials also provide an environment suitable for detection of pure spin dynamics through spectroscopic measurements owing to the absence of appreciable charge excitations. In this article, we review recent theoretical and experimental studies on multiferroic properties and dynamical magnetoelectric phenomena of magnetic skyrmions in insulators. We argue that multiferroic skyrmions show unique coupled oscillation modes of magnetizations and polarizations, so-called electromagnon excitations, which are both magnetically and electrically active, and interference between the electric and magnetic activation processes leads to peculiar magnetoelectric effects in a microwave frequency regime. PMID:26624202

  16. Equivalent circuit model including magnetic and thermo sources for the thermo-magneto-electric coupling effect in magnetoelectric laminates

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Le; Zhou, Hao-Miao

    2015-07-01

    The nonlinear thermo-magneto-mechanical magnetostrictive constitutive and the linear thermo-mechanical-electric piezoelectric constitutive are adopted in this paper. The bias magnetic field and ambient temperature are equivalent to a magnetic source and a thermo source, respectively. An equivalent circuit, which contains a magnetic source and a thermo source at the input, for the thermo-magneto-electric coupling effect in magnetoelectric (ME) laminates, is established. The theoretical models of the output voltage and static ME coefficient for ME laminates can be derived from this equivalent circuit model. The predicted static ME coefficient versus temperature curves are in excellent agreement with the experimental data available both qualitatively and quantitatively. It confirms the validity of the proposed model. Then the models are adopted to predict variations in the output voltages and ME coefficients in the laminates under different ambient temperatures, bias magnetic fields, and the volume ratios of magnetostrictive phases. This shows that the output voltage increases with both increasing temperature and increasing volume ratio of magnetostrictive phases; the ME coefficient decreases with increasing temperature; the ME coefficient shows an initial sharp increase and then decreases slowly with the increase in the bias magnetic field, and there is an optimum volume ratio of magnetostrictive phases that maximize the ME coefficient. This paper can not only provide a new idea for the study of the thermo-magneto-electric coupling characteristics of ME laminates, but also provide a theoretical basis for the design and application of ME laminates, operating under different sensors. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172285 and 11472259) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR13A020002).

  17. The origin and coupling mechanism of magnetoelectric effect in TMCl2-4SC(NH2)2 (TM = Ni and Co)

    NASA Astrophysics Data System (ADS)

    Mun, E.; Wilcox, J.; Manson, J.; Scott, B.; Tobash, P.; Bauer, E.; Sengupta, P.; Batista, C.; Zapf, V.

    2012-02-01

    Most research on multiferroics and magnetoelectric effects to date has focused on inorganic oxides. Metal organic frameworks (MOF) are a new field in which to search for ferroelectricity and explore new coupling mechanisms between electricity and magnetism. We will present the magnetic and electric properties of NiCl2-4SC(NH2)2, DTN, and CoCl2-4SC(NH2)2, DTC, compounds as a function of temperature, magnetic, and electric field. We gain insights into the coupling mechanism by observing that in DTN the electric polarization closely tracks the magnetic ordering whereas in DTC it does not. For DTN, all electrically polar thiourea, SC(NH2)2, molecules are tilted in the same direction along the c-axis, breaking spatial inversion symmetry, whereas for DTC, two thiourea molecules are pointing up and the other two thiourea molecules are pointing down direction with respect to c-axis, perfectly canceling the net electrical polarization. Thus the magnetoelectric coupling mechanism is likely magnetostrictive adjustments of the thiourea molecule orientation in response to magnetic order.

  18. Substructure coupling in the frequency domain

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Frequency domain analysis was found to be a suitable method for determining the transient response of systems subjected to a wide variety of loads. However, since a large number of calculations are performed within the discrete frequency loop, the method loses it computational efficiency if the loads must be represented by a large number of discrete frequencies. It was also discovered that substructure coupling in the frequency domain work particularly well for analyzing structural system with a small number of interface and loaded degrees of freedom. It was discovered that substructure coupling in the frequency domain can lead to an efficient method of obtaining natural frequencies of undamped structures. It was also found that the damped natural frequencies of a system may be determined using frequency domain techniques.

  19. Magnetoelectric effects in ferromagnetic films on ferroelectric substrates

    NASA Astrophysics Data System (ADS)

    Filippov, D. A.; Srinivasan, G.; Gupta, A.

    2008-10-01

    Theories for magnetoelectric (ME) effects in a bilayer consisting of magnetostrictive film on piezoelectric substrate are discussed. The ME coupling at low frequencies and at mechanical resonance due to acoustic modes have been estimated and applied to the specific case of a thin film of permendur or nickel ferrite on lead zirconate titanate (PZT). Both ideal and non-ideal interface coupling are considered. The theory predicts strong ME coupling for magnetic films on piezoelectric substrates. At low frequency, the ME coefficient is maximum when PZT is 2-4 times as thick as the magnetic film. The ME coefficient, for ideal coupling, shows resonance enhancement at a single frequency. For non-ideal interface coupling, enhancement is expected at two frequencies corresponding to coupled oscillations in magnetic and piezoelectric layers.

  20. In-plane anisotropic effect of magnetoelectric coupled PMN-PT/FePt multiferroic heterostructure: Static and microwave properties

    NASA Astrophysics Data System (ADS)

    Vargas, Jose M.; Gómez, Javier

    2014-10-01

    The effects of the electric and magnetic field variation on multiferroic heterostructure were studied in this work. Thin films of polycrystalline Fe50Pt50 (FePt) were grown by dc-sputtering on top of the commercial slabs of lead magnesium niobate-lead titanate (PMN-PT). The sample was a (011)-cut single crystal and had one side polished. In this condition, the PMN-PT/FePt operates in the L-T (longitudinal magnetized-transverse polarized) mode. A FePt thin film of 20 nm was used in this study to avoid the characteristic broad microwave absorption line associated with these films above thicknesses of 40 nm. For the in-plane easy magnetization axis (01-1), a microwave magnetoelectric (ME) coupling of 28 Oe cm kV -1 was estimated, whereas a value of 42 Oe cm kV -1 was obtained through the hard magnetization axis (100). Insight into the effects of the in-plane strain anisotropy on the ME coupling is obtained from the dc-magnetization loops. It was observed that the trend was opposite along the easy and hard magnetic directions. In particular, along the easy-magnetic axis (01-1), a square and narrow loop with a factor of Mr/MS of 0.96 was measured at 10 kV/cm. Along the hard-magnetic axis, a factor of 0.16 at 10 kV/cm was obtained. Using electric tuning via microwave absorption at X-band (9.78 GHz), we observe completely different trends along the easy and hard magnetic directions; Multiple absorption lines along the latter axis compared to a single and narrower absorption line along the former. In spite of its intrinsic complexity, we propose a model which gives good agreement both for static and microwave properties. These observations are of fundamental interest for future ME microwave components, such as filters, phase-shifters, and resonators.

  1. Coupled Resonance Laser Frequency Stabilization

    NASA Astrophysics Data System (ADS)

    Burd, Shaun; Uys, Hermann; MAQClab Team

    2013-05-01

    We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to the same photodiode signal derived from the UV laser only. For trapping and cooling Yb+ ions, a frequency stabilized laser is required at 369.9 nm to drive the S1/2-P1/2 cooling cycle. Since that cycle is not closed, a repump beam is needed at 935.18 nm to drive the D3/2-D[ 3 / 2 ] transition, which rapidly decays back to the S1/2 state. Our 369 nm laser is locked using Doppler free polarization spectroscopy of Yb+ ions, generated in a hollow cathode discharge lamp. Without pumping, the metastable D3/2 level is only sparsely populated, making direct absorption of 935 nm light difficult to detect. A resonant 369 nm pump laser can populate the D3/2 state, and fast repumping to the S1/2 ground state by on resonant 935 nm light, can be detected via the change in absorption of the 369 nm laser. This is accomplished using lock-in detection on the same photodiode signal to which the 369 nm laser is locked. In this way, simultaneous locking of two frequencies in very different spectral regimes is accomplished, while exploiting only the photodiode signal from one of the lasers. A rate equation model gives good qualitative agreement with experimental observation. This work was partially funded by the South African National Research Foundation.

  2. Tuning of magnetoelectric coupling in (1-y)Bi0.8Dy0.2FeO3-yNi0.5Zn0.5Fe2O4 multiferroic composites

    NASA Astrophysics Data System (ADS)

    Mazumdar, S. C.; Khan, M. N. I.; Islam, Md. Fakhrul; Hossain, A. K. M. Akther

    2016-03-01

    Magnetoelectric composites (1-y)Bi0.8Dy0.2FeO3 (BDFO)-yNi0.5Zn0.5Fe2O4 (NZFO) with y=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1.0 are synthesized by conventional solid state reaction route. The X-ray diffraction analysis confirms the coexistence of orthorhombic perovskite BDFO and spinel NZFO phases with no third phase. Microstructural and surface morphology are studied by Field Emission Scanning Electron Microscopy. Quantitative elemental analysis of the samples is carried out by Energy Dispersive X-ray Spectroscopy. The real part of the initial permeability increases and relative quality peak broadens with the ferrite content in the composites. Dielectric constant, loss tangent, relative quality factor and ac conductivity are measured as a function of frequency at room temperature. The dielectric constant shows usual dielectric dispersion at lower frequencies due to Maxwell-Wagner type interfacial polarization. The complex impedance spectroscopy is used to distinguish between the grain and grain boundary contribution to the total resistance. The modulus study reveals the ease of polaron hopping and negligibly small contribution of electrode effect. The magnetic hysteresis has been studied to know the response of NZFO phase to the applied magnetic field in the composite. The saturation and remanent magnetization are found to increase with increase in NZFO in the composite. The magnetoelectric voltage coefficient, αME is measured as a function of applied dc magnetic field. The tuning of ferrite percentage and dc magnetic field results in highest αME (~66 mV/cm Oe) for the composite with 40% NZFO at 4.7 kOe which is attributed to the enhanced mechanical coupling between the two phases. The incorporation of BDFO and NZFO enhances the multiferroic properties in the present composite which are quite promising from application point of view.

  3. Magnetoelectric coupling study in multiferroic Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} ceramics through small and large electric signal standard measurements

    SciTech Connect

    Raymond, Oscar; Siqueiros, Jesus M.; Font, Reynaldo; Portelles, Jorge

    2011-05-01

    Multifunctional multiferroic materials such as the single phase compound Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} (PFN), where ferroelectric and antiferromagnetic order coexist, are very promising and have great interest from the academic and technological points of view. In this work, coupling of the ferroelectric and magnetic moments is reported. For this study, a combination of the small signal response using the impedance spectroscopy technique and the electromechanical resonance method with the large signal response through standard ferroelectric hysteresis measurement, has been used with and without an applied magnetic field. The measurements to determine the electrical properties of the ceramic were performed as functions of the bias and poling electric fields. A simultaneous analysis of the complex dielectric constant {epsilon}-tilde, impedance Z-tilde, electric modulus M-tilde, admittance Y-tilde, and the electromechanical parameters and coupling factors is presented. The results are correlated with a previous study of structural, morphological, small signal dielectric frequency-temperature response, and the ferroelectric hysteretic, magnetic and magnetodielectric behaviors. The observed shifts of the resonance and antiresonance frequency values can be associated with change of the ferroelectric domain size favored by the readjustment of the oxygen octahedron when the magnetic field is applied. From P-E hysteresis loops obtained without and with an external applied magnetic field, a dc magnetoelectric coupling effect with maximum value of 4 kV/cm T (400 mV/cm Oe) was obtained.

  4. Magnetoelectric spintronics

    NASA Astrophysics Data System (ADS)

    Kleemann, W.

    2013-07-01

    A promising way to overcome power and temperature issues in optimizing the performance of microelectronic devices will take advantage of purely electric field-controlled devices with a minimum amount of Joule heating. Multiphase multiferroic and magnetoelectric materials are most promising, since they can be tailored according to the technical needs. Here, we focus onto electric switching of the exchange bias effect in Cr2O3/(Pt/Co/Pt) heterostructures thus controlling the magnetic states of spintronic devices such as MERAM and MEXOR.

  5. Magnetoelectric coupling tuned by competing anisotropies in Mn1-xNixTiO3

    DOE PAGESBeta

    Chi, Songxue; Ye, Feng; Zhou, H. D.; Choi, E. S.; Hwang, J.; Cao, Huibo; Fernandez-Baca, Jaime A.

    2014-10-24

    A flop of electric polarization from Pmore » $$\\|$$c (Pc) to P$$\\|$$ a (Pa) is observed in MnTiO3 as a spin flop transtion is triggered by a c-axis magnetic field, H$$\\|$$c=7 T. The critical magnetic field for Pa is significantly reduced in Mn1-xNixTiO3 (x=0.33). Neutron diffraction measurements revealed similar magnetic arrangements for the two compositions where the ordered spins couple antiferromagnetically with their nearest intra- and inter-planar neighbors. In the x=0.33 system, the single ion anisotropies of Mn2+ and Ni2+ compete and give rise to an additional spin reorientation transition at TR. A magnetic field, Hc, aligns the spins along c for TRN. The rotation of the collinear spins away from the c-axis for TR alters the magnetic point symmetry and gives rise to new ME susceptibility tensor form. Such linear ME response provides satisfactory explanation for behavior of field-induced electric polarization in both compositions. As the Ni content increases to x=0.5 and 0.68, the ME effect disappears as a new magnetic phase emerges.« less

  6. Multiferroic CoFe2O4-Pb(Zr(0.52)Ti(0.48))O3 core-shell nanofibers and their magnetoelectric coupling.

    PubMed

    Xie, Shuhong; Ma, Feiyue; Liu, Yuanming; Li, Jiangyu

    2011-08-01

    Multiferroic CoFe(2)O(4)-Pb(Zr(0.52)Ti(0.48))O(3) core-shell nanofibers have been synthesized by coaxial electrospinning in combination with a sol-gel process. The core-shell configuration of nanofibers has been verified by scanning electron microscopy and transmission electron microscopy, and the spinel structure of CoFe(2)O(4) and perovskite structure of Pb(Zr(0.52)Ti(0.48))O(3) have been confirmed by X-ray diffraction and selected area electron diffraction. The multiferroic properties of core-shell nanofibers have been demonstrated by magnetic hysteresis and piezoresponse force microscopy, and their magnetoelectric coupling has been confirmed by evolution of piezoresponse under an external magnetic field, showing magnetically induced ferroelectric domain switching and changes in switching characteristics. The lateral magnetoelectric coefficient is estimated to be 2.95 × 10(4) mV/cmOe, two orders of magnitude higher than multiferroic thin films of similar composition. PMID:21643573

  7. The magnetoelectric coupling in rhombohedral-tetragonal phases coexisted Bi0.84Ba0.20FeO3

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Xuan, Haicheng; Wang, Liaoyu; Zhang, Yan; Shen, Kai; Wang, Dunhui; Qiu, Teng; Xu, Qingyu

    2012-06-01

    Ba doped Bi1.04-xBaxFeO3 ceramics with x up to 0.30 have been prepared by the tartaric acid modified sol-gel method. The X ray diffraction patterns show that the structure transforms from rhombohedral to tetragonal with increasing the Ba substitution concentration from 10% to 30% and the coexistence of distorted rhombohedral and tetragonal phases in 20% Ba substituted BiFeO3, which was further confirmed by the Raman spectra. Bi0.84Ba0.20FeO3 exhibits the highest magnetization (1.6 emu/g under magnetic field of 12 kOe) compared with the other samples of different Ba substitution concentration. Significant enhancement of the ferroelectricity has been observed in 20% and 30% Ba substituted BiFeO3 with saturate polarization close to 6.6 μC/cm2 for Bi0.74Ba0.30FeO3. The magnetoelectric coupling of Bi0.84Ba0.20FeO3 has been measured and the maximum decrease of magnetization under magnetic field of 9.8 kOe was about 0.06 emu/g with increasing applied electric field to 11 kV/cm, and the magnetoelectric coefficient is 1.5×10-12 s/m.

  8. Equivalent circuit model of converse magnetoelectric effect for the tri-layer magnetoelectric laminates with thermal and stress loadings

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Miao; Li, Meng-Han; Liu, Hui; Cui, Xiao-Le

    2015-12-01

    For the converse magnetoelectric coupling effect of the piezoelectric/magnetostrictive/piezoelectric tri-layer symmetric magnetoelectric laminates, based on the nonlinear thermo-magneto-mechanical constitutive equations of the giant magnetostrictive materials and the thermo-electro-mechanical constitutive equations of the piezoelectric materials, according to Newton's second law and the magnetic circuit theorem, an equivalent circuit is established. Then an expression of the converse magnetoelectric coefficient describing nonlinear thermo-magneto-electro-mechanical coupling is established. The curve of the nonlinear converse magnetoelectric coefficient versus the bias magnetic field, is predicted effectively by the expression, and the predictions are in good agreement with the experimental result both qualitatively and quantitatively. Furthermore, the model can predict the complex influences of the bias magnetic field, the stress and the ambient temperature on the converse magnetoelectric coefficient. It can be found from these predictions that the converse magnetoelectric coefficient decreases with the increasing temperature and increases with the increasing tensile stress. Under the common effect of the ambient temperature and the stress, it is also found that the converse magnetoelectric coefficient changes sharply with the ambient temperature when the tensile stress is applied on the laminates, but it has a good stability of temperature when a large compressive stress is applied. Therefore, this work contributes to the researches on the giant converse magnetoelectric coefficient and the designs of magnetoelectric devices based on the converse magnetoelectric coupling.

  9. Effect of thickness on the stress and magnetoelectric coupling in bilayered Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}-CoFe{sub 2}O{sub 4} films

    SciTech Connect

    Wang, Jing E-mail: cwnan@tsinghua.edu.cn; Li, Zheng; Wang, Jianjun; Nan, Cewen E-mail: cwnan@tsinghua.edu.cn; He, Hongcai

    2015-01-28

    Magnetoelectric bilayered Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}-CoFe{sub 2}O{sub 4}(PZT-CFO) films with different PZT thicknesses were grown on (111)Pt/Ti/SiO{sub 2}/Si substrates using chemical solution spin-coating. Structural characterization by X-ray diffraction and electron microscopy shows pure phases and well-defined interfaces between the PZT and CFO films. The CFO-PZT-substrate structure effectively alleviates the substrate clamping effect for the CFO layer, showing appreciable magnetoelectric responses in the composite films. Both the direct magnetoelectric effect and the magnetic field-induced Raman shifts in the A{sub 1}(TO{sub 1}) soft mode of PZT demonstrate the magnetic-mechanical-electric coupling in the films. The results also indicate that with a constant CFO layer thickness, the thickness of the PZT layer plays an important role in the stress relaxation and strong magnetoelectric coupling. The coupling could be further enhanced by increasing the CFO thickness, optimizing the volume (thickness) fraction of the PZT thickness, and releasing the clamping effect from the substrate.

  10. Effect of thickness on the stress and magnetoelectric coupling in bilayered Pb(Zr0.52Ti0.48)O3-CoFe2O4 films

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Li, Zheng; Wang, Jianjun; He, Hongcai; Nan, Cewen

    2015-01-01

    Magnetoelectric bilayered Pb(Zr0.52Ti0.48)O3-CoFe2O4(PZT-CFO) films with different PZT thicknesses were grown on (111)Pt/Ti/SiO2/Si substrates using chemical solution spin-coating. Structural characterization by X-ray diffraction and electron microscopy shows pure phases and well-defined interfaces between the PZT and CFO films. The CFO-PZT-substrate structure effectively alleviates the substrate clamping effect for the CFO layer, showing appreciable magnetoelectric responses in the composite films. Both the direct magnetoelectric effect and the magnetic field-induced Raman shifts in the A1(TO1) soft mode of PZT demonstrate the magnetic-mechanical-electric coupling in the films. The results also indicate that with a constant CFO layer thickness, the thickness of the PZT layer plays an important role in the stress relaxation and strong magnetoelectric coupling. The coupling could be further enhanced by increasing the CFO thickness, optimizing the volume (thickness) fraction of the PZT thickness, and releasing the clamping effect from the substrate.

  11. Magnetoelectric sensor excitations in hexaferrite slabs

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-06-01

    We developed techniques for H- and E-field sensors utilizing single phase magnetoelectric (ME) hexaferrite slabs in the frequency range of 100 Hz to 10 MHz. Novel circuit designs incorporating both spiral and solenoid coils and single and multi-capacitor banks were developed to probe the physics and properties of ME hexaferrites and explore ME effects for sensor detections. Fundamental measurements of the anisotropic tensor elements of the magneto-electric coupling parameter were performed using these novel techniques. In addition, for H-field sensing experiments we measured sensitivity of about 3000 Vm-1/G using solenoid coils and 8000 Vm-1/G using spiral coils. For E-field, sensing the sensitivity was 10-4 G/Vm-1 and using single capacitor detector. Sensitivity for multi-capacitor detectors was measured to be in the order of 10-3 G/Vm-1 and frequency dependent exhibiting a maximum value at ˜1 MHz. Tunability of 0.1%-90% was achieved for tunable inductor applications using both single and multi-capacitors excitation. We believe that significant (˜106) improvements in sensitivity and tunability are feasible with simple modifications of the fabrication process.

  12. Magnetoelectric polymer nanocomposite for flexible electronics

    SciTech Connect

    Alnassar, M. Alfadhel, A.; Ivanov, Yu. P.; Kosel, J.

    2015-05-07

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites.

  13. Magnetoelectric coupling in lead-free piezoelectric Lix(K0.5Na0.5)1 - xNb1 - yTayO3 and magnetostrictive CoFe2O4 laminated composites

    NASA Astrophysics Data System (ADS)

    Fu, Jiyong; Santa Rosa, Washington; M'Peko, Jean Claude; Algueró, Miguel; Venet, Michel

    2016-04-01

    To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Lix(K0.5Na0.5)1 - xNb1 - yTayO3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d31, a crucial ingredient determining ME couplings, for several Li (x = 0.03 , 0.035 , 0.04) and Ta (y = 0.15 , 0.2 , 0.25) concentrations, and find that the highest d31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse (αE,31) and the longitudinal (αE,33) low-frequency ME coupling coefficients of our composites, for each the above composition of (x , y). At x = 0.03, we find the usual scenario of αE,31 and αE,33, i.e., the strongest ME coupling occurs when d31 is maximal, namely at y = 0.2. On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d31, e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04, following from the interplay of d31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with αE,31 in magnitude around twice of αE,33, are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed.

  14. Magnetoelectric coupling at the interface of BiFeO3/La0.7Sr0.3MnO3 multilayers

    SciTech Connect

    Calderon, M. J.; Liang, Shuhua; Yu, Rong; Salafranca, Juan; Scalapino, D. J.; Dong, Shuai; Yunoki, Seiji; Brey, L.; Moreo, Adriana; Dagotto, Elbio R

    2011-01-01

    Electric-field controlled exchange bias in a heterostructure composed of the ferromagnetic manganite La0.7Sr0.3MO3 and the ferroelectric antiferromagnetic BiFeO3 has recently been demonstrated experimentally. By means of a model Hamiltonian, we provide a possible explanation for the origin of this magnetoelectric coupling. We find, in agreement with experimental results, a net ferromagnetic moment at the BiFeO3 interface. The induced ferromagnetic moment is the result of the competition between the eg-electron double exchange and the t2g-spin antiferromagnetic superexchange that dominates in bulk BiFeO3. The balance of these simultaneous ferromagnetic and antiferromagnetic tendencies is strongly affected by the interfacial electronic charge density, which, in turn, can be controlled by the BiFeO3 ferroelectric polarization.

  15. Magnetoelectric Coupling in Well-Ordered Epitaxial BiFeO3/CoFe2O4/SrRuO3 Heterostructured Nanodot Array.

    PubMed

    Tian, Guo; Zhang, Fengyuan; Yao, Junxiang; Fan, Hua; Li, Peilian; Li, Zhongwen; Song, Xiao; Zhang, Xiaoyan; Qin, Minghui; Zeng, Min; Zhang, Zhang; Yao, Jianjun; Gao, Xingsen; Liu, Junming

    2016-01-26

    Multiferroic magnetoelectric (ME) composites exhibit sizable ME coupling at room temperature, promising applications in a wide range of novel devices. For high density integrated devices, it is indispensable to achieve a well-ordered nanostructured array with reasonable ME coupling. For this purpose, we explored the well-ordered array of isolated epitaxial BiFeO3/CoFe2O4/SrRuO3 heterostructured nanodots fabricated by nanoporous anodic alumina (AAO) template method. The arrayed heterostructured nanodots demonstrate well-established epitaxial structures and coexistence of piezoelectric and ferromagnetic properties, as revealed by transmission electron microscopy (TEM) and peizoeresponse/magnetic force microscopy (PFM/MFM). It was found that the heterostructured nanodots yield apparent ME coupling, likely due to the effective transfer of interface couplings along with the substantial release of substrate clamping. A noticeable change in piezoelectric response of the nanodots can be triggered by magnetic field, indicating a substantial enhancement of ME coupling. Moreover, an electric field induced magnetization switching in these nanodots can be observed, showing a large reverse ME effect. These results offer good opportunities of the nanodots for applications in high-density ME devices, e.g., high density recording (>100 Gbit/in.(2)) or logic devices. PMID:26651132

  16. Substrate clamping effect onto magnetoelectric coupling in multiferroic BaTiO3-CoFe2O4 core-shell nanofibers via coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Fu, Bi; Lu, Ruie; Gao, Kun; Yang, Yaodong; Wang, Yaping

    2015-10-01

    We report large lateral magnetoelectric (ME) coupling coefficients α 31 of 1.2×104 \\text{mV} \\text{cm}-1 \\text{Oe}-1 and 3.5× 104 \\text{mV} \\text{cm}-1 \\text{Oe}-1 in substrate bonded and free-standing multiferroic BaTiO3-CoFe2O4 (BTO-CFO) core-shell nanofibers (NFs) with and without substrate clamping effect, respectively. The BTO-CFO core-shell NFs were synthesised by a sol-gel coaxial electrospinning technique, and their ME coupling was directly observed by demonstrating the evolution of piezoelectric coefficient (d 33), ferroelectric domain, and phase contrast induced by an external magnetic field. These impressed α 31 coefficients originated from the nanoconfinement of the interphase elastic interaction between the ferromagnetic core fiber and the ferroelectric shell interlayer, as well as the strain transformation at the one-dimensional (1D) fiber boundary. This means that the decreasing substrate clamping effect results in an enhanced ME coupling in multiferroic NFs, which is similar to that of thin films. These findings make people understand the substrate clamping effect and enable nanoscale ME device applications.

  17. Design and fabrication of a microscale magnetoelectric surgical tool

    NASA Astrophysics Data System (ADS)

    Clarke, Joshua; Sundaresan, Vishnu Baba

    2011-04-01

    Magnetoelectric materials made from magnetostrictive and piezoelectric constituents are best suited for selfsensing actuators. The relationship between applied magnetic field (force), tip displacement (deflection) and current output (sensing signal) is necessary for the development of self-sensing actuator systems. The dynamic behavior of the constituent magnetostrictive materials and piezoelectric materials independent of each other are well-understood. The coupled dynamic force-strain-sensing behavior of magnetoelectric materials as selfsensing actuators is largely unexplored and provides the motivation for our work in this area. This paper presents theoretical and experimental analysis of the dynamic behavior of a Metglas/PVDF magnetoelectric laminate composite. Experimental results for the mechanical and electrical behavior of a 15mm × 30mm × 75μm Metglas/PVDF cantilever beam across the frequency spectrum are compared to those predicted by an equation of motion developed using the principle of virtual work and Hamiltonian principle. The theoretically developed model predicts the observed displacement and sensing current within 35% and 20% respectively. A parametric analysis is presented to determine the optimum design parameters of the composite for self-sensing actuation.

  18. Magnetic field-induced ferroelectric domain structure evolution and magnetoelectric coupling for [110]-oriented PMN-PT/Terfenol-D multiferroic composites

    NASA Astrophysics Data System (ADS)

    Fang, F.; Jing, W. Q.

    2016-01-01

    Magnetic field-induced polarization rotation and magnetoelectric coupling effects are studied for [110]-oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3/Tb0.3Dy0.7Fe2(PMN-xPT/Terfenol-D) multiferroic composites. Two compositions of the [110]-oriented relaxor ferroelectric single crystals, PMN-28PT and PMN-33PT, are used. In [110]-oriented PMN-28PT, domains of rhombohedral (R) and monoclinic (MB) phases coexist prior to the magnetic loadings. Upon the applied magnetic loadings, phase transition from monoclinic MB to R phase occurs. In [110]-oriented PMN-33PT, domains are initially of mixed orthorhombic (O) and MB phases, and the phase transition from O to MB phase takes place upon the external magnetic loading. Compared to PMN-28PT, the PMN-33PT single crystal exhibits much finer domain boundary structure prior to the magnetic loadings. Upon the magnetic loadings, more domain variants are induced via the phase transition in PMN-33PT than that in PMN-28PT single crystal. The finer domain band structure and more domain variants contribute to stronger piezoelectric activity. As a result, the composite of PMN-33PT/Terfenol-D manifests a stronger ME coupling than PMN-28PT/Terfenol-D composite.

  19. Multiferroicity and magnetoelectric coupling enhanced large magnetocaloric effect in DyFe{sub 0.5}Cr{sub 0.5}O{sub 3}

    SciTech Connect

    Yin, L. H.; Yang, J.; Dai, J. M.; Song, W. H.; Zhang, R. R.; Sun, Y. P.

    2014-01-20

    DyFe{sub 0.5}Cr{sub 0.5}O{sub 3} has been synthesized using a sol-gel method. It exhibits ferroelectricity at the antiferromagnetic ordering temperature T{sub N1}∼261 K. Large magnetocaloric effect (MCE) (11.3 J/kg K at 4.5 T) enhanced by magnetoelectric coupling due to magnetic field and temperature induced magnetic transition was observed. Temperature-dependent Raman study shows an anomalous behavior near T{sub N1} in the phonon modes related to the vibration of Dy atoms and stretching of CrO{sub 6}/FeO{sub 6} octahedra, suggesting the ferroelectricity in DyFe{sub 0.5}Cr{sub 0.5}O{sub 3} is associated with the spin-phonon coupling with respect to both Dy and Cr/Fe ions. These results suggest routes to obtain high-temperature multiferroicity and large MCE for practical applications.

  20. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO3

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hee; Kézsmáki, István; Fishman, Randy S.

    2016-04-01

    Due to the complicated magnetic and crystallographic structures of BiFeO3, its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a first-principles approach, we uncover all possible ME couplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO3. First-principles calculations are used to understand the microscopic origins of the ME couplings. We find that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamic ME effects in BiFeO3. A model motivated by first principles reproduces the absorption difference of counter-propagating light beams called non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic ME couplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hidden ME couplings on the atomic scale and for exploiting optical ME effects in the next generation of technological devices such as optical diodes. This manuscript has been written by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan.

  1. Inductive coupled radio frequency plasma bridge neutralizer.

    PubMed

    Scholze, F; Tartz, M; Neumann, H

    2008-02-01

    A 13.56 MHz radio frequency plasma bridge neutralizer (rf-PBN) for ion thruster applications as well as ion beam surface processing of insulating materials is presented. The energy for the plasma excitation is inductively coupled into the plasma chamber. Because no components are located inside the plasma, the lifetime of the rf-PBN is expected to be very long. A compact tuning system adapts the input power to the plasma impedance. The electron current may be controlled over a wide range by the rf input power. An electron current of up to 1.6 A has been extracted. PMID:18315215

  2. Magnetic spin structure and magnetoelectric coupling in BiFeO{sub 3}-BaTiO{sub 3} multilayer

    SciTech Connect

    Lazenka, Vera Modarresi, Hiwa; Bisht, Manisha; Vantomme, André; Temst, Kristiaan; Lorenz, Michael; Bonholzer, Michael; Grundmann, Marius; Rüffer, Rudolf; Van Bael, Margriet J.

    2015-02-23

    Magnetic spin structures in epitaxial BiFeO{sub 3} single layer and an epitaxial BaTiO{sub 3}/BiFeO{sub 3} multilayer thin film have been studied by means of nuclear resonant scattering of synchrotron radiation. We demonstrate a spin reorientation in the 15 × [BaTiO{sub 3}/BiFeO{sub 3}] multilayer compared to the single BiFeO{sub 3} thin film. Whereas in the BiFeO{sub 3} film, the net magnetic moment m{sup →} lies in the (1–10) plane, identical to the bulk, m{sup →} in the multilayer points to different polar and azimuthal directions. This spin reorientation indicates that strain and interfaces play a significant role in tuning the magnetic spin order. Furthermore, large difference in the magnetic field dependence of the magnetoelectric coefficient observed between the BiFeO{sub 3} single layer and multilayer can be associated with this magnetic spin reorientation.

  3. Microscopic evidence of strain-mediated magnetoelectric coupling in Co/Pt multilayers/PMN-PT(011) heterostructures

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Wang, Wenbo; Wu, Weida; Zheng, Xiaoli; Cai, Jianwang; Zhao, Yonggang; Liu, Ming

    A promising way to control magnetization(M) via an electric field(E-field) is using magnetoelectric(ME) effect in FM/FE heterostructures. We use magnetic(electric) force microscopy(M(e)FM) to study the strain-mediated E-field modulation of M in (Co/Pt)n with perpendicular magnetic anisotropy(PMA) or in-plane anisotropy on PMN-PT(011) substrates. MFM were performed on (Co/Pt)n with an DC E-field applied to PMN-PT. In MeFM, we superimpose an AC modulation on a DC one and utilize lock-in technique to detect weak ME effect. For (Co/Pt)n with PMA, MFM images show stripe domains with no obvious changes at varied DC E-fields. However, MeFM shows interesting structures and the image contrast reverses sign at opposite strain slopes of the PMN-PT substrate. For sample with in-plane anisotropy, both MFM and MeFM images show dipole-like domains. Interestingly, the MeFM image contrast reverses sign at opposite strain slopes of the substrate. The sign reversal of MeFM contrast indicates that features revealed by MeFM are intrinsic local ME effect. Our MeFM data are consistent with the ferromagnetic resonance results showing that strain-induced anisotropy change will cause part of M switching to the in-plane direction. Possible scenarios will be discussed.

  4. Mode coupling of Schwarzschild perturbations: Ringdown frequencies

    SciTech Connect

    Pazos, Enrique; Brizuela, David; Martin-Garcia, Jose M.; Tiglio, Manuel

    2010-11-15

    Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity (l=2, m={+-}2) perturbations and odd-parity (l=2, m=0) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that--in contrast to previous predictions in the literature--the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.

  5. CoFe{sub 2}O{sub 4}/Pb(Zr{sub 052}Ti{sub 0.48})O{sub 3} disk-ring magnetoelectric composite structures

    SciTech Connect

    Li Lei; Lin Yiqi; Chen Xiangming

    2007-09-15

    Magnetoelectric composite structures of CFO (CoFe{sub 2}O{sub 4})-disk/PZT (Pb(Zr{sub 052}Ti{sub 0.48})O{sub 3})-ring and PZT-disk/CFO-ring were prepared and evaluated, where the magnetostrictive and piezoelectric phases were coupled through normal stresses. Under bias magnetic fields around 3400 Oe, the peak magnetoelectric coefficients reached 18.1 and 102.6 mV cm{sup -1} Oe{sup -1} at 1 kHz for CFO-disk/PZT-ring and PZT-disk/CFO-ring structures, respectively, which were much higher than that of the corresponding layered composite. Prediction for magnetoelectric coefficients at low frequency was conducted, and the improved interfacial mechanical coupling through normal stresses was responsible for the enhanced magnetoelectric properties of the present composite structures. Moreover, the frequency dependence of the magnetoelectric coefficient was investigated, and the resonant magnetoelectric coefficients were up to 4120 and 6430 mV cm{sup -1} Oe{sup -1} for CFO-disk/PZT-ring and PZT-disk/CFO-ring composite structures, respectively.

  6. Ab initio study of magnetoelectric coupling in La0.66Sr0.33MnO3 / PbZr0.2Ti0.8O3 multiferroic heterostructures.

    PubMed

    Hammouri, Mahmoud; Fohtung, Edwin; Vasiliev, Igor

    2016-10-01

    Multiferroic heterostructures composed of thin layers of ferromagnetic and ferroelectric perovskites have attracted considerable attention in recent years. We apply ab initio computational methods based on density functional theory to study the magnetoelectric coupling at the (0 0 1) interface between [Formula: see text] (LSMO) and [Formula: see text] (PZT). Our study demonstrates that the ferroelectric polarization of PZT has a strong influence on the distribution of magnetization in LSMO. The presence of polarized PZT changes the balance between the ferromagnetic and antiferromagnetic states of LSMO. The observed interfacial magnetoelectric effect can be explained by the variation of the charge density across the LSMO/PZT interface and by the change of the magnetic order in the LSMO layer adjacent to PZT. PMID:27494690

  7. Self-biased magnetoelectric coupling characteristics of three-phase composite transducers with nanocrystallin soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Huang, Dongyan; Lu, Caijiang; Bing, Han

    2015-07-01

    This paper reports the self-biased magnetoelectric (ME) effects in composites consisting of high-permeability Fe-based nanocrystalline soft magnetic alloy Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB), pure nickel (Ni) and piezoelectric lead zirconate titanate (PZT). The FeCuNbSiB ribbons are fabricated on traditional laminates Ni/PZT/Ni through two modes: the attached mode (F-NPN-F) and the laminated mode (F/NPN/F). The F-NPN-F composite sufficiently reveals that the high-permeability FeCuNbSiB ribbons concentrate more magnetic flux in magnetostrictive Ni, which results in the self-biased ME effects of F-NPN-F. For the F/NPN/F composite, the FeCuNbSiB acts as the dynamic driver to enhance the effective piezomagnetic coefficient of Ni. The giant self-biased ME effects of F/NPN/F are because of the internal magnetic field between Ni and FeCuNbSiB due to their different magnetic characteristics. The influences of the numbers of FeCuNbSiB layers ( L) on the resonant ME voltage coefficients ( α ME ,r ) for F-NPN-F and F/NPN/F composites are investigated in detail. The experiments demonstrate that the maximum α ME ,r at zero-biased field is 80 V/cm Oe for F-NPN-F with L = 2, and 85 V/cm Oe for F/NPN/F with L = 4. This paper demonstrates that these two ME composites are suitable for achieving zero-biased ME transducers, power-free magnetic field sensors and energy harvesters.

  8. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO3

    DOE PAGESBeta

    Kezsmarki, I.; Fishman, Randy Scott

    2016-04-18

    Due to the complicated magnetic and crystallographic structures of BiFeO3, its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a firstprinciples approach, we uncover all possibleMEcouplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO3. First-principles calculations are used to understand the microscopic origins of theMEcouplings.Wefind that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamicME effects in BiFeO3. A model motivated by first principles reproduces the absorption difference of counter-propagating light beams calledmore » non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic MEcouplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hiddenMEcouplings on the atomic scale and for exploiting opticalMEeffects in the next generation of technological devices such as optical diodes.« less

  9. Magnetoelectric effects via pentalinear interactions

    NASA Astrophysics Data System (ADS)

    Zhao, Hong Jian; Grisolia, M. N.; Yang, Yurong; Íñiguez, Jorge; Bibes, M.; Chen, Xiang Ming; Bellaiche, L.

    2015-12-01

    Magnetoelectric multiferroic materials, particularly with the perovskite structure, are receiving a lot of attention because of their inherent coupling between electrical polarization and magnetic ordering. However, very few types of direct coupling between polarization and magnetization are known, and it is unclear whether they can be useful to the design of spintronic devices exploiting the control of magnetization by electric fields. For instance, the typical biquadratic coupling only allows changing the magnitude of the magnetization by an electric field, but it does not permit an electric-field-induced switching of the magnetization. Similarly, the so-called Lifshitz invariants allow an electric-field control of complicated magnetic orderings, but not of the magnetization. Here, we report on original direct couplings between polarization and magnetization in epitaxial perovskite films, via the use of first-principles methods and the development of an original Landau-type phenomenological theory. Our results feature pentalinear interactions involving the ferromagnetic and antiferromagnetic vectors as well as the polar distortions and oxygen octahedral tilting, and permit a number of striking effects. Examples include a continuous electric-field control of the magnetization magnitude and sign, and the discrete switching of the magnetization magnitude. Thus, the high-order, pentalinear couplings demonstrated in this work may open paths towards specific magnetoelectric effects, as well as spintronic and magnonic devices.

  10. Theory of magnetoelectric effect in multilayer nanocomposites on a substrate: Resonant bending-mode response

    NASA Astrophysics Data System (ADS)

    Krantz, Matthias C.; Gerken, Martina

    2013-05-01

    Resonant bending-mode magnetoelectric (ME) coefficients of magnetostrictive-piezoelectric multilayer cantilevers are calculated analytically using a model developed for arbitrary multilayers on a substrate. Without quality factor effects the ME coefficient maxima in the four-dimensional parameter space of layer numbers, layer sequences, piezoelectric volume fractions, and substrate thicknesses are found to be essentially constant for nonzero substrate thickness. Global maxima occur for bilayers without substrates. Vanishing magnetoelectric response regions result from voltage cancellation in piezoelectric layers or absence of bending-mode excitation. They are determined by the neutral plane position in the multilayer stack. With Q-factor effects dominated by viscous air damping ME coefficients strongly increase with cantilever thickness primarily due to increasing resonance frequencies. The results yield a layer specific prediction of ME coefficients, resonance frequencies, and Q-factors in arbitrary multilayers and thus distinction of linear-coupling and Q-factor effects from exchange interaction, interface, or nonlinear ME effects.

  11. Magnetoelectric interactions in layered composites of piezoelectric quartz and magnetostrictive alloys

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, G.; Petrov, V. M.; Fetisov, L. Y.; Fetisov, Y. K.; Srinivasan, G.

    2012-12-01

    Mechanical strain mediated magnetoelectric effects are studied in bilayers and trilayers of piezoelectric quartz and magnetostrictive permendur (P), an alloy of Fe-Co-V. It is shown that the magnetoelectric voltage coefficient (MEVC), proportional to the ratio of the piezoelectric coupling coefficient to the permittivity, is higher in quartz-based composites than for traditional ferroelectrics-based ME composites. In bilayers of X-cut single crystal quartz and permendur, the MEVC varies from 1.5 V/cm Oe at 20 Hz to ˜185 V/cm Oe at bending resonance or electromechanical resonance corresponding to longitudinal acoustic modes. In symmetric X-cut quartz-P trilayers, the MEVC ˜4.8 V/cm Oe at 20 Hz and ˜175 V/cm Oe at longitudinal acoustic resonance. Trilayers of Y-cut quartz and permendur show ME coupling under a shear strain with an MEVC that is an order of magnitude smaller than for longitudinal strain in samples with X-cut quartz. A model for low-frequency and resonance ME effects which allows for explicit expressions of MEVC and resonance frequencies is provided and calculated. MEVCs are in general agreement with measured values. Magnetoelectric composites with quartz have the desired characteristics such as the absence of ferroelectric hysteresis and pyroelectric losses and could potentially replace ferroelectrics in composite-based magnetic sensors, transducers, and high-frequency devices.

  12. Resonance magnetoelectric effects in magnetostrictive-piezoelectric three-layer structures

    NASA Astrophysics Data System (ADS)

    Filippov, D. A.; Laletsin, U.; Srinivasan, G.

    2007-11-01

    A theory is discussed for magnetoelectric (ME) interactions at electromechanical resonance in a heterogeneous ferromagnetic-piezoelectric three-layer structure. An expression has been obtained for the transverse ME coefficients αE ,T as a function of interface coupling β between the layers. For 0<β<1, the theory predicts resonance enhancement of αE ,T at two interrelated radial modes. As β is increased from 0, the low-frequency resonance occurs at progressively increasing frequency until it merges with the high-frequency mode when β =1. These predictions are in general agreement with representative data for a permendur-PZT-permendur trilayer composite.

  13. The nature of magnetoelectric coupling in Pb(Zr,Ti)O3 -Pb(Fe,Ta)O3.

    PubMed

    Evans, Donald M; Alexe, Marin; Schilling, Alina; Kumar, Ashok; Sanchez, Dilsom; Ortega, Nora; Katiyar, Ram S; Scott, James F; Gregg, J Marty

    2015-10-21

    The coupling between magnetization and polarization in a room temperature multiferroic (Pb(Zr,Ti)O3 -Pb(Fe,Ta)O3 ) is explored by monitoring the changes in capacitance that occur when a magnetic field is applied in each of three orthogonal directions. Magnetocapacitance effects, consistent with P(2) M(2) coupling, are strongest when fields are applied in the plane of the single crystal sheet investigated. PMID:26351267

  14. The role of the relative voltage and phase for frequency coupling in a dual-frequency capacitively coupled plasma

    SciTech Connect

    O'Connell, D.; Gans, T.; Semmler, E.; Awakowicz, P.

    2008-08-25

    Frequency coupling in multifrequency discharges is a complex nonlinear interaction of the different frequency components. An alpha-mode low pressure rf capacitively coupled plasma operated simultaneously with two frequencies is investigated and the coupling of the two frequencies is observed to greatly influence the excitation and ionization within the discharge. Through this, plasma production and sustainment are dictated by the corresponding electron dynamics and can be manipulated through the dual-frequency sheath. These mechanisms are influenced by the relative voltage and also the relative phase of the two frequencies.

  15. Evidence for weak ferromagnetism, isostructural phase transition, and linear magnetoelectric coupling in the multiferroic Bi0.8Pb0.2Fe0.9Nb0.1O3 solid solution

    NASA Astrophysics Data System (ADS)

    Patel, Jay Prakash; Senyshyn, Anatoliy; Fuess, Hartmut; Pandey, Dhananjai

    2013-09-01

    Magnetization, dielectric, and calorimetric studies on Bi0.8 Pb0.2 Fe0.9 Nb0.1O3 (BF-0.2PFN) reveal very weak ferromagnetism but strong dielectric anomaly at the antiferromagnetic transition temperature (TN) characteristic of magnetoelectric coupling. We correlate these results with nuclear and magnetic structure studies using x-ray and neutron powder diffraction techniques, respectively. Rietveld refinements using x-ray powder diffraction data in the temperature range 300 to 673 K reveal pronounced anomalies in the unit cell parameters at TN, indicating strong magnetoelastic coupling. The nuclear and magnetic structures of BF-0.2PFN were determined from neutron powder diffraction data using a representation theory approach. They show the occurrence of a first-order isostructural phase transition (IPT) accompanying the magnetic ordering below TN˜566 K, leading to significant discontinuous change in the ionic polarization (ΔPz˜1.6(3) μC/cm2) and octahedral tilt angle (˜0.3°) at TN. The ionic polarization obtained from refined positional coordinates of the nuclear structure and Born effective charges is shown to scale linearly with sublattice magnetization, confirming the presence of linear magnetoelectric coupling in BF-0.2PFN at the atomic level, despite the very low value of remanent magnetization (Mr).

  16. Magnetodielectric effect and electric-induced magnetic permeability in magnetoelectric laminate composite under low inspiring signal

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Ping; Zhang, Yu-Xiang; Zhang, Guang-Bin; Liu, Peng

    2013-01-01

    A theory based on equivalent circuit was proposed to demonstrate that magnetodielectric (MDE) effect and electric-induced magnetic permeability (EIMP) exist in the magnetoelectric composite. Both MDE and EIMP are sensitive to the amplitude of inspiring signal. They were researched in a simple Pb(Zr,Ti)O3/Terfenol-D laminate composite experimentally. A large MDE coefficient over 85% was found near the resonance frequency under a low magnetic field of 40 Oe. The EIMP was also observed in the composite. They are mainly originated from the magnetoelectric coupling between the piezoelectric and magnetostrictive components. These results are significant in the device applications of modulating dielectric constant and magnetic permeability at room temperature.

  17. Nonlinear magnetoelectric effect in composite multiferroics

    NASA Astrophysics Data System (ADS)

    Filippov, D. A.; Laletin, V. M.; Firsova, T. O.

    2014-05-01

    The theoretical and experimental studies of the nonlinear magnetoelectric effect in composite multiferroics in the low-frequency spectral region and in the electromechanical resonance region have been performed. It has been shown that such structures demonstrate a nonlinear magnetoelectric effect, which is quadratic in ac magnetic field strength at weak magnetic fields. In the region of the electromechanical resonance, the resonance excitation of an electric field occurs by means of ac magnetic field at a frequency lower than the resonance frequency by a factor of two. In the low-frequency spectral region, there is a difference of amplitude values of two neighboring voltage maxima due to the superposition of signals from the linear and nonlinear effects, and the difference is proportional to the dc magnetic field strength in weak fields. The results of the experimental study of the two-layer permendur-lead zirconate titanate structure are presented.

  18. High temperature magneto-electric effect in yittrium iron garnet (YIG)

    NASA Astrophysics Data System (ADS)

    Saha, J.; Chaudhary, S.; Majumdar, P.; Kuanr, B. K.; Patnaik, S.

    2016-05-01

    We report a study on potential multiferroic characteristics of Yttrium Iron Garnet (YIG). The emergence of ferroelectricity in YIG is in debate but we provide evidence for strong magneto-electric coupling above room temperature from dielectric constant measurement with and without magnetic field. We find that the apparent pseudo-ferroelectric crossover temperature in YIG varies with frequency. For higher frequency the transition shifts towards higher temperature. This is indicative of relaxor behavior. We have also measured the dielectric constant in the presence of external magnetic field at high temperature that confirms interdependence of magnetic and dielectric properties.

  19. Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory

    DOE PAGESBeta

    Belashchenko, K. D.; Tchernyshyov, O.; Kovalev, Alexey A.; Tretiakov, O. A.

    2016-03-30

    Domain wall dynamics in a magnetoelectric antiferromagnet is analyzed, and its implications for magnetoelectric memory applications are discussed. Cr2O3 is used in the estimates of the materials parameters. It is found that the domain wall mobility has a maximum as a function of the electric field due to the gyrotropic coupling induced by it. In Cr2O3, the maximal mobility of 0.1 m/(s Oe) is reached at E≈0.06 V/nm. Fields of this order may be too weak to overcome the intrinsic depinning field, which is estimated for B-doped Cr2O3. These major drawbacks for device implementation can be overcome by applying amore » small in-plane shear strain, which blocks the domain wall precession. Domain wall mobility of about 0.7 m/(s Oe) can then be achieved at E = 0.2 V/nm. Furthermore, a split-gate scheme is proposed for the domain-wall controlled bit element; its extension to multiple-gate linear arrays can offer advantages in memory density, programmability, and logic functionality.« less

  20. Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory

    NASA Astrophysics Data System (ADS)

    Belashchenko, K. D.; Tchernyshyov, O.; Kovalev, Alexey A.; Tretiakov, O. A.

    2016-03-01

    Domain wall dynamics in a magnetoelectric antiferromagnet is analyzed, and its implications for magnetoelectric memory applications are discussed. Cr2O3 is used in the estimates of the materials parameters. It is found that the domain wall mobility has a maximum as a function of the electric field due to the gyrotropic coupling induced by it. In Cr2O3, the maximal mobility of 0.1 m/(s Oe) is reached at E ≈0.06 V/nm. Fields of this order may be too weak to overcome the intrinsic depinning field, which is estimated for B-doped Cr2O3. These major drawbacks for device implementation can be overcome by applying a small in-plane shear strain, which blocks the domain wall precession. Domain wall mobility of about 0.7 m/(s Oe) can then be achieved at E = 0.2 V/nm. A split-gate scheme is proposed for the domain-wall controlled bit element; its extension to multiple-gate linear arrays can offer advantages in memory density, programmability, and logic functionality.

  1. Magnetoelectric coupling tuned by competing single iron anisotropies in Mn1-xNixTiO3

    DOE PAGESBeta

    Chi, Songxue; Ye, Feng; Zhou, Haidong D.; Choi, E. S.; Hwang, J.; Cao, Huibo; Fernandez-Baca, Jaime A.

    2014-01-01

    A flop of electric polarization from Pc to Pa is observed in MnTiO3 as a spin flop transtion is triggered by a c-axis magnetic field, Hc=7 T. The critical magnetic field for Pa is significantly reduced in Mn1-xNixTiO3 (x=0.33). Neutron diffraction measurements revealed similar magnetic arrangements for the two compositions where the ordered spins couple antiferromagnetically with their nearest intra- and inter-planar neighbors. In the x=0.33 system, the single ion anisotropies of Mn2+ and Ni2+ compete and give rise to an additional spin reorientation transition at TR. A magnetic field, Hc, aligns the spins along c for TRN. The rotationmore » of the collinear spins away from the c-axis for TR alters the magnetic point symmetry and gives rise to new ME susceptibility tensor form. Such linear ME response provides satisfactory explanation for behavior of field-induced electric polarization in both compositions. As the Ni content increases to x=0.5 and 0.68, the ME effect disappears as a new magnetic phase emerges.« less

  2. Mesoscale Interfacial Dynamics in Magnetoelectric Nanocomposites

    SciTech Connect

    Khachaturyan, Armen G.

    2009-08-06

    Theory and modeling of chessboard-like self-assembling of vertically aligned columnar nanostructures in films has been developed. By means of modeling and three-dimensional computational simulations, we proposed a novel self-assembly process that can produce good chessboard nanostructure architectures through a pseudo-spinodal decomposition of an epitaxial film under optimal thermodynamic and crystallographic conditions (appropriate choice of the temperature, composition of the film, and crystal lattice parameters of the film and substrate). These conditions are formulated. The obtained results have been published on Nano Letters. Based on the principles of the formation of chessboard nanostructured films, we are currently trying to find good decomposing material systems that satisfy the optimal conditions to produce the chessboard nanostructure architecture. In addition we are under way doing 'computer experiments' to look for the appropriate materials with the chessboard columnar nanostructures, as a potential candidate for engineering of optical devices, high-efficiency multiferroics, and high-density magnetic perpendicular recording media. We are also currently to investigate the magnetoelectric response of multiferroic chessboard nanostructures under applied electric/magnetic fields. A unified 3-dimensional phase field theory of the strain-mediated magnetoelectric effect in magnetoelectric composites is developed. The theory is based on the established equivalency paradigm: we proved that by using a variational priciple the exact values of the electric, magnetic and strain fields in a magnetoelectric composite of arbitrary morphology and their coupled magneto-electric-mechanical response can be evaluated by considering an equivalent homogeneous system with the specially chosen effective eigenstrain, polarization and magnetization. These equivalency parameters are spatially inhomogeneous fields, which are obtained by solving the time-dependent Ginzburg

  3. Quantification of size effects in the magnetoelectric response of metallic glass/PVDF laminates

    NASA Astrophysics Data System (ADS)

    Lasheras, A.; Gutiérrez, J.; Barandiarán, J. M.

    2016-05-01

    Metallic glass/polyvinylidene fluoride three-layered magnetoelectric laminated composites have been studied. Size effects in the magnetoelectric response arisen both from the reduction of the length of the laminate and from the increase of the operating frequency have been quantified for the lengths ranging from 3 cm down to 0.5 cm. It has been concluded that the decrease in this magnetoelectric response arises mainly from the demagnetizing effects, with reductions of 86% for the longest laminate that increase up to 99% for the shortest one. From these values, an intrinsic magnetoelectric coefficient of 325 V/cm Oe has been obtained.

  4. Frequency response enhancement in integrated coupled-cavity DBR lasers.

    SciTech Connect

    Wendt, Joel Robert; Vawter, Gregory Allen; Tauke-Pedretti, Anna; Alford, Charles Fred; Skogen, Erik J.; Chow, Weng Wah; Cajas, Florante G.; Overberg, Mark E.; Torres, David L.; Yang, Zhenshan; Peake, Gregory Merwin

    2010-11-01

    We present a photonic integrated circuit (PIC) composed of two strongly coupled lasers. This PIC utilizes the dynamics of mutual injection locking to increase the relaxation resonance frequency from 3 GHz to beyond 30 GHz.

  5. Magnetoelectric resonance engine

    SciTech Connect

    Moscrip, W.M.

    1992-09-15

    This patent describes a magnetoelectric resonance thermal machine. It comprises a reciprocating, multiple-piston, Alpha-type Stirling-cycle mechanical assembly; an electronic quadrature phase-lock circuit; an ancillary external energy and mass transfer subsystem; and a master microcomputer control system.

  6. Magnetoelectric ‘spin’ on stimulating the brain

    PubMed Central

    Guduru, Rakesh; Liang, Ping; Hong, J; Rodzinski, Alexandra; Hadjikhani, Ali; Horstmyer, Jeffrey; Levister, Ernest; Khizroev, Sakhrat

    2015-01-01

    Aim: The in vivo study on imprinting control region mice aims to show that magnetoelectric nanoparticles may directly couple the intrinsic neural activity-induced electric fields with external magnetic fields. Methods: Approximately 10 µg of CoFe2O4–BaTiO3 30-nm nanoparticles have been intravenously administrated through a tail vein and forced to cross the blood–brain barrier via a d.c. field gradient of 3000 Oe/cm. A surgically attached two-channel electroencephalography headmount has directly measured the modulation of intrinsic electric waveforms by an external a.c. 100-Oe magnetic field in a frequency range of 0–20 Hz. Results: The modulated signal has reached the strength comparable to that due the regular neural activity. Conclusion: The study opens a pathway to use multifunctional nanoparticles to control intrinsic fields deep in the brain. PMID:25953069

  7. Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite

    NASA Astrophysics Data System (ADS)

    Jartych, Elżbieta; Pikula, Tomasz; Kowal, Karol; Dzik, Jolanta; Guzdek, Piotr; Czekaj, Dionizy

    2016-04-01

    Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO3)1 - x -(BaTiO3) x and Bi1 - x Nd x FeO3 solid solutions and the Aurivillius Bi5Ti3FeO15 compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient α ME was obtained for the Bi5Ti3FeO15 compound ( α ME ~ 10 mVcm-1 Oe-1). In the case of (BiFeO3)1 - x -(BaTiO3) x and Bi1 - x Nd x FeO3 solid solutions, the maximum α ME is of the order of 1 and 2.7 mVcm-1 Oe-1, respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi5Ti3FeO15 compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2-3 times.

  8. Magnetoelectric Coupling Characteristics of the La0.67Sr0.33MnO3/PbZr0.2Ti0.8O3(001) Interface

    NASA Astrophysics Data System (ADS)

    Hammouri, Mahmoud; Karpov, Dmitry; Fohtung, Edwin; Vasiliev, Igor

    Multiferroic heterostructures composed of thin layers of ferromagnetic and ferroelectric perovskites have attracted considerable attention in recent years. We apply ab initio computational methods based on density functional theory to study the characteristics of the magnetoelectric coupling at the (001) interface between La0.67Sr0.33MnO3 (LSMO) and PbZr0.2Ti0.8O3(PZT). The calculations are carried out using the Quantum ESPRESSO electronic structure code combined with Vanderbilt ultrasoft pseudopotentials. Our study shows that the interfacial interaction between LSMO and PZT and the polarization of PZT have a strong influence on the distribution of magnetization within the LSMO layer. A significant change in the magnetization of the LSMO layer adjacent to PZT is observed after reversal of the direction of polarization of PZT. Supported by NMSU GREG award. EF is funded by the DoD-AFOSR under Award No FA9550-14-1-0363.

  9. Induced ferromagnetism and magnetoelectric coupling in ion-beam synthesized BiFeO3–CoFe2O4 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Modarresi, H.; Lazenka, V.; Menéndez, E.; Lorenz, M.; Bisht, M.; Volodin, A.; Van Haesendonck, C.; Grundmann, M.; Van Bael, M. J.; Temst, K.; Vantomme, A.

    2016-08-01

    Ferrimagnetic CoFe2O4 (cobalt ferrite) is formed within an epitaxial BiFeO3 (bismuth ferrite) thin film matrix by Co channeled ion implantation and subsequent annealing. The presence of nanoscale CoFe2O4 crystals in the matrix is confirmed by x-ray diffraction using synchrotron radiation. The significantly increased magnetic moment and the low-temperature coercive field of the composite system evidence the formation of ferrimagnetic cobalt ferrite and its nanoscale character, respectively. The results demonstrate that ion beam synthesis is an appropriate method to controllably transform a planar system into a granular one, increasing the interface area between cobalt ferrite and bismuth ferrite. The ferroelectric nature of the BiFeO3–CoFe2O4 composite is confirmed by several scanning probe microscopy techniques. At room temperature, the composite exhibits a magnetoelectric voltage coefficient of α ME  =  17.5 V (cm · Oe)‑1, while a single-phase BiFeO3 thin film shows a α ME value of 4.2 V (cm · Oe)‑1. The high magnetoelectric voltage coefficient is interpreted to be the result of the interfacial interaction between the ferrimagnetic CoFe2O4 nanocrystallites and the multiferroic BiFeO3 matrix.

  10. Theoretical investigation of magnetoelectric surface acoustic wave characteristics of ZnO/Metglas layered composite

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Lyu, Qingqing; Wen, Dandan; Zhong, Zhiyong; Zhang, Huaiwu; Bai, Feiming

    2016-01-01

    The surface acoustic wave properties of piezoelectric/magnetostrictive layered structures consisting of insulating ZnO and metallic Metglas with giant Δ E effect were studied based on a stable scattering matrix method. Only the first Rayleigh mode was found with phase velocity between 2200 m/s and 2650 m/s, and the maximum electro-mechanical coupling coefficient about 1%. It was found that the center frequency of ZnO/Metglas is highly sensitive on the change of magnetic field, up to 440 MHz/Oe. However, there is a cutoff Young's modulus of Metglas for different designs of SAW, below which the Rayleigh mode will disappear. For a magnetoelectric SAW design with the center frequency of 335 MHz and covering a full magnetic field range from -1.4 to +1.4 Oe, the frequency sensitivity is 212 MHz/Oe, equivalent to a magnetic field sensitivity of 5 × 10-12 Tesla. Unlike conventional magnetoelectric bulk laminates or film stacks, the detection of frequency shift instead of electrical charge allows not only shrinkage of device volume but also a broad frequency band detection of weak magnetic field.

  11. Multifunctional magnetoelectric materials for device applications

    NASA Astrophysics Data System (ADS)

    Ortega, N.; Kumar, Ashok; Scott, J. F.; Katiyar, Ram S.

    2015-12-01

    Over the past decade magnetoelectric (ME) mutiferroic (MF) materials and their devices are one of the highest priority research topics that has been investigated by the scientific ferroics community to develop the next generation of novel multifunctional materials. These systems show the simultaneous existence of two or more ferroic orders, and cross-coupling between them, such as magnetic spin, polarisation, ferroelastic ordering, and ferrotoroidicity. Based on the type of ordering and coupling, they have drawn increasing interest for a variety of device applications, such as magnetic field sensors, nonvolatile memory elements, ferroelectric photovoltaics, nano-electronics etc. Since single-phase materials exist rarely in nature with strong cross-coupling properties, intensive research activity is being pursued towards the discovery of new single-phase multiferroic materials and the design of new engineered materials with strong magneto-electric (ME) coupling. This review article summarises the development of different kinds of multiferroic material: single-phase and composite ceramic, laminated composite and nanostructured thin films. Thin-film nanostructures have higher magnitude direct ME coupling values and clear evidence of indirect ME coupling compared with bulk materials. Promising ME coupling coefficients have been reported in laminated composite materials in which the signal to noise ratio is good for device fabrication. We describe the possible applications of these materials.

  12. Shear strain mediated magneto-electric effects in composites of piezoelectric lanthanum gallium silicate or tantalate and ferromagnetic alloys

    SciTech Connect

    Sreenivasulu, G.; Piskulich, E.; Srinivasan, G.; Qu, P.; Qu, Hongwei; Petrov, V. M.; Fetisov, Y. K.; Nosov, A. P.

    2014-07-21

    Shear strain mediated magneto-electric (ME) coupling is studied in composites of piezoelectric Y-cut lanthanum gallium silicate (LGS) or tantalate (LGT) and ferromagnetic Fe-Co-V alloys. It is shown that extensional strain does not result in ME effects in these layered composites. Under shear strain generated by an ac and dc bias magnetic fields along the length and width of the sample, respectively, strong ME coupling is measured at low-frequencies and at mechanical resonance. A model is discussed for the ME effects. These composites of Y-cut piezoelectrics and ferromagnetic alloys are of importance for shear strain based magnetic field sensors.

  13. Shear strain mediated magneto-electric effects in composites of piezoelectric lanthanum gallium silicate or tantalate and ferromagnetic alloys

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, G.; Qu, P.; Piskulich, E.; Petrov, V. M.; Fetisov, Y. K.; Nosov, A. P.; Qu, Hongwei; Srinivasan, G.

    2014-07-01

    Shear strain mediated magneto-electric (ME) coupling is studied in composites of piezoelectric Y-cut lanthanum gallium silicate (LGS) or tantalate (LGT) and ferromagnetic Fe-Co-V alloys. It is shown that extensional strain does not result in ME effects in these layered composites. Under shear strain generated by an ac and dc bias magnetic fields along the length and width of the sample, respectively, strong ME coupling is measured at low-frequencies and at mechanical resonance. A model is discussed for the ME effects. These composites of Y-cut piezoelectrics and ferromagnetic alloys are of importance for shear strain based magnetic field sensors.

  14. Mechanisms of transcription-repair coupling and mutation frequency decline.

    PubMed Central

    Selby, C P; Sancar, A

    1994-01-01

    Mutation frequency decline is the rapid and irreversible decline in the suppressor mutation frequency of Escherichia coli cells if the cells are kept in nongrowth media immediately following the mutagenic treatment. The gene mfd, which is necessary for mutation frequency decline, encodes a protein of 130 kDa which couples transcription to excision repair by binding to RNA polymerase and to UvrA, which is the damage recognition subunit of the excision repair enzyme. Although current evidence suggests that transcription-repair coupling is the cause of the preferential repair of the transcribed strand of mRNA encoding genes as well as of suppressor tRNA genes, the decline occurs under stringent response conditions in which the tRNA genes are not efficiently transcribed. Thus, the mechanism of strand-specific repair is well understood, but some questions remain regarding the precise mechanism of mutation frequency decline. PMID:7968917

  15. Novel microwave magnetic and magnetoelectric composite materials and devices

    NASA Astrophysics Data System (ADS)

    Pettiford, Carl I.

    Bulk microwave magnetic materials and devices have been widely used in different RF/microwave devices such as inductors, filters, circulars, isolators, and phase shifters. With the even increasing level of integration of RFIC and MMIC, there is an urgent need for new microwave magnetic thin film materials and new integrated RF/microwave magnetic devices. In this thesis, we have addressed these needs in three different areas: (1) exchange biased ferromagnetic/anti-ferromagnetic multilayer thin films with enhanced anisotropy fields, (2) magneto-electric heterostructures and devices, and (3) metamaterial multilayers for FMR enhancement, tunability, and plane wave absorption. Metallic soft magnetic thin films have been demonstrated to have high saturation magnetization, large permeability and relatively high self-biased ferromagnetic resonance (FMR) frequencies, showing great promise for applications in integrated RF and microwave magnetic devices. One problem for these metallic magnetic films is however their relatively low anisotropy fields that are typically in the range of 10˜30 Oe, which severely limit their application frequency range. In this work, we investigated the exchange coupled ferromagnetic/anti-ferromagnetic/ferromagnetic CoFe/PtMn/CoFe multilayer films. These CoFe/PtMn/CoFe multilayer films showed a significantly enhanced anisotropy field of 160 Oe, which was 5˜10 times of that of the FeCo films. In addition, a narrow FMR linewidth of 45 Oe at X-band was achieved in the CoFe/PtMn/CoFe trilayer. The exchange coupling in the ferromagnetic/anti-ferromagnetic/ferromagnetic trilayers leads to a significantly enhanced anisotropy field that is crucial for the application of metallic magnetic films in integrated magnetic RF/microwave devices. The magnetoelectric coupling of novel YIG/PZT, FeCoB/PZT and FeGaB/PZT multiferroic heterostructures were investigated at DC and at microwave frequencies. An electrostatically tunable band-reject filter device was

  16. Dynamics of the locomotor-respiratory coupling at different frequencies.

    PubMed

    Hoffmann, Charles P; Bardy, Benoît G

    2015-05-01

    The locomotor-respiratory coupling (LRC) is a universal phenomenon reported for various forms of rhythmic exercise. In this study, we investigated the effect of movement and respiratory frequencies on LRC. Participants were instructed to cycle or breath in synchrony with a periodic auditory stimulation at preferred and non-preferred frequencies. LRC stability was assessed by frequency and phase coupling indexes using the theory of nonlinear coupled oscillators through the sine circle map model, and the Farey tree. Results showed a stabilizing effect of sound on LRC for all frequencies and for the two systems paced. The sound-induced effect was more prominent when the rhythm of the stimulation corresponded to the preferred frequencies. The adoption of cycling or respiratory frequencies far off preferential ones led to a loss of stability in LRC. Contrary to previous findings, our results suggest that LRC is not unidirectional-from locomotion onto respiration-but bidirectional between the two systems. They also suggest that auditory information plays an important role in the modulation of LRC. PMID:25796188

  17. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    NASA Astrophysics Data System (ADS)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  18. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory.

    PubMed

    Elnaggar, Sameh Y; Tervo, Richard; Mattar, Saba M

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance. PMID:24246950

  19. Nonlinear frequency coupling in dual radio-frequency driven atmospheric pressure plasmas

    SciTech Connect

    Waskoenig, J.; Gans, T.

    2010-05-03

    Plasma ionization, and associated mode transitions, in dual radio-frequency driven atmospheric pressure plasmas are governed through nonlinear frequency coupling in the dynamics of the plasma boundary sheath. Ionization in low-power mode is determined by the nonlinear coupling of electron heating and the momentary local plasma density. Ionization in high-power mode is driven by electron avalanches during phases of transient high electric fields within the boundary sheath. The transition between these distinctly different modes is controlled by the total voltage of both frequency components.

  20. A magnetoelectric composite based signal generator

    NASA Astrophysics Data System (ADS)

    Fetisov, Y. K.; Serov, V. N.; Fetisov, L. Y.; Makovkin, S. A.; Viehland, D.; Srinivasan, G.

    2016-05-01

    Self-oscillations in an active loop consisting of a wide-band amplifier and a magnetoelectric composite in the feedback circuit have been observed. The composite with a ferroelectric lead zirconate titanate bimorph and ferromagnetic Metglas serves as a resonator that determines the frequency of oscillations and provides the feedback voltage. Under amplitude balance and phase matching conditions, the device generated signals at 2.3 kHz, at the bending resonance frequency of the composite. The oscillations were observed over a specific range of magnetic bias H. The shape of the signal generated is dependent on electrical circuit parameters and magnitude and orientation of H.

  1. Broadband/Wideband Magnetoelectric Response

    DOE PAGESBeta

    Park, Chee-Sung; Priya, Shashank

    2012-01-01

    A broadband/wideband magnetoelectric (ME) composite offers new opportunities for sensing wide ranges of both DC and AC magnetic fields. The broadband/wideband behavior is characterized by flat ME response over a given AC frequency range and DC magnetic bias. The structure proposed in this study operates in the longitudinal-transversal (L-T) mode. In this paper, we provide information on (i) how to design broadband/wideband ME sensors and (ii) how to control the magnitude of ME response over a desired frequency and DC bias regime. A systematic study was conducted to identify the factors affecting the broadband/wideband behavior by developing experimental models andmore » validating them against the predictions made through finite element modeling. A working prototype of the sensor with flat bands for both DC and AC magnetic field conditions was successfully obtained. These results are quite promising for practical applications such as current probe, low-frequency magnetic field sensing, and ME energy harvester.« less

  2. Electric Field Control of the Resistance of Multiferroic Tunnel Junctions with Magnetoelectric Antiferromagnetic Barriers

    NASA Astrophysics Data System (ADS)

    Merodio, P.; Kalitsov, A.; Chshiev, M.; Velev, J.

    2016-06-01

    Based on model calculations, we predict a magnetoelectric tunneling electroresistance effect in multiferroic tunnel junctions consisting of ferromagnetic electrodes and magnetoelectric antiferromagnetic barriers. Switching of the antiferromagnetic order parameter in the barrier in applied electric field by means of the magnetoelectric coupling leads to a substantial change of the resistance of the junction. The effect is explained in terms of the switching of the orientations of local magnetizations at the barrier interfaces affecting the spin-dependent interface transmission probabilities. Magnetoelectric multiferroic materials with finite ferroelectric polarization exhibit an enhanced resistive change due to polarization-induced spin-dependent screening. These results suggest that devices with active barriers based on single-phase magnetoelectric antiferromagnets represent an alternative nonvolatile memory concept.

  3. Deterministic coherence resonance in coupled chaotic oscillators with frequency mismatch

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Jaimes-Reátegui, R.

    2015-11-01

    A small mismatch between natural frequencies of unidirectionally coupled chaotic oscillators can induce coherence resonance in the slave oscillator for a certain coupling strength. This surprising phenomenon resembles "stabilization of chaos by chaos," i.e., the chaotic driving applied to the chaotic system makes its dynamics more regular when the natural frequency of the slave oscillator is a little different than the natural frequency of the master oscillator. The coherence is characterized with the dominant component in the power spectrum of the slave oscillator, normalized standard deviations of both the peak amplitude and the interpeak interval, and Lyapunov exponents. The enhanced coherence is associated with increasing negative both the third and the fourth Lyapunov exponents, while the first and second exponents are always positive and zero, respectively.

  4. Deterministic coherence resonance in coupled chaotic oscillators with frequency mismatch.

    PubMed

    Pisarchik, A N; Jaimes-Reátegui, R

    2015-11-01

    A small mismatch between natural frequencies of unidirectionally coupled chaotic oscillators can induce coherence resonance in the slave oscillator for a certain coupling strength. This surprising phenomenon resembles "stabilization of chaos by chaos," i.e., the chaotic driving applied to the chaotic system makes its dynamics more regular when the natural frequency of the slave oscillator is a little different than the natural frequency of the master oscillator. The coherence is characterized with the dominant component in the power spectrum of the slave oscillator, normalized standard deviations of both the peak amplitude and the interpeak interval, and Lyapunov exponents. The enhanced coherence is associated with increasing negative both the third and the fourth Lyapunov exponents, while the first and second exponents are always positive and zero, respectively. PMID:26651632

  5. Frequency shifts in a rubidium frequency standard due to coupling to another standard

    NASA Technical Reports Server (NTRS)

    Jaduszliwer, Bernardo; Cook, R. A.; Frueholz, R. P.

    1990-01-01

    Highly reliable timing system, such as used on board satellites, may incorporate a hot standby atomic clock besides the active one. RF couplings between them may affect the performance of the active clock. The effect of such couplings between two rubidium atomic clocks was investigated, and it was found that they will add an oscillatory term to the Allan Variance of the active clock, degrading its frequency stability, and that under certain circumstances they may also shift the active clock's operating frequency. These two effects are discussed in detail, and the level of isolation required to render them negligible is established.

  6. Controlled self-assembly of multiferroic core-shell nanoparticles exhibiting strong magneto-electric effects

    SciTech Connect

    Sreenivasulu, Gollapudi; Hamilton, Sean L.; Lehto, Piper R.; Srinivasan, Gopalan; Popov, Maksym; Chavez, Ferman A.

    2014-02-03

    Ferromagnetic-ferroelectric composites show strain mediated coupling between the magnetic and electric sub-systems due to magnetostriction and piezoelectric effects associated with the ferroic phases. We have synthesized core-shell multiferroic nano-composites by functionalizing 10–100 nm barium titanate and nickel ferrite nanoparticles with complementary coupling groups and allowing them to self-assemble in the presence of a catalyst. The core-shell structure was confirmed by electron microscopy and magnetic force microscopy. Evidence for strong strain mediated magneto-electric coupling was obtained by static magnetic field induced variations in the permittivity over 16–18 GHz and polarization and by electric field induced by low-frequency ac magnetic fields.

  7. Linear magnetoelectric effect by orbital magnetism.

    PubMed

    Scaramucci, A; Bousquet, E; Fechner, M; Mostovoy, M; Spaldin, N A

    2012-11-01

    We use symmetry analysis and first-principles calculations to show that the linear magnetoelectric effect can originate from the response of orbital magnetic moments to the polar distortions induced by an applied electric field. Using LiFePO(4) as a model compound we show that spin-orbit coupling partially lifts the quenching of the 3d orbitals and causes small orbital magnetic moments (μ((L)) ≈ 0.3 μ(B)) parallel to the spins of the Fe(2+) ions. An applied electric field E modifies the size of these orbital magnetic moments inducing a net magnetization linear in E. PMID:23215421

  8. Magnetoelectric Glass Nature in Magnetoplumbite-Type BaCo6Ti6O19

    NASA Astrophysics Data System (ADS)

    Tonomoto, Hayato; Kimura, Kenta; Kimura, Tsuyoshi

    2016-03-01

    The magnetoelectric coupling in the spin glass BaCo6Ti6O19 with the magnetoplumbite structure was examined. We have successfully grown single crystals of this compound and revealed the XY-like spin glass nature with a glass transition at Tg ≈ 14 K. It was found that the electric polarization P gradually develops below about 50 K and shows a substantial anomaly at around Tg. Furthermore, the magnitude of P strongly depends on the magnetoelectric cooling condition below Tg and shows a memory effect coupled with the spin sector. The present result indicates that BaCo6Ti6O19 exhibits a magnetoelectric glass nature in which a frozen state of electric dipoles is coupled with that of magnetic ones and can be modulated magnetoelectrically.

  9. Understanding the dynamic magnetization process for the magnetoelectric effect in multiferroic composites

    NASA Astrophysics Data System (ADS)

    Gualdi, A. J.; Zabotto, F. L.; Garcia, D.; Bhalla, A.; Guo, R.; de Camargo, P. C.; de Oliveira, A. J. A.

    2016-03-01

    Based on a magnetic relaxation model, an approach that includes the spin dynamics is proposed and applied to describe the magnetoelectric (ME) effect frequency dependence for a 0-3 type composite at low temperatures. Our results show that the ME coefficient, in low temperatures, for PMN-PT/CFO ( (1 -x )P b (M g1 /3N b2 /3)-x P b T i O3/C o F e2O4 ) composite has a step-like behavior on the hysteresis loop for frequency of 1 kHz, contrasting with the results at low frequencies (10 Hz). This approach assumes that the ferromagnetic and ferroelectric phases are coupled through the interactions of the spins of the ferromagnetic phase with the composite phonons by spin/lattice relaxation.

  10. Synchronization of phase oscillators with frequency-weighted coupling

    NASA Astrophysics Data System (ADS)

    Xu, Can; Sun, Yuting; Gao, Jian; Qiu, Tian; Zheng, Zhigang; Guan, Shuguang

    2016-02-01

    Recently, the first-order synchronization transition has been studied in systems of coupled phase oscillators. In this paper, we propose a framework to investigate the synchronization in the frequency-weighted Kuramoto model with all-to-all couplings. A rigorous mean-field analysis is implemented to predict the possible steady states. Furthermore, a detailed linear stability analysis proves that the incoherent state is only neutrally stable below the synchronization threshold. Nevertheless, interestingly, the amplitude of the order parameter decays exponentially (at least for short time) in this regime, resembling the Landau damping effect in plasma physics. Moreover, the explicit expression for the critical coupling strength is determined by both the mean-field method and linear operator theory. The mechanism of bifurcation for the incoherent state near the critical point is further revealed by the amplitude expansion theory, which shows that the oscillating standing wave state could also occur in this model for certain frequency distributions. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the synchronization transition in general networks with heterogenous couplings.

  11. Synchronization of phase oscillators with frequency-weighted coupling.

    PubMed

    Xu, Can; Sun, Yuting; Gao, Jian; Qiu, Tian; Zheng, Zhigang; Guan, Shuguang

    2016-01-01

    Recently, the first-order synchronization transition has been studied in systems of coupled phase oscillators. In this paper, we propose a framework to investigate the synchronization in the frequency-weighted Kuramoto model with all-to-all couplings. A rigorous mean-field analysis is implemented to predict the possible steady states. Furthermore, a detailed linear stability analysis proves that the incoherent state is only neutrally stable below the synchronization threshold. Nevertheless, interestingly, the amplitude of the order parameter decays exponentially (at least for short time) in this regime, resembling the Landau damping effect in plasma physics. Moreover, the explicit expression for the critical coupling strength is determined by both the mean-field method and linear operator theory. The mechanism of bifurcation for the incoherent state near the critical point is further revealed by the amplitude expansion theory, which shows that the oscillating standing wave state could also occur in this model for certain frequency distributions. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the synchronization transition in general networks with heterogeneous couplings. PMID:26903110

  12. Synchronization of phase oscillators with frequency-weighted coupling

    PubMed Central

    Xu, Can; Sun, Yuting; Gao, Jian; Qiu, Tian; Zheng, Zhigang; Guan, Shuguang

    2016-01-01

    Recently, the first-order synchronization transition has been studied in systems of coupled phase oscillators. In this paper, we propose a framework to investigate the synchronization in the frequency-weighted Kuramoto model with all-to-all couplings. A rigorous mean-field analysis is implemented to predict the possible steady states. Furthermore, a detailed linear stability analysis proves that the incoherent state is only neutrally stable below the synchronization threshold. Nevertheless, interestingly, the amplitude of the order parameter decays exponentially (at least for short time) in this regime, resembling the Landau damping effect in plasma physics. Moreover, the explicit expression for the critical coupling strength is determined by both the mean-field method and linear operator theory. The mechanism of bifurcation for the incoherent state near the critical point is further revealed by the amplitude expansion theory, which shows that the oscillating standing wave state could also occur in this model for certain frequency distributions. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the synchronization transition in general networks with heterogenous couplings. PMID:26903110

  13. Subterahertz excitations and magnetoelectric effects in hexaferrite-piezoelectric bilayers

    SciTech Connect

    Ustinov, Alexey B.; Srinivasan, G.

    2008-10-06

    A frequency-agile hexaferrite-piezoelectric composite for potential device applications at subterahertz frequencies is studied. The bilayer is composed of aluminum substituted barium hexagonal ferrite (BaAl{sub 2}Fe{sub 10}O{sub 19}) and lead zirconate titanate (PZT). A dc electric field applied to PZT results in mechanical deformation of the ferrite, leading to a frequency shift in ferromagnetic resonance. The bilayer demonstrates magnetoelectric interaction coefficient of about 0.37 Oe cm/kV.

  14. Remote power transfer using magneto-electric devices

    NASA Astrophysics Data System (ADS)

    Sinha, K.; Tabib-Azar, M.

    2015-12-01

    We report remote power transfer using magneto-electric devices. The experiments were performed at room temperature for piezoelectric beam coupled with electromagnet. Neodymium magnet was used as mass loading. We observed the output power of the order +19.3 to -71.1 dB given the gap between the input and output source was varied from 4 mm to 12 mm for the device (21.3 mm × 3.59 mm × 0.57 mm) with best performance at the resonance peak. We tested the device for frequency sweeps of 10-100 Hz and 100-5000 Hz. This enabled us to figure out the output power for the device at resonant frequencies over a wide frequency range. The device has high input impedance (as opposed to coils) and can be miniaturized aggressively to below 100 μm linear dimensions. The piezoelectric beams have much higher quality factors (Q) larger than 1000 while coils have low Qs (∼ 20) and the harvesting efficiency is proportional to Q.

  15. Room temperature nonlinear magnetoelectric effect in lead-free and Nb-doped AlFeO{sub 3} compositions

    SciTech Connect

    Cótica, Luiz F.; Santos, Guilherme M.; Santos, Ivair A.; Freitas, Valdirlei F.; Coelho, Adelino A.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar S.; Garcia, Ducinei; Eiras, José A.

    2015-02-14

    It is still a challenging problem to obtain technologically useful materials displaying strong magnetoelectric coupling at room temperature. In the search for new effects and materials to achieve this kind of coupling, a nonlinear magnetoelectric effect was proposed in the magnetically disordered relaxor ferroelectric materials. In this context, the aluminum iron oxide (AlFeO{sub 3}), a room temperature ferroelectric relaxor and magnetic spin glass compound, emerges as an attractive lead-free magnetoelectric material along with nonlinear magnetoelectric effects. In this work, static, dynamic, and temperature dependent ferroic and magnetoelectric properties in lead-free AlFeO{sub 3} and 2 at. % Nb-doped AlFeO{sub 3} multiferroic magnetoelectric compositions are studied. Pyroelectric and magnetic measurements show changes in ferroelectric and magnetic states close to each other (∼200 K). The magnetoelectric coefficient behavior as a function of H{sub bias} suggests a room temperature nonlinear magnetoelectric coupling in both single-phase and Nb-doped AlFeO{sub 3}-based ceramic compositions.

  16. Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite.

    PubMed

    Jartych, Elżbieta; Pikula, Tomasz; Kowal, Karol; Dzik, Jolanta; Guzdek, Piotr; Czekaj, Dionizy

    2016-12-01

    Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO3)1 - x -(BaTiO3) x and Bi1 - x Nd x FeO3 solid solutions and the Aurivillius Bi5Ti3FeO15 compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient α ME was obtained for the Bi5Ti3FeO15 compound (α ME ~ 10 mVcm(-1) Oe(-1)). In the case of (BiFeO3)1 - x -(BaTiO3) x and Bi1 - x Nd x FeO3 solid solutions, the maximum α ME is of the order of 1 and 2.7 mVcm(-1) Oe(-1), respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi5Ti3FeO15 compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2-3 times. PMID:27129686

  17. Large self-biased and multi-peak magnetoelectric coupling in transducer of Pb(Zr,Ti)O3 plates and H-type magnetization-graded ferromagnetic fork

    NASA Astrophysics Data System (ADS)

    Shen, Yongchun; Ling, Zhihao; Lu, Caijiang

    2015-12-01

    This paper develops a self-biased magnetoelectric (ME) composite Metglas/H-type-FeNi/PZT (MHFP) of H-type magnetization-graded Metglas/H-type-FeNi fork and piezoelectric Pb(Zr,Ti)O3 (PZT) plate. By using the magnetization-graded magnetostrictive layer and symmetrical H-type structure, giant self-biased ME coupling and multi-peak phenomenon are observed. The zero-biased ME voltage coefficient of MHFP composite reaches ˜63.8 V/cm Oe, which is ˜37.5 times higher than that of traditional FeNi/PZT laminate. The output ME voltage has a good near linear relation with Hac and is determined to be ˜5.1 V/Oe and ˜10.6 mV/Oe at ˜65 kHz and 1 kHz, respectively. These indicate that the proposed composite show promising applications for ME transducers and high-sensitivity self-biased magnetic sensors.

  18. Carrier-mediated magnetoelectricity in complex oxide heterostructures.

    PubMed

    Rondinelli, James M; Stengel, Massimiliano; Spaldin, Nicola A

    2008-01-01

    Increasing demands for high-density, stable nanoscale memory elements, as well as fundamental discoveries in the field of spintronics, have led to renewed interest in exploring the coupling between magnetism and electric fields. Although conventional magnetoelectric routes often result in weak responses, there is considerable current research activity focused on identifying new mechanisms for magnetoelectric coupling. Here we demonstrate a linear magnetoelectric effect that arises from a carrier-mediated mechanism, and is a universal feature of the interface between a dielectric and a spin-polarized metal. Using first-principles density functional calculations, we illustrate this effect at the SrRuO3/SrTiO3 interface and describe its origin. To formally quantify the magnetic response of such an interface to an applied electric field, we introduce and define the concept of spin capacitance. In addition to its magnetoelectric and spin capacitive behaviour, the interface displays a spatial coexistence of magnetism and dielectric polarization, suggesting a route to a new type of interfacial multiferroic. PMID:18654450

  19. Coupling measurements on intelligent missiles at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Braun, Ch.; Guidi, P.; Schmidt, H. U.

    1995-03-01

    This paper describes our low power microwave coupling measurements on terminally guided missiles in the frequency range between 100 and 8000 MHz. The plane wave excitation experiments have been carried out in our field coupling facility, which consists of an asymmetric triplate transmission line with maximum field levels of about 40 V/m in the working volume. As test objects we examined five (semi) autonomous guided missiles. Three of them, former experimental studies from the Diehl company (GE), are presented in this paper. The test objects were positioned in the simulator in three orthogonal orientation with respect to the external field and were not connected to a power supply (inactive condition). In order to be able to systematically analyze the interaction of the external electromagnetic fields with the avionics and its wiring, we had to divide the investigations into three independent phases, namely, external interaction with the fuselage, mode of penetration to the interior of the missile and excitation of the electrical systems and the cabling. The coupling paths depend very much on the design principles of the airframe. The main threat identified was back door coupling via those wings and fins, which are not attached galvanically to the outer surface of the hull. Because of flight guidance, these parts are fastened through slots to the bearings of the motor drives inside the missile. The dominant cable resonances sometimes can be traced back to the resonances of the wings and/or fins and the type of cabling. Another threat was coupling via the long slots required for the folding wings. These shafts penetrate the whole body and enable the external fields to couple into the interior. The peak amplitudes at the ends of the cables were found to be between 50 to 500 (micro A/(V/m)), depending on the test object.

  20. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    NASA Astrophysics Data System (ADS)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  1. Properties of epitaxial (210) iron garnet films exhibiting the magnetoelectric effect

    SciTech Connect

    Arzamastseva, G. V.; Balbashov, A. M.; Lisovskii, F. V. Mansvetova, E. G.; Temiryazev, A. G.; Temiryazeva, M. P.

    2015-04-15

    The properties of epitaxial magnetic (LuBi){sub 3}(FeGa){sub 5}O{sub 12} iron garnet films grown on (210) substrates, which exhibit the magnetoelectric effect, are experimentally studied. The induced anisotropy and the behavior of the domain structure in the films are investigated in uniform and nonuniform external fields. The existing hypotheses about the nature of the magnetoelectric coupling in such films are critically analyzed.

  2. Giant magnetoelectric effect in negative magnetostrictive/piezoelectric/positive magnetostrictive semiring structure

    NASA Astrophysics Data System (ADS)

    Zeng, Lingyu; Zhou, Minhong; Bi, Ke; Lei, Ming

    2016-01-01

    Magnetoelectric (ME) Ni/PZT/TbFe2 and TbFe2/PZT composites with two semiring structures are prepared. The dependence between ME coupling and magnetostrictive property of the composite is discussed. Because Ni possesses negative magnetostrictive property and TbFe2 shows positive magnetostrictive property, the ME voltage coefficient of Ni/PZT/TbFe2 semiring structure is much larger than that of TbFe2/PZT. In these composites, the ME voltage coefficient increases and the resonance frequency gradually decreases with the increase of the semiring radius, showing that structural parameters are key factors to the composite properties. Due to the strong ME coupling effect, a giant ME voltage coefficient αE = 44.8 V cm-1 Oe-1 is obtained. This approach opens a way for the design of ME composites with giant ME voltage coefficient.

  3. Electromagnetic coupling in frequency domain induced polarisation data

    NASA Astrophysics Data System (ADS)

    Routh, Partha Sarathi

    2000-11-01

    Frequency domain induced polarization (IP) surveys are commonly carried out to provide information about the chargeability structure of the earth. The goals might be as diverse as trying to delineate a mineralized and/or alteration zone for mineral exploration, or to find a region of contaminants for an environmental problem. Unfortunately, the measured responses can have contributions from inductive and galvanic effects of the ground. The inductive components are called EM coupling effects. They are considered to be ``noise'' and much of this thesis is devoted towards either removing these effects, or reformulating the inverse problem so that inductive effects are part of the ``signal''. If the forward modeling is based on galvanic responses only, then the inductive responses must first be removed from the data. The motivation for attacking the problem in this manner is that it is easier to solve D.C. resistivity equation than the full Maxwell's equation. The separation of the inductive response from the total response is derived by expressing the total electric field as a product of an IP response function, and an electric field which depends on EM coupling response. This enables me to generate formulae to obtain IP amplitude (PFE) and phase response from the raw data. The data can then be inverted, using a galvanic forward modeling. I illustrate this with 1D and 3D synthetic examples. To handle field data sets, I have developed an approximate method for estimating the EM coupling effects based upon the assumption that the earth is locally 1D. The 1D conductivity is obtained from a 2D inversion of the low frequency DC resistivity data. Application of this method to a field data set has shown encouraging results. I also examine the EM coupling problem in terms of complex conductivity. I show that if the forward modeling is carried out with full Maxwell's equation, then there is no need to remove EM coupling. I illustrate this with 1D synthetic example. In summary

  4. Coupled vibro-acoustic model updating using frequency response functions

    NASA Astrophysics Data System (ADS)

    Nehete, D. V.; Modak, S. V.; Gupta, K.

    2016-03-01

    Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.

  5. Efficient thermal energy harvesting using nanoscale magnetoelectric heterostructures

    NASA Astrophysics Data System (ADS)

    Etesami, S. R.; Berakdar, J.

    2016-02-01

    Thermomechanical cycles with a ferroelectric working substance convert heat to electrical energy. As shown here, magnetoelectrically coupled ferroelectric/ferromagnetic composites (also called multiferroics) allow for an efficient thermal energy harvesting at room temperature by exploiting the pyroelectric effect. By virtue of the magnetoelectric coupling, external electric and magnetic fields can steer the operation of these heat engines. Our theoretical predictions are based on a combination of Landau-Khalatnikov-Tani approach (with a Ginzburg-Landau-Devonshire potential) to simulate the ferroelectric dynamics coupled to the magnetic dynamics. The latter is treated via the electric-polarization-dependent Landau-Lifshitz-Gilbert equation. By performing an adapted Olsen cycle we show that a multiferroic working substance is potentially much more superior to the sole ferroelectrics, as far as the thermal energy harvesting using pyroelectric effect is concerned. Our proposal holds promise not only for low-energy consuming devices but also for cooling technology.

  6. Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor

    SciTech Connect

    Stalnaker, Jason E.; Mbele, Vela; Gerginov, Vladislav; Fortier, Tara M.; Diddams, Scott A.; Hollberg, Leo; Tanner, Carol E.

    2010-04-15

    We report measurements of absolute transition frequencies and hyperfine coupling constants for the 8S{sub 1/2}, 9S{sub 1/2}, 7D{sub 3/2}, and 7D{sub 5/2} states in {sup 133}Cs vapor. The stepwise excitation through either the 6P{sub 1/2} or 6P{sub 3/2} intermediate state is performed directly with broadband laser light from a stabilized femtosecond laser optical-frequency comb. The laser beam is split, counterpropagated, and focused into a room-temperature Cs vapor cell. The repetition rate of the frequency comb is scanned and we detect the fluorescence on the 7P{sub 1/2,3/2{yields}}6S{sub 1/2} branches of the decay of the excited states. The excitations to the different states are isolated by the introduction of narrow-bandwidth interference filters in the laser beam paths. Using a nonlinear least-squares method we find measurements of transition frequencies and hyperfine coupling constants that are in agreement with other recent measurements for the 8S state and provide improvement by 2 orders of magnitude over previously published results for the 9S and 7D states.

  7. High-frequency search for mass-coupled mesoscopic forces

    NASA Astrophysics Data System (ADS)

    Yan, Haiyang; Otto, Hans; Weisman, Evan; Khatiwada, Rakshya; Long, Josh

    2014-03-01

    The possible existence of unobserved interactions of nature with ranges of mesoscopic scale (microns to millimeters) and very weak couplings to matter has attracted a great deal of scientific attention. We report on an experimental search for exotic mass-coupled in this range. Our technique uses a planar, double-torsional tungsten oscillator as a test mass, a similar oscillator as a source mass, and a stiff conducting shield in between them to suppress backgrounds. This method affords operation at the limit of instrumental thermal noise, which we have we have recently demonstrated with a measurement of the noise kinetic energy of a detector prototype in thermal equilibrium at room temperature. The fluctuations of the oscillator in a high-Q torsional mode with a resonant frequency near 1 kHz are detected with capacitive transducers coupled to a sensitive differential amplifier. The apparatus is calibrated by means of a known electrostatic force and input from a finite-element model of the selected mode. The measured kinetic energy is in agreement with the expected value of 1/2 kT.

  8. Hot-Pressed Ferrite-Lead Zirconate Titanate Magnetoelectric Composites

    NASA Astrophysics Data System (ADS)

    Devreugd, C. P.; Srinivasan, G.; Micheli, A. L.; Mantese, J. V.

    2004-03-01

    The electromagnetic coupling in magnetostrictive/piezoelectric is mediated by mechanical stress: magnetostriction induced mechanical deformation and piezoelectric effect induced electric fields. Composites studied so far include ferrite-lead zirconate titanate (PZT) and manganite-PZT [1-3]. Bulk or layered composites are usually synthesized by conventional sintering of mixture of powders or laminated thick films. This study is concerned with the fabrication of novel ferromagnetic-ferroelectric bulk and thin film layered composites by hot pressing together with studies on the nature of magnetoelectric interactions. The objective is to obtain defect free samples with good interface coupling. Systems studied includes Ni-Zn, Co-Zn and Co-Ni ferrites that are predicted to show high piezomagnetic and magnetomechanical couplings and PZT. Samples were prepared using aluminum oxide or high temperature alloy dies. Sintering was done at 1300 K at a pressure of 5000-7000 psi. Measurements of transverse and longitudinal ME coefficients are performed at low frequencies (10 Hz-1kHz), and at electromechanical resonance (100-300 kHz). Important results of our studies are follows. (1) Hot-pressed samples show an order of magnitude improvement in ME voltage coefficient compared to samples processed by conventional sintering. The enhancement is attributed to an increase in density, sample resistivity, and interface coupling. (2) The longitudinal coupling is stronger than the transverse effect. (3) There is a significant increase in ME interactions at electromechanical resonance. (4) Samples with Ni-Zn ferrites show the highest ME coefficients. The results are analysed using our model for a bulk composite. - supported by a grant from the National Science Foundation (DMR-0322254) 1. G. Srinivasan, E. T. Rasmussen, J. Gallegos, Yu. I. Bokhan, and V. M. Laletin, Phys. Rev. B, 64, 214408 (2001). 2. G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, Phys. Rev. B 65, 134402 (2002). 3

  9. Charge-transfer magnetoelectrics of polymeric multiferroics.

    PubMed

    Qin, Wei; Jasion, Daniel; Chen, Xiaomin; Wuttig, Manfred; Ren, Shenqiang

    2014-04-22

    The renaissance of multiferroics has yielded a deeper understanding of magneto-electric coupling of inorganic single-phase multiferroics and composites. Here, we report charge-transfer polymeric multiferroics, which exhibit external field-controlled magnetic, ferroelectric, and microwave response, as well as magneto-dielectric coupling. The charge-transfer-controlled ferroic properties result from the magnetic field-tunable triplet exciton which has been validated by the dynamic polaron-bipolaron transition model. In addition, the temperature-dependent dielectric discontinuity and electric-field-dependent polarization confirms room temperature ferroelectricity of crystalline charge-transfer polymeric multiferroics due to the triplet exciton, which allows the tunability of polarization by the photoexcitation. PMID:24654686

  10. Abnormal cross-frequency coupling in the tinnitus network

    PubMed Central

    Adamchic, Ilya; Langguth, Berthold; Hauptmann, Christian; Tass, Peter A.

    2014-01-01

    Neuroimaging studies have identified networks of brain areas and oscillations associated with tinnitus perception. However, how these regions relate to perceptual characteristics of tinnitus, and how oscillations in various frequency bands are associated with communications within the tinnitus network is still incompletely understood. Recent evidence suggests that apart from changes of the tinnitus severity the changes of tinnitus dominant pitch also have modulating effect on the underlying neuronal activity in a number of brain areas within the tinnitus network. Therefore, in a re-analysis of an existing dataset, we sought to determine how the oscillations in the tinnitus network in the various frequency bands interact. We also investigate how changes of tinnitus loudness, annoyance and pitch affect cross-frequency interaction both within and between nodes of the tinnitus network. Results of this study provide, to our knowledge, the first evidence that in tinnitus patients, aside from the previously described changes of oscillatory activity, there are also changes of cross-frequency coupling (CFC); phase-amplitude CFC was increased in tinnitus patients within the auditory cortex and the dorsolateral prefrontal regions between the phase of delta-theta and the amplitude of gamma oscillations (Modulation Index [MI] 0.17 in tinnitus patients vs. 0.08 in tinnitus free controls). Moreover, theta phase in the anterior cingulate region modulated gamma in the auditory (MI 0.1) and dorsolateral prefrontal regions (MI 0.19). Reduction of tinnitus severity after acoustic coordinated reset therapy led to a partial normalization of abnormal CFC. Also treatment induced changes in tinnitus pitch significantly modulated changes in CFC. Thus, tinnitus perception is associated with a more pronounced CFC within and between nodes of the tinnitus network. CFC can coordinate tinnitus-relevant activity in the tinnitus network providing a mechanism for effective communication between

  11. Crystal growth of hexaferrite architecture for magnetoelectrically tunable microwave semiconductor integrated devices

    NASA Astrophysics Data System (ADS)

    Hu, Bolin

    Hexaferrites (i.e., hexagonal ferrites), discovered in 1950s, exist as any one of six crystallographic structural variants (i.e., M-, X-, Y-, W-, U-, and Z-type). Over the past six decades, the hexaferrites have received much attention owing to their important properties that lend use as permanent magnets, magnetic data storage materials, as well as components in electrical devices, particularly those operating at RF frequencies. Moreover, there has been increasing interest in hexaferrites for new fundamental and emerging applications. Among those, electronic components for mobile and wireless communications especially incorporated with semiconductor integrated circuits at microwave frequencies, electromagnetic wave absorbers for electromagnetic compatibility, random-access memory (RAM) and low observable technology, and as composite materials having low dimensions. However, of particular interest is the magnetoelectric (ME) effect discovered recently in the hexaferrites such as SrScxFe12-xO19 (SrScM), Ba2--xSrxZn 2Fe12O22 (Zn2Y), Sr4Co2Fe 36O60 (Co2U) and Sr3Co2Fe 24O41 (Co2Z), demonstrating ferroelectricity induced by the complex internal alignment of magnetic moments. Further, both Co 2Z and Co2U have revealed observable magnetoelectric effects at room temperature, representing a step toward practical applications using the ME effect. These materials hold great potential for applications, since strong magnetoelectric coupling allows switching of the FE polarization with a magnetic field (H) and vice versa. These features could lead to a new type of storage devices, such as an electric field-controlled magnetic memory. A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25--40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the

  12. Laminated magneto-electric structures for tunable contactless magnetic sensing and energy harvesting

    NASA Astrophysics Data System (ADS)

    Finkel, Peter

    2010-03-01

    Multiferroic materials attracted increasingly high attention due to their potential in various multifunction sensing, filtering and energy transduction applications. In this work we investigated the magnetoelectric laminated multiferroic structure exhibiting a strong magneto-electric (ME) effect. We report here the magnetetoelctric coupling properties of the magnetoelastic/piezoelectric laminated FeNi42%/ polyvinylidene fluoride (PVDF) clamped composite structure as a function of stress and magnetic field. The magnetically and elastically tunable, flexural resonant mode was probed using Doppler laser spectroscopy. Most commercially available methods of magnetic sensing involve electrical current or voltage measurements requiring electrical wiring or similar contact connections to measure an electric signal correlated with a magnetic field; and therefore are not immune to EMI and shot-noise. Our solution could overcome this shortcoming is to implement a completely remote contactless, i.e. optical, measurement approach. Here we demonstrate that this bimorph structure can be used for low-frequency contactless detection of magnetic field fluctuation and magnetic field monitoring for non-contact resonant optical magnetic field sensing and energy harvesting.

  13. Magnetoelectric and multiferroic properties in layered 3D transition metal oxides

    NASA Astrophysics Data System (ADS)

    Hwang, Jungmin

    Functional ferroelectric and magnetic materials have played an important role of modern technology in the sensor or storage device industries. Ferroelectricity and ferromagnetism emerge from different origins. However, it is discovered that these two seemingly unrelated phenomena can actually coexist in materials called multiferroics. Since current trends toward device miniaturization have increased interests in combining electronic and magnetic properies into multifunctional materials, multiferroics have attracted great attention. Ferromagnetic ferroelectric multiferroics are especially fascinating not only because they have both ferroic properties, but also because of the magnetoelectric coupling which leads the interaction between the magnetic and electric polarization. Recent theoretical breakthroughs in understanding the coexistence of magnetic and electrical ordering have regenerated a great interests in research of such magnetoelectric multiferroics. The long-sought control of electric polarization by magnetic fields was recently discovered in 'frustrated magnets', for example the perovskites RMnO3, RMn 2O5 (R: rare earth elements), Ni3V 2O8, delafossite CuFeO2, spinel CoCr2O 4, MnWO4, etc. In this dissertation, I have explored several magnetoelectric materials and multiferroics, which show significant magnetoelectric interactions between electric and magnetic orderings. The objects of my projects are focused on understanding the origins of such magnetoelectric couplings and establishing the magnetic/electric phase diagrams and the spin structures. I believe that my works would help to understand the mechanisms of magnetoelectric effects and multiferroics.

  14. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices

    SciTech Connect

    Baek, S. H.; Jang, H. W.; Folkman, C. M.; Li, Yulan; Winchester, B.; Zhang, J. X.; He, Q.; Chu, Y. H.; Nelson, C. T.; Rzchowski, M. S.; Pan, X. Q.; Ramesh, R.; Chen , L.Q.; Eom, C.B.

    2010-04-01

    Multiferroics, where (anti-) ferromagnetic, ferroelectric, and ferroelastic order parameters coexist [1-5], enables manipulation of magnetic ordering by electric field through switching of the electric polarization [6-9]. It has been shown that realization of magnetoelectric coupling in single-phase multiferroic such as BiFeO3 requires ferroelastic (71o, 109o) rather than ferroelectric (180o) domain switching [6]. However, the control of such ferroleastic switching in a singlephase system has been a significant challenge as elastic interactions tend to destabilize small switched volumes, resulting in subsequent ferroelastic backswitching at zero electric field, thus disappearance of nonvolatile information storage [10, 11]. Guided by our phase-field simulations, we here report an approach to stabilize ferroelastic switching by eliminating the stress-induced instability responsible for back-switching using isolated monodomain BiFeO3islands. This work demonstrates a critical step to control and utilize nonvolatile magnetoelectric coupling at the nanoscale. Beyond magnetoelectric coupling, it provides a framework for exploring a route to control multiple order parameters coupled to ferroelastic order in other low-symmetry materials.

  15. Magnetoelectric domain control in multiferroic TbMnO3

    NASA Astrophysics Data System (ADS)

    Matsubara, Masakazu; Manz, Sebastian; Mochizuki, Masahito; Kubacka, Teresa; Iyama, Ayato; Aliouane, Nadir; Kimura, Tsuyoshi; Johnson, Steven L.; Meier, Dennis; Fiebig, Manfred

    2015-06-01

    The manipulation of domains by external fields in ferroic materials is of major interest for applications. In multiferroics with strongly coupled magnetic and electric order, however, the magnetoelectric coupling on the level of the domains is largely unexplored. We investigated the field-induced domain dynamics of TbMnO3 in the multiferroic ground state and across a first-order spin-flop transition. In spite of the discontinuous nature of this transition, the reorientation of the order parameters is deterministic and preserves the multiferroic domain pattern. Landau-Lifshitz-Gilbert simulations reveal that this behavior is intrinsic. Such magnetoelectric correlations in spin-driven ferroelectrics may lead to domain wall-based nanoelectronics devices.

  16. Multiferroics. Magnetoelectric domain control in multiferroic TbMnO₃.

    PubMed

    Matsubara, Masakazu; Manz, Sebastian; Mochizuki, Masahito; Kubacka, Teresa; Iyama, Ayato; Aliouane, Nadir; Kimura, Tsuyoshi; Johnson, Steven L; Meier, Dennis; Fiebig, Manfred

    2015-06-01

    The manipulation of domains by external fields in ferroic materials is of major interest for applications. In multiferroics with strongly coupled magnetic and electric order, however, the magnetoelectric coupling on the level of the domains is largely unexplored. We investigated the field-induced domain dynamics of TbMnO3 in the multiferroic ground state and across a first-order spin-flop transition. In spite of the discontinuous nature of this transition, the reorientation of the order parameters is deterministic and preserves the multiferroic domain pattern. Landau-Lifshitz-Gilbert simulations reveal that this behavior is intrinsic. Such magnetoelectric correlations in spin-driven ferroelectrics may lead to domain wall-based nanoelectronics devices. PMID:26045431

  17. The electrical asymmetry effect in multi-frequency capacitively coupled radio frequency discharges

    NASA Astrophysics Data System (ADS)

    Schulze, J.; Schüngel, E.; Donkó, Z.; Czarnetzki, U.

    2011-02-01

    The electrical asymmetry effect (EAE) in geometrically symmetric capacitively coupled radio frequency discharges operated at multiple consecutive harmonics is investigated by a particle-in-cell (PIC) simulation and an analytical model. The model is based on the original EAE model, which is extended by taking into account the floating potentials, the voltage drop across the plasma bulk, and the symmetry parameter resulting from the PIC simulation. Compared with electrically asymmetric dual-frequency discharges we find that (i) a significantly stronger dc self-bias can be generated electrically and that (ii) the mean ion energies at the electrodes can be controlled separately from the ion flux over a broader range by tuning the phase shifts between the individual voltage harmonics. A recipe for the optimization of the applied voltage waveform to generate the strongest possible dc self-bias electrically and to obtain maximum control of the ion energy via the EAE is presented.

  18. Charge dynamics in capacitively coupled radio frequency discharges

    NASA Astrophysics Data System (ADS)

    Schulze, J.; Schüngel, E.; Donkó, Z.; Czarnetzki, U.

    2010-06-01

    In a capacitively coupled radio frequency (CCRF) discharge the number of positive and negative charges lost to each electrode must balance within one RF period to ensure a constant total uncompensated charge in the discharge, Qtot, on time average. This balance is the result of a compensation of electron and ion fluxes at each electrode within one RF period. Although Qtot is constant on temporal average, it is time dependent on time scales shorter than one RF period, since it results from a balance of the typically constant ion flux and the strongly time dependent electron flux at each electrode. Nevertheless, Qtot is assumed to be constant in various models. Here the dynamics of Qtot is investigated in a geometrically symmetric CCRF discharge operated in argon at 13.56 and 27.12 MHz with variable phase shift θ between the driving voltages by a PIC simulation and an analytical model. Via the electrical asymmetry effect (EAE) a variable dc self-bias is generated as a function of θ. It is found that Qtot is not temporally constant within the low frequency period, but fluctuates by about 10% around its time average value. This modulation is understood by an analytical model. It is demonstrated that this charge dynamics leads to a phase shift of the dc self-bias not captured by models neglecting the charge dynamics. This dynamics is not restricted to dual frequency discharges. It is a general phenomenon in all CCRF discharges and can generally be described by the model introduced here. Finally, Qtot is split into the uncompensated charges in each sheath. The sheath charge dynamics and the self-excitation of non-linear plasma series resonance oscillations of the RF current via the EAE at low pressures of a few pascals are discussed.

  19. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P.

    2016-05-01

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  20. Highly sensitive tube-topology magnetoelectric magnetic sensors

    NASA Astrophysics Data System (ADS)

    Gillette, Scott Matthew

    Magnetoelectric (ME) composites have drawn increasing interest in recent years due to advancements in the technology resulting in enhanced ME coupling coefficients, stable room-temperature operation, sub-nanoTesla noise floor, low- and zero-biased operation, and fabrication of compact, miniaturized devices. Now, more than ever, practical use of ME devices in commercial magnetometry applications is feasible, while continued development of numerous other applications, such as voltage-tunable magnetic field generators, voltage-tunable inductors, and magnetically-tunable capacitors, bolster the overall usefulness of ME composites as a valuable technology. This dissertation focuses on development and characterization of tube-topology ME composites as magnetic field sensors. The novel topology is most notable for demonstrating high zero-external-bias sensitivity, low noise floor, low-frequency bandwidth, and self-powered, stable room temperature operation. Numerous characterization studies are included in this work where several devices are analyzed as a function of test-field, DC-bias field, geometry, material choice, and more. The overall conclusions drawn upon these results indicate strongly that the tube-topology ME magnetic field sensor holds promise to compete with existing hall-effect and flux-gate magnetometers. ME composites are at the tipping point of commercialization for use in magnetometry applications and are emerging as a valuable technology for use in numerous creative ways.

  1. Enhancing magnetoelectric effect in multiferroic composite bilayers via flexoelectricity

    NASA Astrophysics Data System (ADS)

    Zhang, Chunli; Zhang, Lingli; Shen, Xudong; Chen, Weiqiu

    2016-04-01

    We employ the flexoelectricity to enhance the magnetoelectric (ME) (coupling) effect in multiferroic (MF) composites and structures. An analytical model is presented to predict the ME effect in a MF composite bilayer consisting of piezomagnetic and piezoelectric layers. The flexoelectric effect in the piezoelectric layer is taken into account. The static ME effect in the MF composite bilayer with free boundary conditions is investigated. The results indicate that flexoelectricity can dramatically enhance the ME effect in multiferroic composites and structures.

  2. Dual-phase self-biased magnetoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Apo, Daniel J.; Priya, Shashank

    2013-11-01

    We report a magnetoelectric energy harvester structure that can simultaneously scavenge magnetic and vibration energy in the absence of DC magnetic field. The structure consisted of a piezoelectric macro-fiber composite bonded to a Ni cantilever. Large magnetoelectric coefficient ˜50 V/cm Oe and power density ˜4.5 mW/cm3 (1 g acceleration) were observed at the resonance frequency. An additive effect was realized when the harvester operated under dual-phase mode. The increase in voltage output at the first three resonance frequencies under dual-phase mode was found to be 2.4%, 35.5%, and 360.7%. These results present significant advancement toward high energy density multimode energy harvesting system.

  3. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    SciTech Connect

    Munafò, A. Alfuhaid, S. A. Panesi, M.; Cambier, J.-L.

    2015-10-07

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.

  4. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    NASA Astrophysics Data System (ADS)

    Munafò, A.; Alfuhaid, S. A.; Cambier, J.-L.; Panesi, M.

    2015-10-01

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.

  5. Note: self-biased magnetic field sensor using end-bonding magnetoelectric heterostructure.

    PubMed

    Zhao, Yaoxia; Lu, Caijiang

    2015-03-01

    A high sensitivity magnetic field sensor based on magnetoelectric (ME) coupling is presented. The ME sensor FeCuNbSiB/Nickel-PZT-FeCuNbSiB/Nickel is made by bonding magnetization-graded magnetostrictive materials FeCuNbSiB/Nickel at the free ends of the piezoelectric Pb(Zr1-x,Tix)O3 (PZT) plate. Experiments indicate that the proposed sensor has a zero-bias field sensitivity of 14.7 V/Oe at resonance, which is ∼41.6 times larger than that of previous FeCuNbSiB-PZT-FeCuNbSiB. Furthermore, without external biased field, it can detect dc magnetic field changes as small as ∼9 nT near the resonant frequency. This proposed ME sensor provides new pathways to reducing or even eliminating the need of bias fields for ME sensors. PMID:25832285

  6. Mesoscale Interfacial Dynamics in Magnetoelectric Nanocomposites

    SciTech Connect

    Shashank, Priya

    2009-12-14

    Biphasic composites are the key towards achieving enhanced magnetoelectric response. In order understand the control behavior of the composites and resultant symmetry of the multifunctional product tensors, we need to synthesized model material systems with the following features (i) interface formation through either deposition control or natural decomposition; (ii) a very high interphase-interfacial area, to maximize the ME coupling; and (iii) an equilibrium phase distribution and morphology, resulting in preferred crystallographic orientation relations between phases across the interphase-interfacial boundaries. This thought process guided the experimental evolution in this program. We initiated the research with the co-fired composites approach and then moved on to the thin film laminates deposited through the rf-magnetron sputtering and pulsed laser deposition process

  7. Micromagnetism and topological defects in magnetoelectric media

    NASA Astrophysics Data System (ADS)

    Pyatakov, A. P.; Sergeev, A. S.; Nikolaeva, E. P.; Kosykh, T. B.; Nikolaev, A. V.; Zvezdin, K. A.; Zvezdin, A. K.

    2015-10-01

    This paper briefly reviews research of the magnetoelectric materials and multiferroics as domain-structured media. The review is focused on magnetoelectric phenomena in epitaxial iron garnet films (electrically induced displacement and tilting of domain boundaries) as a striking example of magnetoelectricity in micromagnetism. The paper also considers the effect of an electric field on other topological defects in magnetically ordered media, including Bloch lines and Bloch points at domain boundaries, magnetic vortices, and skyrmions.

  8. Magnetoelectric sensor excitations in hexaferrite films

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Rabinowitz, Jake; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-05-01

    We developed techniques for H- and E-field sensors utilizing single phase magnetoelectric (ME) hexaferrite thin films in the frequency range of 1 kHz to 10 MHz. The technique incorporating solenoid coils and multi-capacitors bank was developed to probe the physics and properties of ME hexaferrite film and explore ME effects for sensor detections and tunable device applications. For H-field sensing, we obtained sensitivity of 4 × 10-4 V/Gm and for E-field sensing the sensitivity was 10-3 Gm/V. Tunability of up to 6% was achieved for tunable inductor applications. The proposed fabrication designs lend themselves to significant (˜106) improvements in sensitivity and tunability.

  9. Magnetoelectric properties of 500-nm C r2O3 films

    NASA Astrophysics Data System (ADS)

    Borisov, P.; Ashida, T.; Nozaki, T.; Sahashi, M.; Lederman, D.

    2016-05-01

    The linear magnetoelectric effect was measured in 500-nm C r2O3 films grown by radio frequency sputtering on A l2O3 substrates between top and bottom thin film Pt electrodes. Magnetoelectric susceptibility was measured directly by applying an alternating current (ac) electric field and measuring the induced ac magnetic moment using superconducting quantum interference device magnetometry. A linear dependence of the induced ac magnetic moment on the ac electric field amplitude was found. The temperature dependence of the magnetoelectric susceptibility agreed qualitatively and quantitatively with prior measurements of bulk single crystals, but the characteristic temperatures of the film were lower than those of single crystals. It was also possible to reverse the sign of the magnetoelectric susceptibility by reversing the sign of the magnetic field applied during cooling through the Néel temperature. A competition between total magnetoelectric and Zeeman energies is proposed to explain the difference between film and bulk C r2O3 regarding the cooling field dependence of the magnetoelectric effect.

  10. Modular networks with delayed coupling: Synchronization and frequency control

    NASA Astrophysics Data System (ADS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2014-07-01

    We study the collective dynamics of modular networks consisting of map-based neurons which generate irregular spike sequences. Three types of intramodule topology are considered: a random Erdös-Rényi network, a small-world Watts-Strogatz network, and a scale-free Barabási-Albert network. The interaction between the neurons of different modules is organized by relatively sparse connections with time delay. For all the types of the network topology considered, we found that with increasing delay two regimes of module synchronization alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual role of the time delay is thus established: controlling a synchronization mode and degree and controlling an average network frequency. Furthermore, we investigate the influence on the modular synchronization by other parameters: the strength of intermodule coupling and the individual firing rate.

  11. Observation of Resonant Quantum Magnetoelectric Effect in a Multiferroic Metal-Organic Framework.

    PubMed

    Tian, Ying; Shen, Shipeng; Cong, Junzhuang; Yan, Liqin; Wang, Shouguo; Sun, Young

    2016-01-27

    A resonant quantum magnetoelectric coupling effect has been demonstrated in the multiferroic metal-organic framework of [(CH3)2NH2]Fe(HCOO)3. This material shows a coexistence of a spin-canted antiferromagnetic order and ferroelectricity as well as clear magnetoelectric coupling below TN ≈ 19 K. In addition, a component of single-ion quantum magnets develops below ∼ 8 K because of an intrinsic magnetic phase separation. The stair-shaped magnetic hysteresis loop at 2 K signals resonant quantum tunneling of magnetization. Meanwhile, the magnetic field dependence of dielectric permittivity exhibits sharp peaks just at the critical tunneling fields, evidencing the occurrence of resonant quantum magnetoelectric coupling effect. This resonant effect enables a simple electrical detection of quantum tunneling of magnetization. PMID:26743039

  12. Ferroic Properties in Individual and Multi-Component Nanostructures: The Influence of Size, Shape, and Interfacial Coupling

    NASA Astrophysics Data System (ADS)

    Johnson, Stephanie Howell

    nanoscale, the functional properties of individual ferroelectric nanocubes of varying sizes were measured at elevated temperature using local ferroelectric piezoelectric amplitude and phase switching analysis. Experimental evidence of the direct magnetoelectric effect within a single integrated nanostructure is presented. The synthesis, fabrication, and functional property characterization of highly tunable magnetoelectric coupling within individual multiferroic nanowires is described. The direct magnetoelectric response is distinctively enhanced by extreme curvature of the ferroelectric shell in relation to planar heterostructures, the geometric dominance of the interface as a fraction of the total volume of the nanowire, and magnetic shape anisotropy of the ferromagnetic nanowire core. This study of geometry aided direct magnetoelectric coupling can help the development of a future study and design of a magnetoelectric proximity sensor. One solution to address the issues associated with current magnetic field sensors, such as cost, durability, and detection range, is to develop a mesoscale magnetoelectric resonator device. Magnetoelectric resonator structures have a resonant frequency which will shift in the presence of an applied magnetic field due to the magnetostrictive properties of the ferromagnetic material. The resonator detection range can be tuned by pre-straining the piezoelectric layer. Two suggested resonator designs which are promising candidates for magnetic field proximity sensors are the fixed-fixed beam design and the membrane design.

  13. Magnetoelectric effect in layered ferrite/PZT composites. Study of the demagnetizing effect on the magnetoelectric behavior

    NASA Astrophysics Data System (ADS)

    Loyau, V.; Morin, V.; Chaplier, G.; LoBue, M.; Mazaleyrat, F.

    2015-05-01

    We report the use of high magnetomechanical coupling ferrites in magnetoelectric (ME) layered composites. Bilayer samples combining (Ni0.973 Co0.027)1-xZnxFe2O4 ferrites (x = 0-0.5) synthesized by non conventional reactive Spark Plasma Sintering and commercial lead zirconate titanate (PZT) were characterized in term of ME voltage coefficients measured at sub-resonant frequency. Strong ME effects are obtained and we show that an annealing at 1000 °C and a quenching in air improve the piezomagnetic behavior of Zn-rich compositions. A theoretical model that predicts the ME behavior was developed, focusing our work on the demagnetizing effects in the transversal mode as well as the longitudinal mode. The model shows that: (i) high ME coefficients are obtained when ferrites with high magnetomechanical coupling are used in bilayer ME composites, (ii) the ME behavior in transversal and longitudinal modes is quite similar, and differences in the shapes of the ME curves are mainly due the demagnetizing effects, (iii) in the transversal mode, the magnetic field penetration depends on the ferrite layer thickness and the ME coefficient is affected accordingly. The two later points are confirmed by measurements on ME samples and calculations. Performances of the ME composites made with high magnetomechanical coupling ferrites are compared to those obtained using Terfenol-D materials in the same conditions of size, shape, and volume ratio. It appears that a ferrite with an optimized composition has performances comparable to those obtained with Terfenol-D material. Nevertheless, the fabrication processes of ferrites are quite simpler. Finally, a ferrite/PZT based ME composite was used as a current sensor.

  14. The structural, electrical and magnetoelectric properties of soft-chemically-synthesized SmFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Sahoo, Sushrisangita; Mahapatra, P. K.; Choudhary, R. N. P.

    2016-01-01

    The structural, electrical and magnetoelectric properties of SmFeO3 ceramic samples, synthesized using a soft-chemical method, were studied. A structural analysis of the material was carried out by the Rietveld refinement of room temperature x-ray diffraction data. The temperature dependence of the dielectric peaks was analyzed by fitting them with two Gaussian peaks corresponding to two phase transitions—one being electric, and the other being magnetic in nature. The depression angle of the semicircles in a Nyquist plot representing the grain and grain boundary contributions in the sample was estimated. The grain boundary effect, appearing at temperatures above 75 °C, is explained using the Maxwell-Wagner mechanism. The impedance study reveals a semi-conducting grain with an insulating grain boundary, leading to the formation of surface and internal barrier layer capacitors and resulting in a very high dielectric constant. The effect of dc conductivity on the loss tangent at low frequencies and high temperature has been analyzed. The frequency dependence of ac conductivity in the two different regions can be explained on the basis of correlated barrier hopping and quantum mechanical tunneling models. The material is found to exhibit canted antiferromagnetism and improper ferroelectric characteristics. The value of the magnetoelectric voltage-coupling coefficient (α) of a SmFeO3 ceramic is found to be 2.2 mV cm-1 Oe-1.

  15. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator

    SciTech Connect

    Peng, Shixiang Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Zhang, Ailing; Chen, Jia'er; University of Chinese Academy of Sciences, Beijing 100049

    2014-02-15

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  16. Magnetoelectric Effects in hexagonal ferrite-PZT bilayers

    NASA Astrophysics Data System (ADS)

    Mathe, V. M.; Srinivasan, G.

    2008-03-01

    Magnetoelectric (ME) bilayers consisting of magnetostrictive and a piezoelectric layer are of interest for studies on the nature of ME interactions and useful technologies. Co2Z and Zn2Y are well known hexagonal ferrites with easy plane or uniaxial anisotropy. PZT has high piezoelectric coefficient. This study is on samples with Co2Z or Zn2Y as a magnetostrictive layer and PZT as a piezoelectric layer to form magnetoelectric bilayers. Low frequency (100 Hz) ME coefficient was measured over 0-17 kOe for various orientations of bilayers in a plane parallel to ac and bias magnetic fields. We measured a strong dependence of the ME voltage coefficients on magneitude and orientation of the bias field. The data are compared with theory. VLM gratefully acknowledge the award of a BOYSCAST fellowship and a FAST TRACK fellowship by DST, India. The research was supported by NSF grants.

  17. Spin-lattice coupling in iron jarosite

    SciTech Connect

    Buurma, A.J.C.; Handayani, I.P.; Mufti, N.; Blake, G.R.; Loosdrecht, P.H.M. van; Palstra, T.T.M.

    2012-11-15

    We have studied the magnetoelectric coupling of the frustrated triangular antiferromagnet iron jarosite using Raman spectroscopy, dielectric measurements and specific heat. Temperature dependent capacitance measurements show an anomaly in the dielectric constant at T{sub N}. Specific heat data indicate the presence of a low frequency Einstein mode at low temperature. Raman spectroscopy confirms the presence of a new mode below T{sub N} that can be attributed to folding of the Brillouin zone. This mode shifts and sharpens below T{sub N}. We evaluate the strength of the magnetoelectric coupling using the symmetry unrestricted biquadratic magnetoelectric terms in the free energy. - Graphical abstract: Sketch of two connected triangles formed by Fe{sup 3+} spins (red arrows) in the hexagonal basal plane of potassium iron jarosite. An applied magnetic field (H) below the antiferromagnetic ordering temperature induces shifts of the hydroxy ligands, giving rise to local electrical dipole moments (blue arrows). These electric displacements cancel out in pairwise fashion by symmetry. Ligand shifts are confined to the plane and shown by shadowing. Highlights: Black-Right-Pointing-Pointer Evidence has been found for spin-lattice coupling in iron jarosite. Black-Right-Pointing-Pointer A new optical Raman mode appears below T{sub N} and shifts with temperature. Black-Right-Pointing-Pointer The magnetodielectric coupling is mediated by superexchange. Black-Right-Pointing-Pointer Symmetry of Kagome magnetic lattice causes local electrical dipole moments to cancel.

  18. Peak divergence in the curve of magnetoelectric coefficient versus dc bias magnetic field at resonance region for bi-layer magnetostrictive/piezoelectric composites

    SciTech Connect

    Zuo, Z. J.; Pan, D. A. Zhang, S. G.; Qiao, L. J.; Jia, Y. M.

    2013-12-15

    Magnetoelectric (ME) coefficient dependence on the bias magnetic field at resonance frequencies for the bi-layered bonded Terfenol-D/Pb(Zr,Ti)O{sub 3} composite was investigated. The resonance frequency decreases first and then increases with the bias magnetic field (H{sub DC}), showing a “V” shape in the range of 0 ∼ 5 kOe. Below the resonance frequency, the pattern of ME coefficient dependence on the H{sub DC} shows a single peak, but splits into a double-peak pattern when the testing frequency increases into a certain region. With increasing the frequency, a divergent evolution of the H{sub DC} patterns was observed. Domain motion and ΔE effect combined with magnetostriction-piezoelectric coupling effect were employed to explain this experimental result.

  19. High efficiency coupling of radio frequency beams from the dual frequency gyrotron with a corrugated waveguide transmission system.

    PubMed

    Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Mitsunaka, Yoshika; Sakamoto, Keishi

    2013-01-01

    High efficiency coupling of the millimeter-wave output of the dual-frequency gyrotron with the transmission line was demonstrated. The dual-frequency gyrotron was design to produce similar beam profiles for two operation frequencies (170 GHz and 137 GHz). Using two RF beam reflecting mirrors in a matching optics unit (MOU), which are designed to transform the beam profile of the gyrotron output to the fundamental waveguide mode (HE(11) mode) at 170 GHz, high efficiency coupling was demonstrated for two frequencies. The measured mode purity of HE(11) mode was 96% at 170 GHz and 94% at 137 GHz operations with the identical mirrors at the fixed mirror position and angle. The results indicate that the significantly simple dual frequency system is realized by the gyrotron designed to output the similar beam profiles at different frequency operation. PMID:23387644

  20. Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2-2) composites

    SciTech Connect

    Avellaneda, M.; Harshe, G.

    1994-07-01

    We consider the magnetoelectric effect arising in a multilayer composite consisting of bonded layers of a piezoelectric ceramic and a magnetostrictive material operating in the linear regime. Magnetoelectric coupling arises from the mechanical contacts between layers and the electric/mechanical and magnetic/mechanical coupling in each phase. Calculations of the magnetoelectric coefficient alpha * as well as of the figures of merit k(sub me) and k(sub me,cl) are presented. These calculations fully take into account the electric, magnetic and mechanical mismatch in the material properties, as well as the volume-fractions of both materials. We derive the optimal volume fraction f(sub 1)(sup crit) of piezoelectric material needed to maximize the figure of merit k(sub fme) or k(sub me,cl) for the composite and give criteria for optimizing the magnetoelectric effect in terms of the choice of the individual constituents. We computed the figures of merit of a variety of piezoelectric /magnetostrictive combinations. The combinations CoFe2O4/PZT5H (k(sub me) = 14%), Terfenol D/PZT5A (k(sub me) = 22%) and Terfenol D/PZT4 (k(sub me) = 30%) show reasonable energy transfer to be useful as magnetoelectric transducers. 11 refs.

  1. Linear magnetoelectricity at room temperature in perovskite superlattices by design

    NASA Astrophysics Data System (ADS)

    Ghosh, Saurabh; Das, Hena; Fennie, Craig J.

    2015-11-01

    Discovering materials that display a linear magnetoelectric (ME) effect at room temperature is a challenge. Such materials could facilitate devices based on the electric field control of magnetism. Here we present simple, chemically intuitive design rules to identify a class of bulk magnetoelectric materials based on the "bicolor" layering of P b n m ferrite perovskites, e.g., LaFeO3/LnFeO3 superlattices, Ln = lanthanide cation. We use first-principles density functional theory calculations to confirm these ideas. We elucidate the origin of this effect and show it is a general consequence of the layering of any bicolor P b n m perovskite superlattice in which the number of constituent layers are odd (leading to a form of hybrid improper ferroelectricity). Our calculations suggest that the ME effect in these superlattices is larger than that observed in the prototypical magnetoelectric materials Cr2O3 and BiFeO3. Furthermore, in these proposed materials, the strength of the linear ME coupling increases with the magnitude of the induced spontaneous polarization which is controlled by the La/Ln cation radius mismatch. We use a simple mean field model to show that the proposed materials order magnetically above room temperature.

  2. Low-frequency RF Coupling To Unconventional (Fat Unbalanced) Dipoles

    SciTech Connect

    Ong, M M; Brown, C G; Perkins, M P; Speer, R D; Javedani, J B

    2010-12-07

    The report explains radio frequency (RF) coupling to unconventional dipole antennas. Normal dipoles have thin equal length arms that operate at maximum efficiency around resonance frequencies. In some applications like high-explosive (HE) safety analysis, structures similar to dipoles with ''fat'' unequal length arms must be evaluated for indirect-lightning effects. An example is shown where a metal drum-shaped container with HE forms one arm and the detonator cable acts as the other. Even if the HE is in a facility converted into a ''Faraday cage'', a lightning strike to the facility could still produce electric fields inside. The detonator cable concentrates the electric field and carries the energy into the detonator, potentially creating a hazard. This electromagnetic (EM) field coupling of lightning energy is the indirect effect of a lightning strike. In practice, ''Faraday cages'' are formed by the rebar of the concrete facilities. The individual rebar rods in the roof, walls and floor are normally electrically connected because of the construction technique of using metal wire to tie the pieces together. There are two additional requirements for a good cage. (1) The roof-wall joint and the wall-floor joint must be electrically attached. (2) All metallic penetrations into the facility must also be electrically connected to the rebar. In this report, it is assumed that these conditions have been met, and there is no arcing in the facility structure. Many types of detonators have metal ''cups'' that contain the explosives and thin electrical initiating wires, called bridge wires mounted between two pins. The pins are connected to the detonator cable. The area of concern is between the pins supporting the bridge wire and the metal cup forming the outside of the detonator. Detonator cables usually have two wires, and in this example, both wires generated the same voltage at the detonator bridge wire. This is called the common-mode voltage. The explosive component

  3. Correlation of magnetoelectric and delta-E effects in ferromagnetic-piezoelectric layered composites

    NASA Astrophysics Data System (ADS)

    Laletin, V. M.; Srinivasan, G.; Bichurin, M. I.

    2005-03-01

    Magnetoelectric (ME) coupling and its dependence on delta-E-effect have been studied in trilayers of ferromagnetic metals and lead zirconate titanate (PZT). Measurements on samples with PZT and Fe, Co, Ni or permendur (an alloy of Co-Fe-V) show evidence for strong ME interactions. Our theoretical model for bias magnetic field H dependence of ME effect predicts contributions due to two mechanisms: variation of piezomagnetic and compliance coefficients with H. The individual contributions from the two sources can be measured in the electromechanical resonance (EMR) region for the composite. Data on frequency dependence of ME coefficient reveal a giant coupling at electromechanical resonance (EMR), at 200-300 kHz for radial modes and at ˜2.7 MHz for thickness modes. Variation of compliance coefficients with H (delta-E-effect) results in a frequency shift of peak ME voltage coefficient. Theoretical profiles of ME coefficient vs. frequency agree with the data. These results are of importance for the design of signal processing devices that requires fine tuning. 1. M. I. Bichurin, D.A. Filippov, V. M. Petrov, V. M. Laletin, N. Paddubnaya, and G. Srinivasan, Phys. Rev. B 68, 132408 (2003). - supported by grants from the Russian Ministry of Education (Å02-3.4-278), the Universities of Russia Foundation (UNR 01.01.026) and the National Science Foundation (DMR-0302254).

  4. Colossal magnetoelectric effect induced by parametric amplification

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Onuta, Tiberiu-Dan; Long, Christian J.; Geng, Yunlong; Takeuchi, Ichiro

    2015-11-01

    We describe the use of parametric amplification to substantially increase the magnetoelectric (ME) coefficient of multiferroic cantilevers. Parametric amplification has been widely used in sensors and actuators based on optical, electronic, and mechanical resonators to increase transducer gain. In our system, a microfabricated mechanical cantilever with a magnetostrictive layer is driven at its fundamental resonance frequency by an AC magnetic field. The resulting actuation of the cantilever at the resonance frequency is detected by measuring the voltage across a piezoelectric layer in the same cantilever. Concurrently, the spring constant of the cantilever is modulated at twice the resonance frequency by applying an AC voltage across the piezoelectric layer. The spring constant modulation results in parametric amplification of the motion of the cantilever, yielding a gain in the ME coefficient. Using this method, the ME coefficient was amplified from 33 V/(cm Oe) to 2.0 MV/(cm Oe), an increase of over 4 orders of magnitude. This boost in the ME coefficient directly resulted in an enhancement of the magnetic field sensitivity of the device from 6.0 nT /√{Hz } to 1.0 nT /√{Hz } . The enhancement in the ME coefficient and magnetic field sensitivity demonstrated here may be beneficial for a variety actuators and sensors based on resonant multiferroic devices.

  5. Origin of ferromagnetism and oxygen-vacancy ordering induced cross-controlled magnetoelectric effects at room temperature

    NASA Astrophysics Data System (ADS)

    Wei, X. K.; Zou, T.; Wang, F.; Zhang, Q. H.; Sun, Y.; Gu, L.; Hirata, A.; Chen, M. W.; Yao, Y.; Jin, C. Q.; Yu, R. C.

    2012-04-01

    In dilute magnetic oxide hexagonal Ba(Ti0.9Fe0.1)O2.81 bulk ceramic, we report on combined ferromagnetism and improper ferroelectricity as well as cross-controlled magnetoelectric effects at room temperature. The annular-bright-field (ABF) imaging technique in scanning transmission electron microscopy (STEM) demonstrates an oxygen vacancy ordering in the hexagonal closest-packed Ba1-O1 layers and severe distortion of the octahedra and pyramids. Strong dependencies of the susceptibility on temperature and magnetic field as well as the frequency dependence of magnetization under an ac electric field reveal that the intrinsic ferromagnetism of the highly insulating system dynamically evolves from a paramagnetic ground state, and dynamic exchanges of trapped electrons in the ordered polarons are attributed to the ferromagnetic interaction. Accordingly, aided by the motion of oxygen vacancies, responses of the trapped electrons to the ac magnetic field result in the reversal of magnetically induced voltages between high and low states. Our results not only expand our understanding on the magnetoelectric coupling mechanism, but also provide a grand opportunity toward designing novel multiferroic materials through introducing ordered point defects into a centrosymmetric matrix.

  6. Polar domain walls trigger magnetoelectric coupling

    PubMed Central

    Fontcuberta, Josep; Skumryev, Vassil; Laukhin, Vladimir; Granados, Xavier; Salje, Ekhard K. H.

    2015-01-01

    Interface physics in oxides heterostructures is pivotal in material’s science. Domain walls (DWs) in ferroic systems are examples of naturally occurring interfaces, where order parameter of neighboring domains is modified and emerging properties may develop. Here we show that electric tuning of ferroelastic domain walls in SrTiO3 leads to dramatic changes of the magnetic domain structure of a neighboring magnetic layer (La1/2Sr1/2MnO3) epitaxially clamped on a SrTiO3 substrate. We show that the properties of the magnetic layer are intimately connected to the existence of polar regions at twin boundaries of SrTiO3, developing at , that can be electrically modulated. These findings illustrate that by exploiting the responsiveness of DWs nanoregions to external stimuli, even in absence of any domain contribution, prominent and adjustable macroscopic reactions of neighboring layers can be obtained. We conclude that polar DWs, known to exist in other materials, can be used to trigger tunable responses and may lead to new ways for the manipulation of interfacial emerging properties. PMID:26387597

  7. Designing asymmetric multiferroics with strong magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Lu, X. Z.; Xiang, H. J.

    2014-09-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the "asymmetric multiferroic." In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  8. Designing asymmetric multiferroics with strong magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team

    2015-03-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  9. Topological properties of microwave magnetoelectric fields.

    PubMed

    Berezin, M; Kamenetskii, E O; Shavit, R

    2014-02-01

    Collective excitations of electron spins in a ferromagnetic sample dominated by the magnetic dipole-dipole interaction strongly influence the field structure of microwave radiation. A small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillation spectra can behave as a source of specific fields in vacuum, termed magnetoelectric (ME) fields. A coupling between the time-varying electric and magnetic fields in the ME-field structures is different from such a coupling in regular electromagnetic fields. The ME fields are characterized by strong energy confinement at a subwavelength region of microwave radiation, topologically distinctive power-flow vortices, and helicity parameters [E. O. Kamenetskii, R. Joffe, and R. Shavit, Phys. Rev. E 87, 023201 (2013)]. We study topological properties of microwave ME fields by loading a MDM ferrite particle with different dielectric samples. We establish a close connection between the permittivity parameters of dielectric environment and the topology of ME fields. We show that the topology of ME fields is strongly correlated with the Fano-resonance spectra observed at terminals of a microwave structure. We reveal specific thresholds in the Fano-resonance spectra appearing at certain permittivity parameters of dielectric samples. We show that ME fields originated from MDM ferrite disks can be distinguished by topological portraits of the helicity parameters and can have a torsion degree of freedom. Importantly, the ME-field phenomena can be viewed as implementations of space-time coordinate transformations on waves. PMID:25353595

  10. An introduction to the use of representation analysis for studying magnetoelectrics and multiferroics

    NASA Astrophysics Data System (ADS)

    Chapon, L. C.

    2012-03-01

    This lecture is an introduction to the theory of representations applied to the study of magnetoelectric and multiferroic materials. It is intended for students or newcomers in the field and explains the key concepts required to understand phenomenologically the coupling between magnetic phase transitions in crystals and dielectric properties. Symmetry properties of some prototypal magnetoelectrics and multiferroics are analysed, including the treatment of incommensurate spin-driven ferroelectrics. It is deliberately written with a minimal use of mathematical formulation or a strict group theoretical approach.

  11. Large magnetoelectric effect in mechanically mediated structure of TbFe{sub 2}, Pb(Zr,Ti)O{sub 3}, and nonmagnetic flakes

    SciTech Connect

    Bi, K.; Wang, Y. G.; Wu, W.; Pan, D. A.

    2011-03-28

    Magnetoelectric (ME) effect has been studied in a structure of a magnetostrictive TbFe{sub 2} alloy, two piezoelectric Pb(Zr,Ti)O{sub 3} (PZT) ceramics, and two nonmagnetic flakes. The ME coupling originates from the magnetic-mechanical-electric transform of the magnetostrictive effect in TbFe{sub 2} and the piezoelectric effect in PZT by end bonding, instead of interface bonding. Large ME coefficients of 10.5 and 9.9 V cm{sup -1} Oe{sup -1} were obtained at the first planar acoustic and third bending resonance frequencies, which are larger than that of conventional layered TbFe{sub 2}/PZT composites. The results show that the large ME coupling can be achieved without interface coupling.

  12. Reviving oscillation with optimal spatial period of frequency distribution in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Deng, Tongfa; Liu, Weiqing; Zhu, Yun; Xiao, Jinghua; Kurths, Jürgen

    2016-09-01

    The spatial distributions of system's frequencies have significant influences on the critical coupling strengths for amplitude death (AD) in coupled oscillators. We find that the left and right critical coupling strengths for AD have quite different relations to the increasing spatial period m of the frequency distribution in coupled oscillators. The left one has a negative linear relationship with m in log-log axis for small initial frequency mismatches while remains constant for large initial frequency mismatches. The right one is in quadratic function relation with spatial period m of the frequency distribution in log-log axis. There is an optimal spatial period m0 of frequency distribution with which the coupled system has a minimal critical strength to transit from an AD regime to reviving oscillation. Moreover, the optimal spatial period m0 of the frequency distribution is found to be related to the system size √{ N } . Numerical examples are explored to reveal the inner regimes of effects of the spatial frequency distribution on AD.

  13. Nonvolatile Memory Based on Nonlinear Magnetoelectric Effects

    NASA Astrophysics Data System (ADS)

    Shen, Jianxin; Cong, Junzhuang; Chai, Yisheng; Shang, Dashan; Shen, Shipeng; Zhai, Kun; Tian, Ying; Sun, Young

    2016-08-01

    The magnetoelectric effects in multiferroics have a great potential in creating next-generation memory devices. We use an alternative concept of nonvolatile memory based, on a type of nonlinear magnetoelectric effects showing a butterfly-shaped hysteresis loop. The principle is to utilize the states of the magnetoelectric coefficient, instead of magnetization, electric polarization, or resistance, to store binary information. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure clearly demonstrate that the sign of the magnetoelectric coefficient can be repeatedly switched between positive and negative by applying electric fields, confirming the feasibility of this principle. This kind of nonvolatile memory has outstanding practical virtues such as simple structure, easy operation in writing and reading, low power, fast speed, and diverse materials available.

  14. Resonance Assisted Synchronization of Coupled Oscillators: Frequency Locking without Phase Locking

    NASA Astrophysics Data System (ADS)

    Thévenin, J.; Romanelli, M.; Vallet, M.; Brunel, M.; Erneux, T.

    2011-09-01

    Frequency locking without phase locking of two coupled nonlinear oscillators is experimentally demonstrated. This synchronization regime is found for two coupled laser modes, beyond the phase-locking range fixed by Adler’s equation, because of a resonance mechanism. Specifically, we show that the amplitudes of the two modes exhibit strong fluctuations that produce average frequency synchronization, even if the instantaneous phases are unlocked. The experimental results are in good agreement with a theoretical model.

  15. Magnetoelectric excitations in hexaferrites utilizing solenoid coil for sensing applications

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-11-01

    We have developed techniques for H- and E-field sensors utilizing single phase magnetoelectric hexaferrite materials in the frequency range of 100 Hz to 10 MHz. Novel excitation method incorporating solenoid coils and single and multi-capacitor banks were developed and tested for sensor detections. For H-field sensing we obtained sensitivity of about 3000 V/mG and for E-field sensing the sensitivity was 10-4 G/Vm-1. Tunability of about 0.1% was achieved for tunable inductor applications. However, the proposed designs lend themselves to significant (~106) improvements in sensitivity and tunability.

  16. Estimation of Electron Temperature and Frequency Components in a Dual Frequency Capacitively-Coupled Plasma Processing Reactor

    NASA Astrophysics Data System (ADS)

    Ito, Toru; Mo, Yun; Masahiro, Horigome

    2008-10-01

    The measurement of electron temperature in RF plasma sources with Langmuir probes is difficult because of the influence of rf noise. We attempted to estimate the electron temperature in a capacitively-coupled plasma processing reactor with a Surface Wave Probe [1] which employs microwaves. We also estimated the frequency spectrum with the sensitive PAP [1, 2]. We measured the harmonics which appeared in the bulk plasma for various experimental conditions in the dual-frequency [60 MHz and 2MHz] capacitively-coupled plasma processing reactor. We estimated RF power spectra for several experimental conditions like RF power [500-2000W], gas pressure [3-20Pa], and gas species [Ar, CF4]. The measurement results suggest the existence of energy transport among several frequency spectrum. [1ex] [1] K. Nakamura, M. Ohata, and H. Sugai: J. Vac. Sci. Technol. A 21, 325 (2003). [0pt] [2] T. Shirakawa and H. Sugai : Jpn. J. Appl. Phys. 32, 5129 (1993).

  17. Theory of magnetoelectric effect for bending modes in magnetostrictive-piezoelectric bilayers

    NASA Astrophysics Data System (ADS)

    Petrov, V. M.; Srinivasan, G.; Bichurin, M. I.; Galkina, T. A.

    2009-03-01

    In a magnetostrictive-piezoelectric bilayer the interaction between the magnetic and electric subsystems occurs through mechanical deformation. A model is discussed here for the resonance enhancement of such magnetoelectric (ME) interactions at frequencies corresponding to bending oscillations. The thickness dependence of stress, strain, and magnetic and electric fields within a sample are taken into account so that the bending deformations could be considered in an applied magnetic or electric field. The frequency dependence for longitudinal and transverse ME voltage coefficients have obtained by solving electrostatic, magnetostatic, and elastodynamic equations. We consider boundary conditions corresponding to bilayers that are free to vibrate at both ends, or simply supported at both ends, or fixed at one end. It is shown that the bending resonance and consequent enhancement in ME coupling occurs at the lowest frequency for a bilayer that is fixed at one end and free at the other end. The model is applied to a specific case of permendur-lead zinconate titanate bilayer. The theory is in very good agreement with representative data.

  18. Examining Low Frequency Molecular Modulations from the High Frequency Vantage Point: Anharmonically-Coupled Low Frequency Modes in PCET Model Systems

    NASA Astrophysics Data System (ADS)

    Reynolds, Anthony

    Proton-coupled electron transfer model systems (PCET) are examined using polarization selective femtosecond infrared pump-probe spectroscopy to determine how the structural modes are coupled to the OH/OD stretching vibrational mode by monitoring low frequency oscillations in the OH/OD vibrational mode using pump-probe techniques. For all of the systems discussed in this dissertation, low frequency modes are anharmonically coupled to the OH/OD stretching vibration. The OH/OD stretching vibration discussed in this dissertation have complex and broad lineshapes in the infrared region (IR) that are difficult to decipher. A broadband IR (BBIR) source, when used as part of a third order nonlinear infrared pump-probe spectroscopy, gains access into the electronic ground state potential energy surface. This information reveals the molecular dynamics that give rise to the complex structure in an IR spectra. The BBIR used for these experiments is generated by focusing 800 nm/400 nm pulses into compressed air and is tunable from 2 -- 5 microns with a FWHM greater than 1200 wavenumbers. The BBIR is a crucial mid-IR source in subsequent chapters for examining the broad lineshapes of the OH/OD stretching mode, which often exceeds 200 wavenumbers. The coupling of low frequency structural modulations to hydrogen bonding dynamics in PCET systems is explored by using the OH/OD stretching vibration in CCl4 or CHCl3. Third order nonlinear ultrafast infrared pump-probe spectroscopy is used to gather information on the high frequency OH/OD stretching vibrational modes in the ground state such as vibrational relaxation time and anharmonic vibrational coupling to low frequency structural modulations. At least one anharmonically coupled low frequency mode between 120 and 250 wavenumbers has been observed in all systems. To better understand and visualize how the low frequency mode may contribute to the PCET chemistry, we calculated the fundamental frequencies and third order coupling

  19. A study and classification of non-linear high frequency ionospheric instabilities by coupled mode theory.

    NASA Technical Reports Server (NTRS)

    Harker, K. J.

    1972-01-01

    Two basic high-frequency ionospheric instabilities are discussed - i.e., the three-wave parametric interaction, and the oscillating two-stream instability. In the parametric instability, the ion-acoustic wave has a complex frequency, whereas in the oscillating two-stream instability the ion-acoustic frequency is purely imaginary. The parametric instability is shown to be the only one whose threshold depends on the ion collision frequency. A coupled-mode theory is proposed which permits study and classification of high-frequency instabilities on a unified basis.

  20. Distributed coupling and multi-frequency microwave accelerators

    DOEpatents

    Tantawi, Sami G.; Li, Zenghai; Borchard, Philipp

    2016-07-05

    A microwave circuit for a linear accelerator has multiple metallic cell sections, a pair of distribution waveguide manifolds, and a sequence of feed arms connecting the manifolds to the cell sections. The distribution waveguide manifolds are connected to the cell sections so that alternating pairs of cell sections are connected to opposite distribution waveguide manifolds. The distribution waveguide manifolds have concave modifications of their walls opposite the feed arms, and the feed arms have portions of two distinct widths. In some embodiments, the distribution waveguide manifolds are connected to the cell sections by two different types of junctions adapted to allow two frequency operation. The microwave circuit may be manufactured by making two quasi-identical parts, and joining the two parts to form the microwave circuit, thereby allowing for many manufacturing techniques including electron beam welding, and thereby allowing the use of un-annealled copper alloys, and hence greater tolerance to high gradient operation.

  1. Tunable features of magnetoelectric transformers.

    PubMed

    Dong, Shuxiang; Zhai, Junyi; Priya, Shashank; Li, Jie-Fang; Viehland, Dwight

    2009-06-01

    We have found that magnetostrictive FeBSiC alloy ribbons laminated with piezoelectric Pb(Zr,Ti)O(3) fiber can act as a tunable transformer when driven under resonant conditions. These composites were also found to exhibit the strongest resonant magnetoelectric voltage coefficient of 750 V/cm-Oe. The tunable features were achieved by applying small dc magnetic biases of -5

  2. Marginal chimera state at cross-frequency locking of pulse-coupled neural networks

    NASA Astrophysics Data System (ADS)

    Bolotov, M. I.; Osipov, G. V.; Pikovsky, A.

    2016-03-01

    We consider two coupled populations of leaky integrate-and-fire neurons. Depending on the coupling strength, mean fields generated by these populations can have incommensurate frequencies or become frequency locked. In the observed 2:1 locking state of the mean fields, individual neurons in one population are asynchronous with the mean fields, while in another population they have the same frequency as the mean field. These synchronous neurons form a chimera state, where part of them build a fully synchronized cluster, while other remain scattered. We explain this chimera as a marginal one, caused by a self-organized neutral dynamics of the effective circle map.

  3. Marginal chimera state at cross-frequency locking of pulse-coupled neural networks.

    PubMed

    Bolotov, M I; Osipov, G V; Pikovsky, A

    2016-03-01

    We consider two coupled populations of leaky integrate-and-fire neurons. Depending on the coupling strength, mean fields generated by these populations can have incommensurate frequencies or become frequency locked. In the observed 2:1 locking state of the mean fields, individual neurons in one population are asynchronous with the mean fields, while in another population they have the same frequency as the mean field. These synchronous neurons form a chimera state, where part of them build a fully synchronized cluster, while other remain scattered. We explain this chimera as a marginal one, caused by a self-organized neutral dynamics of the effective circle map. PMID:27078339

  4. Enhanced magnetoelectric properties of BiFeO3 on formation of BiFeO3/SrFe12O19 nanocomposites

    NASA Astrophysics Data System (ADS)

    Das, Anusree; Chatterjee, Souvik; Bandyopadhyay, Sudipta; Das, Dipankar

    2016-06-01

    Nanocomposites (NCs) comprising (1-x) BiFeO3 (BFO) and x SrFe12O19 (SRF) (x = 0.1, 0.2, 0.3, and 0.4) have been prepared by a sol-gel route. Presence of pure phases of both BiFeO3 (BFO) and SrFe12O19 (SRF) in the NCs for x = 0.3 and 0.4 has been confirmed by Rietveld analysis of XRD data though a minor impurity phase is observed in the case of x = 0.1 and 0.2 NCs. Transmission electron micrographs of the NCs show that particles are mostly spherical with average size of 30 nm. M-H measurements at 300 and 10 K indicate predominantly ferrimagnetic behavior of all the NCs with an increasing trend of saturation magnetization values with increasing content of SRF. Dielectric constant (ɛr) of the NCs at room temperature shows a dispersive behavior with frequency and attains a constant value at higher frequency. ɛr - T measurements reveal an increasing trend of dielectric constant of the NCs with increasing temperature and show an anomaly around the antiferromagnetic transition temperature of BFO, which indicates magnetoelectric coupling in the NCs. The variation of capacitance in the presence of magnetic field confirms the enhancement of magnetoelectric effect in the NCs. 57Fe Mössbauer spectroscopy results indicate the presence of only Fe3+ ions in usual crystallographic sites of BFO and SRF.

  5. Prediction of a novel magnetoelectric switching mechanism in multiferroics.

    PubMed

    Yang, Yurong; Iñiguez, Jorge; Mao, Ai-Jie; Bellaiche, L

    2014-02-01

    We report a first-principles study of the recently predicted Pmc21 phase of the multiferroic BiFeO3 material, revealing a novel magnetoelectric effect that makes it possible to control magnetism with an electric field. The effect can be viewed as a two-step process: Switching the polarization first results in the change of the sense of the rotation of the oxygen octahedra, which in turn induces the switching of the secondary magnetic order parameter. The first step is governed by an original trilinear-coupling energy between polarization, octahedral tilting, and an antiferroelectric distortion. The second step is controlled by another trilinear coupling, this one involving the predominant and secondary magnetic orders as well as the oxygen octahedral tilting. In contrast with other trilinear-coupling effects in the literature, the present ones occur in a simple ABO3 perovskite and involve a large polarization. PMID:24580626

  6. Characteristics of pulsed dual frequency inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Seo, Jin Seok; Kim, Kyoung Nam; Kim, Ki Seok; Kim, Tae Hyung; Yeom, Geun Young

    2015-01-01

    To control the plasma characteristics more efficiently, a dual antenna inductively coupled plasma (DF-ICP) source composed of a 12-turn inner antenna operated at 2 MHz and a 3-turn outer antenna at 13.56 MHz was pulsed. The effects of pulsing to each antenna on the change of plasma characteristics and SiO2 etch characteristics using Ar/C4F8 gas mixtures were investigated. When the duty percentage was decreased from continuous wave (CW) mode to 30% for the inner or outer ICP antenna, decrease of the average electron temperature was observed for the pulsing of each antenna. Increase of the CF2/F ratio was also observed with decreasing duty percentage of each antenna, indicating decreased dissociation of the C4F8 gas due to the decreased average electron temperature. When SiO2 etching was investigated as a function of pulse duty percentage, increase of the etch selectivity of SiO2 over amorphous carbon layer (ACL) was observed while decreasing the SiO2 etch rate. The increase of etch selectivity was related to the change of gas dissociation characteristics, as observed by the decrease of average electron temperature and consequent increase of the CF2/F ratio. The decrease of the SiO2 etch rate could be compensated for by using the rf power compensated mode, that is, by maintaining the same time-average rf power during pulsing, instead of using the conventional pulsing mode. Through use of the power compensated mode, increased etch selectivity of SiO2/ACL similar to the conventional pulsing mode could be observed without significant decrease of the SiO2 etch rate. Finally, by using the rf power compensated mode while pulsing rf powers to both antennas, the plasma uniformity over the 300 mm diameter substrate could be improved from 7% for the CW conditions to about around 3.3% with the duty percentage of 30%.

  7. Strong magnetoelectric coupling in sol-gel derived multiferroic (Pb0.76Ca0.24)TiO3-CoFe2O4 composite films

    NASA Astrophysics Data System (ADS)

    Cheng, T. D.; Tang, X. G.; Wang, Yu; Chan, H. L. W.

    2012-10-01

    A multilayer heterostructure composite thin films consisting of alternating layers (Pb0.76Ca0.24)TiO3 (PCT) and CoFe2O4 (CFO) were grown on Pt/Ti/SiO2/Si(100) substrate by a sol-gel process. X-ray measurements indicated high quality of crystallization of both PCT and CFO layers. The magnetic and ferroelectric properties of the composite were investigated. Well-defined polarization vs. electric field (P-E) and magnetic hysteresis (M-H) loops were obtained. A strong magnetoelectric (ME) response was observed in the sample which was subjected to an alternating magnetic field, and a high ME voltage coefficient αE = 870 mV/Oe cm was obtained for the composite thin films when applied magnetic field parallel to the sample plane.

  8. A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations

    SciTech Connect

    Rockway, J D; Champagne, N J; Sharpe, R M; Fasenfest, B

    2004-01-14

    Frequency domain techniques are popular for analyzing electromagnetics (EM) and coupled circuit-EM problems. These techniques, such as the method of moments (MoM) and the finite element method (FEM), are used to determine the response of the EM portion of the problem at a single frequency. Since only one frequency is solved at a time, it may take a long time to calculate the parameters for wideband devices. In this paper, a fast frequency sweep based on the Asymptotic Wave Expansion (AWE) method is developed and applied to generalized mixed circuit-EM problems. The AWE method, which was originally developed for lumped-load circuit simulations, has recently been shown to be effective at quasi-static and low frequency full-wave simulations. Here it is applied to a full-wave MoM solver, capable of solving for metals, dielectrics, and coupled circuit-EM problems.

  9. Nonlinear magnetoelectric response of planar ferromagnetic-piezoelectric structures to sub-millisecond magnetic pulses.

    PubMed

    Kreitmeier, Florian; Chashin, Dmitry V; Fetisov, Yury K; Fetisov, Leonid Y; Schulz, Irene; Monkman, Gareth J; Shamonin, Mikhail

    2012-01-01

    The magnetoelectric response of bi- and symmetric trilayer composite structures to pulsed magnetic fields is experimentally investigated in detail. The structures comprise layers of commercially available piezoelectric (lead zirconate titanate) and magnetostrictive (permendur or nickel) materials. The magnetic-field pulses have the form of a half-wave sine function with duration of 450 µs and amplitudes ranging from 500 Oe to 38 kOe. The time dependence of the resulting voltage is presented and explained by theoretical estimations. Appearance of voltage oscillations with frequencies much larger than the reciprocal pulse length is observed for sufficiently large amplitudes (~1-10 kOe) of the magnetic-field pulse. The origin of these oscillations is the excitation of bending and planar acoustic oscillations in the structures. Dependencies of the magnetoelectric voltage coefficient on the excitation frequency and the applied magnetic field are calculated by digital signal processing and compared with those obtained by the method of harmonic field modulation. The results are of interest for developing magnetoelectric sensors of pulsed magnetic fields as well as for rapid characterization of magnetoelectric composite structures. PMID:23202188

  10. Nonlinear Magnetoelectric Response of Planar Ferromagnetic-Piezoelectric Structures to Sub-Millisecond Magnetic Pulses

    PubMed Central

    Kreitmeier, Florian; Chashin, Dmitry V.; Fetisov, Yury K.; Fetisov, Leonid Y.; Schulz, Irene; Monkman, Gareth J.; Shamonin, Mikhail

    2012-01-01

    The magnetoelectric response of bi- and symmetric trilayer composite structures to pulsed magnetic fields is experimentally investigated in detail. The structures comprise layers of commercially available piezoelectric (lead zirconate titanate) and magnetostrictive (permendur or nickel) materials. The magnetic-field pulses have the form of a half-wave sine function with duration of 450 μs and amplitudes ranging from 500 Oe to 38 kOe. The time dependence of the resulting voltage is presented and explained by theoretical estimations. Appearance of voltage oscillations with frequencies much larger than the reciprocal pulse length is observed for sufficiently large amplitudes (∼1–10 kOe) of the magnetic-field pulse. The origin of these oscillations is the excitation of bending and planar acoustic oscillations in the structures. Dependencies of the magnetoelectric voltage coefficient on the excitation frequency and the applied magnetic field are calculated by digital signal processing and compared with those obtained by the method of harmonic field modulation. The results are of interest for developing magnetoelectric sensors of pulsed magnetic fields as well as for rapid characterization of magnetoelectric composite structures. PMID:23202188

  11. Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges

    SciTech Connect

    Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.

    2009-03-30

    At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies.

  12. Improving picogram mass sensitivity via frequency doubling in coupled silicon micro-cantilevers

    NASA Astrophysics Data System (ADS)

    Wang, Dong F.; Du, Xu; Wang, Xin; Ikehara, Tsuyoshi; Maeda, Ryutaro

    2016-01-01

    Two geometrically different cantilevers, with primary frequencies of 182.506 kHz (u-shaped cantilever for sensing) and 372.503 kHz (rectangular cantilever for detecting), were coupled by two symmetrical coupling overhangs for oscillation-based mass sensing verification with phase-locking. Based on a lumped element model, a theoretical expression, containing a nonlinear spring constant and a term corresponding to the effect of the coupling spring, was proposed to consider the factors influencing the entrainment range, which is defined as a plateau with a frequency ratio (resonant frequency of rectangular cantilever to that of u-shaped cantilever) of 2.000 in present study. A picogram order mass sensing by applying a polystyrene microsphere as a small mass perturbation onto the tip of the u-shaped cantilever was demonstrated. By varying driving voltages, two entrainment regions with and without microsphere were experimentally measured and comparatively shown. At a driving voltage of 1 Vpp, when the u-shaped cantilever was excited at its shifted frequency of 180.29 kHz, the frequency response of the coupled rectangular cantilever had a peak at double the shifted frequency of 360.58 kHz of the u-shaped cantilever. The frequency shift for picogram mass sensing was thus doubled from 2560 Hz to 5133 Hz due to phase-locking. A mass of 3.732 picogram was derived based on the doubled frequency shift corresponding to a calculated mass of 3.771 picogram from measured diameter and reported density. Both experimental demonstration and theoretical discussions from the viewpoint of entrainment range elicits the possibility of increasing the mass sensitivity via phase-locking in the coupled silicon micro-cantilevers.

  13. Two generalized algorithms measuring phase-amplitude cross-frequency coupling in neuronal oscillations network.

    PubMed

    Li, Qun; Zheng, Chen-Guang; Cheng, Ning; Wang, Yi-Yi; Yin, Tao; Zhang, Tao

    2016-06-01

    An increasing number of studies pays attention to cross-frequency coupling in neuronal oscillations network, as it is considered to play an important role in exchanging and integrating of information. In this study, two generalized algorithms, phase-amplitude coupling-evolution map approach and phase-amplitude coupling-conditional mutual information which have been developed and applied originally in an identical rhythm, are generalized to measure cross-frequency coupling. The effectiveness of quantitatively distinguishing the changes of coupling strength from the measurement of phase-amplitude coupling (PAC) is demonstrated based on simulation data. The data suggest that the generalized algorithms are able to effectively evaluate the strength of PAC, which are consistent with those traditional approaches, such as PAC-PLV and PAC-MI. Experimental data, which are local field potentials obtained from anaesthetized SD rats, have also been analyzed by these two generalized approaches. The data show that the theta-low gamma PAC in the hippocampal CA3-CA1 network is significantly decreased in the glioma group compared to that in the control group. The results, obtained from either simulation data or real experimental signals, are consistent with that of those traditional approaches PAC-MI and PAC-PLV. It may be considered as a proper indicator for the cross frequency coupling in sub-network, such as the hippocampal CA3 and CA1. PMID:27275379

  14. Beating frequency and amplitude modulation of the piano tone due to coupling of tones

    NASA Astrophysics Data System (ADS)

    Cartling, Bo

    2005-04-01

    The influence on a piano tone from weak coexcitation of damped adjacent tones due to coupling via the bridge is studied. The frequency and amplitude modulation of the sound resulting from coexcitation of one strong and one or two weak tones is analyzed. One weak tone causes frequency and amplitude modulation of the sound, and two weak tones produce beating frequency and amplitude modulation, where the beatings of the two modulations are of opposite phase. By digital recording of the sound of piano tones, the appearance of these phenomena is verified. The audibility of the observed frequency and amplitude modulation is discussed in terms of previously determined detection thresholds. The beating character of both frequency and amplitude modulations, however, distinguishes the phenomena from those previously studied and prompts further psychoacoustic investigations. It is shown that detuning of unison strings may significantly increase the frequency deviation of the frequency modulation in conjunction with affected amplitude modulation. The modulatory effects of coupling to adjacent tones therefore may possibly be utilized in the tuning process. A coupling of tones analogous to the situation in a piano may arise in other stringed musical instruments transferring string vibrations to a soundboard via a bridge. .

  15. Beating frequency and amplitude modulation of the piano tone due to coupling of tones.

    PubMed

    Cartling, Bo

    2005-04-01

    The influence on a piano tone from weak coexcitation of damped adjacent tones due to coupling via the bridge is studied. The frequency and amplitude modulation of the sound resulting from coexcitation of one strong and one or two weak tones is analyzed. One weak tone causes frequency and amplitude modulation of the sound, and two weak tones produce beating frequency and amplitude modulation, where the beatings of the two modulations are of opposite phase. By digital recording of the sound of piano tones, the appearance of these phenomena is verified. The audibility of the observed frequency and amplitude modulation is discussed in terms of previously determined detection thresholds. The beating character of both frequency and amplitude modulations, however, distinguishes the phenomena from those previously studied and prompts further psychoacoustic investigations. It is shown that detuning of unison strings may significantly increase the frequency deviation of the frequency modulation in conjunction with affected amplitude modulation. The modulatory effects of coupling to adjacent tones therefore may possibly be utilized in the tuning process. A coupling of tones analogous to the situation in a piano may arise in other stringed musical instruments transferring string vibrations to a soundboard via a bridge. PMID:15898666

  16. Simulation of dust particles in dual-frequency capacitively coupled silane discharges

    SciTech Connect

    Liu Xiangmei; Song Yuanhong; Xu Xiang; Wang Younian

    2010-01-15

    The behavior of nanoparticles in dual-frequency capacitively coupled silane discharges is investigated by employing a one-dimensional self-consistent fluid model. The numerical simulation tries to trace the formation, charging, growth, and transport of dust particles during the discharge, under the influences of the high- and low-frequency electric sources, as well as the gas pressure. The effects of the presence of the nanoparticles and larger anions on the plasma properties are also discussed, especially, for the bulk potential, electron temperature, and densities of various particles. The calculation results show that the nanoparticle density and charge distribution are mainly influenced by the voltage and frequency of the high-frequency source, while the voltage of the low-frequency source can also exert an effect on the nanoparticle formation, compared with the frequency. As the discharge lasts, the electric potential and electron density keep decreasing, while the electron temperature gets increasing after a sudden drop.

  17. Coupling of Helmholtz resonators to improve acoustic liners for turbofan engines at low frequency

    NASA Technical Reports Server (NTRS)

    Dean, L. W.

    1975-01-01

    An analytical and test program was conducted to evaluate means for increasing the effectiveness of low frequency sound absorbing liners for aircraft turbine engines. Three schemes for coupling low frequency absorber elements were considered. These schemes were analytically modeled and their impedance was predicted over a frequency range of 50 to 1,000 Hz. An optimum and two off-optimum designs of the most promising, a parallel coupled scheme, were fabricated and tested in a flow duct facility. Impedance measurements were in good agreement with predicted values and validated the procedure used to transform modeled parameters to hardware designs. Measurements of attenuation for panels of coupled resonators were consistent with predictions based on measured impedance. All coupled resonator panels tested showed an increase in peak attenuation of about 50% and an increase in attenuation bandwidth of one one-third octave band over that measured for an uncoupled panel. These attenuation characteristics equate to about 35% greater reduction in source perceived noise level (PNL), relative to the uncoupled panel, or a reduction in treatment length of about 24% for constant PNL reduction. The increased effectiveness of the coupled resonator concept for attenuation of low frequency broad spectrum noise is demonstrated.

  18. Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun

    2016-07-01

    Recent studies of brain activities show that cross-frequency coupling (CFC) plays an important role in memory and learning. Many measures have been proposed to investigate the CFC phenomenon, including the correlation between the amplitude envelopes of two brain waves at different frequencies - cross-frequency amplitude-amplitude coupling (AAC). In this short communication, we describe how nonstationary, nonlinear oscillatory signals may produce spurious cross-frequency AAC. Utilizing the empirical mode decomposition, we also propose a new method for assessment of AAC that can potentially reduce the effects of nonlinearity and nonstationarity and, thus, help to avoid the detection of artificial AACs. We compare the performances of this new method and the traditional Fourier-based AAC method. We also discuss the strategies to identify potential spurious AACs.

  19. Frequency multiplying optoelectronic oscillator based on nonlinearly-coupled double loops.

    PubMed

    Xu, Wei; Jin, Tao; Chi, Hao

    2013-12-30

    We propose and demonstrate a frequency multiplying optoelectronic oscillator with nonlinearly-coupled double loops based on two cascaded Mach-Zehnder modulators, to generate high frequency microwave signals using only low-frequency devices. We find the final oscillation modes are only determined by the length of the master oscillation loop. Frequency multiplying signals are generated via nonlinearly-coupled double loops, the output of one loop being used to modulate the other. In the experiments, microwave signals at 10 GHz with -121 dBc/Hz phase noise at 10 kHz offset and 20 GHz with -112.8 dBc/Hz phase noise at 10 kHz offset are generated. Meanwhile, their side-mode suppression ratios are also evaluated and the maximum ratio of 70 dB is obtained. PMID:24514845

  20. Nontrivial Bloch oscillation and Zener tunneling frequencies in helicoidal molecules due to spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Caetano, R. A.

    2014-05-01

    Bloch oscillation and Zener tunneling are investigated in helicoidal molecules, with DNA as the representative example, in the presence of spin-orbit coupling induced by electrical charges accumulated along the structure of the molecule. We show that the presence of the spin-orbit coupling does not destroy the Bloch oscillations and, further, it induces the appearance of nontrivial Bloch oscillation frequencies associated with resonances among Wannier-Stark states. The Zener tunneling between the spin states is also studied here by looking at the time evolution of the polarization of the wave packet. The results show that the polarization also oscillates with nontrivial well-determined frequencies.

  1. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.

    PubMed

    Verhagen, Ewold; de Waele, René; Kuipers, L; Polman, Albert

    2010-11-26

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency. PMID:21231386

  2. Three-Dimensional Negative Index of Refraction at Optical Frequencies by Coupling Plasmonic Waveguides

    NASA Astrophysics Data System (ADS)

    Verhagen, Ewold; de Waele, René; Kuipers, L.; Polman, Albert

    2010-11-01

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  3. Mechanical Coupling in Gold Nanoparticles Supermolecules Revealed by Plasmon-Enhanced Ultralow Frequency Raman Spectroscopy.

    PubMed

    Girard, A; Gehan, H; Crut, A; Mermet, A; Saviot, L; Margueritat, J

    2016-06-01

    Acoustic vibrations of assemblies of gold nanoparticles were investigated using ultralow frequency micro-Raman scattering and finite element simulations. When exciting the assemblies resonantly with the surface plasmon resonance of electromagnetically coupled nanoparticles, Raman spectra present an ultralow frequency band whose frequency lies below the lowest Raman active Lamb mode of single nanoparticles that was observed. This feature was ascribed to a Raman vibration mode of gold nanoparticle "supermolecules", that is, nanoparticles mechanically coupled by surrounding polymer molecules. Its measured frequency is inversely proportional to the nanoparticle diameter and sensitive to the elastic properties of the interstitial polymer. The latter dependence as well as finite element simulations suggest that this mode corresponds to the out-of-phase semirigid translation (l = 1 Lamb mode) of each nanoparticle of a dimer inside the matrix, activated by the mechanical coupling between the nanoparticles. These observations were permitted only thanks to the resonant excitation with the coupling plasmon excitation, leading to an enhancement up to 10(4) of the scattering by these vibrations. This enhanced ultralow frequency Raman scattering thus opens a new route to probe the local elastic properties of the surrounding medium. PMID:27176093

  4. Magnetoelectric effect in simple collinear antiferromagnetic spinels

    NASA Astrophysics Data System (ADS)

    Saha, Rana; Ghara, Somnath; Suard, Emmanuelle; Jang, Dong Hyun; Kim, Kee Hoon; Ter-Oganessian, N. V.; Sundaresan, A.

    2016-07-01

    We report the discovery of the linear magnetoelectric effect in a family of spinel oxides, C o3O4 and Mn B2O4 (B =Al ,Ga) with simple collinear antiferromagnetic spin structure. An external magnetic field induces a dielectric anomaly at TN, accompanied by the generation of electric polarization that varies linearly with magnetic field. Magnetization and magnetoelectric measurements on a single crystal of MnG a2O4 together with a phenomenological theory suggest that the easy axis direction is [111] with the corresponding magnetic symmetry R 3¯'m' . The proposed theoretical model of single-ion contribution of magnetic ions located in a noncentrosymmetric crystal environment stands for a generic mechanism for observing magnetoelectric effects in these and other similar materials.

  5. Radio frequency coupling apparatus and method for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Johnston, Steven W.; Ahrenkiel, Richard K.

    2002-01-01

    An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.

  6. High frequency and wavenumber ocean-ice-atmosphere coupling in the Regional Arctic Climate Model

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Maslowski, W.; Jakacki, J.; Higgins, M.; Craig, T.; Cassano, J. J.; Gutowski, W. J.; Lettenmaier, D. P.

    2011-12-01

    We present results from the fully coupled version of the Regional Arctic Climate Model (RACM) on the spectral and noise characteristics of high-frequency (20-minute) dynamic coupling between the 9km Parallel Ocean Program/Community Ice Code (POP/CICE) and 50km Weather Research and Forecast model (WRF) using the CPL7 framework. We have employed an array of signal processing techniques to investigate: 1) Synchronization of the inertial response of POP and CICE to the passage of storms in WRF, and wavelet coherence of these results with in-situ observations of drift and deformation in the Arctic Ocean; 2) High-wavenumber signals in the sea ice deformation pattern resulting super-inertial coupling and aliasing of the wind field in CPL7, and the influence of these factors on the transmission of wind stress curl into the deep ocean; 3) The impact of high frequency ocean-ice-atmosphere coupling on the modeled sea ice thickness distribution. For this last set of experiments, we have run a set of winter band-limited integrations, filtering out high-frequency WRF inputs to the sea ice and ocean components. These experiments suggest the most pronounced regional influence of super-inertial coupling on sea ice mass extends from the Greenland Sea through Fram Strait to the North Pole, although there is also a significant basin-wide deformation pattern emanating from high spatiotemporal coupling in RACM.

  7. First observation of magnetoelectric effect in M-type hexaferrite thin films

    SciTech Connect

    Mohebbi, Marjan; Ebnabbasi, Khabat; Vittoria, Carmine

    2013-05-07

    The magnetoelectric (ME) effect in M-type hexaferrite thin films is reported. Prior to this work, the ME effect in hexaferrite materials was observed only in bulk polycrystalline materials. Thin films of SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} were grown on sapphire (0001) using pulsed laser deposition. The thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance. We measured saturation magnetization of 1250 G, g-factor of 2.66, and coercive field of 20 Oe for these magnetoelectric M-type hexaferrite thin films. The magnetoelectric effect was confirmed by monitoring the change rate in remanence magnetization with the application of DC voltage at room temperature and it gave rise to changes in remanence in the order of 12.8% with the application of only 1 V (DC voltage). We deduced a magnetoelectric coupling, {alpha}, of 6.07 Multiplication-Sign 10{sup -9} s m{sup -1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films.

  8. Continuous Magnetoelectric Control in Multiferroic DyMnO3 Films with Twin-like Domains

    PubMed Central

    Lu, Chengliang; Deniz, Hakan; Li, Xiang; Liu, Jun-Ming; Cheong, Sang-Wook

    2016-01-01

    The magnetic control of ferroelectric polarization is currently a central topic in the multiferroic researches, owing to the related gigantic magnetoelectric coupling and fascinating physics. Although a bunch of novel magnetoelectric effect have been discovered in multiferroics of magnetic origin, the manipulation of polarization was found to be fundamentally determined by the microscopic origin in a certain multiferroic phase, hindering the development of unusual magnetoelectric control. Here, we report emergent magnetoelectric control in DyMnO3/Nb:SrTiO3 (001) films showing twin-like domain structure. Our results demonstrate interesting magnetically induced partial switch of polarization due to the coexistence of polarizations along both the a-axis and c-axis enabled by the twin-like domain structure in DyMnO3 films, despite the polarization-switch was conventionally believed to be a one-step event in the bulk counterpart. Moreover, a continuous and periodic control of macroscopic polarization by an in-plane rotating magnetic field is evidenced in the thin films. This distinctive magnetic manipulation of polarization is the consequence of the cooperative action of the twin-like domains and the dual magnetic origin of polarization, which promises additional applications using the magnetic control of ferroelectricity. PMID:26829899

  9. Continuous Magnetoelectric Control in Multiferroic DyMnO3 Films with Twin-like Domains.

    PubMed

    Lu, Chengliang; Deniz, Hakan; Li, Xiang; Liu, Jun-Ming; Cheong, Sang-Wook

    2016-01-01

    The magnetic control of ferroelectric polarization is currently a central topic in the multiferroic researches, owing to the related gigantic magnetoelectric coupling and fascinating physics. Although a bunch of novel magnetoelectric effect have been discovered in multiferroics of magnetic origin, the manipulation of polarization was found to be fundamentally determined by the microscopic origin in a certain multiferroic phase, hindering the development of unusual magnetoelectric control. Here, we report emergent magnetoelectric control in DyMnO3/Nb:SrTiO3 (001) films showing twin-like domain structure. Our results demonstrate interesting magnetically induced partial switch of polarization due to the coexistence of polarizations along both the a-axis and c-axis enabled by the twin-like domain structure in DyMnO3 films, despite the polarization-switch was conventionally believed to be a one-step event in the bulk counterpart. Moreover, a continuous and periodic control of macroscopic polarization by an in-plane rotating magnetic field is evidenced in the thin films. This distinctive magnetic manipulation of polarization is the consequence of the cooperative action of the twin-like domains and the dual magnetic origin of polarization, which promises additional applications using the magnetic control of ferroelectricity. PMID:26829899

  10. Continuous Magnetoelectric Control in Multiferroic DyMnO3 Films with Twin-like Domains

    NASA Astrophysics Data System (ADS)

    Lu, Chengliang; Deniz, Hakan; Li, Xiang; Liu, Jun-Ming; Cheong, Sang-Wook

    2016-02-01

    The magnetic control of ferroelectric polarization is currently a central topic in the multiferroic researches, owing to the related gigantic magnetoelectric coupling and fascinating physics. Although a bunch of novel magnetoelectric effect have been discovered in multiferroics of magnetic origin, the manipulation of polarization was found to be fundamentally determined by the microscopic origin in a certain multiferroic phase, hindering the development of unusual magnetoelectric control. Here, we report emergent magnetoelectric control in DyMnO3/Nb:SrTiO3 (001) films showing twin-like domain structure. Our results demonstrate interesting magnetically induced partial switch of polarization due to the coexistence of polarizations along both the a-axis and c-axis enabled by the twin-like domain structure in DyMnO3 films, despite the polarization-switch was conventionally believed to be a one-step event in the bulk counterpart. Moreover, a continuous and periodic control of macroscopic polarization by an in-plane rotating magnetic field is evidenced in the thin films. This distinctive magnetic manipulation of polarization is the consequence of the cooperative action of the twin-like domains and the dual magnetic origin of polarization, which promises additional applications using the magnetic control of ferroelectricity.

  11. A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect.

    PubMed

    Naveed-Ul-Haq, M; Shvartsman, Vladimir V; Salamon, Soma; Wende, Heiko; Trivedi, Harsh; Mumtaz, Arif; Lupascu, Doru C

    2016-01-01

    The lead-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3 - 0.5(Ba0.7Ca0.3)TiO3 (BCZT) is a promising component for multifunctional multiferroics due to its excellent room temperature piezoelectric properties. Having a composition close to the polymorphic phase boundary between the orthorhombic and tetragonal phases, it deserves a case study for analysis of its potential for modern electronics applications. To obtain magnetoelectric coupling, the piezoelectric phase needs to be combined with a suitable magnetostrictive phase. In the current article, we report on the synthesis, dielectric, magnetic, and magnetoelectric characterization of a new magnetoelectric multiferroic composite consisting of BCZT as a piezoelectric phase and CoFe2O4 (CFO) as the magnetostrictive phase. We found that this material is multiferroic at room temperature and manifests a magnetoelectric effect larger than that of BaTiO3 -CoFe2O4 bulk composites with similar content of the ferrite phase. PMID:27555563

  12. A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect

    PubMed Central

    Naveed-Ul-Haq, M.; Shvartsman, Vladimir V.; Salamon, Soma; Wende, Heiko; Trivedi, Harsh; Mumtaz, Arif; Lupascu, Doru C.

    2016-01-01

    The lead-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3 − 0.5(Ba0.7Ca0.3)TiO3 (BCZT) is a promising component for multifunctional multiferroics due to its excellent room temperature piezoelectric properties. Having a composition close to the polymorphic phase boundary between the orthorhombic and tetragonal phases, it deserves a case study for analysis of its potential for modern electronics applications. To obtain magnetoelectric coupling, the piezoelectric phase needs to be combined with a suitable magnetostrictive phase. In the current article, we report on the synthesis, dielectric, magnetic, and magnetoelectric characterization of a new magnetoelectric multiferroic composite consisting of BCZT as a piezoelectric phase and CoFe2O4 (CFO) as the magnetostrictive phase. We found that this material is multiferroic at room temperature and manifests a magnetoelectric effect larger than that of BaTiO3 −CoFe2O4 bulk composites with similar content of the ferrite phase. PMID:27555563

  13. Resonance magnetoelectric effect without a bias field in a piezoelectric langatate-hysteretic ferromagnet monolithic structure

    NASA Astrophysics Data System (ADS)

    Burdin, D. A.; Fetisov, L. Y.; Fetisov, Y. K.; Chashin, D. V.; Ekonomov, N. A.

    2014-09-01

    The frequency, field, temperature, and amplitude characteristics of the direct magnetoelectric effect are studied in a planar monolithic structure consisting of a piezoelectric langatate crystal and a layer of electrolytic nickel. A relation between the magnetic and magnetoelectric properties of the structure is demonstrated, which explains the effects observed in structures with hysteretic layers. At the planar acoustic resonance frequency of the structure (about 70 kHz), the effect amounting to 23 V/(Oe cm) in the absence of a bias field is discovered. In the temperature interval 150-400 K, the amount of the effect changes nearly twofold, the resonance frequency changes by about 1%, and the Q factor on cooling rises to about 8 × 103. The field sensitivity of the structure is on the order of 1 V/Oe, which makes it possible to detect magnetic fields with an amplitude down to ˜10-6 Oe.

  14. Dispersion of Electric-Field-Induced Faraday Effect in Magnetoelectric Cr2O3

    NASA Astrophysics Data System (ADS)

    Wang, Junlei; Binek, Christian

    2016-03-01

    The frequency dependence of the electric-field-induced magneto-optical Faraday effect is investigated in the magnetoelectric antiferromagnet chromia. Two electrically induced Faraday signals superimpose in proportion to the linear magnetoelectric susceptibility α and the antiferromagnetic order parameter η . The relative strength of these contributions is determined by the frequency of the probing light and can be tuned between extreme characteristics following the temperature dependence of α or η . The frequency dependence is analyzed in terms of electric dipole transitions of perturbed Cr3 + crystal-field states. The results allow us to measure voltage-controlled selection, isothermal switching, and temperature dependence of η in a tabletop setup. The voltage-specific Faraday rotation is independent of the sample thickness, making the method scalable and versatile down to the limit of dielectric breakdown.

  15. The effect of the driving frequencies on the electrical asymmetry of dual-frequency capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Korolov, Ihor; Donkó, Zoltán; Czarnetzki, Uwe; Schulze, Julian

    2012-11-01

    In capacitively coupled radio frequency discharges driven by two consecutive phase-locked harmonics, the electrical asymmetry effect (EAE) allows one to generate a dc self-bias as a function of the phase shift, θ, between the driving harmonics. If the two frequencies are chosen to be 13.56 and 27.12 MHz, the mean ion energy at both electrodes can be varied by a factor of about 2 by tuning θ at nearly constant ion flux. Until now the EAE has only been investigated in discharges operated at a fundamental frequency of f = 13.56 MHz. Here, we study the effect of changing this fundamental frequency on the performance of the EAE, i.e. on the electrical generation of a dc self-bias, the control range of the mean ion energy, and on the ion flux at both electrodes as a function of θ, by kinetic particle-in-cell/Monte Carlo simulations and theoretical modelling. We use argon gas and cover a wide range of fundamental frequencies (0.5 MHz ⩽ f ⩽ 60 MHz) and secondary electron yields. We find that the performance of the EAE is significantly worse at lower frequencies, i.e. the control range of the dc self-bias and, thus, the control range of the mean ion energy are strongly reduced. Based on the analytical model (i) the enhanced charged dynamics at lower frequencies and (ii) the transition of the electron heating mode induced by changing f are found to be the reasons for this effect.

  16. A novel in-line frequency sensor based on coupling capacitance for X-band application

    NASA Astrophysics Data System (ADS)

    Yan, Jiabin; Liao, Xiaoping; Yi, Zhenxiang

    2016-05-01

    This paper presents a novel in-line frequency sensor, based on coupling capacitance, for X-band applications. The novel frequency sensor can achieve absolute frequency measurement with a simple structure and no DC power consumption. Fabrication of the frequency sensor is completely compatible with the GaAs monolithic microwave integrated circuit process. A well-designed metal–insulator–metal capacitor is employed to couple a certain percentage of incident power and a thermoelectric power sensor is used to measure the coupled power. The sensor design is guided by HFSS simulation and a lumped circuit model. The results validate the effectiveness of the simulation and model, and show relatively good performance of the frequency sensor with simple and reliable components. The net sensitivity of the frequency sensor is about 1.43 mV (W•GHz)‑1, and the measured S 11 and S 21 are better than  ‑14.8 dB and  ‑1.39 dB at X-band.

  17. Microwave magnetoelectric fields: An analytical study of topological characteristics

    NASA Astrophysics Data System (ADS)

    Joffe, R.; Shavit, R.; Kamenetskii, E. O.

    2015-10-01

    The near fields originated from a small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillations are the fields with broken dual (electric-magnetic) symmetry. Numerical studies show that such fields - called the magnetoelectric (ME) fields - are distinguished by the power-flow vortices and helicity parameters (E.O. Kamenetskii, R. Joffe, R. Shavit, Phys. Rev. E 87 (2013) 023201). These numerical studies can well explain recent experimental results with MDM ferrite disks. In the present paper, we obtain analytically topological characteristics of the ME-field modes. For this purpose, we used a method of successive approximations. In the second approximation we take into account the influence of the edge regions of an open ferrite disk, which are excluded in the first-approximation solving of the magnetostatic (MS) spectral problem. Based on the analytical method, we obtain a "pure" structure of the electric and magnetic fields outside the MDM ferrite disk. The analytical studies can display some fundamental features that are non-observable in the numerical results. While in numerical investigations, one cannot separate the ME fields from the external electromagnetic (EM) radiation, the present theoretical analysis allows clearly distinguish the eigen topological structure of the ME fields. Importantly, this ME-field structure gives evidence for certain phenomena that can be related to the Tellegen and bianisotropic coupling effects. We discuss the question whether the MDM ferrite disk can exhibit properties of the cross magnetoelectric polarizabilities.

  18. Magnetoelectric effect in Cr2O3 thin films

    NASA Astrophysics Data System (ADS)

    He, Xi; Wang, Yi; Sahoo, Sarbeswar; Binek, Christian

    2008-03-01

    Magnetoelectric materials experienced a recent revival as promising components of novel spintronic devices [1, 2, 3]. Since the magnetoelectric (ME) effect is relativistically small in traditional antiferromagnetic compounds like Cr2O3 (max. αzz 4ps/m ) and also cross- coupling between ferroic order parameters is typically small in the modern multiferroics, it is a challenge to electrically induce sufficient magnetization required for the envisioned device applications. A straightforward approach is to increase the electric field at constant voltage by reducing the thickness of the ME material to thin films of a few nm. Since magnetism is known to be affected by geometrical confinement thickness dependence of the ME effect in thin film Cr2O3 is expected. We grow (111) textured Cr2O3 films with various thicknesses below 500 nm and study the ME effect for various ME annealing conditions as a function of temperature with the help of Kerr-magnetometry. [1] P. Borisov et al. Phys. Rev. Lett. 94, 117203 (2005). [2] Ch. Binek, B.Doudin, J. Phys. Condens. Matter 17, L39 (2005). [3] R. Ramesh and Nicola A. Spaldin 2007 Nature Materials 6 21.

  19. Topological magnetoelectric effects in microwave far-field radiation

    NASA Astrophysics Data System (ADS)

    Berezin, M.; Kamenetskii, E. O.; Shavit, R.

    2016-07-01

    Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of the free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.

  20. Variable Coupling Scheme for High Frequency Electron Spin Resonance Resonators Using Asymmetric Meshes

    PubMed Central

    Tipikin, D. S.; Earle, K. A.; Freed, J. H.

    2010-01-01

    The sensitivity of a high frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter wave transmission line optical axis. We quantify the performance of this device with nitroxide spin-label spectra in both a lossy aqueous solution and a low loss solid state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems in particular are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high frequency ESR to the study of biological systems at physiological conditions, for example. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in signal to noise at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples. PMID:20458356

  1. Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus

    PubMed Central

    Zobay, Oliver; Adjamian, Peyman

    2015-01-01

    The thalamocortical dysrhythmia (TCD) model has been influential in the development of theoretical explanations for the neurological mechanisms of tinnitus. It asserts that thalamocortical oscillations lock a region in the auditory cortex into an ectopic slow-wave theta rhythm (4–8 Hz). The cortical area surrounding this region is hypothesized to generate abnormal gamma (>30 Hz) oscillations (“edge effect”) giving rise to the tinnitus percept. Consequently, the model predicts enhanced cross-frequency coherence in a broad range between theta and gamma. In this magnetoencephalography study involving tinnitus and control cohorts, we investigated this prediction. Using beamforming, cross-frequency amplitude-amplitude coupling (AAC) was computed within the auditory cortices for frequencies (f1, f2) between 2 and 80 Hz. We find the AAC signal to decompose into two distinct components at low (f1, f2 < 30 Hz) and high (f1, f2 > 30 Hz) frequencies, respectively. Studying the correlation of AAC with several key covariates (age, hearing level (HL), tinnitus handicap and duration, and HL at tinnitus frequency), we observe a statistically significant association between age and low-frequency AAC. Contrary to the TCD predictions, however, we do not find any indication of statistical differences in AAC between tinnitus and controls and thus no evidence for the predicted enhancement of cross-frequency coupling in tinnitus. PMID:26665004

  2. Good Vibrations: Cross-Frequency Coupling in the Human Nucleus Accumbens during Reward Processing

    ERIC Educational Resources Information Center

    Cohen, Michael X.; Axmacher, Nikolai; Lenartz, Doris; Elger, Christian E.; Sturm, Volker; Schlaepfer, Thomas E.

    2009-01-01

    The nucleus accumbens is critical for reward-guided learning and decision-making. It is thought to "gate" the flow of a diverse range of information (e.g., rewarding, aversive, and novel events) from limbic afferents to basal ganglia outputs. Gating and information encoding may be achieved via cross-frequency coupling, in which bursts of…

  3. THz-range generation frequency growth in semiconductor superlattice coupled to external high-quality resonator

    NASA Astrophysics Data System (ADS)

    Makarov, Vladimir V.; Maksimenko, Vladimir A.; Khramova, Marina V.; Pavlov, Alexey N.; Hramov, Alexander E.

    2016-03-01

    We investigate effects of a linear resonator on spatial electron dynamics in semiconductor superlattice. We have shown that coupling the external resonant system to superlattice leads to occurrence of the additional area of negative differential conductance on the current-voltage characteristic, which does not occur in autonomous system. Furthermore, this region shows great increase of generation frequency, that contains practical interest.

  4. Capacitively Coupled Radio Frequency Discharge Plasmas In Hydrogen: Particle Modeling and Negative Ion Kinetics

    SciTech Connect

    Diomede, P.; Longo, S.; Capitelli, M.

    2005-05-16

    We present a 1D(r)2D(v) particle code for capacitively coupled radio frequency discharge plasmas in hydrogen, which includes a rigorous kinetic modeling of ion transport and several solutions to speed up the convergence. In a test case the effect of surface atom recombination and molecule vibrational deactivation on H- concentration is investigated.

  5. A self-consistent three-wave coupling model with complex linear frequencies

    SciTech Connect

    Kim, J.-H.; Terry, P. W.

    2011-09-15

    A three-wave coupling model with complex linear frequencies is investigated for the nonlinear interaction in a triad that has linearly unstable and stable modes. Time scales associated with linear and nonlinear physics are identified and compared with features of the frequency spectrum. From appropriate time scales, the frequency spectra are well characterized even in the transition to the steady state. The nonlinear time scales that best match spectral features are the nonlinear frequency of the fixed point and a frequency that depends on the amplitude displacement from the fixed point through the large-amplitude Jacobian elliptic solution. Two limited efforts to model the effect of other triads suggest robustness in the single triad results.

  6. Phase-shift effect in capacitively coupled plasmas with two radio frequency or very high frequency sources

    SciTech Connect

    Xu Xiang; Zhao Shuxia; Zhang Yuru; Wang Younian

    2010-08-15

    A two-dimensional fluid model was built to study the argon discharge in a capacitively coupled plasma reactor and the full set of Maxwell equations is included in the model to understand the electromagnetic effect in the capacitive discharge. Two electrical sources are applied to the top and bottom electrodes in our simulations and the phase-shift effect is focused on. We distinguish the difference of the phase-shift effect on the plasma uniformity in the traditional radio frequency discharge and in the very high frequency discharge where the standing wave effect dominates. It is found that in the discharges with frequency 13.56 MHz, the control of phase difference can less the influence of the electrostatic edge effect, and it gets the best radial uniformity of plasma density at the phase difference {pi}. But in the very high frequency discharges, the standing wave effect plays an important role. The standing wave effect can be counteracted at the phase difference 0, and be enhanced at the phase difference {pi}. The standing wave effect and the edge effect are balanced at some phase-shift value between 0 and {pi}, which is determined by discharge parameters.

  7. Cross-frequency coupling of brain oscillations in studying motivation and emotion.

    PubMed

    Schutter, Dennis J L G; Knyazev, Gennady G

    2012-03-01

    Research has shown that brain functions are realized by simultaneous oscillations in various frequency bands. In addition to examining oscillations in pre-specified bands, interactions and relations between the different frequency bandwidths is another important aspect that needs to be considered in unraveling the workings of the human brain and its functions. In this review we provide evidence that studying interdependencies between brain oscillations may be a valuable approach to study the electrophysiological processes associated with motivation and emotional states. Studies will be presented showing that amplitude-amplitude coupling between delta-alpha and delta-beta oscillations varies as a function of state anxiety and approach-avoidance-related motivation, and that changes in the association between delta-beta oscillations can be observed following successful psychotherapy. Together these studies suggest that cross-frequency coupling of brain oscillations may contribute to expanding our understanding of the neural processes underlying motivation and emotion. PMID:22448078

  8. Magnetoelectric Dead Layer and Uncompensated Spins in Magnetic/Ferroelectric Heterostructures

    NASA Astrophysics Data System (ADS)

    Holcomb, Mikel; Huang, Chih-Yeh; Zhou, Jinling; Trappen, Robbyn; Cabrera, Guerau; Chu, Ying-Hao; West Virginia University Team; National Chiao Tung University Team

    Interfacial magnetoelectricity across a multilayer system is known to sometimes result in much larger coupling between electric and magnetism than in single phase systems. We compared the magnetic domains in LaSrMnO3 thin films, ferroelectric domains in PbZrTiO3 and observed uncompensated spin at the interface. Several techniques to quantify image contrast switching between left and right circularly polarized x-ray absorption spectra of magnetic domains and uncompensated spin were developed and gave similar results. Not surprisingly, the magnetic domain switching increased with magnetic film thickness, but the uncompensated spin did as well. This results suggests that there may be an effective magnetoelectric dead layer at the interface between coupled magnetic and ferroelectric layers, which is likely linked to at least the magnetic dead layer in the magnetic film. These measurements were taken by L-edge spectromicroscopy at the PEEM3 beamline of the Advanced Light Source.

  9. Magneto-electric effect for multiferroic thin film by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Wang, Zidong; Grimson, Malcolm J.

    2015-06-01

    Magneto-electric (ME) effect in a multiferroic heterostructure film, i.e., a coupled ferromagnetic-ferroelectric thin film, has been investigated through the use of the Metropolis algorithm in Monte Carlo simulations. A classical Heisenberg model describes the energy stored in the ferromagnetic (FM) film, and we use a pseudo-spin model with a transverse Ising Hamiltonian to characterise the energy of electric dipoles in the ferroelectric (FE) film. The purpose of this article is to demonstrate the dynamic response of polarisation is driven by an external magnetic field, when there is a linear magneto-electric coupling at the interface between the ferromagnetic and ferroelectric components. Contribution to the topical issue "Advanced Electromagnetics Symposium (AES 2014) - Elected submissions", edited by Adel Razek

  10. An improved coupling design for high-frequency TE011 electron paramagnetic resonance cavities

    NASA Astrophysics Data System (ADS)

    Savitsky, A.; Grishin, Yu.; Rakhmatullin, R.; Reijerse, E.; Lubitz, W.

    2013-01-01

    In high-frequency electron paramagnetic resonance (EPR) spectroscopy the sample is usually accommodated in a single-mode cylindrical TE011 microwave cavity. This cavity stands out in terms of flexibility for various types of EPR experiments due to convenient control of its resonance frequency and easy waveguide-to-cavity microwave coupling. In continuous wave and in pulsed EPR it is, however, essential to be able to vary the coupling efficiency over a large range. We present a new mechanical design to vary the microwave coupling to the cavity using a movable metal sphere. This coupling sphere is shifted in the plane of the iris wall inside the coupling waveguide. The design allows for a compact and robust construction of the EPR probehead that can be easily accommodated inside a limited space of helium flow cryostat. The construction details and characterization of the coupling element for 95 GHz (W-band) EPR as well as for 34 GHz (Q-band) are presented.

  11. Combinatorial bulk ceramic magnetoelectric composite libraries of strontium hexaferrite and barium titanate.

    PubMed

    Pullar, Robert C

    2012-07-01

    Bulk ceramic combinatorial libraries were produced via a novel, high-throughput (HT) process, in the form of polycrystalline strips with a gradient composition along the length of the library. Step gradient ceramic composite libraries with 10 mol % steps of SrFe12O19-BaTiO3 (SrM-BT) were made and characterized using HT methods, as a proof of principle of the combinatorial bulk ceramic process, and sintered via HT thermal processing. It was found that the SrM-BT libraries sintered at 1175 °C had the optimum morphology and density. The compositional, electrical and magnetic properties of this library were analyzed, and it was found that the SrM and BT phases did not react and remained discrete. The combinatorial synthesis method produced a relatively linear variation in composition. The magnetization of the library followed the measured compositions very well, as did the low frequency permittivity values of most compositions in the library. However, with high SrM content of ≥80 mol %, the samples became increasingly conductive, and no reliable dielectric measurements could be made. Such conductivity would also greatly inhibit any ferroelectricity and magnetoelectric coupling with these composites with high levels of the SrM hexagonal ferrite. PMID:22676556

  12. Investigation of optimized end-bonding magnetoelectric heterostructure for sensitive magnetic field sensor.

    PubMed

    Lu, Caijiang; Xu, Changbao; Wang, Lei; Gao, Jipu; Gui, Junguo; Lin, Chenghui

    2014-11-01

    This paper reports an optimized end-bonding magnetoelectric (ME) heterostructure FeCuNbSiB-PZT-FeCuNbSiB (FPF) for sensitive magnetic field sensor. The heterostructure is made by attaching magnetostrictive Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils at the free ends of piezoelectric Pb(Zr1-x,Tix)O3 (PZT) plates. Due to the structural advantages, the FPF has ∼3.12 times larger resonance voltage coefficient (αME,r) than traditional FeCuNbSiB/PZT laminate. And compared with the Metglas-PZT-Metglas heterostructure, the FPF heterostructure has stronger ME responses for the excellent magnetic characteristics of FeCuNbSiB. In experiments, the FPF heterostructure is optimal designed through adjusting the thickness of PZT plate (tp) and the length of FeCuNbSiB foil (L). The results demonstrate that the maximum αME,r of 662.1 (V/cm Oe) is observed at 13 Oe DC bias magnetic field when L = 15 mm and tp = 0.6 mm. Based on the giant ME coupling, the DC magnetic field sensitivity for the optimized FPF heterostructure is 3.89 nT at resonant frequency. These results are very promising for the cheap room-temperature magnetic field sensing technology. PMID:25430140

  13. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    SciTech Connect

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-10-15

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  14. Coupling and tuning of modal frequencies in direct current biased microelectromechanical systems arrays

    SciTech Connect

    Kambali, Prashant N.; Swain, Gyanadutta; Pandey, Ashok Kumar; Buks, Eyal; Gottlieb, Oded

    2015-08-10

    Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict the variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V.

  15. Coupling and tuning of modal frequencies in direct current biased microelectromechanical systems arrays

    NASA Astrophysics Data System (ADS)

    Kambali, Prashant N.; Swain, Gyanadutta; Pandey, Ashok Kumar; Buks, Eyal; Gottlieb, Oded

    2015-08-01

    Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict the variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V.

  16. Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator

    NASA Astrophysics Data System (ADS)

    Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan; Majer, Johannes

    2016-07-01

    We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 1017 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.

  17. Experimental evidence of deterministic coherence resonance in coupled chaotic systems with frequency mismatch

    NASA Astrophysics Data System (ADS)

    García-Vellisca, M. A.; Pisarchik, A. N.; Jaimes-Reátegui, R.

    2016-07-01

    We present the experimental evidence of deterministic coherence resonance in unidirectionally coupled two and three Rössler electronic oscillators with mismatch between their natural frequencies. The regularity in both the amplitude and the phase of chaotic fluctuations is experimentally proven by the analyses of normalized standard deviations of the peak amplitude and interpeak interval and Lyapunov exponents. The resonant chaos suppression appears when the coupling strength is increased and the oscillators are in phase synchronization. In two coupled oscillators, the coherence enhancement is associated with negative third and fourth Lyapunov exponents, while the largest first and second exponents remain positive. Distinctly, in three oscillators coupled in a ring, all exponents become negative, giving rise to periodicity. Numerical simulations are in good agreement with the experiments.

  18. Electric field modulation of ultra-high resonance frequency in obliquely deposited [Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32(011)/FeCoZr heterostructure for reconfigurable magnetoelectric microwave devices

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Ong, C. K.

    2014-07-01

    The multiferroic heterostructure of FeCoZr/[Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32(011) (PMN-PT) prepared by oblique sputtering deposition technique shows a large electrical tunability of ultra-high ferromagnetic resonance frequency from 7.4 GHz to 12.3 GHz. Moreover, we experimentally demonstrate the possibility of realizing electrically reconfigurable magnetoelectric microwave devices with ultra-low power consumption by employing the heterostructure under different resetting electric fields through a reconfiguration process. In particular, the tunability of the FeCoZr/PMN-PT heterostructure from 8.2 GHz to 11.6 GHz can retain in a remanent state after releasing the resetting electric field. This suggests that the tunable microwave devices based on such heterostructures are permanently reconfigurable by simply using a trigger electric field double-pulse which requires much less energy than that of the conventional ones wherein an electric field needs to be constantly applied during operation.

  19. The electrical asymmetry effect in capacitively coupled radio-frequency discharges

    NASA Astrophysics Data System (ADS)

    Czarnetzki, U.; Schulze, J.; Schüngel, E.; Donkó, Z.

    2011-04-01

    We present an analytical model to describe capacitively coupled radio-frequency (CCRF) discharges and the electrical asymmetry effect (EAE) based on the non-linearity of the boundary sheaths. The model describes various discharge types, e.g. single and multi-frequency as well as geometrically symmetric and asymmetric discharges. It yields simple analytical expressions for important plasma parameters such as the dc self-bias, the uncompensated charge in both sheaths, the discharge current and the power dissipated to electrons. Based on the model results the EAE is understood. This effect allows control of the symmetry of CCRF discharges driven by multiple consecutive harmonics of a fundamental frequency electrically by tuning the individual phase shifts between the driving frequencies. This novel class of capacitive radio-frequency (RF) discharges has various advantages: (i) A variable dc self-bias can be generated as a function of the phase shifts between the driving frequencies. In this way, the symmetry of the sheaths in geometrically symmetric discharges can be broken and controlled for the first time. (ii) Almost ideal separate control of ion energy and flux at the electrodes can be realized in contrast to classical dual-frequency discharges driven by two substantially different frequencies. (iii) Non-linear self-excited plasma series resonance oscillations of the RF current can be switched on and off electrically even in geometrically symmetric discharges. Here, the basics of the EAE are introduced and its main applications are discussed based on experimental, simulation, and modeling results.

  20. Nonlinear magneto-electric effects in ferromagnetic-piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Burdin, D. A.; Chashin, D. V.; Ekonomov, N. A.; Fetisov, L. Y.; Fetisov, Y. K.; Sreenivasulu, G.; Srinivasan, G.

    2014-05-01

    Theory and results of a systematic study on the nature of nonlinear magnetoelectric (ME) interactions in layered ferromagnetic and ferroelectric composites are discussed. The model that considers the nonlinearity associated with magnetostriction of the ferromagnet is to result in (i) a dc component and (ii) frequency doubling when the composite is subjected to an ac magnetic field. In the presence of two ac magnetic fields of different frequencies, nonlinear effects give rise to generation of ME voltages at the sum and difference of the fields frequencies. The efficiencies of nonlinear ME interactions are shown to be a function of the second derivative of the magnetostriction with respect to the bias magnetic field. The predictions of the model are compared with data for bilayers of lead zirconate titanate (PZT) and ferromagnetic layers with wide variations in saturation magnetostrictions and saturation magnetic fields, i.e., an amorphous ferromagnetic (AF) alloy, Ni, or permendur. Under linear excitation conditions an enhancement in the ME voltage is measured when the ac magnetic field is applied at the acoustic mode frequencies. Under nonlinear excitation conditions the mechanical deformation and the ME response occur at twice the excitation frequency and the AF-PZT composite shows a much higher nonlinear ME effects. In addition, the AF-PZT shows an efficient frequency mixing than the samples with Ni or permendur when subjected to two ac magnetic fields. The frequency mixing is shown to be of importance for magnetic field sensor applications.

  1. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    DOEpatents

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  2. Ultralow-Frequency Collective Compression Mode and Strong Interlayer Coupling in Multilayer Black Phosphorus.

    PubMed

    Dong, Shan; Zhang, Anmin; Liu, Kai; Ji, Jianting; Ye, Y G; Luo, X G; Chen, X H; Ma, Xiaoli; Jie, Yinghao; Chen, Changfeng; Wang, Xiaoqun; Zhang, Qingming

    2016-02-26

    The recent renaissance of black phosphorus (BP) as a two-dimensional (2D) layered material has generated tremendous interest, but its unique structural characters underlying many of its outstanding properties still need elucidation. Here we report Raman measurements that reveal an ultralow-frequency collective compression mode (CCM) in BP, which is unprecedented among similar 2D layered materials. This novel CCM indicates an unusually strong interlayer coupling, and this result is quantitatively supported by a phonon frequency analysis and first-principles calculations. Moreover, the CCM and another branch of low-frequency Raman modes shift sensitively with changing number of layers, allowing an accurate determination of the thickness up to tens of atomic layers, which is considerably higher than previously achieved by using high-frequency Raman modes. These findings offer fundamental insights and practical tools for further exploration of BP as a highly promising new 2D semiconductor. PMID:26967441

  3. A new method for calculation of low-frequency coupling impedance

    SciTech Connect

    Kurennoy, S.S.; Stupakov, G.V.

    1993-05-01

    In high-energy proton accelerators and storage rings the bunch length is typically at least a few times larger than the radius of the vacuum chamber. For example, the SSC will have an rms bunch length above 6 cm and a beam-pipe radius below 2 cm. The main concern for beam stability in such a machine is the low-frequency impedance, i.e., the coupling impedance at frequencies wen below the cut-off frequency of the vacuum chamber. In the present paper we develop a new analytical approach for calculation of the low-frequency impedance of axisymmetric structures that allows us to give quick and reliable estimates of contributions to the impedance from various chamber discontinuities. Simple formulae for the longitudinal impedance of some typical discontinuities are obtained.

  4. Ultralow-Frequency Collective Compression Mode and Strong Interlayer Coupling in Multilayer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Dong, Shan; Zhang, Anmin; Liu, Kai; Ji, Jianting; Ye, Y. G.; Luo, X. G.; Chen, X. H.; Ma, Xiaoli; Jie, Yinghao; Chen, Changfeng; Wang, Xiaoqun; Zhang, Qingming

    2016-02-01

    The recent renaissance of black phosphorus (BP) as a two-dimensional (2D) layered material has generated tremendous interest, but its unique structural characters underlying many of its outstanding properties still need elucidation. Here we report Raman measurements that reveal an ultralow-frequency collective compression mode (CCM) in BP, which is unprecedented among similar 2D layered materials. This novel CCM indicates an unusually strong interlayer coupling, and this result is quantitatively supported by a phonon frequency analysis and first-principles calculations. Moreover, the CCM and another branch of low-frequency Raman modes shift sensitively with changing number of layers, allowing an accurate determination of the thickness up to tens of atomic layers, which is considerably higher than previously achieved by using high-frequency Raman modes. These findings offer fundamental insights and practical tools for further exploration of BP as a highly promising new 2D semiconductor.

  5. The influence of the adhesive bonding on the magnetoelectric effect in bilayer magnetostrictive-piezoelectric structure

    NASA Astrophysics Data System (ADS)

    Galichyan, T. A.; Filippov, D. A.

    2014-12-01

    The influence of the interlayer adhesive bonding is considered in bilayer magnetostrictive-piezoelectric structure. The expression for the frequency dependence of the magnetoelectric voltage coefficient in the electromechanical resonance region is obtained using the simultaneous solution of the motion equations for the magnetostrict- ive, adhesive, piezoelectric phases and material equations. It is shown that in the passage to the limits this expression for the coefficient transforms to the expression for ideal connection between the layers.

  6. Tunable coupling between fixed-frequency superconducting transmon qubits, Part I: Concept, design, and prospects

    NASA Astrophysics Data System (ADS)

    Filipp, Stefan; McKay, David C.; Magesan, Easwar; Mezzacapo, Antonio; Chow, Jerry M.; Gambetta, Jay M.

    The controlled realization of qubit-qubit interactions is essential for both the physical implementation of quantum error-correction codes and for reliable quantum simulations. Ideally, the fidelity and speed of corresponding two-qubit gate operations is comparable to those of single qubit operations. In particular, in a scalable superconducting qubit architecture coherence must not be compromised by the presence of additional coupling elements mediating the interaction between qubits. Here we present a coupling method between fixed-frequency transmon qubits based on the frequency modulation of an auxiliary circuit coupling to the individual transmons. Since the coupler remains in its ground state at all times, its coherence does not significantly influence the fidelity of consequent entangling operations. Moreover, with the possibility to create interactions along different directions, our method is suited to engineer Hamiltonians with adjustable coupling terms. This property can be utilized for quantum simulations of spins or fermions in transmon arrays, in which pairwise couplings between adjacent qubits can be activated on demand. We acknowledge support from ARO under Contract W911NF-14-1-0124.

  7. Finite size effect on spread of resonance frequencies in arrays of coupled vortices

    SciTech Connect

    Vogel, Andreas; Drews, André; Im, Mi-Young; Fischer, Peter; Meier, Guido

    2011-01-25

    Dynamical properties of magnetic vortices in arrays of magnetostatically coupled ferromagnetic disks are studied by means of a broadband ferromagnetic-resonance (FMR) setup. Magnetic force microscopy and magnetic transmission soft X-ray microscopy are used to image the core polarizations and the chiralities which are both found to be randomly distributed. The resonance frequency of vortex-core motion strongly depends on the magnetostatic coupling between the disks. The parameter describing the relative broadening of the absorption peak observed in the FMR transmission spectra for a given normalized center-to-center distance between the elements is shown to depend on the size of the array.

  8. Magnetoelectric coupling and phase transition in BiFeO3 and (BiFeO3)0.95(BaTiO3)0.05 ceramics

    NASA Astrophysics Data System (ADS)

    Wang, T.-H.; Tu, C.-S.; Chen, H.-Y.; Ding, Y.; Lin, T. C.; Yao, Y.-D.; Schmidt, V. H.; Wu, K.-T.

    2011-02-01

    In situ high-resolution synchrotron x-ray diffraction reveals a local minimum in rhombohedral distortion angle αR (associated with an inflection in the lattice constant aR) near 400 and 350 °C in BiFeO3 (BFO) and (BiFeO3)0.95(BaTiO3)0.05 (BFO-5%BT), respectively. It suggests a coupling between ferroelectric and magnetic parameters near the antiferromagnetic-paramagnetic transition, which is responsible for the broad frequency-dependent dielectric maxima. A rhombohedral (R)-orthorhombic (O)-cubic (C) transition sequence takes place near 820 and 850 °C in BFO upon heating. BFO-5%BT exhibits a R-C transition near 830 °C. The BaTiO3 substitution can enhance dielectric and ferromagnetic responses and reduce electric leakage. The dielectric loss of BFO-5%BT remains less than 0.04 below 150 °C.

  9. Simulation of Plasma Characteristics for Inductively Coupled Argon Plasma Using Dual-Frequency Antennas

    NASA Astrophysics Data System (ADS)

    Li, Xue-Chun; Sun, Xiao-Yan; Wang, You-Nian

    2014-10-01

    A large-area wafer size is necessary for plasma processing in the micro-electronics industry. However, it is one of the most important issues to obtain uniform plasma over a large-area substrate in addition to high-density plasmas for the plasma processing. Recently, the experimental study on the dual-frequency inductively coupled plasma (ICP) has been reported as a mean of improving the plasma uniformity over the large-area substrate. In this work, we develop a self-consistent method combined with the electromagnetic theory and fluid model to simulate the plasma characteristics for dual-frequency inductively coupled argon plasma. In the model, the ICP source consists of two planar-spiral coils. We investigate the plasma uniformity problem by adjusting the parameters of the two coils, such as the RF current, the position of the coils and the RF frequency ratio. It was found that the uniformity of the ion density over the wafer is improved with dual-frequency antennas comparing with a single-frequency antenna. The plasma uniformity increases when the coils are located farther from the centre of the ICP source. It is consistent with the experimental study. This work was supported by the National Natural Science Foundation of China (No. 11175034, No. 11075029).

  10. A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations

    SciTech Connect

    Ouyang, G; Jandhyala, V; Champagne, N; Sharpe, R; Fasenfest, B J; Rockway, J D

    2004-12-14

    An Asymptotic Wave Expansion (AWE) technique is implemented into the EIGER computational electromagnetics code. The AWE fast frequency sweep is formed by separating the components of the integral equations by frequency dependence, then using this information to find a rational function approximation of the results. The standard AWE method is generalized to work for several integral equations, including the EFIE for conductors and the PMCHWT for dielectrics. The method is also expanded to work for two types of coupled circuit-EM problems as well as lumped load circuit elements. After a simple bisecting adaptive sweep algorithm is developed, dramatic speed improvements are seen for several example problems.

  11. Room-temperature magnetoelectric multiferroic thin films and applications thereof

    SciTech Connect

    Katiyar, Ram S; Kuman, Ashok; Scott, James F.

    2014-08-12

    The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

  12. Magnetoelectric laminate composite based tachometer for harsh environment applications

    SciTech Connect

    Myers, Robert; Islam, Rashed Adnan; Karmarkar, Makarand; Priya, Shashank

    2007-09-17

    This study reports the design, fabrication, and characterization of a tachometer utilizing magnetoelectric (ME) laminate composites with sandwich structure consisting of Pb(Zr,Ti)O{sub 3} (PZT) and Galfenol. High temperature characterization of Galfenol shows that it can sustain the magnetic property over 500 deg. C. The Curie temperature of PZT compositions was in the range of 325-340 deg. C. The magnitude of the ME coefficient was found to scale with the dimensionless ratio (d g/S), where d is the piezoelectric strain constant, g is the piezoelectric voltage constant, and S is the elastic compliance. The tachometer design is based on the principle that when ME composite is exposed to oscillating magnetic field, it generates voltage with the same frequency.

  13. High-frequency Born synthetic seismograms based on coupled normal modes

    USGS Publications Warehouse

    Pollitz, Fred F.

    2011-01-01

    High-frequency and full waveform synthetic seismograms on a 3-D laterally heterogeneous earth model are simulated using the theory of coupled normal modes. The set of coupled integral equations that describe the 3-D response are simplified into a set of uncoupled integral equations by using the Born approximation to calculate scattered wavefields and the pure-path approximation to modulate the phase of incident and scattered wavefields. This depends upon a decomposition of the aspherical structure into smooth and rough components. The uncoupled integral equations are discretized and solved in the frequency domain, and time domain results are obtained by inverse Fourier transform. Examples show the utility of the normal mode approach to synthesize the seismic wavefields resulting from interaction with a combination of rough and smooth structural heterogeneities. This approach is applied to an ∼4 Hz shallow crustal wave propagation around the site of the San Andreas Fault Observatory at Depth (SAFOD).

  14. Direct measurement of voltage-controlled reversal of the antiferromagnetic spin structure in magnetoelectric Cr2O3

    NASA Astrophysics Data System (ADS)

    Wang, Junlei; Binek, Christian

    The frequency dependence of the electric field induced magneto-optical Faraday effect is investigated in the magnetoelectric antiferromagnet chromia. Two electrically induced Faraday signals superimpose in proportion to the linear magnetoelectric susceptibility and the antiferromagnetic order parameter. The relative strength of these contributions is determined by the frequency of the probing light beam. It allows tuning the Faraday signal between extreme characteristics which follow the temperature dependence of the magnetoelectric susceptibility or solely that of the antiferromagnetic order parameter. The frequency dependence is analyzed in terms of electric dipole transitions of perturbed Cr3 + crystal-field states. The results lead to a table-top set-up allowing to measure voltage-controlled selection and temperature dependence of the antiferromagnetic order parameter. The Faraday rotation per applied voltage is independent of the sample thickness making the method scalable and versatile for thin film investigations. Scalability, compactness, and simplicity of the data analysis combined with low photon flux requirements make the Faraday approach advantageous for the investigation of the otherwise difficult to access voltage-controlled switching of antiferromagnetic domain states in magnetoelectric thin films. This project is supported by NRI via CNFD through tasks SRC 2398.001 and 2587.001, by C-SPIN, a SRC program, sponsored by MARCO and DARPA, and by NSF through Nebraska MRSEC DMR-1420645.

  15. Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations

    NASA Astrophysics Data System (ADS)

    Zhu, Jin; Zhang, Wei

    2015-04-01

    Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever

  16. Cross-frequency coupling of brain oscillations: an impact of state anxiety.

    PubMed

    Knyazev, Gennady G

    2011-06-01

    In recent studies, statistical relations among activities in different frequency EEG bands have been reported. Most of these studies investigate within-subject cross-frequency relations, such as amplitude-amplitude, phase-amplitude and phase-phase coupling between different frequencies. All these cross-frequency interactions are considered to be transient correlates of information processing. However, some authors suggested that a particular pattern of amplitude-amplitude relations among different frequencies may be associated with relatively stable states or even traits. Particularly delta-beta amplitude-amplitude correlation measured in the between-subject domain was shown to lawfully increase in some presumably anxiogenic conditions and in some pathological groups. The main purpose of this paper was to further explore the phenomenon of between-subject delta-beta correlation in terms of its spatial localization, relatedness to state anxiety, and similarity to within-subject amplitude-to-amplitude and phase-to-amplitude coupling. Independent component analysis was used to identify temporally correlated spatial patterns that most reliably show the phenomenon of between-subject delta-beta correlation. Results of this analysis show that in an anxiogenic situation, delta-beta correlation increases in a network of cortical areas which includes the orbitofrontal and the anterior cingulate cortices as its main node. This increase of correlation is accompanied by an increase of delta power and connectivity in the same cortical regions. Analysis of the within-subject delta-beta amplitude-to-amplitude and phase-to-amplitude coupling showed that in an anxiogenic situation, in subjects with higher scores on state anxiety they also tend to increase in the same set of cortical areas. PMID:21458502

  17. Power balancing effect on the performance of IMPACC modulator under critical coupling (CC), over coupling (OC), and under coupling (UC) conditions at high frequency

    NASA Astrophysics Data System (ADS)

    Dingel, Benjamin B.; Madamopoulos, Nicholas; Prescod, Andru; Madabhushi, R.

    2012-01-01

    IMPACC (Interferometric Modulator with Phase-modulating and Cavity-modulating Components) is ultra-linear optical consisting of a phase modulator and a ring resonator on different arms of a Mach Zehnder interferometer (MZI). External control of the RF power split ratio from an input radio frequency (RF) signal into the two separate arms of the interferometer has been shown to add (1) design flexibility, (2) the ability to achieve high spurious free dynamic range (SFDR) of more than 130 dB, when compared to the single-ring RAMZI (Resonator-assisted MZI) and (3) compensate parameter deviation due to manufacturing imperfection. Our previous reports have assumed that the Optical power split ratio of the input optical signal into the two arm of MZI is balanced with a 50:50 split ratio due to the optical splitter or optical coupler. Here, we investigate three issues. First, we report the negative effect of unbalanced power of the input optical signal on the SFDR performance of IMPACC. Second, we utilize the inherent compensate technique of IMPACC to counteract this effect. Third, the power unbalanced effect is reported at high RF modulation frequency (23GHz) for three different conditions of the ring resonator (RR) namely, critical coupling (CC), over coupling (OC), and under coupling (UC). Lastly, we compare the performance of IMPACC to the single-ring RAMZI with traveling-wave electrode design under sub-octave operations.

  18. Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions

    PubMed Central

    Pittman-Polletta, Benjamin; Hsieh, Wan-Hsin; Kaur, Satvinder; Lo, Men-Tzung; Hu, Kun

    2014-01-01

    Background Phase-amplitude coupling (PAC) – the dependence of the amplitude of one rhythm on the phase of another, lower-frequency rhythm – has recently been used to illuminate cross-frequency coordination in neurophysiological activity. An essential step in measuring PAC is decomposing data to obtain rhythmic components of interest. Current methods of PAC assessment employ narrowband Fourier-based filters, which assume that biological rhythms are stationary, harmonic oscillations. However, biological signals frequently contain irregular and nonstationary features, which may contaminate rhythms of interest and complicate comodulogram interpretation, especially when frequency resolution is limited by short data segments. New method To better account for nonstationarities while maintaining sharp frequency resolution in PAC measurement, even for short data segments, we introduce a new method of PAC assessment which utilizes adaptive and more generally broadband decomposition techniques – such as the empirical mode decomposition (EMD). To obtain high frequency resolution PAC measurements, our method distributes the PAC associated with pairs of broadband oscillations over frequency space according to the time-local frequencies of these oscillations. Comparison with existing methods We compare our novel adaptive approach to a narrowband comodulogram approach on a variety of simulated signals of short duration, studying systematically how different types of nonstationarities affect these methods, as well as on EEG data. Conclusions Our results show: (1) narrowband filtering can lead to poor PAC frequency resolution, and inaccuracy and false negatives in PAC assessment; (2) our adaptive approach attains better PAC frequency resolution and is more resistant to nonstationarities and artifacts than traditional comodulograms. PMID:24452055

  19. Computational IR spectroscopy of water: OH stretch frequencies, transition dipoles, and intermolecular vibrational coupling constants

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2013-05-01

    The Hessian matrix reconstruction method initially developed to extract the basis mode frequencies, vibrational coupling constants, and transition dipoles of the delocalized amide I, II, and III vibrations of polypeptides and proteins from quantum chemistry calculation results is used to obtain those properties of delocalized O-H stretch modes in liquid water. Considering the water symmetric and asymmetric O-H stretch modes as basis modes, we here develop theoretical models relating vibrational frequencies, transition dipoles, and coupling constants of basis modes to local water configuration and solvent electric potential. Molecular dynamics simulation was performed to generate an ensemble of water configurations that was in turn used to construct vibrational Hamiltonian matrices. Obtaining the eigenvalues and eigenvectors of the matrices and using the time-averaging approximation method, which was developed by the Skinner group, to calculating the vibrational spectra of coupled oscillator systems, we could numerically simulate the O-H stretch IR spectrum of liquid water. The asymmetric line shape and weak shoulder bands were quantitatively reproduced by the present computational procedure based on vibrational exciton model, where the polarization effects on basis mode transition dipoles and inter-mode coupling constants were found to be crucial in quantitatively simulating the vibrational spectra of hydrogen-bond networking liquid water.

  20. Using High Frequency Focused Water-Coupled Ultrasound for 3-D Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. A prior study was performed demonstrating that focused air-coupled ultrasound at 1 MHz was capable of profiling surfaces with 25 micron depth resolution and 400 micron lateral resolution over a 1.4 mm depth range. In this article, the question of whether higher-frequency focused water-coupled ultrasound can improve on these specifications is addressed. 10 and 25 MHz focused ultrasonic transducers were employed in the water-coupled mode. Time-of-flight images of the sample surface were acquired and converted to depth / surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in water (V). Results are compared for the two frequencies used and with those from the 1 MHz air-coupled configuration.

  1. Experimental investigations of driving frequency effect in low-pressure capacitively coupled oxygen discharges

    SciTech Connect

    Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu; Gao, Fei; Wang, You-Nian

    2015-04-14

    The effect of driving frequency on the electron density is investigated in low-pressure capacitively coupled oxygen plasmas by utilizing a floating hairpin probe. The power absorbed by the plasma is investigated and it is found that the power lost in the matching network can reach 50% or higher under certain conditions. The effect of driving frequency on the electron density is studied from two aspects, i.e., constant absorbed power and electrode voltage. In the former case, the electron density increases with the driving frequency increasing from 13.56 to 40.68 MHz and slightly changes depending on the gas pressures with the frequency further increasing to 100 MHz. In the latter case, the electron density rapidly increases when the driving frequency increases from 13.56 to 40.68 MHz, and then decreases with the frequency further increasing to 100 MHz. The electron series resonance is observed at 40.68 MHz and can be attributed to the higher electron density. And the standing wave effect also plays an important role in increasing electron density at 100 MHz and 2.6 Pa.

  2. Plasma Characteristics Using Superimposed Dual Frequency Inductively Coupled Plasma Source for Next Generation Device Processing.

    PubMed

    Lee, Seung Min; Lee, Chul Hee; Kim, Tae Hyung; Yeom, Geun Young; Kim, Kyong Nam

    2015-11-01

    U-shaped inductively coupled plasma (ICP) source was investigated as a linear plasma source for the next generation roll-to-toll flexible display processing. For the radio frequency power to the source, the dual frequency composed of 13.56 MHz and 2 MHz was used and the effect of dual frequency to the U-shaped ICP source on the plasma density, electron temperature, and plasma uniformity was investigated. As the operating condition, 200 mTorr Ar was used without operating turbo pumps. The use of superimposed dual frequency composed of 13.56 MHz + 2 MHz instead the single frequency of 13.56 MHz increased the plasma density slightly at the same total power. In addition, the addition of 2 MHz rf power to 0.4 kW while maintaining 1 kW 13.56 MHz rf power not only decreased electron temperature but also improved both the plasma uniformity and the process uniformity measured by photoresist etching. Therefore, by using the dual frequency to the U-shaped ICP source, not only the plasma density but also plasma uniformity could be improved in addition to the decrease of possible damage to the substrate. PMID:26726573

  3. Experimental investigations of driving frequency effect in low-pressure capacitively coupled oxygen discharges

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu; Gao, Fei; Wang, You-Nian

    2015-04-01

    The effect of driving frequency on the electron density is investigated in low-pressure capacitively coupled oxygen plasmas by utilizing a floating hairpin probe. The power absorbed by the plasma is investigated and it is found that the power lost in the matching network can reach 50% or higher under certain conditions. The effect of driving frequency on the electron density is studied from two aspects, i.e., constant absorbed power and electrode voltage. In the former case, the electron density increases with the driving frequency increasing from 13.56 to 40.68 MHz and slightly changes depending on the gas pressures with the frequency further increasing to 100 MHz. In the latter case, the electron density rapidly increases when the driving frequency increases from 13.56 to 40.68 MHz, and then decreases with the frequency further increasing to 100 MHz. The electron series resonance is observed at 40.68 MHz and can be attributed to the higher electron density. And the standing wave effect also plays an important role in increasing electron density at 100 MHz and 2.6 Pa.

  4. Influence of frequency on the characteristics of VHF capacitively coupled plasmas in a 300 mm chamber

    NASA Astrophysics Data System (ADS)

    Hebner, G. A.; Barnat, E. V.; Miller, P. A.; Paterson, A.; Holland, J.; Lill, T.

    2004-09-01

    We have investigated the characteristics of VHF capacitively coupled plasmas produced in a modified Applied Materials chamber. The chamber had a 14-inch diameter upper electrode (source) that was driven at 10 to 160 MHz and a 300 mm diameter electrostatic chuck with a ceramic process kit that was driven at 13.56 MHz (bias). Diagnostics employed include a microwave interferometer to measure the line-integrated electron density, a hairpin microwave resonator to measure the spatially resolved electron density, absorption spectroscopy to determine the argon metastable temperature and density, laser induced fluorescence (LIF) to determine the spatial distribution of the excited species, and spatially resolved optical emission. We found that for constant source rf power, the electron density increased with rf frequency. The argon 1s5 metastable temperature was slightly above room temperature (300 - 400K), significantly cooler than our previous measurements in inductively coupled plasmas. The metastable density was not a strong function of source frequency or rf power. The metastable spatial distribution was always peaked in the center of the chamber and had a weak dependence on frequency. Scaling of the plasma parameters with frequency, power and pressure, and implications to energy deposition models will be discussed. This work was supported by Applied Materials and Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Numerical investigation on electrical characterization of a capacitive coupled radio-frequency plasma

    NASA Astrophysics Data System (ADS)

    Yao, H.; He, X.; Chen, J. P.; Zhang, Y. C.

    2015-05-01

    This paper presents the main electrical features of capacitive coupled radio-frequency (CCRF) discharges in gas. A two-dimensional, time-dependent fluid model was established. Capacitive coupled plasmas (CCP) were produced by applying radio-frequency voltage to a pair of parallel plate electrodes which are separated from the plasma by dielectric layers. The electron equation and the electron transport equations were solved and yielded the electron number density and electron temperature. The electrostatic field was obtained by the solution of the Poisson equation. The distribution of electron temperature and electron number density was studied under different conditions: radio-frequency applied voltages (VRF=100-2000V), frequencies (f=3.0-40.68MHz), pressures (p=0.001-1torr), and gas species (O2, Ar, He, N2). The results show that electron number density presents a minimum near the electrodes, and presents a maximum between the positive and the negative electrodes. The distinguishing feature of CCP is the presence of oscillating sheaths near electrodes where displacement current dominates conduction current. These informations will help us to analyze the characters of CCP for application.

  6. Odd-frequency superconductivity in a nanowire coupled to Majorana zero modes

    NASA Astrophysics Data System (ADS)

    Lee, Shu-Ping; Lutchyn, Roman M.; Maciejko, Joseph

    Odd-frequency superconductivity, originally proposed by Berezinskii in 1974, is an exotic phase of matter in which pairing is entirely dynamical in nature. The pair potential is an odd function of frequency, leading to a vanishing static superconducting order parameter and exotic types of pairing seemingly inconsistent with Fermi statistics, such as spin triplet (singlet) pairing in an s-wave (p-wave) superconductor. Motivated by recent experimental progress in the realization of Majorana zero modes in semiconducting nanowires, we show that a spin-polarized nanowire coupled to a one-dimensional array of Majorana zero modes becomes an odd-frequency superconductor. This work was supported by NSERC, CRC, CIFAR, and the University of Alberta.

  7. Field reversals in electrically asymmetric capacitively coupled radio-frequency discharges in hydrogen

    NASA Astrophysics Data System (ADS)

    Mohr, Sebastian; Schüngel, Edmund; Schulze, Julian; Czarnetzki, Uwe

    2013-10-01

    In this paper, we present a simulation study of electrically asymmetric capacitively coupled radio-frequency hydrogen discharges using the hybrid plasma equipment model operated at the combined frequencies of 10 and 20 MHz. We find that, in such discharges, field reversals cause ionization near the electrodes during the sheath collapse. In the case of the investigated asymmetric voltage waveforms, the field reversals are asymmetrically distributed over the sheaths, which causes asymmetric ionization and density profiles. The asymmetry of these profiles can be controlled by the phase angle between the two frequencies. As a result, the possibility to control the ion energy independently from the ion flux via the electrical asymmetry effect (EAE) is reduced in discharges displaying strong field reversals, as the asymmetric field reversals compensate the electrically induced asymmetry. The reason for this is understood by an analytical model. Furthermore, we demonstrate, that the EAE can be restored by the addition of specific gases to a pure hydrogen discharge.

  8. Coupled frequency-doubling optoelectronic oscillator based on polarization modulation and polarization multiplexing

    NASA Astrophysics Data System (ADS)

    Cai, Shuhong; Pan, Shilong; Zhu, Dan; Tang, Zhenzhou; Zhou, Pei; Chen, Xiangfei

    2012-03-01

    A coupled frequency-doubling optoelectronic oscillator (OEO) is proposed and experimentally demonstrated, which is constructed based on the perfect combination of polarization modulation and polarization multiplexing. A fundamental microwave signal at 9.95 GHz or a frequency-doubled microwave signal at 19.9 GHz is generated with a wavelength-independent sidemode-suppression ratio (SMSR) as high as 78 dB obtained. The phase noise of the generated 19.9-GHz signal is - 103.45 dBc/Hz at 10-kHz frequency offset, indicating a good short-term stability. The proposed scheme is simple and flexible, which can find applications in radars and wireless communications.

  9. Frequency stabilization of spin-torque-driven oscillations by coupling with a magnetic nonlinear resonator

    SciTech Connect

    Kudo, Kiwamu Suto, Hirofumi; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie

    2014-10-28

    The fundamental function of any oscillator is to produce a waveform with a stable frequency. Here, we show a method of frequency stabilization for spin-torque nano-oscillators (STNOs) that relies on coupling with an adjacent nanomagnet through the magnetic dipole–dipole interaction. It is numerically demonstrated that highly stable oscillations occur as a result of mutual feedback between an STNO and a nanomagnet. The nanomagnet acts as a nonlinear resonator for the STNO. This method is based on the nonlinear behavior of the resonator and can be considered as a magnetic analogue of an optimization scheme in nanoelectromechanical systems. The oscillation frequency is most stabilized when the nanomagnet is driven at a special feedback point at which the feedback noise between the STNO and resonator is completely eliminated.

  10. Nonlinear magnetoelectric behavior of Terfenol-D/PZT-5A laminate composites

    NASA Astrophysics Data System (ADS)

    Wang, Yezuo; Atulasimha, Jayasimha; Prasoon, Ruchir

    2010-12-01

    In this paper, a comprehensive experimental study and modeling of the nonlinear behavior of Terfenol-D/PZT-5A magnetoelectric laminate composites is reported. Magnetostriction versus magnetic field of an individual Terfenol-D sample of dimensions length = 22 mm, width = 19 mm, thickness = 0.683 mm, and polarization versus electric field as well as strain versus electric field of an individual PZT-5A sample of dimensions length = 22 mm, width = 19 mm, thickness = 0.127 mm were characterized. These samples were bonded to form a symmetric PZT-5A/Terfenol-D/PZT-5A laminate composite to avoid bending-extension coupling. Electric response of this composite to magnetic input was comprehensively characterized to include major loop and minor loop behavior. A modeling approach that structurally couples the nonlinear magnetostrictive Terfenol-D behavior and linear PZT-5A behavior to predict the magnetoelectric response was developed and validated against experimental results. This analysis, with further refinements, could prove to be a useful tool to model and design magnetoelectric sensors.

  11. Voltage-impulse-induced nonvolatile tunable magnetoelectric inductor based on multiferroic bilayer structure

    NASA Astrophysics Data System (ADS)

    Su, Hua; Tang, Xiaoli; Zhang, Huaiwu; Sun, Nian X.

    2016-07-01

    In this study, we developed a voltage-impulse-induced nonvolatile tunable magnetoelectric inductor, which used an amorphous magnetic ribbon/lead zirconate titanate (PZT) multiferroic bilayer structure as a magnetic core. The PZT substrate, which contained defect dipoles through acceptor doping, was used in the bilayer structure to obtain an asymmetric strain–E “butterfly” curve. Different and stable voltage-impulse-induced in-plane residual stain states could be obtained by applying specific voltage impulse excitation modes. These residual strain states induced a nonvolatile inductance variation in the inductor through strain-mediated magnetoelectric coupling. This method provided a promising approach to realize nonvolatile tunable inductors for miniaturized circuits and systems.

  12. Magnetism and magnetoelectricity in the polar oxide α-Cu2V2O7

    NASA Astrophysics Data System (ADS)

    Lee, Y.-W.; Jang, T.-H.; Dissanayake, S. E.; Lee, Seunghun; Jeong, Yoon H.

    2016-01-01

    Single crystals of the orthorhombic polar oxide α-Cu2V2O7 with space group Fdd2 are synthesized and their physical properties are measured. Neutron powder diffraction is also performed on a polycrystal sample to extract the magnetic structure. The ground state is shown to be weakly ferromagnetic, that is, collinearly antiferromagnetic in the a-direction with a small remanent magnetization in the c-direction. When an external magnetic field is applied in the c-direction, further spin canting, accompanied by the induced electric polarization, occurs. It is demonstrated that the magnetoelectric effect in α-Cu2V2O7 is adequately described if spin-dependent p\\text-d hybridization due to spin-orbit coupling as well as magnetic domain effects are simultaneously taken into account. We discuss the implication of the present result in the search for materials with multiferroicity and/or magnetoelectricity.

  13. Piezoelectric and magnetoelectric thick films for fabricating power sources in wireless sensor nodes.

    PubMed

    Priya, Shashank; Ryu, Jungho; Park, Chee-Sung; Oliver, Josiah; Choi, Jong-Jin; Park, Dong-Soo

    2009-01-01

    In this manuscript, we review the progress made in the synthesis of thick film-based piezoelectric and magnetoelectric structures for harvesting energy from mechanical vibrations and magnetic field. Piezoelectric compositions in the system Pb(Zr,Ti)O(3)-Pb(Zn(1/3)Nb(2/3))O(3) (PZNT) have shown promise for providing enhanced efficiency due to higher energy density and thus form the base of transducers designed for capturing the mechanical energy. Laminate structures of PZNT with magnetostrictive ferrite materials provide large magnitudes of magnetoelectric coupling and are being targeted to capture the stray magnetic field energy. We analyze the models used to predict the performance of the energy harvesters and present a full system description. PMID:22454590

  14. Magnetoelectric effects in the skyrmion host material Cu2OSeO3

    PubMed Central

    Ruff, E.; Lunkenheimer, P.; Loidl, A.; Berger, H.; Krohns, S.

    2015-01-01

    Insulating helimagnetic Cu2OSeO3 shows sizeable magnetoelectric effects in its skyrmion phase. Using magnetization measurements, magneto-current analysis and dielectric spectroscopy, we provide a thorough investigation of magnetoelectric coupling, polarization and dielectric constants of the ordered magnetic and polar phases of single-crystalline Cu2OSeO3 in external magnetic fields up to 150 mT and at temperatures below 60 K. From these measurements we construct a detailed phase diagram. Especially, the skyrmion phase and the metamagnetic transition of helical to conical spin order are characterized in detail. Finally we address the question if there is any signature of polar order that can be switched by an external electric field, which would imply multiferroic behaviour of Cu2OSeO3. PMID:26446514

  15. Magnetoelectric effects in the skyrmion host material Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Ruff, E.; Lunkenheimer, P.; Loidl, A.; Berger, H.; Krohns, S.

    2015-10-01

    Insulating helimagnetic Cu2OSeO3 shows sizeable magnetoelectric effects in its skyrmion phase. Using magnetization measurements, magneto-current analysis and dielectric spectroscopy, we provide a thorough investigation of magnetoelectric coupling, polarization and dielectric constants of the ordered magnetic and polar phases of single-crystalline Cu2OSeO3 in external magnetic fields up to 150 mT and at temperatures below 60 K. From these measurements we construct a detailed phase diagram. Especially, the skyrmion phase and the metamagnetic transition of helical to conical spin order are characterized in detail. Finally we address the question if there is any signature of polar order that can be switched by an external electric field, which would imply multiferroic behaviour of Cu2OSeO3.

  16. Quasistatic magnetoelectric multipoles as order parameter for pseudogap phase in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Fechner, M.; Fierz, M. J. A.; Thöle, F.; Staub, U.; Spaldin, N. A.

    2016-05-01

    We introduce a mechanism in which coupling between fluctuating spin magnetic dipole moments and polar optical phonons leads to a nonzero ferroic ordering of quasistatic magnetoelectric multipoles. Using first-principles calculations within the LSDA +U method of density functional theory, we calculate the magnitude of the effect for the prototypical cuprate superconductor HgBa2CuO4 . We show that our proposed mechanism is consistent, to our knowledge, with all experimental data for the onset of the pseudogap phase and therefore propose the quasistatic magnetoelectric multipole as a possible pseudogap order parameter. Finally, we show that our mechanism embraces some key aspects of previous theoretical models, in particular the description of the pseudogap phase in terms of orbital currents.

  17. Piezoelectric and Magnetoelectric Thick Films for Fabricating Power Sources in Wireless Sensor Nodes

    PubMed Central

    Priya, Shashank; Ryu, Jungho; Park, Chee-Sung; Oliver, Josiah; Choi, Jong-Jin; Park, Dong-Soo

    2009-01-01

    In this manuscript, we review the progress made in the synthesis of thick film-based piezoelectric and magnetoelectric structures for harvesting energy from mechanical vibrations and magnetic field. Piezoelectric compositions in the system Pb(Zr,Ti)O3–Pb(Zn1/3Nb2/3)O3 (PZNT) have shown promise for providing enhanced efficiency due to higher energy density and thus form the base of transducers designed for capturing the mechanical energy. Laminate structures of PZNT with magnetostrictive ferrite materials provide large magnitudes of magnetoelectric coupling and are being targeted to capture the stray magnetic field energy. We analyze the models used to predict the performance of the energy harvesters and present a full system description. PMID:22454590

  18. NiCo-lead zirconium titanate-NiCo trilayered magnetoelectric composites prepared by electroless deposition

    SciTech Connect

    Zhou, M. H.; Wang, Y. G.; Bi, K.; Fan, H. P.; Zhao, Z. S.

    2015-04-15

    The NiCo layers with various Ni/Co atomic ratio have been successfully electroless deposited on PZT layers by varying the bath composition. As the cobalt atomic ratio in the deposited layer increases from 17.2 to 54.8 wt%, the magnetostrictive coefficient decreases. The magnetoelectric effect depends strongly on the magnetostrictive properties of magnetostrictive phase. The magnetoelectric coefficient of NiCo/PZT/NiCo trilayers increases with Ni/Co atomic ratio of the deposited NiCo layers increasing from 45:55 to 83:17. A maximum ME voltage coefficient of α{sub E,31} = 2.8 V ⋅ cm{sup −1} ⋅ Oe{sup −1} is obtained at a frequency of about 88 kHz, which makes these trilayers suitable for applications in actuators, transducers and sensors.

  19. Magnetoelectric effect in layered disk-shaped magnetostrictive-piezoelectric structures: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Filippov, D. A.; Radchenko, G. S.; Laletin, V. M.

    2016-03-01

    Theoretical and experimental studies of the magnetoelectric effect in a disk-shaped magnetostrictive-piezoelectric structure in the electromechanical resonance region are presented. An expression for the magnetoelectric voltage coefficient is derived based on the simultaneous solution of elastodynamic and electrostatic equations separately for magnetostrictive and piezoelectric layers. The conditions at the interface were taken into account based on the premise that the interaction between layers is implemented by shear. It is shown that the inhomogeneity of the voltage and strain distribution over the sample thickness, caused by the interface, leads to a significant contribution to the effect in the case of thick layers. The theoretical and experimental dependences of the frequency characteristic of the effect are presented for the permendur-lead zirconate-titanate-permendur structure. The theoretical calculations are in good agreement with experimental data.

  20. Untangling Cortico-Striatal Connectivity and Cross-Frequency Coupling in L-DOPA-Induced Dyskinesia

    PubMed Central

    Belić, Jovana J.; Halje, Pär; Richter, Ulrike; Petersson, Per; Hellgren Kotaleski, Jeanette

    2016-01-01

    We simultaneously recorded local field potentials (LFPs) in the primary motor cortex and sensorimotor striatum in awake, freely behaving, 6-OHDA lesioned hemi-parkinsonian rats in order to study the features directly related to pathological states such as parkinsonian state and levodopa-induced dyskinesia. We analyzed the spectral characteristics of the obtained signals and observed that during dyskinesia the most prominent feature was a relative power increase in the high gamma frequency range at around 80 Hz, while for the parkinsonian state it was in the beta frequency range. Here we show that during both pathological states effective connectivity in terms of Granger causality is bidirectional with an accent on the striatal influence on the cortex. In the case of dyskinesia, we also found a high increase in effective connectivity at 80 Hz. In order to further understand the 80-Hz phenomenon, we performed cross-frequency analysis and observed characteristic patterns in the case of dyskinesia but not in the case of the parkinsonian state or the control state. We noted a large decrease in the modulation of the amplitude at 80 Hz by the phase of low frequency oscillations (up to ~10 Hz) across both structures in the case of dyskinesia. This may suggest a lack of coupling between the low frequency activity of the recorded network and the group of neurons active at ~80 Hz. PMID:27065818

  1. Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST

    NASA Astrophysics Data System (ADS)

    Du, Hong-Lei; Xue, Qian; Gao, Xiao-Yang; Yao, Feng-Rui; Lu, Shi-Yang; Wang, Ye-Long; Liu, Chun-Heng; Zhang, Yong-Cheng; Lü, Yue-Guang; Li, Shan-Dong

    2015-12-01

    A composite ceramic with nominal composition of 45.0 wt%(Ba0.5Sr0.5)TiO3-55.0 wt%MgO (acronym is BST-MgO) is sintered for fabricating a frequency reconfigurable aperture-coupled microstrip antenna. The calcined BST-MgO composite ceramic exhibits good microwave dielectric properties at X-band with appropriate dielectric constant ɛr around 85, lower dielectric loss tan δ about 0.01, and higher permittivity tunability 14.8% at 8.33 kV/cm. An ultrahigh E-field tunability of working frequency up to 11.0% (i.e., from 9.1 GHz to 10.1 GHz with a large frequency shift of 1000 MHz) at a DC bias field from 0 to 8.33 kV/cm and a considerably large center gain over 7.5 dB are obtained in the designed frequency reconfigurable microstrip antenna. These results demonstrate that BST materials are promising for the frequency reconfigurable antenna. Project supported by the National Natural Science Foundation of China (Grant No. 11074040) and the Key Project of Shandong Provincial Department of Science and Technology, China (Grant No. ZR2012FZ006).

  2. Studies on the effect of finite geometrical asymmetry in dual capacitively coupled radio frequency plasma

    NASA Astrophysics Data System (ADS)

    Bora, B.

    2015-10-01

    In recent years, dual capacitively coupled radio frequency (CCRF) glow discharge plasma has been widely studied in the laboratory because of its simpler design and high efficiency for different material processing applications such as thin-film deposition, plasma etching, sputtering of insulating materials etc. The main objective of studies on dual frequency CCRF plasma has been the independent control of ion energy and ion flux using an electrical asymmetry effect (EAE). Most studies have been reported in electrode configurations that are either geometrically symmetric (both electrodes are equal) or completely asymmetric (one electrode is infinitely bigger than the other). However, it seems that most of the laboratory CCRF plasmas have finite electrode geometry. In addition, plasma series resonance (PSR) and electron bounce resonance (EBR) heating also come into play as a result of geometrical asymmetry as well as EAE. In this study, a dual frequency CCRF plasma has been studied in which the dual frequency CCRF has been coupled to the lumped circuit model of the plasma and the time-independent fluid model of the plasma sheath, in order to study the effect of finite geometrical asymmetry on the generation of dc-self bias and plasma heating. The dc self-bias is found to strongly depend on the ratio of the area between the electrodes. The dc self-bias is found to depend on the phase angle between the two applied voltage waveforms. The EAE and geometrical asymmetry are found to work differently in controlling the dc self-bias. It can be concluded that the phase angle between the two voltage waveforms in dual CCRF plasmas has an important role in determining the dc self-bias and may be used for controlling the plasma properties in the dual frequency CCRF plasma.

  3. Parkinson subtype-specific Granger-causal coupling and coherence frequency in the subthalamic area.

    PubMed

    Florin, Esther; Pfeifer, Johannes; Visser-Vandewalle, Veerle; Schnitzler, Alfons; Timmermann, Lars

    2016-09-22

    Previous work on Parkinson's disease (PD) has indicated a predominantly afferent coupling between affected arm muscle activity and electrophysiological activity within the subthalamic nucleus (STN). So far, no information is available indicating which frequency components drive the afferent information flow in PD patients. Non-directional coupling e.g. by measuring coherence is primarily established in the beta band as well as at tremor frequency. Based on previous evidence it is likely that different subtypes of the disease are associated with different connectivity patterns. Therefore, we determined coherence and causality between local field potentials (LFPs) in the STN and surface electromyograms (EMGs) from the contralateral arm in 18 akinetic-rigid (AR) PD patients and 8 tremor-dominant (TD) PD patients. During the intraoperative recording, patients were asked to lift their forearm contralateral to the recording side. Significantly more afferent connections were detected for the TD patients for tremor-periods and non-tremor-periods combined as well as for only tremor periods. Within the STN 74% and 63% of the afferent connections are associated with coherence from 4-8Hz and 8-12Hz, respectively. However, when considering only tremor-periods significantly more afferent than efferent connections were associated with coherence from 12 to 20Hz across all recording heights. No difference between efferent and afferent connections is seen in the frequency range from 4 to 12Hz for all recording heights. For the AR patients, no significant difference in afferent and efferent connections within the STN was found for the different frequency bands. Still, for the AR patients dorsal of the STN significantly more afferent than efferent connections were associated with coherence in the frequency range from 12 to 16Hz. These results provide further evidence for the differential pathological oscillations and pathways present in AR and TD Parkinson patients. PMID:27393252

  4. Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)

    2001-01-01

    Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.

  5. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  6. Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial

    NASA Astrophysics Data System (ADS)

    Ding, Guo-Wen; Liu, Shao-Bin; Zhang, Hai-Feng; Kong, Xiang-Kun; Li, Hai-Ming; Li, Bing-Xiang; Liu, Si-Yuan; Li, Hai

    2015-11-01

    A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is numerically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect coupling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators. Project supported by the National Natural Science Foundation of China (Grant No. 61307052), the Youth Funding for Science & Technology Innovation in Nanjing University of Aeronautics and Astronautics, China (Grant No. NS2014039), the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20123218110017), the Innovation Program for Graduate Education of Jiangsu Province, China (Grant Nos. KYLX_0272, CXZZ13_0166, and CXLX13_155), the Open Research Program in National State Key Laboratory of Millimeter Waves of China (Grant No. K201609), and the Fundamental Research Funds for the Central Universities of China (Grant No. kfjj20150407).

  7. Low-field magnetoelectric effect at room temperature

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yutaro; Hiraoka, Yuji; Honda, Takashi; Ishikura, Taishi; Nakamura, Hiroyuki; Kimura, Tsuyoshi

    2010-10-01

    The discoveries of gigantic ferroelectric polarization in BiFeO3 (ref. 1) and ferroelectricity accompanied by a magnetic order in TbMnO3 (ref. 2) have renewed interest in research on magnetoelectric multiferroics, materials in which magnetic and ferroelectric orders coexist, from both fundamental and technological points of view. Among several different types of magnetoelectric multiferroic, magnetically induced ferroelectrics in which ferroelectricity is induced by complex magnetic orders, such as spiral orders, exhibit giant magnetoelectric effects, remarkable changes in electric polarization in response to a magnetic field. Many magnetically induced ferroelectrics showing the magnetoelectric effects have been found in the past several years. From a practical point of view, however, their magnetoelectric effects are useless because they operate only far below room temperature (for example, 28K in TbMnO3 (ref. 2) and 230K in CuO (ref. 11)). Furthermore, in most of them, the operating magnetic field is an order of tesla that is too high for practical applications. Here we report materials, Z-type hexaferrites, overcoming these problems on magnetically induced ferroelectrics. The best magnetoelectric properties were obtained for Sr3Co2Fe24O41 ceramics sintered in oxygen, which exhibit a low-field magnetoelectric effect at room temperature. Our result represents an important step towards practical device applications using the magnetoelectric effects.

  8. Active loaded plasmonic antennas at terahertz frequencies: Optical control of their capacitive-inductive coupling

    NASA Astrophysics Data System (ADS)

    Georgiou, G.; Tserkezis, C.; Schaafsma, M. C.; Aizpurua, J.; Gómez Rivas, J.

    2015-03-01

    We demonstrate the photogeneration of loaded dipole plasmonic antennas resonating at THz frequencies. This is achieved by the patterned optical illumination of a semiconductor surface using a spatial light modulator. Our experimental results indicate the existence of capacitive and inductive coupling of localized surface plasmon polaritons. By varying the load in the antenna gap we are able to switch between both coupling regimes. Furthermore, we determine experimentally the effective impedance of the antenna load and verify that this load can be effectively expressed as a LC resonance formed by a THz inductor and capacitor connected in a parallel circuit configuration. These findings are theoretically supported by full electrodynamic calculations and by simple concepts of lumped circuit theory. Our results open new possibilities for the design of active THz circuits for optoelectronic devices.

  9. Cavity mode frequencies and strong optomechanical coupling in two-membrane cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Li, Jie; Xuereb, André; Malossi, Nicola; Vitali, David

    2016-08-01

    We study the cavity mode frequencies of a Fabry–Pérot cavity containing two vibrating dielectric membranes. We derive the equations for the mode resonances and provide approximate analytical solutions for them as a function of the membrane positions, which act as an excellent approximation when the relative and center-of-mass position of the two membranes are much smaller than the cavity length. With these analytical solutions, one finds that extremely large optomechanical coupling of the membrane relative motion can be achieved in the limit of highly reflective membranes when the two membranes are placed very close to a resonance of the inner cavity formed by them. We also study the cavity finesse of the system and verify that, under the conditions of large coupling, it is not appreciably affected by the presence of the two membranes. The achievable large values of the ratio between the optomechanical coupling and the cavity decay rate, g/κ , make this two-membrane system the simplest promising platform for implementing cavity optomechanics in the strong coupling regime.

  10. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    SciTech Connect

    Coffer, J.; Encalada, N.; Huang, M.; Camparo, J.

    2014-10-28

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  11. Broadening the Frequency Bandwidth of Piezoelectric Energy Harvesters Using Coupled Linear Resonators

    NASA Astrophysics Data System (ADS)

    Sadeqi, Soheil

    The desire to reduce power consumption of current integrated circuits has led design engineers to focus on harvesting energy from free ambient sources such as vibrations. The energy harvested this way can eliminate the need for battery replacement, particularly, in low-energy remote sensing and wireless devices. Currently, most vibration-based energy harvesters are designed as linear resonators, therefore, they have a narrow resonance frequency. The optimal performance of such harvesters is achieved only when their resonance frequency is matched with the ambient excitation. In practice, however, a slight shift of the excitation frequency will cause a dramatic reduction in their performance. In the majority of cases, the ambient vibrations are totally random with their energy distributed over a wide frequency spectrum. Thus, developing techniques to extend the bandwidth of vibration-based energy harvesters has become an important field of research in energy harvesting systems. This thesis first reviews the broadband vibration-based energy harvesting techniques currently known in some detail with regard to their merits and applicability under different circumstances. After that, the design, fabrication, modeling and characterization of three new piezoelectric-based energy harvesting mechanism, built typically for rotary motion applications, is discussed. A step-by-step procedure is followed in order to broaden the bandwidth of such energy harvesters by introducing a coupled spring-mass system attached to a PZT beam undergoing rotary motion. It is shown that the new strategies can indeed give rise to a wide-band frequency response making it possible to fine-tune their dynamical response. The numerical results are shown to be in good agreement with the experimental data as far as the frequency response is concerned.

  12. Spectroscopy diagnostic of dual-frequency capacitively coupled CHF{sub 3}/Ar plasma

    SciTech Connect

    Liu, Wen-Yao; Du, Yong-Quan; Liu, Yong-Xin; Liu, Jia; Zhao, Tian-Liang; Wang, You-Nian; Xu, Yong; Li, Xiao-Song; Zhu, Ai-Min

    2013-11-15

    A combined spectroscopic method of absorption, actinometry, and relative optical emission intensity is employed to determine the absolute CF{sub 2} density, the relative F and H densities, H atom excitation temperature and the electron density in dual-frequency (60/2 MHz) capacitively coupled CHF{sub 3}/Ar plasmas. The effects of different control parameters, such as high-frequency (HF) power, low-frequency (LF) power, gas pressure, gap length and content of CHF{sub 3}, on the concentration of radical CF{sub 2}, F, and H and excitation temperature are discussed, respectively. It is found that the concentration of CF{sub 2} is strongly dependent on the HF power, operating pressure and the proportion of CHF{sub 3} in feed gas, while it is almost independent of the LF power and the gap length. A higher concentration ratio of F to CF{sub 2} could be obtained in dual-frequency discharge case. Finally, the generation and decay mechanisms of CF{sub 2} and F were also discussed.

  13. Microwave frequency electromagnetic coupling to a thin membrane as one end of a cylindrical cavity

    NASA Astrophysics Data System (ADS)

    Castelli, Alessandro; Martinez, Luis; Speer, Jerry; Sharping, Jay; Chiao, Raymond

    2015-03-01

    We demonstrate coupling of an 11.1 GHz radio frequency (RF) TE011 cylindrical cavity mode to the mechanical motion of a silicon nitride (Si3N4) membrane. The membrane is driven into motion through radiation pressure forces arising from the transverse magnetic field present at the membrane boundary. We use a cylindrical aluminum cavity where one end consists of a 500-nm thick Si3N4 membrane that has been sputtered with 300 nm of niobium (Nb). Cavity frequency tuning is controlled via an aluminum plunger attached to a micrometer at the other end of the cavity. The membrane is driven into motion by modulating the amplitude of the RF signal at the membrane's resonant frequency in the KHz range. The membrane's displacement is measured by means of a Michelson interferometer. We compare results from experimental runs utilizing both square and circular membrane geometries. This experiment shows that the TE011 mode gives rise to radiation pressure on the ends of a cylindrical cavity and demonstrates the feasibility of future work using high Q superconducting RF cavities to realize a dynamical Casimir effect (DCE) due to the membrane's motion at GHz frequencies.

  14. Emissive Probe Measurements in a Dual-Frequency-Confined Capacitively-Coupled-Plasma System

    NASA Astrophysics Data System (ADS)

    Linnane, Shane; Ellingboe, Albert R.

    2002-10-01

    Dual frequency confined capacitively coupled plasmas (DFC-CCP) are increasingly used in semiconductor manufacturing for dielectric etching, allowing greater (and independent) control of ion energies and ion flux on the etched substrate. The powered electrode is driven with the summation of 27MHz and 2MHz sinusoidal voltages, while the other electrode is grounded. The electrode areas are similar in size, giving an electrode aspect ratio less than 2. Because of this low aspect ratio, there are large oscillations in the plasma potential. The expectation is for sinusoidal oscillations at the higher driving frequency, due to capacitive sheaths, while a rectified oscillation is expected at the lower driving frequency.(E. Kawamura, V. Vahedi, M. A. Lieberman and C. K. Birdsall, Plasma Sources Sci. Technology. 8 (1999) R45-R64 Work Supported by EURATOM.) Measurements of rf oscillation in the plasma potential taken with a floating emissive probe will be presented. The emissive probe and circuitry allows direct realtime measurement of plasma potential oscillation at both driving frequencies and the harmonics of each, thus allowing measurement of the actual potential on the driven electrode and ion energy incident on grounded electrode.

  15. Giant strain control of magnetoelectric effect in Ta|Fe|MgO.

    PubMed

    Odkhuu, Dorj

    2016-01-01

    The exploration of electric field controlled magnetism has come under scrutiny for its intriguing magnetoelectric phenomenon as well as technological advances in spintronics. Herein, the tremendous effect of an epitaxial strain on voltage-controlled perpendicular magnetic anisotropy (VPMA) is demonstrated in a transition-metal|ferromagnet|MgO (TM|FM|MgO) heterostructure from first-principles electronic structure computation. By tuning the epitaxial strain in Ta|Fe|MgO as a model system of TM|FM|MgO, we find distinctly different behaviours of VPMA from V- to Λ-shape trends with a substantially large magnetoelectric coefficient, up to an order of 10(3) fJV(-1)m(-1). We further reveal that the VPMA modulation under strain is mainly governed by the inherently large spin-orbit coupling of Ta 5d-Fe 3d hybridized orbitals at the TM|FM interface, although the Fe 3d-O 2p hybridization at the FM|MgO interface is partly responsible in determining the PMA of Ta|Fe|MgO. These results suggest that the control of epitaxial strain enables the engineering of VPMA, and provides physical insights for the divergent behaviors of VPMA and magnetoelectric coefficients found in TM|FM|MgO experiments. PMID:27597448

  16. Incommensurate crystal supercell and polarization flop observed in the magnetoelectric ilmenite MnTi O3

    NASA Astrophysics Data System (ADS)

    Silverstein, Harlyn J.; Skoropata, Elizabeth; Sarte, Paul M.; Mauws, Cole; Aczel, Adam A.; Choi, Eun Sang; van Lierop, Johan; Wiebe, Christopher R.; Zhou, Haidong

    2016-02-01

    MnTi O3 has been studied for many decades, but it was only in the last few years that its magnetoelectric behavior had been observed. Here, we use neutron scattering on two separately grown single crystals and two powder samples to show the presence of a supercell that breaks R 3 ¯ symmetry. We also present the temperature and field dependence of the dielectric constant and pyroelectric current and show evidence of nonzero off-diagonal magnetoelectric tensor elements (forbidden by R 3 ¯ symmetry) followed by a polarization flop accompanying the spin flop transition at μ0HSF=6.5 T . Mössbauer spectroscopy on MnTi O3 gently doped with 57Fe was used to help shed light on the impact of the supercell on the observed behavior. Although the full supercell structure could not be solved at this time due to a lack of visible reflections, the full scope of the results presented here suggest that the role of local spin-lattice coupling in the magnetoelectric properties of MnTi O3 is likely more important than previously thought.

  17. Giant strain control of magnetoelectric effect in Ta|Fe|MgO

    PubMed Central

    Odkhuu, Dorj

    2016-01-01

    The exploration of electric field controlled magnetism has come under scrutiny for its intriguing magnetoelectric phenomenon as well as technological advances in spintronics. Herein, the tremendous effect of an epitaxial strain on voltage-controlled perpendicular magnetic anisotropy (VPMA) is demonstrated in a transition-metal|ferromagnet|MgO (TM|FM|MgO) heterostructure from first-principles electronic structure computation. By tuning the epitaxial strain in Ta|Fe|MgO as a model system of TM|FM|MgO, we find distinctly different behaviours of VPMA from V- to Λ-shape trends with a substantially large magnetoelectric coefficient, up to an order of 103 fJV−1m−1. We further reveal that the VPMA modulation under strain is mainly governed by the inherently large spin-orbit coupling of Ta 5d–Fe 3d hybridized orbitals at the TM|FM interface, although the Fe 3d–O 2p hybridization at the FM|MgO interface is partly responsible in determining the PMA of Ta|Fe|MgO. These results suggest that the control of epitaxial strain enables the engineering of VPMA, and provides physical insights for the divergent behaviors of VPMA and magnetoelectric coefficients found in TM|FM|MgO experiments. PMID:27597448

  18. Incommensurate crystal supercell and polarization flop observed in the magnetoelectric ilmenite MnTiO3

    DOE PAGESBeta

    Silverstein, Harlyn J.; Skoropata, Elizabeth; Sarte, Paul M.; Mauws, Cole; Aczel, Adam A.; Choi, Eun Sang; van Lierop, Johan; Wiebe, Christopher R.; Zhou, Haidong

    2016-02-19

    In the last few years the magnetoelectric behavior of MnTiO3 has been observed even though its been studied for many decades. We use neutron scattering on two separately grown single crystals and two powder samples to show the presence of a supercell that breaks R (3) over bar symmetry. We also present the temperature and field dependence of the dielectric constant and pyroelectric current and show evidence of nonzero off-diagonal magnetoelectric tensor elements (forbidden by R (3) over bar symmetry) followed by a polarization flop accompanying the spin flop transition at mu H-0(SF) = 6.5T. Mossbauer spectroscopy on MnTiO3 gentlymore » doped with Fe-57 was used to help shed light on the impact of the supercell on the observed behavior. Moreover, the full supercell structure could not be solved at this time due to a lack of visible reflections, the full scope of the results presented here suggest that the role of local spin-lattice coupling in the magnetoelectric properties of MnTiO3 is likely more important than previously thought.« less

  19. Suspended Rectangular/Circular Patch Antennas with Electromagnetically Coupled Inverted Microstrip Feed for Dual Polarization/Frequency

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2000-01-01

    The paper demonstrates suspended rectangular and circular patch antennas with electromagnetically coupled inverted microstrip feed for linear as well as dual linear polarization/frequency applications. The measured results include the return loss and the impedance bandwidth of the antennas.

  20. Simulation and evaluation of dielectric and magnetoelectric properties of diphasic and layered ferroic composites

    NASA Astrophysics Data System (ADS)

    Wang, Hsiao-Yuan

    The present demand in the development of tunable devices and meta-materials require better understanding of the composite systems. Ferroelectric based composites with solubility or impurities doped interstitially satisfied the specific condition necessary for applications of e.g. frequency, bias, temperature, etc. On the other hand, many composite materials using coupling phenomena have been reported to have their effective properties surpassing the natural materials. The improvement of the properties of composite materials lies on the better understanding of their coupling effects. Conventional science tries to derive theories based on observation and materials characterizations. Taken advantage of the rapid growing computer technology, one used to say "impossible to be measured" or "impossible to see" can now be virtually characterized and visualized by simulation models. In this thesis, computer models of dielectric properties, piezoelectricity, magnetostriction and magnetoelectricity were constructed and verified. And subsequently the materials of interest were simulated and discussed. First, a three dimensional finite element model on dielectric properties of two phases or materials mixture was constructed. The effective permittivity and tan(delta) of Ba0.5Sr0.5 TiO3:MgO composite were simulated and compared with the experimental results. Structural design parameters concepts such as layers stacking, geometry effect, and effect of size of inclusion were visualized and then discussed. Subsequently, dielectric properties of Ba0.5Sr0.5TiO 3:MgO composite were examined changing their volume fraction using Monte Carlo simulation. The type of connectivity of the Ba0.5Sr 0.5TiO3:MgO composite was also discussed. On the other hand, finite element method with Monte Carlo simulation was conducted for the composition (x)Pb0.2Sr0.8TiO3:(1-x)MgO from x=0 to 1 in the paraelectric phase (from -50°C to 200°C), and the results were computed and compared with the experimental

  1. Modeling and detection of quasi-static nanotesla magnetic field variations using magnetoelectric laminate sensors

    NASA Astrophysics Data System (ADS)

    Xing, Z. P.; Zhai, J. Y.; Dong, S. X.; Li, J. F.; Viehland, D.; Odendaal, W. G.

    2008-01-01

    Laminated composites of magnetostrictive and piezoelectric layers have been developed for their magnetoelectric (ME) product tensor properties. In spite of the considerable progress in materials aspects, little attention has been given to ME laminate incorporation into a detection technology. Here, we present a ME technology including the laminate equivalent model, detection circuitry consideration and noise mitigation for ME laminate sensors operated at quasi-static (<=10 Hz) frequencies. We then constructed a passive magnetic field prototype sensor unit and detected a 2.6 nanotesla magnetic signal at 1 Hz frequency.

  2. High-Frequency Focused Water-Coupled Ultrasound Used for Three-Dimensional Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2001-01-01

    To interface with other solids, many surfaces are engineered via methods such as plating, coating, and machining to produce a functional surface ensuring successful end products. In addition, subsurface properties such as hardness, residual stress, deformation, chemical composition, and microstructure are often linked to surface characteristics. Surface topography, therefore, contains the signatures of the surface and possibly links to volumetric properties, and as a result serves as a vital link between surface design, manufacturing, and performance. Hence, surface topography can be used to diagnose, monitor, and control fabrication methods. At the NASA Glenn Research Center, the measurement of surface topography is important in developing high-temperature structural materials and for profiling the surface changes of materials during microgravity combustion experiments. A prior study demonstrated that focused air-coupled ultrasound at 1 MHz could profile surfaces with a 25-m depth resolution and a 400-m lateral resolution over a 1.4-mm depth range. In this work, we address the question of whether higher frequency focused water-coupled ultrasound can improve on these specifications. To this end, we employed 10- and 25-MHz focused ultrasonic transducers in the water-coupled mode. The surface profile results seen in this investigation for 25-MHz water-coupled ultrasound, in comparison to those for 1-MHz air-coupled ultrasound, represent an 8 times improvement in depth resolution (3 vs. 25 m seen in practice), an improvement of at least 2 times in lateral resolution (180 vs. 400 m calculated and observed in practice), and an improvement in vertical depth range of 4 times (calculated).

  3. The role of coupled resistance-compliance in upper tracheobronchial airways under high frequency oscillatory ventilation.

    PubMed

    Alzahrany, Mohammed; Banerjee, Arindam; Salzman, Gary

    2014-12-01

    A large eddy simulation (LES) based computational fluid dynamics (CFD) study was conducted to investigate lung lobar ventilation and gas exchange under high frequency oscillatory ventilation conditions. Time-dependent pressure coupled with the airways resistance and compliance (R&C) were imposed as boundary conditions (BCs) in the upper tracheobronchial tree of patient-specific lung geometry. The flow distribution in the left and right lungs demonstrated significant variations compared to the case in which traditional BCs based on mass flow rate fractions was used and is in agreement with the in vivo data available in the literature. The gas transport due to the pendelluft mechanism was captured in the different lung lobes and units. The computed pendelluft elapsed time was consistent with available physiological data. In contrast to in vivo studies, our simulations were able to predict the volume associated with the pendelluft elapsed time at different frequencies. Significant differences in coaxial counter flow and flow structures were observed between different BCs. The consistency of the results with the physiological in vivo data indicates that computations with coupled R&C BCs provide a suitable alternative tool for understanding the gas transport, diagnosing lung pathway disease severity, and optimizing ventilation management techniques. PMID:25248986

  4. Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury.

    PubMed

    Antonakakis, Marios; Dimitriadis, Stavros I; Zervakis, Michalis; Micheloyannis, Sifis; Rezaie, Roozbeh; Babajani-Feremi, Abbas; Zouridakis, George; Papanicolaou, Andrew C

    2016-04-01

    Cross-frequency coupling (CFC) is thought to represent a basic mechanism of functional integration of neural networks across distant brain regions. In this study, we analyzed CFC profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 30 mild traumatic brain injury (mTBI) patients and 50 controls. We used mutual information (MI) to quantify the phase-to-amplitude coupling (PAC) of activity among the recording sensors in six nonoverlapping frequency bands. After forming the CFC-based functional connectivity graphs, we employed a tensor representation and tensor subspace analysis to identify the optimal set of features for subject classification as mTBI or control. Our results showed that controls formed a dense network of stronger local and global connections indicating higher functional integration compared to mTBI patients. Furthermore, mTBI patients could be separated from controls with more than 90% classification accuracy. These findings indicate that analysis of brain networks computed from resting-state MEG with PAC and tensorial representation of connectivity profiles may provide a valuable biomarker for the diagnosis of mTBI. PMID:26910049

  5. Modelling Tropical Cyclones-Ocean interactions: the role of the Atmophere - Ocean coupling frequency

    NASA Astrophysics Data System (ADS)

    Scoccimarro, Enrico; Fogli, Pier Giuseppe; Gualdi, Silvio; Masina, Simona; Navarra, Antonio

    2016-04-01

    The interaction between Tropical Cyclones (TCs) and ocean is a major mechanism responsible for energy exchange between the atmosphere and the ocean. TCs affect the thermal and dynamical structure of the ocean, but the magnitude of the impact is still uncertain. Very few CMIP5 models demonstrated ability in representing TCs, mainly due to their horizontal resolution. We aim to improve TCs representation in next CMIPs experiments through the new CMCC-CM2VHR General Circulation Model, having a horizontal resolution of 1/4 degree in both atmospheric and ocean components. The model is capable to represent realistically TCs up to Cat-5 Typhoons. A good representation of the TC-Ocean interaction strongly depends on the coupling frequency between the atmospheric and the ocean components. In this work, we found that a better representation of the negative Sea Surface Temperature - TC induced feedback, through a high (hourly) coupling frequency, ensures the reduction of the TC induced Power Dissipation Index (PDI) bias of one order of magnitude. In addition, a cat-5 storm case study is deeply investigated also in terms of TC effects on the deep ocean.

  6. Electroencephalographic effects of ketamine on power, cross-frequency coupling, and connectivity in the alpha bandwidth

    PubMed Central

    Blain-Moraes, Stefanie; Lee, UnCheol; Ku, SeungWoo; Noh, GyuJeong; Mashour, George A.

    2014-01-01

    Recent studies of propofol-induced unconsciousness have identified characteristic properties of electroencephalographic alpha rhythms that may be mediated by drug activity at γ-aminobutyric acid (GABA) receptors in the thalamus. However, the effect of ketamine (a primarily non-GABAergic anesthetic drug) on alpha oscillations has not been systematically evaluated. We analyzed the electroencephalogram of 28 surgical patients during consciousness and ketamine-induced unconsciousness with a focus on frontal power, frontal cross-frequency coupling, frontal-parietal functional connectivity (measured by coherence and phase lag index), and frontal-to-parietal directional connectivity (measured by directed phase lag index) in the alpha bandwidth. Unlike past studies of propofol, ketamine-induced unconsciousness was not associated with increases in the power of frontal alpha rhythms, characteristic cross-frequency coupling patterns of frontal alpha power and slow-oscillation phase, or decreases in coherence in the alpha bandwidth. Like past studies of propofol using undirected and directed phase lag index, ketamine reduced frontal-parietal (functional) and frontal-to-parietal (directional) connectivity in the alpha bandwidth. These results suggest that directional connectivity changes in the alpha bandwidth may be state-related markers of unconsciousness induced by both GABAergic and non-GABAergic anesthetics. PMID:25071473

  7. Tailored voltage waveform capacitively coupled plasmas in electronegative gases: frequency dependence of asymmetry effects

    NASA Astrophysics Data System (ADS)

    Schüngel, E.; Korolov, I.; Bruneau, B.; Derzsi, A.; Johnson, E.; O’Connell, D.; Gans, T.; Booth, J.-P.; Donkó, Z.; Schulze, J.

    2016-07-01

    Capacitively coupled radio frequency plasmas operated in an electronegative gas (CF4) and driven by voltage waveforms composed of four consecutive harmonics are investigated for different fundamental driving frequencies using PIC/MCC simulations and an analytical model. As has been observed previously for electropositive gases, the application of peak-shaped waveforms (that are characterized by a strong amplitude asymmetry) results in the development of a DC self-bias due to the electrical asymmetry effect (EAE), which increases the energy of ions arriving at the powered electrode. In contrast to the electropositive case (Korolov et al 2012 J. Phys. D: Appl. Phys. 45 465202) the absolute value of the DC self-bias is found to increase as the fundamental frequency is reduced in this electronegative discharge, providing an increased range over which the DC self-bias can be controlled. The analytical model reveals that this increased DC self-bias is caused by changes in the spatial profile and the mean value of the net charge density in the grounded electrode sheath. The spatio-temporally resolved simulation data show that as the frequency is reduced the grounded electrode sheath region becomes electronegative. The presence of negative ions in this sheath leads to very different dynamics of the power absorption of electrons, which in turn enhances the local electronegativity and plasma density via ionization and attachment processes. The ion flux to the grounded electrode (where the ion energy is lowest) can be up to twice that to the powered electrode. At the same time, while the mean ion energies at both electrodes are quite different, their ratio remains approximately constant for all base frequencies studied here.

  8. Cross-frequency coupling in deep brain structures upon processing the painful sensory inputs.

    PubMed

    Liu, C C; Chien, J H; Kim, J H; Chuang, Y F; Cheng, D T; Anderson, W S; Lenz, F A

    2015-09-10

    Cross-frequency coupling has been shown to be functionally significant in cortical information processing, potentially serving as a mechanism for integrating functionally relevant regions in the brain. In this study, we evaluate the hypothesis that pain-related gamma oscillatory responses are coupled with low-frequency oscillations in the frontal lobe, amygdala and hippocampus, areas known to have roles in pain processing. We delivered painful laser pulses to random locations on the dorsal hand of five patients with uncontrolled epilepsy requiring depth electrode implantation for seizure monitoring. Two blocks of 40 laser stimulations were delivered to each subject and the pain-intensity was controlled at five in a 0-10 scale by adjusting the energy level of the laser pulses. Local-field-potentials (LFPs) were recorded through bilaterally implanted depth electrode contacts to study the oscillatory responses upon processing the painful laser stimulations. Our results show that painful laser stimulations enhanced low-gamma (LH, 40-70 Hz) and high-gamma (HG, 70-110 Hz) oscillatory responses in the amygdala and hippocampal regions on the right hemisphere and these gamma responses were significantly coupled with the phases of theta (4-7 Hz) and alpha (8-1 2 Hz) rhythms during pain processing. Given the roles of these deep brain structures in emotion, these findings suggest that the oscillatory responses in these regions may play a role in integrating the affective component of pain, which may contribute to our understanding of the mechanisms underlying the affective information processing in humans. PMID:26168707

  9. A close-coupling multi-antenna type radio frequency driven ion source

    SciTech Connect

    Oka, Y.; Shoji, T.

    2012-02-15

    A newly close coupling multi-antenna type radio frequency driven ion source is tested for the purpose of essentially improving plasma coupling on the basis of our old type ion source, which reuses a NNBI (negative ion source for neutral beam injection) ion source used in 1/5th scale of the Large Helical Device NNBI. The ion source and the antenna structure are described, and the efficient plasma production in terms of the positive ion saturation current (the current density) is studied. The source is made of a metal-walled plasma chamber which is desirable from the point of view of the structural toughness for fusion and industrial application, etc. At around 160 kW of rf input power, the ion saturation current density successfully reaches the 5 A/cm{sup 2} level with a gas pressure of 0.6-2 Pa in hydrogen for 10 ms pulse duration. The rf power efficiency of the plasma production with a close coupling configuration of the antenna is improved substantially compared to that with the previous antenna unit in the old type ion source. The power efficiency is assessed as competing with that of other types of sources.

  10. Tailoring alphabetical metamaterials in optical frequency: plasmonic coupling, dispersion, and sensing.

    PubMed

    Zhang, Jun; Cao, Cuong; Xu, Xinlong; Liow, Chihao; Li, Shuzhou; Tan, Pingheng; Xiong, Qihua

    2014-04-22

    Tailoring optical properties of artificial metamaterials, whose optical properties go beyond the limitations of conventional and naturally occurring materials, is of importance in fundamental research and has led to many important applications such as security imaging, invisible cloak, negative refraction, ultrasensitive sensing, and transformable and switchable optics. Herein, by precisely controlling the size, symmetry, and topology of alphabetical metamaterials with U, S, Y, H, U-bar, and V shapes, we have obtained highly tunable optical response covering visible-to-infrared (vis-NIR) optical frequency. In addition, we show a detailed study on the physical origin of resonance modes, plasmonic coupling, the dispersion of resonance modes, and the possibility of negative refraction. We have found that all the electronic and magnetic modes follow the dispersion of surface plasmon polaritons; thus, essentially they are electronic- and magnetic-surface-plasmon-polaritons-like (ESPP-like and MSPP-like) modes resulted from diffraction coupling between localized surface plasmon and freely propagating light. On the basis of the fill factor and formula of magnetism permeability, we predict that the alphabetical metamaterials should show the negative refraction capability in visible optical frequency. Furthermore, we have demonstrated the specific ultrasensitive surface enhanced Raman spectroscopy (SERS) sensing of monolayer molecules and femtomolar food contaminants by tuning their resonance to match the laser wavelength, or by tuning the laser wavelength to match the plasmon resonance of metamaterials. Our tunable alphabetical metamaterials provide a generic platform to study the electromagnetic properties of metamaterials and explore the novel applications in optical frequency. PMID:24670107

  11. Study of xCo0.8Ni0.2Fe2O4+(1-x) Pb0.99625 La0.0025Zr0.55Ti0.45O3 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Dipti; Singh, Sangeeta; Juneja, J. K.; Raina, K. K.; Kotnala, R. K.; Prakash, Chandra

    2016-06-01

    We are reporting here, the studies of the structural, dielectric, ferroelectric and magnetic properties of magnetoelectric composites of La modified lead zirconate titanate (PLZT) and Ni modified cobalt ferrite (CNFO) with compositional formula xCo0.8Ni0.2Fe2O4+(1-x) Pb0.99625La0.0025Zr0.55Ti0.45O3 (x=0.00, 0.05, 0.10, 0.15 and 1.00 by weight) prepared by the solid state reaction method. Coexistence of both the phases in composites was confirmed by X-Ray diffraction technique. The microstructure and average grain size were determined from Scanning Electron Micrograph (SEM) in backscattered mode. Both the phases could be observed clearly. The variations of dielectric properties with frequency and temperature were also studied. P-E and M-H hysteresis measurements were carried. Magnetoelectric coupling (ME) coefficient for samples with x=0.05 and 0.10 were measured as a function of DC magnetic field. Maximum value of ME coefficient (1.2 mV/cm Oe) and piezoelectric coefficient (96 pC/N) for x=0.05 were observed.

  12. Effect of axial finiteness on electron heating in low-frequency inductively coupled plasmas

    SciTech Connect

    Aman-ur-Rehman; Pu, Y.-K.

    2006-10-15

    Total power absorption inside the plasma (by taking the thermal motion of the electrons into account) has been calculated using different inductively coupled plasma models. The comparison shows that in the low-frequency region the results of the semi-infinite plasma models are different from those of the finite-length plasma models. The semi-infinite plasma models show net reduction of heating in the low-frequency region, due to thermal motion of the electrons from inside the skin region to outside the skin region. The finite-length plasma models on the other hand (due to change in the skin depth owing to the boundary condition of E=0 at z=L, and reflection of electrons from the plasma boundary) show that the decrease in heating due to the motion of the electrons from inside the skin depth to outside the skin depth is recovered by the reflection of the electrons from the plasma boundary. Hence, it is concluded that the results of the semi-infinite plasma models presented by Tyshetskiy et al. [Phys Rev. Lett. 90, 255002 (2003)] can be misleading (in the low-frequency region), since they overlooked the effect of axial finiteness of the plasma.

  13. Floquet topological system based on frequency-modulated classical coupled harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Salerno, Grazia; Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo

    2016-02-01

    We theoretically propose how to observe topological effects in a generic classical system of coupled harmonic oscillators, such as classical pendula or lumped-element electric circuits, whose oscillation frequency is modulated fast in time. Making use of Floquet theory in the high-frequency limit, we identify a regime in which the system is accurately described by a Harper-Hofstadter model where the synthetic magnetic field can be externally tuned via the phase of the frequency modulation of the different oscillators. We illustrate how the topologically protected chiral edge states, as well as the Hofstadter butterfly of bulk bands, can be observed in the driven-dissipative steady state under a monochromatic drive. In analogy with the integer quantum Hall effect, we show how the topological Chern numbers of the bands can be extracted from the mean transverse shift of the steady-state oscillation amplitude distribution. Finally, we discuss the regime where the analogy with the Harper-Hofstadter model breaks down.

  14. Influence of finite geometrical asymmetry of the electrodes in capacitively coupled radio frequency plasma

    SciTech Connect

    Bora, B. Soto, L.

    2014-08-15

    Capacitively coupled radio frequency (CCRF) plasmas are widely studied in last decades due to the versatile applicability of energetic ions, chemically active species, radicals, and also energetic neutral species in many material processing fields including microelectronics, aerospace, and biology. A dc self-bias is known to generate naturally in geometrically asymmetric CCRF plasma because of the difference in electrode sizes known as geometrical asymmetry of the electrodes in order to compensate electron and ion flux to each electrode within one rf period. The plasma series resonance effect is also come into play due to the geometrical asymmetry and excited several harmonics of the fundamental in low pressure CCRF plasma. In this work, a 13.56 MHz CCRF plasma is studied on the based on the nonlinear global model of asymmetric CCRF discharge to understand the influences of finite geometrical asymmetry of the electrodes in terms of generation of dc self-bias and plasma heating. The nonlinear global model on asymmetric discharge has been modified by considering the sheath at the grounded electrode to taking account the finite geometrical asymmetry of the electrodes. The ion density inside both the sheaths has been taken into account by incorporating the steady-state fluid equations for ions considering that the applied rf frequency is higher than the typical ion plasma frequency. Details results on the influences of geometrical asymmetry on the generation of dc self-bias and plasma heating are discussed.

  15. Frequency-Specific Coupling in the Cortico-Cerebellar Auditory System

    PubMed Central

    Pastor, M. A.; Vidaurre, C.; Fernández-Seara, M. A.; Villanueva, A.; Friston, K. J.

    2008-01-01

    Induced oscillatory activity in the auditory cortex peaks at around 40 Hz in humans. Using regional cerebral blood flow and positron emission tomography we previously confirmed frequency-selective cortical responses to 40-Hz tones in auditory primary cortices and concomitant bilateral activation of the cerebellar hemispheres. In this study, using functional magnetic resonance imaging (fMRI) we estimated the influence of 40-Hz auditory stimulation on the coupling between auditory cortex and superior temporal sulcus (STS) and Crus II, using a dynamic causal model of the interactions between medial geniculate nuclei, auditory superior temporal gyrus (STG)/STS, and the cerebellar Crus II auditory region. Specifically, we tested the hypothesis that 40-Hz-selective responses in the cerebellar Crus II auditory region could be explained by frequency-specific enabling of interactions in the auditory cortico–cerebellar–thalamic loop. Our model comparison results suggest that input from auditory STG/STS to cerebellum is enhanced selectively at gamma-band frequencies around 40 Hz. PMID:18684912

  16. Laser Photothermal Analysis of Magnetoelectric Materials

    NASA Astrophysics Data System (ADS)

    Penchev, S.; Pencheva, V.; Nedkov, I.; Kutzarova, T.; Naboko, V.

    2010-01-01

    Modulated optical reflectance (MOR) technique of laser photothermal analysis is implemented to magnetoresistive La0,7Sr0,3MnO3 (LSMO) thin film. The sensor signal is based on the measurement of the variations of optical reflectivity of the sample subjected to periodic photothermal modulation. Assuming Drude model, it is proportional to the variations of the charge carrier concentration. The optical setup is mounted as a flexible laser microscope, based on elements of integral and fibre optics. The noncontact, nondestructive measurement scheme is prospective for applications to structural analysis and characterization of new magnetic and magnetoelectric materials for the next generation electronic devices.

  17. Novel hybrid multifunctional magnetoelectric porous composite films

    NASA Astrophysics Data System (ADS)

    Martins, P.; Gonçalves, R.; Lopes, A. C.; Venkata Ramana, E.; Mendiratta, S. K.; Lanceros-Mendez, S.

    2015-12-01

    Novel multifunctional porous films have been developed by the integration of magnetic CoFe2O4 (CFO) nanoparticles into poly(vinylidene fluoride)-Trifuoroethylene (P(VDF-TrFE)), taking advantage of the synergies of the magnetostrictive filler and the piezoelectric polymer. The porous films show a piezoelectric response with an effective d33 coefficient of -22 pC/N-1, a maximum magnetization of 12 emu g-1 and a maximum magnetoelectric coefficient of 9 mV cm-1 Oe-1. In this way, a multifunctional membrane has been developed suitable for advanced applications ranging from biomedical to water treatment.

  18. Non-linear Frequency Shifts, Mode Couplings, and Decay Instability of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Affolter, Mathew; Anderegg, F.; Driscoll, C. F.; Valentini, F.

    2015-11-01

    We present experiments and theory for non-linear plasma wave decay to longer wavelengths, in both the oscillatory coupling and exponential decay regimes. The experiments are conducted on non-neutral plasmas in cylindrical Penning-Malmberg traps, θ-symmetric standing plasma waves have near acoustic dispersion ω (kz) ~kz - αkz2 , discretized by kz =mz (π /Lp) . Large amplitude waves exhibit non-linear frequency shifts δf / f ~A2 and Fourier harmonic content, both of which are increased as the plasma dispersion is reduced. Non-linear coupling rates are measured between large amplitude mz = 2 waves and small amplitude mz = 1 waves, which have a small detuning Δω = 2ω1 -ω2 . At small excitation amplitudes, this detuning causes the mz = 1 mode amplitude to ``bounce'' at rate Δω , with amplitude excursions ΔA1 ~ δn2 /n0 consistent with cold fluid theory and Vlasov simulations. At larger excitation amplitudes, where the non-linear coupling exceeds the dispersion, phase-locked exponential growth of the mz = 1 mode is observed, in qualitative agreement with simple 3-wave instability theory. However, significant variations are observed experimentally, and N-wave theory gives stunningly divergent predictions that depend sensitively on the dispersion-moderated harmonic content. Measurements on higher temperature Langmuir waves and the unusual ``EAW'' (KEEN) waves are being conducted to investigate the effects of wave-particle kinetics on the non-linear coupling rates. Department of Energy Grants DE-SC0002451and DE-SC0008693.

  19. Two-phase magnetoelectric nanopowder/polyurethane composites

    NASA Astrophysics Data System (ADS)

    Guyomar, Daniel; Guiffard, Benoit; Belouadah, Rabah; Petit, Lionel

    2008-10-01

    This study deals with the observation of magnetoelectric (ME) effect in nanocomposite films constituted of semicrystalline polyurethane matrix filled with magnetic Fe3O4 (hard) or Ni (soft) nanoparticles. The measurement of the magnetic field-induced ground current of the so-called particulate composites enabled the precise determination of true ME current after extraction of the part corresponding to the inductively coupled (loop) current. Experimental ME current could be successfully simulated considering coexistence of both true linear and quadratic ME effects and by taking into account the nonlinear variation of applied dc bias and ac field magnitude due to the magnetization saturation of the magnetic field generator. Although linear ME coefficients of particulate composites are lower than those of laminate composites, they are of the same order of magnitude than that of reference ME material Cr2O3 (up to 18 mV/cm Oe). Besides, nanocomposites are simple to prepare, flexible, easily integrable, and sensitive to magnetic field anomaly at room temperature. At last, they present a linear ME coupling apparently not triggered by magnetostrictive phenomenon.

  20. Comparing Two Types of Magnetically-Coupled Adjustable Speed Drives with Variable Frequency Drives in Pump and Fan Applications

    SciTech Connect

    Anderson, Kenneth J.; Chvala, William D.

    2003-05-30

    This paper presents the results from laboratory tests on MagnaDrive Corporation’s fixed magnet, magnetically-coupled adjustable speed drive and Coyote Electronics electromagnetic, magnetically-coupled adjustable speed drive, compared to a typical variable frequency drive (VFDs) for fan and pump loads. It also discusses advantages and disadvantages of using mechanical magnetically-coupled adjustable speed drives versus variable frequency drives, and it provides field experience with VFDs in food storage as well as adjustable speed drives in wastewater and other field applications.

  1. Modulation of Cross-Frequency Coupling by Novel and Repeated Stimuli in the Primate Ventrolateral Prefrontal Cortex

    PubMed Central

    Tsunada, Joji; Baker, Allison E.; Christison-Lagay, Kate L.; Davis, Selina J.; Cohen, Yale E.

    2011-01-01

    Adaptive behavior depends on an animal’s ability to ignore uninformative stimuli, such as repeated presentations of the same stimulus, and, instead, detect informative, novel stimuli in its environment. The primate prefrontal cortex (PFC) is known to play a central role in this ability. However, the neural mechanisms underlying the ability to differentiate between repeated and novel stimuli are not clear. We hypothesized that the coupling between different frequency bands of the local field potential (LFP) underlies the PFC’s role in differentiating between repeated and novel stimuli. Specifically, we hypothesized that whereas the presentation of a novel-stimulus induces strong cross-frequency coupling, repeated presentations of the same stimulus attenuates this coupling. To test this hypothesis, we recorded LFPs from the ventrolateral PFC (vPFC) of rhesus monkeys while they listened to a novel vocalization and repeated presentations of the same vocalization. We found that the cross-frequency coupling between the gamma-band amplitude and theta-band phase of the LFP was modulated by repeated presentations of a stimulus. During the first (novel) presentation of a stimulus, gamma-band activity was modulated by the theta-band phase. However, with repeated presentations of the same stimulus, this cross-frequency coupling was attenuated. These results suggest that cross-frequency coupling may play a role in the neural computations that underlie the differentiation between novel and repeated stimuli in the vPFC. PMID:21941517

  2. Modulation transfer function measurement of charge-coupled devices using frequency-variable fringe patterns

    NASA Astrophysics Data System (ADS)

    Zhao, Liefeng; Feng, Huajun; Xu, Zhihai

    2008-03-01

    Although there are various methods to measure the modulation transfer function (MTF) of charge-coupled devices (CCD), the interferometric fringe pattern method has advantages over others, such as canted slit sources, bar targets, knife-edge, laser-speckle patterns, random noise pattern, etc. Our interferometric method is relatively simple and versatile: It requires no critical optics and no focusing or precision alignment, the entry array is tested, the contrast ratio of the test pattern is high enough, the spatial frequency of the fringe pattern can vary continuously. Our method generates the formation of a sinusoidal intensity fringe pattern by the interference of two monochromatic plane waves, and straightforward projects it onto the CCD array under test. The construction of the experimental device is based on the Fresnel Double-Mirror structure. A 2.5 mw He-Ne laser with the wavelength of 632.8 nm is used as the light source, the laser beam is spatially filtered by a 10 μm pinhole and expanded to a diameter of 30 mm, and the resulting wave front is divided by two mirrors, which incline to each other at a small angle, and interfered. One of the mirrors is rotatable to vary the frequency of the pattern. The CCD array is mounted on a stage, which is also rotatable to make that the CCD array takes different angle with the fringe pattern direction, to receive the patterns. With the method we provided, the spatial frequency can be extended to some 2 times the Nyquist frequency of the CCD array to study the aliasing effect. In the Cartesian coordinates, the x- and y- axis MTFs (at angle 0° and 90°) of the CCD array were measured, the other three MTFs (at angle 26.56°, 45° and 63.44°), which nobody has done before, were also tested offering a more comprehensive characterization of the CCD array.

  3. Ferroelectric ordering and magnetoelectric effect of pristine and Ho-doped orthorhombic DyMnO{sub 3} by dielectric studies

    SciTech Connect

    Magesh, J.; Murugavel, P.; Mangalam, R. V. K.; Singh, K.; Simon, Ch.; Prellier, W.

    2015-08-21

    In this paper, the magnetoelectric coupling and ferroelectric ordering of the orthorhombic Dy{sub 1-x}Ho{sub x}MnO{sub 3} (x = 0 and 0.1) are studied from the magnetodielectric response of the polycrystalline samples. The dielectric study on the DyMnO{sub 3} reveals ferroelectric transition at 18 K along with an addition transition at 12 K. We suggest that the transition at 12 K could have originated from the polarization flop rather than being the rare earth magnetic ordering. The magnetodielectric study reveals a magnetoelectric coupling strength of 10%, which is stronger by two orders of magnitude in comparison to the hexagonal manganites. Surprisingly, the Ho{sup 3+} substitution in DyMnO{sub 3} suppresses the magnetoelectric coupling strength via the suppression of the spiral magnetic ordering. In addition, it also reduces the antiferromagnetic ordering and ferroelectric ordering temperatures. Overall, the studies show that the rare earth plays an important role in the magnetoelectric coupling strength through the modulation of spiral magnetic structure.

  4. Converse magneto-electric coefficient of concentric multiferroic composite ring

    NASA Astrophysics Data System (ADS)

    Chavez, Andres C.; Lopez, Mario; Youssef, George

    2016-06-01

    The converse magnetoelectric (CME) coefficient of an artificial, multiferroic composite cylinder was determined for two interface boundary conditions; specifically epoxy-bonded and shrink-fit. The composite consists of two concentrically bonded rings with the inner and outer rings made from Terfenol-D and lead zirconate titanate, respectively. The diameter of the inner annulus was 25 mm, and the outer ring diameter was 30 mm. Electric fields ranging from 20 kV/m to 80 kV/m with AC components cycling at frequencies from 4 kHz to 50 kHz were applied for actuation of the composite. A magnetic bias field from 0 Oe to 2300 Oe was applied for enhancement of the CME coefficient. It has been found that the maximum CME for epoxy-bonded rings occurs at lower bias magnetic field than shrink-fitted rings. Resonance for the epoxy-bonded composite was found to be 36 kHz whereas the resonant frequency for the shrink-fit structure was 34 kHz. The maximum CME coefficients were approximately 535 mG/V at 100 Vpp and 330 mG/V at 400 Vpp for the epoxy-bonded and shrink-fit configurations, respectively.

  5. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    NASA Astrophysics Data System (ADS)

    Bjarlin Jensen, Ole; Michael Petersen, Paul

    2013-09-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic locking.

  6. Theory of domain wall motion mediated magnetoelectric effects in a multiferroic composite

    NASA Astrophysics Data System (ADS)

    Petrov, V. M.; Srinivasan, G.

    2014-10-01

    A model is discussed for magnetoelectric (ME) interactions originating from the motion of magnetic domain walls (DWs) in a multiferroic composite of orthoferrites RFeO3 (RFO) with magnetic stripe domains and a piezoelectric such as lead magnesium niobate-lead titanate (PMN-PT). The DWs in RFO can be set in motion with an ac magnetic field up to a critical speed of 20 km/s, the highest for any magnetic system, leading to the excitation of bulk and shear magnetoacoustic waves. Thus, the ME coupling will arise from flexural deformation associated with DW motion (rather than the Joule magnetostriction mediated coupling under a static or quasistatic condition). A c plane orthoferrite with a single Néel-type DW in the bc plane and an ac magnetic field H along the c axis is assumed. The deflection in the bilayer due to DW motion is obtained when the DW velocity is a linear function H and the resulting induced voltage across PMN-PT is estimated. It is shown that a combination of spatial and time harmonics of the bending deformation leads to (i) a linear ME coefficient defined by αE=E/H and (ii) a quadratic ME coefficient αEQ=E/H2. The model is applied to yttrium orthoferrites (YFO) and a PMN-PT bilayer since YFO has one of the highest DW mobility amongst the orthoferrites. The coefficient αE is dependent on the DW position, and it is maximum when the DW equilibrium position is at the center of the sample. In YFO/PMN-PT the estimated low-frequency αE ˜ 30 mV/cm Oe and resonance value is 1.5 V/(cm Oe). Since orthoferrites (and PMN-PT) are transparent in the visible region and have a large Faraday rotation, the DW dynamics and the ME coupling could be studied simultaneously. The theory discussed here is of interest for studies on ME coupling and for applications such as magnetically controlled electro-optic devices.

  7. Pulsed radio-frequency discharge inductively coupled plasma mass spectrometry for oxide analysis

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Yin, Zhibin; Hang, Wei; Li, Bin; Huang, Benli

    2016-08-01

    A direct solid sampling technique has been developed based on a pulsed radio-frequency discharge (RFD) in mixture of N2 and Ar environment at atmospheric pressure. With an averaged input power of 65 W, a crater with the diameter of 80 μm and depth of 50 μm can be formed on sample surface after discharge for 1 min, suggesting the feasibility of the pulsed RFD for sampling nonconductive solids. Combined with inductively coupled plasma mass spectrometry (ICPMS), this technique allows to measure elemental composition of solids directly with relative standard deviation (RSD) of ~ 20%. Capability of quantitative analysis was demonstrated by the use of soil standards and artificial standards. Good calibration linearity and limits of detection (LODs) in range of 10- 8-10- 9 g/g were achieved for most elements.

  8. Ultra sensitive magnetic sensors integrating the giant magnetoelectric effect with advanced microelectronics

    NASA Astrophysics Data System (ADS)

    Fang, Zhao

    This dissertation investigates approaches to enhance the performance, especially the sensitivity and signal to noise ratio of magnetoelectric sensors, which exploits the magnetoelectric coupling in magnetostrictive and piezoelectric laminate composites. A magnetic sensor is a system or device that can measure the magnitude of a magnetic field or each of its vector components. Usually the techniques encompass many aspects of physics and electronics. The common technologies used for magnetic field sensing include induction coil sensors, fluxgate, SQUID (superconducting quantum interference device), Hall effect, giant magnetoresistance, magnetostrictive/piezoelectric composites, and MEMS (microelectromechanical systems)-based magnetic sensors. Magnetic sensors have found a broad range of applications for many decades. For example, ultra sensitive magnetic sensors are able to detect tiny magnetic fields produced outside the brain by the neuronal currents which can be used for diagnostic application. Measuring the brain's magnetic field is extremely challenging because they are so weak, have strengths of 0.1--1 pT and thus requiring magnetic sensors with sub-picotesla sensitivity. In fact, to date, these measurements can only performed with the most sensitive magnetic sensors, i.e., SQUID. However, such detectors need expensive and cumbersome cryogenics to operate. Additionally, the thermal insulation of the sensors prevents them from being placed very closed to the tissues under study, thereby preventing high-resolution measurement capability. All of these severely limit their broad usage and proliferation for biomedical imaging, diagnosis, and research. A novel ultra-sensitive magnetic sensor capable of operating at room temperature is investigated in this thesis. Magnetoelectric effect is a material phenomenon featuring the interchange between the magnetic and electric energies or signals. The large ME effect observed in ME composites, especially the ME laminates

  9. The giant magnetoelectric effect in Fe73.5Cu1Nb3Si13.5B9/PZT thick film composites

    NASA Astrophysics Data System (ADS)

    Qiu, Jing; Wen, Yumei; Li, Ping; Chen, Hengjia

    2015-05-01

    The Fe73.5Cu1Nb3Si13.5B9/PZT thick film composites with excellent magnetoelectric (ME) coupling effect were synthesized by electrostatic spray depositing. The ME coupling characteristics of Fe73.5Cu1Nb3Si13.5B9/PZT thick film composites were investigated. It is found that the appropriate thickness ratio between magnetostrictive layers and piezoelectric layers (tm/tp) will be favorable to raise the resonance ME field output performance. The resonance frequency of ME field coefficient can be tuned by controlling tm/tp. The optimum resonance ME field coefficient of Fe73.5Cu1Nb3Si13.5B9/PZT thick film composites achieves 259.2 V/cm Oe at mechanical resonance frequency at 11.5 kHz with the dc bias magnetic field is 60 Oe. Remarkably, the proposed composites exhibit a giant ME effect and a higher ME voltage coefficient than the previous Terfenol-D/PZT laminated composites. It indicates that the mentioned Fe73.5Cu1Nb3Si13.5B9/PZT thick film composites have great potential for the application of highly sensitive magnetic field sensing and vibration energy harvesting.

  10. Development of Sensory Gamma Oscillations and Cross-Frequency Coupling from Childhood to Early Adulthood

    PubMed Central

    Cho, Raymond Y.; Walker, Christopher P.; Polizzotto, Nicola R.; Wozny, Thomas A.; Fissell, Catherine; Chen, Chi-Ming A.; Lewis, David A.

    2015-01-01

    Given the importance of gamma oscillations in normal and disturbed cognition, there has been growing interest in their developmental trajectory. In the current study, age-related changes in sensory cortical gamma were studied using the auditory steady-state response (ASSR), indexing cortical activity entrained to a periodic auditory stimulus. A large sample (n = 188) aged 8–22 years had electroencephalography recording of ASSR during 20-, 30-, and 40-Hz click trains, analyzed for evoked amplitude, phase-locking factor (PLF) and cross-frequency coupling (CFC) with lower frequency oscillations. Both 40-Hz evoked power and PLF increased monotonically from 8 through 16 years, and subsequently decreased toward ages 20–22 years. CFC followed a similar pattern, with strongest age-related modulation of 40-Hz amplitude by the phase of delta oscillations. In contrast, the evoked power, PLF and CFC for the 20- and 30-Hz stimulation were distinct from the 40-Hz condition, with flat or decreasing profiles from childhood to early adulthood. The inverted U-shaped developmental trajectory of gamma oscillations may be consistent with interacting maturational processes—such as increasing fast GABA inhibition that enhances gamma activity and synaptic pruning that decreases gamma activity—that may continue from childhood through to adulthood. PMID:24334917

  11. Structural, dielectric, magnetic and magnetoelectric properties of (x) Bi0.5Na0.5TiO3-(1 ‑ x) Ni0.2Co0.8Fe2O4 composites

    NASA Astrophysics Data System (ADS)

    Kumar, Yogesh; Yadav, K. L.; Manjusha; Shah, Jyoti; Kotnala, R. K.

    2016-06-01

    Magnetoelectric composites (x) Bi0.5Na0.5TiO3-(1 ‑ x) Ni0.2Co0.8Fe2O4 (x = 0.0, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, and 1.0) were synthesized using a solid-state reaction method. The x-ray diffraction studies confirm the existence of rhombohedral Bi0.5Na0.5TiO3 (BNT) and mixed spinel Ni0.2Co0.8Fe2O4 (NCFO) phases without any intermediate phase. The microstructure and surface morphology were studied using a field-emission scanning electron microscope. The relative permittivity (ε‧) and dielectric loss (tanδ) are measured as a function of frequency in the frequency range 100 Hz–1 MHz at room temperature and found to decrease rapidly in low-frequency regime and remain nearly constant in high-frequency regime. The magnetization-magnetic field (M-H) hysteresis loops have been measured to see the response of the magnetic field on the NCFO phase in the composites. The saturation and remnant magnetization are observed to decrease with increasing BNT content in the composite. The magnetoelectric (ME) voltage coefficient, α ME was measured as a function of the applied DC magnetic field. The highest value of α ME = 7.538 mV cm‑1 Oe was obtained for the 60%BNT–40%NCFO bulk composite, which is attributed to the enhanced mechanical coupling between the phases. This is a promising result compared to other BNT-based composites. The addition of BNT and NCFO enhances the ME properties of these composites.

  12. Evidence of Resonant Mode Coupling and the Relationship between Low and High Frequencies in a Rapidly Rotating a Star

    NASA Astrophysics Data System (ADS)

    Breger, M.; Montgomery, M. H.

    2014-03-01

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day-1 (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of "normal" combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day-1 in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  13. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating a star

    SciTech Connect

    Breger, M.; Montgomery, M. H.

    2014-03-10

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day{sup –1} (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day{sup –1} in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  14. The Double Jones Birefringence in Magneto-electric Medium

    PubMed Central

    Mahmood, Waqas; Zhao, Qing

    2015-01-01

    In this paper, the Maxwell’s equations for a tensorial magneto-electric (ME) medium are solved, which is an extension to the work on the uniaxial anisotropic nonmagnetic medium. The coefficients of the dielectric permittivity, magnetic permeability, and of the magneto-electric effect are considered as tensors. The polarization is shown lying in the plane of two perpendicular independent vectors, and the relationship for the transverse polarization is given. The propagation of an electromagnetic wave through a ME medium gives rise to double Jones birefringence. Besides, the condition for an independent phenomenon of D’yakonov surface wave in a magneto-isotropic but with magneto-electric medium is given, which is measurable experimentally when the incident angle is . Lastly, it is shown that the parameter for the magneto-electric effect plays a role in the damping of the wave. PMID:26354609

  15. Magneto-electric interactions at bending resonance in an asymmetric multiferroic composite: Theory and experiment on the influence of electrode position

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, G.; Qu, P.; Petrov, V. M.; Qu, Hongwei; Srinivasan, G.

    2015-05-01

    In magnetostrictive-piezoelectric bilayers the strength of mechanical strain mediated magneto-electric (ME) interactions shows a resonance enhancement at bending modes. Such composites when operating under frequency modulation at bending resonance have very high ME sensitivity and are of importance for ultrasensitive magnetometers. This report provides an avenue for further enhancement in the ME sensitivity by strategic positioning of the electrodes in the bilayer. We discuss the theory and measurements on the dependence of ME coupling on the position of electrodes in a lead zirconate titanate-permendur bilayer. Samples of effective length L with full electrodes and partial electrodes of length l = L/3 are studied. A five-fold increase in ME voltage coefficient (MEVC) at bending resonance and a 75% increase in low-frequency MEVC are measured as the partial electrode position is moved from the free-end to clamped-end of the bilayer. When the partial electrode is close to the clamped end, the low-frequency and resonance MEVC are 22% and 45% higher, respectively, than for fully electroded bilayer. According to the model discussed here these observations could be attributed to non-uniform stress along the sample length under flexural deformation. Such deformations are stronger at the free-end than at the clamped-end, thereby reducing the stress produced by applied magnetic fields and a reduction in MEVC. Estimates of MEVC are in good agreement with the data.

  16. Optimization of the magnetoelectric response of poly(vinylidene fluoride)/epoxy/Vitrovac laminates.

    PubMed

    Silva, M; Reis, S; Lehmann, C S; Martins, P; Lanceros-Mendez, S; Lasheras, A; Gutiérrez, J; Barandiarán, J M

    2013-11-13

    The effect of the bonding layer type and piezoelectric layer thickness on the magnetoelectric (ME) response of layered poly(vinylidene fluoride) (PVDF)/epoxy/Vitrovac composites is reported. Three distinct epoxy types were tested, commercially known as M-Bond, Devcon, and Stycast. The main differences among them are their different mechanical characteristics, in particular the value of the Young modulus, and the coupling with the polymer and Vitrovac (Fe39Ni39Mo4Si6B12) layers of the laminate. The laminated composites prepared with M-Bond epoxy exhibit the highest ME coupling. Experimental results also show that the ME response increases with increasing PVDF thickness, the highest ME response of 53 V·cm(-1)·Oe(-1) being obtained for a 110 μm thick PVDF/M-Bond epoxy/Vitrovac laminate. The behavior of the ME laminates with increasing temperatures up to 90 °C shows a decrease of more than 80% in the ME response of the laminate, explained by the deteriorated coupling between the different layers. A two-dimensional numerical model of the ME laminate composite based on the finite element method was used to evaluate the experimental results. A comparison between numerical and experimental data allows us to select the appropriate epoxy and to optimize the piezoelectric PVDF layer width to maximize the induced magnetoelectric voltage. The obtained results show the critical role of the bonding layer and piezoelectric layer thickness in the ME performance of laminate composites. PMID:24125528

  17. Size effects on magnetoelectric response of multiferroic composite with inhomogeneities

    NASA Astrophysics Data System (ADS)

    Yue, Y. M.; Xu, K. Y.; Chen, T.; Aifantis, E. C.

    2015-12-01

    This paper investigates the influence of size effects on the magnetoelectric performance of multiferroic composite with inhomogeneities. Based on a simple model of gradient elasticity for multiferroic materials, the governing equations and boundary conditions are obtained from an energy variational principle. The general formulation is applied to consider an anti-plane problem of multiferroic composites with inhomogeneities. This problem is solved analytically and the effective magnetoelectric coefficient is obtained. The influence of the internal length (grain size or particle size) on the effective magnetoelectric coefficients of piezoelectric/piezomagnetic nanoscale fibrous composite is numerically evaluated and analyzed. The results suggest that with the increase of the internal length of piezoelectric matrix (PZT and BaTiO3), the magnetoelectric coefficient increases, but the rate of increase is ratcheting downwards. If the internal length of piezoelectric matrix remains unchanged, the magnetoelectric coefficient will decrease with the increase of internal length scale of piezomagnetic nonfiber (CoFe2O3). In a composite consisiting of a piezomagnetic matrix (CoFe2O3) reinforced with piezoelectric nanofibers (BaTiO3), an increase of the internal length in the piezomagnetic matrix, results to a decrease of the magnetoelectric coefficient, with the rate of decrease diminishing.

  18. Analysis and experimental validation of the middle-frequency vibro-acoustic coupling property for aircraft structural model based on the wave coupling hybrid FE-SEA method

    NASA Astrophysics Data System (ADS)

    Yan, Yunju; Li, Pengbo; Lin, Huagang

    2016-06-01

    The finite element (FE) method is suitable for low frequency analysis and the statistical energy analysis (SEA) for high frequency analysis, but the vibro-acoustic coupling analysis at middle frequency, especially with a certain range of uncertainty system, requires some new methods. A hybrid FE-SEA method is proposed in this study and the Monte Carlo method is used to check the hybrid FE-SEA method through the energy response analysis of a beam-plate built-up structure with some uncertainty, and the results show that two kinds of calculation results match well consistently. Taking the advantage of the hybrid FE-SEA method, the structural vibration and the cabin noise field responses under the vibro-acoustic coupling for an aircraft model are numerically analyzed, and, also, the corresponding experiment is carried out to verify the simulated results. Results show that the structural vibration responses at low frequency accord well with the experiment, but the error at high frequency is greater. The error of sound pressure response level in cabin throughout the spectrum is less than 3 dB. The research proves the reliability of the method proposed in this paper. This indicates that the proposed method can overcome the strict limitations of the traditional method for a large complex structure with uncertainty factors, and it can also avoid the disadvantages of solving complex vibro-acoustic system using the finite element method or statistical energy analysis in the middle frequency.

  19. Shifted Coupling of EEG Driving Frequencies and fMRI Resting State Networks in Schizophrenia Spectrum Disorders

    PubMed Central

    Razavi, Nadja; Jann, Kay; Koenig, Thomas; Kottlow, Mara; Hauf, Martinus; Strik, Werner; Dierks, Thomas

    2013-01-01

    Introduction The cerebral resting state in schizophrenia is altered, as has been demonstrated separately by electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state networks (RSNs). Previous simultaneous EEG/fMRI findings in healthy controls suggest that a consistent spatiotemporal coupling between neural oscillations (EEG frequency correlates) and RSN activity is necessary to organize cognitive processes optimally. We hypothesized that this coupling is disorganized in schizophrenia and related psychotic disorders, in particular regarding higher cognitive RSNs such as the default-mode (DMN) and left-working-memory network (LWMN). Methods Resting state was investigated in eleven patients with a schizophrenia spectrum disorder (n = 11) and matched healthy controls (n = 11) using simultaneous EEG/fMRI. The temporal association of each RSN to topographic spectral changes in the EEG was assessed by creating Covariance Maps. Group differences within, and group similarities across frequencies were estimated for the Covariance Maps. Results The coupling of EEG frequency bands to the DMN and the LWMN respectively, displayed significant similarities that were shifted towards lower EEG frequencies in patients compared to healthy controls. Conclusions By combining EEG and fMRI, each measuring different properties of the same pathophysiology, an aberrant relationship between EEG frequencies and altered RSNs was observed in patients. RSNs of patients were related to lower EEG frequencies, indicating functional alterations of the spatiotemporal coupling. Significance The finding of a deviant and shifted coupling between RSNs and related EEG frequencies in patients with a schizophrenia spectrum disorder is significant, as it might indicate how failures in the processing of internal and external stimuli, as commonly seen during this symptomatology (i.e. thought disorders, hallucinations), arise. PMID:24124576

  20. Neutron powder diffraction study of nuclear and magnetic structures of multiferroic (Bi0.8Ba0.2)(Fe0.8Ti0.2)O3: Evidence for isostructural phase transition and magnetoelastic and magnetoelectric couplings

    NASA Astrophysics Data System (ADS)

    Singh, Anar; Senyshyn, Anatoliy; Fuess, Hartmut; Chatterji, Tapan; Pandey, Dhananjai

    2011-02-01

    We report here the results of a high-resolution neutron powder diffraction study on the multiferroic solid solution system (Bi0.8Ba0.2)(Fe0.8Ti0.2)O3 in the temperature range 4 to 700 K. Using irreducible representation theory to analyze the magnetic structure by Rietveld refinement, we show that the magnetic structure is collinear G-type antiferromagnetic. Further, we confirm the occurrence of an isostructural phase transition (IPT) accompanying the magnetic ordering around ˜625 K in (Bi0.8Ba0.2)(Fe0.8Ti0.2)O3. It is shown that as a result of the IPT, the positions of all the atoms change significantly in the magnetically ordered phase, leading to an excess polarization which scales linearly with the sublattice magnetization obtained by Rietveld refinement of the magnetic structure. Structural evidence for magnetoelastic coupling for the magnetic transitions below room temperature is also presented.

  1. Mitigating Oscillator Pulling Due To Magnetic Coupling in Monolithic Mixed-Signal Radio-Frequency Integrated Circuits

    SciTech Connect

    Sobering, Ian David

    2014-01-01

    An analysis of frequency pulling in a varactor-tuned LC VCO under coupling from an on-chip PA is presented. The large-signal behavior of the VCO's inversion-mode MOS varactors is outlined, and the susceptibility of the VCO to frequency pulling from PA aggressor signals with various modulation schemes is discussed. We show that if the aggressor signal is aperiodic, band-limited, or amplitude-modulated, the varactor-tuned LC VCO will experience frequency pulling due to time-modulation of the varactor capacitance. However, if the aggressor signal has constant-envelope phase modulation, VCO pulling can be eliminated, even in the presence of coupling, through careful choice of VCO frequency and divider ratio. Additional mitigation strategies, including new inductor topologies and system-level architectural choices, are also examined.

  2. Time Circular Birefringence in Time-Dependent Magnetoelectric Media

    PubMed Central

    Zhang, Ruo-Yang; Zhai, Yan-Wang; Lin, Shi-Rong; Zhao, Qing; Wen, Weijia; Ge, Mo-Lin

    2015-01-01

    Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect “time circular birefringence” (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via “time refraction” and “time reflection” of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the “time Faraday effect”, namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice. PMID:26329928

  3. Time Circular Birefringence in Time-Dependent Magnetoelectric Media.

    PubMed

    Zhang, Ruo-Yang; Zhai, Yan-Wang; Lin, Shi-Rong; Zhao, Qing; Wen, Weijia; Ge, Mo-Lin

    2015-01-01

    Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect "time circular birefringence" (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via "time refraction" and "time reflection" of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the "time Faraday effect", namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice. PMID:26329928

  4. The influence of interlayer exchange coupling in giant-magnetoresistive devices on spin diode effect in wide frequency range

    SciTech Connect

    Ziętek, Sławomir Skowroński, Witold; Wiśniowski, Piotr; Czapkiewicz, Maciej; Stobiecki, Tomasz; Ogrodnik, Piotr; Barnaś, Józef

    2015-09-21

    Spin diode effect in a giant magnetoresistive strip is measured in a broad frequency range, including resonance and off-resonance frequencies. The off-resonance dc signal is relatively strong and also significantly dependent on the exchange coupling between magnetic films through the spacer layer. The measured dc signal is described theoretically by taking into account magnetic dynamics induced by Oersted field created by an ac current flowing through the system.

  5. Magnetoelectric effect in organic molecular solids

    PubMed Central

    Naka, Makoto; Ishihara, Sumio

    2016-01-01

    The Magnetoelectric (ME) effect in solids is a prominent cross correlation phenomenon, in which the electric field (E) controls the magnetization (M) and the magnetic field (H) controls the electric polarization (P). A rich variety of ME effects and their potential in practical applications have been investigated so far within the transition-metal compounds. Here, we report a possible way to realize the ME effect in organic molecular solids, in which two molecules build a dimer unit aligned on a lattice site. The linear ME effect is predicted in a long-range ordered state of spins and electric dipoles, as well as in a disordered state. One key of the ME effect is a hidden ferroic order of the spin-charge composite object. We provide a new guiding principle of the ME effect in materials without transition-metal elements, which may lead to flexible and lightweight multifunctional materials. PMID:26876424

  6. Magnetoelectric effect in organic molecular solids

    NASA Astrophysics Data System (ADS)

    Naka, Makoto; Ishihara, Sumio

    2016-02-01

    The Magnetoelectric (ME) effect in solids is a prominent cross correlation phenomenon, in which the electric field (E) controls the magnetization (M) and the magnetic field (H) controls the electric polarization (P). A rich variety of ME effects and their potential in practical applications have been investigated so far within the transition-metal compounds. Here, we report a possible way to realize the ME effect in organic molecular solids, in which two molecules build a dimer unit aligned on a lattice site. The linear ME effect is predicted in a long-range ordered state of spins and electric dipoles, as well as in a disordered state. One key of the ME effect is a hidden ferroic order of the spin-charge composite object. We provide a new guiding principle of the ME effect in materials without transition-metal elements, which may lead to flexible and lightweight multifunctional materials.

  7. Magnetoelectric effect in organic molecular solids.

    PubMed

    Naka, Makoto; Ishihara, Sumio

    2016-01-01

    The Magnetoelectric (ME) effect in solids is a prominent cross correlation phenomenon, in which the electric field (E) controls the magnetization (M) and the magnetic field (H) controls the electric polarization (P). A rich variety of ME effects and their potential in practical applications have been investigated so far within the transition-metal compounds. Here, we report a possible way to realize the ME effect in organic molecular solids, in which two molecules build a dimer unit aligned on a lattice site. The linear ME effect is predicted in a long-range ordered state of spins and electric dipoles, as well as in a disordered state. One key of the ME effect is a hidden ferroic order of the spin-charge composite object. We provide a new guiding principle of the ME effect in materials without transition-metal elements, which may lead to flexible and lightweight multifunctional materials. PMID:26876424

  8. A model of magneto-electric multipoles.

    PubMed

    Lovesey, S W; Balcar, E

    2015-03-18

    A long-known Hamiltonian of electrons with entangled spin and orbital degrees of freedom is re-examined as a model of magneto-electric multipoles (MEs). In the model, a magnetic charge and simple quantum rotator are tightly locked in action, some might say they are enslaved entities. It is shown that MEs almost perfectly accord with those inferred from an analysis of magnetic neutron diffraction data on a ceramic superconductor (YBCO) in the pseudo-gap phase. Nigh on perfection between Stone's model and inferred MEs is achieved by addition to the original model of a crystal-field potential appropriate for the magnetic space group used in the published data analysis. An impression of thermal properties of multipoles is sought from a molecular-field model. PMID:25705914

  9. Static magnetoelectric and magnetoelastic response of composite cantilevers: Theory of short vs. open circuit operation and layer sequence effects

    NASA Astrophysics Data System (ADS)

    Krantz, Matthias C.; Gugat, Jascha L.; Gerken, Martina

    2015-11-01

    The static bending-mode transverse magnetoelectric effect and the magnetic field-induced bending response of composite cantilevers with thin magnetostrictive (MS), piezoelectric (PE), and substrate (Sub) layers is investigated for the PE layer subjected to open and short circuit conditions. Analytic theories are presented for strain-coupled three layer composites of PE, MS, and Sub layers in all layer sequences. We use constitutive equations with linear coupling of stress, strain, H, E, and D fields and present results for the open and short circuit magnetoelectric and bending responses for arbitrary layer thickness ratios for the FeCoBSi-AlN-Si materials system. Besides a rich sequence dependent behavior the theory predicts great and systematic differences between the open and short circuit magnetoelectric response yielding maxima at similar MS and PE layer thicknesses in the open circuit and near vanishing PE layer thicknesses in the short circuit cases. In contrast, the open vs. short circuit bending response differences are pronounced but much smaller. Layer sequence systematics and implications for static H-field sensors will be discussed.

  10. Heating mode transition in a hybrid direct current/dual-frequency capacitively coupled CF{sub 4} discharge

    SciTech Connect

    Zhang, Quan-Zhi; Wang, You-Nian; Bogaerts, Annemie

    2014-06-14

    Computer simulations based on the particle-in-cell/Monte Carlo collision method are performed to study the plasma characteristics and especially the transition in electron heating mechanisms in a hybrid direct current (dc)/dual-frequency (DF) capacitively coupled CF{sub 4} discharge. When applying a superposed dc voltage, the plasma density first increases, then decreases, and finally increases again, which is in good agreement with experiments. This trend can be explained by the transition between the four main heating modes, i.e., DF coupling, dc and DF coupling, dc source dominant heating, and secondary electron dominant heating.

  11. ICPP: Low-frequency, inductively coupled plasma sources: operation and applications

    NASA Astrophysics Data System (ADS)

    Xu, Shuyan

    2000-10-01

    Low-frequency, inductively coupled plasmas (LFICP) have recently attracted great attention in connection with the plasma processing of materials. The low-frequency sources feature high plasma density (10^18 - 10^19 m-3), excellent uniformity over large areas, low electron temperature, moderate plasma potential, deeper RF filed penetration and high power transfer efficiency. This work presents a comprehensive experimental and theoretical investigation of the electric/electromagnetic properties, electron density and temperature, and the optical emission in 500 kHz ICP sources. A series of experiments conducted in Ar/N_2/H2 and CH4 discharges show that the high-density plasmas are generated in the two distinctive E- and H- operating regimes. Near the mode transitions the power reflection coefficient exhibits resonant minima. The optical emission spectra of neutral atoms and ions together with global power balance arguments reveal that the step-wise ionization via excited states can be responsible for delaying the backward transition between the H- and E- discharge states, and, hence, lead to hysteresis. The experimental and theoretical results on the discharge mode transitions and hysteresis are discussed as well. It is demonstrated that the low-frequency ICP source is extremely efficient for nitriding of solid materials, especially of stainless steel. A low-temperature ( 350^oC) steel nitriding experiments undertaken in plasmas of various Ar/N_2/H2 gas mixtures show that very high nitriding rates, ranging from 40 μm/hour (stainless steel AISI304) to 90 μm/hour (AISI410), can be achieved. The microstructure, phases and composition of the nitrided surface layers have been characterized by Scanning Electron Microscopy, x-ray photoelectron spectroscopy, x-ray diffraction spectroscopy and energy dispersive x-ray spectroscopy. It has been shown that the crystalline phases of the nitrided layer can efficiently be controlled by the processing conditions. The nitrogen

  12. Influence of nanoparticle formation on discharge properties in argon-acetylene capacitively coupled radio frequency plasmas

    NASA Astrophysics Data System (ADS)

    Wegner, Th.; Hinz, A. M.; Faupel, F.; Strunskus, T.; Kersten, H.; Meichsner, J.

    2016-02-01

    This contribution presents experimental results regarding the influence of nanoparticle formation in capacitively coupled radio frequency (13.56 MHz) argon-acetylene plasmas. The discharge is studied using non-invasive 160 GHz Gaussian beam microwave interferometry and optical emission spectroscopy. Particularly, the temporal behavior of the electron density from microwave interferometry is analyzed and compared with the changing plasma emission and self-bias voltage caused by nanoparticle formation. The periodic particle formation with a cycle duration between 30 s and 140 s starts with an electron density drop over more than one order of magnitude below the detection limit (8 × 1014 m-3). The electron density reduction is the result of electron attachment processes due to negative ions and nanoparticle formation. The onset time constant of nanoparticle formation is five times faster compared to the expulsion of the particles from the plasma due to multi-disperse size distribution. Moreover, the intensity of the argon transition lines increases and implies a rising effective electron temperature. The cycle duration of the particle formation is affected by the total gas flow rate and exhibits an inverse proportionality to the square of the total gas flow rate. The variation in the total gas flow rate influences the force balance, which determines the confinement time of the nanoparticles. As a further result, the cycle duration is dependent on the axial position of the powered electrode, which also corresponds to different distances relative to the fixed optical axis of the microwave interferometer.

  13. Suppression of dynamics and frequency synchronization in coupled slow and fast dynamical systems

    NASA Astrophysics Data System (ADS)

    Gupta, Kajari; Ambika, G.

    2016-06-01

    We present our study on the emergent states of two interacting nonlinear systems with differing dynamical time scales. We find that the inability of the interacting systems to fall in step leads to difference in phase as well as change in amplitude. If the mismatch is small, the systems settle to a frequency synchronized state with constant phase difference. But as mismatch in time scale increases, the systems have to compromise to a state of no oscillations. We illustrate this for standard nonlinear systems and identify the regions of quenched dynamics in the parameter plane. The transition curves to this state are studied analytically and confirmed by direct numerical simulations. As an important special case, we revisit the well-known model of coupled ocean-atmosphere system used in climate studies for the interactive dynamics of a fast oscillating atmosphere and slowly changing ocean. Our study in this context indicates occurrence of multi stable periodic states and steady states of convection coexisting in the system, with a complex basin structure.

  14. On the location of frequencies of maximum acoustic-to-seismic coupling

    SciTech Connect

    Sabatier, J.M.; Bass, H.E.; Elliott, G.R.

    1986-10-01

    Measurements of the acoustic-to-seismic transfer function (ratio of the normal soil particle velocity at a depth d to the acoustic pressure at the surface) for outdoor ground surfaces quite typically reveal a series of maxima and minima. In a publication (Sabatier et al., J. Acoust. Soc. Am. 80, 646--649 (1986)), the location and magnitude of these maxima are measured and predicted for several outdoor ground surfaces using a layered poroelastic model of the ground surface. In this paper, the seismic transfer function for a desert site is compared to the seismic transfer function for holes dug in the desert floor which were filled with pumice (volcanic rock). The hole geometry was rectangular and the hole depths varied from 0.25--2.0 m. The p- and s-wave speeds, densities, porosities, and flow resistivities for the desert floor and pumice were all measured. By varying the hole depth and the fill material, the maxima in the seismic transfer function can be shifted in frequency and the locations of the maxima compare reasonably with that of a hard-backed layer calculation. The area or extent of the acoustic-to-seismic coupling for pumice was determined to be less than 1 m/sup 2/.

  15. Suppression of ionization instability in a magnetohydrodynamic plasma by coupling with a radio-frequency electromagnetic field

    SciTech Connect

    Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki

    2005-05-09

    We describe the suppression of ionization instability and the control of a magnetohydrodynamic electrical power-generating plasma by coupling with a radio-frequency (rf) electromagnetic field. The rf heating stabilizes the unstable plasma behavior and homogenizes the nonuniform plasma structure, whereby the power-generating performance is significantly improved.

  16. Spatial Noise in Coupling Strength and Natural Frequency within a Pacemaker Network; Consequences for Development of Intestinal Motor Patterns According to a Weakly Coupled Phase Oscillator Model

    PubMed Central

    Parsons, Sean P.; Huizinga, Jan D.

    2016-01-01

    Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency. PMID:26869875

  17. Singly resonant sum-frequency generation of 520-nm laser via a variable input-coupling transmission cavity

    NASA Astrophysics Data System (ADS)

    Guo, Shanlong; Ge, Yulong; He, Jun; Wang, Junmin

    2015-11-01

    We experimentally present a three-mirror folded singly resonant sum-frequency generation (SFG) cavity with an adjustable input coupling, which has been applied to 520-nm single-frequency laser generation via 780-nm laser and 1560-nm laser frequency mixing in a periodically poled KTiOPO4 crystal (PPKTP). A continuous variation in the input coupling reflectivity from 81.4 to 96.1% for 780-nm resonant laser is achieved by tilting the input coupler, and the impedance matching of the resonator can be optimized. Up to 268 mW of SFG output power at 520-nm is obtained with 6.8 W of the 1560-nm laser input and 1.5 W of 780-nm laser input.

  18. Using a Superconducting Resonator with Frequency-Compensated Tunable Coupling to Transfer a Quantum State Deterministically and Directly

    NASA Astrophysics Data System (ADS)

    Wenner, James; Neill, C.; Quintana, C.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; O'Malley, P.; Vainsencher, A.; White, T.; Barends, R.; Chen, Y.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Megrant, A.; Mutus, J.; Neeley, M.; Roushan, P.; Sank, D.; Martinis, John M.

    Deterministic direct quantum state transfer between devices on different chips requires the ability to transfer quantum states between traveling qubits and fixed logic qubits. Reflections must be minimized to avoid energy loss and phase interference; this requires tunable coupling to an inter-chip line while the two devices are at equal frequencies. To achieve this, we use a 6GHz superconducting coplanar resonator with tunable coupling to a 50 Ohm transmission line. We compensate for the resulting shift in resonator frequency by simultaneously tuning a second SQUID. We measure the device coherence and demonstrate the ability to release a single-frequency shaped pulse into the transmission line, efficiently capture a shaped pulse, and deterministically and directly transfer a quantum state.

  19. 3-D Surface Depression Profiling Using High Frequency Focused Air-Coupled Ultrasonic Pulses

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. This article shows quantitative surface topography profiles as obtained using only high-frequency focused air-coupled ultrasonic pulses. The profiles were obtained using a profiling system developed by NASA Glenn Research Center and Sonix, Inc (via a formal cooperative agreement). (The air transducers are available as off-the-shelf items from several companies.) The method is simple and reproducible because it relies mainly on knowledge and constancy of the sound velocity through the air. The air transducer is scanned across the surface and sends pulses to the sample surface where they are reflected back from the surface along the same path as the incident wave. Time-of-flight images of the sample surface are acquired and converted to depth/surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in air (V). The system has the ability to resolve surface depression variations as small as 25 microns, is useable over a 1.4 mm vertical depth range, and can profile large areas only limited by the scan limits of the particular ultrasonic system. (Best-case depth resolution is 0.25 microns which may be achievable with improved isolation from vibration and air currents.) The method using an optimized configuration is reasonably rapid and has all quantitative analysis facilities on-line including 2-D and 3-D visualization capability, extreme value filtering (for faulty data), and leveling capability. Air-coupled surface profilometry is applicable to plate-like and curved samples. In this article, results are shown for several proof-of-concept samples, plastic samples burned in microgravity on the STS-54 space shuttle mission, and a partially-coated cylindrical ceramic

  20. Defining regions of interest using cross-frequency coupling in extratemporal lobe epilepsy patients

    NASA Astrophysics Data System (ADS)

    Guirgis, Mirna; Chinvarun, Yotin; del Campo, Martin; Carlen, Peter L.; Bardakjian, Berj L.

    2015-04-01

    Objective. Clinicians identify seizure onset zones (SOZs) for resection in an attempt to localize the epileptogenic zone (EZ), which is the cortical tissue that is indispensible for seizure generation. An automated system is proposed to objectively localize this EZ by identifying regions of interest (ROIs). Methods. Intracranial electroencephalogram recordings were obtained from seven patients presenting with extratemporal lobe epilepsy and the interaction between neuronal rhythms in the form of phase-amplitude coupling was investigated. Modulation of the amplitude of high frequency oscillations (HFOs) by the phase of low frequency oscillations was measured by computing the modulation index (MI). Delta- (0.5-4 Hz) and theta- (4-8 Hz) modulation of HFOs (30-450 Hz) were examined across the channels of a 64-electrode subdural grid. Surrogate analysis was performed and false discovery rates were computed to determine the significance of the modulation observed. Mean MI values were subjected to eigenvalue decomposition (EVD) and channels defining the ROIs were selected based on the components of the eigenvector corresponding to the largest eigenvalue. ROIs were compared to the SOZs identified by two independent neurologists. Global coherence values were also computed. Main results. MI was found to capture the seizure in time for six of seven patients and identified ROIs in all seven. Patients were found to have a poorer post-surgical outcome when the number of EVD-selected channels that were not resected increased. Moreover, in patients who experienced a seizure-free outcome (i.e., Engel Class I) all EVD-selected channels were found to be within the resected tissue or immediately adjacent to it. In these Engel Class I patients, delta-modulated HFOs were found to identify more of the channels in the resected tissue compared to theta-modulated HFOs. However, for the Engel Class IV patient, the delta-modulated HFOs did not identify any of the channels in the resected

  1. Effect of source frequency and pulsing on the SiO2 etching characteristics of dual-frequency capacitive coupled plasma

    NASA Astrophysics Data System (ADS)

    Kim, Hoe Jun; Jeon, Min Hwan; Mishra, Anurag Kumar; Kim, In Jun; Sin, Tae Ho; Yeom, Geun Young

    2015-01-01

    A SiO2 layer masked with an amorphous carbon layer (ACL) has been etched in an Ar/C4F8 gas mixture with dual frequency capacitively coupled plasmas under variable frequency (13.56-60 MHz)/pulsed rf source power and 2 MHz continuous wave (CW) rf bias power, the effects of the frequency and pulsing of the source rf power on the SiO2 etch characteristics were investigated. By pulsing the rf power, an increased SiO2 etch selectivity was observed with decreasing SiO2 etch rate. However, when the rf power frequency was increased, not only a higher SiO2 etch rate but also higher SiO2 etch selectivity was observed for both CW and pulse modes. A higher CF2/F ratio and lower electron temperature were observed for both a higher source frequency mode and a pulsed plasma mode. Therefore, when the C 1s binding states of the etched SiO2 surfaces were investigated using X-ray photoelectron spectroscopy (XPS), the increase of C-Fx bonding on the SiO2 surface was observed for a higher source frequency operation similar to a pulsed plasma condition indicating the increase of SiO2 etch selectivity over the ACL. The increase of the SiO2 etch rate with increasing etch selectivity for the higher source frequency operation appears to be related to the increase of the total plasma density with increasing CF2/F ratio in the plasma. The SiO2 etch profile was also improved not only by using the pulsed plasma but also by increasing the source frequency.

  2. Trench and hole patterning with EUV resists using dual frequency capacitively coupled plasma (CCP)

    NASA Astrophysics Data System (ADS)

    Feurprier, Yannick; Lutker-Lee, Katie; Rastogi, Vinayak; Matsumoto, Hiroie; Chiba, Yuki; Metz, Andrew; Kumar, Kaushik; Beique, Genevieve; Labonte, Andre; Labelle, Cathy; Mignot, Yann; Hamieh, Bassem; Arnold, John

    2015-03-01

    Patterning at 10 nm and sub-10 nm technology nodes is one of the key challenges for the semiconductor industry. Several patterning techniques are under investigation to enable the aggressive pitch requirements demanded by the logic technologies. EUV based patterning is being considered as a serious candidate for the sub-10nm nodes. As has been widely published, a new technology like EUV has its share of challenges. One of the main concerns with EUV resists is that it tends to have a lower etch selectivity and worse LER/LWR than traditional 193nm resists. Consequently the characteristics of the dry etching process play an increasingly important role in defining the outcome of the patterning process. In this paper, we will demonstrate the role of the dual-frequency Capacitively Coupled Plasma (CCP) in the EUV patterning process with regards to improving LER/LWR, resist selectivity and CD tunability for holes and line patterns. One of the key knobs utilized here to improve LER and LWR, involves superimposing a negative DC voltage in RF plasma at one of the electrodes. The emission of ballistic electrons, in concert with the plasma chemistry, has shown to improve LER and LWR. Results from this study along with traditional plasma curing methods will be presented. In addition to this challenge, it is important to understand the parameters needed to influence CD tunability and improve resist selectivity. Data will be presented from a systematic study that shows the role of various plasma etch parameters that influence the key patterning metrics of CD, resist selectivity and LER/LWR. This work was performed by the Research Alliance Teams at various IBM Research and Development Facilities.

  3. Optimization of the electrical asymmetry effect in dual-frequency capacitively coupled radio frequency discharges: Experiment, simulation, and model

    NASA Astrophysics Data System (ADS)

    Schulze, J.; Schüngel, E.; Czarnetzki, U.; Donkó, Z.

    2009-09-01

    An electrical asymmetry in capacitive rf discharges with a symmetrical electrode configuration can be induced by driving the discharge with a fundamental frequency and its second harmonic. For equal amplitudes of the applied voltage waveforms, it has been demonstrated by modeling, simulation, and experiments that this electrical asymmetry effect (EAE) leads to the generation of a variable dc self-bias that depends almost linearly on the phase angle between the driving voltage signals. Here, the dependence of the dc self-bias generated by the EAE on the choice of the voltage amplitudes, i.e., the ratio A of high to low frequency amplitude, is investigated experimentally as well as by using an analytical model and a particle-in-cell simulation. It is found that (i) the strongest electrical asymmetry is induced for A <1 at pressures ranging from 6 to 100 Pa and that (ii) around this optimum voltage ratio the dc self-bias normalized to the sum of both voltage amplitudes is fairly insensitive to changes of A. Thus, by choosing the optimum voltage ratio, the EAE is optimized: The ion energy can be changed over a broader energy range and a high degree of process stability with respect to small changes in the applied voltages is expected.

  4. Optimization of the electrical asymmetry effect in dual-frequency capacitively coupled radio frequency discharges: Experiment, simulation, and model

    SciTech Connect

    Schulze, J.; Schuengel, E.; Czarnetzki, U.; Donko, Z.

    2009-09-15

    An electrical asymmetry in capacitive rf discharges with a symmetrical electrode configuration can be induced by driving the discharge with a fundamental frequency and its second harmonic. For equal amplitudes of the applied voltage waveforms, it has been demonstrated by modeling, simulation, and experiments that this electrical asymmetry effect (EAE) leads to the generation of a variable dc self-bias that depends almost linearly on the phase angle between the driving voltage signals. Here, the dependence of the dc self-bias generated by the EAE on the choice of the voltage amplitudes, i.e., the ratio A of high to low frequency amplitude, is investigated experimentally as well as by using an analytical model and a particle-in-cell simulation. It is found that (i) the strongest electrical asymmetry is induced for A<1 at pressures ranging from 6 to 100 Pa and that (ii) around this optimum voltage ratio the dc self-bias normalized to the sum of both voltage amplitudes is fairly insensitive to changes of A. Thus, by choosing the optimum voltage ratio, the EAE is optimized: The ion energy can be changed over a broader energy range and a high degree of process stability with respect to small changes in the applied voltages is expected.

  5. Control of synchronization and spiking regularity by heterogenous aperiodic high-frequency signal in coupled excitable systems

    NASA Astrophysics Data System (ADS)

    Qin, Ying-Mei; Wang, Jiang; Men, Cong; Chan, Wai-Lok; Wei, Xi-Le; Deng, Bin

    2013-10-01

    This paper investigates the synchronization and spiking regularity induced by heterogenous aperiodic (HA) signal in coupled excitable FitzHugh-Nagumo systems. We found new nontrivial effects of couplings and HA signals on the firing regularity and synchronization in coupled excitable systems without a periodic external driving. The phenomenon is similar to array enhanced coherence resonance (AECR), and it is shown that AECR-type behavior is not limited to systems driven by noises. It implies that the HA signal may be beneficial for the brain function, which is similar to the role of noise. Furthermore, it is also found that the mean frequencies, the amplitudes and the heterogeneity of HA stimuli can serve as control parameters in modulating spiking regularity and synchronization in coupled excitable systems. These results may be significant for the control of the synchronized firing of the brain in neural diseases like epilepsy.

  6. Effect of Air-Sea coupling on the Frequency Distribution of Intense Tropical Cyclones over the Northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomomaki

    2016-04-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual SST variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling and hence TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  7. Effect of air-sea coupling on the frequency distribution of intense tropical cyclones over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomoaki

    2015-12-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual sea surface temperature (SST) variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence, AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling, and hence, TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  8. The external Q factor of a dual-feed coupling for superconducting radio frequency cavities: theoretical and experimental studies.

    PubMed

    Dai, J; Belomestnykh, S; Ben-Zvi, I; Xu, Wencan

    2013-11-01

    We propose a theoretical model based on network analysis to study the external quality factor (Q factor) of dual-feed coupling for superconducting radio-frequency (SRF) cavities. Specifically, we apply our model to the dual-feed 704 MHz half-cell SRF gun for Brookhaven National Laboratory's prototype Energy Recovery Linac (ERL). The calculations show that the external Q factor of this dual-feed system is adjustable from 10(4) to 10(9) provided that the adjustment range of a phase shifter covers 0°-360°. With a period of 360°, the external Q factor of the coupling system changes periodically with the phase difference between the two coupling arms. When the RF phase of both coupling arms is adjusted simultaneously in the same direction, the external Q factor of the system also changes periodically, but with a period of 180°. PMID:24289393

  9. Control of low-frequency noise for piping systems via the design of coupled band gap of acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Yanfei; Shen, Huijie; Zhang, Linke; Su, Yongsheng; Yu, Dianlong

    2016-07-01

    Acoustic wave propagation and sound transmission in a metamaterial-based piping system with Helmholtz resonator (HR) attached periodically are studied. A transfer matrix method is developed to conduct the investigation. Calculational results show that the introduction of periodic HRs in the piping system could generate a band gap (BG) near the resonant frequency of the HR, such that the bandwidth and the attenuation effect of HR improved notably. Bragg type gaps are also exist in the system due to the systematic periodicity. By plotting the BG as functions of HR parameters, the effect of resonator parameters on the BG behavior, including bandwidth, location and attenuation performance, etc., is examined. It is found that Bragg-type gap would interplay with the resonant-type gap under some special situations, thereby giving rise to a super-wide coupled gap. Further, explicit formulation for BG exact coupling is extracted and some key parameters on modulating the width and the attenuation coefficient of coupled gaps are investigated. The coupled gap can be located to any frequency range as one concerned, thus rendering the low-frequency noise control feasible in a broad band range.

  10. Enduring vulnerabilities, relationship attributions, and couple conflict: an integrative model of the occurrence and frequency of intimate partner violence.

    PubMed

    Marshall, Amy D; Jones, Damon E; Feinberg, Mark E

    2011-10-01

    We tested an integrative model of individual and dyadic variables contributing to intimate partner violence (IPV) perpetration. Based on the vulnerability-stress-adaptation (VSA) model, we hypothesized that three "enduring vulnerabilities" (i.e., antisocial behavior, hostility, and depressive symptoms) would be associated with a "maladaptive process" (i.e., negative relationship attributions) that would lead to difficulties in couple conflict resolution, thus leading to IPV. Among a community sample of 167 heterosexual couples who were expecting their first child, we used an actor-partner interdependence model to account for the dyadic nature of conflict and IPV, as well as a hurdle count model to improve upon prior methods for modeling IPV data. Study results provided general support for the integrative model, demonstrating the importance of considering couple conflict in the prediction of IPV and showing the relative importance of multiple predictor variables. Gender symmetry was observed for the prediction of IPV occurrence, with gender differences emerging in the prediction of IPV frequency. Relatively speaking, the prediction of IPV frequency appeared to be a function of enduring vulnerabilities among men, but a function of couple conflict among women. Results also revealed important cross-gender effects in the prediction of IPV, reflecting the inherently dyadic nature of IPV, particularly in the case of "common couple violence." Future research using longitudinal designs is necessary to verify the conclusions suggested by the current results. PMID:21875196

  11. Magnetoelectric effects in heavy-fermion superconductors without inversion symmetry

    NASA Astrophysics Data System (ADS)

    Fujimoto, Satoshi

    2005-07-01

    We investigate the effects of strong electron correlation on magnetoelectric transport phenomena in noncentrosymmetric superconductors with particular emphasis on its application to the recently discovered heavy-fermion superconductor CePt3Si . Taking into account electron correlation effects in a formally exact way, we obtain the expression of the magnetoelectric coefficient for the Zeeman-field-induced paramagnetic supercurrent, the existence of which was predicted more than a decade ago. It is found that in contrast to the usual Meissner current, which is much reduced by the mass renormalization factor in the heavy-fermion state, the paramagnetic supercurrent is not affected by the Fermi liquid effect. This result implies that the experimental observation of the magnetoelectric effect is more feasible in heavy-fermion systems than that in conventional metals with moderate effective mass.

  12. Evaluation of the influence of the main plasma density parameters on antenna coupling and radio frequency potentials with TOPICA code

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Maggiora, R.

    2013-04-01

    The successful design of an ion cyclotron antenna mainly relies on the capability of accurately predicting its behavior both in terms of input parameters, and therefore power coupled to plasma, and radiated fields. All these features essentially depend on the antenna itself (its geometry, the matching and tuning systems) and, obviously, on the faced loading. In this paper a number of plasma profiles is analysed with the help of the TOPICA code, a predictive tool for the design and optimization of radio frequency (RF) launchers in front of a plasma, in order to understand which plasma parameters have the most significant influence on the coupling performances of a typical IC antenna.

  13. Inverse bilayer magnetoelectric thin film sensor

    NASA Astrophysics Data System (ADS)

    Yarar, E.; Salzer, S.; Hrkac, V.; Piorra, A.; Höft, M.; Knöchel, R.; Kienle, L.; Quandt, E.

    2016-07-01

    Prior investigations on magnetoelectric (ME) thin film sensors using amorphous FeCoSiB as a magnetostrictive layer and AlN as a piezoelectric layer revealed a limit of detection (LOD) in the range of a few pT/Hz1/2 in the mechanical resonance. These sensors are comprised of a Si/SiO2/Pt/AlN/FeCoSiB layer stack, as dictated by the temperatures required for the deposition of the layers. A low temperature deposition route of very high quality AlN allows the reversal of the deposition sequence, thus allowing the amorphous FeCoSiB to be deposited on the very smooth Si substrate. As a consequence, the LOD could be enhanced by almost an order of magnitude reaching 400 fT/Hz1/2 at the mechanical resonance of the sensor. Giant ME coefficients (αME) as high as 5 kV/cm Oe were measured. Transmission electron microscopy investigations revealed highly c-axis oriented growth of the AlN starting from the Pt-AlN interface with local epitaxy.

  14. Artworks characterization at THz frequencies: preliminary results via the Fiber-Coupled Terahertz Time Domain System

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Soldovieri, Francesco

    2015-04-01

    In the research field of art and archaeology, scientific observation and analysis are hugely demanded to gather as more information as possible on the materials and techniques used to create artworks as well as in previous restoration actions. In this frame, diagnostic tools exploiting electromagnetic waves deserve massive interest tanks to their ability to provide non-invasive and possibly contactless characterization of the investigated objects. Among the electromagnetic diagnostic technologies, those working at frequencies belonging to the 0.1-10 THz range are currently deserving an increased attention since THz waves are capable of penetrating into optically opaque materials (up to the preparation layers), without direct contact and by involving sufficiently low energy to be considered as perfectly non-invasive in practice [1,2]. Moreover, being THz non-ionizing radiations, a moderate exposure to them implies minor long term risks to the molecular stability of the historical artifact and humans. Finally, recent developments of THz technology have allowed the commercialization of compact, flexible and portable systems. One of them is the Fiber-Coupled Terahertz Time Domain System (FICO) developed by Z-Omega, acquired by the Institute of Electromagnetic Sensing of the Environment (IREA) in 2013. This system works in the range from 60GHz to 3THz with a waveform acquisition speed up to 500Hz, it is equipped with fiber optic coupled transmitting and receiving probes and, few months ago, has been potentiated by means of an automatic positioning system enabling to scan a 150mm x 150mm area. In the frame of the IREA research activities regarding cultural heritage, the FICO system is currently adopted to perform both spectroscopy and imaging, which are the two kind of analysis wherein THz technology can be profitably explored [3]. In particular, THz spectroscopy is used to distinguish different artists materials by exploiting their peculiar fingerprint in the absorption

  15. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    SciTech Connect

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; Andersen, Niels H.; Li, Jiying; Le, Manh Duc; Laver, Mark; Niedermayer, Christof; Klemke, Bastian; Lefmann, Kim; Vaknin, David

    2015-07-06

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we show that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.

  16. Frequency-specific coupling between trial-to-trial fluctuations of neural responses and response-time variability.

    PubMed

    Adamo, Nicoletta; Baumeister, Sarah; Hohmann, Sarah; Wolf, Isabella; Holz, Nathalie; Boecker, Regina; Laucht, Manfred; Banaschewski, Tobias; Brandeis, Daniel

    2015-08-01

    We assessed intra-individual variability of response times (RT) and single-trial P3 amplitudes following targets in healthy adults during a Flanker/NO-GO task. RT variability and variability of the neural responses coupled at the faster frequencies examined (0.07-0.17 Hz) at Pz, the target-P3 maxima, despite non-significant associations for overall variability (standard deviation, SD). Frequency-specific patterns of variability in the single-trial P3 may help to understand the neurophysiology of RT variability and its explanatory models of attention allocation deficits beyond intra-individual variability summary indices such as SD. PMID:25724293

  17. Effect of driving frequency on non-linear coupling between ultrasound transducer and target under inspection in Sonic Infrared Imaging

    NASA Astrophysics Data System (ADS)

    Song, Yuyang; Han, Xiaoyan

    2014-09-01

    Sonic Infrared (IR) Imaging, also referred as vibrothermography, is a novel Nondestructive Evaluation (NDE) technology to find cracks through infrared imaging of vibration-induced crack heating. The vibration source plays an important role in the detection of cracks. In this paper, the effect of driving frequency on the ultrasound vibration to the thermal imaging is presented. The research is organized by using different frequency system and coupling materials on the same aluminum bar sample. The analysis is conducted by combination of the vibration waveforms with the IR images and signals. Correlation analysis between the acoustic energy and the thermal energy in the crack is discussed as well.

  18. Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Tserkovnyak, Yaroslav

    2016-07-01

    We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.

  19. Ion-beam sputtering deposition and magnetoelectric properties of layered heterostructures (FM/PZT/FM)n, where FM - Co or Ni78Fe22

    NASA Astrophysics Data System (ADS)

    Stognij, Alexander; Novitskii, Nikolai; Sazanovich, Andrei; Poddubnaya, Nadezhda; Sharko, Sergei; Mikhailov, Vladimir; Nizhankovski, Viktor; Dyakonov, Vladimir; Szymczak, Henryk

    2013-08-01

    Magnetoelectric properties of layered heterostructures (FM/PZT/FM)n (n≤ 3) obtained by ion-beam sputtering deposition of ferromagnetic metal (FM), where FM is the cobalt (Co) or permalloy Ni78Fe22, onto ferroelectric ceramic based on lead zirconate titanate (PZT) have been studied. The polished ferroelectric plates in thickness from 400 to 20 μm were subjected to finished treatment by ion-beam sputtering. After plasma activation they were covered by the ferromagnetic films from 1 to 6 μm in thickness. Enhanced characteristics of these structures were reached by means of both the thickness optimization of ferroelectric and ferromagnetic layers and obtaining of ferromagnetic/ferroelectric interfaces being free from defects and foreign impurities. Assuming on the basis of analysis of elastic stresses in the ferromagnetic film that the magnetoelectric effect forms within ferromagnetic/ferroelectric interface, the structures with 2-3 ferromagnetic layers were obtained. In layered heterostructure (Py/PZT/Py)3, the optimal thickness of ferromagnetic film was 2 μm, and outer and inner ferroelectric layers had 20 μm and 80 μm in thickness, respectively. For such structure the maximal magnetoelectric voltage coefficient of 250 mV/(cm Oe) was reached at a frequency 100 Hz in magnetic field of 0.25 T at room temperature. The structures studied can serve as energy-independent elements detecting the change of magnetic or electric fields in electronic devices based on magnetoelectric effect.

  20. Electrical coupling suppression and transient response improvement for a microgyroscope using ascending frequency drive with a 2-DOF PID controller

    NASA Astrophysics Data System (ADS)

    Cui, J.; Guo, Z. Y.; Yang, Z. C.; Hao, Y. L.; Yan, G. Z.

    2011-09-01

    In this paper, we demonstrate a novel control strategy for the drive mode of a microgyroscope using ascending frequency drive (AFD) with an AGC-2DOF PID controller, which drives a resonator with a modulation signal not at the resonant frequency and senses the vibration signal at the resonant frequency, thus realizing the isolation between the actual mechanical response and electrical coupling signal. This approach holds the following three advantages: (1) it employs the AFD signal instead of the resonant frequency drive signal to excite the gyroscope in the drive direction, suppressing the electrical coupling from the drive electrode to the sense electrode; (2) it can reduce the noise at low frequency and resonant frequency by shifting flicker noise to the high-frequency part; (3) it can effectively improve the performance of the transient response of the closed-loop control with a 2-DOF (degree of freedom) PID controller compared with the conventional 1-DOF PID. The stability condition of the whole loop is investigated by utilizing the averaging and linearization method. The control approach is applied to drive a lateral tuning fork microgyroscope. Test results show good agreement with the theoretical and simulation results. The non-ideal electrical antiresonance peak is removed and the resonant peak height increases by approximately 10 dB over a 400 Hz span with a flicker noise reduction of 30 dB within 100 Hz using AFD. The percent overshoot is reduced from 36.2% (1DOF PID) to 8.95% (2DOF PID, about 75.3% overshoot suppression) with 15.3% improvement in setting time.

  1. Production of high-density capacitively coupled radio-frequency discharge plasma by high-secondary-electron-emission oxide

    SciTech Connect

    Ohtsu, Yasunori; Fujita, Hiroharu

    2004-11-22

    High-density capacitively coupled radio-frequency plasma with electron density n{sub e}>10{sup 10} cm{sup -3} was produced using MgO electrodes with a high secondary-electron-emission coefficient. It was found that in the case of MgO electrodes, both plasma density and optical emission intensity were about one order of magnitude higher than those in the case of Al electrodes.

  2. Enhanced Broadband Vibration Energy Harvesting Using a Multimodal Nonlinear Magnetoelectric Converter

    NASA Astrophysics Data System (ADS)

    Lin, Zhiming; Yang, Jin; Zhao, Jiangxin; Zhao, Nian; Liu, Jun; Wen, Yumei; Li, Ping

    2016-07-01

    In this work, we present a multimodal wideband vibration energy harvester designed to scavenge energy from ambient vibrations over a wide frequency range. The harvester consists of a folded cantilever, three magnetoelectric (ME) transducers, and two magnetic circuits. The folded cantilever enables multi-resonant response formed by bending of each stage, and the nonlinear magnetic forces acting on the folded cantilever beam allow further broadening of the frequency response. We also investigate the effects of the position of the ME transducer on the electrical output in order to achieve optimal performance. The experimental results show that the vibration energy harvester exhibited three resonance peaks in a range of 5 Hz to 30 Hz, a wider working bandwidth of 10.1 Hz, and a maximum average power value of 31.58 μW at an acceleration of 0.6 g (with g = 9.8 m/s2).

  3. Enhanced Broadband Vibration Energy Harvesting Using a Multimodal Nonlinear Magnetoelectric Converter

    NASA Astrophysics Data System (ADS)

    Lin, Zhiming; Yang, Jin; Zhao, Jiangxin; Zhao, Nian; Liu, Jun; Wen, Yumei; Li, Ping

    2016-05-01

    In this work, we present a multimodal wideband vibration energy harvester designed to scavenge energy from ambient vibrations over a wide frequency range. The harvester consists of a folded cantilever, three magnetoelectric (ME) transducers, and two magnetic circuits. The folded cantilever enables multi-resonant response formed by bending of each stage, and the nonlinear magnetic forces acting on the folded cantilever beam allow further broadening of the frequency response. We also investigate the effects of the position of the ME transducer on the electrical output in order to achieve optimal performance. The experimental results show that the vibration energy harvester exhibited three resonance peaks in a range of 5 Hz to 30 Hz, a wider working bandwidth of 10.1 Hz, and a maximum average power value of 31.58 μW at an acceleration of 0.6 g (with g = 9.8 m/s2).

  4. Improved magnetoelectric effect in magnetostrictive/piezoelectric composite with flux concentration effect for sensitive magnetic sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Lu, Caijiang; Xu, Changbao; Xiao, Yingjie; Gui, Junguo; Lin, Chenhui; Xiao, Yong

    2015-04-01

    The magnetoelectric (ME) composite with the flux concentration effect is designed, fabricated, and characterized for detecting weak ac magnetic-field. The high-permeability Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils act as flux concentrators and are bonded at the free ends of traditional ME laminates. With the improved ME responses in the proposed ME composite based on the flux concentration effect, the output sensitivities under zero-biased magnetic field can reach 7 V/Oe and 15.8 mV/Oe under the resonance frequency of 177.36 kHz and the off-resonance frequency of 1 kHz, respectively. The results indicate that the proposed ME composites show promising applications for high-sensitivity self-biased magnetic field sensors and ME transducers.

  5. Tunable coupling between fixed-frequency superconducting transmon qubits, Part II: Implementing a two-qubit XX-90 gate

    NASA Astrophysics Data System (ADS)

    McKay, David C.; Filipp, Stefan; Mezzacapo, Antonio; Magesan, Easwar; Chow, Jerry M.; Gambetta, Jay M.

    In this talk we will present a two-qubit gate implemented in a tunable coupling architecture which consists of a flux-tunable qubit (``coupler'') coupling two fixed-frequency transmons (``qubits''). In this architecture, a resonant SWAP (XX+YY) interaction is generated between the qubits when the coupler is modulated at the qubit frequency difference, typically a few hundred MHz. This interaction has a number of advantages, in particular, it only requires AC flux control and can resonantly address individual qubit pairs. Here we present a protocol which realizes the XX-90 gate based on this interaction. This gate has the specific characteristic that it takes any of the four basis states (| 00 > , | 10 > , | 01 > , | 11 >) to Bell states. We demonstrate gate fidelities greater than 96% characterized by state tomography and randomized benchmarking. Looking forward, this gate is a prime candidate for implementing the surface code because it can couple highly coherent qubits which are spaced far apart in frequency thereby minimizing crosstalk and collisions. This work is supported by ARO under Contract W911NF-14-1-0124.

  6. Energetic electron avalanches and mode transitions in planar inductively coupled radio-frequency driven plasmas operated in oxygen

    SciTech Connect

    Zaka-ul-Islam, M.; Niemi, K.; Gans, T.; O'Connell, D.

    2011-07-25

    Space and phase resolved optical emission spectroscopic measurements reveal that in certain parameter regimes, inductively coupled radio-frequency driven plasmas exhibit three distinct operation modes. At low powers, the plasma operates as an alpha-mode capacitively coupled plasma driven through the dynamics of the plasma boundary sheath potential in front of the antenna. At high powers, the plasma operates in inductive mode sustained through induced electric fields due to the time varying currents and associated magnetic fields from the antenna. At intermediate powers, close to the often observed capacitive to inductive (E-H) transition regime, energetic electron avalanches are identified to play a significant role in plasma sustainment, similar to gamma-mode capacitively coupled plasmas. These energetic electrons traverse the whole plasma gap, potentially influencing plasma surface interactions as exploited in technological applications.

  7. Multisensory representation of frequency across audition and touch: High density electrical mapping reveals early sensory-perceptual coupling

    PubMed Central

    Butler, John S.; Foxe, John J.; Fiebelkorn, Ian C.; Mercier, Manuel; Molholm, Sophie

    2013-01-01

    The frequency of environmental vibrations is sampled by two of the major sensory systems, audition and touch, notwithstanding that these signals are transduced through very different physical media and entirely separate sensory epithelia. Psychophysical studies have shown that manipulating frequency in audition or touch can have a significant cross-sensory impact on perceived frequency in the other sensory system, pointing to intimate links between these senses during computation of frequency. In this regard, the frequency of a vibratory event can be thought of as a multisensory perceptual construct. In turn, electrophysiological studies point to temporally early multisensory interactions that occur in hierarchically early sensory regions where convergent inputs from the auditory and somatosensory systems are to be found. A key question pertains to the level of processing at which the multisensory integration of featural information such as frequency occurs. Do the sensory systems calculate frequency independently before this information is combined, or is this feature calculated in an integrated fashion during pre-attentive sensory processing? The well-characterized mismatch negativity, an electrophysiological response that indexes pre-attentive detection of a change within the context of a regular pattern of stimulation, served as our dependent measure. High-density electrophysiological recordings were made in humans while they were presented with separate blocks of somatosensory, auditory, and audio-somatosensory “standards” and “deviants”, where the deviant differed in frequency. Multisensory effects were identified beginning at ~200ms, with the multisensory MMN significantly different from the sum of the unisensory MMNs. This provides compelling evidence for preattentive coupling between the somatosensory and auditory channels in the cortical representation of frequency. PMID:23115172

  8. Multisensory representation of frequency across audition and touch: high density electrical mapping reveals early sensory-perceptual coupling.

    PubMed

    Butler, John S; Foxe, John J; Fiebelkorn, Ian C; Mercier, Manuel R; Molholm, Sophie

    2012-10-31

    The frequency of environmental vibrations is sampled by two of the major sensory systems, audition and touch, notwithstanding that these signals are transduced through very different physical media and entirely separate sensory epithelia. Psychophysical studies have shown that manipulating frequency in audition or touch can have a significant cross-sensory impact on perceived frequency in the other sensory system, pointing to intimate links between these senses during computation of frequency. In this regard, the frequency of a vibratory event can be thought of as a multisensory perceptual construct. In turn, electrophysiological studies point to temporally early multisensory interactions that occur in hierarchically early sensory regions where convergent inputs from the auditory and somatosensory systems are to be found. A key question pertains to the level of processing at which the multisensory integration of featural information, such as frequency, occurs. Do the sensory systems calculate frequency independently before this information is combined, or is this feature calculated in an integrated fashion during preattentive sensory processing? The well characterized mismatch negativity, an electrophysiological response that indexes preattentive detection of a change within the context of a regular pattern of stimulation, served as our dependent measure. High-density electrophysiological recordings were made in humans while they were presented with separate blocks of somatosensory, auditory, and audio-somatosensory "standards" and "deviants," where the deviant differed in frequency. Multisensory effects were identified beginning at ∼200 ms, with the multisensory mismatch negativity (MMN) significantly different from the sum of the unisensory MMNs. This provides compelling evidence for preattentive coupling between the somatosensory and auditory channels in the cortical representation of frequency. PMID:23115172

  9. Cavity piezomechanical strong coupling and frequency conversion on an aluminum nitride chip

    NASA Astrophysics Data System (ADS)

    Zou, Chang-Ling; Han, Xu; Jiang, Liang; Tang, Hong X.

    2016-07-01

    Schemes to achieve strong coupling between mechanical modes of aluminum nitride microstructures and microwave cavity modes due to the piezoelectric effect are proposed. We show that the strong-coupling regime is feasible for an on-chip aluminum nitride device that is either enclosed by a three-dimensional microwave cavity or integrated with a superconducting coplanar resonator. Combining with optomechanics, the piezomechanical strong coupling permits coherent conversion between microwave and optical modes with high efficiency. Hence, the piezomechanical system will be an efficient transducer for applications in hybrid quantum systems.

  10. Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson's disease.

    PubMed

    Yang, Andrew I; Vanegas, Nora; Lungu, Codrin; Zaghloul, Kareem A

    2014-09-17

    Beta frequency (13-30 Hz) oscillatory activity in the subthalamic nucleus (STN) of Parkinson's disease (PD) has been shown to influence the temporal dynamics of high-frequency oscillations (HFOs; 200-500 Hz) and single neurons, potentially compromising the functional flexibility of the motor circuit. We examined these interactions by simultaneously recording both local field potential and single-unit activity from the basal ganglia of 15 patients with PD during deep brain stimulation (DBS) surgery of the bilateral STN. Phase-amplitude coupling (PAC) in the STN was specific to beta phase and HFO amplitude, and this coupling was strongest at the dorsal STN border. We found higher beta-HFO PAC near DBS lead contacts that were clinically effective compared with the remaining non-effective contacts, indicating that PAC may be predictive of response to STN DBS. Neuronal spiking was locked to the phase of 8-30 Hz oscillations, and the spatial topography of spike-phase locking (SPL) was similar to that of PAC. Comparisons of PAC and SPL showed a lack of spatiotemporal correlations. Beta-coupled HFOs and field-locked neurons had different preferred phase angles and did not co-occur within the same cycle of the modulating oscillation. Our findings provide additional support that beta-HFO PAC may be central to the pathophysiology of PD and suggest that field-locked neurons alone are not sufficient for the emergence of beta-coupled HFOs. PMID:25232117

  11. COUPLING

    DOEpatents

    Hawke, B.C.

    1963-02-26

    This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

  12. Magnetic field directed assembly of superstructures of ferrite-ferroelectric core-shell nanoparticles and studies on magneto-electric interactions

    SciTech Connect

    Srinivasan, G. Sreenivasulu, G.; Benoit, Crystal; Petrov, V. M.; Chavez, F.

    2015-05-07

    Composites of ferromagnetic and ferroelectric are of interest for studies on mechanical strain mediated magneto-electric (ME) interactions and for useful technologies. Here, we report on magnetic-field-assisted-assembly of barium titanate (BTO)-nickel ferrite (NFO) core-shell particles into linear chains and 2D/3D arrays and measurements of ME effects in such assemblies. First, we synthesized the core-shell nano-particles with 50–600 nm BTO and 10–200 nm NFO by chemical self-assembly by coating the ferroic particles with complementary coupling groups and allowing them to self-assemble in the presence of a catalyst via the “click” reaction. The core-shell structure was confirmed with electron microscopy and scanning probe microscopy. We obtained superstructure of the core-shell particles by subjecting them to a magnetic field gradient that exerts an attractive force on the particles and align them toward the regions of high field strengths. At low particle concentration, linear chains were formed and they evolved into 2D and 3D arrays at high particle concentrations. Magnetoelectric characterization on unassembled films and assembled arrays has been performed through measurements of low-frequency ME voltage coefficient (MEVC) by subjecting the sample to a bias magnetic field and an ac magnetic field. The MEVC is higher for field-assembled samples than for unassembled films and is found to be sensitive to field orientation with a higher MEVC for magnetic fields parallel to the array direction than for magnetic fields perpendicular to the array. A maximum MEVC of 20 mV/cm Oe, one of the highest reported for any bulk nanocomposite, is measured across the array thickness. A model is provided for ME coupling in the superstructures of BTO-NFO particulate composites. First, we estimated the MEVC for a free-standing BTO-NFO core-shell particle and then extended the model to include an array of linear chains of the particles. The theoretical estimates are in

  13. Electric control of magnon frequencies and magnetic moment of bismuth ferrite thin films at room temperature

    PubMed Central

    Kumar, Ashok; Scott, J. F.; Katiyar, R. S.

    2011-01-01

    Here, we report the tuning of room-temperature magnon frequencies from 473 GHz to 402 GHz (14%) and magnetic moment from 4 to 18 emu∕cm3 at 100 Oe under the application of external electric fields (E) across interdigital electrodes in BiFeO3 (BFO) thin films. A decrease in magnon frequencies and increase in phonon frequencies were observed with Magnon and phonon Raman intensities are asymmetric with polarity, decreasing with positive E (+E) and increasing with negative E (−E) where polarity is with respect to in-plane polarization P. The magnetoelectric coupling (α) is proved to be linear and a rather isotropic α = 8.5 × 10−12 sm−1. PMID:21901050

  14. Coupled analysis of high and low frequency resonant ultrasound spectroscopy: Application to the detection of defects in ceramic balls

    SciTech Connect

    Deneuville, Francois; Duquennoy, Marc; Ouaftouh, Mohammadi; Jenot, Frederic; Ourak, Mohamed; Desvaux, Sebastien

    2009-05-15

    A coupled analysis of high and low frequency resonant ultrasound spectroscopy of spheroidal modes is presented in this paper. Experimentally, by using an ultrasonic probe for the excitation (piezoelectric transducer) and a heterodyne optic probe for the receiver (interferometer), it was possible to take spectroscopic measurements of spheroidal vibrations over a large frequency range of 100 kHz-45 MHz in a continuous regime. This wide analysis range enabled variations in velocity due to the presence of defects to be differentiated from the inherent characteristics of the balls and consequently, it offers the possibility of detecting cracks independently of production variations. This kind of defect is difficult to detect because the C-shaped surface crack is very small and narrow (500x5 {mu}m{sup 2}), and its depth does not exceed 50 {mu}m. The proposed methodology can excite spheroidal vibrations in the ceramic balls and detect such vibrations over a large frequency range. On the one hand, low frequency resonances are used in order to estimate the elastic coefficients of the balls according to various inspection depths. This method has the advantage of providing highly accurate evaluations of the elastic coefficients over a wide frequency range. On the other hand, high frequency vibrations are considered because they are similar to the surface waves propagating in the surface zone of the ceramic balls and consequently can be used to detect C-crack defects.

  15. Comparison of air-launched and ground-coupled configurations of SFCW GPR in time, frequency and wavelet domain

    NASA Astrophysics Data System (ADS)

    Van De Vijver, Ellen; De Pue, Jan; Cornelis, Wim; Van Meirvenne, Marc

    2015-04-01

    A stepped frequency continuous wave (SFCW) ground penetrating radar (GPR) system produces waveforms consisting of a sequence of sine waves with linearly increasing frequency. By adopting a wide frequency bandwidth, SFCW GPR systems offer an optimal resolution at each achievable measurement depth. Furthermore, these systems anticipate an improved penetration depth and signal-to-noise ratio (SNR) as compared to time-domain impulse GPRs, because energy is focused in one single frequency at a time and the phase and amplitude of the reflected signal is recorded for each discrete frequency step. However, the search for the optimal practical implementation of SFCW GPR technology to fulfil these theoretical advantages is still ongoing. In this study we compare the performance of a SFCW GPR system for air-launched and ground-coupled antenna configurations. The first is represented by a 3d-Radar Geoscope GS3F system operated with a V1213 antenna array. This array contains 7 transmitting and 7 receiving antennae resulting in 13 measurement channels at a spacing of 0.075 m and providing a total scan width of 0.975 m. The ground-coupled configuration is represented by 3d-Radar's latest-generation SFCW system, GeoScope Mk IV, operated with a DXG1212 antenna array. With 6 transmitting and 5 receiving antennae this array provides 12 measurement channels and an effective scan width of 0.9 m. Both systems were tested on several sites representative of various application environments, including a test site with different road specimens (Belgian Road Research Centre) and two test areas in different agricultural fields in Flanders, Belgium. For each test, data acquisition was performed using the full available frequency bandwidth of the systems (50 to 3000 MHz). Other acquisition parameters such as the frequency step and dwell time were varied in different tests. Analyzing the data of the different tests in time, frequency and wavelet domain allows to evaluate different performance

  16. A study of high frequency vibrations due to pyrotechnic shocks in coupled systems

    NASA Astrophysics Data System (ADS)

    Lednik, D.; Pinnington, R. J.

    1991-10-01

    A method of predicting the vibrational response of complex structures to shock inputs is currently being developed. The possibility of using a combination of two approximate approaches is being examined: wave propagation analysis (WPA) and transient statistical energy analysis (TSEA). Some results of a theoretical investigation into the transient power flow between coupled beams are presented. TSEA and WPA predictions seem to be in good agreement with exact results, virtually independent of the coupling strength.

  17. Cr2O3 Films for Magnetoelectric Gate Applications

    NASA Astrophysics Data System (ADS)

    Stuart, Sean; Sachet, Edward; Maria, J. P.; Rowe, J. E. (Jack); Ulrich, Marc C.; Dougherty, Dan

    2014-03-01

    The magnetoelectric properties of Cr2O3 have been extensively studied, including recent reports of a robust electrically switched magnetic surface state. We have identified Cr2O3 as a material whose magnetoelectric properties would enable voltage controlled switching of the exchange interaction with graphene, as in the Field Effect Transistor proposed by Semenov et al. (Appl. Phys. Lett. 91, 153105). We used pulsed laser deposition to grow thin Cr2O3 films directly on HOPG and sapphire. Atomic force microscopy for films grown on HOPG show closely packed Cr2O3 islands, with a smooth surface interrupted by grain boundaries. X-Ray Diffraction shows that the film has a (0001) texture for films grown at 650 deg. C, which is the ideal orientation for magnetoelectric gating. X-Ray photoelectron spectroscopy on incomplete films suggest strong chemical interactions between the graphite and Cr2O3. Films grown on sapphire have improved crystallinity and surface morphology, which allow for measurement of the surface magnetization by magnetic force microscopy after magneto-electric annealing.

  18. Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners.

    PubMed

    Park, Hyojin; Ince, Robin A A; Schyns, Philippe G; Thut, Gregor; Gross, Joachim

    2015-06-15

    Humans show a remarkable ability to understand continuous speech even under adverse listening conditions. This ability critically relies on dynamically updated predictions of incoming sensory information, but exactly how top-down predictions improve speech processing is still unclear. Brain oscillations are a likely mechanism for these top-down predictions [1, 2]. Quasi-rhythmic components in speech are known to entrain low-frequency oscillations in auditory areas [3, 4], and this entrainment increases with intelligibility [5]. We hypothesize that top-down signals from frontal brain areas causally modulate the phase of brain oscillations in auditory cortex. We use magnetoencephalography (MEG) to monitor brain oscillations in 22 participants during continuous speech perception. We characterize prominent spectral components of speech-brain coupling in auditory cortex and use causal connectivity analysis (transfer entropy) to identify the top-down signals driving this coupling more strongly during intelligible speech than during unintelligible speech. We report three main findings. First, frontal and motor cortices significantly modulate the phase of speech-coupled low-frequency oscillations in auditory cortex, and this effect depends on intelligibility of speech. Second, top-down signals are significantly stronger for left auditory cortex than for right auditory cortex. Third, speech-auditory cortex coupling is enhanced as a function of stronger top-down signals. Together, our results suggest that low-frequency brain oscillations play a role in implementing predictive top-down control during continuous speech perception and that top-down control is largely directed at left auditory cortex. This suggests a close relationship between (left-lateralized) speech production areas and the implementation of top-down control in continuous speech perception. PMID:26028433

  19. A scalable, VHF/UHF, capacitively coupled plasma source for large-area applications at high frequencies

    NASA Astrophysics Data System (ADS)

    Ellingboe, Bert; O'Farrell, David; Gaman, Cezar; Green, Fiachra; O'Hara, Neal; Michna, Tomasz

    2009-10-01

    Process results are driving both plasma etch and CVD to higher frequencies; This is incompatible with increases in wafer size to 450mm and beyond. No where is the evidence more clear than in PECVD of amorphous and microcrystalline Silicon for the photo-active layer in thin-film photovoltaic devices. Growth rates for these layers, while maintaining the necessary mechanical and electrical properties, can increase with increasing rf frequency, and in some cases yield superior film properties at the higher deposition rates (P.G. Hugger, etal, MRS 2008). However, in this industry substrate sizes are very large, exceeding 1m characteristic lengths, which puts substantial limits for a conventional plasma diode topology on using frequency as a control vector to increase deposition rate, thus increasing factory through-put and decreasing cost. In this talk we will introduce a novel plasma source topology that enables increased rf frequencies on arbitrary size plasma source without causing wavelength effects. The concept is to segment the powered electrode into discrete tiles; For example as a checkerboard. Adjacent tiles can be powered out of phase with each other. In this way the displacement current coupled by one electrode is balance by and equal and opposite current of the adjacent electrode. Thus zero net current is coupled into the plasma, zero net current is coupled through the sheath above the substrate, and no wavelength effects occur even for substrates large in comparison to the rf wavelength. Highlights of recent results in the operation and application of the plasma source to PECVD of silicon will be presented.

  20. Effects of relationship duration, cohabitation, and marriage on the frequency of intercourse in couples: Findings from German panel data.

    PubMed

    Schröder, Jette; Schmiedeberg, Claudia

    2015-07-01

    Research into the changes in the frequency of sexual intercourse is (with few exceptions) limited to cross-sectional analyses of marital duration. We investigate the frequency of intercourse while taking into account relationship duration as well as the duration of cohabitation and marriage, effects of parenthood, and relationship quality. For the analysis we apply fixed effects regression models using data from the German Family Panel (pairfam), a nationwide randomly sampled German panel survey. Our findings imply that the drop in sex frequency occurs early in the relationship, whereas neither cohabitation nor marriage affects the frequency of intercourse to a significant extent. Sex frequency is reduced during pregnancy and as long as the couple has small children, but becomes revived later on. Relationship quality is found to play a role as well. These results are contrary to the honeymoon effect found in earlier research, but indicate that in times of postponed marriage an analogous effect may be at work in the initial period of the relationship. PMID:26004449

  1. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    NASA Astrophysics Data System (ADS)

    Bora, B.

    2015-10-01

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found to work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage.

  2. Application of coupled analysis methods for prediction of blast-induced dominant vibration frequency

    NASA Astrophysics Data System (ADS)

    Li, Haibo; Li, Xiaofeng; Li, Jianchun; Xia, Xiang; Wang, Xiaowei

    2016-03-01

    Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational analysis and dimensional analysis procedures for prediction of dominant vibration frequency are presented. Six factors are selected from extensive effect factor sequences based on grey relational analysis, and then a novel blast-induced dominant vibration frequency prediction is obtained by dimensional analysis. In addition, the prediction is simplified by sensitivity analysis with 195 experimental blast records. Validation is carried out for the proposed formula based on the site test database of the firstperiod blasting excavation in the Guangdong Lufeng Nuclear Power Plant (GLNPP). The results show the proposed approach has a higher fitting degree and smaller mean error when compared with traditional predictions.

  3. Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy

    DOE PAGESBeta

    Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan; Xiao, Kai; Sumpter, Bobby G.; Meunier, Vincent; Geohegan, David B.

    2016-01-14

    Unique twisted bilayers of MoSe2 with multiple stacking orientations and interlayer couplings in the narrow range of twist angles, 60 ± 3°, are revealed by low-frequency Raman spectroscopy and theoretical analysis. The slight deviation from 60 allows the concomitant presence of patches featuring all three high-symmetry stacking configurations (2H or AA', AB', A'B) in one unique bilayer system. In this case, the periodic arrangement of the patches and their size strongly depend on the twist angle. Ab initio modeling predicts significant changes in frequencies and intensities of low-frequency modes versus stacking and twist angle. Experimentally, the variable stacking and couplingmore » across the interface is revealed by the appearance of two breathing modes corresponding to the mixture of the high-symmetry stacking configurations and unaligned regions of monolayers. Only one breathing mode is observed outside the narrow range of twist angles. This indicates a stacking transition to unaligned monolayers with mismatched atom registry without the in-plane restoring force required to generate a shear mode. As a result, the variable interlayer coupling and spacing in transition metal dichalcogenide bilayers revealed in this study may provide a new platform for optoelectronic applications of these materials.« less

  4. Surface effect on the magnetoelectric response of magnetoelectric layered composite with nanoscale thickness

    NASA Astrophysics Data System (ADS)

    Yu, GuoLiang; Zhang, HuaiWu

    2015-02-01

    A theoretical model is proposed to study the ME effect in the layered ME composite with nanoscale thickness, which taking into account the surface effect. The layered ME composites nano structure is treated as a bulk core plus two surface layers with zero thickness. The influence on the structure overall properties resulted from the surface effect is modeled by a spring force exerting on the boundary of the bulk core. Using the derived equations, the so-called effective Miller-Shenoy coefficient, static and electromechanical resonance (EMR) properties of the nanoscale thickness ME composite for the extensional-bending coupling deformations are analyzed theoretically. At the same time, the effect of the substrate on ME effect is theoretically studied by altering the thickness ratio of the substrate. Numerical results shows the effective properties and the static and EMR properties of the composites are size-dependent, and surface effect have non-ignored effects on the ME effect. Besides, the EMR frequency in nano-thickness composites are expected to occur at very low frequencies compared to nominal dimensional composites. The EMR frequency shows an increase with increasing substrate thickness, and predicts a maximum in the EMR ME coefficient at small but nonvanishing substrate thickness.

  5. Antiferromagnetically Spin Polarized Oxygen Observed in Magnetoelectric TbMn2O5

    NASA Astrophysics Data System (ADS)

    Beale, T. A. W.; Wilkins, S. B.; Johnson, R. D.; Bland, S. R.; Joly, Y.; Forrest, T. R.; McMorrow, D. F.; Yakhou, F.; Prabhakaran, D.; Boothroyd, A. T.; Hatton, P. D.

    2010-08-01

    We report the direct measurement of antiferromagnetic spin polarization at the oxygen sites in the multiferroic TbMn2O5, through resonant soft x-ray magnetic scattering. This supports recent theoretical models suggesting that the oxygen spin polarization is key to the magnetoelectric coupling mechanism. The spin polarization is observed through a resonantly enhanced diffraction signal at the oxygen K edge at the commensurate antiferromagnetic wave vector. Using the fdmnes code we have accurately reproduced the experimental data. We have established that the resonance arises through the spin polarization on the oxygen sites hybridized with the square based pyramid Mn3+ ions. Furthermore we have discovered that the position of the Mn3+ ion directly influences the oxygen spin polarization.

  6. Stress-mediated magnetoelectric control of ferromagnetic domain wall position in multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Mathurin, Théo; Giordano, Stefano; Dusch, Yannick; Tiercelin, Nicolas; Pernod, Philippe; Preobrazhensky, Vladimir

    2016-02-01

    The motion of a ferromagnetic domain wall in nanodevices is usually induced by means of external magnetic fields or polarized currents. Here, we demonstrate the possibility to reversibly control the position of a Néel domain wall in a ferromagnetic nanostripe through a uniform mechanical stress. The latter is generated by an electro-active substrate combined with the nanostripe in a multiferroic heterostructure. We develop a model describing the magnetization distribution in the ferromagnetic material, properly taking into account the magnetoelectric coupling. Through its numerical implementation, we obtain the relationship between the electric field applied to the piezoelectric substrate and the position of the magnetic domain wall in the nanostripe. As an example, we analyze a structure composed of a PMN-PT substrate and a TbCo2/FeCo composite nanostripe.

  7. Colossal magnetodielectric effect and spin flop in magnetoelectric Co4Nb2O9 crystal

    NASA Astrophysics Data System (ADS)

    Yin, L. H.; Zou, Y. M.; Yang, J.; Dai, J. M.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2016-07-01

    We have investigated the detailed magnetic, magnetoelectric (ME), magnetodielectric (MD) and thermal expansion properties in Co4Nb2O9 crystal. A magnetic-field-induced spin flop was observed below antiferromagnetic (AFM) transition temperature TN. Dielectric constant at applied magnetic field nearly diverges around the AFM transition, giving rise to a colossal MD effect as high as ˜138% around TN. Theoretical analysis of the ME and MD data revealed a major contribution of critical spin fluctuation to the colossal MD effect in Co4Nb2O9. These results suggest that linear ME materials with large ME coupling might be potentially used to realize large MD effect for future application.

  8. Magnetoelectric effects at the interfaces between nonmagnetic perovskites: Ab initio prediction

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Lin, Chen-Sheng; Chen, Jin-Feng; Hu, Lei; Cheng, Wen-Dan

    2014-01-01

    A novel mechanism of magnetoelectric coupling at the KTaO3/BaTiO3 interfaces composed of nonmagnetic ferroelectric insulators is studied by density functional theory methods. We show that holes created by electronic reconstruction concentrate near the interface, which is significantly different from the distribution of holes in the LaAlO3/SrTiO3 model system (Chen H. H. et al., Phys. Rev. B, 79 (2009) 161402(R)). A large concentration of holes induces ferromagnetism at the interface. When ferroelectric polarization reverses, the ratio of the net change in magnetization to the total is about ten percent. This ratio is improved greatly compared with typical Fe/BaTiO3 heterostructures (Duan C. G. et al., Phys. Rev. Lett., 97 (2006) 047201), where the ratio is about one percent. The results provide an opportunity for searching multiferroic materials and offer the possibility to design spintronics devices.

  9. Accurate calculation of vibrational frequencies using explicitly correlated coupled-cluster theory.

    PubMed

    Rauhut, Guntram; Knizia, Gerald; Werner, Hans-Joachim

    2009-02-01

    The recently proposed explicitly correlated CCSD(T)-F12x (x = a,b) approximations [T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007)] are applied to compute equilibrium structures and harmonic as well as anharmonic vibrational frequencies for H(2)O, HCN, CO(2), CH(2)O, H(2)O(2), C(2)H(2), CH(2)NH, C(2)H(2)O, and the trans-isomer of 1,2-C(2)H(2)F(2). Using aug-cc-pVTZ basis sets, the CCSD(T)-F12a equilibrium geometries and harmonic vibrational frequencies are in very close agreement with CCSD(T)/aug-cc-pV5Z values. The anharmonic frequencies are evaluated using vibrational self-consistent field and vibrational configuration interaction methods based on automatically generated potential energy surfaces. The mean absolute deviation of the CCSD(T)-F12a/aug-cc-pVTZ anharmonic frequencies from experimental values amounts to only 4.0 cm(-1). PMID:19206956

  10. Ih Tunes Theta/Gamma Oscillations and Cross-Frequency Coupling In an In Silico CA3 Model

    PubMed Central

    Neymotin, Samuel A.; Hilscher, Markus M.; Moulin, Thiago C.; Skolnick, Yosef; Lazarewicz, Maciej T.; Lytton, William W.

    2013-01-01

    channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4–12 Hz) and gamma (25 Hz) oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via 's ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases. PMID:24204609

  11. The discharge mode transition and O(5p1) production mechanism of pulsed radio frequency capacitively coupled plasma

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Hu, J. T.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Shi, J. J.

    2012-07-01

    The discharge mode transition from uniform plasma across the gas gap to the α mode happens at the rising phase of the pulsed radio frequency capacitively coupled plasma (PRF CCP). This transition is attributed to the fast increasing stochastic heating at the edge of sheath. In the second stage with the stable current and voltage amplitude, the consistency between experimental and numerical spatial-temporal 777 nm emission profile suggests that He* and He2* dominate the production of O(5p1) through dissociation and excitation of O2. Finally, the sterilization efficiency of PRF CCP is found to be higher than that of plasma jet.

  12. Experimental Study of the Momentum Coupling Coefficient with the Pulse Frequency and Ambient Pressure for Air-Breathing Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Tang, Zhiping; Cai, Jian; Gong, Ping; Hu, Xiaojun; Tan, Rongqin; Zheng, Zhijun; Wu, Jin; Lu, Yan

    2006-05-01

    The air-breathing laser propulsion tests are conducted for parabolic models by using a high power TEA-CO2 pulsed laser. It is found the momentum coupling coefficient Cm varies with the pulse repeatable frequency and reaches the maximum near 50Hz. With a multi-use pendulum chamber, the change of Cm at different ambient pressure is measured. The experimental results show that the propulsion efficiency Cm does not decrease below the altitude of 10km, even increases a little bit. The calculated Cm fits the experimental result up to altitude 3km, then, they are separated. One possible reason is the temperature which is constant in the experiments.

  13. Magnetoelectric behavior of carbonyl iron mixed Mn oxide-coated ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahad, Faris B. Abdul; Lee, Shang-Fan; Hung, Dung-Shing; Yao, Yeong-Der; Yang, Ruey-Bin; Lin, Chung-Kwei; Tsay, Chien-Yie

    2010-05-01

    The dielectric and magnetic properties of manganese oxide-coated Fe3O4 nanoparticles (NPs) were measured by the cavity perturbation method at x-band microwave frequencies ranging from 7-12.5 GHz with controlled external magnetic field up to 2.2 kOe at room temperature. Different ratios (5%, 10%, and 20% by weight) of coated NPs were prepared by sol-gel method then mixed with carbonyl iron powder in epoxy matrix. The saturation magnetization is inversely proportional to the NPs ratio in the mixture between 150 and 180 emu/g. The real part of the permittivity decreased with increasing NPs concentration, but the permittivity change by magnetic field increased. The tunability behavior is explained by insulator-ferromagnetic interface magnetoelectricity and the large surface volume ratio for the NPs.

  14. A two-dimensional broadband vibration energy harvester using magnetoelectric transducer

    SciTech Connect

    Yang, Jin Wen, Yumei; Li, Ping; Yue, Xihai; Yu, Qiangmo; Bai, Xiaoling

    2013-12-09

    In this study, a magnetoelectric vibration energy harvester was demonstrated, which aims at addressing the limitations of the existing approaches in single dimensional operation with narrow working bandwidth. A circular cross-section cantilever rod, not a conventional thin cantilever beam, was adopted to extract vibration energy in arbitrary in-plane motion directions. The magnetic interaction not only resulted in a nonlinear motion of the rod with increased frequency bandwidth, but also contributed to a multi-mode motion to exhibit double power peaks. In energy harvesting with in-plane directions, it showed a maximum bandwidth of 4.4 Hz and power of 0.59 mW, with acceleration of 0.6 g (with g = 9.8 m s{sup −2})

  15. Note: high sensitivity self-bias magnetoelectric sensor with two different magnetostrictive materials.

    PubMed

    Chen, Lei; Li, Ping; Wen, Yumei; Zhu, Yong

    2013-06-01

    The self-bias magnetoelectric (ME) sensor is designed, fabricated, and characterized for detecting weak ac magnetic-field. The two different magnetostrictive materials produce the gradient of magnetization, resulting in an internal magnetic field and a strong ME response. At zero-biased dc magnetic field, a low-frequency ME voltage coefficient (dVME∕dHac) of 22.11 mV∕Oe is achieved, which is 17.69 times higher than that of the previous magnets∕0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) sensor. Furthermore, the ME voltage coefficient reaches 2.73 V∕Oe at resonance. The induced ME voltage shows an excellent linear relationship to ac magnetic field when field amplitude varies from ~10(-7) Oe to 1 Oe. PMID:23822388

  16. High-sensitivity dc field magnetometer using nonlinear resonance magnetoelectric effect

    NASA Astrophysics Data System (ADS)

    Burdin, D. A.; Chashin, D. V.; Ekonomov, N. A.; Fetisov, Y. K.; Stashkevich, A. A.

    2016-05-01

    The design and operation principle of dc field magnetometer using nonlinear resonance magnetoelectric effect in a ferromagnetic-piezoelectric structure are described. It is shown that under action of ac pumping magnetic field the structure generates the output voltage containing higher harmonics whose amplitudes depend on the dc magnetic field. Best performance of the device is obtained if the signal of the third harmonics is used for the dc field measurement. The sensitivity can be considerably (by approximately three orders of magnitude) increased if advantage is taken of the acoustic resonance of the structure at this frequency. There exists the optimal pumping field ensuring the highest sensitivity. Further increasing of this field expands the range of measurable dc fields at the expense of deteriorated sensitivity. The magnetometer fabricated on the basis of a planar langatate-Metglas structure had sensitivity up to ~1 V/Oe and allowed detection of the fields as low as ~10-5 Oe.

  17. Electroless Deposition of Nickel on Lead Zirconium Titanate Ceramics: Preparation, Magnetic and Magnetoelectric Properties

    NASA Astrophysics Data System (ADS)

    Bi, K.; Hong, H.; Wu, W.; Wang, Y. G.

    2012-12-01

    The Ni layers with good soft magnetic properties have been successfully electroless deposited on PZT layers. To study the thermodynamics and kinetics of electroless Ni-deposition, the effect of bath parameters such as pH and temperature has been discussed. The structural, magnetic and magnetostrictive properties of Ni layers deposited at various pH and temperature are characterized by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and standard strain-gauge technique. The grain size, deposition rate, magnetic properties and magnetostrictive properties of Ni layers and magnetoelectric effect of Ni/PZT/Ni trilayers depend strongly on the thermodynamics and kinetics of electroless deposition processes. A maximum ME voltage coefficient of αE,31 = 5.8 V cm-1 Oe-1 is obtained at a frequency of about 101 kHz. These trilayers exhibit a promising potential in actuators, transducers and sensors.

  18. FEM Modeling of a Magnetoelectric Transducer for Autonomous Micro Sensors in Medical Application

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Talleb, Hakeim; Gensbittel, Aurélie; Ren, Zhuoxiang

    2015-11-01

    In the context of wireless and autonomous sensors, this paper presents the multiphysics modeling of an energy transducer based on magnetoelectric (ME) composite for biomedical applications. The study considers the power requirement of an implanted sensor, the communication distance, the size limit of the device for minimal invasive insertion as well as the electromagnetic exposure restriction of the human body. To minimize the electromagnetic absorption by the human body, the energy source is provided by an external reader emitting low frequency magnetic field. The modeling is carried out with the finite element method by solving simultaneously the multiple physics problems including the electric load of the conditioning circuit. The simulation results show that with the T-L mode of a trilayer laminated ME composite, the transducer can deliver the required energy in respecting different constraints.

  19. Quantum frequency conversion and strong coupling of photonic modes using four-wave mixing in integrated microresonators

    NASA Astrophysics Data System (ADS)

    Vernon, Z.; Liscidini, M.; Sipe, J. E.

    2016-08-01

    Single-photon-level quantum frequency conversion has recently been demonstrated using silicon nitride microring resonators. The resonance enhancement offered by such systems enables high-efficiency translation of quantum states of light across wide frequency ranges at subwatt pump powers. We present a detailed theoretical analysis of the conversion dynamics in these systems and show that they are capable of converting single- and multiphoton quantum states. Analytic formulas for the conversion efficiency, spectral conversion probability density, and pump-power requirements are derived which are in good agreement with previous theoretical and experimental results. We show that with only modest improvement to the state of the art, efficiencies exceeding 95% are achievable using less than 100 mW of pump power. At the critical driving strength that yields maximum conversion efficiency, the spectral conversion probability density is shown to exhibit a flat-topped peak, indicating a range of insensitivity to the spectrum of a single-photon input. Two alternate theoretical approaches are presented to study the conversion dynamics: a dressed-mode approach that yields a better intuitive picture of the conversion process, and a study of the temporal dynamics of the participating modes in the resonator, which uncovers a regime of Rabi-like coherent oscillations of single photons between two different frequency modes. This oscillatory regime arises from the strong coupling of distinct frequency modes mediated by coherent pumps.

  20. Modulations of the plasma uniformity by low frequency sources in a large-area dual frequency inductively coupled plasma based on fluid simulations

    SciTech Connect

    Sun, Xiao-Yan; Zhang, Yu-Ru; Li, Xue-Chun; Wang, You-Nian

    2015-05-15

    As the wafer size increases, dual frequency (DF) inductively coupled plasma (ICP) sources have been proposed as an effective method to achieve large-area uniform plasma processing. A two-dimensional (2D) self-consistent fluid model, combined with an electromagnetic module, has been employed to investigate the influence of the low frequency (LF) source on the plasma radial uniformity in an argon DF discharge. When the DF antenna current is fixed at 10 A, the bulk plasma density decreases significantly with the LF due to the less efficient heating, and the best radial uniformity is obtained at 3.39 MHz. As the LF decreases to 2.26 MHz, the plasma density is characterized by an edge-high profile, and meanwhile the maximum of the electron temperature appears below the outer two-turn coil. Moreover, the axial ion flux at 3.39 MHz is rather uniform in the center region except at the radial edge of the substrate, where a higher ion flux is observed. When the inner five-turn coil frequency is fixed at 2.26 MHz, the plasma density profiles shift from edge-high over uniform to center-high as the LF coil current increases from 6 A to 18 A, and the best plasma uniformity is obtained at 14 A. In addition, the maximum of the electron temperature becomes lower with a second peak appears at the radial position of r = 9 cm at 18 A.

  1. Study on high coupling efficiency Er-doped fiber laser for femtosecond optical frequency comb

    NASA Astrophysics Data System (ADS)

    Pang, Lihui; Liu, Wenjun; Han, Hainian; Wei, Zhiyi

    2016-09-01

    The femtosecond laser is crucial to the operation of the femtosecond optical frequency comb. In this paper, a passively mode-locked erbium-doped fiber laser is presented with 91.4 fs pulse width and 100.8 MHz repetition rate, making use of the nonlinear polarized evolution effect. Using a 976 nm pump laser diode, the average output power is 16 mW from the coupler and 27 mW from the polarization beam splitter at the pump power of 700 mW. The proposed fiber laser can offer excellent temporal purity in generated pulses with high power, and provide a robust source for fiber-based frequency combs and supercontinuum generation well suited for industrial applications.

  2. Kinetic interpretation of resonance phenomena in low pressure capacitively coupled radio frequency plasmas

    NASA Astrophysics Data System (ADS)

    Wilczek, Sebastian; Trieschmann, Jan; Eremin, Denis; Brinkmann, Ralf Peter; Schulze, Julian; Schuengel, Edmund; Derzsi, Aranka; Korolov, Ihor; Hartmann, Peter; Donkó, Zoltán; Mussenbrock, Thomas

    2016-06-01

    Low pressure capacitive radio frequency (RF) plasmas are often described by equivalent circuit models based on fluid approaches that predict the self-excitation of resonances, e.g., high frequency oscillations of the total current in asymmetric discharges, but do not provide a kinetic interpretation of these effects. In fact, they leave important questions open: How is current continuity ensured in the presence of energetic electron beams generated by the expanding sheaths that lead to a local enhancement of the conduction current propagating through the bulk? How do the beam electrons interact with cold bulk electrons? What is the kinetic origin of resonance phenomena? Based on kinetic simulations, we find that the energetic beam electrons interact with cold bulk electrons (modulated on a timescale of the inverse local electron plasma frequency) via a time dependent electric field outside the sheaths. This electric field is caused by the electron beam itself, which leaves behind a positive space charge, that attracts cold bulk electrons towards the expanding sheath. The resulting displacement current ensures current continuity by locally compensating the enhancement of the conduction current. The backflow of cold electrons and their interaction with the nonlinear plasma sheath cause the generation of multiple electron beams during one phase of sheath expansion and contribute to a strongly non-sinusoidal RF current. These kinetic mechanisms are the basis for a fundamental understanding of the electron power absorption dynamics and resonance phenomena in such plasmas, which are found to occur in discharges of different symmetries including perfectly symmetric plasmas.

  3. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  4. Deposition Of Materials Using A Simple Planar Coil Radio Frequency Inductively Coupled Plasma System

    SciTech Connect

    Ng, K. H.; Wong, C. S.; Yap, S. L.; Gan, S. N.

    2009-07-07

    A planar coil RF inductively coupled plasma (PC-RFICP) systems is set up for the purpose of thin film deposition. The system is powered by a 13.56 MHz, 550 W, 50 OMEGA RF generator. The RF power is transferred to the plasma via a planar induction coil. The impedance matching unit consists of an air core step-down transformer and a tunable vacuum capacitor. This system is used for the plasma enhanced chemical vapor deposition (PECVD) of diamond-like carbon (DLC) film on silicon substrate, and hydrogenated amorphous carbon (a-C:H) film.

  5. Non-linear response of coupled soil-pile-structure system under sinusoidal excitations with various frequencies

    NASA Astrophysics Data System (ADS)

    Hussien, Mahmoud N.; Tobita, Tetsuo; Iai, Susumu

    The non-linear response of coupled soil-pile-structure systems to seismic loading is parametrically studied in the frequency domain using two-dimensional (2D) finite elements (FE). The soil-pile interaction in three dimensions (3D) is idealized in the 2D type using soil-pile interaction springs with non-linear hysteretic load displacement relationships. The system under investigation comprises of a single degree of freedom structure supported by an end-bearing single pile founded in a homogenous sand layer over rigid rock. Comparisons with established results from the literature suggest that the adopted FE model reasonably captures the essential features of the seismic response of the coupled soil-pile-structure system. Numerical results demonstrate the strong influence on the effective natural period of the foundation properties. The effect of non-linear soil behavior and soil profile as well as the frequency content of excitation on both kinematic and inertial interactions is illustrated. The relative contributions of kinematic and inertial interaction to the development of dynamic pile bending are clarified.

  6. Experimental Observation and Computational Analysis of Striations in Electronegative Capacitively Coupled Radio-Frequency Plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Xin; Schüngel, Edmund; Korolov, Ihor; Donkó, Zoltán; Wang, You-Nian; Schulze, Julian

    2016-06-01

    Self-organized spatial structures in the light emission from the ion-ion capacitive rf plasma of a strongly electronegative gas (CF4 ) are observed experimentally for the first time. Their formation is analyzed and understood based on particle-based kinetic simulations. These "striations" are found to be generated by the resonance between the driving radio frequency and the eigenfrequency of the ion-ion plasma (derived from an analytical model) that establishes a modulation of the electric field, the ion densities, as well as the energy gain and loss processes of electrons in the plasma. The growth of the instability is followed by the numerical simulations.

  7. Analysis of the acoustoelectric behavior of microwave frequency, temperature-compensated AlN-based multilayer coupling configurations

    SciTech Connect

    Caliendo, Cinzia

    2008-11-15

    Piezoelectric AlN films, 1.3-6.2 {mu}m thick, have been grown on bare and metallized Al{sub 2}O{sub 3}(0001) substrates by reactive radio-frequency-sputtering technique at 180 deg. C. The films were uniform, stress-free, highly c-axis oriented normal to the surface, and extremely adhesive to the substrates. Surface acoustic wave (SAW) delay lines, showing harmonic modes with operating frequencies up to about 2.44 GHz, were obtained just using conventional optical lithography at 7.5 {mu}m linewidth resolution. Four interdigital transducer (IDT)/counter electrode configurations were obtained locating the IDTs either on the AlN free surface or at the Al{sub 2}O{sub 3}/AlN interface, with and without an Al thin metal film opposite the IDTs. The temperature induced shift of the fundamental and harmonic operating frequencies of the four configurations was measured at different temperatures in the range from -25 to 70 deg. C. The first order temperature coefficient of delay (TCD) of the four structures was experimentally evaluated for different film thickness values and for SAWs propagating along and normal the Al{sub 2}O{sub 3} a-axis. Eight AlN thicknesses, i.e., the temperature-compensated points (TCPs), were experimentally estimated at which the TCD is equal to 0 ppm/deg. C. These TCPs were found to be in good agreement with those theoretically evaluated. The SAW propagation along the four coupling structures was investigated in terms of phase and group velocity, electromechanical coupling coefficient, electrical potential, and IDT capacitance and radiation resistance for different film thickness values and SAW propagation directions. The numerical simulation of the mechanical and electrical behaviors of the coupling structures showed how the electroacoustic transduction efficiency, the IDT directivity, and bandwidth can benefit from having different electrical boundary conditions. The obtained results confirm the AlN feasibility to the implementation of SAW devices

  8. Coupled molecular and cantilever dynamics model for frequency-modulated atomic force microscopy

    PubMed Central

    Klocke, Michael

    2016-01-01

    Summary A molecular dynamics model is presented, which adds harmonic potentials to the atomic interactions to mimic the elastic properties of an AFM cantilever. It gives new insight into the correlation between the experimentally monitored frequency shift and cantilever damping due to the interaction between tip atoms and scanned surface. Applying the model to ionic crystals with rock salt structure two damping mechanisms are investigated, which occur separately or simultaneously depending on the tip position. These mechanisms are adhesion hysteresis on the one hand and lateral excitations of the cantilever on the other. We find that the short range Lennard-Jones part of the atomic interaction alone is sufficient for changing the predominant mechanism. When the long range ionic interaction is switched off, the two damping mechanisms occur with a completely different pattern, which is explained by the energy landscape for the apex atom of the tip. In this case the adhesion hysteresis is always associated with a distinct lateral displacement of the tip. It is shown how this may lead to a systematic shift between the periodic patterns obtained from the frequency and from the damping signal, respectively. PMID:27335760

  9. Coupled molecular and cantilever dynamics model for frequency-modulated atomic force microscopy.

    PubMed

    Klocke, Michael; Wolf, Dietrich E

    2016-01-01

    A molecular dynamics model is presented, which adds harmonic potentials to the atomic interactions to mimic the elastic properties of an AFM cantilever. It gives new insight into the correlation between the experimentally monitored frequency shift and cantilever damping due to the interaction between tip atoms and scanned surface. Applying the model to ionic crystals with rock salt structure two damping mechanisms are investigated, which occur separately or simultaneously depending on the tip position. These mechanisms are adhesion hysteresis on the one hand and lateral excitations of the cantilever on the other. We find that the short range Lennard-Jones part of the atomic interaction alone is sufficient for changing the predominant mechanism. When the long range ionic interaction is switched off, the two damping mechanisms occur with a completely different pattern, which is explained by the energy landscape for the apex atom of the tip. In this case the adhesion hysteresis is always associated with a distinct lateral displacement of the tip. It is shown how this may lead to a systematic shift between the periodic patterns obtained from the frequency and from the damping signal, respectively. PMID:27335760

  10. Magnetoelectric effect in functionalized few-layer graphene

    NASA Astrophysics Data System (ADS)

    Santos, Elton J. G.

    2013-04-01

    We show that the spin moment induced by sp3-type defects created by different covalent functionalizations on a few-layer graphene structure can be controlled by an external electric field. Based on ab initio density functional calculations, including van der Waals interactions, we find that this effect has a dependence on the number of stacked layers and concentration of point defects, but the interplay of both with the electric field drives the system to a half-metallic state. The calculated magnetoelectric coefficient α has a value comparable to those found for ferromagnetic thin films (e.g., Fe, Co, Ni) and magnetoelectric surfaces (e.g., CrO2). The value of α also agrees with the universal value predicted for ferromagnetic half-metals and also points to a novel route to induce half-metallicity in graphene using surface decoration.

  11. Experimental and numerical investigations of electron density in low-pressure dual-frequency capacitively coupled oxygen discharges

    SciTech Connect

    Liu, Jia; Wen, De-Qi; Liu, Yong-Xin; Gao, Fei; Lu, Wen-Qi; Wang, You-Nian

    2013-11-15

    The electron density is measured in low-pressure dual-frequency (2/60 MHz) capacitively coupled oxygen discharges by utilizing a floating hairpin probe. The dependence of electron density at the discharge center on the high frequency (HF) power, low frequency (LF) power, and gas pressure are investigated in detail. A (1D) particle-in-cell/Monte Carlo method is developed to calculate the time-averaged electron density at the discharge center and the simulation results are compared with the experimental ones, and general agreements are achieved. With increasing HF power, the electron density linearly increases. The electron density exhibits different changes with the LF power at different HF powers. At low HF powers (e.g., 30 W in our experiment), the electron density increases with increasing LF power while the electron density decreases with increasing LF power at relatively high HF powers (e.g., 120 W in our experiment). With increasing gas pressure the electron density first increases rapidly to reach a maximum value and then decreases slowly due to the combined effect of the production process by the ionization and the loss processes including the surface and volume losses.

  12. Support vector machines using EEG features of cross-frequency coupling can predict treatment outcome in Mecp2-deficient mice.

    PubMed

    Colic, Sinisa; Wither, Robert G; Min Lang; Zhang Liang; Eubanks, James H; Bardakjian, Berj L

    2015-08-01

    Anti-convulsive drug treatments of epilepsy typically produce varied outcomes from one patient to the next, often necessitating patients to go through several anticonvulsive drug trials until an appropriate treatment is found. The focus of this study is to predict treatment outcome using a priori electroencephalogram (EEG) features for a rare genetic model of epilepsy seen in patients with Rett Syndrome. Previous work on Mecp2-deficient mice, exhibiting the symptoms of Rett syndrome, have revealed EEG-based biomarkers that track the pathology well. Specifically the presence of cross-frequency coupling of the delta-like (3-6 Hz) frequency range phase with the fast ripple (400 - 600 Hz) frequency range amplitude in long duration discharges was found to track seizure pathology. Support Vector Machines (SVM) were trained with features generated from phase-amplitude comodulograms and tested on (n=6) Mecp2-deficient mice to predict treatment outcome to Midazolam, a commonly used anti-convulsive drug. Using SVMs it was shown that it is possible to generate a likelihood score to predict treatment outcomes on all of the animal subjects. Identifying the most appropriate treatment a priori would potentially lead to improved treatment outcomes. PMID:26737563

  13. The theoretical ultimate magnetoelectric coefficients of magnetoelectric composites by optimization design

    SciTech Connect

    Wang, H.-L.; Liu, B.

    2014-03-21

    This paper investigates what is the largest magnetoelectric (ME) coefficient of ME composites, and how to realize it. From the standpoint of energy conservation, a theoretical analysis is carried out on an imaginary lever structure consisting of a magnetostrictive phase, a piezoelectric phase, and a rigid lever. This structure is a generalization of various composite layouts for optimization on ME effect. The predicted theoretical ultimate ME coefficient plays a similar role as the efficiency of ideal heat engine in thermodynamics, and is used to evaluate the existing typical ME layouts, such as the parallel sandwiched layout and the serial layout. These two typical layouts exhibit ME coefficient much lower than the theoretical largest values, because in the general analysis the stress amplification ratio and the volume ratio can be optimized independently and freely, but in typical layouts they are dependent or fixed. To overcome this shortcoming and achieve the theoretical largest ME coefficient, a new design is presented. In addition, it is found that the most commonly used electric field ME coefficient can be designed to be infinitely large. We doubt the validity of this coefficient as a reasonable ME effect index and consider three more ME coefficients, namely the electric charge ME coefficient, the voltage ME coefficient, and the static electric energy ME coefficient. We note that the theoretical ultimate value of the static electric energy ME coefficient is finite and might be a more proper measure of ME effect.

  14. The theoretical ultimate magnetoelectric coefficients of magnetoelectric composites by optimization design

    NASA Astrophysics Data System (ADS)

    Wang, H.-L.; Liu, B.

    2014-03-01

    This paper investigates what is the largest magnetoelectric (ME) coefficient of ME composites, and how to realize it. From the standpoint of energy conservation, a theoretical analysis is carried out on an imaginary lever structure consisting of a magnetostrictive phase, a piezoelectric phase, and a rigid lever. This structure is a generalization of various composite layouts for optimization on ME effect. The predicted theoretical ultimate ME coefficient plays a similar role as the efficiency of ideal heat engine in thermodynamics, and is used to evaluate the existing typical ME layouts, such as the parallel sandwiched layout and the serial layout. These two typical layouts exhibit ME coefficient much lower than the theoretical largest values, because in the general analysis the stress amplification ratio and the volume ratio can be optimized independently and freely, but in typical layouts they are dependent or fixed. To overcome this shortcoming and achieve the theoretical largest ME coefficient, a new design is presented. In addition, it is found that the most commonly used electric field ME coefficient can be designed to be infinitely large. We doubt the validity of this coefficient as a reasonable ME effect index and consider three more ME coefficients, namely the electric charge ME coefficient, the voltage ME coefficient, and the static electric energy ME coefficient. We note that the theoretical ultimate value of the static electric energy ME coefficient is finite and might be a more proper measure of ME effect.

  15. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, Chin-Chi; Haselton, Halsey H.

    1994-01-01

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.

  16. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, C.C.; Haselton, H.H.

    1994-03-08

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

  17. Magnetoelectric Effects and Related Phenomena in Spin-spiral Hexaferrites

    NASA Astrophysics Data System (ADS)

    Kimura, Tsuyoshi

    2012-02-01

    Among various multiferroics, extensive studies of ferroelectrics originating from magnetic orders, i.e., magnetically-induced ferroelectrics in which the inversion simmetry breaking and resultant ferroelectricity are induced by complex magnetic orders, have been triggered almost a decade ago by the discovery of multiferroic nature in a perovskite-type rare-earh manganites TbMnO3. The magnetically-induced ferroelectrics often show giant magnetoelectric effects, remarkable changes in electric polarization in response to a magnetic field, since the origin of their ferroelectricity is driven by magnetism which sensitively responds to an applied magnetic field. Though a large number of new magnetically-induced ferroelectrics have been reported in the past decade, so far there has been no practical application employing the magnetoelectric effect of the magnetically-induced ferroelectrics. This is partly because none of the existing magnetically-induced ferroelectrics have combined large and robust electric and magnetic polarizations at room temperature until quite recently. The situation is changed by the discoveries of magnetoelectricity in hexagonal ferrites (hexaferrites) with spin-spiral structures.ootnotetextT. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005).^,ootnotetextY. Kitagawa et al., Nature Mater. 9, 797 (2010).^,ootnotetextK. Okumura et al., Appl. Phys. Lett. 98, 212504 (2011). In this presentation, I show our recent studies on magnetoelectric effects and related phenomena in the new series of magnetically-induced ferroelectrics which are promising candidates for multiferroics operating at room temperature and low fields. This work has been done in collaboration with Y. Hiraoka, T. Ishikura, K. Okumura, Y. Kitagawa, H. Nakamura, Y. Wakabayashi, M. Soda, T. Asaka, and Y. Tanaka.

  18. Flux distraction effect on magnetoelectric laminate sensors and gradiometer

    NASA Astrophysics Data System (ADS)

    Shen, Ying; Gao, Junqi; Wang, Yaojin; Hasanyan, Davresh; Finkel, Peter; Li, Jiefang; Viehland, D.

    2013-10-01

    A magnetic flux distraction effect caused by a nearby metallic material was investigated for Metglas/Pb(Mg1/3Nb2/3)O3-PbTiO3 laminated magnetoelectric (ME) sensors. Using flux distraction, a ME sensor can perform an accurate search for metallic targets of different dimensions at various distances. Detection results and simulations were in good agreement. The findings demonstrate an effective means to employ stationary ME sensors and gradiometers for magnetic search applications.

  19. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    SciTech Connect

    Bora, B.

    2015-10-15

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found to work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage.

  20. Occurrence of magnetoelectric effect correlated to the Dy order in Dy2NiMnO6 double perovskite

    NASA Astrophysics Data System (ADS)

    Masud, Md G.; Dey, K.; Ghosh, A.; Majumdar, S.; Giri, S.

    2015-08-01

    Magnetic, dielectric, and ac conductivity as well as room temperature structural and Raman studies are performed on double perovskite Dy2NiMnO6. The crystal structure of the compound adopts monoclinic P21/n space group, where alternate Mn and Ni distorted octahedral are arranged in anti-phase a- a- b+ order in Glazer notation. Magnetization studies show two magnetic transitions around 100 K and 20 K which are related to the ordering of transition and rare earth cations moment, respectively. Temperature dependent dielectric permittivity shows Havriliak-Negami type thermally activated dielectric relaxation. The ac conductivity at different temperature is found to follow Jonscher power law behavior. Time-temperature scaling of the conductivity spectra reveals that the charge transport dynamics is independent of temperature. Intriguingly, an anomaly in the dielectric constant is observed close to the order of Dy moment which indicates intrinsic magnetoelectric coupling. The hybridization between Dy and Ni/Mn is suggested to be correlated with the magnetoelectric coupling.