Science.gov

Sample records for frequency reactive magnetron

  1. Facing-target mid-frequency magnetron reactive sputtered hafnium oxide film: Morphology and electrical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Jun; Wang, You-Nian; Choi, Chi Kyu; Zhou, Da-Yu

    2016-03-01

    Amorphous hafnium dioxide (HfO2) film was prepared on Si (100) by facing-target mid-frequency reactive magnetron sputtering under different oxygen/argon gas ratio at room temperature with high purity Hf target. 3D surface profiler results showed that the deposition rates of HfO2 thin film under different O2/Ar gas ratio remain unchanged, indicating that the facing target midfrequency magnetron sputtering system provides effective approach to eliminate target poisoning phenomenon which is generally occurred in reactive sputtering procedure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the gradual reduction of oxygen vacancy concentration and the densification of deposited film structure with the increase of oxygen/argon (O2/Ar) gas flow ratio. Atomic force microscopy (AFM) analysis suggested that the surface of the as-deposited HfO2 thin film tends to be smoother, the root-meansquare roughness (RMS) reduced from 0.876 nm to 0.333 nm while O2/Ar gas flow ratio increased from 1/4 to 1/1. Current-Voltage measurements of MOS capacitor based on Au/HfO2/Si structure indicated that the leakage current density of HfO2 thin films decreased by increasing of oxygen partial pressure, which resulted in the variations of pore size and oxygen vacancy concentration in deposited thin films. Based on the above characterization results the leakage current mechanism for all samples was discussed systematically.

  2. Enhanced deposition of ZnO films by Li doping using radio frequency reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Liang-xian; Liu, Sheng; Li, Cheng-ming; Wang, Yi-chao; Liu, Jin-long; Wei, Jun-jun

    2015-10-01

    Radio frequency (RF) reactive magnetron sputtering was utilized to deposit Li-doped and undoped zinc oxide (ZnO) films on silicon wafers. Various Ar/O2 gas ratios by volume and sputtering powers were selected for each deposition process. The results demonstrate that the enhanced ZnO films are obtained via Li doping. The average deposition rate for doped ZnO films is twice more than that of the undoped films. Both atomic force microscopy and scanning electron microscopy studies indicate that Li doping significantly contributes to the higher degree of crystallinity of wurtzite-ZnO. X-ray diffraction analysis demonstrates that Li doping promotes the (002) preferential orientation in Li-doped ZnO films. However, an increase in the ZnO lattice constant, broadening of the (002) peak and a decrease in the peak integral area are observed in some Li-doped samples, especially as the form of Li2O. This implies that doping with Li expands the crystal structure and thus induces the additional strain in the crystal lattice. The oriented-growth Li-doped ZnO will make significant applications in future surface acoustic wave devices.

  3. Frequency agile relativistic magnetrons

    SciTech Connect

    Levine, J.S.; Harteneck, B.D.; Price, H.D.

    1995-11-01

    The authors are developing a family of frequency agile relativistic magnetrons to continuously cover the bands from 1 to 3 GHz. They have achieved tuning ranges of > 33%. The magnetrons have been operated repetitively in burst mode at rates up to 100 pps for 10 sec. Power is extracted from two resonators, and is in the range of 400--600 MW, fairly flat across the tuning bandwidth. They are using a network of phase shifters and 3-dB hybrids to combine the power into a single arm and to provide a continuously adjustable attenuator.

  4. Development of mid-frequency AC reactive magnetron sputtering for fast deposition of Y2O3 buffer layers

    NASA Astrophysics Data System (ADS)

    Xiong, Jie; Xia, Yudong; Xue, Yan; Zhang, Fei; Guo, Pei; Zhao, Xiaohui; Tao, Bowan

    2014-02-01

    A reel-to-reel magnetron sputtering system with mid-frequency alternating current (AC) power supply was used to deposit double-sided Y2O3 seed layer on biaxially textured Ni-5 at.%W tape for YBa2Cu3O7-δ coated conductors. A reactive sputtering process was carried out using two opposite symmetrical sputtering guns with metallic yttrium targets and water vapor for oxidizing the sputtered metallic atoms. The voltage control mode of the power supply was used and the influence of the cathode voltage and ArH2 pressure were systematically investigated. Subsequently yttrium-stabilized zirconia (YSZ) barrier and CeO2 cap layers were deposited on the Y2O3 buffered substrates in sequence, indicating high quality and uniform double-sided structure and surface morphology of such the architecture.

  5. Microstructures and optical properties of Cu-doped ZnO films prepared by radio frequency reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ma, Ligang; Ma, Shuyi; Chen, Haixia; Ai, Xiaoqian; Huang, Xinli

    2011-09-01

    Pure and Cu-doped ZnO (ZnO:Cu) thin films were deposited on glass substrates using radio frequency (RF) reactive magnetron sputtering. The effect of substrate temperature on the crystallization behavior and optical properties of the ZnO:Cu films have been studied. The crystal structures, surface morphology and optical properties of the films were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer, respectively. The results indicated that ZnO films showed a stronger preferred orientation toward the c-axis and a more uniform grain size after Cu-doping. As for ZnO:Cu films, the full width at half maxima (FWHM) of (0 0 2) diffraction peaks decreased first and then increased, reaching a minimum of about 0.42° at 350 °C and the compressive stress of ZnO:Cu decreased gradually with the increase of substrate temperature. The photoluminescence (PL) spectra measured at room temperature revealed two blue and two green emissions. Intense blue-green luminescence was obtained from the sample deposited at higher substrate temperature. Finally, we discussed the influence of annealing temperature on the structural and optical properties of ZnO:Cu films. The quality of ZnO:Cu film was markedly improved and the intensity of blue peak (∼485 nm) and green peak (∼527 nm) increased noticeably after annealing. The origin of these emissions was discussed.

  6. On reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.

    2016-01-01

    High power impulse magnetron sputtering (HiPIMS) is an ionized physical vapor deposition (IPVD) technique that is particularly promising for reactive sputtering applications. However, there are few issues that have to be resolved before the full potential of this technique can be realized. Here we give an overview of the key experimental findings for the reactive HiPIMS discharge. An increase in the discharge current is commonly observed with increased partial pressure of the reactive gas or decreased repetition pulse frequency. There are somewhat conflicting claims regarding the hysteresis effect in the reactive HiPIMS discharge as some report reduction or elimination of the hysteresis effect while others claim a feedback control is essential. The ion energy distribution of the metal ion and the atomic ion of the reactive gas are similar and extend to very high energies while the ion energy distribution of the working gas and the molecular ion of the reactive gas are similar and are much less energetic.

  7. Growth of (Sr,La)-(Ta,Ti)-O-N perovskite oxide and oxynitride films by radio frequency magnetron sputtering: Influence of the reactive atmosphere on the film structure

    NASA Astrophysics Data System (ADS)

    Le Paven, C.; Le Gendre, L.; Benzerga, R.; Cheviré, F.; Tessier, F.; Jacq, S.; Traoré-Mantion, S.; Sharaiha, A.

    2015-03-01

    In the search for new dielectric and ferroelectric compounds, we were interested in the perovskite (Sr1-xLax)2(Ta1-xTix)2O7 solid solution with ferroelectric end members Sr2Ta2O7 (TCurie=-107 °C) and La2Ti2O7 (TCurie=1461 °C). In order to achieve a Curie temperature close to room temperature, the formulation with x=0.01 was chosen and synthetized as thin films by reactive radio-frequency magnetron sputtering. In oxygen rich plasma, a (Sr0.99La0.01)2(Ta0.99Ti0.01)2O7 film is deposited, characterized by a band-gap Eg=4.75 eV and an (1 1 0) epitaxial growth on (0 0 1)MgO substrate. The use of nitrogen rich plasma allows to synthesize (Sr0.99La0.01)(Ta0.99Ti0.01)O2N oxynitride films, with band gap Eg~2.10 eV and a polycrystalline, textured or epitaxial growth on (0 0 1)MgO substrate. Nitrogen-substoichiometric oxynitride films with larger lattice cells are produced for low dinitrogen percentages in the sputtering plasma.

  8. Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation.

    PubMed

    Kitano, Masaaki; Funatsu, Keisho; Matsuoka, Masaya; Ueshima, Michio; Anpo, Masakazu

    2006-12-21

    Nitrogen-substituted TiO2 (N-TiO2) thin film photocatalysts have been prepared by a radio frequency magnetron sputtering (RF-MS) deposition method using a N2/Ar mixture sputtering gas. The effect of the concentration of substituted nitrogen on the characteristics of the N-TiO2 thin films was investigated by UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses. The absorption band of the N-TiO2 thin film was found to shift smoothly to visible light regions up to 550 nm, its extent depending on the concentration of nitrogen substituted within the TiO2 lattice in a range of 2.0-16.5%. The N-TiO2 thin film photocatalyst with a nitrogen concentration of 6.0% exhibited the highest reactivity for the photocatalytic oxidation of 2-propanol diluted in water even under visible (lambda > or = 450 nm) or solar light irradiation. Moreover, N-TiO2 thin film photocatalysts prepared on conducting glass electrodes showed anodic photocurrents attributed to the photooxidation of water under visible light, its extent depending on wavelengths up to 550 nm. The absorbed photon to current conversion efficiencies reached 25.2% and 22.4% under UV (lambda = 360 nm) and visible light (lambda = 420 nm), respectively. UV-vis and photoelectrochemical investigations also confirmed that these thin films remain thermodynamically and mechanically stable even under heat treatment at 673 K. In addition, XPS and XRD studies revealed that a significantly high substitution of the lattice O atoms of the TiO2 with the N atoms plays a crucial role in the band gap narrowing of the TiO2 thin films, enabling them to absorb and operate under visible light irradiation as a highly reactive, effective photocatalyst. PMID:17165971

  9. Rotating cylindrical magnetron sputtering: Simulation of the reactive process

    SciTech Connect

    Depla, D.; Mahieu, S.; Van Aeken, K.; Leroy, W. P.; Haemers, J.; De Gryse, R.; Li, X. Y.; Bogaerts, A.

    2010-06-15

    A rotating cylindrical magnetron consists of a cylindrical tube, functioning as the cathode, which rotates around a stationary magnet assembly. In stationary mode, the cylindrical magnetron behaves similar to a planar magnetron with respect to the influence of reactive gas addition to the plasma. However, the transition from metallic mode to poisoned mode and vice versa depends on the rotation speed. An existing model has been modified to simulate the influence of target rotation on the well known hysteresis behavior during reactive magnetron sputtering. The model shows that the existing poisoning mechanisms, i.e., chemisorption, direct reactive ion implantation and knock on implantation, are insufficient to describe the poisoning behavior of the rotating target. A better description of the process is only possible by including the deposition of sputtered material on the target.

  10. Effect of Substrate Bias Voltage on the Physical Properties of Zirconium Nitride (ZrN) Films Deposited by Mid Frequency Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Kavitha, A.; Kannan, R.; Loganathan, S.

    2014-05-01

    Present work involves the preparation of Zirconium Nitride thin films on stainless steel (SS) (304L grade) substrate by reactive cylindrical magnetron sputtering method. The X-ray diffraction (XRD) profile of the ZrN thin films prepared with different bias voltage conforms face centered cubic structure with preferred orientation along the (111) plane at lower bias voltage (100 V) and at higher bias voltage (300 V) the preferred orientation shifted to (220) plane. The influences of bias voltage on the thickness and microhardness ZrN thin films have been studied. ZrN thin film sputtered with 300 V bias voltage shows the maximum reflectance of 90% at a wavelength of 1000 nm. The coated substrates have been found to exhibit improved corrosion resistance compared to the SS plate. The root mean square surface roughness and surface morphology were investigated from 3D atomic force microscope (AFM) images and scanning electron microscope (SEM), which indicate smooth and uniform surface pattern without any pin holes.

  11. Phase and Frequency Locked Magnetrons for SRF Sources

    SciTech Connect

    Neubauer, M.; Johnson, R.P.; Popovic, M.; Moretti, A.; /Fermilab

    2009-05-01

    Magnetrons are low-cost highly-efficient microwave sources, but they have several limitations, primarily centered about the phase and frequency stability of their output. When the stability requirements are low, such as for medical accelerators or kitchen ovens, magnetrons are the very efficient power source of choice. But for high energy accelerators, because of the need for frequency and phase stability - proton accelerators need 1-2 degrees source phase stability, and electron accelerators need .1-.2 degrees of phase stability - they have rarely been used. We describe a novel variable frequency cavity technique which will be utilized to phase and frequency lock magnetrons.

  12. The target heating influence on the reactive magnetron sputtering process

    NASA Astrophysics Data System (ADS)

    Bondarenko, A.; Kolomiytsev, A.; Shapovalov, V.

    2016-07-01

    A physicochemical model for the reactive magnetron sputtering of a “hot” target is described in this paper. The system consisting of eight algebraic equations was solved for a tantalum target sputtered in an O2 environment. It was established that the hysteresis effect disappears with the increase of the ion current density.

  13. Lateral variation of target poisoning during reactive magnetron sputtering

    SciTech Connect

    Guettler, D.; Groetzschel, R.; Moeller, W.

    2007-06-25

    The reactive gas incorporation into a Ti sputter target has been investigated using laterally resolving ion beam analysis during dc magnetron deposition of TiN in an Ar/N{sub 2} atmosphere. At sufficiently low reactive gas flow, the nitrogen incorporation exhibits a pronounced lateral variation, with a lower areal density in the target racetrack compared to the target center and edge. The findings are reproduced by model calculations. In the racetrack, the balance of reactive gas injection and sputter erosion is shifted toward erosion. The injection of nitrogen is dominated by combined molecular adsorption and recoil implantation versus direct ion implantation.

  14. Lateral variation of target poisoning during reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Güttler, D.; Grötzschel, R.; Möller, W.

    2007-06-01

    The reactive gas incorporation into a Ti sputter target has been investigated using laterally resolving ion beam analysis during dc magnetron deposition of TiN in an Ar /N2 atmosphere. At sufficiently low reactive gas flow, the nitrogen incorporation exhibits a pronounced lateral variation, with a lower areal density in the target racetrack compared to the target center and edge. The findings are reproduced by model calculations. In the racetrack, the balance of reactive gas injection and sputter erosion is shifted toward erosion. The injection of nitrogen is dominated by combined molecular adsorption and recoil implantation versus direct ion implantation.

  15. Elementary surface processes during reactive magnetron sputtering of chromium

    SciTech Connect

    Monje, Sascha; Corbella, Carles Keudell, Achim von

    2015-10-07

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400–800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O{sub 2} of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidation sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.

  16. Ion-induced oxidation of aluminum during reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kreiter, Oliver; Grosse-Kreul, Simon; Corbella, Carles; von Keudell, Achim

    2013-04-01

    Particle beam experiments were conducted in an ultra-high-vacuum vessel to mimic target poisoning during reactive magnetron sputtering of aluminum. Aluminum targets were exposed to quantified beams of argon ions, oxygen atoms and molecules, and aluminum vapour. The growth and etch rates were measured in situ by means of an Al-coated quartz crystal microbalance. The chemical state of the target surface was monitored in-situ by real-time Fourier transform infrared spectroscopy. The surface processes were modelled through a set of balance equations providing sputter yields and sticking coefficients. The results indicate that the oxygen uptake of the aluminum surface is enhanced by a factor 1 to 2 by knock-on implantation and that the deposition of aluminum is not affected by the oxidation state of the surface.

  17. Highly conducting ZnSe films by reactive magnetron sputtering

    NASA Technical Reports Server (NTRS)

    Nouhi, A.; Stirn, R. J.

    1986-01-01

    This paper presents the results of an effort to deposit high-conductivity ZnSe on glass and conducting SnO2-coated glass substrates by reactive magnetron sputter deposition, using pure metal sputter targets of Zn and dopants such as In, Ga, and Al. Clear yellow ZnSe films were successfully obtained. By using substrate temperatures as low as 150 C, cosputtered dopants, and sputter parameters and H2Se injection rates which maximize the Zn-to-Se ratio in the films, ZnSe bulk resistivities have been lowered by up to seven orders of magnitude, reaching values as low as 20 ohm cm. The most effective dopant to data has been In, cosputtered with Zn in amounts leading to In atomic concentrations as high as 1.4 percent. Atomic-absorption measurements show an average 49.9/48.9 ratio of Zn to Se.

  18. Phase and Frequency Locked Magnetrons for SRF Sources

    SciTech Connect

    Neubauer, Michael; Johnson, Rolland

    2014-09-12

    There is great potential for a magnetron power source that can be controlled both in phase and frequency. Such a power source could revolutionize many particle accelerator systems that require lower capital cost and/or higher power efficiency. Beyond the accelerator community, phase and frequency locked magnetons could improve radar systems around the world and make affordable phased arrays for wireless power transmission for solar powered satellites. This joint project of Muons, Inc., Fermilab, and L-3 CTL was supported by an STTR grant monitored by the Nuclear Physics Office of the DOE Office of Science. The object of the program was to incorporate ferrite materials into the anode of a magnetron and, with appropriate biasing of the ferrites, to maintain frequency lock and to allow for frequency adjustment of the magnetron without mechanical tuners. If successful, this device would have a dual use both as a source for SRF linacs and for military applications where fast tuning of the frequency is a requirement. In order to place the materials in the proper location, several attributes needed to be modeled. First the impact of the magnetron’s magnetic field needed to be shielded from the ferrites so that they were not saturated. And second, the magnetic field required to change the frequency of the magnetron at the ferrites needed to be shielded from the region containing the circulating electrons. ANSYS calculations of the magnetic field were used to optimize both of these parameters. Once the design for these elements was concluded, parts were fabricated and a complete test assembly built to confirm the predictions of the computer models. The ferrite material was also tested to determine its compatibility with magnetron tube processing temperatures. This required a vacuum bake out of the chosen material to determine the cleanliness of the material in terms of outgassing characteristics, and a subsequent room temperature test to verify that the characteristics of

  19. Hysteresis behavior during reactive magnetron sputtering of Al{sub 2}O{sub 3} using a rotating cylindrical magnetron

    SciTech Connect

    Depla, D.; Haemers, J.; Buyle, G.; Gryse, R. de

    2006-07-15

    Rotating cylindrical magnetrons are used intensively on industrial scale. A rotating cylindrical magnetron on laboratory scale makes it possible to study this deposition technique in detail and under well controlled conditions. Therefore, a small scale rotating cylindrical magnetron was designed and used to study the influence of the rotation speed on the hysteresis behavior during reactive magnetron sputtering of aluminum in Ar/O{sub 2} in dc mode. This study reveals that the hysteresis shifts towards lower oxygen flows when the rotation speed of the target is increased, i.e., target poisoning occurs more readily when the rotation speed is increased. The shift is more pronounced for the lower branch of the hysteresis loop than for the upper branch of the hysteresis. This behavior can be understood qualitatively. The results also show that the oxidation mechanism inside the race track is different from the oxidation mechanism outside the race track. Indeed, outside the race track the oxidation mechanism is only defined by chemisorption while inside the race track reactive ion implantation will also influence the oxidation mechanism.

  20. RF Reactive Magnetron Sputter Deposition of Silicon Sub-Oxides

    NASA Astrophysics Data System (ADS)

    van Hattum, E. D.

    2007-01-01

    RF reactive magnetron plasma sputter deposition of silicon sub oxide E.D. van Hattum Department of Physics and Astronomy, Faculty of Sciences, Utrecht University The work described in the thesis has been inspired and stimulated by the use of SiOx layers in the direct inductive printing technology, where the SiOx layer is used as the charge retention layer on the drums for copying and printing devices. The thesis describes investigations of the plasma and of processes taking place on the sputter target and on the SiOx growth surface in the room temperature, RF reactive magnetron plasma sputter deposition technology. The sputtering target consists of silicon and the reactive atmosphere consists of an Ar/O2 mixture. The composition of the grown SiOx layers has been varied between x=0 and x=2 by variation of the O2 partial pressure. The characteristics of the growth process have been related to the nanostructural properties of the grown films. The deposition system enables the characterisation of the plasma (Langmuir probe, energy resolved mass spectrometer) and of the growing film (Elastic Recoil Detection (ERD), Fourier transform infrared absorption spectroscopy) and is connected to a beamline of a 6MV tandem van de Graaff accelerator. Also Rutherford Backscattering Spectrometry and X-ray Photoelectron Spectroscopy have been applied. It is shown how ERD can be used as a real-time in-situ technique. The thesis presents spatially resolved values of the ion density, electron temperature and the quasi-electrostatic potential, determined using a Langmuir probe. The plasma potential has a maximum about 2 cm from the cathode erosion area, and decreases (more than 200 V typically) towards the floating sputter cathode. The potential decreases slightly in the direction towards the grounded growth surface and the positive, mainly Ar+, ions created in the large volume of the plasma closest to the substrate are accelerated towards the growth surface. These ions obtain a few eV of

  1. Current-voltage-time characteristics of the reactive Ar/N{sub 2} high power impulse magnetron sputtering discharge

    SciTech Connect

    Magnus, F.; Sveinsson, O. B.; Olafsson, S.; Gudmundsson, J. T.

    2011-10-15

    The discharge current and voltage waveforms have been measured in a reactive high power impulse magnetron sputtering (HiPIMS) Ar/N{sub 2} discharge with a Ti target for 400 {mu}s long pulses. We observe that the current waveform in the reactive Ar/N{sub 2} HiPIMS discharge is highly dependent on the pulse repetition frequency, unlike the non-reactive Ar discharge. The current is found to increase significantly as the frequency is lowered. This is attributed to an increase in the secondary electron emission yield during the self-sputtering phase, when the nitride forms on the target at low frequencies. In addition, self-sputtering runaway occurs at lower discharge voltages when nitrogen is added to the discharge. This illustrates the crucial role of self-sputtering in the behavior of the reactive HiPIMS discharge.

  2. Electrical and structural properties of zirconia thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hembram, K. P. S. S.; Dutta, Gargi; Waghmare, Umesh V.; Mohan Rao, G.

    2007-10-01

    Thin films of ZrO 2 were prepared by reactive magnetron sputtering. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity and packing density. The root mean square roughness of the sample observed from atomic force microscope is about 5.75 nm which is comparable to the average grain size of the thin film which is about 6 nm obtained from X-ray diffraction. The film annealed at 873 K exhibits an optical band gap of around 4.83 eV and shows +4 oxidation state of zirconium indicating fully oxidized zirconium, whereas higher annealing temperatures lead to oxygen deficiency in the films and this is reflected in their properties. A discontinuity in the imaginary part of the AC conductivity was observed in the frequency range of tens of thousands of Hz, where as, the real part does not show such behavior.

  3. Analysis of Low Frequency Oscillations in Magnetron Injection Guns

    NASA Astrophysics Data System (ADS)

    Pu, Youlei; Luo, Yong; Yan, Ran; Liu, Guo; Jiang, Wei

    2012-02-01

    In our gyro-TWT experiments, low-frequency oscillations (LFOs) had been observed. LFOs is a physical phenomenon usually caused by the electrons trapped between the magnetron injection guns (MIGs) and the interaction region. In this paper, the formation procedure and physical mechanism of LFOs are reported. Available methods including optimizing the magnetic field distribution in the beam compression region and loading bevel cuts on the second anode are involved to capture the trapped electrons, suppress the LFOs and improve the helical electron beam quality. Simulations and experimental results are in good agreement with each other and also reveal the reasonableness of this means. Finally, the influence of current capture ratio on LFOs and the beam quality are studied. With the current capture ratio increasing, the amplitude of LFOs decreases, the pitch factor maintains a constant about 1.2 and we also demonstrate a low transverse velocity spread about 3%.

  4. Study of hysteresis behavior in reactive sputtering of cylindrical magnetron plasma

    NASA Astrophysics Data System (ADS)

    Kakati, H.; M. Borah, S.

    2015-12-01

    In order to make sufficient use of reactive cylindrical magnetron plasma for depositing compound thin films, it is necessary to characterize the hysteresis behavior of the discharge. Cylindrical magnetron plasmas with different targets namely titanium and aluminium are studied in an argon/oxygen and an argon/nitrogen gas environment respectively. The aluminium and titanium emission lines are observed at different flows of reactive gases. The emission intensity is found to decrease with the increase of the reactive gas flow rate. The hysteresis behavior of reactive cylindrical magnetron plasma is studied by determining the variation of discharge voltage with increasing and then reducing the flow rate of reactive gas, while keeping the discharge current constant at 100 mA. Distinct hysteresis is found to be formed for the aluminium target and reactive gas oxygen. For aluminium/nitrogen, titanium/oxygen and titanium/nitrogen, there is also an indication of the formation of hysteresis; however, the characteristics of variation from metallic to reactive mode are different in different cases. The hysteresis behaviors are different for aluminium and titanium targets with the oxygen and nitrogen reactive gases, signifying the difference in reactivity between them. The effects of the argon flow rate and magnetic field on the hysteresis are studied and explained. Project supported by the Department of Science and Technology, Government of India and Council of Scientific and Industrial Research, India.

  5. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    SciTech Connect

    Hänninen, Tuomas Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  6. Observation of a periodic runaway in the reactive Ar/O{sub 2} high power impulse magnetron sputtering discharge

    SciTech Connect

    Shayestehaminzadeh, Seyedmohammad E-mail: shayesteh@mch.rwth-aachen.de; Arnalds, Unnar B.; Magnusson, Rögnvaldur L.; Olafsson, Sveinn

    2015-11-15

    This paper reports the observation of a periodic runaway of plasma to a higher density for the reactive discharge of the target material (Ti) with moderate sputter yield. Variable emission of secondary electrons, for the alternating transition of the target from metal mode to oxide mode, is understood to be the main reason for the runaway occurring periodically. Increasing the pulsing frequency can bring the target back to a metal (or suboxide) mode, and eliminate the periodic transition of the target. Therefore, a pulsing frequency interval is defined for the reactive Ar/O{sub 2} discharge in order to sustain the plasma in a runaway-free mode without exceeding the maximum power that the magnetron can tolerate.

  7. Effects of Substrate Temperature on ZAO Thin Film Prepared by DC Magnetron Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Lu, F.; Zhou, X. G.; Xu, C. H.; Wen, L. S.

    The effects of substrate temperature on the resistivity and transmittance of ZAO thin films prepared by DC magnetron reactive sputtering have been investigated. The properties of the samples have been analyzed through Hall effect, X-ray diffraction and SEM. The results show that carrier concentration, Hall mobility and crystallinity of the films depend obviously on the deposition temperature. The film deposited at the range 200-250°C has lower resistivity and higher transmittance.

  8. Effect of pulse frequency on the ion fluxes during pulsed dc magnetron sputtering

    SciTech Connect

    Rahamathunnisa, M.; Cameron, D. C.

    2009-03-15

    The ion fluxes and energies which impinge on the substrate during the deposition of chromium nitride by asymmetric bipolar pulsed dc reactive magnetron sputtering have been analyzed using energy resolved mass spectrometry. It has been found that there is a remarkable increase in ion flux at higher pulse frequencies and that the peak ion energy is directly related to the positive voltage overshoot of the target voltage. The magnitude of the metal flux depositing on the substrate is consistent with a 'dead time' of {approx}0.7 {mu}s at the start of the on period. The variation of the ion flux with pulse frequency has been explained by a simple model in which the ion density during the on period has a large peak which is slightly delayed from the large negative voltage overshoot which occurs at the start of the on pulse due to increased ionization at that time. This is consistent with the previously observed phenomena in pulsed sputtering.

  9. Gas barrier properties of titanium oxynitride films deposited on polyethylene terephthalate substrates by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, M.-C.; Chang, L.-S.; Lin, H. C.

    2008-03-01

    Titanium oxynitride (TiN xO y) films were deposited on polyethylene terephthalate (PET) substrates by means of a reactive radio frequency (RF) magnetron sputtering system in which the power density and substrate bias were the varied parameters. Experimental results show that the deposited TiN xO y films exhibited an amorphous or a columnar structure with fine crystalline dependent on power density. The deposition rate increases significantly in conjunction as the power density increases from 2 W/cm 2 to 7 W/cm 2. The maximum deposition rate occurs, as the substrate bias is -40 V at a certain power densities chosen in this study. The film's roughness slightly decreases with increasing substrate bias. The TiN xO y films deposited at power densities above 4 W/cm 2 show a steady Ti:N:O ratio of about 1:1:0.8. The water vapor and oxygen transmission rates of the TiN xO y films reach values as low as 0.98 g/m 2-day-atm and 0.60 cm 3/m 2-day-atm which are about 6 and 47 times lower than those of the uncoated PET substrate, respectively. These transmission rates are comparable to those of DLC, carbon-based and Al 2O 3 barrier films. Therefore, TiN xO y films are potential candidates to be used as a gas permeation barrier for PET substrate.

  10. Process stabilization by peak current regulation in reactive high-power impulse magnetron sputtering of hafnium nitride

    NASA Astrophysics Data System (ADS)

    Shimizu, T.; Villamayor, M.; Lundin, D.; Helmersson, U.

    2016-02-01

    A simple and cost effective approach to stabilize the sputtering process in the transition zone during reactive high-power impulse magnetron sputtering (HiPIMS) is proposed. The method is based on real-time monitoring and control of the discharge current waveforms. To stabilize the process conditions at a given set point, a feedback control system was implemented that automatically regulates the pulse frequency, and thereby the average sputtering power, to maintain a constant maximum discharge current. In the present study, the variation of the pulse current waveforms over a wide range of reactive gas flows and pulse frequencies during a reactive HiPIMS process of Hf-N in an Ar-N2 atmosphere illustrates that the discharge current waveform is a an excellent indicator of the process conditions. Activating the reactive HiPIMS peak current regulation, stable process conditions were maintained when varying the N2 flow from 2.1 to 3.5 sccm by an automatic adjustment of the pulse frequency from 600 Hz to 1150 Hz and consequently an increase of the average power from 110 to 270 W. Hf-N films deposited using peak current regulation exhibited a stable stoichiometry, a nearly constant power-normalized deposition rate, and a polycrystalline cubic phase Hf-N with (1 1 1)-preferred orientation over the entire reactive gas flow range investigated. The physical reasons for the change in the current pulse waveform for different process conditions are discussed in some detail.

  11. Theoretical investigation of resonant frequencies of unstrapped magnetron with arbitrary side resonators

    SciTech Connect

    Yue, Song; Zhang, Zhao-chuan; Gao, Dong-ping

    2015-04-15

    In this paper, a sector steps approximation method is proposed to investigate the resonant frequencies of magnetrons with arbitrary side resonators. The arbitrary side resonator is substituted with a series of sector steps, in which the spatial harmonics of electromagnetic field are also considered. By using the method of admittance matching between adjacent steps, as well as field continuity conditions between side resonators and interaction regions, the dispersion equation of magnetron with arbitrary side resonators is derived. Resonant frequencies of magnetrons with five common kinds of side resonators are calculated with sector steps approximation method and computer simulation softwares, in which the results have a good agreement. The relative error is less than 2%, which verifies the validity of sector steps approximation method.

  12. Preparation of DC reactive magnetron sputtered ZnO thin film towards photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Prabhu, M.; Sivanantham, A.; Kannan, P. Karthick; Vishnukanthan, V.; Mayandi, J.

    2013-06-01

    Zinc oxide thin films deposited on glass and p-type silicon (100) substrates by DC reactive magnetron sputtering are reported here. The XRD investigations confirmed that the thin films deposited by this technique have hexagonal wurtzite structure. AFM results present the surface morphology and roughness of the deposited thin films. From the optical absorption spectrum, the band gap of the thin film is found to be ˜ 3.2 eV. The photoluminescence spectrum of the sample has an UV emission peak centered at 407 nm with broad visible emission in the range of 500-580 nm.

  13. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    SciTech Connect

    Vitelaru, Catalin; Lundin, Daniel; Brenning, Nils; Minea, Tiberiu

    2013-09-02

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O{sub 2} gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The μs temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  14. Aluminium nitride piezoelectric thin films reactively deposited in closed field unbalanced magnetron sputtering for elevated temperature 'smart' tribological applications

    NASA Astrophysics Data System (ADS)

    Hasheminiasari, Masood

    "Smart" high temperature piezoelectric aluminum nitride (AlN) thin films were synthesized by reactive magnetron sputtering using DC; pulsed-DC, and deep oscillation modulated pulsed power (DOMPP) systems on variety of substrate materials. Process optimization was performed to obtain highly c-axis texture films with improved piezoelectric response via studying the interplay between process parameters, microstructure and properties. AlN thin films were sputtered with DC and pulsed-DC systems to investigate the effect of various deposition parameters such as reactive gas ratio, working pressure, target power, pulsing frequency, substrate bias, substrate heating and seed layers on the properties and performance of the film device. The c-axis texture, orientation, microstructure, and chemical composition of AlN films were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). A Michelson laser interferometer was designed and built to obtain the converse piezoelectric response of the deposited AlN thin films. Thin films with narrow AlN-(002) rocking curve of 2.5° were obtained with preliminary studies of DOMPP reactive sputtering. In-situ high temperature XRD showed excellent thermal stability and oxidation resistance of AlN films up to 1000 °C. AlN films with optimized processing parameters yielded an inverse piezoelectric coefficient, d33 of 4.9 pm/V close to 90 percent of its theoretical value.

  15. Raman spectroscopy of copper oxide films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Levitskii, V. S.; Shapovalov, V. I.; Komlev, A. E.; Zav'yalov, A. V.; Vit'ko, V. V.; Komlev, A. A.; Shutova, E. S.

    2015-11-01

    Raman spectroscopy has been used to study the influence of partial oxygen pressure during deposition and isothermal treatment on the chemical composition of copper oxide films deposited by reactive dc magnetron sputtering of copper target in a reactive gaseous medium. Three series of films deposited at various partial oxygen pressures (from 0.06 to 0.16 mTorr) possessed different chemical compositions. The subsequent thermal treatment of all samples was performed for 30 min in air at a constant temperature in a 300?500°C interval. An increase in the annealing temperature led to chemical changes in the films. After isothermal treatment at 450°C, the films in all series acquired stoichiometric CuO composition.

  16. Structural and optical characterization of high-quality ZnO thin films deposited by reactive RF magnetron sputtering

    SciTech Connect

    Zhang, X.L.; Hui, K.N.; Hui, K.S.; Singh, Jai

    2013-03-15

    Highlights: ► High-quality ZnO thin films were deposited at room temperature. ► Effect of O{sub 2} flow and RF sputtering voltages on properties of ZnO films were studied. ► O{sub 2}/Ar ratios played a key role in controlling optical properties of ZnO films. ► Photoluminescence intensity of the ZnO films strongly depended on O{sub 2}/Ar ratios. ► Crystallite size, stress and strain strongly depended on O{sub 2}/Ar ratios. - Abstract: ZnO thin films were deposited onto quartz substrates by radio frequency (RF) reactive magnetron sputtering using a Zn target. The structural and optical properties of the ZnO thin films were investigated comprehensively by X-ray diffraction (XRD), ultraviolet–visible and photoluminescence (PL) measurements. The effects of the oxygen content of the total oxygen–argon mixture and sputtering voltage in the sputtering process on the structural and optical properties of the ZnO films were studied systemically. The microstructural parameters, such as the lattice constant, crystallite size, stress and strain, were also calculated and correlated with the structural and optical properties of the ZnO films. In addition, the results showed that the crystalline quality of ZnO thin films improved with increasing O{sub 2}/Ar gas flow ratio from 2:8 to 8:2. XRD and PL spectroscopy revealed 800 V to be the most appropriate sputtering voltage for ZnO thin film growth. High-quality ZnO films with a good crystalline structure, tunable optical band gap as well as high transmittance could be fabricated easily by RF reactive magnetron sputtering, paving the way to obtaining cost-effective ZnO thin films transparent conducting oxides for optoelectronics applications.

  17. Tribological Properties of CrN/AlN Films Produced by Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Rojo, A.; Solís, J.; Oseguera, J.; Salas, O.; Reichelt, R.

    2010-04-01

    The microstructure of CrN/AlN films, prepared by reactive magnetron sputtering under various conditions, was analyzed and related to the wear behavior of the films. One set of films was prepared by conventional reactive magnetron sputtering, a second set adding an extra amount of reactive gas to the initial Ar + N2 mixture and a third set adding an extra source of nitrogen near the substrate during sputtering. The samples were analyzed by scanning electron microscopy + energy dispersive microanalysis, high resolution scanning electron microscopy, atomic force microscopy, and x-ray diffraction. The results of the microstructural analysis revealed a clear difference in the morphology growth of the films when extra nitrogen was used compared to the conventionally prepared films. Formation of CrN was significantly faster than that of AlN. The most effective method to produce AlN was to introduce extra nitrogen. Pin-on-disk wear experiments were carried out in ambient air, to investigate the tribological behavior of the CrN/AlN system against a steel ball under dry conditions for various loads and a constant sliding speed. The results revealed that tribological properties of the layers improved unlike those of the untreated H13 steel. The friction behavior is closely related to the structure of the deposited films. The thicker CrN layer contributed to the higher load capacity of the coated steel when compared to the unmodified steel. However, wear life for the coating system was very short, denoted by the fairly poor adhesion of the film system to the steel substrate.

  18. The spatial distribution of negative oxygen ion densities in a dc reactive magnetron discharge

    NASA Astrophysics Data System (ADS)

    Scribbins, Steven; Bowes, Michael; Bradley, James W.

    2013-01-01

    Using Langmuir probe-assisted eclipse laser photodetachment, the spatial distribution of O- densities in the bulk plasma of magnetron sputter tool has been determined for a range of pressures, 0.79 to 2.40 Pa. The discharge was operated in dc (200 W) with a Ti target and a fixed oxygen-argon pressure ratio of 0.2, in poisoned mode. Measurements show significant O- densities occupying an annulus downstream from the magnetic trap in regions of most positive plasma potential. With increasing pressure the region of high O- density expands and the peak densities increase reaching ˜1.5 × 1016 m-3 at 2.40 Pa, corresponding to an O- to electron density ratio (electronegativity α) of ˜2. Outside the area of dense negative ions, and in regions of the magnetic trap accessible to our probe we measure α < 0.2. The results show that these reactive magnetron plasmas, utilized for oxide film production, to be highly electronegative in regions close to the substrate.

  19. Silicon- and aluminum-nitride films deposited by reactive low-voltage ion plating and reactive dc-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Vogl, G. W.; Monz, K. H.; Nguyen, Quang D.; Huter, Michael; Rille, Eduard P.; Pulker, Hans K.

    1994-11-01

    In this work the properties of Si3N4 and AIN thin films deposited onto unheated substrates by Reactive Low Voltage Ion Plating (RLVIP) and Reactive DC-Magnetron Sputtering (RDCMS) were investigated. In both experimental setups pure silicon and aluminum were used as starting materials. Working and reactive gas were argon and nitrogen respectively. All Si3N4 films showed amorphous structure in X-ray and electron diffraction whereas AIN films were found to be polycrystalline and could be indexed to the bulk hexagonal AIN lattice. The values of the film refractive index at 550 nm are 2.08 for RLVIP Si3N4, 2.12 for RLVIP AIN, 2.02 for RDCMS Si3N4, and 1.98 or 2.12 for AIN depending on the total pressure in the range of 8 E - 1 Pa and 1 E - 1 Pa during the process. The high optical transmission region for the Si3N4 films lies between 0.23 and 9.5 micrometers , and for AIN films between 0.2 and 12.5 micrometers . Purity and composition were measured by electron microprobe, infrared transmission, nuclear reactions, elastic recoil detection analysis and Rutherford backscattering spectroscopy. Transmission electron micrographs of Pt-C replicas of fracture cross sections of the films show their different microstructure and surface topography. Environmental tests proved the RLVIP Si3N4 films to be very hard, of high density and of strong adherence to glass.

  20. Formation of low-frequency periodic structures in a pulsed magnetron discharge

    NASA Astrophysics Data System (ADS)

    Kaziev, A. V.; Khodachenko, G. V.; Kharkov, M. M.

    2016-01-01

    Periodic plasma structures are observed in non-sputtering magnetron discharge (NSMD) that is the transient quasi-stationary low-voltage regime between the high-current magnetron discharge (HCIMD) and an arc. The fast camera imaging synchronized with the magnetic probe diagnostics reveals the correlation between the observed rotation of the plasma inhomogeneities and the magnetic field perturbation behaviour. The frequencies of the periodic processes fall into kHz-range. A simple analytical model of the ionization instability in crossed electric and magnetic fields is suggested for the low-pressure discharge case. Using the model, the possible ranges of wavelengths and frequencies for the plasma inhomogeneities are evaluated. The results show good agreement between the experimental data and theory.

  1. Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study

    NASA Astrophysics Data System (ADS)

    Nelea, V.; Morosanu, C.; Iliescu, M.; Mihailescu, I. N.

    2004-04-01

    Hydroxyapatite (HA) thin films for applications in the biomedical field were grown by pulsed laser deposition (PLD) and radio-frequency magnetron sputtering (RF-MS) techniques. The depositions were performed from pure hydroxyapatite targets on Ti-5Al-2.5Fe (TiAlFe) alloys substrates. In order to prevent the HA film penetration by Ti atoms or ions diffused from the Ti-based alloy during and after deposition, the substrates were pre-coated with a thin buffer layer of TiN. In both cases, TiN was introduced by reactive PLD from TiN targets in low-pressure N 2. The PLD films were grown in vacuum onto room temperature substrates. The RF-MS films were deposited in low-pressure argon on substrates heated at 550 °C. The initially amorphous PLD thin films were annealed at 550 °C for 1 h in ambient air in order to restore the initial crystalline structure of HA target. The thickness of the PLD and RF-MS films were ˜1 μm and ˜350 nm, respectively. All films were structurally studied by scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray spectrometry (EDS) and white light confocal microscopy (WLCM). The mechanical properties of the films were tested by Berkovich nano-indentation. Both PLD and RF-MS films mostly contain HA phase and exhibit good mechanical characteristics. Peaks of CaO were noticed as secondary phase in the GIXRD patterns only for RF-MS films. By its turn, the sputtered films were smoother as compared to the ones deposited by PLD (50 nm versus 250 nm average roughness). The RF-MS films were harder, more mechanically resistant and have a higher Young modulus.

  2. Research on titanium nitride thin films deposited by reactive magnetron sputtering for MEMS applications

    NASA Astrophysics Data System (ADS)

    Merie, Violeta; Pustan, Marius; Negrea, Gavril; Bîrleanu, Corina

    2015-12-01

    Titanium nitride can be used among other materials as diffusion barrier for MEMS (microelectromechanical systems) applications. The aim of this study is to elaborate and to characterize at nanoscale titanium nitride thin films. The thin films were deposited by reactive magnetron sputtering on silicon substrates using a 99.99% purity titanium target. Different deposition parameters were employed. The deposition temperature, deposition time, substrate bias voltage and the presence/absence of a titanium buffer layer are the parameters that were modified. The so-obtained films were then investigated by atomic force microscopy. A significant impact of the deposition parameters on the determined mechanical and tribological characteristics was highlighted. The results showed that the titanium nitride thin films deposited for 20 min at room temperature without the presence of a titanium buffer layer when a negative bias of -90 V was applied to the substrate is characterized by the best tribological and mechanical behavior.

  3. Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering

    SciTech Connect

    Lee, Yun Seog; Winkler, Mark T.; Siah, Sin Cheng; Brandt, Riley; Buonassisi, Tonio

    2011-05-09

    Cuprous oxide (Cu{sub 2}O) is a promising earth-abundant semiconductor for photovoltaic applications. We report Hall mobilities of polycrystalline Cu{sub 2}O thin films deposited by reactive dc magnetron sputtering. High substrate growth temperature enhances film grain structure and Hall mobility. Temperature-dependent Hall mobilities measured on these films are comparable to monocrystalline Cu{sub 2}O at temperatures above 250 K, reaching 62 cm{sup 2}/V s at room temperature. At lower temperatures, the Hall mobility appears limited by carrier scattering from ionized centers. These observations indicate that sputtered Cu{sub 2}O films at high substrate growth temperature may be suitable for thin-film photovoltaic applications.

  4. Deposition of ultrahard Ti-Si-N coatings by pulsed high-current reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Oskomov, K. V.; Zakharov, A. N.; Rabotkin, S. V.; Solov'ev, A. A.

    2016-02-01

    We report on the results of investigation of properties of ultrahard Ti-Si-N coatings deposited by pulsed high-current magnetron reactive sputtering (discharge pulse voltage is 300-900 V, discharge pulse current is up to 200 A, pulse duration is 10-100 μs, and pulse repetition rate is 20-2000 Hz). It is shown that for a short sputtering pulse (25 μs) and a high discharge current (160 A), the films exhibit high hardness (66 GPa), wear resistance, better adhesion, and a lower sliding friction coefficient. The reason is an enhancement of ion bombardment of the growing coating due to higher plasma density in the substrate region (1013 cm-3) and a manifold increase in the degree of ionization of the plasma with increasing peak discharge current (mainly due to the material being sputtered).

  5. Studies on optoelectronic properties of DC reactive magnetron sputtered chromium doped CdO thin films

    SciTech Connect

    Hymavathi, B. Rao, T. Subba; Kumar, B. Rajesh

    2014-10-15

    Cr doped CdO thin films were deposited on glass substrates by DC reactive magnetron sputtering method and subsequently annealed from 200 °C to 500 °C. X-ray diffraction analysis showed that the films exhibit (1 1 1) preferred orientation. The optical transmittance of the films increases from 64% to 88% with increasing annealing temperature. The optical band gap values were found to be decreased from 2.77 to 2.65 eV with the increase of annealing temperature. The decrease in optical band gap energy with increasing annealing temperature can be attributed to improvement in the crystallinity of the films and may also be due to quantum confinement effect. A minimum resistivity of 2.23 × 10{sup −4} Ω.cm and sheet resistance of 6.3 Ω/sq is obtained for Cr doped CdO film annealed at 500 °C.

  6. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rafieian, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G. H.

    2015-09-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx<2), obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, whereas stoichiometric films formed anatase. This route therefore presents a formation route for rutile films via lower (<500 °C) temperature pathways. The dynamics of the annealing process were followed by in situ ellipsometry, showing the optical properties transformation. The final crystal structures were identified by XRD. The anatase film obtained by this deposition method displayed high carriers mobility as measured by time-resolved microwave conductance. This also confirms the high photocatalytic activity of the anatase films.

  7. Transparent conducting indium doped ZnO films by dc reactive S-gun magnetron sputtering.

    PubMed

    Ye, Z Z; Tang, J F

    1989-07-15

    Transparent conducting ZnO films have been prepared by modified S-gun reactive dc magnetron sputtering using an indium doped Zn target. Films with a resistivity of 1.08 x 10(-3) Omega cm and average transmittance of over 80% in the visible region were obtained. The influence of indium content at the surface of Zn target on the resistivity and transmittance of ZnO films was investigated. Optical properties of ZnO films in the 0.2-2.5-microm range were modeled by the Drude theory of free electrons. The reflectance of ZnO films in the 2.5-26.0-microm region was calculated. PMID:20555606

  8. Physical properties of erbium implanted tungsten oxide filmsdeposited by reactive dual magnetron sputtering

    SciTech Connect

    Mohamed, Sodky H.; Anders, Andre

    2006-11-08

    Amorphous and partially crystalline WO3 thin films wereprepared by reactive dual magnetron sputtering and successively implantedby erbium ions with a fluence in the range from 7.7 x 1014 to 5 x 1015ions/cm2. The electrical and optical properties were studied as afunction of the film deposition parameters and the ion fluence. Ionimplantation caused a strong decrease of the resistivity, a moderatedecrease of the index of refraction and a moderate increase of theextinction coefficient in the visible and near infrared, while theoptical band gap remained almost unchanged. These effects could belargely ascribed to ion-induced oxygen deficiency. When annealed in air,the already low resistivities of the implanted samples decreased furtherup to 70oC, whereas oxidation, and hence a strong increase of theresistivity, was observed at higher annealing temperatures.

  9. Characteristics of DLC containing Ti and Zr films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ma, Guojia; Lin, Guoqiang; Sun, Gang; Zhang, Huafang; Wu, Hongchen

    The purpose of this paper is to investigate metal doping effects on micro-structural, mechanical and corrosive behavior of the DLC film. Ti and Zr doped DLC films were prepared on NiTi alloys by reactive magnetron sputtering combined with plasma source ion implantation (PSII) technology used to improve the coherent strength, respectively. The mechanical properties of the doped DLC films were investigated by means of nano-indentation technique, microscratch and frictional wear testing. The potentiodynamic polarization measurement was employed to value the corrosion resistance of DLC with Ti and Zr films in Hank's simulated body fluid. It was found that Ti-doped DLC films embraced higher nano-hardness, somewhat lower coefficient of friction and better corrosion resistance than Zr-doped DLC films.

  10. Amorphous stainless steel coatings prepared by reactive magnetron-sputtering from austenitic stainless steel targets

    NASA Astrophysics Data System (ADS)

    Cusenza, Salvatore; Schaaf, Peter

    2009-01-01

    Stainless steel films were reactively magnetron sputtered in argon/methane gas flow onto oxidized silicon wafers using austenitic stainless-steel targets. The deposited films of about 200 nm thickness were characterized by conversion electron Mössbauer spectroscopy, magneto-optical Kerr-effect, X-ray diffraction, scanning electron microscopy, Rutherford backscattering spectrometry, atomic force microscopy, corrosion resistance tests, and Raman spectroscopy. These complementary methods were used for a detailed examination of the carburization effects in the sputtered stainless-steel films. The formation of an amorphous and soft ferromagnetic phase in a wide range of the processing parameters was found. Further, the influence of the substrate temperature and of post vacuum-annealing were examined to achieve a comprehensive understanding of the carburization process and phase formation.

  11. Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering

    SciTech Connect

    Moreira, Milena A.; Törndahl, Tobias; Katardjiev, Ilia; Kubart, Tomas

    2015-03-15

    Aluminum nitride thin films were deposited by reactive high power impulse magnetron sputtering (HiPIMS) and pulsed direct-current on Si (100) and textured Mo substrates, where the same deposition conditions were used for both techniques. The films were characterized by x-ray diffraction and atomic force microscopy. The results show a pronounced improvement in the AlN crystalline texture for all films deposited by HiPIMS on Si. Already at room temperature, the HiPIMS films exhibited a strong preferred (002) orientation and at 400 °C, no contributions from other orientations were detected. Despite the low film thickness of only 200 nm, an ω-scan full width at half maximum value of 5.1° was achieved on Si. The results are attributed to the high ionization of sputtered material achieved in HiPIMS. On textured Mo, there was no significant difference between the deposition techniques.

  12. Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro

    NASA Astrophysics Data System (ADS)

    Petrantoni, M.; Rossi, C.; Salvagnac, L.; Conédéra, V.; Estève, A.; Tenailleau, C.; Alphonse, P.; Chabal, Y. J.

    2010-10-01

    Multilayered Al/CuO thermite was deposited by a dc reactive magnetron sputtering method. Pure Al and Cu targets were used in argon-oxygen gas mixture plasma and with an oxygen partial pressure of 0.13 Pa. The process was designed to produce low stress (<50 MPa) multilayered nanoenergetic material, each layer being in the range of tens nanometer to one micron. The reaction temperature and heat of reaction were measured using differential scanning calorimetry and thermal analysis to compare nanostructured layered materials to microstructured materials. For the nanostructured multilayers, all the energy is released before the Al melting point. In the case of the microstructured samples at least 2/3 of the energy is released at higher temperatures, between 1036 and 1356 K.

  13. Structural and thermal properties of nanocrystalline CuO synthesized by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Verma, M.; Gupta, V. K.; Gautam, Y. K.; Dave, V.; Chandra, R.

    2014-01-01

    Recent research has shown immense application of metal oxides like CuO, MgO, CaO, Al2O3, etc. in different areas which includes chemical warfare agents, medical drugs, magnetic storage media and solar energy transformation. Among the metal oxides, CuO nanoparticles are of special interest because of their excellent gas sensing and catalytic properties. In this paper we report structural and thermal properties of CuO synthesized by reactive magnetron DC sputtering. The synthesized nanoparticles were characterized by X-ray diffractometer. The XRD result reveals that as DC power increased from 30W to 80W, size of the CuO nanoparticles increased. The same results have been verified through TEM analysis. Thermal properties of these particles were studied using thermogravimetry.

  14. Structural and thermal properties of nanocrystalline CuO synthesized by reactive magnetron sputtering

    SciTech Connect

    Verma, M.; Gupta, V. K.; Gautam, Y. K.; Dave, V.; Chandra, R.

    2014-01-28

    Recent research has shown immense application of metal oxides like CuO, MgO, CaO, Al{sub 2}O{sub 3}, etc. in different areas which includes chemical warfare agents, medical drugs, magnetic storage media and solar energy transformation. Among the metal oxides, CuO nanoparticles are of special interest because of their excellent gas sensing and catalytic properties. In this paper we report structural and thermal properties of CuO synthesized by reactive magnetron DC sputtering. The synthesized nanoparticles were characterized by X-ray diffractometer. The XRD result reveals that as DC power increased from 30W to 80W, size of the CuO nanoparticles increased. The same results have been verified through TEM analysis. Thermal properties of these particles were studied using thermogravimetry.

  15. Deposition of vanadium oxide films by direct-current magnetron reactive sputtering

    NASA Technical Reports Server (NTRS)

    Kusano, E.; Theil, J. A.; Thornton, John A.

    1988-01-01

    It is demonstrated here that thin films of vanadium oxide can be deposited at modest substrate temperatures by dc reactive sputtering from a vanadium target in an O2-Ar working gas using a planar magnetron source. Resistivity ratios of about 5000 are found between a semiconductor phase with a resistivity of about 5 Ohm cm and a metallic phase with a resistivity of about 0.001 Ohm cm for films deposited onto borosilicate glass substrates at about 400 C. X-ray diffraction shows the films to be single-phase VO2 with a monoclinic structure. The VO2 films are obtained for a narrow range of O2 injection rates which correspond to conditions where cathode poisoning is just starting to occur.

  16. Duty cycle control in reactive high-power impulse magnetron sputtering of hafnium and niobium

    NASA Astrophysics Data System (ADS)

    Ganesan, R.; Treverrow, B.; Murdoch, B.; Xie, D.; Ross, A. E.; Partridge, J. G.; Falconer, I. S.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.

    2016-06-01

    Instabilities in reactive sputtering have technological consequences and have been attributed to the formation of a compound layer on the target surface (‘poisoning’). Here we demonstrate how the duty cycle of high power impulse magnetron sputtering (HiPIMS) can be used to control the surface conditions of Hf and Nb targets. Variations in the time resolved target current characteristics as a function of duty cycle were attributed to gas rarefaction and to the degree of poisoning of the target surface. As the operation transitions from Ar driven sputtering to metal driven sputtering, the secondary electron emission changes and reduces the target current. The target surface transitions smoothly from a poisoned state at low duty cycles to a quasi-metallic state at high duty cycles. Appropriate selection of duty cycle increases the deposition rate, eliminates the need for active regulation of oxygen flow and enables stable reactive deposition of stoichiometric metal oxide films. A model is presented for the reactive HIPIMS process in which the target operates in a partially poisoned mode with different degrees of oxide layer distribution on its surface that depends on the duty cycle. Finally, we show that by tuning the pulse characteristics, the refractive indices of the metal oxides can be controlled without increasing the absorption coefficients, a result important for the fabrication of optical multilayer stacks.

  17. Synthesizing mixed phase titania nanocomposites with enhanced photoactivity and redshifted photoresponse by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Le

    Recent work points out the importance of the solid-solid interface in explaining the high photoactivity of mixed phase TiO2 catalysts. The goal of this research was to probe the synthesis-structure-function relationships of the solid-solid interfaces created by the reactive direct current (DC) magnetron sputtering of titanium dioxide. I hypothesize that the reactive DC magnetron sputtering is a useful method for synthesizing photo-catalysts with unique structure including solid-solid interfaces and surface defects that are associated with enhanced photoreactivity as well as a photoresponse shifted to longer wavelengths of light. I showed that sputter deposition provides excellent control of the phase and interface formation as well as the stoichiometry of the films. I explored the effects exerted by the process parameters of pressure, oxygen partial pressure, target power, substrate bias (RF), deposition incidence angle, and post annealing treatment on the structural and functional characteristics of the catalysts. I have successfully made pure and mixed phase TiO2 films. These films were characterized with UV-Vis, XPS, AFM, SEM, TEM, XRD and EPR, to determine optical properties, elemental stoichiometry, surface morphology, phase distribution and chemical coordination. Bundles of anatase-rutile nano-columns having high densities of dual-scale of interfaces among and within the columns are fabricated. Photocatalytic performance of the sputtered films as measured by the oxidation of the pollutant, acetaldehyde, and the reduction of CO2 for fuel (CH4) production was compared (normalized for surface area) to that of mixed phase TiO2 fabricated by other methods, including flame hydrolysis powders, and solgel deposited TiO 2 films. The sputtered mixed phase materials were far superior to the commercial standard (Degussa P25) and solgel TiO2 based on gas phase reaction of acetaldehyde oxidation under UV light and CO2 reduction under both UV and visible illuminations. The

  18. In situ deposition of PbTiO3 thin films by direct current reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Iljinas, Aleksandras; Marcinauskas, Liutauras; Stankus, Vytautas

    2016-09-01

    The lead titanate thin films were deposited using in situ layer-by-layer reactive magnetron sputtering. The synthesis of films was performed on platinized silicon (Pt/Ti/SiO2/Si) substrates at 450-600 °C temperatures using Ti2O seed layer. The influence of the substrate temperature on the surface morphology, phase composition, and electrical properties of PbTiO3 films were investigated. Experimental results demonstrated that the deposition at higher substrate temperatures resulted in the formation of films with the lower surface roughness values. The increase of the substrate temperature has no effect on the tetragonality value of the films. The preferential orientation in the films was changed and the crystallites size slightly increased with the increased substrate temperature from 450 °C to 550 °C. Hysteresis measurements show that the films exhibit ferroelectric properties with a maximum coercive field of Ec = 150 kV/cm and of Pr = 60 μC/cm2. Coercive field dependence on the frequency measurements indicated that the creep regime of domain wall motions dominated till 1 kHz of frequency.

  19. Hollow metal target magnetron sputter type radio frequency ion source.

    PubMed

    Yamada, N; Kasuya, T; Tsubouchi, N; Wada, M

    2014-02-01

    A 70 mm diameter 70 mm long compact ion source equipped with a hollow sputtering target has been designed and tested. The hollow sputtering target serves as the radio frequency (RF) plasma excitation electrode at 13.56 MHz. A stable beam of Cu(+) has been extracted when Ar was used as the discharge support gas. In the extracted beam, Cu(+) had occupied more than 85% of the total ion current. Further increase in Cu(+) ions in the beam is anticipated by increasing the RF power and Ar pressure. PMID:24593636

  20. Hollow metal target magnetron sputter type radio frequency ion source

    SciTech Connect

    Yamada, N. Kasuya, T.; Wada, M.; Tsubouchi, N.

    2014-02-15

    A 70 mm diameter 70 mm long compact ion source equipped with a hollow sputtering target has been designed and tested. The hollow sputtering target serves as the radio frequency (RF) plasma excitation electrode at 13.56 MHz. A stable beam of Cu{sup +} has been extracted when Ar was used as the discharge support gas. In the extracted beam, Cu{sup +} had occupied more than 85% of the total ion current. Further increase in Cu{sup +} ions in the beam is anticipated by increasing the RF power and Ar pressure.

  1. Development of Dual-Frequency Gyrotron with Triode Magnetron Injection Gun

    NASA Astrophysics Data System (ADS)

    Kajiwara, Ken; Oda, Yasuhisa; Kasugai, Atsushi; Takahashi, Koji; Sakamoto, Keishi

    2011-12-01

    A high power dual-frequency gyrotron is designed and tested. The design is based on a 170 GHz single-frequency gyrotron with a triode magnetron injection gun (MIG). The triode MIG enables to choose variety of oscillation modes for different frequencies with suitable pitch factor, which is the great advantage for a multi-frequency gyrotron. Another frequency of 137 GHz is selected in order to use a 1.853-mm-thick single-disk output window. Cavity modes are TE31,11 and TE25,9 for 170 and 137 GHz, respectively, which have high mode conversion efficiency to the RF beam mode with similar radiation angles. In short-pulse experiments, the maximum power of more than 1.3 MW is achieved with high-efficiency for both frequencies.

  2. SiNx Coatings Deposited by Reactive High Power Impulse Magnetron Sputtering: Process Parameters Influencing the Nitrogen Content.

    PubMed

    Schmidt, Susann; Hänninen, Tuomas; Goyenola, Cecilia; Wissting, Jonas; Jensen, Jens; Hultman, Lars; Goebbels, Nico; Tobler, Markus; Högberg, Hans

    2016-08-10

    Reactive high power impulse magnetron sputtering (rHiPIMS) was used to deposit silicon nitride (SiNx) coatings for biomedical applications. The SiNx growth and plasma characterization were conducted in an industrial coater, using Si targets and N2 as reactive gas. The effects of different N2-to-Ar flow ratios between 0 and 0.3, pulse frequencies, target power settings, and substrate temperatures on the discharge and the N content of SiNx coatings were investigated. Plasma ion mass spectrometry shows high amounts of ionized isotopes during the initial part of the pulse for discharges with low N2-to-Ar flow ratios of <0.16, while signals from ionized molecules rise with the N2-to-Ar flow ratio at the pulse end and during pulse-off times. Langmuir probe measurements show electron temperatures of 2-3 eV for nonreactive discharges and 5.0-6.6 eV for discharges in transition mode. The SiNx coatings were characterized with respect to their composition, chemical bond structure, density, and mechanical properties by X-ray photoelectron spectroscopy, X-ray reflectivity, X-ray diffraction, and nanoindentation, respectively. The SiNx deposition processes and coating properties are mainly influenced by the N2-to-Ar flow ratio and thus by the N content in the SiNx films and to a lower extent by the HiPIMS frequencies and power settings as well as substrate temperatures. Increasing N2-to-Ar flow ratios lead to decreasing growth rates, while the N content, coating densities, residual stresses, and the hardness increase. These experimental findings were corroborated by density functional theory calculations of precursor species present during rHiPIMS. PMID:27414283

  3. Influence of the magnetron on the growth of aluminum nitride thin films deposited by reactive sputtering

    SciTech Connect

    Iriarte, G. F.

    2010-03-15

    Aluminum nitride (AlN) thin films deposited on high-vacuum systems without substrate heating generally exhibit a poor degree of c-axis orientation. This is due to the nonequilibrium conditions existing between the energy of the sputtered particles and the energy at the substrate surface. The application of substrate bias or substrate temperature is known to improve the adatom mobility by delivering energy to the substrate; both are hence well-established crystal growth promoting factors. It is well known that low sputtering pressures can be used as a parameter improving the growth of highly c-axis oriented aluminum nitride films at room temperature even without applying bias voltage to the substrate. Generally, the use of high pressures implies thermalization of particles within the gas phase and is considered to increase the energy gap between these and the substrate surface. However, in later experiments we have learned that the use of high processing pressures does not necessarily implies a detriment of crystallographic orientation in the films. By measuring (for the first time to the author's knowledge) the full width at half maximum value of the rocking curve of the 0002-AlN peak at several positions along the 100 mm diameter (100)-silicon wafers on which aluminum nitride thin films were deposited by reactive sputtering, a new effect was observed. Under certain processing conditions, the growth of the AlN thin films is influenced by the target magnetron. More precisely, their degree of c-axis orientation varies at wafer areas locally coincident under the target magnetron. This effect should be considered, especially where large area substrates are employed such as in silicon wafer foundry manufacturing processes.

  4. Structure and Properties of Ti-O-N Coatings Produced by Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Konischev, M. E.; Kuzmin, O. S.; Pustovalova, A. A.; Morozova, N. S.; Evdokimov, K. E.; Surmenev, R. A.; Pichugin, V. F.; Epple, M.

    2014-02-01

    Results of an experimental study of the optical characteristics of gas discharges are presented. The study was aimed at optimizing the operating modes of a mid-frequency magnetron sputtering system to efficiently deposit Ti-O-N coatings. The conditions for maintaining the intensity of the chosen spectroscopic lines that ensure synthesis of titanium oxide and titanium oxynitride coatings have been revealed. The morphology, structure, contact angle, and free surface energy of titanium oxide and titanium oxynitride coatings on type 12Kh18N10T stainless steel substrates were examined by using scanning and transmission electron microscopy and infrared spectroscopy, and by measuring the wetting angle. The results of examination of the structure and properties of the synthesized films and their physicomechanical and optical characteristics are given.

  5. Violet and blue-green luminescence from Ti-doped ZnO films deposited by RF reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Haixia; Ding, Jijun; Ma, Shuyi

    2011-02-01

    Pure and Ti-doped zinc oxide (TZO) films are deposited using radio frequency (RF) reactive magnetron sputtering at different RF powers. Micro-structural and optical properties in doped ZnO films are systematically investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electronic microscopy (SEM), and a fluorescence spectrophotometer. The results indicate that ZnO films show stronger preferred orientation toward the c-axis and smoother surface roughness after Ti doping. As for TZO films, the full width at half maxima (FWHM) of (002) diffraction peaks decreased first and then increased, reaching a minimum of about 0.92° at 150 W, while the residual compressive stress of the TZO film prepared at 150 W became the largest. The photoluminescent (PL) spectra measured at room temperature reveal a violet, a blue and two green emissions. Intense violet and blue-green luminescence is obtained for the sample deposited at higher RF power. The origin of these emissions is discussed.

  6. Role of carbon in the formation of hard Ge1-xCx thin films by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hu, Chaoquan; Qiao, Liang; Tian, Hongwei; Lu, Xianyi; Jiang, Qing; Zheng, Weitao

    2011-07-01

    We have deposited germanium carbide (Ge1-xCx) films on Si(1 0 0) substrate via radio-frequency (RF) reactive magnetron sputtering in a CH4/Ar mixture discharge, and explored the effects of carbon content (x) on the chemical bonding and hardness for the obtained films. We find that x significantly influences the chemical bonding, which leads to a pronounced change in the hardness of the film. To reveal the relationship between the chemical bonding and hardness, first-principles calculations have been carried out. It is shown that as x increases from 0 to 0.33, the fraction of sp3 C-Ge bonds in the film increases at the expense of Ge-Ge bonds, which promotes formation of a strong covalently bonded network, and thus enhances the hardness of the film. However, as x further increases from 0.33 to 0.59, the fraction of sp3 C-Ge bonds in the film gradually reduces, while that of sp3 C-H and graphite-like sp2 C-C bonds increases, which damages the compact network structure, resulting in a sharp decrease in the hardness. This investigation suggests that the medium x (0.17

  7. Different properties of aluminum doped zinc oxide nanostructured thin films prepared by radio frequency magnetron sputtering

    SciTech Connect

    Bidmeshkipour, Samina Shahtahmasebi, Nasser

    2013-06-15

    Aluminium doped zinc oxide (AZO) nanostructured thin films are prepared by radio frequency magnetron sputtering on glass substrate using specifically designed ZnO target containing different amount of Al{sub 2}O{sub 3} powder as the Al doping source. The optical properties of the aluminium doped zinc oxide films are investigated. The topography of the deposited films were investigated by Atomic Force Microscopy. Variation of the refractive index by annealing temperature are considered and it is seen that the refractive index increases by increasing the annealing temperature.

  8. Structure, mechanical and tribological properties of HfCx films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shuo, Wang; Kan, Zhang; Tao, An; Chaoquan, Hu; Qingnan, Meng; Yuanzhi, Ma; Mao, Wen; Weitao, Zheng

    2015-02-01

    Hafnium carbide (HfC) films have been deposited on Si (1 0 0) substrates by direct current reactive magnetron sputtering. The microstructure, compressive stress, hardness and tribological behaviors show great dependence on carbon (C) concentration and chemical bonding state. With C content in HfCx films rising, phase transforms from hexagonal-close-packed (HCP) Hf(C) to face-centered-cubic (FCC) HfC, and nanocomposite structure consisting of HfCx nanocrystalline grains encapsulated by amorphous carbon (a-C) matrix forms at moderate C content. The hardness of HfCx films increases significantly from 10.4 GPa (14 at.% C) to 34.4 GPa (58 at.% C) and then keeps dropping with further increasing C content. a-C appears in HfCx films with more than 32 at.% C and it obviously lowers coefficient of friction (COF). The wear resistance can be remarkably worsened by high compressive stress. The film with 76 at.% C exhibits relatively high hardness and low compressive stress, good fracture toughness and self-lubrication transfer layer, showing great combination of the lowest COF of 0.10 and lowest wear rate of 1.10 × 10-6 mm3/Nm.

  9. Synthesis of copper nitride films doped with Fe, Co, or Ni by reactive magnetron sputtering

    SciTech Connect

    Yang, Jianbo; Huang, Saijia; Wang, Zhijiao; Hou, Yuxuan; Shi, Yuyu; Zhang, Jian; Yang, Jianping Li, Xing'ao

    2014-09-01

    Copper nitride (Cu{sub 3}N) and Fe-, Co-, and Ni-doped Cu{sub 3}N films were prepared by reactive magnetron sputtering. The films were deposited on silicon substrates at room temperature using pure Cu target and metal chips. The molar ratio of Cu to N atoms in the as-prepared Cu{sub 3}N film was 2.7:1, which is comparable with the stoichiometry ratio 3:1. X-ray diffraction measurements showed that the films were composed of Cu{sub 3}N crystallites with anti-ReO{sub 3} structure and adopted different preferred orientations. The reflectance of the four samples decreased in the wavelength range of 400–830 nm, but increased rapidly within wavelength range of 830–1200 nm. Compared with the Cu{sub 3}N films, the resistivity of the doped Cu{sub 3}N films decreased by three orders of magnitude. These changes have great application potential in optical and electrical devices based on Cu{sub 3}N films.

  10. Cu/TiO2 thin films prepared by reactive RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sreedhar, M.; Reddy, I. Neelakanta; Bera, Parthasarathi; Ramachandran, D.; Gobi Saravanan, K.; Rabel, Arul Maximus; Anandan, C.; Kuppusami, P.; Brijitta, J.

    2015-08-01

    Cu/TiO2 thin films were deposited on glass substrates by reactive RF magnetron sputtering technique. Crystalline structure, surface morphology and electronic structure were studied using X-ray diffraction (XRD), field emission scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy (XPS). Transmittance and absorptance of these films were characterized by UV-Vis spectroscopy. XRD patterns demonstrate that TiO2 films deposited on glass substrate at 300 °C are observed to be in pure anatase phase, whereas Cu/TiO2 films are amorphous in nature at 300 °C substrate temperature. The crystallinity of Cu/TiO2 thin films decreases with increasing the dopant concentrations of Cu in TiO2 films. XPS studies show that Cu is in +2 oxidation state in all films. The optical band gap of Cu/TiO2 films decreases from ~3.3 to ~2.0 eV with the increase in the copper concentration. Further, antimicrobial studies of Cu/TiO2 films with ~3.9 at.% Cu exhibit high transmittance and best antimicrobial activity against E. coli and S. aureus compared to other doped films.

  11. Electrical and optical properties of molybdenum doped zinc oxide films prepared by reactive RF magnetron sputtering

    SciTech Connect

    Reddy, R. Subba; Sreedhar, A.; Uthanna, S.

    2015-08-28

    Molybdenum doped zinc oxide (MZO) films were deposited on to glass substrates held at temperatures in the range from 303 to 673 K by reactive RF magnetron sputtering method. The chemical composition, crystallographic structure and surface morphology, electrical and optical properties of the films were determined. The films contained the molybdenum of 2.7 at. % in ZnO. The films deposited at 303 K were of X-ray amorphous. The films formed at 473 K were of nanocrystalline in nature with wurtzite structure. The crystallite size of the films was increased with the increase of substrate temperature. The optical transmittance of the films was in the visible range was 80–85%. The molybdenum (2.7 at %) doped zinc oxide films deposited at substrate temperature of 573 K were of nanocrystalline with electrical resistivity of 7.2×10{sup −3} Ωcm, optical transmittance of 85 %, optical band gap of 3.35 eV and figure of merit 30.6 Ω{sup −1}cm{sup −1}.

  12. Nanocharacterization of Titanium Nitride Thin Films Obtained by Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Merie, Violeta Valentina; Pustan, Marius Sorin; Bîrleanu, Corina; Negrea, Gavril

    2015-05-01

    Titanium nitride thin films are used in applications such as tribological layers for cutting tools, coating of some medical devices (scalpel blades, prosthesis, implants, etc.), sensors, electrodes for bioelectronics, microelectronics, diffusion barrier, bio-micro-electromechanical systems, and so on. This work is a comparative study concerning the influence of substrate temperature on some mechanical and tribological characteristics of titanium nitride thin films. The researched thin films were obtained by the reactive magnetron sputtering method. The experiments employed two kinds of substrates: a steel substrate and a silicon one. The elaboration of titanium nitride thin films was done at two temperatures. First, when the substrates were at room temperature, and second, when the substrates were previously heated at 250°C. The temperature of 250°C was kept constant during the deposition of the films. The samples were then investigated by atomic force microscopy in order to establish their mechanical and tribological properties. The nanohardness, Young's modulus, roughness, and friction force were some of the determined characteristics. The results demonstrated that the substrate which was previously heated at 250°C led to the obtaining of more adherent titanium nitride thin films than the substrate used at room temperature. The preheating of both substrates determined the decrease of thin films roughness. The friction force, nanohardness and Young's modulus of the tested samples increased when the substrates were preheated at 250°C.

  13. Nanocharacterization of titanium nitride thin films obtained by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Merie, V. V.; Pustan, M. S.; Bîrleanu, C.; Negrea, G.

    2014-08-01

    Titanium nitride thin films are used in applications such as tribological layers for cutting tools, coating of some medical devices (scalpel blades, prosthesis, implants etc.), sensors, electrodes for bioelectronics, microelectronics, diffusion barrier, bio-microelectromechanical systems (Bio-MEMS) and so on. This work is a comparative study concerning the influence of substrate temperature on some mechanical and tribological characteristics of titanium nitride thin films. The researched thin films were obtained by reactive magnetron sputtering method. The experiments employed two kinds of substrates: a steel substrate and a silicon one. The elaboration of titanium nitride thin films was done at two temperatures. First, the obtaining was realized when the substrates were at room temperature, and second, the obtaining was realized when the substrates were previously heated at 250 °C. The elaborated samples were then investigated by atomic force microscopy in order to establish their mechanical and tribological properties. The nanohardness, roughness, friction force are some of the determined characteristics. The results marked out that the substrate which was previously heated at 250 °C led to the obtaining of more adherent titanium nitride thin films than the substrate used at room temperature.

  14. Structural and optical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films

    NASA Astrophysics Data System (ADS)

    Kumar, B. Rajesh; Rao, T. Subba

    2014-10-01

    Highly transparent conductive Zinc Aluminum Oxide (ZAO) thin films have been deposited on glass substrates using DC reactive magnetron sputtering method. The thin films were deposited at 200 °C and post-deposition annealing from 15 to 90 min. XRD patterns of ZAO films exhibit only (0 0 2) diffraction peak, indicating that they have c-axis preferred orientation perpendicular to the substrate. Scanning electron microscopy (SEM) is used to study the surface morphology of the films. The grain size obtained from SEM images of ZAO thin films are found to be in the range of 20 - 26 nm. The minimum resistivity of 1.74 × 10-4 Ω cm and an average transmittance of 92% are obtained for the thin film post annealed for 30 min. The optical band gap of ZAO thin films increased from 3.49 to 3.60 eV with the increase of annealing time due to Burstein-Moss effect. The optical constants refractive index (n) and extinction coefficient (k) were also determined from the optical transmission spectra.

  15. Mechanical and Tribological Behavior of VN and HfN Films Deposited via Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Escobar, C.; Villarreal, M.; Caicedo, J. C.; Esteve, J.; Prieto, P.

    2013-08-01

    HfN and VN thin films were deposited onto silicon and 4140 steel substrates with r.f. reactive magnetron sputtering by using Hf and V metallic targets with 4-inch diameter and 99.9% purity in argon/nitrogen atmosphere, applying a substrate temperature of 250°C and a pressure of 1.2 × 10-3 mbar. In order to evaluate the structural, chemical, morphological, mechanical and tribological properties, we used X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), scanning electron microscopy (SEM), nanoindentation, pin-on-disc and scratch tests. Film structure determined by XRD showed that FCC (NaCl-type) films are formed in both the cases by δ-HfN and δ-VN phases. Hardness and elastic modulus values obtained for both the films were 21 and 224 GPa for the HfN film and 19 and 205 GPa for the VN film, respectively. Additionally, the films showed low friction coefficient of 0.44 for HfN and 0.62 for VN when these films were evaluated against 100 Cr6 steel, and finally the critical load was found at 41 N for the HfN film and 34 N for the VN film.

  16. Structural, optical and electrical properties of WOxNy filmsdeposited by reactive dual magnetron sputtering

    SciTech Connect

    Mohamed, Sodky H.; Anders, Andre

    2006-06-05

    Thin films of tungsten oxynitride were prepared by dual magnetron sputtering of tungsten using argon/oxygen/nitrogen gas mixtures with various nitrogen/oxygen ratios. The presence of even small amounts of oxygen had a great effect not only on the composition but on the structure of WOxNy films, as shown by Rutherford backscattering and x-ray diffraction, respectively. Significant incorporation of nitrogen occurred only when the nitrogen partial pressure exceeded 89 percent of the total reactive gas pressure. Sharp changes in the stoichiometry, deposition rate, room temperature resistivity, electrical activation energy and optical band gap were observed when the nitrogen/oxygen ratio was high.The deposition rate increased from 0.31 to 0.89 nm/s, the room temperature resistivity decreased from 1.65 x 108 to 1.82 x 10-2 ?cm, the electrical activation energy decreased from 0.97 to 0.067 eV, and the optical band gap decreased from 3.19 to 2.94 eV upon nitrogen incorporation into the films. WOxNy films were highly transparent as long as the nitrogen incorporation was low, and were brownish (absorbing) and partially reflecting as nitrogen incorporation became significant.

  17. Negative oxygen ion formation in reactive magnetron sputtering processes for transparent conductive oxides

    SciTech Connect

    Welzel, Thomas; Ellmer, Klaus

    2012-11-15

    Reactive d.c. magnetron sputtering in Ar/O{sub 2} gas mixtures has been investigated with energy-resolved mass spectrometry. Different metal targets (Mg, Ti, Zn, In, InSn, and Sn), which are of importance for transparent conductive oxide thin film deposition, have been used to study the formation of negative ions, mainly high-energetic O{sup -}, which are supposed to induce radiation damage in thin films. Besides their energy distribution, the ions have been particularly investigated with respect to their intensity in comparison of the different target materials. To realize the comparability, various calibration factors had to be introduced. After their application, major differences in the negative ion production have been observed for the target materials. The intensity, especially of O{sup -}, differs by about two orders of magnitude. It is shown that this difference results almost exclusively from ions that gain their energy in the target sheath. Those may gain additional energy from the sputtering process or reflection at the target. Low-energetic negative ions are, however, less affected by changes of the target material. The results concerning O{sup -} formation are discussed in term of the sputtering rate from the target and are compared to models for negative ion formation.

  18. Structural and optical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films

    SciTech Connect

    Kumar, B. Rajesh; Rao, T. Subba

    2014-10-15

    Highly transparent conductive Zinc Aluminum Oxide (ZAO) thin films have been deposited on glass substrates using DC reactive magnetron sputtering method. The thin films were deposited at 200 °C and post-deposition annealing from 15 to 90 min. XRD patterns of ZAO films exhibit only (0 0 2) diffraction peak, indicating that they have c-axis preferred orientation perpendicular to the substrate. Scanning electron microscopy (SEM) is used to study the surface morphology of the films. The grain size obtained from SEM images of ZAO thin films are found to be in the range of 20 - 26 nm. The minimum resistivity of 1.74 × 10{sup −4} Ω cm and an average transmittance of 92% are obtained for the thin film post annealed for 30 min. The optical band gap of ZAO thin films increased from 3.49 to 3.60 eV with the increase of annealing time due to Burstein-Moss effect. The optical constants refractive index (n) and extinction coefficient (k) were also determined from the optical transmission spectra.

  19. Control of ions energy distribution in dual-frequency magnetron sputtering discharges

    SciTech Connect

    Ye, Chao He, Haijie; Huang, Fupei; Liu, Yi; Wang, Xiangying

    2014-04-15

    The ion energy distributions (IEDs) in the dual-frequency magnetron sputtering discharges were investigated by retarding field energy analyzer. Increasing power ratio of 2 MHz to 13.56 (27.12 or 60) MHz led to the evolution of IEDs from a uni-modal distribution towards a uni-modal distribution with high-energy peak shoulder and a bi-modal distribution. While increasing power ratio of 13.56 MHz to 27.12 MHz and 27.12 MHz to 60 MHz, led to the increase of peak energy. The evolution of IEDs shape and the increase of peak energy are due to the change of ions responding to the average field of high-frequency period towards the instantaneous sheath potential of low-frequency period.

  20. A Complementary Type of Electrochromic Device by Radio Frequency Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Oksuz, Lutfi; Kiristi, Melek; Bozduman, Ferhat; Uygun Oksuz, Aysegul

    2014-10-01

    Electrochromic (EC) devices can change their optical properties reversibly in the visible region (400-800 nm) upon charge insertion/extraction reactions according to the applied voltage. A complementary type of EC device composes of two electrochromic layers, which is separated by an ionic conduction layer (electrolyte). In this work, the EC device was fabricated using vanadium oxide (V2O5) and titanium doped tungsten oxide (WO3-TiO2) electrodes. The EC electrodes were deposited as thin film structures by a reactive RF magnetron sputtering system in a medium of gas mixture of argon and oxygen. surface morphology of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Electrochemical property and durability of the EC device was investigated by a potentiostat system. Optical measurement was examined under applied voltages of +/- 2.5 V by a computer-controlled system, constantly.

  1. Optical properties of ITO films obtained by high-frequency magnetron sputtering with accompanying ion treatment

    SciTech Connect

    Krylov, P. N. Zakirova, R. M.; Fedotova, I. V.

    2013-10-15

    A variation in the properties of indium-tin-oxide (ITO) films obtained by the method of reactive magnetron sputtering with simultaneous ion treatment is reported. The ITO films feature the following parameters in the optical range of 450-1100 nm: a transmission coefficient of 80%, band gap of 3.50-3.60 eV, and a refractive index of 1.97-2.06. All characteristics of the films depend on the ion-treatment current. The latter, during the course of deposition, reduces the resistivity of the ITO films with the smallest value of the resistivity being equal to 2 Multiplication-Sign 10{sup -3} {Omega} cm. The degradation of films with a high resistivity when kept in air is observed.

  2. Magnetic field strength influence on the reactive magnetron sputter deposition of Ta2O5

    NASA Astrophysics Data System (ADS)

    Hollerweger, R.; Holec, D.; Paulitsch, J.; Rachbauer, R.; Polcik, P.; Mayrhofer, P. H.

    2013-08-01

    Reactive magnetron sputtering enables the deposition of various thin films to be used for protective as well as optical and electronic applications. However, progressing target erosion during sputtering results in increased magnetic field strengths at the target surface. Consequently, the glow discharge, the target poisoning, and hence the morphology, crystal structure and stoichiometry of the prepared thin films are influenced. Therefore, these effects were investigated by varying the cathode current Im between 0.50 and 1.00 A, the magnetic field strength B between 45 and 90 mT, and the O2/(Ar + O2) flow rate ratio Γ between 0% and 100%. With increasing oxygen flow ratio a substoichiometric TaOx oxide forms at the metallic Ta target surface which further transfers to a non-conductive tantalum pentoxide Ta2O5, impeding a stable dc glow discharge. These two transition zones (from Ta to TaOx and from TaOx to Ta2O5) shift to higher oxygen flow rates for increasing target currents. In contrast, increasing the magnetic field strength (e.g., due to sputter erosion) mainly shifts the TaOx to Ta2O5 transition to lower oxygen flow rates while marginally influencing the Ta to TaOx transition. To allow for a stable dc glow discharge (and to suppress the formation of non-conductive Ta2O5 at the target) even at Γ = 100% either a high target current (Im ⩾ 1 A) or a low magnetic field strength (B ⩽ 60 mT) is necessary. These conditions are required to prepare stoichiometric and fully crystalline Ta2O5 films.

  3. Bioactivity response of Ta1-xOx coatings deposited by reactive DC magnetron sputtering.

    PubMed

    Almeida Alves, C F; Cavaleiro, A; Carvalho, S

    2016-01-01

    The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft-hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar+O2 atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates. PMID:26478293

  4. Deposition and properties of yttria-stabilized zirconia thin films using reactive direct current magnetron sputtering

    SciTech Connect

    Thiele, E.S.; Wang, L.S.; Mason, T.O.; Barnett, S.A. . Dept. of Materials Science Northwestern Univ., Evanston, IL . Materials Research Center)

    1991-11-01

    Yttria-stabilized zirconia (YSZ) thin films were deposited by reactive magnetron sputter deposition from a composite Zr--Y target in Ar--O{sub 2} mixtures. Hysteresis was observed as a function of oxygen flow rate {ital f}. For a discharge current of 0.4 A and a total pressure {ital P} of 5 mTorr, for example, the target oxidized at {ital f}{gt}2.3 ml/min, with the reverse transition from an oxidized to a metallic target surface occurring at 1.95 ml/min. The deposition rate was 2.7 {mu}m/h in the metallic mode and 0.1 {mu}m/h in the oxide mode. Fully oxidized (Y{sub 2}O{sub 3}){sub 0.1}(ZrO{sub 2}){sub 0.9} was obtained for {ital f}{gt}2.0 ml/min, even in the metallic mode. While films deposited with {ital P}=3--20 mTorr were continuous, for {ital P}{gt}20 mTorr crazing was apparent as expected for a ceramic film in a tensile stress state. For {ital P}{lt}3 mTorr, the films delaminated due to excessive compressive stress. X-ray diffraction and electron microscopy results showed that the films were polycrystalline cubic YSZ with a columnar structure and an average grain diameter of 15 nm. Fully dense films were obtained at a deposition temperature of 350 {degree}C. Temperature-dependent impedance spectroscopy analysis of YSZ films with Ag electrodes showed that the oxygen ion conductivity was as expected for YSZ.

  5. Studies on optoelectronic properties of DC reactive magnetron sputtered CdTe thin films

    SciTech Connect

    Kumar, B. Rajesh; Hymavathi, B.; Rao, T. Subba

    2014-01-28

    Cadmium telluride continues to be a leading candidate for the development of cost effective photovoltaics for terrestrial applications. In the present work two individual metallic targets of Cd and Te were used for the deposition of CdTe thin films on mica substrates from room temperature to 300 °C by DC reactive magnetron sputtering method. XRD patterns of CdTe thin films deposited on mica substrates exhibit peaks at 2θ = 27.7°, 46.1° and 54.6°, which corresponds to reflection on (1 1 1), (2 2 0) and (3 1 1) planes of CdTe cubic structure. The intensities of XRD patterns increases with the increase of substrate temperature upto 150 °C and then it decreases at higher substrate temperatures. The conductivity of CdTe thin films measured from four probe method increases with the increase of substrate temperature. The activation energies (ΔE) are found to be decrease with the increase of substrate temperature. The optical transmittance spectra of CdTe thin films deposited on mica have a clear interference pattern in the longer wavelength region. The films have good transparency (T > 85 %) exhibiting interference pattern in the spectral region between 1200 – 2500 nm. The optical band gap of CdTe thin films are found to be in the range of 1.48 – 1.57. The refractive index, n decreases with the increase of wavelength, λ. The value of n and k increases with the increase of substrate temperature.

  6. A parametric model for reactive high-power impulse magnetron sputtering of films

    NASA Astrophysics Data System (ADS)

    Kozák, Tomáš; Vlček, Jaroslav

    2016-02-01

    We present a time-dependent parametric model for reactive HiPIMS deposition of films. Specific features of HiPIMS discharges and a possible increase in the density of the reactive gas in front of the reactive gas inlets placed between the target and the substrate are considered in the model. The model makes it possible to calculate the compound fractions in two target layers and in one substrate layer, and the deposition rate of films at fixed partial pressures of the reactive and inert gas. A simplified relation for the deposition rate of films prepared using a reactive HiPIMS is presented. We used the model to simulate controlled reactive HiPIMS depositions of stoichiometric \\text{Zr}{{\\text{O}}2} films, which were recently carried out in our laboratories with two different configurations of the {{\\text{O}}2} inlets in front of the sputtered target. The repetition frequency was 500 Hz at the deposition-averaged target power densities of 5 Wcm-2and 50 Wcm-2 with a pulse-averaged target power density up to 2 kWcm-2. The pulse durations were 50 μs and 200 μs. Our model calculations show that the to-substrate {{\\text{O}}2} inlet provides systematically lower compound fractions in the target surface layer and higher compound fractions in the substrate surface layer, compared with the to-target {{\\text{O}}2} inlet. The low compound fractions in the target surface layer (being approximately 10% at the deposition-averaged target power density of 50 Wcm-2 and the pulse duration of 200 μs) result in high deposition rates of the films produced, which are in agreement with experimental values.

  7. Reactive sputtering of δ-ZrH{sub 2} thin films by high power impulse magnetron sputtering and direct current magnetron sputtering

    SciTech Connect

    Högberg, Hans Tengdelius, Lina; Eriksson, Fredrik; Broitman, Esteban; Lu, Jun; Jensen, Jens; Hultman, Lars; Samuelsson, Mattias

    2014-07-01

    Reactive sputtering by high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS) of a Zr target in Ar/H{sub 2} plasmas was employed to deposit Zr-H films on Si(100) substrates, and with H content up to 61 at. % and O contents typically below 0.2 at. % as determined by elastic recoil detection analysis. X-ray photoelectron spectroscopy reveals a chemical shift of ∼0.7 eV to higher binding energies for the Zr-H films compared to pure Zr films, consistent with a charge transfer from Zr to H in a zirconium hydride. X-ray diffraction shows that the films are single-phase δ-ZrH{sub 2} (CaF{sub 2} type structure) at H content >∼55 at. % and pole figure measurements give a 111 preferred orientation for these films. Scanning electron microscopy cross-section images show a glasslike microstructure for the HiPIMS films, while the DCMS films are columnar. Nanoindentation yield hardness values of 5.5–7 GPa for the δ-ZrH{sub 2} films that is slightly harder than the ∼5 GPa determined for Zr films and with coefficients of friction in the range of 0.12–0.18 to compare with the range of 0.4–0.6 obtained for Zr films. Wear resistance testing show that phase-pure δ-ZrH{sub 2} films deposited by HiPIMS exhibit up to 50 times lower wear rate compared to those containing a secondary Zr phase. Four-point probe measurements give resistivity values in the range of ∼100–120 μΩ cm for the δ-ZrH{sub 2} films, which is slightly higher compared to Zr films with values in the range 70–80 μΩ cm.

  8. Deposition of a conductive near-infrared cutoff filter by radio-frequency magnetron sputtering.

    PubMed

    Lee, Jang-Hoon; Lee, Seung-Hyu; Yoo, Kwang-Lim; Kim, Nam-Young; Hwangbo, Chang Kwon

    2002-06-01

    We have designed a conductive near-infrared (NIR) cutoff filter for display application, i.e., a modified low-emissivity filter based on the three periods of the basic design of [TiO2[Ti]Ag] TiO2] upon a glass substrate and investigated the optical, structural, chemical, and electrical properties of the conductive NIR cutoff filter prepared by a radio frequency magnetron sputtering system. The results show that the average transmittance is 61.1% in the visible, that the transmittance in the NIR is less than 6.6%, and that the sheet resistance and emissivity are 0.9 ohms/square (where square stands for a square film) and 0.012, respectively, suggesting that the conductive NIR cutoff filter can be employed as a shield against the hazard of electromagnetic waves as well as to cut off the NIR. PMID:12064381

  9. Nanoporous Ti-metal film deposition using radio frequency magnetron sputtering technique for photovoltaic application.

    PubMed

    Sung, Youl-Moon; Paeng, Sung-Hwan; Moon, Byung-Ho; Kwak, Dong-Joo

    2012-02-01

    Nanoporous Ti-metal film electrode was fabricated by radio frequency (rf) magnetron sputtering technique on nanoporous TiO2 layer prepared by sol-gel combustion method and investigated with respect to its photo-anode properties of TCO-less DSCs. The porous Ti layer (approximately 1 microm) with low sheet resistance (approximately 17 Omega/sq.) can collect electrons from the TiO2 layer and allows the ionic diffusion of I(-)/I(3-) through the hole. The porous Ti layer with highly ordered columnar structure prepared by 8 mTorr sputtering shows the good impedance characteristics. The efficiency of prepared TCO-less DSCs sample is about 4.83% (ff: 0.6, Voc: 0.65 V, Jsc: 11.2 mA/cm2). PMID:22629960

  10. Hydroxyapatite coatings on nanotubular titanium dioxide thin films prepared by radio frequency magnetron sputtering.

    PubMed

    Shin, Jinho; Lee, Kwangmin; Koh, Jeongtae; Son, Hyeju; Kim, Hyunseung; Lim, Hyun-Pil; Yun, Kwidug; Oh, Gyejeong; Lee, Seokwoo; Oh, Heekyun; Lee, Kyungku; Hwang, Gabwoon; Park, Sang-Won

    2013-08-01

    In this study, hydroxyapatite (HA) was coated on anodized titanium (Ti) surfaces through radio frequency magnetron sputtering in order to improve biological response of the titanium surface. All the samples were blasted with resorbable blasting media (RBM). RBM-blasted Ti surface, anodized Ti surface, as-sputtered HA coating on the anodized Ti surface, and heat-treated HA coating on the anodized Ti surface were prepared. The samples were characterized using scanning electron microscopy and X-ray photoemission spectroscopy, and biologic responses were evaluated. The top of the TiO2 nanotubes was not closed by HA particles when the coating time is less than 15 minutes. It was demonstrated that the heat-treated HA was well-crystallized and this enhanced the cell attachment of the anodized Ti surface. PMID:23882839

  11. Microstructure and properties of SiC-coated carbon fibers prepared by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cheng, Yong; Huang, Xiaozhong; Du, Zuojuan; Xiao, Jianrong; Zhou, Shan; Wei, Yongshan

    2016-04-01

    SiC-coated carbon fibers are prepared at room temperature with different radio-frequency magnetron sputtering powers. Results show that the coated carbon fibers have uniform, continuous, and flawless surfaces. The mean strengths of the coated carbon fibers with different sputtering powers are not influenced by other factors. Filament strength of SiC-coated carbon fibers increases by approximately 2% compared with that of uncoated carbon fibers at a sputtering power of <200 W. The filament strengths of the coated fibers increase by 9.3% and 12% at sputtering powers of 250 and 300 W, respectively. However, the mean strength of the SiC-coated carbon fibers decreased by 8% at a sputtering power of 400 W.

  12. Preparation and structural properties of thin carbon films by very-high-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ming-Wei, Gao; Chao, Ye; Xiang-Ying, Wang; Yi-Song, He; Jia-Min, Guo; Pei-Fang, Yang

    2016-07-01

    Growth and structural properties of thin a-C films prepared by the 60 MHz very-high-frequency (VHF) magnetron sputtering were investigated. The energy and flux of ions impinging the substrate were also analyzed. It is found that the thin a-C films prepared by the 60 MHz sputtering have a lower growth rate, a smooth surface, and more sp3 contents. These features are related to the higher ion energy and the lower ions flux onto the substrate. Therefore, the 60 MHz VHF sputtering is more suitable for the preparation of thin a-C film with more sp3 contents. Project supported by the National Natural Science Foundation of China (Grant No. 11275136).

  13. Cleaning of HT-7 Tokamak Exposed First Mirrors by Radio Frequency Magnetron Sputtering Plasma

    NASA Astrophysics Data System (ADS)

    Yan, Rong; Chen, Junling; Chen, Longwei; Ding, Rui; Zhu, Dahuan

    2014-12-01

    The stainless steel (SS) first mirror pre-exposed in the deposition-dominated environment of the HT-7 tokamak was cleaned in the newly built radio frequency (RF) magnetron sputtering plasma device. The deposition layer on the FM surface formed during the exposure was successfully removed by argon plasma with a RF power of about 80 W and a gas pressure of 0.087 Pa for 30 min. The total reflectivity of the mirrors was recovered up to 90% in the wavelength range of 300-800 nm, while the diffuse reflectivity showed a little increase, which was attributed to the increase of surface roughness in sputtering, and residual contaminants. The FMs made from single crystal materials could help to achieve a desired recovery of specular reflectivity in the future.

  14. Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction.

    PubMed

    Bürgi, J; Neuenschwander, R; Kellermann, G; García Molleja, J; Craievich, A F; Feugeas, J

    2013-01-01

    The purpose of the designed reactor is (i) to obtain polycrystalline and∕or amorphous thin films by controlled deposition induced by a reactive sputtering magnetron and (ii) to perform a parallel in situ structural study of the deposited thin films by X-ray diffraction, in real time, during the whole growth process. The designed reactor allows for the control and precise variation of the relevant processing parameters, namely, magnetron target-to-sample distance, dc magnetron voltage, and nature of the gas mixture, gas pressure and temperature of the substrate. On the other hand, the chamber can be used in different X-ray diffraction scanning modes, namely, θ-2θ scanning, fixed α-2θ scanning, and also low angle techniques such as grazing incidence small angle X-ray scattering and X-ray reflectivity. The chamber was mounted on a standard four-circle diffractometer located in a synchrotron beam line and first used for a preliminary X-ray diffraction analysis of AlN thin films during their growth on the surface of a (100) silicon wafer. PMID:23387690

  15. Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction

    SciTech Connect

    Buergi, J.; Molleja, J. Garcia; Feugeas, J.; Neuenschwander, R.; Kellermann, G.; Craievich, A. F.

    2013-01-15

    The purpose of the designed reactor is (i) to obtain polycrystalline and/or amorphous thin films by controlled deposition induced by a reactive sputtering magnetron and (ii) to perform a parallel in situ structural study of the deposited thin films by X-ray diffraction, in real time, during the whole growth process. The designed reactor allows for the control and precise variation of the relevant processing parameters, namely, magnetron target-to-sample distance, dc magnetron voltage, and nature of the gas mixture, gas pressure and temperature of the substrate. On the other hand, the chamber can be used in different X-ray diffraction scanning modes, namely, {theta}-2{theta} scanning, fixed {alpha}-2{theta} scanning, and also low angle techniques such as grazing incidence small angle X-ray scattering and X-ray reflectivity. The chamber was mounted on a standard four-circle diffractometer located in a synchrotron beam line and first used for a preliminary X-ray diffraction analysis of AlN thin films during their growth on the surface of a (100) silicon wafer.

  16. Magnetron discharge sputtering for fabrication of nanogradient optical coatings

    NASA Astrophysics Data System (ADS)

    Volpian, O. D.; Kuzmichev, A. I.; Ermakov, G. F.; Krikunov, A. I.; Obod, Yu A.; Silin, N. V.; Shkatula, S. V.

    2015-11-01

    The technology of the middle frequency pulse reactive magnetron sputtering for fabrication of nanogradient optical coatings with smooth variation of refractive index was developed and studied. The technology is based on programmable motion of a substrate over two magnetrons with targets of different materials. The feature of the deposition process is a constant composition of reactive gas medium and an invariable magnetron operation mode. To realize this technology, an automatic computer-controlled sputtering system additionally comprising a gas discharge activator of reactive gas (oxygen) and an in situ optical monitor- spectrovisor has been built. The dielectric oxide-based nanogradient coatings of photon-barrier type were successfully fabricated. The obtained results confirm the high potential of the middle frequency pulse reactive magnetron sputtering of silicon and metal targets for fabrication of nanogradient dielectric optical coatings with excellent properties.

  17. Preparation of cubic boron nitride films by radio frequency magnetron sputtering and radio frequency ion plating

    NASA Astrophysics Data System (ADS)

    Ulrich, S.; Scherer, J.; Schwan, J.; Barzen, I.; Jung, K.; Scheib, M.; Ehrhardt, H.

    1996-02-01

    Cubic boron nitride (c-BN) thin films have been deposited by unbalanced rf (13.56 MHz) magnetron sputtering of a hexagonal boron nitride target in a pure argon discharge. Deposition parameters have been 300 W rf target power, 8×10-4 mbar argon pressure, 3.5 cm target substrate distance, and 800 K substrate temperature. Under these conditions the ion current density is 2.25 mA/cm2 and the growth rate is ˜1.1 Å/s. By applying a rf substrate bias the ion plating energy is varied from plasma potential of 37 eV up to 127 eV. The films have been characterized by infrared (IR) and Auger electron spectroscopy (AES), x-ray diffraction (XRD), x-ray reflectivity, elastic recoil detection (ERD), Rutherford backscattering (RBS), nuclear resonance analysis (NRA), and stress measurements. The subplantation model proposed by Lifshitz and Robertson can be applied to the c-BN formation. An energy of about 85±5 eV is found where the stress (25 GPa, 200 nm film thickness) and the c-BN content (≳90%) have a maximum. The grain size of the crystalline c-BN phase was estimated to be in the range of 5 nm. Below an energy of 67±5 eV no c-BN could be detected. An excellent adhesion has been obtained by a special interface treatment.

  18. Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ju, Hongbo; Xu, Junhua

    2015-11-01

    Recently, the chameleon thin films were developed with the purpose of adjusting their chemistry at self-mating interfaces in response to environmental changes at a wide temperature range. However, very few studies have focused on what state the lubricious noble metal exists in the films and the tribological properties at room temperature (RT). Composite NbN-Ag films with various Ag content (Ag/(Nb + Ag)) were deposited using reactive magnetron sputtering to investigate the crystal structure, mechanical and tribological properties. A combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) analyses showed that face-centered cubic (fcc) NbN, hexagonal close-packed (hcp) NbN and fcc silver coexisted in NbN-Ag films. The incorporation of soft Ag into NbN matrix led to the hardness decrease from 29.6 GPa at 0 at.% Ag to 11.3 GPa at 19.9 at.% Ag. Tribological properties of NbN-Ag films performed using dry pin-on-disc wear tests against Al2O3 depended on Ag content to a large extent. The average friction coefficient and wear rate of NbN-Ag films decreased as Ag content increased from 4.0 to 9.2 at.%. With a further increase of Ag content, the average friction coefficient further decreased, while the wear rate increased gradually. The optimal Ag content was found to be 9.2-13.5 at.%, which showed low average friction coefficient values of 0.46-0.40 and wear rate values of 1.1 × 10-8 to 1.7 × 10-8 mm3/(mm N). 3D Profiler and Raman spectroscopy measurements revealed that the lubricant tribo-film AgNbO3 detected on the surface of the wear tracks could lead to the friction coefficient curve stay constant and decrease the average friction coefficients. The decrease of wear rate was mainly attributed to the lubricant tribo-film AgNbO3 as Ag content increased from 4.0 to 9.2 at.%; with a further increase in Ag content, the wear rate increased with increasing Ag content in NbN-Ag films because a

  19. Phase map, composition and resistivity of reactively magnetron sputtered and annealed Ta–N films

    NASA Astrophysics Data System (ADS)

    Salamon, K.; Radić, N.; Bogdanović Radović, I.; Očko, M.

    2016-05-01

    Thin films of tantalum nitride (Ta–N) have been prepared by reactive magnetron deposition under various nitrogen partial pressures p{{\\text{N}}2} (0-1) and subsequently annealed (T a   =  450–950 °C). The structure, density, composition and electrical resistivity of the prepared films were systematically investigated. A p{{\\text{N}}2}-{{T}a} phase map was constructed from the results of structural analysis. With increasing of p{{\\text{N}}2} from 0 to 0.2, a single-phase or two-phase mixture films of tetragonal Ta, Ta2N ({{T}a}≥slant 450 °C), ɛ-TaN ({{T}a}≥slant 850 °C), θ-TaN ({{T}a}≥slant 850 °C) and fcc δ-TaN are sequentially observed. For p{{\\text{N}}2}=0.25 –0.45, the as grown and annealed films exhibit δ-TaN structure. Amorphous films grown in the p{{\\text{N}}2}=0.45 –0.75 range crystallize as cubic Ta2N3 upon annealing at {{T}a}≥slant 650 °C or as δ-TaN at {{T}a}≥slant 850 °C. A cubic Ta2N3 is grown at highest p{{\\text{N}}2} (≥slant 0.85), which decomposes to δ-TaN at {{T}a}≥slant 850 °C. The N     / Ta atomic ratio in the film linearly increases for p{{\\text{N}}2}=0 –0.5, ranging from 0 to 2.1, while the mass density monotonically decreases with p{{\\text{N}}2} . Upon annealing, a part of N atoms out-diffuses from the films deposited at p{{\\text{N}}2}≥slant 0.3 . The electrical resistivity strongly depends on both p{{\\text{N}}2} and T a . However, in the as grown and annealed δ-TaN films the resistivity was of the order of 100–1000 μ Ω cm. In these films, a correlation between the resistivity and the average number of defects (Ta vacancies and N atom excess) is observed. Finally, the influence of thermally introduced oxygen on the films resistivity has been revealed.

  20. Thermal conductivity of nitride films of Ti, Cr, and W deposited by reactive magnetron sputtering

    SciTech Connect

    Jagannadham, Kasichainula

    2015-05-15

    Nitride films of Ti, Cr, and W were deposited using reactive magnetron sputtering from metal targets in argon and nitrogen plasma. TiN films with (200) orientation were achieved on silicon (100) at the substrate temperature of 500 and 600 °C. The films were polycrystalline at lower temperature. An amorphous interface layer was observed between the TiN film and Si wafer deposited at 600 °C. TiN film deposited at 600 °C showed the nitrogen to Ti ratio to be near unity, but films deposited at lower temperature were nitrogen deficient. CrN film with (200) orientation and good stoichiometry was achieved at 600 °C on Si(111) wafer but the film deposited at 500 °C showed cubic CrN and hexagonal Cr{sub 2}N phases with smaller grain size and amorphous back ground in the x-ray diffraction pattern. An amorphous interface layer was not observed in the cubic CrN film on Si(111) deposited at 600 °C. Nitride film of tungsten deposited at 600 °C on Si(100) wafer was nitrogen deficient, contained both cubic W{sub 2}N and hexagonal WN phases with smaller grain size. Nitride films of tungsten deposited at 500 °C were nonstoichiometric and contained cubic W{sub 2}N and unreacted W phases. There was no amorphous phase formed along the interface for the tungsten nitride film deposited at 600 °C on the Si wafer. Thermal conductivity and interface thermal conductance of all the nitride films of Ti, Cr, and W were determined by transient thermoreflectance technique. The thermal conductivity of the films as function of deposition temperature, microstructure, nitrogen stoichiometry and amorphous interaction layer at the interface was determined. Tungsten nitride film containing both cubic and hexagonal phases was found to exhibit much higher thermal conductivity and interface thermal conductance. The amorphous interface layer was found to reduce effective thermal conductivity of TiN and CrN films.

  1. Physical properties of epitaxial ZrN/MgO(001) layers grown by reactive magnetron sputtering

    SciTech Connect

    Mei, A. B.; Zhang, C.; Sardela, M.; Eckstein, J. N.; Rockett, A.; Howe, B. M.; Hultman, L.; Petrov, I.; Greene, J. E.

    2013-11-15

    Single-crystal ZrN films, 830 nm thick, are grown on MgO(001) at 450 °C by magnetically unbalanced reactive magnetron sputtering. The combination of high-resolution x-ray diffraction reciprocal lattice maps, high-resolution cross-sectional transmission electron microscopy, and selected-area electron diffraction shows that ZrN grows epitaxially on MgO(001) with a cube-on-cube orientational relationship, (001){sub ZrN}‖(001){sub MgO} and [100]{sub ZrN}‖[100]{sub MgO}. The layers are essentially fully relaxed with a lattice parameter of 0.4575 nm, in good agreement with reported results for bulk ZrN crystals. X-ray reflectivity results reveal that the films are completely dense with smooth surfaces (roughness = 1.3 nm, consistent with atomic-force microscopy analyses). Based on temperature-dependent electronic transport measurements, epitaxial ZrN/MgO(001) layers have a room-temperature resistivity ρ{sub 300K} of 12.0 μΩ-cm, a temperature coefficient of resistivity between 100 and 300 K of 5.6 × 10{sup −8}Ω-cm K{sup −1}, a residual resistivity ρ{sub o} below 30 K of 0.78 μΩ-cm (corresponding to a residual resistivity ratio ρ{sub 300Κ}/ρ{sub 15K} = 15), and the layers exhibit a superconducting transition temperature of 10.4 K. The relatively high residual resistivity ratio, combined with long in-plane and out-of-plane x-ray coherence lengths, ξ{sub ‖} = 18 nm and ξ{sub ⊥} = 161 nm, indicates high crystalline quality with low mosaicity. The reflectance of ZrN(001), as determined by variable-angle spectroscopic ellipsometry, decreases slowly from 95% at 1 eV to 90% at 2 eV with a reflectance edge at 3.04 eV. Interband transitions dominate the dielectric response above 2 eV. The ZrN(001) nanoindentation hardness and modulus are 22.7 ± 1.7 and 450 ± 25 GPa.

  2. Electrical and optical properties of Ta-Si-N thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Oezer, D.; Ramírez, G.; Rodil, S. E.; Sanjinés, R.

    2012-12-01

    The electrical and optical properties of TaxSiyNz thin films deposited by reactive magnetron sputtering from individual Ta and Si targets were studied in order to investigate the effects of nitrogen and silicon contents on both properties and their correlation to the film microstructure. Three sets of fcc-TaxSiyNz thin films were prepared: sub-stoichiometric TaxSiyN0.44, nearly stoichiometric TaxSiyN0.5, and over-stoichiometric TaxSiyN0.56. The optical properties were investigated by near-normal-incidence reflectivity and ellipsometric measurements in the optical energy range from 0.375 eV to 6.8 eV, while the d.c. electrical resistivity was measured in the van der Pauw configuration from 20 K to 300 K. The optical and electrical measurements were interpreted using the standard Drude-Lorentz model and the so-called grain boundary scattering model, respectively. The electronic properties were closely correlated with the compositional and structural modifications of the TaxSiyNz films due to variations in the stoichiometry of the fcc-TaNz system and the addition of Si atoms. According to the nitrogen and silicon contents, fcc-TaxSiyNz films can exhibit room temperature resistivity values ranging from 102 μΩ cm to about 6 × 104 μΩ cm. The interpretation of the experimental temperature-dependent resistivity data within the Grain Boundary Scattering model, combined with the results from optical investigations, showed that the mean electron transmission probability G and the free carriers concentration, N, are the main parameters that control the transport properties of these films. The results indicated that the correlation between electrical and optical measurements with the chemical composition and the nanostructure of the TaxSiyNz thin films provides a pertinent and consistent description of the evolution of the Ta-Si-N system from a solid solution to a nanocomposite material due to the addition of Si atoms.

  3. Electrical and optical properties of Ta-Si-N thin films deposited by reactive magnetron sputtering

    SciTech Connect

    Oezer, D.; Sanjines, R.; Ramirez, G.; Rodil, S. E.

    2012-12-01

    The electrical and optical properties of Ta{sub x}Si{sub y}N{sub z} thin films deposited by reactive magnetron sputtering from individual Ta and Si targets were studied in order to investigate the effects of nitrogen and silicon contents on both properties and their correlation to the film microstructure. Three sets of fcc-Ta{sub x}Si{sub y}N{sub z} thin films were prepared: sub-stoichiometric Ta{sub x}Si{sub y}N{sub 0.44}, nearly stoichiometric Ta{sub x}Si{sub y}N{sub 0.5}, and over-stoichiometric Ta{sub x}Si{sub y}N{sub 0.56}. The optical properties were investigated by near-normal-incidence reflectivity and ellipsometric measurements in the optical energy range from 0.375 eV to 6.8 eV, while the d.c. electrical resistivity was measured in the van der Pauw configuration from 20 K to 300 K. The optical and electrical measurements were interpreted using the standard Drude-Lorentz model and the so-called grain boundary scattering model, respectively. The electronic properties were closely correlated with the compositional and structural modifications of the Ta{sub x}Si{sub y}N{sub z} films due to variations in the stoichiometry of the fcc-TaN{sub z} system and the addition of Si atoms. According to the nitrogen and silicon contents, fcc-Ta{sub x}Si{sub y}N{sub z} films can exhibit room temperature resistivity values ranging from 10{sup 2} {mu}{Omega} cm to about 6 Multiplication-Sign 10{sup 4} {mu}{Omega} cm. The interpretation of the experimental temperature-dependent resistivity data within the Grain Boundary Scattering model, combined with the results from optical investigations, showed that the mean electron transmission probability G and the free carriers concentration, N, are the main parameters that control the transport properties of these films. The results indicated that the correlation between electrical and optical measurements with the chemical composition and the nanostructure of the Ta{sub x}Si{sub y}N{sub z} thin films provides a pertinent and

  4. Decorative black TiCxOy film fabricated by DC magnetron sputtering without importing oxygen reactive gas

    NASA Astrophysics Data System (ADS)

    Ono, Katsushi; Wakabayashi, Masao; Tsukakoshi, Yukio; Abe, Yoshiyuki

    2016-02-01

    Decorative black TiCxOy films were fabricated by dc (direct current) magnetron sputtering without importing the oxygen reactive gas into the sputtering chamber. Using a ceramic target of titanium oxycarbide (TiC1.59O0.31), the oxygen content in the films could be easily controlled by adjustment of total sputtering gas pressure without remarkable change of the carbon content. The films deposited at 2.0 and 4.0 Pa, those are higher pressure when compared with that in conventional magnetron sputtering, showed an attractive black color. In particular, the film at 4.0 Pa had the composition of TiC1.03O1.10, exhibited the L* of 41.5, a* of 0.2 and b* of 0.6 in CIELAB color space. These values were smaller than those in the TiC0.29O1.38 films (L* of 45.8, a* of 1.2 and b* of 1.2) fabricated by conventional reactive sputtering method from the same target under the conditions of gas pressure of 0.3 Pa and optimized oxygen reactive gas concentration of 2.5 vol.% in sputtering gas. Analysis of XRD and XPS revealed that the black film deposited at 4.0 Pa was the amorphous film composed of TiC, TiO and C. The adhesion property and the heat resisting property were enough for decorative uses. This sputtering process has an industrial advantage that the decorative black coating with color uniformity in large area can be easily obtained by plain operation because of unnecessary of the oxygen reactive gas importing which is difficult to be controlled uniformly in the sputtering chamber.

  5. Properties of a-C:H:Si thin films deposited by middle-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jiang, Jinlong; Wang, Yubao; Du, Jinfang; Yang, Hua; Hao, Junying

    2016-08-01

    The silicon doped hydrogenated amorphous carbon (a-C:H:Si) films were prepared on silicon substrates by middle-frequency magnetron sputtering silicon target in an argon and methane gas mixture atmosphere. The deposition rate, chemical composition, structure, surface properties, stress, hardness and tribological properties in the ambient air of the films were systemically investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), nanoindentation and tribological tester. The results show that doped silicon content in the films is controlled in the wide range from 39.7 at.% to 0.2 at.% by various methane gas flow rate, and methane flow rate affects not only the silicon content but also its chemical bonding structure in the films due to the transformation of sputtering modes. Meanwhile, the sp3 carbon component in the films linearly increases with increasing of methane flow rate. The film deposited at moderate methane flow rate of 40-60 sccm exhibits the very smooth surface (RMS roughness 0.4 nm), low stress (0.42 GPa), high hardness (21.1 GPa), as well as low friction coefficient (0.038) and wear rate (1.6 × 10-7 mm3/Nm). The superior tribological performance of the films could be attributed to the formation and integral covering of the transfer materials on the sliding surface and their high hardness.

  6. Radio-frequency superimposed direct current magnetron sputtered Ga:ZnO transparent conducting thin films

    NASA Astrophysics Data System (ADS)

    Sigdel, Ajaya K.; Ndione, Paul F.; Perkins, John D.; Gennett, Thomas; van Hest, Maikel F. A. M.; Shaheen, Sean E.; Ginley, David S.; Berry, Joseph J.

    2012-05-01

    The utilization of radio-frequency (RF) superimposed direct-current (DC) magnetron sputtering deposition on the properties of gallium doped ZnO (GZO) based transparent conducting oxides has been examined. The GZO films were deposited using 76.2 mm diameter ZnO:Ga2O3 (5 at. % Ga vs. Zn) ceramic oxide target on heated non-alkaline glass substrates by varying total power from 60 W to 120 W in steps of 20 W and at various power ratios of RF to DC changing from 0 to 1 in steps of 0.25. The GZO thin films grown with pure DC, mixed approach, and pure RF resulted in conductivities of 2200 ± 200 S/cm, 3920 ± 600 S/cm, and 3610 ± 400 S/cm, respectively. X-ray diffraction showed all films have wurtzite ZnO structure with the c-axis oriented perpendicular to the substrate. The films grown with increasing RF portion of the total power resulted in the improvement of crystallographic texture with smaller full-width half maximum in χ and broadening of optical gap with increased carrier concentration via more efficient doping. Independent of the total sputtering power, all films grown with 50% or higher RF power portion resulted in high mobility (˜28 ± 1 cm2/Vs), consistent with observed improvements in crystallographic texture. All films showed optical transmittance of ˜90% in the visible range.

  7. Germanium nanoislands grown by radio frequency magnetron sputtering: Annealing time dependent surface morphology and photoluminescence

    NASA Astrophysics Data System (ADS)

    Alireza, Samavati; Othaman, Z.; K. Ghoshal, S.; J. Amjad, R.

    2013-09-01

    Structural and optical properties of ~ 20 nm Ge nanoislands grown on Si(100) by radio frequency (rf) magnetron sputtering under varying annealing conditions are reported. Rapid thermal annealing at a temperature of 600°C for 30 s, 90 s, and 120 s are performed to examine the influence of annealing time on the surface morphology and photoluminescence properties. X-ray diffraction spectra reveal prominent Ge and GeO2 peaks highly sensitive to the annealing time. Atomic force microscope micrographs of the as-grown sample show pyramidal nanoislands with relatively high-density 1011 cm-2)). The nanoislands become dome-shaped upon annealing through a coarsening process mediated by Oswald ripening. The room temperature photoluminescence peaks for both as-grown 3.29 eV) and annealed 3.19 eV) samples consist of high intensity and broad emission, attributed to the effect of quantum confinement. The red shift (~0.10 eV) of the emission peak is attributed to the change in the size of the Ge nanoislands caused by annealing. Our easy fabrication method may contribute to the development of Ge nanostructure-based optoelectronics.

  8. () preferential orientation of polycrystalline AlN grown on SiO2/Si wafers by reactive sputter magnetron technique

    NASA Astrophysics Data System (ADS)

    Bürgi, Juan; García Molleja, Javier; Bolmaro, Raúl; Piccoli, Mattia; Bemporad, Edoardo; Craievich, Aldo; Feugeas, Jorge

    2016-04-01

    Aluminum nitride (AlN) is a ceramic compound that could be used as a processing material for semiconductor industry. However, the AlN crystalline structure plays a crucial role in its performance. In this paper, polycrystalline AlN films have been grown onto Si(1 1 1) and Si(1 0 0) (with an oxide native coverage of SiO2) wafers by RSM (reactive sputter magnetron) technique using a small (5 L) reactor. The development of polycrystalline AlN films with a good texture along () planes, i.e., semi-polar structure, was shown. Analyses were done using X-ray diffraction in the Bragg-Brentano mode and in the GIXRD (grazing incidence X-ray diffraction) one, and the texture was determined through pole figures. The structure and composition of these films were also studied by TEM and EDS techniques. Nevertheless, the mapping of the magnetic field between the magnetron and the substrate has shown a lack of symmetry at the region near the substrate. This lack of symmetry can be attributable to the small dimensions of the chamber, and the present paper suggests that this phenomenon is the responsible for the unusual () texture developed.

  9. BiVO4 photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Gong, Haibo; Freudenberg, Norman; Nie, Man; van de Krol, Roel; Ellmer, Klaus

    2016-04-01

    Photoactive bismuth vanadate (BiVO4) thin films were deposited by reactive co-magnetron sputtering from metallic Bi and V targets. The effects of the V-to-Bi ratio, molybdenum doping and post-annealing on the crystallographic and photoelectrochemical (PEC) properties of the BiVO4 films were investigated. Phase-pure monoclinic BiVO4 films, which are more photoactive than the tetragonal BiVO4 phase, were obtained under slightly vanadium-rich conditions. After annealing of the Mo-doped BiVO4 films, the photocurrent increased 2.6 times compared to undoped films. After optimization of the BiVO4 film thickness, the photocurrent densities (without a catalyst or a blocking layer or a hole scavenger) exceeded 1.2 mA/cm2 at a potential of 1.23 VRHE under solar AM1.5 irradiation. The surprisingly high injection efficiency of holes into the electrolyte is attributed to the highly porous film morphology. This co-magnetron sputtering preparation route for photoactive BiVO4 films opens new possibilities for the fabrication of large-scale devices for water splitting.

  10. Preparation of hydrogenated diamond-like carbon films by reactive Ar/CH4 high power impulse magnetron sputtering with negative pulse voltage

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Kamata, Hikaru

    2015-09-01

    High power impulse magnetron sputtering (HiPIMS) has been attracted, because sputtered target species are highly ionized. High densities of active species such as radical ions and neutral radicals can be also achieved owing to high density reactive HiPIMS plasmas. We investigate properties of hydrogenated diamond-like carbon films prepared by reactive HiPIMS of Ar/CH4 gas mixture. The properties of the films strongly depend on the plasma compositions and the kinetic energy of the carbon-containing ions which can enter into the films. The film preparation is performed at an average power of 60 W and a repetition frequency of 110 Hz, changing CH4 fraction up to 15%. Total pressure ranges between 0.3 and 2 Pa. The maximum of instantaneous power is about 20-25 kW, and the magnitude of the current is 36 A. A negative pulse voltage is applied to the substrates for about 10 μs after the target voltage changed from about -600 V to 0 V. The structural properties are characterized by Raman spectroscopy and nano-indentation method. Film hardness strongly depends on the magnitude of negative pulse voltage. By adjusting the magnitude of negative voltage, the film hardness ranges between about 10 and 22 GPa. This work is partially supported by JSPS KAKENHI Grant Number 26420230.

  11. Epitaxial growth and orientation of AlN thin films on Si(001) substrates deposited by reactive magnetron sputtering

    SciTech Connect

    Valcheva, E.; Birch, J.; Persson, P. O. A ring .; Tungasmita, S.; Hultman, L.

    2006-12-15

    Epitaxial domain formation and textured growth in AlN thin films deposited on Si(001) substrates by reactive magnetron sputtering was studied by transmission electron microscopy and x-ray diffraction. The films have a wurtzite type structure with a crystallographic orientation relationship to the silicon substrate of AlN(0001)(parallel sign)Si(001). The AlN film is observed to nucleate randomly on the Si surface and grows three dimensionally, forming columnar domains. The in-plane orientation reveals four domains with their a axes rotated by 15 deg. with respect to each other: AlN<1120>(parallel sign)Si[110], AlN<0110>(parallel sign)Si[110], AlN<1120>(parallel sign)Si[100], and AlN<0110>(parallel sign)Si[100] An explanation of the growth mode based on the large lattice mismatch and the topology of the substrate surface is proposed.

  12. Enhanced electrical and noise properties of nanocomposite vanadium oxide thin films by reactive pulsed-dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Basantani, H. A.; Kozlowski, S.; Lee, Myung-Yoon; Li, J.; Dickey, E. C.; Jackson, T. N.; Bharadwaja, S. S. N.; Horn, M.

    2012-06-01

    Thin films of VOx (1.3 ≤ x ≤ 2) were deposited by reactive pulsed-dc magnetron sputtering of a vanadium metal target while RF-biasing the substrate. Rutherford back scattering, glancing angle x-ray, and cross-sectional transmission electron microscopy measurements revealed the formation of nanocolumns with nanotwins within VOx samples. The resistivity of nanotwinned VOx films ranged from 4 mΩ.cm to 0.6 Ω.cm and corresponding temperature coefficient of resistance between -0.1% and -2.6% per K, respectively. The 1/f electrical noise was analyzed in these VOx samples using the Hooge-Vandamme relation. These VOx films are comparable or surpass commercial VOx films deposited by ion beam sputtering.

  13. Reactive magnetron sputtering of Cu2O: Dependence on oxygen pressure and interface formation with indium tin oxide

    NASA Astrophysics Data System (ADS)

    Deuermeier, Jonas; Gassmann, Jürgen; Brötz, Joachim; Klein, Andreas

    2011-06-01

    Thin films of copper oxides were prepared by reactive magnetron sputtering and structural, morphological, chemical, and electronic properties were analyzed using x-ray diffraction, atomic force microscopy, in situ photoelectron spectroscopy, and electrical resistance measurements. The deposition conditions for preparation of Cu(I)-oxide (Cu2O) are identified. In addition, the interface formation between Cu2O and Sn-doped In2O3 (ITO) was studied by stepwise deposition of Cu2O onto ITO and vice versa. A type II (staggered) band alignment with a valence band offset ΔEVB = 2.1-2.6 eV depending on interface preparation is observed. The band alignment explains the nonrectifying behavior of p-Cu2O/n-ITO junctions, which have been investigated for thin film solar cells.

  14. Reactive magnetron sputtering of Cu{sub 2}O: Dependence on oxygen pressure and interface formation with indium tin oxide

    SciTech Connect

    Deuermeier, Jonas; Gassmann, Juergen; Broetz, Joachim; Klein, Andreas

    2011-06-01

    Thin films of copper oxides were prepared by reactive magnetron sputtering and structural, morphological, chemical, and electronic properties were analyzed using x-ray diffraction, atomic force microscopy, in situ photoelectron spectroscopy, and electrical resistance measurements. The deposition conditions for preparation of Cu(I)-oxide (Cu{sub 2}O) are identified. In addition, the interface formation between Cu{sub 2}O and Sn-doped In{sub 2}O{sub 3} (ITO) was studied by stepwise deposition of Cu{sub 2}O onto ITO and vice versa. A type II (staggered) band alignment with a valence band offset {Delta}E{sub VB} 2.1-2.6 eV depending on interface preparation is observed. The band alignment explains the nonrectifying behavior of p-Cu{sub 2}O/n-ITO junctions, which have been investigated for thin film solar cells.

  15. Enhanced electrical and noise properties of nanocomposite vanadium oxide thin films by reactive pulsed-dc magnetron sputtering

    SciTech Connect

    Basantani, H. A.; Kozlowski, S.; Lee, Myung-Yoon; Li, J.; Dickey, E. C.; Jackson, T. N.; Bharadwaja, S. S. N.; Horn, M.

    2012-06-25

    Thin films of VO{sub x} (1.3 {<=} x {<=} 2) were deposited by reactive pulsed-dc magnetron sputtering of a vanadium metal target while RF-biasing the substrate. Rutherford back scattering, glancing angle x-ray, and cross-sectional transmission electron microscopy measurements revealed the formation of nanocolumns with nanotwins within VO{sub x} samples. The resistivity of nanotwinned VO{sub x} films ranged from 4 m{Omega}{center_dot}cm to 0.6 {Omega}{center_dot}cm and corresponding temperature coefficient of resistance between -0.1% and -2.6% per K, respectively. The 1/f electrical noise was analyzed in these VO{sub x} samples using the Hooge-Vandamme relation. These VO{sub x} films are comparable or surpass commercial VO{sub x} films deposited by ion beam sputtering.

  16. Bimodal substrate biasing to control γ-Al{sub 2}O{sub 3} deposition during reactive magnetron sputtering

    SciTech Connect

    Prenzel, Marina; Kortmann, Annika; Stein, Adrian; Keudell, Achim von; Nahif, Farwah; Schneider, Jochen M.

    2013-09-21

    Al{sub 2}O{sub 3} thin films have been deposited at substrate temperatures between 500 °C and 600 °C by reactive magnetron sputtering using an additional arbitrary substrate bias to tailor the energy distribution of the incident ions. The films were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The film structure being amorphous, nanocrystalline, or crystalline was correlated with characteristic ion energy distributions. The evolving crystalline structure is connected with different levels of displacements per atom (dpa) in the growing film as being derived from TRIM simulations. The boundary between the formation of crystalline films and amorphous or nanocrystalline films was at 0.8 dpa for a substrate temperature of 500 °C. This threshold shifts to 0.6 dpa for films grown at 550 °C.

  17. A study of structure and properties of Ti-doped DLC film by reactive magnetron sputtering with ion implantation

    NASA Astrophysics Data System (ADS)

    Ma, Guojia; Gong, Shuili; Lin, Guoqiang; Zhang, Lin; Sun, Gang

    2012-01-01

    Ti-doped diamond-like carbon (DLC) films were prepared on Ti alloys by reactive magnetron sputtering combined with PSII technology. The structure and properties of unmodified and Ti-doped DLC films were analyzed in a systematic way by different testing, such as TEM, XPS, frictional wear testing, contact angle measurement and so on. The results showed that Ti-doped DLC was a typical a-C:H film containing TiC nanometer grains, whose mechanical properties were obviously improved, such as hardness, wear resistance and cohesive strength, still kept good wear resistance at the ambient temperature of 450 °C, and held a rather large mean water contact angle of 104.2 ± 1°.

  18. Structural parameters and polarization properties of TiN thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Solovan, M. M.; Brus, V. V.; Pidkamin, L. J.; Maryanchuk, P. D.; Dobrovolsky, Yu. G.

    2015-11-01

    We report the results of the investigation of morphological, structural, optical and plarimeteric properties of titanium nitride thin films deposited on silicon and glass substrates. The magnetron sputtered titanium nitride thin films were established to possess crystalline structure with the average grain size about D = 15 nm. The method of correlation matrix is was applied for the analysis of polarization properties of scattered light by the titanium nitride thin film. The obtained experimental result, can be explained by the presence of the effects of linear and circular dichroism in the material of the titanium nitride thin films under investigations.

  19. Microstructural studies of nanocomposite thin films of Ni/CrN prepared by reactive magnetron sputtering.

    PubMed

    Kuppusami, P; Thirumurugesan, R; Divakar, R; Kataria, S; Ramaseshan, R; Mohandas, E

    2009-09-01

    Synthesis and characterization of nanocomposites of Ni/CrN thin films prepared by DC magnetron sputtering from a target of 50 wt.%Ni-50 wt.%Cr is investigated. The films prepared as a function of nitrogen flow rate and substrate temperature showed that the films contained Ni and CrN phases with crystallite sizes in the nanometer range. Measurement of nanomechanical properties of the composite films exhibited a significant decrease in the values of hardness and Young's modulus than those of pure CrN films. PMID:19928270

  20. Effects of an unbalanced magnetron in a unique dual-cathode, high rate reactive sputtering system

    NASA Technical Reports Server (NTRS)

    Rohde, S. L.; Petrov, I.; Sproul, W. D.; Barnett, S. A.; Rudnik, P. J.; Graham, M. E.

    1990-01-01

    Simple plasma and magnetic field measurements are presented to illustrate the opportunities afforded by using unbalanced magnetrons in a dual-cathode system. The system employs a pair of opposed cathodes, 38 cm x 13 cm, placed 27.5 cm apart, to coat specimens mounted on a rotational substrate holder. Comparisons are drawn between the original 'balanced' magnetron and several unbalanced configurations in terms of field strengths, deposition rates, etching characteristics, and substrate ion current densities for the growth of TiN films. The effects of 'unbalancing' on the nature of the plasma within the 3D geometry of the deposition chamber are elucidated via plasma probe and magnetic field studies performed under a variety of conditions. All the unbalanced configurations examined provided enhanced ion bombardment at the surface of the growing film. The closed-field or opposed magnet geometry resulted in a threefold or greater increase in current density when compared with that obtained using the corresponding mirrored geometry under the same conditions.

  1. Aluminum-nitride codoped zinc oxide films prepared using a radio-frequency magnetron cosputtering system

    SciTech Connect

    Liu, D.-S.; Sheu, C.-S.; Lee, C.-T.

    2007-08-01

    Al-N codoped zinc oxide films were prepared using a radio-frequency magnetron cosputtering system at room temperature. AlN and ZnO materials were employed as the cosputtered targets. The as-deposited cosputtered films at various theoretical atomic ratios [Al/(Al+Zn) at. %] showed n-type conductive behavior in spite of the N atoms exceeding that of the Al dopants, indicating that the N-related acceptors were still inactive. The crystalline structure was obviously correlated with the cosputtered AlN contents and eventually evolved into an amorphous structure for the Al-N codoped ZnO film at a theoretical Al doping level reaching 60%. With an adequate postannealing treatment, the N-related acceptors were effectively activated and the p-type ZnO conductive behavior achieved. The appearance of the Zn{sub 3}N{sub 2} phase in the x-ray diffraction pattern of the annealed Al-N codoped ZnO film provided evidence of the nitrification of zinc ions. The redshift of the shallow level transition and the apparent suppression of the oxygen-related deep level emission investigated from the photoluminescence spectrum measured at room temperature were concluded to be influenced by the activated N-related acceptors. In addition, the activation of the N acceptors denoted as N-Zn bond and the chemical bond related to the Zn{sub 3}N{sub 2} crystalline structure were also observed from the associated x-ray photoelectron spectroscopy spectra.

  2. Obtaining Au thin films in atmosphere of reactive nitrogen through magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Quintero, J. H.; Ospina, R.; Mello, A.

    2016-02-01

    4d and 5d series of the transition metals are used to the obtaining nitrides metallic, due to the synthesis of PtN, AgN and AuN in the last years. Different nitrides are obtained in the Plasma Assisted Physics Vapour Deposition system, due to its ionization energy which is necessary for their formation. In this paper a Magnetron Sputtering system was used to obtain Au thin films on Si wafers in Nitrogen atmosphere. The substrate temperature was varied between 500 to 950°C. The samples obtained at high temperatures (>500°C) show Au, Si and N elements, as it is corroborated in the narrow spectrum obtained for X-Ray Photoelectron Spectroscopy; besides the competition of orientation crystallographic texture between (111) and (311) directions was present in the X-Ray Diffraction analysis to the sample heated at 950°C.

  3. Influence of inert gases on the reactive high power pulsed magnetron sputtering process of carbon-nitride thin films

    SciTech Connect

    Schmidt, Susann; Czigany, Zsolt; Greczynski, Grzegorz; Jensen, Jens; Hultman, Lars

    2013-01-15

    The influence of inert gases (Ne, Ar, Kr) on the sputter process of carbon and carbon-nitride (CN{sub x}) thin films was studied using reactive high power pulsed magnetron sputtering (HiPIMS). Thin solid films were synthesized in an industrial deposition chamber from a graphite target. The peak target current during HiPIMS processing was found to decrease with increasing inert gas mass. Time averaged and time resolved ion mass spectroscopy showed that the addition of nitrogen, as reactive gas, resulted in less energetic ion species for processes employing Ne, whereas the opposite was noticed when Ar or Kr were employed as inert gas. Processes in nonreactive ambient showed generally lower total ion fluxes for the three different inert gases. As soon as N{sub 2} was introduced into the process, the deposition rates for Ne and Ar-containing processes increased significantly. The reactive Kr-process, in contrast, showed slightly lower deposition rates than the nonreactive. The resulting thin films were characterized regarding their bonding and microstructure by x-ray photoelectron spectroscopy and transmission electron microscopy. Reactively deposited CN{sub x} thin films in Ar and Kr ambient exhibited an ordering toward a fullerene-like structure, whereas carbon and CN{sub x} films deposited in Ne atmosphere were found to be amorphous. This is attributed to an elevated amount of highly energetic particles observed during ion mass spectrometry and indicated by high peak target currents in Ne-containing processes. These results are discussed with respect to the current understanding of the structural evolution of a-C and CN{sub x} thin films.

  4. Comparison of Y2O3:Bi3+ phosphor thin films fabricated by the spin coating and radio frequency magnetron techniques

    NASA Astrophysics Data System (ADS)

    Jafer, R. M.; Yousif, A.; Kumar, Vinod; Pathak, Trilok Kumar; Purohit, L. P.; Swart, H. C.; Coetsee, E.

    2016-09-01

    The reactive radio-frequency (RF) magnetron sputtering and spin coating fabrication techniques were used to fabricate Y2-xO3:Bix=0.5% phosphor thin films. The two techniques were analysed and compared as part of investigations being done on the application of down-conversion materials for a Si solar cell. The morphology, structural and optical properties of these thin films were investigated. The X-ray diffraction results of the thin films fabricated by both techniques showed cubic structures with different space groups. The optical properties showed different results because the Bi3+ ion is very sensitive towards its environment. The luminescence results for the thin film fabricated by the spin coating technique is very similar to the luminescence observed in the powder form. It showed three obvious emission bands in the blue and green regions centered at about 360, 410 and 495 nm. These emissions were related to the 3P1-1S0 transition of the Bi3+ ion situated in the two different sites of the Y2O3 matrix with I a-3(206) space group. Whereas the thin film fabricated by the radio frequency magnetron technique showed a broad single emission band in the blue region centered at about 416 nm. This was assigned to the 3P1-1S0 transition of the Bi3+ ion situated in one of the Y2O3 matrix's sites with a Fm-3 (225) space group. The spin coating fabrication technique is suggested to be the best technique to fabricate the Y2O3:Bi3+ phosphor thin films.

  5. Influence of Substrate Temperature on Structural Properties and Deposition Rate of AlN Thin Film Deposited by Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Jin, Hao; Feng, Bin; Dong, Shurong; Zhou, Changjian; Zhou, Jian; Yang, Yi; Ren, Tianling; Luo, Jikui; Wang, Demiao

    2012-07-01

    Aluminum nitride (AlN) thin films with c-axis preferred orientation have been prepared by reactive direct-current (DC) magnetron sputtering. The degree of preferred crystal orientation, the cross-sectional structure, and the surface morphology of AlN thin films grown on Si (100) substrates at various substrate temperatures from 60°C to 520°C have been investigated by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Results show that the substrate temperature has a significant effect on the structural properties, such as the degree of c-axis preferred orientation, the full-width at half-maximum (FWHM) of the rocking curve, the surface morphology, and the cross-sectional structure as well as the deposition rate of the AlN thin films. The optimal substrate temperature is 430°C, with corresponding root-mean-square surface roughness ( R rms) of 1.97 nm, FWHM of AlN (002) diffraction of 2.259°, and deposition rate of 20.86 nm/min. The mechanisms behind these phenomena are discussed. Finally, film bulk acoustic resonators based on AlN films were fabricated; the corresponding typical electromechanical coupling coefficient ( k {t/2}) is 5.1% with series and parallel frequencies of 2.37 GHz and 2.42 GHz, respectively.

  6. Characterization of thin MoO3 films formed by RF and DC-magnetron reactive sputtering for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Yordanov, R.; Boyadjiev, S.; Georgieva, V.; Vergov, L.

    2014-05-01

    The present work discusses a technology for deposition and characterization of thin molybdenum oxide (MoOx, MoO3) films studied for gas sensor applications. The samples were produced by reactive radio-frequency (RF) and direct current (DC) magnetron sputtering. The composition and microstructure of the films were studied by XPS, XRD and Raman spectroscopy, the morphology, using high resolution SEM. The research was focused on the sensing properties of the sputtered thin MoO3 films. Highly sensitive gas sensors were implemented by depositing films of various thicknesses on quartz resonators. Making use of the quartz crystal microbalance (QCM) method, these sensors were capable of detecting changes in the molecular range. Prototype QCM structures with thin MoO3 films were tested for sensitivity to NH3 and NO2. Even in as-deposited state and without heating the substrates, these films showed good sensitivity. Moreover, no additional thermal treatment is necessary, which makes the production of such QCM gas sensors simple and cost-effective, as it is fully compatible with the technology for producing the initial resonator. The films are sensitive at room temperature and can register concentrations as low as 50 ppm. The sorption is fully reversible, the films are stable and capable of long-term measurements.

  7. Effect of reactive magnetron sputtering parameters on structural and electrical properties of hafnium oxide thin films

    NASA Astrophysics Data System (ADS)

    Szymańska, Magdalena; Gierałtowska, Sylwia; Wachnicki, Łukasz; Grobelny, Marcin; Makowska, Katarzyna; Mroczyński, Robert

    2014-05-01

    The purpose of this work was to compare the structural and electrical properties of magnetron sputtered hafnium oxide (HfOx) and hafnium oxynitride (HfOxNy) thin films. A careful analysis of the influence of deposition process parameters, among them: pressure in the reactor chamber, Ar and O2 flow rate, power applied to the reactor chamber and deposition time, on electro-physical properties of HfOx and HfOxNy layers has been performed. In the course of this work we performed number of experiments by means of Taguchi's orthogonal arrays approach. Such a method allowed for the determination of dielectric layers properties depending on process parameters with relatively low amount of experiments. Moreover, the effects of post-deposition annealing on electrical characteristics of metal-insulator-semiconductor (MIS) structures with HfOx or HfOxNy gate dielectric and its structural properties have also been reported. Investigated hafnia thin films were characterized by means of spectroscopic ellipsometry (SE), electrical characteristics measurements, atomic force microscopy (AFM), X-ray diffraction spectroscopy (XRD) and Rutherford backscattering spectrometry (RBS).

  8. Process monitoring during AlN{sub x}O{sub y} deposition by reactive magnetron sputtering and correlation with the film's properties

    SciTech Connect

    Borges, Joel Vaz, Filipe; Marques, Luis; Martin, Nicolas

    2014-03-15

    In this work, AlN{sub x}O{sub y} thin films were deposited by reactive magnetron sputtering, using an aluminum target and an Ar/(N{sub 2}+O{sub 2}) atmosphere. The direct current magnetron discharge parameters during the deposition process were investigated by optical emission spectroscopy and a plasma floating probe was used. The discharge voltage, the electron temperature, the ion flux, and the optical emission lines were recorded for different reactive gas flows, near the target and close to the substrate. This information was correlated with the structural features of the deposits as a first step in the development of a system to control the structure and properties of the films during reactive magnetron sputtering. As the target becomes poisoned, the discharge voltage suffers an important variation, due to the modification of the secondary electron emission coefficient of the target, which is also supported by the evolution of the electron temperature and ion flux to the target. The sputtering yield of the target was also affected, leading to a reduction of the amount of Al atoms arriving to the substrate, according to optical emission spectroscopy results for Al emission line intensity. This behavior, together with the increase of nonmetallic elements in the films, allowed obtaining different microstructures, over a wide range of compositions, which induced different electrical and optical responses of films.

  9. Effect of Duty Cycle on Characteristics of CrNx Thin Films Deposited by Pulsed Direct Current Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Lung; Wu, Bo-Yi; Chen, Pin-Hung; Chen, Wei-Chih; Ho, Chun-Ta; Wu, Wan-Yu

    2013-11-01

    CrNx thin films have been deposited on silicon wafer, 304 stainless steel, and tungsten carbide substrates using pulsed DC reactive magnetron sputtering. A 10 kHz unipolar mode and a N2/Ar ratio of 17.5% were used. During the deposition, the substrate was not biased and not heated during the entire deposition time of 30 min. The microstructure, crystalline phase, and mechanical properties of the obtained CrNx thin films were examined to investigate the effect of the duty cycle. The results show that the maximum current and power density increase with decreasing duty cycle from 100% (DC) to 5%. Although the thickness of the CrNx thin films decreases with decreasing duty cycle, the ratio of the thickness to the pulse on-time shows a maximum of 273.3 nm/min at the lowest duty cycle of 5%. The obtained CrNx thin films show a mixture of the Cr2N and CrN phases. Moreover, the Cr-N bonding state and the percentages of CrN and Cr2N vary with the duty cycle. The effects of the duty cycle on the hardness, coefficient of friction, and corrosion behavior of the CrNx thin films are also investigated in this study.

  10. Low-temperature growth of gallium nitride films by inductively coupled-plasma-enhanced reactive magnetron sputtering

    SciTech Connect

    Ni, Chih-Jui; Chau-Nan Hong, Franklin

    2014-05-15

    Gallium nitride (GaN) films were grown on sapphire substrate by reactive magnetron sputtering. Inductively coupled-plasma (ICP) source was installed between the substrate holder and the sputtering target to increase the plasma density and the degree of ionization of nitrogen gas. Liquid Ga and Ar/N{sub 2} were used as the sputtering target and sputtering gases, respectively. X-ray diffraction measurements confirmed that the authors could grow high quality GaN crystallites at 500 °C. However, the crystalline GaN (0002) peak remained even by lowering the growth temperature down to 300 °C. The N:Ga ratio of the film grown at 500 °C was almost 1:1, and the nitrogen composition became higher toward the 1:1 N:Ga ratio with increasing the growth temperature. The high degree of ionization induced by ICP source was essential to the growth of high crystalline quality GaN films.

  11. Temperature-dependent microstructural evolution of Ti2AlN thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Jin, Hongmei; Chai, Jianwei; Pan, Jisheng; Seng, Hwee Leng; Goh, Glen Tai Wei; Wong, Lai Mun; Sullivan, Michael B.; Wang, Shi Jie

    2016-04-01

    Ti2AlN MAX-phase thin films have been deposited on MgO (1 1 1) substrates between 500 and 750 °C using DC reactive magnetron sputtering of a Ti2Al compound target in a mixed N2/Ar plasma. The composition, crystallinity, morphology and hardness of the thin films have been characterized by X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and nano-indentation, respectively. The film initially forms a mixture of Ti, Al and (Ti,Al)N cubic solid solution at 500 °C and nucleates into polycrystalline Ti2AlN MAX phases at 600 °C. Its crystallinity is further improved with an increase in the substrate temperature. At 750 °C, a single-crystalline Ti2AlN (0 0 0 2) thin film is formed having characteristic layered hexagonal surface morphology, high hardness, high Young's modulus and low electrical resistivity. The mechanism behind the evolution of the microstructure with growth temperature is discussed in terms of surface energies, lattice mismatch and enhanced adatom diffusion at high growth temperatures.

  12. Effect of duty cycle on the electrical and optical properties of VOx film deposited by pulsed reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dong, Xiang; Wu, Zhiming; Xu, Xiangdong; Wei, Xiongbang; Jiang, Yadong

    2013-12-01

    Vanadium oxide (VOx) films were deposited onto well cleaned glass substrates by bipolar pulsed reactive magnetron sputtering at room temperature. Dependence of the structure, composition, optical and electrical properties of the films on the pulsed power's duty cycle has been investigated. The results from the X-ray diffraction (XRD) analysis show that there was no remarkable change in the amorphous structure in the films with duty cycle can be observed. But chemical analysis of the surface evaluated with x-ray photoelectron spectroscopy (XPS) indicates that decrease the duty cycle favors to enhance the oxidation of the vanadium. The optical and electrical properties of the films were characterized by spectroscopic ellipsometry and temperature dependent resistivity measurements, respectively. The evolution of the transmittance, optical band gap, optical constants, resistivity and temperature coefficient of resistance (TCR) of the deposited films with duty cycle was analyzed and discussed. In comparison with conventional DC sputtering, under the same discharge atmosphere and power level, these parameters of the VOx films can be modified over a broad range by duty cycle. Therefore adjusting the duty cycle during deposition, which is an effective way to control and optimize the performances of the VOx film for various optoelectronic devices applications.

  13. Visible light-induced photocatalytic properties of WO{sub 3} films deposited by dc reactive magnetron sputtering

    SciTech Connect

    Imai, Masahiro; Kikuchi, Maiko; Oka, Nobuto; Shigesato, Yuzo

    2012-05-15

    The authors examined the photocatalytic activity of WO{sub 3} films (thickness 500-600 nm) deposited on a fused quartz substrate heated at 350-800 deg. C by dc reactive magnetron sputtering using a W metal target under the O{sub 2} gas pressure from 1.0 to 5.0 Pa. Films deposited at 800 deg. C under 5.0 Pa have excellent crystallinity of triclinic, P1(1) structure and a large surface area, as confirmed by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Exposure of acetaldehyde (CH{sub 3}CHO) adsorbed onto the film surface to ultraviolet, visible, or standard fluorescence light induces oxidative photocatalytic decomposition indicated by a decrease in CH{sub 3}CHO concentration and generation of CO{sub 2} gas. For all three types of irradiation, concentration ratio of decreased CH{sub 3}CHO to increased CO{sub 2} is about 1:1, suggesting the possible presence of intermediates. The sputter-deposited WO{sub 3} film can be a good candidate as a visible light-responsive photocatalyst.

  14. Proton conductive tantalum oxide thin film deposited by reactive DC magnetron sputtering for all-solid-state switchable mirror

    NASA Astrophysics Data System (ADS)

    Tajima, K.; Yamada, Y.; Bao, S.; Okada, M.; Yoshimura, K.

    2008-03-01

    Our developed all-solid-state switchable mirror as a smart window is consisted in multi-layer of Mg4Ni/Pd/Ta2O5/WO3/ITO/glass and can switch reversibly from the reflective state to the transparent one. The development of high performance solid electrolyte thin film of Ta2O5 is important for fast speed switching and high durability of the device. In this work, we have investigated the electrochemical property of Ta2O5 thin film deposited by reactive DC magnetron sputtering. The effect of thickness on electrochemical and proton conductivities of Ta2O5 thin film was investigated. The Ta2O5 thin film with a thickness of 400 nm had better proton conductivity of 1.5×10-9 S/cm measured by AC impedance method. The transmittance at wavelength of 670 nm of the device with 400 nm thick Ta2O5 thin film was changed from 0.1% (reflective state) to 51% (transparent state) within 10 s by applying voltage of 5 V. The device showed high durability up to two-thousand switching cycles.

  15. Effects of Ti addiction in WO 3 thin film ammonia gas sensor prepared by dc reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hu, Ming; Yong, Cholyun; Feng, Youcai; Lv, Yuqiang; Han, Lei; Liang, Jiran; Wang, Haopeng

    2006-11-01

    WO 3 sensing films (1500 Å) were deposited using dc reactive magnetron sputtering method on alumina substrate on which patterned interdigital Pt electrodes were previously formed. The additive Ti was sputtered with different thickness (100-500 Å) onto WO 3 thin films and then the films as-deposited were annealed at 400°C in air for 3h. The crystal structure and chemical composition of the films were characterized by XRD and XPS analysis. The effect of Ti addition on sensitive properties of WO 3 thin film to the NH 3 gas was then discussed. WO 3 thin films added Ti revealed excellent sensitivity and response characteristics in the presence of low concentration of NH 3 (5-400 ppm) gas in air at 200°C operating temperature. Especially,in case 300 Å thickness of additive Ti, WO 3 thin films have a promotional effect on the response speed to NH 3 and selectivity enhanced with respect to other gases (CO, C IIH 5OH, CH 4). The influence of different substrates, including alumina, silicon and glass, on sensitivity to NH 3 gas has also been investigated.

  16. Substrate biasing effect on the physical properties of reactive RF-magnetron-sputtered aluminum oxide dielectric films on ITO glasses.

    PubMed

    Liang, Ling Yan; Cao, Hong Tao; Liu, Quan; Jiang, Ke Min; Liu, Zhi Min; Zhuge, Fei; Deng, Fu Ling

    2014-02-26

    High dielectric constant (high-k) Al2O3 thin films were prepared on ITO glasses by reactive RF-magnetron sputtering at room temperature. The effect of substrate bias on the subband structural, morphological, electrode/Al2O3 interfacial and electrical properties of the Al2O3 films is systematically investigated. An optical method based on spectroscopic ellipsometry measurement and modeling is adopted to probe the subband electronic structure, which facilitates us to vividly understand the band-tail and deep-level (4.8-5.0 eV above the valence band maximum) trap states. Well-selected substrate biases can suppress both the trap states due to promoted migration of sputtered particles, which optimizes the leakage current density, breakdown strength, and quadratic voltage coefficient of capacitance. Moreover, high porosity in the unbiased Al2O3 film is considered to induce the absorption of atmospheric moisture and the consequent occurrence of electrolysis reactions at electrode/Al2O3 interface, as a result ruining the electrical properties. PMID:24490685

  17. Investigations on opto-electronical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Kumar, B. Rajesh; Rao, T. Subba

    2013-01-01

    In the present study transparent conducting zinc aluminum oxide (ZAO) thin films were prepared by DC reactive magnetron sputtering technique. The films were deposited on glass substrates at 200 °C and annealed from 200 °C to 500 °C. XRD patterns of ZAO films shows (0 0 2) diffraction peak of hexagonal wurtzite, meaning that the films have c-axis orientation perpendicular to the substrate. Crystallite size was calculated from X-ray diffraction (XRD) spectra using the Scherrer formula. The surface morphology of the films was observed by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The electrical conductivity increases with increase of annealing temperature. The activation energies of conduction were obtained from an Arrhenius equation. The best characteristics of ZAO films have been obtained for the films annealed at 400 °C with an average transmittance of 88% and a minimum resistivity of 2.2 × 10-4 Ω cm. The optical band gap, optical constants, and electron concentrations of ZAO films are obtained from UV-vis-IR spectrophotometer data.

  18. Composition, structure and properties of SiN x films fabricated by pulsed reactive closed-field unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yao, Zh. Q.; Yang, P.; Huang, N.; Sun, H.; Wan, G. J.; Leng, Y. X.; Chen, J. Y.

    2005-11-01

    Silicon nitride (SiNx) thin films are of special interest in both scientific research and industrial applications due to their remarkable properties such as high thermal stability, chemical inertness, high hardness and good dielectric properties. In this work, SiNx films were fabricated by pulsed reactive closed-field unbalanced magnetron sputtering of high purity single crystal silicon targets in an Ar-N2 mixture. The effect of N2 partial pressure on the film composition, chemical bonding configurations, surface morphology, surface free energy, optical and mechanical properties were investigated. We showed that with increased N2 partial pressure, the N to Si ratio (N/Si) in the film increased and N atoms are preferentially incorporated in the NSi3 stoichiometric configuration. It leads the Si-N network a tendency to chemical order. Films deposited at a high N2 fraction were consistently N-rich. The film surface transformed from a loose granular structure with microporosity to a homogeneous, continuous, smooth and dense structure. A progressive densification of the film microstructure occurs as the N2 fraction is increased. The reduced surface roughness and the increased N incorporation in the film give rise to the increased contact angle with double-distilled water from 24° to 49.6°. To some extent, the SiNx films deposited by pulsed magnetron sputtering are hydrophilic in nature. The as-deposited SiNx films exhibit good optical transparency in the visible region and the optical band gap Eopt can be varied from 1.68 eV for a-Si to 3.62 eV for SiNx films, depending on the synthesis parameters. With the increase of the N/Si atomic ratio, wear resistance of the SiNx films was improved, a consequence of increased hardness and elastic modulus. The SiNx films have lower friction coefficient and better wear resistance than 316L stainless steel under dry sliding friction, where the SiNx films experienced only fatigue wear.

  19. Degradation and Characterization of Resorbable Phosphate-Based Glass Thin-Film Coatings Applied by Radio-Frequency Magnetron Sputtering.

    PubMed

    Stuart, Bryan W; Gimeno-Fabra, Miquel; Segal, Joel; Ahmed, Ifty; Grant, David M

    2015-12-16

    Quinternary phosphate-based glasses of up to 2.67 μm, deposited by radio-frequency magnetron sputtering, were degraded in distilled water and phosphate-buffered saline (PBS) to investigate their degradation characteristics. Magnetron-sputtered coatings have been structurally compared to their compositionally equivalent melt-quenched bulk glass counterparts. The coatings were found to have structurally variable surfaces to melt-quenched glass such that the respective bridging oxygen to nonbridging oxygen bonds were 34.2% to 65.8% versus 20.5% to 79.5%, forming metaphosphate (PO3)(-) (Q(2)) versus less soluble (P2O7)(4-) (Q(1)) and (PO4)(3-) (Q(0)), respectively. This factor led to highly soluble coatings, exhibiting a t(1/2) degradation dependence in the first 2 h in distilled water, followed by a more characteristic linear profile because the subsequent layers were less soluble. Degradation was observed to preferentially occur, forming voids characteristic of pitting corrosion, which was confirmed by the use of a focused ion beam. Coating degradation in PBS precipitated a (PO3)(-) metaphosphate, an X-ray amorphous layer, which remained adherent to the substrate and seemingly formed a protective diffusion barrier, which inhibited further coating degradation. The implications are that while compositionally similar, sputter-deposited coatings and melt-quenched glasses are structurally dissimilar, most notably, with regard to the surface layer. This factor has been attributed to surface etching of the as-deposited coating layer during deposition and variation in the thermal history between the processes of magnetron sputtering and melt quenching. PMID:26523618

  20. Process-structure-property correlations in pulsed dc reactive magnetron sputtered vanadium oxide thin films

    SciTech Connect

    Venkatasubramanian, Chandrasekaran; Cabarcos, Orlando M.; Drawl, William R.; Allara, David L.; Ashok, S.; Horn, Mark W.; Bharadwaja, S. S. N.

    2011-11-15

    Cathode hysteresis in the reactive pulsed dc sputtering of a vanadium metal target was investigated to correlate the structural and electrical properties of the resultant vanadium oxide thin films within the framework of Berg's model [Berg et al., J. Vac. Sci. Technol. A 5, 202 (1987)]. The process hysteresis during reactive pulsed dc sputtering of a vanadium metal target was monitored by measuring the cathode (target) current under different total gas flow rates and oxygen-to-argon ratios for a power density of {approx}6.6.W/cm{sup 2}. Approximately 20%-25% hysteretic change in the cathode current was noticed between the metallic and oxidized states of the V-metal target. The extent of the hysteresis varied with changes in the mass flow of oxygen as predicted by Berg's model. The corresponding microstructure of the films changed from columnar to equiaxed grain structure with increased oxygen flow rates. Micro-Raman spectroscopy indicates subtle changes in the film structure as a function of processing conditions. The resistivity, temperature coefficient of resistance, and charge transport mechanism, obeying the Meyer-Neldel relation [Meyer and Neldel, Z. Tech. Phys. (Leipzig) 12, 588 (1937)], were correlated with the cathode current hysteric behavior.

  1. High-rate reactive magnetron sputtering of zirconia films for laser optics applications

    NASA Astrophysics Data System (ADS)

    Juškevičius, K.; Audronis, M.; Subačius, A.; Drazdys, R.; Juškėnas, R.; Matthews, A.; Leyland, A.

    2014-09-01

    ZrO2 exhibits low optical absorption in the near-UV range and is one of the highest laser-induced damage threshold (LIDT) materials; it is, therefore, very attractive for laser optics applications. This paper reports explorations of reactive sputtering technology for deposition of ZrO2 films with low extinction coefficient k values in the UV spectrum region at low substrate temperature. A high deposition rate (64 % of the pure metal rate) process is obtained by employing active feedback reactive gas control which creates a stable and repeatable deposition processes in the transition region. Substrate heating at 200 °C was found to have no significant effect on the optical ZrO2 film properties. The addition of nitrogen to a closed-loop controlled process was found to have mostly negative effects in terms of deposition rate and optical properties. Open-loop O2 gas-regulated ZrO2 film deposition is slow and requires elevated (200 °C) substrate temperature or post-deposition annealing to reduce absorption losses. Refractive indices of the films were distributed in the range n = 2.05-2.20 at 1,000 nm and extinction coefficients were in the range k = 0.6 × 10-4 and 4.8 × 10-3 at 350 nm. X-ray diffraction analysis showed crystalline ZrO2 films consisted of monoclinic + tetragonal phases when produced in Ar/O2 atmosphere and monoclinic + rhombohedral or a single rhombohedral phase when produced in Ar/O2 + N2. Optical and physical properties of the ZrO2 layers produced in this study are suitable for high-power laser applications in the near-UV range.

  2. High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system

    NASA Technical Reports Server (NTRS)

    Sproul, William D.; Rudnik, Paul J.; Graham, Michael E.; Rohde, Suzanne L.

    1990-01-01

    Attention is given to an opposed cathode sputtering system constructed with the ability to coat parts with a size up to 15 cm in diameter and 30 cm in length. Initial trials with this system revealed very low substrate bias currents. When the AlNiCo magnets in the two opposed cathodes were arranged in a mirrored configuration, the plasma density at the substrate was low, and the substrate bias current density was less than 1 mA/sq cm. If the magnets were arranged in a closed-field configuration where the field lines from one set of magnets were coupled with the other set, the substrate bias current density was as high as 5.7 mA/sq cm when NdFeB magnets were used. In the closed-field configuration, the substrate bias current density was related to the magnetic field strength between the two cathodes and to the sputtering pressure. Hard well-adhered TiN coatings were reactively sputtered in the opposed cathode system in the closed-field configuration, but the mirrored configuration produced films with poor adhesion because of etching problems and low plasma density at the substrate.

  3. Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti-Zr-N and Ti-Ta-N

    SciTech Connect

    Abadias, G.; Koutsokeras, L. E.; Dub, S. N.; Tolmachova, G. N.; Debelle, A.; Sauvage, T.; Villechaise, P.

    2010-07-15

    Ternary transition metal nitride thin films, with thickness up to 300 nm, were deposited by dc reactive magnetron cosputtering in Ar-N{sub 2} plasma discharges at 300 deg. C on Si substrates. Two systems were comparatively studied, Ti-Zr-N and Ti-Ta-N, as representative of isostructural and nonisostructural prototypes, with the aim of characterizing their structural, mechanical, and electrical properties. While phase-separated TiN-ZrN and TiN-TaN are the bulk equilibrium states, Ti{sub 1-x}Zr{sub x}N and Ti{sub 1-y}Ta{sub y}N solid solutions with the Na-Cl (B1-type) structure could be stabilized in a large compositional range (up to x=1 and y=0.75, respectively). Substituting Ti atoms by either Zr or Ta atoms led to significant changes in film texture, microstructure, grain size, and surface morphology, as evidenced by x-ray diffraction, x-ray reflectivity, and scanning electron and atomic force microscopies. The ternary Ti{sub 1-y}Ta{sub y}N films exhibited superior mechanical properties to Ti{sub 1-x}Zr{sub x}N films as well as binary compounds, with hardness as high as 42 GPa for y=0.69. All films were metallic, the lowest electrical resistivity {rho}{approx}65 {mu}{Omega} cm being obtained for pure ZrN, while for Ti{sub 1-y}Ta{sub y}N films a minimum was observed at y{approx}0.3. The evolution of the different film properties is discussed based on microstructrural investigations.

  4. Ion-enhanced oxidation of aluminum as a fundamental surface process during target poisoning in reactive magnetron sputtering

    SciTech Connect

    Kuschel, Thomas; Keudell, Achim von

    2010-05-15

    Plasma deposition of aluminum oxide by reactive magnetron sputtering (RMS) using an aluminum target and argon and oxygen as working gases is an important technological process. The undesired oxidation of the target itself, however, causes the so-called target poisoning, which leads to strong hysteresis effects during RMS operation. The oxidation occurs by chemisorption of oxygen atoms and molecules with a simultaneous ion bombardment being present. This heterogenous surface reaction is studied in a quantified particle beam experiment employing beams of oxygen molecules and argon ions impinging onto an aluminum-coated quartz microbalance. The oxidation and/or sputtering rates are measured with this microbalance and the resulting oxide layers are analyzed by x-ray photoelectron spectroscopy. The sticking coefficient of oxygen molecules is determined to 0.015 in the zero coverage limit. The sputtering yields of pure aluminum by argon ions are determined to 0.4, 0.62, and 0.8 at 200, 300, and 400 eV. The variation in the effective sticking coefficient and sputtering yield during the combined impact of argon ions and oxygen molecules is modeled with a set of rate equations. A good agreement is achieved if one postulates an ion-induced surface activation process, which facilitates oxygen chemisorption. This process may be identified with knock-on implantation of surface-bonded oxygen, with an electric-field-driven in-diffusion of oxygen or with an ion-enhanced surface activation process. Based on these fundamental processes, a robust set of balance equations is proposed to describe target poisoning effects in RMS.

  5. High-rate deposition of MgO by reactive ac pulsed magnetron sputtering in the transition mode

    SciTech Connect

    Kupfer, H.; Kleinhempel, R.; Richter, F.; Peters, C.; Krause, U.; Kopte, T.; Cheng, Y.

    2006-01-15

    A reactive ac pulsed dual magnetron sputtering process for MgO thin-film deposition was equipped with a closed-loop control of the oxygen flow rate (F{sub O2}) using the 285 nm magnesium radiation as input. Owing to this control, most of the unstable part of the partial pressure versus flowrate curve became accessible. The process worked steadily and reproducible without arcing. A dynamic deposition rate of up to 35 nm m/min could be achieved, which was higher than in the oxide mode by about a factor of 18. Both process characteristics and film properties were investigated in this work in dependence on the oxygen flow, i.e., in dependence on the particular point within the transition region where the process is operated. The films had very low extinction coefficients (<5x10{sup -5}) and refractive indices close to the bulk value. They were nearly stoichiometric with a slight oxygen surplus (Mg/O=48/52) which was independent of the oxygen flow. X-ray diffraction revealed a prevailing (111) orientation. Provided that appropriate rf plasma etching was performed prior to deposition, no other than the (111) peak could be detected. The intensity of this peak increased with increasing F{sub O{sub 2}}, indicating an even more pronounced (111) texture. The ion-induced secondary electron emission coefficient (iSEEC) was distinctly correlated with the markedness of the (111) preferential orientation. Both refractive index and (111) preferred orientation (which determines the iSEEC) were found to be improved in comparison with the MgO growth in the fully oxide mode. Consequently, working in the transition mode is superior to the oxide mode not only with respect to the growth rate, but also to most important film properties.

  6. Growth and characterization of chromium oxide coatings prepared by pulsed-direct current reactive unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Barshilia, Harish C.; Rajam, K. S.

    2008-12-01

    Approximately 0.2-3.2 μm thick single phase chromium oxide (Cr 2O 3) coatings with different oxygen flow rates were deposited on silicon and mild steel substrates at low substrate temperature (˜60 °C) by pulsed-direct current (DC) reactive unbalanced magnetron sputtering. Two asymmetric bipolar-pulsed DC generators were used to co-sputter two Cr targets, in Ar + O 2 plasma. The coatings were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nanoindentation hardness tester, optical microscopy, atomic force microscopy, micro-Raman spectroscopy, spectroscopic ellipsometry and potentiodynamic polarization techniques. The XRD data showed the presence of mixture of crystalline (rhombohedral Cr 2O 3) and amorphous phases for the coatings prepared with oxygen flow rate less than 10 sccm. A complete transformation to amorphous phase was observed at higher oxygen flow rates. The XRD results were supported by Raman spectroscopy data. The XPS data suggested that the chemical state of Cr was in the form of Cr 3+. The chromium oxide coatings exhibited a maximum hardness of 22 GPa and an elastic modulus of 208 GPa. The coatings exhibited high thermal stability upon annealing in vacuum up to 500 °C and retained hardness as high as 17 GPa. Spectroscopic ellipsometry data indicated that coatings prepared at higher oxygen flow rates were dielectric in nature and those prepared at low oxygen flow rates exhibited an intermediate character, i.e., a transition between the dielectric and the metallic behavior. The corrosion behavior of Cr 2O 3 coating deposited on mild steel substrates was investigated using potentiodynamic polarization in 3.5% NaCl solution. The results indicated that Cr 2O 3 coating exhibited superior corrosion resistance as compared to the uncoated substrate.

  7. Structural and nanomechanical properties of BiFeO3 thin films deposited by radio frequency magnetron sputtering

    PubMed Central

    2013-01-01

    The nanomechanical properties of BiFeO3 (BFO) thin films are subjected to nanoindentation evaluation. BFO thin films are grown on the Pt/Ti/SiO2/Si substrates by using radio frequency magnetron sputtering with various deposition temperatures. The structure was analyzed by X-ray diffraction, and the results confirmed the presence of BFO phases. Atomic force microscopy revealed that the average film surface roughness increased with increasing of the deposition temperature. A Berkovich nanoindenter operated with the continuous contact stiffness measurement option indicated that the hardness decreases from 10.6 to 6.8 GPa for films deposited at 350°C and 450°C, respectively. In contrast, Young's modulus for the former is 170.8 GPa as compared to a value of 131.4 GPa for the latter. The relationship between the hardness and film grain size appears to follow closely with the Hall–Petch equation. PMID:23799923

  8. Fabrication and Electrical Characterization of InZnO:N Thin Film Transistors Prepared by Radio Frequency Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Peng, Yunfei; Wang, Hailong; Zhang, Wenqi; Li, Bin; Zhou, Dongzhan; Zhang, Xiqing; Wang, Yongsheng

    2016-07-01

    The fabrication and electrical characterization of InZnO:N thin film transistors (TFTs) were investigated in this work. The InZnO:N film was deposited on SiO2/ p-type Si substrates by radio frequency magnetron sputtering as the active layer of the TFTs at room temperature. In order to optimize the performance of the InZnO:N TFTs, the effect of the oxygen contents in the preparation of the active layer is investigated. We found that an appropriate O2/Ar gas flow ratio is very beneficial for the InZnO:N TFTs, and when the O2/Ar gas flow ratio is at 1/30, the transistor exhibited a high field-effect mobility of 39.3 cm2/Vs, a threshold voltage of 2.4 V and a I ON/OFF ratio of 1.1 × 107.

  9. Fabrication and Electrical Characterization of InZnO:N Thin Film Transistors Prepared by Radio Frequency Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Peng, Yunfei; Wang, Hailong; Zhang, Wenqi; Li, Bin; Zhou, Dongzhan; Zhang, Xiqing; Wang, Yongsheng

    2016-04-01

    The fabrication and electrical characterization of InZnO:N thin film transistors (TFTs) were investigated in this work. The InZnO:N film was deposited on SiO2/p-type Si substrates by radio frequency magnetron sputtering as the active layer of the TFTs at room temperature. In order to optimize the performance of the InZnO:N TFTs, the effect of the oxygen contents in the preparation of the active layer is investigated. We found that an appropriate O2/Ar gas flow ratio is very beneficial for the InZnO:N TFTs, and when the O2/Ar gas flow ratio is at 1/30, the transistor exhibited a high field-effect mobility of 39.3 cm2/Vs, a threshold voltage of 2.4 V and a I ON/OFF ratio of 1.1 × 107.

  10. Titanium Aluminum Nitride Films Deposited by AC Reactive Magnetron Sputtering: Study of Positioning Effect in an Inverted Cylindrical Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Vandross, George Clinton, II

    TiAlN films were deposited on glass substrates by AC magnetron sputtering at 2 kW with constant Argon and Nitrogen gas flow rates to study the effects of positioning on the deposited films. The deposition system used was an ICM-10 IsoFlux cylindrical magnetron sputtering chamber. The samples were placed in different positions and tilts with respect to the location of the Titanium and Aluminum targets in the chamber. It was found that with change in position and application of tilts, deposited films acquired different physical and chemical properties. It is believed that the differences in these properties were caused by to the change in the incident angle of bombardment of the samples, and the change in surface areas of the samples presented to the targets at each location. As related to the physical traits of the samples, analysis using Scanning Electron Microscopy of the samples displayed variations in the topography, where differences in grain density could be noted as well as structure formations. The chemical properties were also noted to be affected by the variation of tilt and position applied to the sample. X-ray Diffraction Spectroscopy analysis of the samples showed the intensity of the TiAlN characteristic peak of the samples to differ from sample to sample. Results from the XRD analysis of this work showed a 157% and 176% increase in peak intensity of the 0° tilt sample of the Bottom Plate from the 45° tilt sample and 60° tilt sample respectively of the same plate. The results from the XRD analysis of this work also showed a 74% and 151% increase of the peak intensity for the 0° tilt sample of the Middle Plate when compared to the 45° tilt sample and 60° tilt sample respectively of the same plate. Whereas results for this work showed a 54% and 41% decrease in peak intensity of the 0° tilt sample of the Top Plate from the 45° tilt sample and 60° tilt sample respectively of the same plate. Energy Dispersive X-ray Spectroscopy was also performed

  11. Highly oriented {delta}-Bi{sub 2}O{sub 3} thin films stable at room temperature synthesized by reactive magnetron sputtering

    SciTech Connect

    Lunca Popa, P.; Kerdsongpanya, S.; Lu, J.; Eklund, P.; Sonderby, S.; Bonanos, N.

    2013-01-28

    We report the synthesis by reactive magnetron sputtering and structural characterization of highly (111)-oriented thin films of {delta}-Bi{sub 2}O{sub 3}. This phase is obtained at a substrate temperature of 150-200 Degree-Sign C in a narrow window of O{sub 2}/Ar ratio in the sputtering gas (18%-20%). Transmission electron microscopy and x-ray diffraction reveal a polycrystalline columnar structure with (111) texture. The films are stable from room temperature up to 250 Degree-Sign C in vacuum and 350 Degree-Sign C in ambient air.

  12. Correlation between Microstructure and Mechanical Properties ofTiC Films Produced by Vacuum arc Deposition and Reactive MagnetronSputtering

    SciTech Connect

    Monteiro, O.R.; Delplancke-Ogletree, M.P.; Winand, R.; Brown, I.G.

    1999-07-29

    We have studied the synthesis of TiC films by vacuum arc deposition and reactive magnetron sputtering over a wide range of compositions. The films were deposited on silicon and tool steel. The films were characterized by various techniques: Auger electron and X-ray photoelectron spectroscopies, Rutherford backscattering, transmission electron diffraction and X-ray diffraction. Mechanical properties such as stress, adhesion, friction coefficient and wear resistance were obtained by carrying measurements of the curvature of the silicon substrate, pull tests, and ball-on-disk tests, respectively.

  13. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    SciTech Connect

    Kavitha, A.; Kannan, R.; Subramanian, N. Sankara; Loganathan, S.

    2014-04-24

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  14. Growth and characterization of TiAlN/CrAlN superlattices prepared by reactive direct current magnetron sputtering

    SciTech Connect

    Barshilia, Harish C.; Deepthi, B.; Rajam, K. S.; Bhatti, Kanwal Preet; Chaudhary, Sujeet

    2009-01-15

    TiAlN and CrAlN coatings were prepared using a reactive direct current magnetron sputtering system from TiAl and CrAl targets. Structural characterization of the coatings using x-ray diffraction (XRD) revealed the B1 NaCl structure of TiAlN and CrAlN coatings with a prominent reflection along the (111) plane. The XPS data confirmed the bonding structures of TiAlN and CrAlN single layer coatings. Subsequently, nanolayered multilayer coatings of TiAlN/CrAlN were deposited on silicon and mild steel (MS) substrates at different modulation wavelengths ({lambda}) with a total thickness of approximately 1.0 {mu}m. The modulation wavelengths were calculated from the x-ray reflectivity data using modified Bragg's law. TiAlN/CrAlN multilayer coatings were textured along (111) for {lambda}<200 A and the XRD patterns showed the formation of superlattice structure for coatings deposited at {lambda}=102 A. The x-ray reflectivity data showed reflections of fifth and seventh orders for multilayer coatings deposited at {lambda}=102 and 138 A, respectively, indicating the formation of sharp interfaces between TiAlN and CrAlN layers. The cross-sectional scanning electron microscopy image of TiAlN/CrAlN multilayer coatings indicated a noncolumnar and dense microstructure. A maximum hardness of 39 GPa was observed for TiAlN/CrAlN multilayer coatings deposited at {lambda}=93 A, which was higher than the rule-of-mixture value (30 GPa) for TiAlN and CrAlN. Study of thermal stability of the coatings in air using micro-Raman spectroscopy indicated that the TiAlN/CrAlN multilayer coatings were stable up to 900 deg. C in air. TiAlN/CrAlN multilayer coatings also exhibited improved corrosion resistance when compared to the MS substrate.

  15. Combined optical emission and resonant absorption diagnostics of an Ar-O2-Ce-reactive magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    El Mel, A. A.; Ershov, S.; Britun, N.; Ricard, A.; Konstantinidis, S.; Snyders, R.

    2015-01-01

    We report the results on combined optical characterization of Ar-O2-Ce magnetron sputtering discharges by optical emission and resonant absorption spectroscopy. In this study, a DC magnetron sputtering system equipped with a movable planar magnetron source with a Ce target is used. The intensities of Ar, O, and Ce emission lines, as well as the absolute densities of Ar metastable and Ce ground state atoms are analyzed as a function of the distance from the magnetron target, applied DC power, O2 content, etc. The absolute number density of the Arm is found to decrease exponentially as a function of the target-to-substrate distance. The rate of this decrease is dependent on the sputtering regime, which should be due to the different collisional quenching rates of Arm by O2 molecules at different oxygen contents. Quantitatively, the absolute number density of Arm is found to be equal to ≈ 3 × 108 cm- 3 in the metallic, and ≈ 5 × 107 cm- 3 in the oxidized regime of sputtering, whereas Ce ground state densities at the similar conditions are found to be few times lower. The absolute densities of species are consistent with the corresponding deposition rates, which decrease sharply during the transition from metallic to poisoned sputtering regime.

  16. Substrate temperature dependent surface morphology and photoluminescence of germanium quantum dots grown by radio frequency magnetron sputtering.

    PubMed

    Samavati, Alireza; Othaman, Zulkafli; Ghoshal, Sib Krishna; Dousti, Mohammad Reza; Kadir, Mohammed Rafiq Abdul

    2012-01-01

    The visible luminescence from Ge nanoparticles and nanocrystallites has generated interest due to the feasibility of tuning band gap by controlling the sizes. Germanium (Ge) quantum dots (QDs) with average diameter ~16 to 8 nm are synthesized by radio frequency magnetron sputtering under different growth conditions. These QDs with narrow size distribution and high density, characterized using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) are obtained under the optimal growth conditions of 400 °C substrate temperature, 100 W radio frequency powers and 10 Sccm Argon flow. The possibility of surface passivation and configuration of these dots are confirmed by elemental energy dispersive X-ray (EDX) analysis. The room temperature strong visible photoluminescence (PL) from such QDs suggests their potential application in optoelectronics. The sample grown at 400 °C in particular, shows three PL peaks at around ~2.95 eV, 3.34 eV and 4.36 eV attributed to the interaction between Ge, GeO(x) manifesting the possibility of the formation of core-shell structures. A red shift of ~0.11 eV in the PL peak is observed with decreasing substrate temperature. We assert that our easy and economic method is suitable for the large-scale production of Ge QDs useful in optoelectronic devices. PMID:23202927

  17. Reactive magnetron sputtering of highly (001)-textured WS2-x films: Influence of Ne+, Ar+ and Xe+ ion bombardment on the film growth

    NASA Astrophysics Data System (ADS)

    Ellmer, K.; Seeger, S.; Sieber, I.; Bohne, W.; Röhrich, J.; Strub, E.; Mientus, R.

    2006-02-01

    Tungsten disulfide WS2 is a layer-type semi-conductor with an energy band gap and an absorption coefficient making it suitable as an absorber for thin film solar cells. In the article [1] WS2-x films were pre-pared by reactive magnetron sputtering from a metallic tungsten target in Ar-H2S atmospheres.The cover figure shows in situ energy-dispersive X-ray diffraction patterns for films deposited at different substrate potentials, i.e. for deposition conditions with ion assistance at different ion energies. These spectra and the corresponding SEM photographs of the film morphology show the strong influence of the ion energy on the film growth. The crystallographic struc-ture of WS2-x is shown between the two SEM pictures.The first author, Klaus Ellmer, is working at the Hahn-Meitner-Institut Berlin, Dept. of Solar Energy Research. His research fields are thin film deposition by reactive magnetron sputtering for solar cells, plasma characterization, in situ energy-dispersive X-ray diffraction and electronic transport in transpar-ent conductive oxides.

  18. Compositional, morphological and mechanical investigations of monolayer type coatings obtained by standard and reactive magnetron sputtering from Ti, TiB2 and WC

    NASA Astrophysics Data System (ADS)

    Jinga, V.; Mateescu, A. O.; Cristea, D.; Mateescu, G.; Burducea, I.; Ionescu, C.; Crăciun, L. S.; Ghiuţă, I.; Samoilă, C.; Ursuţiu, D.; Munteanu, D.

    2015-12-01

    The purpose of this work was to study new composite coatings that would have wear resistant properties. The coatings were obtained by standard and reactive simultaneous magnetron sputtering from three targets (Ti, TiB2, WC) with or without N2 as reactive gas. The chemical composition of the coatings was investigated by Rutherford backscattering spectrometry, while the morphological features were evaluated by atomic force microscopy. Some of the mechanical properties of the coatings, such as hardness and Young's modulus, were investigated by nanoindentation, while the adherence to the substrate was investigated by scratch tests. The wear resistance and friction coefficients were evaluated using a pin-on-disk tribometer. The films are hard (Hit between 20 and 22 GPa) and show promising results concerning their wear resistance, especially if the films would be paired with an appropriate substrate material.

  19. Effects of pulse frequency on the microstructure, composition and optical properties of pulsed dc reactively sputtered vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Dong, Xiang; Wu, Zhiming; Jiang, Yadong; Xu, Xiangdong; Yu, He; Gu, Deen; Wang, Tao

    2014-09-01

    Vanadium oxide (VOx) thin films were prepared on unheated glass substrate by pulsed dc reactive magnetron sputtering using different pulse frequency. Field emission scanning electron microscopy (FESEM), x-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry (SE) measurements were made on the deposited VOx films to characterize the microstructure, composition and optical properties, respectively. It was found that under the same discharge power and argon-oxygen atmosphere, with the increase of pulse frequency, the vertical column-like structure in the films will gradually disappear and the ratio of high-valent VOx to low-valent VOx will obviously elevate. Optical parameters of the VOx films have been obtained by fitting the ellipsometric data (Ψ andΔ) using the Tauc-Lorentz dispersion relation and a multilayer model (air/roughness layer/VOx/glass). The results demonstrated that pulse frequency plays a critical role in determining the transmittance, refractive index, extinction coefficient and optical band gap etc. The correlations between the microstructure, composition, optical properties and pulse frequency are also given by our experiment results. And the mechanisms for the evolution of the microstructure, composition and optical properties with pulse frequency have been discussed. Overall, due to the pulse frequency had a great effect not only on the growth characteristics but also on the optical properties of the VOx films, thus through variation of the pulse frequency during deposition which provide a convenient and efficient approach to control and optimize the performances of the VOx films.

  20. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications

    PubMed Central

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-01-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation & immersion (E & I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm2) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance. PMID:26631493

  1. Improved electrochemical performance of LiCoO₂ electrodes with ZnO coating by radio frequency magnetron sputtering.

    PubMed

    Dai, Xinyi; Wang, Liping; Xu, Jin; Wang, Ying; Zhou, Aijun; Li, Jingze

    2014-09-24

    Surface modification of LiCoO2 is an effective method to improve its energy density and elongate its cycle life in an extended operation voltage window. In this study, ZnO was directly coated on as-prepared LiCoO2 composite electrodes via radio frequency (RF) magnetron sputtering. ZnO is not only coated on the electrode as thin film but also diffuses through the whole electrode due to the intrinsic porosity of the composite electrode and the high diffusivity of the deposited species. It was found that ZnO coating can significantly improve the cycling performance and the rate capability of the LiCoO2 electrodes in the voltage range of 3.0-4.5 V. The sample with an optimum coating thickness of 17 nm exhibits an initial discharge capacity of 191 mAh g(-1) at 0.2 C, and the capacity retention is 81% after 200 cycles. It also delivers superior rate performance with a reversible capacity of 106 mAh g(-1) at 10 C. The enhanced cycling performance and rate capability are attributed to the stabilized phase structure and improved lithium ion diffusion coefficient induced by ZnO coating as evidenced by X-ray diffraction, cyclic voltammetry, respectively. PMID:25158228

  2. [Thin calcium-phosphate coatings produced by high frequency magnetron sputtering and prospects for their use in biomedical engineering].

    PubMed

    Aronov, A M; Pichugin, V F; Eshenko, E V; Riabtseva, M A; Surmenev, R A; Tverdokhlebov, S I; Shesterikov, E V

    2008-01-01

    Thin calcium-phosphate coatings with thickness less than 2.7 m were prepared by radio-frequency magnetron sputtering technique on the surfaces of pure titanium, titanium alloy Ti6A14V and stainless ASTM 316. Results of scanning electron microscopy showed that all coatings were dense and poreless and did not have any visible defects or microcracks. Rutherford backscattering (RBS) revealed a prepared coating consisting only of calcium 33.6 (1.6 at%, phosphorous 16.5 (1.5 at%, and oxygen 48.6 (1.2 at%. The concentration of each above-mentioned element through the coating was almost constant. The physicomechanical properties of the prepared coatings were investigated using a nanoindentation technique. The values of nano-hardness and Young's modulus calculated on the basis of the obtained data were 10 GPa and 113 GPa, respectively. These values were higher than that of non-coated substrates, except titanium alloy due to the sputtering mechanism. It was found that the coating with a thickness less than 1.6 ?m possessed more adhesion strength than coatings with greater value of thickness. However, we suggest that all coatings have great cohesive resistance that does not depend on the coating thickness. PMID:18683576

  3. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-12-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation & immersion (E & I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm2) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance.

  4. Single domain m-plane ZnO grown on m-plane sapphire by radio frequency magnetron sputtering.

    PubMed

    Lin, B H; Liu, W-R; Lin, C Y; Hsu, S T; Yang, S; Kuo, C C; Hsu, C-H; Hsieh, W F; Chien, F S-S; Chang, C S

    2012-10-24

    High-quality m-plane orientated ZnO films have been successfully grown on m-plane sapphire by using radio frequency magnetron sputtering deposition. The introduction of a nanometer-thick, low-temperature-grown ZnO buffer layer effectively eliminates inclusions of other undesirable orientations. The structure characteristics of the ZnO epi-layers were thoroughly studied by synchrotron X-ray scattering and transmission electron microscopy (TEM). The in-plane epitaxial relationship between ZnO and sapphire follows (0002)(ZnO) [parallel] (112[overline]0)(sapphire) and (112[overline]0)(ZnO) [parallel] (0006)(sapphire) and the ZnO/sapphire interface structure can be described by the domain matching epitaxy along the [112[overline]0](ZnO) direction. The vibrational properties of the films were investigated by polarization dependent micro-Raman spectroscopy. Both XRD and micro-Raman results reveal that the obtained m-ZnO layers are under an anisotropic biaxial strain but still retains a hexagonal lattice. PMID:22989018

  5. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications.

    PubMed

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-01-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation &immersion (E &I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm(2)) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance. PMID:26631493

  6. Optimization of Ta2O5 optical thin film deposited by radio frequency magnetron sputtering.

    PubMed

    Shakoury, R; Willey, Ronald R

    2016-07-10

    Radio frequency magnetron sputtering has been used here to find the parameters at which to deposit Ta2O5 optical thin films with negligible absorption in the visible spectrum. The design of experiment methodology was employed to minimize the number of experiments needed to find the optimal results. Two independent approaches were used to determine the index of refraction n and k values. PMID:27409310

  7. Growth of fullerene-like carbon nitride thin solid films by reactive magnetron sputtering; role of low-energy ion irradiation in determining microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Neidhardt, J.; Czigány, Zs.; Brunell, I. F.; Hultman, L.

    2003-03-01

    Fullerene-like (FL) carbon nitride (CNx) films were deposited on Si (100) substrates by dc reactive, unbalanced, magnetron sputtering in a N2/Ar mixture from a high-purity pyrolythic graphite cathode in a dual-magnetron system with coupled magnetic fields. The N2 fraction in the discharge gas (0%-100%) and substrate bias (-25 V; -40 V) was varied, while the total pressure (0.4 Pa) and substrate temperature (450 °C) was kept constant. The coupled configuration of the magnetrons resulted in a reduced ion flux density, leading to a much lower average energy per incorporated particle, due to a less focused plasma as compared to a single magnetron. This enabled the evolution of a pronounced FL microstructure. The nitrogen concentration in the films saturated rapidly at 14-18 at. %, as determined by elastic recoil analysis, with a minor dependence on the discharge conditions. No correlations were detected between the photoelectron N1s core level spectra and the different microstructures, as observed by high-resolution electron microscopy. A variety of distinct FL structures were obtained, ranging from structures with elongated and aligned nitrogen-containing graphitic sheets to disordered structures, however, not exclusively linked to the total N concentration in the films. The microstructure evolution has rather to be seen as in equilibrium between the two competing processes of adsorption and desorption of nitrogen-containing species at the substrate. This balance is shifted by the energy and number of arriving species as well as by the substrate temperature. The most exceptional structure, for lower N2 fractions, consists of well-aligned, multi-layered circular features (nano-onions) with an inner diameter of approximately 0.7 nm and successive shells at a distance of ˜0.35 nm up to a diameter of 5 nm. It is shown that the intrinsic stress formation is closely linked with the evolution and accommodation of the heavily bent fullerene-like sheets. The FL CNx

  8. Investigation of structural, optical and electrical properties of (Ti,Nb)Ox thin films deposited by high energy reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mazur, Michal; Kaczmarek, Danuta; Prociow, Eugeniusz; Domaradzki, Jaroslaw; Wojcieszak, Damian; Bocheński, Jakub

    2014-06-01

    In this work the results of investigations of the titanium-niobium oxides thin films have been reported. The thin films were manufactured with the aid of a modified reactive magnetron sputtering process. The aim of the research was the analysis of structural, optical and electrical properties of the deposited thin films. Additionally, the influence of post-process annealing on the properties of studied coatings has been presented. The as-deposited coatings were amorphous, while annealing at 873 K caused a structural change to the mixture of TiO2 anatase-rutile phases. The prepared thin films exhibited good transparency with transmission level of ca. 50 % and low resistivity varying from 2 Ωcm to 5×10-2 Ωcm, depending on the time and temperature of annealing. What is worth to emphasize, the sign of Seebeck coefficient changed after the annealing process from the electron to hole type electrical conduction.

  9. Investigation of structural, optical and electrical properties of (Ti,Nb)Ox thin films deposited by high energy reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mazur, Michal; Kaczmarek, Danuta; Prociow, Eugeniusz; Domaradzki, Jaroslaw; Wojcieszak, Damian; Bocheński, Jakub

    2014-09-01

    In this work the results of investigations of the titanium-niobium oxides thin films have been reported. The thin films were manufactured with the aid of a modified reactive magnetron sputtering process. The aim of the research was the analysis of structural, optical and electrical properties of the deposited thin films. Additionally, the influence of post-process annealing on the properties of studied coatings has been presented. The as-deposited coatings were amorphous, while annealing at 873 K caused a structural change to the mixture of TiO2 anatase-rutile phases. The prepared thin films exhibited good transparency with transmission level of ca. 50 % and low resistivity varying from 2 Ωcm to 5×10-2 Ωcm, depending on the time and temperature of annealing. What is worth to emphasize, the sign of Seebeck coefficient changed after the annealing process from the electron to hole type electrical conduction.

  10. Raman, electron microscopy and electrical transport studies of x-ray amorphous Zn-Ir-O thin films deposited by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zubkins, M.; Kalendarev, R.; Gabrusenoks, J.; Smits, K.; Kundzins, K.; Vilnis, K.; Azens, A.; Purans, J.

    2015-03-01

    Zn-Ir-O thin films on glass and Ti substrates were deposited by reactive DC magnetron sputtering at room temperature. Structural and electrical properties were investigated as a function of iridium concentration in the films. Raman spectrum of Zn-Ir-O (61.5 at.% Ir) resembles the spectrum of rutile IrO2, without any distinct features of wurtzite ZnO structure. SEM images indicated that morphology of the films surface improves with the iridium content. EDX spectroscopy and cross-section SEM images revealed that the films growing process is homogeneous. Crystallites with approximately 2-5 nm size were discovered in the TEM images. Thermally activated conductivity related to the variable range hopping changes to the non-thermally activated before iridium concentration reaches the 45 at.%.

  11. Correlation between optical characterization of the plasma in reactive magnetron sputtering deposition of Zr N on SS 316L and surface and mechanical properties of the deposited films

    NASA Astrophysics Data System (ADS)

    Fragiel, A.; Machorro, R.; Muñoz-Saldaña, J.; Salinas, J.; Cota, L.

    2008-05-01

    Optical and surface spectroscopies as well as nanoindentation techniques have been used to study ZrN coatings on 316L stainless steel obtained by DC-reactive magnetron sputtering. The deposit process was carried out using initial and working pressures of 10 -6 Torr and 10 -3 Torr, respectively. The experimental set-up for optical spectra acquisition was designed for the study in situ of the plasma in the deposition chamber. Auger spectroscopy, SEM and X-ray diffraction were used to characterize the coatings. Nanoindentation tests were carried out to measure the mechanical properties of the coating. Plasma characterization revealed the presence of CN molecules and Cr ions in the plasma. Surface spectroscopy results showed that ZrN, Zr 3N 4 and ZrC coexist in the coating. These results allowed the understanding of the mechanical behavior of the coatings, demonstrating the importance of the plasma characterization as a tool for tailoring the properties of hard coatings.

  12. Comparative study of RF reactive magnetron sputtering and sol-gel deposition of UV induced superhydrophilic TiOx thin films

    NASA Astrophysics Data System (ADS)

    Vrakatseli, V. E.; Amanatides, E.; Mataras, D.

    2016-03-01

    TiOx and TiOx-like thin films were deposited on PEEK (Polyether ether ketone) substrates by low-temperature RF reactive magnetron sputtering and the sol-gel method. The resulting films were compared in terms of their properties and photoinduced hydrophilicity. Both techniques resulted in uniform films with good adhesion that can be switched to superhydrophilic after exposure to UVA radiation for similar time periods. In addition, the sputtered films can also be activated and switched to superhydrophilic by natural sunlight due to the higher absorption in the visible spectrum compared to the sol-gel films. On the other hand, the as deposited sol-films remain relatively hydrophilic for a longer time in dark compared to the sputtered film due to the differences in the morphology and the porosity of the two materials. Thus, depending on the application, either method can be used in order to achieve the desirable TiOx properties.

  13. Magnetron tuner has locking feature

    NASA Technical Reports Server (NTRS)

    Martucci, V. J.

    1969-01-01

    Magnetron tuning arrangement features a means of moving a tuning ring axially within an anode cavity by a system of reduction gears engaging a threaded tuning shaft of lead screw. The shaft positions the tuning ring for the desired magnetron output frequency, and a washer prevents backlash.

  14. Ion mass spectrometry investigations of the discharge during reactive high power pulsed and direct current magnetron sputtering of carbon in Ar and Ar/N{sub 2}

    SciTech Connect

    Schmidt, S.; Greczynski, G.; Jensen, J.; Hultman, L.; Czigany, Zs.

    2012-07-01

    Ion mass spectrometry was used to investigate discharges formed during high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS) of a graphite target in Ar and Ar/N{sub 2} ambient. Ion energy distribution functions (IEDFs) were recorded in time-averaged and time-resolved mode for Ar{sup +}, C{sup +}, N{sub 2}{sup +}, N{sup +}, and C{sub x}N{sub y}{sup +} ions. An increase of N{sub 2} in the sputter gas (keeping the deposition pressure, pulse width, pulse frequency, and pulse energy constant) results for the HiPIMS discharge in a significant increase in C{sup +}, N{sup +}, and CN{sup +} ion energies. Ar{sup +}, N{sub 2}{sup +}, and C{sub 2}N{sup +} ion energies, in turn, did not considerably vary with the changes in working gas composition. The HiPIMS process showed higher ion energies and fluxes, particularly for C{sup +} ions, compared to DCMS. The time evolution of the plasma species was analyzed for HiPIMS and revealed the sequential arrival of working gas ions, ions ejected from the target, and later during the pulse-on time molecular ions, in particular CN{sup +} and C{sub 2}N{sup +}. The formation of fullerene-like structured CN{sub x} thin films for both modes of magnetron sputtering is explained by ion mass-spectrometry results and demonstrated by transmission electron microscopy as well as diffraction.

  15. Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance

    SciTech Connect

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki

    2015-01-12

    This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O{sub 2}, H{sub 2}O, and N{sub 2}O as the reactive gases. Experimental results show that the electrical properties of the N{sub 2}O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for the performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N{sub 2}O introduction into the deposition process, where the field mobility reach to 30.8 cm{sup 2} V{sup –1} s{sup –1}, which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT.

  16. Spectroscopic ellipsometry and x-ray photoelectron spectroscopy of La{sub 2}O{sub 3} thin films deposited by reactive magnetron sputtering

    SciTech Connect

    Atuchin, V. V.; Kalinkin, A. V.; Kochubey, V. A.; Kruchinin, V. N.; Vemuri, R. S.; Ramana, C. V.

    2011-03-15

    Lanthanum oxide (La{sub 2}O{sub 3}) films were grown by the reactive dc magnetron sputtering and studied their structural, chemical and optical parameters. La{sub 2}O{sub 3} films were deposited onto Si substrates by sputtering La-metal in a reactive gas (Ar+O{sub 2}) mixture at a substrate temperature of 200 deg. C Reflection high-energy electron diffraction measurements confirm the amorphous state of La{sub 2}O{sub 3} films. Chemical analysis of the top-surface layers evaluated with x-ray photoelectron spectroscopy indicates the presence of a layer modified by hydroxylation due to interaction with atmosphere. Optical parameters of a-La{sub 2}O{sub 3} were determined with spectroscopic ellipsometry (SE). There is no optical absorption over spectral range {lambda}=250-1100 nm. Dispersion of refractive index of a-La{sub 2}O{sub 3} was defined by fitting of SE parameters over {lambda}=250-1100 nm.

  17. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO3 films grown by pulsed direct current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.

    2014-03-01

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO3) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO2:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO3 films deposited on SnO2:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO3 film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10-3. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (Ed) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (Eo) of WO3 films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The Eo is change between 6.30 and 3.88 eV, while the Ed varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm-1 attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  18. Highly conductive indium zinc oxide prepared by reactive magnetron cosputtering technique using indium and zinc metallic targets

    SciTech Connect

    Tsai, T. K.; Chen, H. C.; Lee, J. H.; Huang, Y. Y.; Fang, J. S.

    2010-05-15

    Zn-doped In{sub 2}O{sub 3} film is frequently deposited from an oxide target; but the use of metallic target is increasingly expected as preparing the film with comparable properties. This work aimed to prepare a highly conductive and transparent Zn-doped In{sub 2}O{sub 3} thin film on Corning Eagle{sup 2000} glass substrate by magnetron cosputtering method using indium and zinc targets. Structural characterization was performed using x-ray diffraction and x-ray photoelectron spectroscopy. The film had an amorphous structure when the film was prepared on an unheated substrate, but had an In{sub 2}O{sub 3} polycrystalline structure when the film was deposited on 150 and 300 deg. C substrates. The electrical properties of the film were greatly affected by annealing; the Zn-doped In{sub 2}O{sub 3} film had a low resistivity of 6.1x10{sup -4} {Omega} cm and an average transmittance of 81.7% when the film was deposited without substrate heating and followed a 600 deg. C annealing.

  19. Energy fluxes in a radio-frequency magnetron discharge for the deposition of superhard cubic boron nitride coatings

    SciTech Connect

    Bornholdt, S.; Kersten, H.; Ye, J.; Ulrich, S.

    2012-12-15

    Energy flux measurements by a calorimetric probe in a rf-magnetron plasma used for the deposition of super-hard c-BN coatings are presented and discussed. Argon as working gas is used for sputtering a h-BN target. Adding a certain amount of N{sub 2} is essential for the formation of stoichiometric BN films, since a lack of nitrogen will lead to boron rich films. Subsequently, the contributions of different plasma species, surface reactions, and film growth to the resulting variation of the substrate temperature in dependence on nitrogen admixture are estimated and discussed. In addition, SRIM simulations are performed to estimate the energy influx by sputtered neutral atoms. The influence of magnetron target power and oxygen admixture (for comparison with nitrogen) to the process gas on the total energy flux is determined and discussed qualitatively, too. The results indicate that variation of the energy influx due to additional nitrogen flow, which causes a decrease of electron and ion densities, electron temperature and plasma potential, is negligible, while the admixture of oxygen leads to a drastic increase of the energy influx. The typical hysteresis effect which can be observed during magnetron sputtering in oxygen containing gas mixtures has also been confirmed in the energy influx measurements for the investigated system. However, the underlying mechanism is not understood yet, and will be addressed in further investigations.

  20. [Effects of Temperature on the Preparation of Al/Zn3N2 Thin Films Using Magnetron Reactive Sputtering].

    PubMed

    Feng, Jun-qin; Chen, Jun-fang

    2015-08-01

    The effects of substrate temperature on the plasma active species were investigated by plasma optical emission spectroscopy. With increasing substrate temperature, the characteristic spectroscopy intensity of the first positive series of N2* (B(3)Πg-->A(3)Σu(+)), the second positive N2* (C(3)Πu-->B(3)Πg), the first negative series N2(+)* (B(2)Σu(+)-->X(2)Σg(+)) and Zn* are increased. Due to the substrate temperature, each ion kinetic energy is increased and the collision ionization intensified in the chamber. That leading to plasma ion density increase. These phenomenons's show that the substrate temperature raises in a certain range was conducive to zinc nitride thin films growth. Zn3N2 thin films were prepared on Al films using ion sources-assisted magnetron sputtering deposition method. The degree of crystalline of the films was examined with X-ray diffraction (XRD). The results show that has a dominant peak located at 34.359° in room temperature, which was corresponding to the (321) plane of cubic anti-bixbyite zinc nitride structure (JCPDS Card No35-0762). When the substrate temperature was 100 °C, in addition to the (321) reflection, more diffraction peaks appeared corresponding to the (222), (400) and (600) planes, which were located at 31.756°, 36.620° and 56.612° respectively. When the substrate temperature was 200 °C, in addition to the (321), (222), (400) and (600) reflection, more new diffraction peaks also appeared corresponding to the (411), (332), (431) and (622) planes, which were located at 39.070, 43.179°, 47.004° and 62.561° respectively. These results show the film crystalline increased gradually with raise the substrate temperature. XP-1 profilometer were used to analyze the thickness of the Zn3N2 films. The Zn3N2 films deposited on Al films in mixture gas plasma had a deposition rate of 2.0, 2.2, and 2.7 nm · min(-1). These results indicate that the deposition rate was gradually enhanced as substrate temperature increased

  1. Influence of working gas pressure on structure and properties of WO3 films reactively deposited by rf magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Tanabe, J.; Yamada, N.; Nakabayashi, H.

    2003-07-01

    Tungsten trioxide (WO3) films with thickness of 0.9-6.7 μm have been deposited on glass-slide substrates, using rf magnetron sputtering in an atmosphere of mixture 80% Ar and 20% O2. The as-deposited films had a dark metallic color, like the W target, at a working gas pressure PW of 1 mTorr. Yellow films resulted at a PW of 3 mTorr. With a further increase of PW, the film color changed to pale yellow. From the x-ray diffraction patterns, the as-deposited films were polycrystalline crystallizing in the monoclinic crystal structure with high c-axis orientation perpendicular to the film plane. The optical transmittance of the films deposited at a PW of 1 mTorr is nearly zero. However, the transmittance of the films deposited at other PW are larger than 70% in the wavelength, λ, ranging from 500 to 900 nm. With decreasing λ to 400 nm, the transmittance decreases steeply to zero. The λ at this absorption edge is longer than that in TiO2 and comes in the visible region. The surface morphology of the films depends on PW. This different morphology may be attributed to the effect of the substrate heating by plasma emission because of the high plasma density at higher PW. The morphology of the films may also depend on the crystallinity of the WO3 films. As PW increased, the surfaces of the films became rougher but the grain sizes of the films did not always become larger. The WO3 films deposited in this study may be used for the underlayer of TiO2 photocatalyst.

  2. Photoelectrochemical properties of N/C-codoped TiO2 film electrodes prepared by reactive DC magnetron sputtering.

    PubMed

    Wu, Kee-Rong; Yeh, Chung-Wei; Hung, Chung-Hsuang; Chung, Chih-Yuan; Cheng, Li-Hsun

    2010-02-01

    This paper aims to characterize the photoelectrochemical properties of the visible-light enabling titanium dioxide (TiO2) film electrodes prepared by codoping nitrogen (N) and a presputtered carbon film (C-film) onto indium tin oxide (ITO) glass substrates using a direct current (DC) magnetron sputtering technique. To improve its photoelectrochemical properties, different amount of C-doping sources, 2 h and 4 h C-film, are chose to prepare the N/C-codoped TiO2 film electrodes. Under visible-light (420 < lambda < 610 nm) illumination, a remarkable photocurrent density of 22 microA/cm2 is obtained for the N/C-TiO2 film electrode prepared with a 4 h C-film (NC(4)-T) at an applied potential of +1.2 V versus SCE. Under ultraviolet (lambda approximately 365 nm) illumination, the NC(4)-T film electrode also exhibits the highest photocurrent density of 0.23 mA/cm2 among all samples tested. A more negative flat band potential of NC(4)-T film electrode is attributed to the synergistic effect of N/C codoping. The XRD spectrum of the NC(4)-T film electrode shows mainly the well-crystallized anatase TiO2 phase and an extremely intense (211) plane. Thus, photoelectrochemical activity of the NC(4)-T film electrode can be ascribed to the well-crystallized columnar crystals with pores at its grain boundary, open surface morphology, which are revealed by SEM and TEM images, and a more negative flat band potential. The visible-light induced activity is mostly enhanced as a result of the synergistic effects of N/C-codoping into the TiO2 crystals. A potential application to photocatalytic splitting of water for hydrogen evolution using solar light is practically possible. PMID:20352756

  3. Understanding of gas phase deposition of reactive magnetron sputtered TiO2 thin films and its correlation with bactericidal efficiency

    NASA Astrophysics Data System (ADS)

    Panda, A. B.; Mahapatra, S. K.; Barhai, P. K.; Das, A. K.; Banerjee, I.

    2012-10-01

    Nanostructured TiO2 thin films were deposited using RF reactive magnetron sputtering at different O2 flow rates (20, 30, 50 and 60 sccm) and constant RF power of 200 W. In situ investigation of the nucleation and growth of the films was made by Optical Emission Spectroscopy (OES). The nano amorphous nature as revealed from X-ray diffraction (XRD) of the as deposited films and abundance of the Ti3+ surface oxidation states and surface hydroxyl group (OH-) in the films deposited at 50 sccm as determined from X-ray photo electron spectroscopy (XPS) was explained on the basis of emission spectra studies. The increase in band gap and decrease in particle size with O2 flow rate was observed from transmission spectra of UV-vis spectroscopy. Photoinduced hydrophilicity has been studied using Optical Contact Angle (OCA) measurement. The post irradiated films showed improved hydrophilicity. The bactericidal efficiency of these films was investigated taking Escherichia coli as model bacteria. The films deposited at 50 sccm shows better bactericidal activity as revealed from the optical density (OD) measurement. The qualitative analysis of the bactericidal efficiency was depicted from Scanning Electron Microscope images. A correlation between bactericidal efficiency and the deposited film has been established and explained on the basis of nucleation growth, band gap and hydrophilicity of the films.

  4. Effect of film thickness on structural and mechanical properties of AlCrN nanocompoite thin films deposited by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Prakash, Ravi; Kaur, Davinder

    2016-05-01

    In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with different deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.

  5. Preparation of diamond-like carbon films using reactive Ar/CH4 high power impulse magnetron sputtering system with negative pulse voltage source for substrate

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Kamata, Hikaru

    2016-04-01

    Diamond-like carbon films were prepared using a reactive Ar/CH4 high-power impulse magnetron sputtering system with a negative pulse voltage source for the substrate, changing the CH4 fraction up to 15% in the total pressure range from 0.3 to 2 Pa. The magnitude of the negative pulse voltage for the substrate was also varied up to about 500 V. The hardness of films monotonically increased with increasing magnitude of the negative pulse voltage. The films with hardnesses between 16.5 and 23 GPa were prepared at total pressures less than 0.5 Pa and CH4 fractions less than 10% by applying an appropriate negative pulse voltage of 300-400 V. In X-ray photoelectron spectroscopy, the area ratio C-C sp3/(C-C sp2 + C-C sp3) in the C 1s core level was higher than 30% at pressures less than 0.5 Pa and CH4 fractions less than 15%. On the other hand, the films with hardnesses between 5 and 10 GPa were prepared with a relatively high growth rate at the partial pressures of CH4 higher than 0.1 Pa. However, the observation of the photoluminescence background in Raman spectroscopy indicated a relatively high hydrogen content.

  6. Microstructural evolution and Poisson ratio of epitaxial ScN grown on TiN(001)/MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Gall, D.; Petrov, I.; Desjardins, P.; Greene, J. E.

    1999-11-01

    ScN layers, 60-80 nm thick, were grown at 800 °C on 220-nm-thick epitaxial TiN(001) buffer layers on MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition in pure N2 discharges. The films are stoichiometric with N/Sc ratios, determined by Rutherford backscattering spectroscopy and x-ray photoelectron spectroscopy, of 1.00±0.02. Plan-view and cross-sectional transmission electron microscopy analyses showed that the films are single crystals which appear defect free up to a critical thickness of ≃15 nm, above which an array of nanopipes form with their tubular axis along the film growth direction and extending to the free surface. The nanopipes are rectangular in cross section with areas of ≃1.5×5 nm2 and are self-organized along <100>, directions with an average separation of ≃40 nm. Their formation is the result of periodic kinetic surface roughening which leads to atomic self-shadowing and, under limited adatom mobility conditions, to deep cusps which are the origin of the nanopipes. The ScN layers are nearly relaxed, as determined from x-ray diffraction θ-2θ scans in both reflection and transmission, with only a small residual compressive strain due to differential thermal contraction. The Poisson ratio of ScN was found to be 0.20±0.04, in good agreement with ab initio calculations.

  7. On the phase formation of titanium oxide thin films deposited by reactive DC magnetron sputtering: influence of oxygen partial pressure and nitrogen doping

    NASA Astrophysics Data System (ADS)

    Pandian, Ramanathaswamy; Natarajan, Gomathi; Rajagopalan, S.; Kamruddin, M.; Tyagi, A. K.

    2014-09-01

    This work describes about the control on phase formation in titanium oxide thin films deposited by reactive dc magnetron sputtering. Various phases of titanium oxide thin films were deposited by controlling the oxygen partial pressure during the sputtering process. By adding nitrogen gas to sputter gas mixture of oxygen and argon, the oxygen partial pressure was decreased further below the usual critical value, below and above which the sputtering yields metallic and oxide films, respectively. Furthermore, nitrogen addition eliminated the typical hysteretic behaviour between the flow rate and oxygen partial pressure, and significantly influenced the sputter rate. On increasing the oxygen partial pressure, the ratio between anatase and rutile fraction and grain size increases. The fracture cross-sectional scanning electron microscopy together with the complementary information from X-ray diffraction and micro-Raman investigations revealed the evolution and spatial distribution of the anatase and rutile phases. Both the energy delivered to the growing film and oxygen vacancy concentrations are correlated with the formation of various phases upon varying the oxygen partial pressure.

  8. Effect of annealing treatment on the photocatalytic activity of TiO2 thin films deposited by dc reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Arias, L. M. Franco; Arias Duran, A.; Cardona, D.; Camps, E.; Gómez, M. E.; Zambrano, G.

    2015-07-01

    Titanium dioxide (TiO2) thin films have been deposited by DC reactive magnetron sputtering on silicon and quartz substrates with different Ar/O2 ratios in the gas mixture. Substrate temperature was kept constant at 400 °C during the deposition process, and the TiO2 thin films were later annealed at 700 °C for 3 h. The effect of the Ar/O2 ratio in the gas flow and the annealing treatment on the phase composition, deposition rate, crystallinity, surface morphology and the resulting photocatalytic properties were investigated. For photocatalytic measurements, the variation of the concentration of the methylene blue (MB) dye under UV irradiation was followed by a change in the intensity of the characteristic MB band in the UV- Vis transmittance spectra. We report here that the as-grown TiO2 films showed only the anatase phase, whereas after annealing, the samples exhibited both the anatase and rutile phases in proportions that varied with the Ar/O2 ratio in the mixture of gases used during growth. In particular, the annealed TiO2 thin film deposited at a 50/50 ratio of Ar/O2, composed of both anatase (80%) and rutile phases (20%), exhibited the highest photocatalytic activity (30% of MB degradation) compared with the samples without annealing and composed of only the anatase phase.

  9. Elastic constants, Poisson ratios, and the elastic anisotropy of VN(001), (011), and (111) epitaxial layers grown by reactive magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Mei, A. B.; Wilson, R. B.; Li, D.; Cahill, David G.; Rockett, A.; Birch, J.; Hultman, L.; Greene, J. E.; Petrov, I.

    2014-06-01

    Elastic constants are determined for single-crystal stoichiometric NaCl-structure VN(001), VN(011), and VN(111) epitaxial layers grown by magnetically unbalanced reactive magnetron sputter deposition on 001-, 011-, and 111-oriented MgO substrates at 430 °C. The relaxed lattice parameter ao = 0.4134 ± 0.0004 nm, obtained from high-resolution reciprocal space maps, and the mass density ρ = 6.1 g/cm3, determined from the combination of Rutherford backscattering spectroscopy and film thickness measurements, of the VN layers are both in good agreement with reported values for bulk crystals. Sub-picosecond ultrasonic optical pump/probe techniques are used to generate and detect VN longitudinal sound waves with measured velocities v001 = 9.8 ± 0.3, v011 = 9.1 ± 0.3, and v111 = 9.1 ± 0.3 km/s. The VN c11 elastic constant is determined from the sound wave velocity measurements as 585 ± 30 GPa; the c44 elastic constant, 126 ± 3 GPa, is obtained from surface acoustic wave measurements. From the combination of c11, c44, vhkl, and ρ we obtain the VN c12 elastic constant 178 ± 33 GPa, the VN elastic anisotropy A = 0.62, the isotropic Poisson ratio ν = 0.29, and the anisotropic Poisson ratios ν001 = 0.23, ν011 = 0.30, and ν111 = 0.29.

  10. Effect of Aluminum concentration on structural and optical properties of DC reactive magnetron sputtered Zinc Aluminum Oxide thin films for transparent electrode applications

    NASA Astrophysics Data System (ADS)

    Kumar, B. Rajesh; Subba Rao, T.

    2012-11-01

    Zinc Aluminum Oxide(ZAO) thin films were deposited on glass substrates by DC reactive magnetron sputtering in an Ar+O2 gas mixture using commercial available Zn metal (99.99% purity) and Al (99.99% purity) targets of 2 inch diameter and 4 mm thickness. The films were characterized and the effect of aluminum (Al) concentration (2 at %-6 at %) on the structural and optical properties was studied. The average crystallite size obtained from Scherer formula is in the range of 32-44nm. Microstructural analysis using Scanning Electron Microscope (SEM) supplemented with EDS is carried out to find the grain size as well as to find the composition elemental data of prepared thin films. Optical study is performed to calculate the extinction coefficient (k), absorption coefficient (a), optical band gap (Eg) using transmission spectra obtained using UV-VIS-NIR spectrophotometer. There was widening of optical band gap with increasing aluminum concentration. ZAO film with low resistivity 3.2 × 10-4 cm and high transmittance of 80% is obtained for 3at% doped Al which is crucial for optoelectronic applications.

  11. Influence of film thickness on the morphological and electrical properties of epitaxial TiC films deposited by reactive magnetron sputtering on MgO substrates

    NASA Astrophysics Data System (ADS)

    Zoita, N. C.; Braic, V.; Danila, M.; Vlaicu, A. M.; Logofatu, C.; Grigorescu, C. E. A.; Braic, M.

    2014-03-01

    Epitaxial TiC films were deposited on MgO (001) by DC magnetron sputtering in a reactive atmosphere of Ar and CH4 at 800 °C. The films elemental composition and chemical bonding was investigated by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. The crystallographic structure, investigated by X-ray diffraction, exhibited an increased degree of (001) orientation with the film thickness, with a cube-on-cube epitaxial relationship with the substrate. The films morphology and electrical properties were determined by atomic force microscopy (AFM) and Hall measurements in Van der Pauw geometry. The influences of the film thickness (57-545 nm) on the morphological and electrical properties were investigated. The thinnest film presented the lowest resistivity, ~160 μΩ cm, showing an atomically flat surface, while higher values were obtained for the thicker films, explained by their different morphology dominated by low aspect ratio nanoislands/nanocolumns.

  12. Transmission photocathodes based on stainless steel mesh and quartz glass coated with N-doped DLC thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Arbet, J.

    2016-03-01

    The influence was investigated of N-doped diamond-like carbon (DLC) films properties on the quantum efficiency of a prepared transmission photocathode. N-doped DLC thin films were deposited on a silicon substrate, a stainless steel mesh and quartz glass (coated with 5 nm thick Cr adhesion film) by reactive magnetron sputtering using a carbon target and gas mixture Ar, 90%N2+10%H2. The elements' concentration in the films was determined by RBS and ERD. The quantum efficiency was calculated from the measured laser energy and the measured cathode charge. For the study of the vectorial photoelectric effect, the quartz type photocathode was irradiated by intensive laser pulses to form pin-holes in the DLC film. The quantum efficiency (QE), calculated at a laser energy of 0.4 mJ, rose as the nitrogen concentration in the DLC films was increased and rose dramatically after the micron-size perforation in the quartz type photocathodes.

  13. Effect Of Process Gas Mixture On Reactively DC Magnetron Sputtered (Al1_xSix)OyNz Thin Films

    NASA Astrophysics Data System (ADS)

    Bjornard, Erik

    1989-02-01

    (A1 1-x Si x )0yNz films have properties which make them desirable as durable overcoats and corrosion barriers in optical thin film structures. (Al, Si )O N films were reactively DC sputtered from Al, Si targets (x = 0.0, 0.117, 0.30) in Ar/N2/O2 atmospheres. Nitride films had sputter efficiencies three times that of the oxides and ESCA analysis of the films showed that the film composition varied non-linearly with reactive gas ratio and sputter rate, incorporating more oxygen than nitrogen for a given gas flow. This behavior is correlated with the hysteresis curves for the oxide and nitride states. Optical properties of the films were also found to vary with index dropping disproportionately to the 0/(0+N) flow ratio, but linearly with the ratio of atomic percent of 0 and N in the films. Durability properties of (A1 1_x Si x)0 NZ films were tested at several compositions. It was found that with high nitrogen context the wear resistance increased with Si content and the oxides were generally less wear resistant than the nitrides. The corrosion resistance also increased with Si content, but in this case, the oxides were generally more stable. Film stress became more compressive with 0 and Si content. Analysis of ESCA binding energy data indicates that the Si forms alumino-silicate bonds in the film, which apparently contributes to the durability properties.

  14. High rate reactive magnetron sputter deposition of Al-doped ZnO with unipolar pulsing and impedance control system

    SciTech Connect

    Nishi, Yasutaka; Hirohata, Kento; Tsukamoto, Naoki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Al-doped ZnO (AZO) films were deposited on quartz glass substrates, unheated and heated to 200 deg. C, using reactive sputtering with a special feedback system of discharge impedance combined with midfrequency pulsing. A planar Zn-Al alloy target was connected to the switching unit, which was operated in a unipolar pulse mode. The oxidation of the target surface was precisely controlled by a feedback system for the entire O{sub 2} flow ratio including ''the transition region''. The deposition rate was about 10-20 times higher than that for films deposited by conventional sputtering using an oxide target. A deposition rate of AZO films of 390 nm/min with a resistivity of 3.8x10{sup -4} {Omega} cm and a transmittance in the visible region of 85% was obtained when the films were deposited on glass substrates heated to 200 deg. C with a discharge power of 4 kW.

  15. Potential for reactive pulsed-dc magnetron sputtering of nanocomposite VO{sub x} microbolometer thin films

    SciTech Connect

    Jin, Yao O. Ozcelik, Adem; Horn, Mark W.; Jackson, Thomas N.

    2014-11-01

    Vanadium oxide (VO{sub x}) thin films were deposited by reactive pulsed-dc sputtering a metallic vanadium target in argon/oxygen mixtures with substrate bias. Hysteretic oxidation of the vanadium target surface was assessed by measuring the average cathode current during deposition. Nonuniform oxidization of the target surface was analyzed by Raman spectroscopy. The VO{sub x} film deposition rate, resistivity, and temperature coefficient of resistance were correlated to oxygen to argon ratio, processing pressure, target-to-substrate distance, and oxygen inlet positions. To deposit VO{sub x} in the resistivity range of 0.1–10 Ω-cm with good uniformity and process control, lower processing pressure, larger target-to-substrate distance, and oxygen inlet near the substrate are useful.

  16. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO{sub 3} films grown by pulsed direct current magnetron sputtering

    SciTech Connect

    Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.

    2014-03-21

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO{sub 3}) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO{sub 2}:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO{sub 3} films deposited on SnO{sub 2}:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO{sub 3} film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10{sup −3}. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (E{sub d}) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (E{sub o}) of WO{sub 3} films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The E{sub o} is change between 6.30 and 3.88 eV, while the E{sub d} varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm{sup −1} attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  17. Synthesis of bamboo-leaf-shaped ZnO nanostructures by oxidation of Zn/SiO 2 composite films deposited with radio frequency magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Shi, Liwei; Li, Yuguo; Xue, Chengshan; Zhuang, Huizhao; He, Jianting; Tian, Dengheng

    2006-02-01

    Bamboo-leaf-shaped ZnO nanostructures were synthesized by oxidation of metal Zn/SiO 2 matrix composite thin films deposited on Si(1 1 1) substrates with radio frequency magnetron co-sputtering. The synthesized bamboo-leaf-shaped ZnO are single crystalline in nature with widths ranging from 30 to 60 nm and lengths of up to 5-10 μm, room temperature photoluminescence spectrum of the nanostructures shows a strong and sharp UV emission band at 372 nm and a weak and broad green emission band at about 520 nm which indicates relatively excellent crystallization and optical quality of the ZnO nanostructures synthesized by this novel method.

  18. Heteroepitaxial growth of Cu{sub 2}ZnSnS{sub 4} thin film on sapphire substrate by radio frequency magnetron sputtering

    SciTech Connect

    Song, Ning E-mail: n.song@student.unsw.edu.au; Huang, Yidan; Li, Wei; Huang, Shujuan; Hao, Xiaojing E-mail: n.song@student.unsw.edu.au; Wang, Yu; Hu, Yicong

    2014-03-03

    The heteroepitaxy of tetragonal Cu2ZnSnS4 (CZTS) thin films on hexagonal sapphire (0001) single crystal substrates is successfully obtained by radio frequency magnetron sputtering. The sputtered CZTS film has a mirror-like smooth surface with a root mean square roughness of about 5.44 nm. X-ray θ-2θ scans confirm that CZTS film is (112) oriented on sapphire with an out of plane arrangement of CZTS (112) ‖ sapphire (0001). X-ray Phi scan further illustrates an in plane ordering of CZTS [201{sup ¯}] ‖ sapphire [21{sup ¯}1{sup ¯}0]. The high resolution transmission electron microscopy image of the interface region clearly shows that the CZTS thin film epitaxially grows on the sapphire (0001) substrate. The band gap of the film is found to be approximately 1.51 eV.

  19. Structural properties and preparation of Si-rich Si1-xCx thin films by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    He, Yisong; Ye, Chao; Wang, Xiangying; Gao, Mingwei; Guo, Jiaming; Yang, Peifang

    2016-02-01

    Si-rich silicon carbide (Si1-xCx) thin films were prepared by radio-frequency (2 MHz, 13.56 MHz and 27.12 MHz) magnetron sputtering. Their structural properties were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM). The effect of ions energy on films deposition was also analyzed by retarding field energy analyzer. The results show that the films compositions are related to the energy of ions impacting the SiC target. At the lower sputtering power, Si-rich Si1-xCx (1-x = 0.57-0.90) thin films can be well deposited.

  20. Influences of CuO phase on electrical and optical performance of Cu2O films prepared by middle frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Guo, Li; Zhao, Ming; Zhuang, Da-Ming; Cao, MingJie; Ouyang, Liangqi; Li, Xiaolong; Sun, Rujun; Gao, Zedong

    2015-12-01

    In the work, Cu2O films were prepared by middle frequency (mf) magnetron sputtering and subsequent anneals. CuO phase has been detected in a few Cu2O samples and its influences have been examined. The results show that the CuO phase can lead to a decrease of Hall mobility and change the surface morphology of the Cu2O films. The highest hall mobility of 43 cm2 V-1 s-1 with the optical band gaps of about 2.5 eV has been achieved in the Cu2O films where CuO is absent, which demonstrates the potential to fabricate high field-effected mobility Cu2O-based devices through this method.

  1. Extended x-ray absorption fine structure measurements on radio frequency magnetron sputtered HfO2 thin films deposited with different oxygen partial pressures.

    PubMed

    Maidul Haque, S; Nayak, C; Bhattacharyya, Dibyendu; Jha, S N; Sahoo, N K

    2016-03-20

    Two sets of HfO2 thin film have been deposited by the radio frequency magnetron sputtering technique at various oxygen partial pressures, one set without any substrate bias and another set with a 50 W pulsed dc substrate bias. The films have been characterized by extended x-ray absorption fine structure (EXAFS) measurements at the Hf L3 edge, and the structural information obtained from analysis of the EXAFS data has been used to explain the macroscopic behavior of the refractive index obtained from spectroscopic ellipsometry measurements. It has been observed that the variation of refractive index with oxygen partial pressure depends on the Hf-Hf bond length for the set of films deposited without substrate bias, while for the other set of films deposited with pulsed dc substrate bias, it depends on the oxygen coordination of the nearest neighbor shell surrounding Hf sites. PMID:27140550

  2. In-situ post-annealing technique for improving piezoelectricity and ferroelectricity of Li-doped ZnO thin films prepared by radio frequency magnetron sputtering system

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Cheng; Chang, Chia-Chiang; Wu, Chin-Jyi; Tseng, Zong-Liang; Tang, Jian-Fu; Chu, Sheng-Yuan; Chen, Yi-Chun; Qi, Xiaoding

    2013-03-01

    Li-doped zinc oxide (L0.03Z0.97O) thin films are deposited onto Pt/Ti/SiO2/Si substrates via the radio frequency magnetron sputtering method. The structure evolution with annealing temperature of the predominantly (002)-oriented Li-doped ZnO (LZO) films after in-situ post-annealing process is determined. The largest values of the piezoelectric coefficient (d33) and the remnant polarization (Pr) (22.85 pm/V and 0.655 μC/cm2, respectively) are obtained for LZO films post-annealed at 600 °C, which can be attributed to the predominant (002)-oriented crystalline structure, the release of intrinsic residual compressive stress, and less non-lattice oxygen.

  3. Investigation of induced recrystallization and stress in close-spaced sublimated and radio-frequency magnetron sputtered CdTe thin films

    SciTech Connect

    Moutinho, H.R.; Dhere, R.G.; Al-Jassim, M.M.; Levi, D.H.; Kazmerski, L.L.

    1999-07-01

    We have induced recrystallization of small grain CdTe thin films deposited at low temperatures by close-spaced sublimation (CSS), using a standard CdCl{sub 2} annealing treatment. We also studied the changes in the physical properties of CdTe films deposited by radio-frequency magnetron sputtering after the same post-deposition processing. We demonstrated that the effects of CdCl{sub 2} on the physical properties of CdTe films are similar, and independent of the deposition method. The recrystallization process is linked directly to the grain size and stress in the films. These studies indicated the feasibility of using lower-temperature processes in fabricating efficient CSS CdTe solar cells. We believe that, after the optimization of the parameters of the chemical treatment, these films can attain a quality similar to CSS films grown using current standard conditions. {copyright} {ital 1999 American Vacuum Society.}

  4. Structural and compositional evolutions of InxAl1-xN core-shell nanorods grown on Si(111) substrates by reactive magnetron sputter epitaxy

    NASA Astrophysics Data System (ADS)

    Serban, Elena Alexandra; Åke Persson, Per Ola; Poenaru, Iuliana; Junaid, Muhammad; Hultman, Lars; Birch, Jens; Hsiao, Ching-Lien

    2015-05-01

    Catalystless growth of InxAl1-xN core-shell nanorods have been realized by reactive magnetron sputter epitaxy onto Si(111) substrates. The samples were characterized by scanning electron microscopy, x-ray diffraction, scanning transmission electron microscopy, and energy dispersive x-ray spectroscopy. The composition and morphology of InxAl1-xN nanorods are found to be strongly influenced by the growth temperature. At lower temperatures, the grown materials form well-separated and uniform core-shell nanorods with high In-content cores, while a deposition at higher temperature leads to the formation of an Al-rich InxAl1-xN film with vertical domains of low In-content as a result of merging Al-rich shells. The thickness and In content of the cores (domains) increase with decreasing growth temperature. The growth of the InxAl1-xN is traced to the initial stage, showing that the formation of the core-shell nanostructures starts very close to the interface. Phase separation due to spinodal decomposition is suggested as the origin of the resultant structures. Moreover, the in-plane crystallographic relationship of the nanorods and substrate was modified from a fiber textured to an epitaxial growth with an epitaxial relationship of InxAl1-xN[0001]//Si[111] and InxAl1-xN[11\\bar{2}0]//Si[1\\bar{1}0] by removing the native SiOx layer from the substrate.

  5. The effect of increasing V content on the structure, mechanical properties and oxidation resistance of Ti-Si-V-N films deposited by DC reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Fernandes, F.; Loureiro, A.; Polcar, T.; Cavaleiro, A.

    2014-01-01

    In the last years, vanadium rich films have been introduced as possible candidates for self-lubrication at high temperatures, based on the formation of V2O5 oxide. The aim of this investigation was to study the effect of V additions on the structure, mechanical properties and oxidation resistance of Ti-Si-V-N coatings deposited by DC reactive magnetron sputtering. The results achieved for TiSiVN films were compared and discussed in relation to TiN and TiSiN films prepared as reference. All coatings presented a fcc NaCl-type structure. A shift of the diffraction peaks to higher angles with increasing Si and V contents suggested the formation of a substitutional solid solution in TiN phase. Hardness and Young's modulus of the coatings were similar regardless on V content. The onset of oxidation of the films decreased significantly to 500 °C when V was added into the films; this behaviour was independent of the Si and V contents. The thermogravimetric isothermal curves of TiSiVN coatings oxidized at temperatures below the melting point of α-V2O5 (∼685 °C) showed two stages: at an early stage, the weight increase over time is linear, whilst, in the second stage, a parabolic evolution can be fitted to the experimental data. At higher temperatures only a parabolic evolution was fitted. α-V2O5 was the main phase detected at the oxidized surface of the coatings. Reduction of α-V2O5 to β-V2O5 phase occurred for temperatures above its melting point.

  6. Mechanical, tribological, and electrochemical behavior of Cr 1- xAl xN coatings deposited by r.f. reactive magnetron co-sputtering method

    NASA Astrophysics Data System (ADS)

    Sanchéz, J. E.; Sanchéz, O. M.; Ipaz, L.; Aperador, W.; Caicedo, J. C.; Amaya, C.; Landaverde, M. A. Hernández; Beltran, F. Espinoza; Muñoz-Saldaña, J.; Zambrano, G.

    2010-02-01

    Chromium aluminum nitride (Cr 1- xAl xN) coatings were deposited onto AISI H13 steel and silicon substrates by r.f. reactive magnetron co-sputtering in (Ar/N 2) gas mixture from chromium and aluminum targets. Properties of deposited Cr 1- xAl xN coatings such as compositional, structural, morphological, electrochemical, mechanical and tribological, were investigated as functions of aluminum content. X-ray diffraction patterns of Cr 1- xAl xN coatings with different atomic concentrations of aluminum (0.51 < x < 0.69) showed the presence and evolution of (1 1 1), (2 0 0), and (1 0 2) crystallographic orientations associated to the Cr 1- xAl xN cubic and w-AlN phases, respectively. The rate of corrosion of the steel coated with Cr 1- xAl xN varied with the applied power; however, always being clearly lower when compared to the uncoated substrate. The behavior of the protective effect of the Cr 1- xAl xN coatings is based on the substitution of Cr for Al, when the power applied to the aluminum target increases. The mechanical properties were also sensitive to the power applied, leading to a maximum in hardness and a reduced elastic modulus of 30 and 303 GPa at 350 W and a monotonic decrease to 11 and 212 GPa at 450 W, respectively. Finally, the friction coefficient measured by pin-on disk revealed values between 0.45 and 0.70 in humid atmosphere.

  7. Effect of oxygen incorporation on structural and properties of Ti-Si-N nanocomposite coatings deposited by reactive unbalanced magnetron sputtering

    SciTech Connect

    Ding, X.Z.; Zeng, X.T.; Liu, Y.C.; Zhao, L.R.

    2006-07-15

    Ti-Si-N-O nanocomposite coatings with different contents of oxygen were deposited by a combined dc/rf reactive unbalanced magnetron sputtering process in an Ar+N{sub 2}+O{sub 2} mixture atmosphere. The composition, structure, mechanical, and tribological properties of the as-deposited coatings were analyzed by energy dispersive analysis of x-rays, x-ray diffraction (XRD), nanoindentation, and pin-on-disk tribometer experiments, respectively. It was found that in the range of lower oxygen content with atomic ratio of O/N{<=}0.72, the tribological properties of the Ti-Si-N-O coatings are evidently improved, in comparison with the coating without oxygen incorporation. At O/N=0.72, the friction coefficient and wear rate of the as-deposited coatings are reduced to 20% and 45%, respectively. Meanwhile, however, their hardness was not reduced, but, on the contrary, slightly increased. With increasing oxygen content further to O/N{>=}0.72, coating hardness decreased significantly. The friction coefficient of the as-deposited coatings decreased monotonously with the increase of oxygen content in the whole composition range investigated. The wear rate of the coatings exhibited a minimum value at around O/N=0.72. In the lower range of O/N, wear rate decreased significantly due to the lubricant effect of oxygen incorporation, while in the higher range of O/N, wear rate increased gradually due to the weakening of coating hardness. XRD patterns revealed that the as-deposited coatings were mainly crystallized in cubic TiN phase, accompanied with minority of rutile structure titania in the case of higher oxygen incorporation.

  8. Structural and compositional evolutions of InxAl1-xN core-shell nanorods grown on Si(111) substrates by reactive magnetron sputter epitaxy.

    PubMed

    Serban, Elena Alexandra; Åke Persson, Per Ola; Poenaru, Iuliana; Junaid, Muhammad; Hultman, Lars; Birch, Jens; Hsiao, Ching-Lien

    2015-05-29

    Catalystless growth of InxAl(1-x)N core-shell nanorods have been realized by reactive magnetron sputter epitaxy onto Si(111) substrates. The samples were characterized by scanning electron microscopy, x-ray diffraction, scanning transmission electron microscopy, and energy dispersive x-ray spectroscopy. The composition and morphology of InxAl(1-x)N nanorods are found to be strongly influenced by the growth temperature. At lower temperatures, the grown materials form well-separated and uniform core-shell nanorods with high In-content cores, while a deposition at higher temperature leads to the formation of an Al-rich InxAl(1-x)N film with vertical domains of low In-content as a result of merging Al-rich shells. The thickness and In content of the cores (domains) increase with decreasing growth temperature. The growth of the InxAl(1-x)N is traced to the initial stage, showing that the formation of the core-shell nanostructures starts very close to the interface. Phase separation due to spinodal decomposition is suggested as the origin of the resultant structures. Moreover, the in-plane crystallographic relationship of the nanorods and substrate was modified from a fiber textured to an epitaxial growth with an epitaxial relationship of InxAl(1-x)N[0001]//Si[111] and InxAl(1-x)N[1120]//Si[110 by removing the native SiOx layer from the substrate. PMID:25944838

  9. Morphology and structure evolution of Cu(In,Ga)S{sub 2} films deposited by reactive magnetron co-sputtering with electron cyclotron resonance plasma assistance

    SciTech Connect

    Nie, Man Ellmer, Klaus

    2014-02-28

    Cu(In,Ga)S{sub 2} (CIGS) films were deposited on Mo coated soda lime glass substrates using an electron cyclotron resonance plasma enhanced one-step reactive magnetron co-sputtering process (ECR-RMS). The crystalline quality and the morphology of the Cu(In,Ga)S{sub 2} films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray fluorescence. We also compared these CIGS films with films previously prepared without ECR assistance and find that the crystallinity of the CIGS films is correlated with the roughness evolution during deposition. Atomic force microscopy was used to measure the surface topography and to derive one-dimensional power spectral densities (1DPSD). All 1DPSD spectra of CIGS films exhibit no characteristic peak which is typical for the scaling of a self-affine surface. The growth exponent β, characterizing the roughness R{sub q} evolution during the film growth as R{sub q} ∼ d{sup β}, changes with film thickness. The root-mean-square roughness at low temperatures increases only slightly with a growth exponent β = 0.013 in the initial growth stage, while R{sub q} increases with a much higher exponent β = 0.584 when the film thickness is larger than about 270 nm. Additionally, we found that the H{sub 2}S content of the sputtering atmosphere and the Cu- to-(In + Ga) ratio has a strong influence of the morphology of the CIGS films in this one-step ECR-RMS process.

  10. Effects of substrate bias on the preferred orientation, phase transition and mechanical properties for NbN films grown by direct current reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wen, M.; Hu, C. Q.; Wang, C.; An, T.; Su, Y. D.; Meng, Q. N.; Zheng, W. T.

    2008-07-01

    NbN films are deposited using direct current reactive magnetron sputtering in discharge of a mixture of N2 and Ar gas, and the effects of substrate bias (Vb) on the preferred orientation, phase transition, and mechanical properties for NbN films are explored by x-ray diffraction, selective area electron diffraction, and nanoindentation measurements. It is found that Vb has a significant influence on the stress in NbN films, leading to a pronounced change in the preferred orientation, phase structure, and hardness. As the substrate is at voltage floating, the stress is tensile. In contrast, as negative Vb is applied, the stress becomes compressive, and increases with increasing the absolute value of negative Vb. It is observed that a phase transition from δ (face-centered cubic) to δ' (hexagonal) for NbN films occurs as Vb is in the range of -80to-120V, which can be attributed to a decrease in the strain energy for NbN films. In order to explore the relationship between the stress and phase transition as well as preferred orientation, density-functional theory based on first principles is used to calculate the elastic constants and shear modulus for NbN with a structure of δ or δ'. The calculated results show that the shear modulus for δ'-NbN is larger than that for δ-NbN, whereas the bulk modulus for δ'-NbN is almost equal to that for δ-NbN, resulting in a difference in hardness for δ- or δ'-NbN single crystal.

  11. Relationship between the physical and structural properties of Nb{sub z}Si{sub y}N{sub x} thin films deposited by dc reactive magnetron sputtering

    SciTech Connect

    Sanjines, R.; Benkahoul, M.; Sandu, C.S.; Schmid, P.E.; Levy, F.

    2005-12-15

    The optical and electrical properties of Nb{sub z}Si{sub y}N{sub x} thin films deposited by dc reactive magnetron sputtering have been investigated as a function of the Si content (C{sub Si}). Optical properties were studied by both specular reflectivity and spectroscopic ellipsometry. Electrical resistivity was measured by the van der Pauw method at room temperature and as a function of the temperature down to 10 K. Both the optical and electrical properties of Nb{sub z}Si{sub y}N{sub x} films are closely related with the chemical composition and microstructure evolution caused by Si addition. For C{sub Si} up to 4 at. % the Si atoms are soluble in the lattice of the NbN crystallites. In this compositional regime, the optical and electrical properties show little dependence on the Si content. Between 4 and 7 at. % the surplus of Si atoms segregates at the grain boundaries, builds an insulating SiN{sub x} layer, and originates important modifications in the optical and electrical properties of these films. Further increase of C{sub Si} leads to the formation of nanocomposite structures. The electrical properties of these films are well described by the grain-boundary scattering model with low probability for electrons to cross the grain boundary. The appearance of the intragranular-insulating SiN{sub x} layer and the reduction of the grain size are noticed in the dielectric function mainly as a strong damping of the plasma oscillation.

  12. Photocatalytic property of titanium dioxide thin films deposited by radio frequency magnetron sputtering in argon and water vapour plasma

    NASA Astrophysics Data System (ADS)

    Sirghi, L.; Hatanaka, Y.; Sakaguchi, K.

    2015-10-01

    The present work is investigating the photocatalytic activity of TiO2 thin films deposited by radiofrequency magnetron sputtering of a pure TiO2 target in Ar and Ar/H2O (pressure ratio 40/3) plasmas. Optical absorption, structure, surface morphology and chemical structure of the deposited films were comparatively studied. The films were amorphous and included a large amount of hydroxyl groups (about 5% of oxygen atoms were bounded to hydrogen) irrespective of the intentional content of water in the deposition chamber. Incorporation of hydroxyl groups in the film deposited in pure Ar plasma is explained as contamination of the working gas with water molecules desorbed by plasma from the deposition chamber walls. However, intentional input of water vapour into the discharge chamber decreased the deposition speed and roughness of the deposited films. The good photocatalytic activity of the deposited films could be attributed hydroxyl groups in their structures.

  13. Growth of Ge/Si(100) Nanostructures by Radio-Frequency Magnetron Sputtering: the Role of Annealing Temperature

    NASA Astrophysics Data System (ADS)

    Alireza, Samavati; K. Ghoshal, S.; Othaman, Z.

    2012-04-01

    Surface morphologies of Ge islands deposited on Si(100) substrates are characterized and their optical properties determined. Samples are prepared by rf magnetron sputtering in a high-vacuum chamber and are annealed at 600°C, 700°C and 800°C for 2 min at nitrogen ambient pressure. Atomic force microscopy, field emission scanning electron microscopy, visible photoluminescence (PL) and energy dispersive x-ray spectroscopy are employed. The results for the annealing temperature-dependent sample morphology and the optical properties are presented. The density, size and roughness are found to be strongly influenced by the annealing temperature. A red shift of ~0.29 eV in the PL peak is observed with increasing annealing temperature.

  14. Effect of nitrogen doping on structural, morphological, optical and electrical properties of radio frequency magnetron sputtered zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Perumal, R.; Hassan, Z.

    2016-06-01

    Zinc oxide receives remarkable attention due to its several attractive physical properties. Zinc oxide thin films doped with nitrogen were grown by employing RF magnetron sputtering method at room temperature. Doping was accomplished in gaseous medium by mixing high purity nitrogen gas along with argon sputtering gas. Structural studies confirmed the high crystalline nature with c-axis oriented growth of the nitrogen doped zinc oxide thin films. The tensile strain was developed due to the incorporation of the nitrogen into the ZnO crystal lattice. Surface roughness of the grown films was found to be decreased with increasing doping level was identified through atomic force microscope analysis. The presenting phonon modes of each film were confirmed through FTIR spectral analysis. The increasing doping level leads towards red-shifting of the cut-off wavelength due to decrement of the band gap was identified through UV-vis spectroscopy. All the doped films exhibited p-type conductivity was ascertained using Hall measurements and the obtained results were presented.

  15. Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries

    NASA Astrophysics Data System (ADS)

    Lobe, S.; Dellen, C.; Finsterbusch, M.; Gehrke, H.-G.; Sebold, D.; Tsai, C.-L.; Uhlenbruck, S.; Guillon, O.

    2016-03-01

    Thin film batteries based on solid electrolytes having a garnet-structure like Li7La3Zr2O12 (LLZ) are considered as one option for safer batteries with increased power density. In this work we show the deposition of Ta- and Al-substituted LLZ thin films on stainless steel substrates by r.f. magnetron sputtering. The thin films were characterized by XRD, SEM and time-of-flight-secondary ion mass spectrometry (ToF-SIMS) to determine crystal structure, morphology and element distribution. The substrate temperature was identified to be one important parameter for the formation of cubic garnet-structured LLZ thin films. LLZ formation starts at around 650 °C. Single phase cubic thin films were obtained at substrate temperatures of 700 °C and higher. At these temperatures an interlayer is formed. Combination of SEM, ToF-SIMS and XRD indicated that this layer consists of γ-LiAlO2. The combined total ionic conductivity of the γ-LiAlO2 interlayer and the LLZ thin film (perpendicular to the plane) was determined to be 2.0 × 10-9 S cm-1 for the sample deposited at 700 °C. In-plane measurements showed a room temperature conductivity of 1.2 × 10-4 S cm-1 with an activation energy of 0.47 eV for the LLZ thin film.

  16. Submicrometer Hollow Bioglass Cones Deposited by Radio Frequency Magnetron Sputtering: Formation Mechanism, Properties, and Prospective Biomedical Applications.

    PubMed

    Popa, A C; Stan, G E; Besleaga, C; Ion, L; Maraloiu, V A; Tulyaganov, D U; Ferreira, J M F

    2016-02-01

    This work reports on the unprecedented magnetron sputtering deposition of submicrometric hollow cones of bioactive glass at low temperature in the absence of any template or catalyst. The influence of sputtering conditions on the formation and development of bioglass cones was studied. It was shown that larger populations of well-developed cones could be achieved by increasing the argon sputtering pressure. A mechanism describing the growth of bioglass hollow cones is presented, offering the links for process control and reproducibility of the cone features. The composition, structure, and morphology of the as-synthesized hollow cones were investigated by energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), grazing incidence geometry X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM)-selected area electron diffraction (SAED). The in vitro biological performance, assessed by degradation tests (ISO 10993-14) and cytocompatibility assays (ISO 10993-5) in endothelial cell cultures, was excellent. This allied with resorbability and the unique morphological features make the submicrometer hollow cones interesting candidate material devices for focal transitory permeabilization of the blood-brain barrier in the treatment of carcinoma and neurodegenerative disorders. PMID:26836256

  17. Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Usha, K. S.; Sivakumar, R.; Sanjeeviraja, C.

    2013-09-01

    In this paper, we report on rf power induced change in the structural and optical properties of nickel oxide (NiO) thin films deposited onto glass substrates by rf magnetron sputtering technique. The crystallinity of the film was found to increase with increasing rf power and the deposited film belong to cubic phase. The maximum optical transmittance of 95% was observed for the film deposited at 100 W. The slight shift in transmission threshold towards higher wavelength region with increasing rf power revealed the systematic reduction in optical energy band gap (3.93 to 3.12 eV) of the films. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal dispersion in the transparent region. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion parameters, dielectric constants, relaxation time, and optical non-linear susceptibility were evaluated. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  18. Dynamics of reactive high-power impulse magnetron sputtering discharge studied by time- and space-resolved optical emission spectroscopy and fast imaging

    SciTech Connect

    Hala, M.; Viau, N.; Zabeida, O.; Klemberg-Sapieha, J. E.; Martinu, L.

    2010-02-15

    Time- and space-resolved optical emission spectroscopy and fast imaging were used for the investigation of the plasma dynamics of high-power impulse magnetron sputtering discharges. 200 {mu}s pulses with a 50 Hz repetition frequency were applied to a Cr target in Ar, N{sub 2}, and N{sub 2}/Ar mixtures and in a pressure range from 0.7 to 2.66 Pa. The power density peaked at 2.2-6 kW cm{sup -2}. Evidence of dominating self-sputtering was found for all investigated conditions. Up to four different discharge phases within each pulse were identified: (i) the ignition phase, (ii) the high-current metal-dominated phase, (iii) the transient phase, and (iv) the low-current gas-dominated phase. The emission of working gas excited by fast electrons penetrating the space in-between the electrodes during the ignition phase spread far outwards from the target at a speed of 24 km s{sup -1} in 1.3 Pa of Ar and at 7.5 km s{sup -1} in 1.3 Pa of N{sub 2}. The dense metal plasma created next to the target propagated in the reactor at a speed ranging from 0.7 to 3.5 km s{sup -1}, depending on the working gas composition and the pressure. In fact, it increased with higher N{sub 2} concentration and lower pressure. The form of the propagating plasma wave changed from a hemispherical shape in Ar, to a droplike shape extending far from the target in N{sub 2}. An important N{sub 2} emission rise in the latter case was detected during the transition at the end of the metal-dominated phase.

  19. In-situ spectroscopic ellipsometry and structural study of HfO{sub 2} thin films deposited by radio frequency magnetron sputtering

    SciTech Connect

    Cantas, Ayten; Aygun, Gulnur; Basa, Deepak Kumar

    2014-08-28

    We have investigated the reduction of unwanted interfacial SiO{sub 2} layer at HfO{sub 2}/Si interface brought about by the deposition of thin Hf metal buffer layer on Si substrate prior to the deposition of HfO{sub 2} thin films for possible direct contact between HfO{sub 2} thin film and Si substrate, necessary for the future generation devices based on high-κ HfO{sub 2} gate dielectrics. Reactive rf magnetron sputtering system along with the attached in-situ spectroscopic ellipsometry (SE) was used to predeposit Hf metal buffer layer as well as to grow HfO{sub 2} thin films and also to undertake the in-situ characterization of the high-κ HfO{sub 2} thin films deposited on n-type 〈100〉 crystalline silicon substrate. The formation of the unwanted interfacial SiO{sub 2} layer and its reduction due to the predeposited Hf metal buffer layer as well as the depth profiling and also structure of HfO{sub 2} thin films were investigated by in-situ SE, Fourier Transform Infrared spectroscopy, and Grazing Incidence X-ray Diffraction. The study demonstrates that the predeposited Hf metal buffer layer has played a crucial role in eliminating the formation of unwanted interfacial layer and that the deposited high-κ HfO{sub 2} thin films are crystalline although they were deposited at room temperature.

  20. Combinatorial studies in Ba0.45Sr0.55TiO3 thin films for microwave components by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Alema, Fikadu; Reinholz, Aaron; Pokhodnya, Konstantin

    2014-03-01

    The optimization of dielectric properties of ferroelectric thin films for microwave applications can be limited due to the time and resources consumption of the corresponding device fabrication and testing for each doping level. We report the use of a combinatorial technique to achieve the optimal doping level of Ba0.45Sr0.55TiO3 (BST) thin film with three dopants, Mg, Nb and lanthanide (Ln) metal. The process uses two R.F. magnetron sputtering BST sources doped with few at. % of MgII/NbV in charge compensating concentration and LnIV, respectively. The guns were shifted and tilted each by 30° in opposite directions to realize the dopants gradient across a static wafer. The film is reactively co-sputtered on the static 4'' platinized Al2O3 wafer. The film crystallinity and phase purity were analyzed and correlated to its dielectric properties measured on 2432 MIM capacitors that are of lithographically fabricated using Pt top electrode. After electrical testing, the wafer was diced into 22 16x16 mm2 samples, and the elemental analysis of each piece was performed. The correlation between the composition and dielectric properties was established and the optimal dopant concentrations for obtaining maximum tunability of 75% and minimum loss of 0.02 were determined.

  1. Influence of vanadium incorporation on the microstructure, mechanical and tribological properties of Nb–V–Si–N films deposited by reactive magnetron sputtering

    SciTech Connect

    Ju, Hongbo; Xu, Junhua

    2015-09-15

    Composite Nb–V–Si–N films with various V contents (3.7–13.2 at.%) were deposited by reactive magnetron sputtering and the effects of V content on the microstructure, mechanical and tribological properties of Nb–V–Si–N films were investigated. The results revealed that a three-phase structure, consisting of face-centered cubic (fcc) Nb–V–Si–N, hexagonal close-packed (hcp) Nb–V–Si–N and amorphous Si{sub 3}N{sub 4}, co-exists in the Nb–V–Si–N films and the cubic phase is dominant. The hardness and critical load (L{sub c}) of Nb–V–Si–N films initially increased gradually and reached a summit, then decreased with the increasing V content in the films and the maximum values were 35 GPa and 9.8 N, respectively, at 6.4 at.% V. The combination of V into Nb–Si–N film led to the fracture toughness linearly increasing from 1.11 MPa·m{sup 1/2} at 3.7 at.% V to 1.67 MPa·m{sup 1/2} at 13.2 at.% V. At room temperature (RT), the average friction coefficient decreased from 0.80 at 3.7 at.% V to 0.55 at 13.2 at.% V for the Nb–V–Si–N films. The wear rate of Nb–V–Si–N films initially decreased and then increased after reaching a minimum value of about 6.35 × 10{sup −} {sup 7} mm{sup 3}/N·mm at 6.4 at.% V. As the rise of testing temperature from 200 °C to 600 °C, the average friction coefficient of Nb–V–Si–N films decreased with the increase of the testing temperature regardless of V content. However, the wear rate gradually increased for all films. The average friction coefficient and wear rate at RT and elevated temperatures were mainly influenced by the vanadium oxides with weakly bonded lattice planes. - Highlight: • Fcc-Nb–V–Si–N, hcp-Nb–V–Si–N and amorphous Si{sub 3}N{sub 4} co-existed in the films. • The amount of Si{sub 3}N{sub 4} decreased with increasing V content in the films. • Hardness of Nb–V–Si–N film (6.4 at.%) reached a maximum value of 35 GPa. • Addition of V led to the

  2. A reactive magnetron sputtering route for attaining a controlled core-rim phase partitioning in Cu2O/CuO thin films with resistive switching potential

    NASA Astrophysics Data System (ADS)

    Ogwu, A. A.; Darma, T. H.

    2013-05-01

    The achievement of a reproducible and controlled deposition of partitioned Cu2O/CuO thin films by techniques compatible with ULSI processing like reactive magnetron sputtering has been reported as an outstanding challenge in the literature. This phase partitioning underlies their performance as reversible resistive memory switching devices in advanced microelectronic applications of the future. They are currently fabricated by thermal oxidation and chemical methods. We have used a combination of an understanding from plasma chemistry, thermo-kinetics of ions, and rf power variation during deposition to successfully identify a processing window for preparing partitioned Cu2O/CuO films. The production of a core rich Cu2O and surface rich Cu2O/CuO mixture necessary for oxygen migration during resistive switching is confirmed by XRD peaks, Fourier transform infra red Cu (I)-O vibrational modes, XPS Cu 2P3/2 and O 1S peak fitting, and a comparison of satellite peak ratio's in Cu 2P3/2 fitted peaks. We are proposing based on the findings reported in this paper that an XPS satellite peak intensity(Is) to main peak intensity ratio (Im) ≤ 0.45 as an indicator of a core rich Cu2O and surface rich Cu2O/CuO formation in our prepared films. CuO is solely responsible for the satellite peaks. This is explained on the basis that plasma dissociation of oxygen will be limited to the predominant formation of Cu2O under certain plasma deposition conditions we have identified in this paper, which also results in a core-rim phase partitioning. The deposited films also followed a Volmer-Weber columnar growth mode, which could facilitate oxygen vacancy migration and conductive filaments at the columnar interfaces. This is further confirmed by optical transmittance and band-gap measurements using spectrophotometry. This development is expected to impact on the early adoption of copper oxide based resistive memory electronic switching devices in advanced electronic devices of the future

  3. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    SciTech Connect

    Bakoglidis, Konstantinos D. Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars

    2015-09-15

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN{sub x}) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN{sub x} films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N{sub 2}/Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V{sub s}, was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V{sub s} ≥ 60 V, V{sub s} ≥ 100 V, and V{sub s} = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V{sub s} for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V{sub s}, while CN{sub x} films deposited by MFMS showed residual stresses up to −4.2

  4. Frequency effects on the production of reactive oxygen species in atmospheric radio frequency helium-oxygen discharges

    SciTech Connect

    Zhang, Yuantao T.; He Jin

    2013-01-15

    Several experimental and computational studies have shown that increasing frequency can effectively enhance the discharge stability in atmospheric radio-frequency (rf) discharges, but the frequency effects on the reactivity of rf discharges, represented by the densities of reactive oxygen species (ROS), are still far from fully understood. In this paper, a one-dimensional fluid model with 17 species and 65 reactions taken into account is used to explore the influences of the driving frequency on the production and destruction of ROS in atmospheric rf helium-oxygen discharges. From the computational results, with an increase in the frequency the densities of ROS decrease always at a constant power density, however, in the relatively higher frequency discharges the densities of ROS can be effectively improved by increasing the input power density with an expanded oxygen admixture range, while the discharges operate in the {alpha} mode, and the numerical data also show the optimal oxygen admixture for ground state atomic oxygen, at which the peak atomic oxygen density can be obtained, increases with the driving frequency.

  5. ION MAGNETRON

    DOEpatents

    Gow, J.D.; Layman, R.W.

    1962-10-31

    A magnetohydrodynamic device or plasma generator of the ion magnetron class is described wherein a long central electrode is disposed along the axis of an evacuated cylinder. A radial electric field and an axial magnetic field are provided between the cylsnder and the electrode, forming a plasma trapping and heating region. For maximum effectiveness, neutral particles from the cylinder wall must be prevented from entering such region This is effected by forming a cylindrical sheath of electrons near the cylinder wall for ionizing undesired neutral particles, which are then trapped and removed by the magnetic field. An annular filament at one end of the device provides the electrons, which follow the axial magnetic field to a reflecting electrode at the opposite end of the device. (AEC)

  6. Reactivable passive radio-frequency identification temperature indicator

    NASA Astrophysics Data System (ADS)

    Windl, Roman; Bruckner, Florian; Abert, Claas; Suess, Dieter; Huber, Thomas; Vogler, Christoph; Satz, Armin

    2015-05-01

    A low cost, passive radio-frequency identification (RFID) temperature indicator with (re-) activation at any point of time is presented. The capability to detect a temperature excursion is realized by magnets and a solution with a melting point at the critical temperature. As the critical temperature is exceeded, a magnetic indicator switches to non-reversible and this can be monitored via a giant magnetoresistance sensor connected to a RFID tag. Depending on the solutions or metal alloys, detection of critical temperatures in a wide range from below 0 °C and up to more than 100 °C is possible. The information if a threshold temperature was exceeded (indicator state) as well as the identification number, current temperature, and user defined data can be obtained via RFID.

  7. Influence of Oxygen Gas Ratio on the Properties of Aluminum-Doped Zinc Oxide Films Prepared by Radio Frequency Magnetron Sputtering.

    PubMed

    Kim, Minha; Jang, Yong-Jun; Jung, Ho-Sung; Song, Woochang; Kang, Hyunil; Kim, Eung Kwon; Kim, Donguk; Yi, Junsin; Lee, Jaehyeong

    2016-05-01

    Aluminum-doped zinc oxide (AZO) thin films were deposited on glass and polyimide substrates using radio frequency magnetron sputtering. We investigated the effects of the oxygen gas ratio on the properties of the AZO films for Cu(In,Ga)Se2 thin-film solar cell applications. The structural and optical properties of the AZO thin films were measured using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and UV-Visible-NIR spectrophotometry. The oxygen gas ratio played a crucial role in controlling the optical as well as electrical properties of the films. When oxygen gas was added into the film, the surface AZO thin films became smoother and the grains were enlarged while the preferred orientation changed from (0 0 2) to (1 0 0) plane direction of the hexagonal phase. An improvement in the transmittance of the AZO thin films was achieved with the addition of 2.5-% oxygen gas. The electrical resistivity was highly increased even for a small amount of the oxygen gas addition. PMID:27483888

  8. Influence of growth temperature on electrical, optical, and plasmonic properties of aluminum:zinc oxide films grown by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dondapati, Hareesh; Santiago, Kevin; Pradhan, A. K.

    2013-10-01

    We have investigated the responsible mechanism for the observation of metallic conductivity at room temperature and metal-semiconductor transition (MST) at lower temperatures for aluminum-doped zinc oxide (AZO) films. AZO films were grown on glass substrates by radio-frequency magnetron sputtering with varying substrate temperatures (Ts). The films were found to be crystalline with the electrical resistivity close to 1.1 × 10-3 Ω cm and transmittance more than 85% in the visible region. The saturated optical band gap of 3.76 eV was observed for the sample grown at Ts of 400 °C, however, a slight decrease in the bandgap was noticed above 400 °C, which can be explained by Burstein-Moss effect. Temperature dependent resistivity measurements of these highly conducting and transparent films showed a MST at ˜110 K. The observed metal-like and metal-semiconductor transitions are explained by taking into account the Mott phase transition and localization effects due to defects. All AZO films demonstrate crossover in permittivity from positive to negative and low loss in the near-infrared region, illustrating its applications for plasmonic metamaterials, including waveguides for near infrared telecommunication region. Based on the results presented in this study, the low electrical resistivity and high optical transmittance of AZO films suggested a possibility for the application in the flexible electronic devices, such as transparent conducting oxide film on LEDs, solar cells, and touch panels.

  9. Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering.

    PubMed

    Surmeneva, M A; Tyurin, A I; Mukhametkaliyev, T M; Pirozhkova, T S; Shuvarin, I A; Syrtanov, M S; Surmenev, R A

    2015-06-01

    The structure, composition and morphology of a radio-frequency (RF) magnetron sputter-deposited dense nano-hydroxyapatite (HA) coating that was deposited on the surface of an AZ31 magnesium alloy were characterized using AFM, SEM, EDX and XRD. The results obtained from SEM and XRD experiments revealed that the bias applied during the deposition of the HA coating resulted in a decrease in the grain and crystallite size of the film having a crucial role in enhancing the mechanical properties of the fabricated biocomposites. A maximum hardness of 9.04 GPa was found for the HA coating, which was prepared using a bias of -50 V. The hardness of the HA film deposited on the grounded substrate (GS) was found to be 4.9 GPa. The elastic strain to failure (H/E) and the plastic deformation resistance (H(3)/E(2)) for an indentation depth of 50 nm for the HA coating fabricated at a bias of -50 V was found to increase by ~30% and ~74%, respectively, compared with the coating deposited at the GS holder. The nanoindentation tests demonstrated that all of the HA coatings increased the surface hardness on both the microscale and the nanoscale. Therefore, the results revealed that the films deposited on the surface of the AZ31 magnesium alloy at a negative substrate bias can significantly enhance the wear resistance of this resorbable alloy. PMID:25792410

  10. Growth Behavior of Ga-Doped ZnO Thin Films Deposited on Au/SiN/Si(001) Substrates by Radio Frequency Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Seo, Seon Hee; Kang, Hyon Chol

    2013-11-01

    This paper reports the growth behavior of Ga-doped ZnO (ZnO:Ga) thin films deposited on Au/SiN/Si(001) substrates by radio-frequency magnetron sputtering. The microstructures of the overgrown ZnO:Ga thin films were investigated by performing X-ray diffraction, scanning electron microcopy, and transmission electron microscopy analyses. It was confirmed that the growth process proceeds through three stages. In the first stage, nano-scale ZnO:Ga islands were grown on the SiN layer, while a fairly continuous flat structure was formed on the Au nanoparticles (NPs). In the second stage of the growth process, ZnO:Ga domains with different growth orientations, depending strongly on the crystalline planes of the host Au NPs, were nucleated. These domains then grew at different rates, resulting in a change in the morphology from the initial shape reflecting that of the Au NPs to a sunflower-type shape. In the final stage, columnar growth with a preferred (0002) orientation along the surface normal direction became dominant.

  11. Influence of growth temperature on electrical, optical, and plasmonic properties of aluminum:zinc oxide films grown by radio frequency magnetron sputtering

    SciTech Connect

    Dondapati, Hareesh; Santiago, Kevin; Pradhan, A. K.

    2013-10-14

    We have investigated the responsible mechanism for the observation of metallic conductivity at room temperature and metal-semiconductor transition (MST) at lower temperatures for aluminum-doped zinc oxide (AZO) films. AZO films were grown on glass substrates by radio-frequency magnetron sputtering with varying substrate temperatures (T{sub s}). The films were found to be crystalline with the electrical resistivity close to 1.1 × 10{sup −3} Ω cm and transmittance more than 85% in the visible region. The saturated optical band gap of 3.76 eV was observed for the sample grown at T{sub s} of 400 °C, however, a slight decrease in the bandgap was noticed above 400 °C, which can be explained by Burstein–Moss effect. Temperature dependent resistivity measurements of these highly conducting and transparent films showed a MST at ∼110 K. The observed metal-like and metal-semiconductor transitions are explained by taking into account the Mott phase transition and localization effects due to defects. All AZO films demonstrate crossover in permittivity from positive to negative and low loss in the near-infrared region, illustrating its applications for plasmonic metamaterials, including waveguides for near infrared telecommunication region. Based on the results presented in this study, the low electrical resistivity and high optical transmittance of AZO films suggested a possibility for the application in the flexible electronic devices, such as transparent conducting oxide film on LEDs, solar cells, and touch panels.

  12. Simultaneous catalyst deposition and growth of aligned carbon nanotubes on SiO{sub 2}/Si substrates by radio frequency magnetron sputtering

    SciTech Connect

    Scalese, S.; Scuderi, V.; Privitera, V.; Pennisi, A.; Simone, F.

    2007-12-01

    Radio frequency magnetron sputtering has been used for the synthesis of aligned carbon nanotubes (CNTs) on a SiO{sub 2}/Si substrate, with simultaneous in situ catalyst deposition. This method allows the use of substrates without the need of a surface predeposition of catalytic particles. In particular, among the metals considered, we observed the formation of CNTs using W or Ni as catalysts. Only in the case of Ni did we find that the CNTs are aligned along the target-substrate direction, unlike the randomly oriented CNTs observed when W was used as catalyst. Scanning and transmission electron microscopies show that the catalytic Ni nanoparticle is found mostly on the tip of the obtained bamboolike CNTs, while W nanoparticles are encapsulated inside hollow nanotubes, at different points along their length. We ascribe not only the observed structural differences to the size of the W and Ni particles but also to a different diffusion behavior of C in the two kinds of metallic clusters.

  13. Comparative studies of nonpolar (10-10) ZnO films grown by using atomic layer deposition and radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Choi, Nak-Jung; Son, Hyo-Soo; Choi, Hyun-Jun; Kim, Kyoung-Kook; Lee, Sung-Nam

    2014-08-01

    We comparatively investigated the crystal and the optical properties of nonpolar (10-10) ZnO films grown on m-plane sapphire substrates by using atomic layer deposition (ALD) and radio frequency (RF) magnetron sputtering. From high-resolution X-ray ω/2 θ scans, the (100) peak of the ALD-grown ZnO film was clearly developed at ~ 15.9 ° while that of the RF sputter-grown ZnO was broadly observed at 15.6 ~ 15.9 °, indicating that a nonpolar (10-10) ZnO film would be preferentially grown on an m-plane sapphire substrate. The photoluminescence bandedge emission intensity of the ALD-grown (10-10) ZnO film was ten times higher than that of the RF sputtergrown ZnO film. In addition, the electroluminescence intensity of a semipolar (11-22) GaN-based light-emitting diode (LED) with an ALD-grown (10-10) ZnO film as a transparent conductive oxide material was much higher than that of a semipolar (11-22) GaN-based LED with RF sputter-grown (10-10) ZnO film.

  14. Morphology and structure evolution of tin-doped indium oxide thin films deposited by radio-frequency magnetron sputtering: The role of the sputtering atmosphere

    SciTech Connect

    Nie, Man Mete, Tayfun; Ellmer, Klaus

    2014-04-21

    The microstructure and morphology evolution of tin-doped indium oxide (ITO) thin films deposited by radio-frequency magnetron sputtering in different sputtering atmospheres were investigated by X-ray diffraction, X-ray reflectivity, and atomic force microscopy. The surface roughness w increases with increasing film thickness d{sub f}, and exhibits a power law behavior w ∼ d{sub f}{sup β}. The roughness decreases with increasing O{sub 2} flow, while it increases with increasing H{sub 2} flow. The growth exponent β is found to be 0.35, 0.75, and 0.98 for depositions in Ar/10%O{sub 2}, pure Ar, and Ar/10%H{sub 2} atmospheres, respectively. The correlation length ξ increases with film thickness also with a power law according to ξ ∼ d{sub f}{sup z} with exponents z = 0.36, 0.44, and 0.57 for these three different gas atmospheres, respectively. A combination of local and non-local growth modes in 2 + 1 dimensions is discussed for the ITO growth in this work.

  15. Change of scattering mechanism and annealing out of defects on Ga-doped ZnO films deposited by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Nulhakim, Lukman; Makino, Hisao

    2016-06-01

    This study examines the change of carrier scattering mechanism and defects states in Ga-doped ZnO (GZO) thin films deposited by radio-frequency magnetron sputtering as a function of the substrate temperature (Ts) during deposition. The GZO films deposited at room temperature exhibited a high defect density that resulted in a lower carrier concentration, lower Hall mobility, and optical absorption in visible wavelength range. Such defects were created by ion bombardment and were eliminated by increasing the Ts. The defects related to the optical absorption disappeared at a Ts of 125 °C. The defects responsible for the suppression of the carrier concentration gradually decreased with increasing Ts up to 200 °C. As a result, the carrier concentration and in-grain carrier mobility gradually increased. The Hall mobility was also influenced by film structural properties depending on the Ts. In addition to the c-axis preferred orientation, other oriented grains such as the (10 1 ¯ 1 ) plane parallel to the substrate surface appeared below 150 °C. This orientation of the (10 1 ¯ 1 ) plane significantly reduced the Hall mobility via grain boundary scattering. The films deposited at a Ts higher than 175 °C exhibited perfect c-axis orientation and grain boundary scattering was thus negligible in these films. The appearance of the 10 1 ¯ 1 peak in x-ray diffraction profile was correlated with the contribution of grain boundary scattering in heavily doped GZO films.

  16. Epitaxial growth of β-FeSi2 thin films on Si(111) substrates by radio frequency magnetron sputtering and their application to near-infrared photodetection

    NASA Astrophysics Data System (ADS)

    Promros, Nathaporn; Baba, Ryuji; Takahara, Motoki; Mostafa, Tarek M.; Sittimart, Phongsaphak; Shaban, Mahmoud; Yoshitake, Tsuyoshi

    2016-06-01

    β-FeSi2 thin films were epitaxially grown on p-type Si(111) substrates at a substrate temperature of 560 °C and Ar pressure of 2.66 × 10‑1 Pa by radio-frequency magnetron sputtering (RFMS) using a sintered FeSi2 target, without postannealing. The resultant n-type β-FeSi2/p-type Si heterojunctions were evaluated as near-infrared photodiodes. Three epitaxial variants of β-FeSi2 were confirmed by X-ray diffraction analysis. The heterojunctions exhibited typical rectifying action at room temperature. At 300 K, the heterojunctions showed a substantial leakage current and minimal response for irradiation of near-infrared light. At 50 K, the leakage current was markedly reduced and the ratio of the photocurrent to dark current was considerably enhanced. The detectivity at 50 K was estimated to be 3.0 × 1011 cm Hz1/2/W at a zero bias voltage. Their photodetection was inferior to those of similar heterojunctions prepared using facing-target direct-current sputtering (FTDCS) in our previous study. This inferiority is likely because β-FeSi2 films prepared using RFMS are located in plasma and are damaged by it.

  17. Peer-to-Peer Magnetron Locking

    NASA Astrophysics Data System (ADS)

    Cruz, Edward Jeffrey

    The viability of coherent power combination of multiple high-efficiency, moderate power magnetrons requires a thorough understanding of frequency and phase control. Injection locking of conventional magnetrons, and other types of oscillators, employing a master-to-slave configuration has been studied theoretically and experimentally. This dissertation focuses on the peer-to-peer locking, where each oscillator acts as a master of and slave to all others, between two conventional magnetrons, where the general condition for locking was recently derived. The experiments performed on peer-to-peer locking of two 1-kW magnetrons verify the recently developed theory on the condition under which the two nonlinear oscillators may be locked to a common frequency and relative phase. This condition reduces to Adler's classical locking condition (master-slave) if the coupling is one way. Dependent on the degree of coupling, the frequency of oscillation when locking occurs was found to not necessarily lie between the two magnetrons' free running frequencies. Likewise, when the locking condition was violated, the beat of the spectrum was not necessarily found to be equal to the difference between the free running frequencies. The frequency of oscillation and relative phase between the two magnetrons when locking did occur were found to correspond to one of two solution modes given by the recent theory. The accessibility of the two possible modes is yet to be determined. This work was supported by ONR, AFRL, AFOSR, L-3 Communications Electron Devices Division and Northrop-Grumman Corporation.

  18. An investigation on the effect of high partial pressure of hydrogen on the nanocrystalline structure of silicon carbide thin films prepared by radio-frequency magnetron sputtering.

    PubMed

    Daouahi, Mohsen; Omri, Mourad; Kerm, Abdul Ghani Yousseph; Al-Agel, Faisal Abdulaziz; Rekik, Najeh

    2014-10-22

    The aim of the study reported in this paper is to investigate the role of the high partial pressure of hydrogen introduced during the growth of nanocrystalline silicon carbide thin films (nc-SiC:H). For this purpose, we report the preparation as well as spectroscopic studies of four series of nc-SiC:H obtained by radio-frequency magnetron sputtering at high partial pressure of hydrogen by varying the percentage of H2 in the gas mixture from 70% to 100% at common substrate temperature (TS=500°C). The effects of the dilution on the structural changes and the chemical bonding of the different series have been studied using Fourier transform infrared and Raman spectroscopy. For this range of hydrogen dilution, two groups of films were obtained. The first group is characterized by the dominance of the crystalline phase and the second by a dominance of the amorphous phase. This result confirms the multiphase structure of the grown nc-SiC:H thin films by the coexistence of the SiC network, carbon-like and silicon-like clusters. Furthermore, infrared results show that the SiC bond is the dominant absorption peak and the carbon atom is preferentially bonded to silicon. The maximum value obtained of the crystalline fraction is about 77%, which is relatively important compared to other results obtained by other techniques. In addition, the concentration of CHn bonds was found to be lower than that of SiHn for all series. Raman measurements revealed that the crystallization occurs in all series even at 100% H2 dilution suggesting that high partial pressure of hydrogen favors the formation of silicon nanocrystallites (nc-Si). The absence of both the longitudinal acoustic band and the transverse optical band indicate that the crystalline phase is dominant. PMID:25459700

  19. An investigation on the effect of high partial pressure of hydrogen on the nanocrystalline structure of silicon carbide thin films prepared by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Daouahi, Mohsen; Omri, Mourad; Kerm, Abdul Ghani Yousseph; Al-Agel, Faisal Abdulaziz; Rekik, Najeh

    2015-02-01

    The aim of the study reported in this paper is to investigate the role of the high partial pressure of hydrogen introduced during the growth of nanocrystalline silicon carbide thin films (nc-SiC:H). For this purpose, we report the preparation as well as spectroscopic studies of four series of nc-SiC:H obtained by radio-frequency magnetron sputtering at high partial pressure of hydrogen by varying the percentage of H2 in the gas mixture from 70% to 100% at common substrate temperature (TS = 500 °C). The effects of the dilution on the structural changes and the chemical bonding of the different series have been studied using Fourier transform infrared and Raman spectroscopy. For this range of hydrogen dilution, two groups of films were obtained. The first group is characterized by the dominance of the crystalline phase and the second by a dominance of the amorphous phase. This result confirms the multiphase structure of the grown nc-SiC:H thin films by the coexistence of the Sisbnd C network, carbon-like and silicon-like clusters. Furthermore, infrared results show that the Sisbnd C bond is the dominant absorption peak and the carbon atom is preferentially bonded to silicon. The maximum value obtained of the crystalline fraction is about 77%, which is relatively important compared to other results obtained by other techniques. In addition, the concentration of CHn bonds was found to be lower than that of SiHn for all series. Raman measurements revealed that the crystallization occurs in all series even at 100% H2 dilution suggesting that high partial pressure of hydrogen favors the formation of silicon nanocrystallites (nc-Si). The absence of both the longitudinal acoustic band and the transverse optical band indicate that the crystalline phase is dominant.

  20. A study of Ta xC 1 -x coatings deposited on biomedical 316L stainless steel by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ding, M. H.; Wang, B. L.; Li, L.; Zheng, Y. F.

    2010-11-01

    In this paper, Ta xC 1 -x coatings were deposited on 316L stainless steel (316L SS) by radio-frequency (RF) magnetron sputtering at various substrate temperatures ( Ts) in order to improve its corrosion resistance and hemocompatibility. XRD results indicated that Ts could significantly change the microstructure of Ta xC 1 -x coatings. When Ts was <150 °C, the Ta xC 1 -x coatings were in amorphous condition, whereas when Ts was ≥150 °C, TaC phase was formed, exhibiting in the form of particulates with the crystallite sizes of about 15-25 nm ( Ts = 300 °C). Atomic force microscope (AFM) results showed that with the increase of Ts, the root-mean-square (RMS) values of the Ta xC 1 -x coatings decreased. The nano-indentation experiments indicated that the Ta xC 1 -x coating deposited at 300 °C had a higher hardness and modulus. The scratch test results demonstrated that Ta xC 1 -x coatings deposited above 150 °C exhibited good adhesion performance. Tribology tests results demonstrated that Ta xC 1 -x coatings exhibited excellent wear resistance. The results of potentiodynamic polarization showed that the corrosion resistance of the 316L SS was improved significantly because of the deposited Ta xC 1 -x coatings. The platelet adhesion test results indicated that the Ta xC 1 -x coatings deposited at Ts of 150 °C and 300 °C possessed better hemocompatibility than the coating deposited at Ts of 25 °C. Additionally, the hemocompatibility of the Ta xC 1 -x coating on the 316L SS was found to be influenced by its surface roughness, hydrophilicity and the surface energy.

  1. Microstructure evolution of Al-doped zinc oxide and Sn-doped indium oxide deposited by radio-frequency magnetron sputtering: A comparison

    SciTech Connect

    Nie, Man; Bikowski, Andre; Ellmer, Klaus

    2015-04-21

    The microstructure and morphology evolution of Al-doped zinc oxide (AZO) and Sn-doped indium oxide (ITO) thin films on borosilicate glass substrates deposited by radio-frequency magnetron sputtering at room temperature (RT) and 300 °C were investigated by X-ray diffraction and atomic force microscopy (AFM). One-dimensional power spectral density (1DPSD) functions derived from the AFM profiles, which can be used to distinguish different growth mechanisms, were used to compare the microstructure scaling behavior of the thin films. The rms roughness R{sub q} evolves with film thickness as a power law, R{sub q} ∼ d{sub f}{sup β}, and different growth exponents β were found for AZO and ITO films. For AZO films, β of 1.47 and 0.56 are obtained for RT and 300 °C depositions, respectively, which are caused by the high compressive stress in the film at RT and relaxation of the stress at 300 °C. While for ITO films, β{sub 1} = 0.14 and β{sub 2} = 0.64 for RT, and β{sub 1} = 0.89 and β{sub 2} = 0.3 for 300 °C deposition are obtained, respectively, which is related to the strong competition between the surface diffusion and shadowing effect and/or grain growth. Electrical properties of both materials as a function of film thickness were also compared. By the modified Fuchs-Sondheimer model fitting of the electrical transport in both materials, different nucleation states are pointed out for both types of films.

  2. Microstructure evolution of Al-doped zinc oxide and Sn-doped indium oxide deposited by radio-frequency magnetron sputtering: A comparison

    NASA Astrophysics Data System (ADS)

    Nie, Man; Bikowski, Andre; Ellmer, Klaus

    2015-04-01

    The microstructure and morphology evolution of Al-doped zinc oxide (AZO) and Sn-doped indium oxide (ITO) thin films on borosilicate glass substrates deposited by radio-frequency magnetron sputtering at room temperature (RT) and 300 °C were investigated by X-ray diffraction and atomic force microscopy (AFM). One-dimensional power spectral density (1DPSD) functions derived from the AFM profiles, which can be used to distinguish different growth mechanisms, were used to compare the microstructure scaling behavior of the thin films. The rms roughness Rq evolves with film thickness as a power law, Rq ˜ dfβ, and different growth exponents β were found for AZO and ITO films. For AZO films, β of 1.47 and 0.56 are obtained for RT and 300 °C depositions, respectively, which are caused by the high compressive stress in the film at RT and relaxation of the stress at 300 °C. While for ITO films, β1 = 0.14 and β2 = 0.64 for RT, and β1 = 0.89 and β2 = 0.3 for 300 °C deposition are obtained, respectively, which is related to the strong competition between the surface diffusion and shadowing effect and/or grain growth. Electrical properties of both materials as a function of film thickness were also compared. By the modified Fuchs-Sondheimer model fitting of the electrical transport in both materials, different nucleation states are pointed out for both types of films.

  3. Anatase TiO₂ films with dominant {001} facets fabricated by direct-current reactive magnetron sputtering at room temperature: oxygen defects and enhanced visible-light photocatalytic behaviors.

    PubMed

    Zheng, Jian-Yun; Bao, Shan-Hu; Guo, Yu; Jin, Ping

    2014-04-23

    A TiO2 film with dominant anatase {001} facets is directly prepared by direct-current reactive magnetron sputtering at room temperature without using morphology-controlling agents. The formation mechanism of anatase TiO2 films with dominant {001} facets is explained by the competition between thermodynamics and ion impinging in the deposition process. The crystalline TiO2 film shows a superior photocatalytic efficiency for the degradation of Rhodamine B under UV-visible (λ > 250 nm) lights. Furthermore, a comparable photodegradation of Rhodamine B is also found on the TiO2 film surface by using visible (λ > 420 nm) lights. During film growth, the surface bombarded by high energy of ions yields plenty of oxygen defects, which can enhance the photocatalytic activity of the films irradiated under visible light. PMID:24720367

  4. Structural, chemical and nanomechanical investigations of SiC/polymeric a-C:H films deposited by reactive RF unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tomastik, C.; Lackner, J. M.; Pauschitz, A.; Roy, M.

    2016-03-01

    Amorphous carbon (or diamond-like carbon, DLC) films have shown a number of important properties usable for a wide range of applications for very thin coatings with low friction and good wear resistance. DLC films alloyed with (semi-)metals show some improved properties and can be deposited by various methods. Among those, the widely used magnetron sputtering of carbon targets is known to increase the number of defects in the films. Therefore, in this paper an alternative approach of depositing silicon-carbide-containing polymeric hydrogenated DLC films using unbalanced magnetron sputtering was investigated. The influence of the C2H2 precursor concentration in the deposition chamber on the chemical and structural properties of the deposited films was investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and elastic recoil detection analysis. Roughness, mechanical properties and scratch response of the films were evaluated with the help of atomic force microscopy and nanoindentation. The Raman spectra revealed a strong correlation of the film structure with the C2H2 concentration during deposition. A higher C2H2 flow rate results in an increase in SiC content and decrease in hydrogen content in the film. This in turn increases hardness and elastic modulus and decreases the ratio H/E and H3/E2. The highest scratch resistance is exhibited by the film with the highest hardness, and the film having the highest overall sp3 bond content shows the highest elastic recovery during scratching.

  5. Stress evolution during growth of GaN (0001)/Al2O3(0001) by reactive dc magnetron sputter epitaxy

    NASA Astrophysics Data System (ADS)

    Junaid, M.; Sandström, P.; Palisaitis, J.; Darakchieva, V.; Hsiao, C.-L.; Persson, P. O. Å.; Hultman, L.; Birch, J.

    2014-04-01

    We study the real time stress evolution, by in situ curvature measurements, during magnetron sputter epitaxy of GaN (0 0 0 1) epilayers at different growth temperatures, directly on Al2O3(0 0 0 1) substrates. The epilayers are grown by sputtering from a liquid Ga target in a mixed N2/Ar discharge. For 600 °C, a tensile biaxial stress evolution is observed, while for 700 °C and 800 °C, compressive stress evolutions are observed. Structural characterization by cross-sectional transmission electron microscopy, and atomic force microscopy, revealed that films grew at 700 °C and 800 °C in a layer-by-layer mode while a growth temperature of 600 °C led to an island growth mode. High resolution x-ray diffraction data showed that edge and screw threading dislocation densities decreased with increasing growth temperature, with a total density of 5.5 × 1010 cm-2 at 800 °C. The observed stress evolution and growth modes are explained by a high surface mobility during magnetron sputter epitaxy at 700-800 °C. Other possible reasons for the different stress evolutions are also discussed.

  6. A flexible active and reactive power control strategy for a variable speed constant frequency generating system

    SciTech Connect

    Tang, Y.; Xu, L.

    1995-07-01

    Variable-speed constant-frequency generating systems are used in wind power, hydro power, aerospace, and naval power generations to enhance efficiency and reduce friction. In these applications, an attractive candidate is the slip power recovery system comprising of doubly excited induction machine or doubly excited brushless reluctance machine and PWM converters with a dc link. In this paper, a flexible active and reactive power control strategy is developed, such that the optimal torque-speed profile of the turbine can be followed and overall reactive power can be controlled, while the machine copper losses have been minimized. At the same time, harmonics injected into the power network has also been minimized. In this manner, the system can function as both a high-efficient power generator and a flexible reactive power compensator.

  7. An optimal frequency range for assessing the pressure reactivity index in patients with traumatic brain injury.

    PubMed

    Howells, Tim; Johnson, Ulf; McKelvey, Tomas; Enblad, Per

    2015-02-01

    The objective of this study was to identify the optimal frequency range for computing the pressure reactivity index (PRx). PRx is a clinical method for assessing cerebral pressure autoregulation based on the correlation of spontaneous variations of arterial blood pressure (ABP) and intracranial pressure (ICP). Our hypothesis was that optimizing the methodology for computing PRx in this way could produce a more stable, reliable and clinically useful index of autoregulation status. The patients studied were a series of 131 traumatic brain injury patients. Pressure reactivity indices were computed in various frequency bands during the first 4 days following injury using bandpass filtering of the input ABP and ICP signals. Patient outcome was assessed using the extended Glasgow Outcome Scale (GOSe). The optimization criterion was the strength of the correlation with GOSe of the mean index value over the first 4 days following injury. Stability of the indices was measured as the mean absolute deviation of the minute by minute index value from 30-min moving averages. The optimal index frequency range for prediction of outcome was identified as 0.018-0.067 Hz (oscillations with periods from 55 to 15 s). The index based on this frequency range correlated with GOSe with ρ=-0.46 compared to -0.41 for standard PRx, and reduced the 30-min variation by 23%. PMID:24664812

  8. Contribution of neurophysiological endophenotype, individual frequency of EEG alpha oscillations, to mechanisms of emotional reactivity.

    PubMed

    Tumyalis, A V; Aftanas, L I

    2014-04-01

    We studied the relationship between individual alpha frequency (IAF) of EEG (neurophysiological endophenotype reflecting individual predisposition to efficacious cognitive and creative activity) and individual emotional reactivity. The psychophysiological study included healthy men in two models of evoked emotions - anxious apprehension (awaiting of inescapable aversive punishment) and discrete (opposite) emotions. Analysis of self-report, multichannel EEG, galvanic skin response, and cardiovascular reactivity showed that individuals with high IAF are characterized by predominance of parasympathetic influences in autonomic regulation circuit, proactive strategies of coping with inescapable threat, higher activity of positive emotional attitude and availability of memory traces about positive experience. Individuals with low IAF demonstrate predominance of sympathetic influences and maladaptive avoidance-like coping with inescapable threat and insufficiency of positive emotional activation mechanisms. It is suggested that IAF participates in the formation of individual emotional space and strategies of coping with emotional challenges. PMID:24824678

  9. Electrochromic behavior of W(x)Si(y)O(z) thin films prepared by reactive magnetron sputtering at normal and glancing angles.

    PubMed

    Gil-Rostra, Jorge; Cano, Manuel; Pedrosa, José M; Ferrer, Francisco Javier; García-García, Francisco; Yubero, Francisco; González-Elipe, Agustín R

    2012-02-01

    This work reports the synthesis at room temperature of transparent and colored W(x)Si(y)O(z) thin films by magnetron sputtering (MS) from a single cathode. The films were characterized by a large set of techniques including X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS), Fourier transform infrared (FT-IR), and Raman spectroscopies. Their optical properties were determined by the analysis of the transmission and reflection spectra. It was found that both the relative amount of tungsten in the W-Si MS target and the ratio O(2)/Ar in the plasma gas were critical parameters to control the blue coloration of the films. The long-term stability of the color, attributed to the formation of a high concentration of W(5+) and W(4+) species, has been related with the formation of W-O-Si bond linkages in an amorphous network. At normal geometry (i.e., substrate surface parallel to the target) the films were rather compact, whereas they were very porous and had less tungsten content when deposited in a glancing angle configuration. In this case, they presented outstanding electrochromic properties characterized by a fast response, a high coloration, a complete reversibility after more than one thousand cycles and a relatively very low refractive index in the bleached state. PMID:22208156

  10. Electronic-grade GaN(0001)/Al{sub 2}O{sub 3}(0001) grown by reactive DC-magnetron sputter epitaxy using a liquid Ga target

    SciTech Connect

    Junaid, M.; Hsiao, C.-L.; Palisaitis, J.; Jensen, J.; Persson, P. O. A.; Hultman, L.; Birch, J.

    2011-04-04

    Electronic-grade GaN (0001) epilayers have been grown directly on Al{sub 2}O{sub 3} (0001) substrates by reactive direct-current-magnetron sputter epitaxy (MSE) using a liquid Ga sputtering target in an Ar/N{sub 2} atmosphere. The as-grown GaN epitaxial films exhibit low threading dislocation density on the order of {<=}10{sup 10} cm{sup -2} determined by transmission electron microscopy and modified Williamson-Hall plot. X-ray rocking curve shows narrow full-width at half maximum (FWHM) of 1054 arc sec of the 0002 reflection. A sharp 4 K photoluminescence peak at 3.474 eV with a FWHM of 6.3 meV is attributed to intrinsic GaN band edge emission. The high structural and optical qualities indicate that MSE-grown GaN epilayers can be used for fabricating high-performance devices without the need of any buffer layer.