Science.gov

Sample records for frequency sinusoidal voltage

  1. Experimental investigation of dielectric barrier discharge plasma actuators driven by repetitive high-voltage nanosecond pulses with dc or low frequency sinusoidal bias

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry F.; Likhanskii, Alexandre V.; Neretti, Gabriele; Zaidi, Sohail; Shneider, Mikhail N.; Miles, Richard B.; Macheret, Sergey O.

    2008-08-01

    Experimental studies were conducted of a flow induced in an initially quiescent room air by a single asymmetric dielectric barrier discharge driven by voltage waveforms consisting of repetitive nanosecond high-voltage pulses superimposed on dc or alternating sinusoidal or square-wave bias voltage. To characterize the pulses and to optimize their matching to the plasma, a numerical code for short pulse calculations with an arbitrary impedance load was developed. A new approach for nonintrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the schlieren technique, burst mode of plasma actuator operation, and two-dimensional numerical fluid modeling. The force and heating rate calculated by a plasma model was used as an input to two-dimensional viscous flow solver to predict the time-dependent dielectric barrier discharge induced flow field. This approach allowed us to restore the entire two-dimensional unsteady plasma induced flow pattern as well as characteristics of the plasma induced force. Both the experiments and computations showed the same vortex flow structures induced by the actuator. Parametric studies of the vortices at different bias voltages, pulse polarities, peak pulse voltages, and pulse repetition rates were conducted experimentally. The significance of charge buildup on the dielectric surface was demonstrated. The charge buildup decreases the effective electric field in the plasma and reduces the plasma actuator performance. The accumulated surface charge can be removed by switching the bias polarity, which leads to a newly proposed voltage waveform consisting of high-voltage nanosecond repetitive pulses superimposed on a high-voltage low frequency sinusoidal voltage. Advantages of the new voltage waveform were demonstrated experimentally.

  2. Self-mixing vibration measurement using emission frequency sinusoidal modulation

    NASA Astrophysics Data System (ADS)

    Tao, Yufeng; Wang, Ming; Guo, Dongmei; Hao, Hui; Liu, Qiang

    2015-04-01

    In this paper, a simplified phase demodulation scheme is applied to recover vibration trail on a laser self-mixing interferometer for noncontact vibration measurement. The emission of semiconductor laser diode is modulated by injecting sinusoidal wave, and corresponding interference signal is a quasi-sinusoid wave. The vibration mathematical model for semiconductor laser diode is theoretically educed from basic self-mixing theory, the variation of target is converted into phase information. The simulation of demodulation algorithm and standard deviation are presented and the reconstructed waveform displays a desirable consistence with various moving trails. Following the principle, a minimum experimental system is established and position variation of the target mirror driven by voltage signal is translated into phase shifts, feedback is controlled at weak level during experiment, Fourier transform is implemented to analyze phase information. The comparisons of both amplitude and velocity with a Germany Doppler vibrometer are performed to testify vibration model, the error of proposed demodulation method is less than 30 nm and achieve a high accuracy in vibration frequency. The experimental results indicate the traditional phase technology can be applied on complex optical power signal after adaption providing a feasible application prospects in industrial and scientific situation with an inexpensive semiconductor laser.

  3. Frequency to Voltage Converter Analog Front-End Prototype

    NASA Technical Reports Server (NTRS)

    Mata, Carlos; Raines, Matthew

    2012-01-01

    The frequency to voltage converter analog front end evaluation prototype (F2V AFE) is an evaluation board designed for comparison of different methods of accurately extracting the frequency of a sinusoidal input signal. A configurable input stage is routed to one or several of five separate, configurable filtering circuits, and then to a configurable output stage. Amplifier selection and gain, filter corner frequencies, and comparator hysteresis and voltage reference are all easily configurable through the use of jumpers and potentiometers.

  4. Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages

    DOEpatents

    Su, Gui-Jia [Knoxville, TN

    2005-11-29

    A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.

  5. Blocking central pathways in the primate motor system using high-frequency sinusoidal current.

    PubMed

    Fisher, Karen M; Jillani, Ngalla E; Oluoch, George O; Baker, Stuart N

    2015-03-01

    Electrical stimulation with high-frequency (2-10 kHz) sinusoidal currents has previously been shown to produce a transient and complete nerve block in the peripheral nervous system. Modeling and in vitro studies suggest that this is due to a prolonged local depolarization across a broad section of membrane underlying the blocking electrode. Previous work has used cuff electrodes wrapped around the peripheral nerve to deliver the blocking stimulus. We extended this technique to central motor pathways, using a single metal microelectrode to deliver focal sinusoidal currents to the corticospinal tract at the cervical spinal cord in anesthetized adult baboons. The extent of conduction block was assessed by stimulating a second electrode caudal to the blocking site and recording the antidromic field potential over contralateral primary motor cortex. The maximal block achieved was 99.6%, similar to findings of previous work in peripheral fibers, and the optimal frequency for blocking was 2 kHz. Block had a rapid onset, being complete as soon as the transient activation associated with the start of the sinusoidal current was over. High-frequency block was also successfully applied to the pyramidal tract at the medulla, ascending sensory pathways in the dorsal columns, and the descending systems of the medial longitudinal fasciculus. High-frequency sinusoidal stimulation produces transient, reversible lesions in specific target locations and therefore could be a useful alternative to permanent tissue transection in some experimental paradigms. It also could help to control or prevent some of the hyperactivity associated with chronic neurological disorders. PMID:25475345

  6. Blocking central pathways in the primate motor system using high-frequency sinusoidal current

    PubMed Central

    Fisher, Karen M.; Jillani, Ngalla E.; Oluoch, George O.

    2014-01-01

    Electrical stimulation with high-frequency (2–10 kHz) sinusoidal currents has previously been shown to produce a transient and complete nerve block in the peripheral nervous system. Modeling and in vitro studies suggest that this is due to a prolonged local depolarization across a broad section of membrane underlying the blocking electrode. Previous work has used cuff electrodes wrapped around the peripheral nerve to deliver the blocking stimulus. We extended this technique to central motor pathways, using a single metal microelectrode to deliver focal sinusoidal currents to the corticospinal tract at the cervical spinal cord in anesthetized adult baboons. The extent of conduction block was assessed by stimulating a second electrode caudal to the blocking site and recording the antidromic field potential over contralateral primary motor cortex. The maximal block achieved was 99.6%, similar to findings of previous work in peripheral fibers, and the optimal frequency for blocking was 2 kHz. Block had a rapid onset, being complete as soon as the transient activation associated with the start of the sinusoidal current was over. High-frequency block was also successfully applied to the pyramidal tract at the medulla, ascending sensory pathways in the dorsal columns, and the descending systems of the medial longitudinal fasciculus. High-frequency sinusoidal stimulation produces transient, reversible lesions in specific target locations and therefore could be a useful alternative to permanent tissue transection in some experimental paradigms. It also could help to control or prevent some of the hyperactivity associated with chronic neurological disorders. PMID:25475345

  7. Sinusoidal Siemens star spatial frequency response measurement errors due to misidentified target centers

    SciTech Connect

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-07-23

    Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. As a result, using the closed-form solution, we propose a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values.

  8. Sinusoidal Siemens star spatial frequency response measurement errors due to misidentified target centers

    DOE PAGESBeta

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-07-23

    Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. As a result, using the closed-form solution, we proposemore » a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values.« less

  9. Nonlinear properties of medial entorhinal cortex neurons reveal frequency selectivity during multi-sinusoidal stimulation.

    PubMed

    Magnani, Christophe; Economo, Michael N; White, John A; Moore, Lee E

    2014-01-01

    The neurons in layer II of the medial entorhinal cortex are part of the grid cell network involved in the representation of space. Many of these neurons are likely to be stellate cells with specific oscillatory and firing properties important for their function. A fundamental understanding of the nonlinear basis of these oscillatory properties is critical for the development of theories of grid cell firing. In order to evaluate the behavior of stellate neurons, measurements of their quadratic responses were used to estimate a second order Volterra kernel. This paper uses an operator theory, termed quadratic sinusoidal analysis (QSA), which quantitatively determines that the quadratic response accounts for a major part of the nonlinearity observed at membrane potential levels characteristic of normal synaptic events. Practically, neurons were probed with multi-sinusoidal stimulations to determine a Hermitian operator that captures the quadratic function in the frequency domain. We have shown that the frequency content of the stimulation plays an important role in the characteristics of the nonlinear response, which can distort the linear response as well. Stimulations with enhanced low frequency amplitudes evoked a different nonlinear response than broadband profiles. The nonlinear analysis was also applied to spike frequencies and it was shown that the nonlinear response of subthreshold membrane potential at resonance frequencies near the threshold is similar to the nonlinear response of spike trains. PMID:25191226

  10. Masking effects of low-frequency sinusoidal gratings on the detection of contrast modulation in high-frequency carriers

    NASA Astrophysics Data System (ADS)

    Henning, G. Bruce

    2004-04-01

    A modification and extension of Kortum and Geisler's model [Vision Res. 35, 1595 (1995)] of early visual nonlinearities that incorporates an expansive nonlinearity (consistent with neurophysiological findings [Vision Res. 35, 2725 (1995)], a normalization based on a local average retinal illumination, similar to Mach's proposal [F. Ratliff, Mach Bands: Quantitative Studies on Neural Networks in the Retina (Holden-Day, San Francisco, Calif., 1965)], and a subsequent compression suggested by Henning et al. [J. Opt. Soc. Am A 17, 1147 (2000)] captures a range of hitherto unexplained interactions between a sinusoidal grating of low spatial frequency and a contrast-modulated grating 2 octaves higher in spatial frequency.

  11. Broadband frequency and angular response of a sinusoidal bull’s eye antenna

    NASA Astrophysics Data System (ADS)

    Beaskoetxea, U.; Navarro-Cía, M.; Beruete, M.

    2016-07-01

    A thorough experimental study of the frequency and beaming angle response of a metallic leaky-wave bull’s eye antenna working at 77 GHz with a sinusoidally corrugated profile is presented. The beam scanning property of these antennas as frequency is varied is experimentally demonstrated and corroborated through theoretical and numerical results. From the experimental results the dispersion diagram of the n  =  ‑1 and n  =  ‑2 space harmonics is extracted, and the operation at different frequency regimes is identified and discussed. In order to show the contribution of each half of the antenna, numerical examples of the near-field behavior are also displayed. Overall, experimental results are in good qualitative and quantitative agreement with theoretical and numerical calculations. Finally, an analysis of the beamwidth as a function of frequency is performed, showing that it can achieve values below 1.5° in a fractional bandwidth of 4% around the operation frequency, which is an interesting frequency-stable broadside radiation.

  12. Range-resolved interferometric signal processing using sinusoidal optical frequency modulation.

    PubMed

    Kissinger, Thomas; Charrett, Thomas O H; Tatam, Ralph P

    2015-04-01

    A novel signal processing technique using sinusoidal optical frequency modulation of an inexpensive continuous-wave laser diode source is proposed that allows highly linear interferometric phase measurements in a simple, self-referencing setup. Here, the use of a smooth window function is key to suppress unwanted signal components in the demodulation process. Signals from several interferometers with unequal optical path differences can be multiplexed, and, in contrast to prior work, the optical path differences are continuously variable, greatly increasing the practicality of the scheme. In this paper, the theory of the technique is presented, an experimental implementation using three multiplexed interferometers is demonstrated, and detailed investigations quantifying issues such as linearity and robustness against instrument drift are performed. PMID:25968772

  13. Effect of weak, interrupted sinusoidal low frequency magnetic field on neural regeneration in rats: functional evaluation.

    PubMed

    Bervar, Marijan

    2005-07-01

    A study of the effect of weak, interrupted sinusoidal low frequency magnetic field (ISMF) stimulation on regeneration of the rat sciatic nerve was carried out. In the experiment, 60 Wistar rats were used: 24 rats underwent unilateral sciatic nerve transection injury and immediate surgical nerve repair, 24 rats underwent unilateral sciatic nerve crush injury, and the remaining 12 rats underwent a sham surgery. Half of the animals (n = 12) with either sciatic nerve lesion were randomly chosen and exposed between a pair of Helmholtz coils for 3 weeks post-injury, 4 h/day, to an interrupted (active period to pause ratio = 1.4 s/0.8 s) sinusoidal 50 Hz magnetic field of 0.5 mT. The other half of the animals (n = 12) and six rats with sham surgery were used for two separate controls. Functional recovery was followed for 6 weeks for the crush injuries and 7(1/2) months for the transection injuries by video assisted footprint analysis in static conditions and quantified using a recently revised static sciatic index (SSI) formula. We ascertained that the magnetic field influence was weak, but certainly detectable in both injury models. The accuracy of ISMF influence detection, determined by the one-way repeated measures ANOVA test, was better for the crush injury model: F(1, 198) = 9.0144, P = .003, than for the transection injury model: F(1, 198) = 6.4826, P = .012. The Student-Newman-Keuls range test for each response day yielded significant differences (P < .05) between the exposed and control groups early in the beginning of functional recovery and later on from the points adjacent to the beginning of the plateau, or 95% of functional recovery, and the end of observation. These differences probably reflect the ISMF systemic effect on the neuron cell bodies and increased and more efficient reinnervation of the periphery. PMID:15887258

  14. Characterization of Wet Air Plasma Jet Powered by Sinusoidal High Voltage and Nanosecond Pulses for Plasma Agricultural Application

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro

    2015-09-01

    Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.

  15. High-frequency graphene voltage amplifier.

    PubMed

    Han, Shu-Jen; Jenkins, Keith A; Valdes Garcia, Alberto; Franklin, Aaron D; Bol, Ageeth A; Haensch, Wilfried

    2011-09-14

    While graphene transistors have proven capable of delivering gigahertz-range cutoff frequencies, applying the devices to RF circuits has been largely hindered by the lack of current saturation in the zero band gap graphene. Herein, the first high-frequency voltage amplifier is demonstrated using large-area chemical vapor deposition grown graphene. The graphene field-effect transistor (GFET) has a 6-finger gate design with gate length of 500 nm. The graphene common-source amplifier exhibits ∼5 dB low frequency gain with the 3 dB bandwidth greater than 6 GHz. This first AC voltage gain demonstration of a GFET is attributed to the clear current saturation in the device, which is enabled by an ultrathin gate dielectric (4 nm HfO(2)) of the embedded gate structures. The device also shows extrinsic transconductance of 1.2 mS/μm at 1 V drain bias, the highest for graphene FETs using large-scale graphene reported to date. PMID:21805988

  16. Monocular and binocular steady-state flicker VEPs: frequency-response functions to sinusoidal and square-wave luminance modulation.

    PubMed

    Nicol, David S; Hamilton, Ruth; Shahani, Uma; McCulloch, Daphne L

    2011-02-01

    Steady-state VEPs to full-field flicker (FFF) using sinusoidally modulated light were compared with those elicited by square-wave modulated light across a wide range of stimulus frequencies with monocular and binocular FFF stimulation. Binocular and monocular VEPs were elicited in 12 adult volunteers to FFF with two modes of temporal modulation: sinusoidal or square-wave (abrupt onset and offset, 50% duty cycle) at ten temporal frequencies ranging from 2.83 to 58.8 Hz. All stimuli had a mean luminance of 100 cd/m(2) with an 80% modulation depth (20-180 cd/m(2)). Response magnitudes at the stimulus frequency (F1) and at the double and triple harmonics (F2 and F3) were compared. For both sinusoidal and square-wave flicker, the FFF-VEP magnitudes at F1 were maximal for 7.52 Hz flicker. F2 was maximal for 5.29 Hz flicker, and F3 magnitudes are largest for flicker stimulation from 3.75 to 7.52 Hz. Square-wave flicker produced significantly larger F1 and F2 magnitudes for slow flicker rates (up to 5.29 Hz for F1; at 2.83 and 3.75 Hz for F2). The F3 magnitudes were larger overall for square-wave flicker. Binocular FFF-VEP magnitudes are larger than those of monocular FFF-VEPs, and the amount of this binocular enhancement is not dependant on the mode of flicker stimulation (mean binocular: monocular ratio 1.41, 95% CI: 1.2-1.6). Binocular enhancement of F1 for 21.3 Hz flicker was increased to a factor of 2.5 (95% CI: 1.8-3.5). In the healthy adult visual system, FFF-VEP magnitudes can be characterized by the frequency-response functions of F1, F2 and F3. Low-frequency roll-off in the FFF-VEP magnitudes is greater for sinusoidal flicker than for square-wave flicker for rates ≤ 5.29 Hz; magnitudes for higher-frequency flicker are similar for the two types of flicker. Binocular FFF-VEPs are larger overall than those recorded monocularly, and this binocular summation is enhanced at 21.3 Hz in the mid-frequency range. PMID:21279419

  17. 46 CFR 111.01-17 - Voltage and frequency variations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Voltage and frequency variations. 111.01-17 Section 111.01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations....

  18. 46 CFR 111.01-17 - Voltage and frequency variations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Voltage and frequency variations. 111.01-17 Section 111.01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations....

  19. 46 CFR 111.01-17 - Voltage and frequency variations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Voltage and frequency variations. 111.01-17 Section 111.01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations....

  20. 46 CFR 111.01-17 - Voltage and frequency variations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Voltage and frequency variations. 111.01-17 Section 111.01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations....

  1. 46 CFR 111.01-17 - Voltage and frequency variations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Voltage and frequency variations. 111.01-17 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated...

  2. Quartz crystal microbalance based on passive frequency to voltage converter

    SciTech Connect

    Burda, Ioan; Tunyagi, Arthur

    2012-02-15

    In dynamics of evaporation or drying of microdrops from a solid surface, a faster and precise quartz crystal microbalance (QCM) is needed. The fast QCM based on frequency to voltage converter is an attractive and powerful tool in the investigation of the dynamic regime of evaporation to translate the frequency shift in terms of a continuous voltage change. The frequency shift monitoring in fast QCM applications is a real challenge for electronic processing interface. Originally developed as a frequency shift processing interface, this novel passive frequency to voltage converter can produce faster, stable, and accurate results in regard to the QCM sensor behavior. In this article, the concept and circuit of passive frequency to voltage converter will be explained followed by static and dynamic characterization. Experimental results of microdrops evaporation will be given.

  3. Performance analysis of cascaded h-bridge multilevel inverter using mixed switching frequency with various dc-link voltages

    NASA Astrophysics Data System (ADS)

    Citarsa, I. B. F.; Satiawan, I. N. W.; Wiryajati, I. K.; Supriono

    2016-01-01

    Multilevel inverters have been widely used in many applications since the technology is advantageous to increase the converter capability as well as to improve the output voltage quality. According to the applied switching frequency, multilevel modulations can be subdivided into three classes, i.e: fundamental switching frequency, high switching frequency and mixed switching frequency. This paper investigates the performance of cascaded H-bridge (CHB) multilevel inverter that is modulated using mixed switching frequency (MSF) PWM with various dc-link voltage ratios. The simulation results show the nearly sinusoidal load output voltages are successfully achieved. It is revealed that there is improvement in output voltages quality in terms of THD and low-order harmonics content. The CHB inverter that is modulated using MSF PWM with equal dc-link voltage ratio (½ Vdc: ½ Vdc) produces output voltage with the lowest low-order harmonics (less than 1% of fundamental) while the CHB inverter that is modulated using MSF PWM with un-equal dc-link voltage ratio (2/3 Vdc: 1/3 Vdc) produces a 7-level output voltage with the lowest THD (16.31%) compared to the other PWM methods. Improvement of the output voltage quality here is also in line with improvement of the number of available levels provided in the output voltage. Here only 2 cells H-bridge inverter (contain 8 switches) are needed to produce a 7- level output voltage, while in the conventional CHB inverter at least 3 cells of H-bridge inverter (contain 12 switches) are needed to produce a 7-level output voltage. Hence it is valuable in term of saving number of component.

  4. Detection of sinusoidal amplitude modulation in logarithmic frequency sweeps across wide regions of the spectrum

    PubMed Central

    Hsieh, I-Hui; Saberi, Kourosh

    2010-01-01

    Many natural sounds such as speech contain concurrent amplitude and frequency modulation (AM and FM), with the FM components often in the form of directional frequency sweeps or glides. Most studies of modulation coding, however, have employed one modulation type in stationary carriers, and in cases where mixed-modulation sounds have been used, the FM component has typically been confined to an extremely narrow range within a critical band. The current study examined the ability to detect AM signals carried by broad logarithmic frequency sweeps using a 2-alternative forced-choice adaptive psychophysical design. AM detection thresholds were measured as a function of signal modulation rate and carrier sweep frequency region. Thresholds for detection of AM in a sweep carrier ranged from -8 dB for an AM rate of 8 Hz to -30 dB at 128 Hz. Compared to thresholds obtained for stationary carriers (pure tones and filtered Gaussian noise), detection of AM carried by frequency sweeps substantially declined at low (12 dB at 8 Hz) but not high modulation rates. Several trends in the data, including sweep- versus stationary-carrier threshold patterns and effects of frequency region were predicted from a modulation filterbank model with an envelope-correlation decision statistic. PMID:20144700

  5. BIOLOGICAL INFLUENCES OF LOW-FREQUENCY SINUSOIDAL ELECTROMAGNETIC SIGNALS ALONE AND SUPERIMPOSED ON RF CARRIER WAVES

    EPA Science Inventory

    The report describes in a historical context the experiments that have been performed to examine the biological responses caused by exposure to low frequency electromagnetic radiation directly or as modulation of RF carrier waves. A detailed review is provided of the independentl...

  6. Double diffusion convection under sinusoidal modulations of low-frequency vibrations

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Viviani, Antonio; Saghir, M. Ziad

    2008-09-01

    Double diffusion convection features the coupling of diffusion fluxes driven by the temperature and concentration gradients and the simultaneous existence of the natural convection driven by the buoyancy force. This paper studies the double diffusion convection under different modulations of low-frequency g-jitters in order to evaluate the g-jitter effect on diffusion-dominated experiments in space laboratories. The numerical simulation for a binary mixture of water-isopropanol (90:10 wt%) has shown a dependence of the Soret separation on g-jitter frequency and amplitude. Under the same amplitude, the fluctuation of local properties, i.e., velocity, temperature and concentration, is found to intensify as the g-jitter frequency decreases. When both static residual gravity and oscillatory g-jitter exist, the diffusion process is affected by the nonlinear interaction between individual g-jitters. As the amplitude decreases to 1μg, this nonlinearity becomes less significant than it appears in the high-amplitude scenario.

  7. A high voltage nanosecond pulser with independently adjustable output voltage, pulse width, and pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Carscadden, John; Slobodov, Ilia

    2014-10-01

    Eagle Harbor Technologies (EHT) is developing a high voltage nanosecond pulser capable of generating microwaves and non-equilibrium plasmas for plasma medicine, material science, enhanced combustion, drag reduction, and other research applications. The EHT nanosecond pulser technology is capable of producing high voltage (up to 60 kV) pulses (width 20-500 ns) with fast rise times (<10 ns) at high pulse repetition frequency (adjustable up to 100 kHz) for CW operation. The pulser does not require the use of saturable core magnetics, which allows for the output voltage, pulse width, and pulse repetition frequency to be fully adjustable, enabling researchers to explore non-equilibrium plasmas over a wide range of parameters. A magnetic compression stage can be added to improve the rise time and drive lower impedance loads without sacrificing high pulse repetition frequency operation. Work supported in part by the US Navy under Contract Number N00014-14-P-1055 and the US Air Force under Contract Number FA9550-14-C-0006.

  8. Note: Measuring breakdown characteristics during the hot re-ignition of high intensity discharge lamps using high frequency alternating current voltage.

    PubMed

    van den Bos, R A J M; Sobota, A; Manders, F; Kroesen, G M W

    2013-04-01

    To investigate the cold and hot re-ignition properties of High Intensity Discharge (HID) lamps in more detail an automated setup was designed in such a way that HID lamps of various sizes and under different background pressures can be tested. The HID lamps are ignited with a ramped sinusoidal voltage signal with frequencies between 60 and 220 kHz and with amplitude up to 7.5 kV. Some initial results of voltage and current measurements on a commercially available HID lamp during hot and cold re-ignition are presented. PMID:23635237

  9. Analytical and computational investigations of airfoils undergoing high-frequency sinusoidal pitch and plunge motions at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    McGowan, Gregory Z.

    Current interests in Micro Air Vehicle (MAV) technologies call for the development of aerodynamic-design tools that will aid in the design of more efficient platforms that will also have adequate stability and control for flight in gusty environments. Influenced largely by nature MAVs tend to be very small, have low flight speeds, and utilize flapping motions for propulsion. For these reasons the focus is, specifically, on high-frequency motions at low Reynolds numbers. Toward the goal of developing design tools, it is of interest to explore the use of elementary flow solutions for simple motions such as pitch and plunge oscillations to predict aerodynamic performance for more complex motions. In the early part of this research, a validation effort was undertaken. Computations from the current effort were compared with experiments conducted in a parallel, collaborative effort at the Air Force Research Laboratory (AFRL). A set of pure-pitch and pure-plunge sinusoidal oscillations of the SD7003 airfoil were examined. Phase-averaged measurements using particle image velocimetry in a water tunnel were compared with computations using two flow solvers: (i) an incompressible Navier-Stokes Immersed Boundary Method and (ii) an unsteady compressible Reynolds-Averaged Navier-Stokes (RANS) solver. The motions were at a reduced frequency of k = 3.93, and pitch-angle amplitudes were chosen such that a kinematic equivalence in amplitudes of effective angle of attack (from plunge) was obtained. Plunge cases showed good qualitative agreement between computation and experiment, but in the pitch cases, the wake vorticity in the experiment was substantially different from that predicted by both computations. Further, equivalence between the pure-pitch and pure-plunge motions was not attained through matching effective angle of attack. With the failure of pitch/plunge equivalence using equivalent amplitudes of effective angle of attack, the effort shifted to include pitch-rate and

  10. High-frequency voltage oscillations in cultured astrocytes

    PubMed Central

    Fleischer, Wiebke; Theiss, Stephan; Slotta, Johannes; Holland, Christine; Schnitzler, Alfons

    2015-01-01

    Because of their close interaction with neuronal physiology, astrocytes can modulate brain function in multiple ways. Here, we demonstrate a yet unknown astrocytic phenomenon: Astrocytes cultured on microelectrode arrays (MEAs) exhibited extracellular voltage fluctuations in a broad frequency spectrum (100–600 Hz) after electrical stimulation. These aperiodic high-frequency oscillations (HFOs) could last several seconds and did not spread across the MEA. The voltage-gated calcium channel antagonist cilnidipine dose-dependently decreased the power of the oscillations. While intracellular calcium was pivotal, incubation with bafilomycin A1 showed that vesicular release of transmitters played only a minor role in the emergence of HFOs. Gap junctions and volume-regulated anionic channels had just as little functional impact, which was demonstrated by the addition of carbenoxolone (100 μmol/L) and NPPB (100 μmol/L). Hyperpolarization with low potassium in the extracellular solution (2 mmol/L) dramatically raised oscillation power. A similar effect was seen when we added extra sodium (+50 mmol/L) or if we replaced it with NMDG+ (50 mmol/L). The purinergic receptor antagonist PPADS suppressed the oscillation power, while the agonist ATP (100 μmol/L) had only an increasing effect when the bath solution pH was slightly lowered to pH 7.2. From these observations, we conclude that astrocytic voltage oscillations are triggered by activation of voltage-gated calcium channels and driven by a downstream influx of cations through channels that are permeable for large ions such as NMDG+. Most likely candidates are subtypes of pore-forming P2X channels with a low affinity for ATP. PMID:25969464

  11. FPGA implementation of high-frequency multiple PWM for variable voltage variable frequency controller

    NASA Astrophysics Data System (ADS)

    Boumaaraf, Abdelâali; Mohamadi, Tayeb; Gourmat, Laïd

    2016-07-01

    In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10hz to 60 hz with a small frequency and reduce the cost of the control system.

  12. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud.

    PubMed

    Florence, A Paulin; Shanthi, V; Simon, C B Sunil

    2016-01-01

    Cloud computing is a new technology which supports resource sharing on a "Pay as you go" basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption. PMID:27239551

  13. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud

    PubMed Central

    Florence, A. Paulin; Shanthi, V.; Simon, C. B. Sunil

    2016-01-01

    Cloud computing is a new technology which supports resource sharing on a “Pay as you go” basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption. PMID:27239551

  14. Optimization of electric pulse amplitude and frequency in vitro for low voltage and high frequency electrochemotherapy.

    PubMed

    Shankayi, Zeinab; Firoozabadi, S M P; Hassan, Zohair Saraf

    2014-02-01

    During standard electrochemotherapy (ECT), using a train of 1,000 V/cm amplitude rectangular pulses with 1 Hz frequency, patients experience an unpleasant sensation and slight edema. According to the patients, muscle contractions provoked by high amplitude (about 1,000 V/cm) and low repetition frequency (1 Hz) pulses are the most unpleasant and painful sensations. Recently, ECT using low voltage and higher repetition frequency (LVHF) has been shown to be an effective tool for inhibiting tumor growth. The aim of the present study was to optimize electric pulse amplitude and repetition frequency for LVHF ECT by sampling the different sets of pulse parameters on cell viability and permeabilization. In ECT, a reversible effect based on high permeabilization is desirable. For this purpose, we used bleomycin to evaluate the permeabilization of K562 and MIA-PACA2 cells caused by low voltage (50-150 V/cm) and higher repetition frequency (4-6 kHz) electric pulses. We show that the reversible effect with electropermeabilization of the cells caused by LVHF ECT is accessible; this interaction is more effective for electric pulses with 70 V/cm amplitude. PMID:24271721

  15. Systems and methods for process and user driven dynamic voltage and frequency scaling

    DOEpatents

    Mallik, Arindam; Lin, Bin; Memik, Gokhan; Dinda, Peter; Dick, Robert

    2011-03-22

    Certain embodiments of the present invention provide a method for power management including determining at least one of an operating frequency and an operating voltage for a processor and configuring the processor based on the determined at least one of the operating frequency and the operating voltage. The operating frequency is determined based at least in part on direct user input. The operating voltage is determined based at least in part on an individual profile for processor.

  16. Non-linear response of coupled soil-pile-structure system under sinusoidal excitations with various frequencies

    NASA Astrophysics Data System (ADS)

    Hussien, Mahmoud N.; Tobita, Tetsuo; Iai, Susumu

    The non-linear response of coupled soil-pile-structure systems to seismic loading is parametrically studied in the frequency domain using two-dimensional (2D) finite elements (FE). The soil-pile interaction in three dimensions (3D) is idealized in the 2D type using soil-pile interaction springs with non-linear hysteretic load displacement relationships. The system under investigation comprises of a single degree of freedom structure supported by an end-bearing single pile founded in a homogenous sand layer over rigid rock. Comparisons with established results from the literature suggest that the adopted FE model reasonably captures the essential features of the seismic response of the coupled soil-pile-structure system. Numerical results demonstrate the strong influence on the effective natural period of the foundation properties. The effect of non-linear soil behavior and soil profile as well as the frequency content of excitation on both kinematic and inertial interactions is illustrated. The relative contributions of kinematic and inertial interaction to the development of dynamic pile bending are clarified.

  17. Sinusoidal transform coding

    NASA Technical Reports Server (NTRS)

    Mcaulay, Robert J.; Quatieri, Thomas F.

    1988-01-01

    It has been shown that an analysis/synthesis system based on a sinusoidal representation of speech leads to synthetic speech that is essentially perceptually indistinguishable from the original. Strategies for coding the amplitudes, frequencies and phases of the sine waves have been developed that have led to a multirate coder operating at rates from 2400 to 9600 bps. The encoded speech is highly intelligible at all rates with a uniformly improving quality as the data rate is increased. A real-time fixed-point implementation has been developed using two ADSP2100 DSP chips. The methods used for coding and quantizing the sine-wave parameters for operation at the various frame rates are described.

  18. Assessment of low-frequency hearing with narrow-band chirp-evoked 40-Hz sinusoidal auditory steady-state response.

    PubMed

    Wilson, Uzma S; Kaf, Wafaa A; Danesh, Ali A; Lichtenhan, Jeffery T

    2016-01-01

    Objective To determine the clinical utility of narrow-band chirp-evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study sample Thirty young adults aged 18-25 with normal hearing participated in this study. Results When 4000 equivalent response averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17-22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11-15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging. Conclusion Narrow-band chirp-evoked 40-Hz s-ASSR requires a ∼15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used. PMID:26795555

  19. Digital light-to-frequency converter with preset voltage

    SciTech Connect

    Hambly, W.E.

    1983-05-24

    A digital scene light detecting and integrating circuit is provided with an automatic preset by which the integrating circuit is presignaled to ramp upward to a preselected reference voltage value at which digital pulse counting can immediately begin, thereby subsequently enabling the precise detection and integration of illumination.

  20. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Delattre, P. A.; Booth, J. P.; Johnson, E. V.; Dine, S.

    2013-01-01

    A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms.

  1. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads.

    PubMed

    Lafleur, T; Delattre, P A; Booth, J P; Johnson, E V; Dine, S

    2013-01-01

    A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms. PMID:23387681

  2. Low frequency magnetic emissions and resulting induced voltages in a pacemaker by iPod portable music players

    PubMed Central

    Bassen, Howard

    2008-01-01

    Background Recently, malfunctioning of a cardiac pacemaker electromagnetic, caused by electromagnetic interference (EMI) by fields emitted by personal portable music players was highly publicized around the world. A clinical study of one patient was performed and two types of interference were observed when the clinicians placed a pacemaker programming head and an iPod were placed adjacent to the patient's implanted pacemaker. The authors concluded that "Warning labels may be needed to avoid close contact between pacemakers and iPods". We performed an in-vitro study to evaluate these claims of EMI and present our findings of no-effects" in this paper. Methods We performed in-vitro evaluations of the low frequency magnetic field emissions from various models of the Apple Inc. iPod music player. We measured magnetic field emissions with a 3-coil sensor (diameter of 3.5 cm) placed within 1 cm of the surface of the player. Highly localized fields were observed (only existing in a one square cm area). We also measured the voltages induced inside an 'instrumented-can' pacemaker with two standard unipolar leads. Each iPod was placed in the air, 2.7 cm above the pacemaker case. The pacemaker case and leads were placed in a saline filled torso simulator per pacemaker electromagnetic compatibility standard ANSI/AAMI PC69:2000. Voltages inside the can were measured. Results Emissions were strongest (≈ 0.2 μT pp) near a few localized points on the cases of the two iPods with hard drives. Emissions consisted of 100 kHz sinusoidal signal with lower frequency (20 msec wide) pulsed amplitude modulation. Voltages induced in the iPods were below the noise level of our instruments (0.5 mV pp in the 0 – 1 kHz band or 2 mV pp in the 0 – 5 MHz bandwidth. Conclusion Our measurements of the magnitude and the spatial distribution of low frequency magnetic flux density emissions by 4 different models of iPod portable music players. Levels of less than 0.2 μT exist very close (1 cm

  3. A short report on voltage-to-frequency conversion for HISTRAP RF system tuning control loops

    SciTech Connect

    Hasanul Basher, A.M.

    1991-09-01

    One of the requirements of the HISTRAP RF accelerating system is that the frequency of the accelerating voltage for the cavity must keep in step with the change in the magnetic field. As the energy of the particle increases, the magnetic field is increased to keep the radius of the particle orbit constant. At the same time, the frequency of the electric field must be changed to insure that it is synchronized with the angular movement of the particle. So we need to generate the frequency of the accelerating voltage in relation to the magnetic field. The frequency generation can be accomplished in two stages. The first stage of frequency generation consists of measuring the magnetic field in terms of voltage which is already developed. The second stage is to convert this voltage into frequency. Final frequency precision can be achieved by deriving a frequency-correcting signal from the beam position. This project is concerned with generating the frequency from the analog voltage. The speed of response required will place very stringent requirements on both hardware and software. Technology is available to carry out this task. A hardware configuration has been established and software has been developed. In the following section, we describe the implementation strategy, the hardware configuration, and the desired specifications. Next, we present the software developed, results obtained, along with capabilities and limitations of the system. Finally, we suggest alternate solutions to overcome some of the limitations toward meeting our goal. In the appendices, we include program listings.

  4. The role of the relative voltage and phase for frequency coupling in a dual-frequency capacitively coupled plasma

    SciTech Connect

    O'Connell, D.; Gans, T.; Semmler, E.; Awakowicz, P.

    2008-08-25

    Frequency coupling in multifrequency discharges is a complex nonlinear interaction of the different frequency components. An alpha-mode low pressure rf capacitively coupled plasma operated simultaneously with two frequencies is investigated and the coupling of the two frequencies is observed to greatly influence the excitation and ionization within the discharge. Through this, plasma production and sustainment are dictated by the corresponding electron dynamics and can be manipulated through the dual-frequency sheath. These mechanisms are influenced by the relative voltage and also the relative phase of the two frequencies.

  5. Characterization of the frequency and muscle responses of the lumbar and thoracic spines of seated volunteers during sinusoidal whole body vibration.

    PubMed

    Baig, Hassam A; Dorman, Daniel B; Bulka, Ben A; Shivers, Bethany L; Chancey, Valeta C; Winkelstein, Beth A

    2014-10-01

    Whole body vibration has been postulated to contribute to the onset of back pain. However, little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to measure the frequency and corresponding muscle responses of seated male volunteers during whole body vibration exposures along the vertical and anteroposterior directions to define the transmissibility and associated muscle activation responses for relevant whole body vibration exposures. Seated human male volunteers underwent separate whole body vibration exposures in the vertical (Z-direction) and anteroposterior (X-direction) directions using sinusoidal sweeps ranging from 2 to 18 Hz, with a constant amplitude of 0.4 g. For each vibration exposure, the accelerations and displacements of the seat and lumbar and thoracic spines were recorded. In addition, muscle activity in the lumbar and thoracic spines was recorded using electromyography (EMG) and surface electrodes in the lumbar and thoracic region. Transmissibility was determined, and peak transmissibility, displacement, and muscle activity were compared in each of the lumbar and thoracic regions. The peak transmissibility for vertical vibrations occurred at 4 Hz for both the lumbar (1.55 ± 0.34) and thoracic (1.49 ± 0.21) regions. For X-directed seat vibrations, the transmissibility ratio in both spinal regions was highest at 2 Hz but never exceeded a value of 1. The peak muscle response in both spinal regions occurred at frequencies corresponding to the peak transmissibility, regardless of the direction of imposed seat vibration: 4 Hz for the Z-direction and 2-3 Hz for the X-direction. In both vibration directions, spinal displacements occurred primarily in the direction of seat vibration, with little off-axis motion. The occurrence of peak muscle responses at frequencies of peak transmissibility suggests that such

  6. Stabilization of Gyrotron Frequency by PID Feedback Control on the Acceleration Voltage

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2015-12-01

    The results of frequency stabilization by proportional-integral-derivative (PID) feedback control of acceleration voltage in the 460-GHz Gyrotron FU CW GVI (the official name in Osaka University is Gyrotron FU CW GOI) are presented. The experiment was organized on the basis of the frequency modulation by modulation of acceleration voltage of beam electrons. The frequency stabilization during 10 h experiment was better than 10-6, which is compared with the results of the frequency deviation in free-running gyrotron operation.

  7. Improvement of neurofeedback therapy for improved attention through facilitation of brain activity using local sinusoidal extremely low frequency magnetic field exposure.

    PubMed

    Zandi Mehran, Yasaman; Firoozabadi, Mohammad; Rostami, Reza

    2015-04-01

    Traditional neurofeedback (NF) is a training approach aimed at altering brain activity using electroencephalography (EEG) rhythms as feedback. In NF training, external factors such as the subjects' intelligence can have an effect. In contrast, a low-energy NF system (LENS) does not require conscious effort from the subject, which results in fewer attendance sessions. However, eliminating the subject role seems to eliminate an important part of the NF system. This study investigated the facilitating effect on the theta-to-beta ratio from NF training, using a local sinusoidal extremely low frequency magnetic field (LSELF-MF) versus traditional NF. Twenty-four healthy, intelligent subjects underwent 10 training sessions to enhance beta (15-18 Hz), and simultaneously inhibit theta (4-7 Hz) and high beta (22-30 Hz) activity, at the Cz point in a 3-boat-race video game. Each session consisted of 3 statuses, PRE, DURING, and POST. In the DURING status, the NF training procedure lasted 10 minutes. Subjects were led to believe that they would be exposed to a magnetic field during NF training; however, 16 of the subjects who were assigned to the experimental group were really exposed to 45 Hz-360 µT LSELF-MF at Cz. For the 8 other subjects, only the coil was located at the Cz point with no exposure. The duty cycle of exposure was 40% (2-second exposure and 3-second pause). The results show that the theta-to-beta ratio in the DURING status of each group differs significantly from the PRE and POST statuses. Between-group analysis shows that the theta-to-beta ratio in the DURING status of the experimental group is significantly (P < .001) lower than in the sham group. The result shows the effect of LSELF-MF on NF training. PMID:24939868

  8. Low-frequency switching voltage regulators for terrestrial photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1984-01-01

    The photovoltaic technology project and the stand alone applications project are discussed. Two types of low frequency switching type regulators were investigated. The design, operating characteristics and field application of these regulators is described. The regulators are small in size, low in cost, very low in power dissipation, reliable and allow considerable flexibility in system design.

  9. Modeling of a single-cycle current generator while forming a quasi-sinusoidal current

    NASA Astrophysics Data System (ADS)

    Grebennikov, V. V.; Yaroslavtsev, E. V.; Slobodenuk, A. B.; Evtushenko, T. G.

    2016-04-01

    The paper presents the results of investigation of the influence of the output voltage magnitude on the operating frequency of the switch in the single-cycle quasi-sinusoidal current generator circuit. Analytical expressions for calculating the time parameters for transients in the circuit under given assumptions have been obtained. The results presented in the paper can be used in the design of converters of this type.

  10. Theoretical analyses of cellular transmembrane voltage in suspensions induced by high-frequency fields.

    PubMed

    Zou, Yong; Wang, Changzhen; Peng, Ruiyun; Wang, Lifeng; Hu, Xiangjun

    2015-04-01

    A change of the transmembrane voltage is considered to cause biophysical and biochemical responses in cells. The present study focuses on the cellular transmembrane voltage (Δφ) induced by external fields. We detail analytical equations for the transmembrane voltage induced by external high-frequency (above the relaxation frequency of the cell membrane) fields on cells of a spherical shape in suspensions and layers. At direct current (DC) and low frequencies, the cell membrane was assumed to be non-conductive under physiologic conditions. However, with increasing frequency, the permittivity of the cytoplasm/extracellular medium and conductivity of the membrane must be accounted for. Our main work is to extend application of the analytical solution of Δφ to the high-frequency range. We first introduce the transmembrane voltage generated by DC and low-frequency exposures on a single cell. Then, we focus on cell suspensions exposed to high-frequency fields. Using the effective medium theory and the reasonable assumption, the approximate analytical solution of Δφ on cells in suspensions and layers can be derived. Phenomenological effective medium theory equations cannot be used to calculate the local electric field of cell suspensions, so we raised a possible solution based on the Bergman theory. PMID:25528063

  11. Development of Low-Frequency AC Voltage Measurement System Using Single-Junction Thermal Converter

    NASA Astrophysics Data System (ADS)

    Amagai, Yasutaka; Nakamura, Yasuhiro

    Accurate measurement of low-frequency AC voltage using a digital multimeter at frequencies of 4-200Hz is a challenge in the mechanical engineering industry. At the National Metrology Institute of Japan, we developed a low-frequency AC voltage measurement system for calibrating digital multimeters operating at frequencies down to 1 Hz. The system uses a single-junction thermal converter and employs a theoretical model and a three-parameter sine wave fitting algorithm based on the least-square (LS) method. We calibrated the AC voltage down to 1Hz using our measurement system and reduced the measurement time compared with that using thin-film thermal converters. Our measurement results are verified by comparison with those of a digital sampling method using a high-resolution analog-to-digital converter; our data are in agreement to within a few parts in 105. Our proposed method enables us to measure AC voltage with an uncertainty of 25 μV/V (k = 1) at frequencies down to 4 Hz and a voltage of 10 V.

  12. The Coefficient of the Voltage Induced Frequency Shift Measurement on a Quartz Tuning Fork

    PubMed Central

    Hou, Yubin; Lu, Qingyou

    2014-01-01

    We have measured the coefficient of the voltage induced frequency shift (VIFS) of a 32.768 KHz quartz tuning fork. Three vibration modes were studied: one prong oscillating, two prongs oscillating in the same direction, and two prongs oscillating in opposite directions. They all showed a parabolic dependence of the eigen-frequency shift on the bias voltage applied across the fork, due to the voltage-induced internal stress, which varies as the fork oscillates. The average coefficient of the VIFS effect is as low as several hundred nano-Hz per millivolt, implying that fast-response voltage-controlled oscillators and phase-locked loops with nano-Hz resolution can be built. PMID:25414971

  13. Spin-torque diode radio-frequency detector with voltage tuned resonance

    NASA Astrophysics Data System (ADS)

    Skowroński, Witold; Frankowski, Marek; Wrona, Jerzy; Stobiecki, Tomasz; Ogrodnik, Piotr; Barnaś, Józef

    2014-08-01

    We report on a voltage-tunable radio-frequency (RF) detector based on a magnetic tunnel junction (MTJ). The spin-torque diode effect is used to excite and/or detect RF oscillations in the magnetic free layer of the MTJ. In order to reduce the overall in-plane magnetic anisotropy of the free layer, we take advantage of the perpendicular magnetic anisotropy at the interface between ferromagnetic and insulating layers. The applied bias voltage is shown to have a significant influence on the magnetic anisotropy, and thus on the resonance frequency of the device. This influence also depends on the voltage polarity. The obtained results are accounted for in terms of the interplay of spin-transfer-torque and voltage-controlled magnetic anisotropy effects.

  14. Spin-torque diode radio-frequency detector with voltage tuned resonance

    SciTech Connect

    Skowroński, Witold Frankowski, Marek; Stobiecki, Tomasz; Wrona, Jerzy; Ogrodnik, Piotr; Barnaś, Józef

    2014-08-18

    We report on a voltage-tunable radio-frequency (RF) detector based on a magnetic tunnel junction (MTJ). The spin-torque diode effect is used to excite and/or detect RF oscillations in the magnetic free layer of the MTJ. In order to reduce the overall in-plane magnetic anisotropy of the free layer, we take advantage of the perpendicular magnetic anisotropy at the interface between ferromagnetic and insulating layers. The applied bias voltage is shown to have a significant influence on the magnetic anisotropy, and thus on the resonance frequency of the device. This influence also depends on the voltage polarity. The obtained results are accounted for in terms of the interplay of spin-transfer-torque and voltage-controlled magnetic anisotropy effects.

  15. A novel compact repetitive frequency voltage booster based on magnetic switches and Fitch generator

    NASA Astrophysics Data System (ADS)

    Ren, Hang; Ding, Weidong; Wu, Jiawei

    2012-07-01

    In this paper, a novel repetitive frequency voltage booster (named repetitive Fitch booster by the authors) based on magnetic switches and Fitch generators is proposed. The principle of operation is to charge capacitors in parallel when magnetic switches (MSs) are unsaturated and reverse voltage polarity of every other capacitor when MSs saturate. With the principle, circuit topology of a 4-stage repetitive Fitch booster (RFB) is presented. Simulation as well as experiment shows its feasibility in boosting voltage and compressing rise-time. In simulation, the input voltage of 100 V is boosted to 372 V, while test stand yields output voltage with frequency of 1 kHz, amplitude of 19 kV with each capacitor charged to about 5.6 kV, and rise-time compression from 7.3 μs to 700 ns. Meanwhile, calculations show that the 4-stage RFB effectively reduces core volume by about half, from 1093.5 cm3 to 585.2 cm3. Furthermore, design rules are proposed so that topologies of RFBs with stages other than four can be conveniently derived. As an example, an 8-stage RFB is proposed and verified with circuit simulation, which shows an output voltage of 759 V with the input voltage of 100 V.

  16. Frequency dependence of the onset voltage of electroconvection in the nematic liquid crystal N4

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochao; Bowers, Steve; Bajaj, Kapil; Ahlers, Guenter

    2003-03-01

    Onset voltages Vc of electroconvection in a nematic liquid crystal (NLC) cell were measured as a function of the drive frequency ω/ 2 π. The cell (from E.H.C Co, Ltd Japan) had a nominal spacing of 25 μm and planar alignment. It was filled with the NLC Merck phase IV (N4). The NLC was doped with 0.1% by weight of tetra butylammonium bromide(TBAB) and the conductivity was near 1.0 × 10-6 (Ω m)-1 at 30^oC. At low frequencies (15 to 80Hz) the onset voltage dropped as the frequency increased. This is contrary to the usual interpretation of the standard model which yields Vc (1+ω^2 τ^2)/[ξ^2-(1+ω^2 τ^2)] (ξ is related to NLC material properities), with the charge relaxation time τ=ɛ/ ( 4π σ) assumed to be independent of ω. Measurements at higher frequencies agreed reasonably with the standard model prediction. Further measurements using an AC bridge revealed that the dielectric constant ɛ is strongly frequency dependent at low frequencies, whereas the conductivity σ was roughly constant. Taking into account the frequency dependence of ɛ (and thus of τ), the onset-voltage measurements agreed fairly well with the standard-model prediction.

  17. Sinusoidal ghost imaging.

    PubMed

    Khamoushi, S M Mahdi; Nosrati, Yaser; Tavassoli, S Hassan

    2015-08-01

    We introduce sinusoidal ghost imaging (SGI), which uses 2D orthogonal sinusoidal patterns instead of random patterns in "computational ghost imaging" (CGI). Simulations and experiments are performed. In comparison with the"differential ghost imaging" algorithm that was used to improve the SNR of ghost imaging, results of SGI show about 3 orders of magnitude higher SNR, which can be reconstructed even with a much smaller number of patterns. More importantly, based on the results, SGI provides the great opportunity to generate innate processed images by predefined selection of patterns. This can speed up detection process considerably and paves the way for real applications. PMID:26258330

  18. Sinusoidal Current-Tracking Control for Utility Interactive Inverter with an LCL Filter

    NASA Astrophysics Data System (ADS)

    Kato, Toshiji; Inoue, Kaoru; Donomoto, Yoshihisa

    A voltage source inverter with an LCL filter is often used for a utility interface to control its output current to a grid side because of its harmonic reduction advantages. The integral compensator is often used to reduce the steady-state errors. However, there is always a control delay due to sinusoidal variations. This paper proposes a digital sinusoidal compensator which is based on the internal model principle to realize a fast sinusoidal response with no delay. It is based on the internal model principle to realize a response with no deviation for a periodic sinusoidal reference input. It has a simple numerator and a denominator z2-2zcosωT +1 of a transfer function which is equal to the z function of a sinusoidal waveform of the angular frequency ω and the sample time T. Compensator and feedback gains of the inverter are determined by the dead-beat or the optimal control principle. The proposed method is investigated for performances and it is validated through simulation and experimental results by a DSP control system.

  19. Zero Voltage Soft Switching Duty Cycle Pulse Modulated High Frequency Inverter-Fed

    NASA Astrophysics Data System (ADS)

    Ishitobi, Manabu; Matsushige, Takayuki; Nakaoka, Mutsuo; Bessyo, Daisuke; Omori, Hideki; Terai, Haruo

    The utility grid voltage of commercial AC power source in Japan and USA is 100V, but in other Asian and European countries, it is 220V. In recent years, in Japan 200V outputted single-phase three-wire system begins to be used for high power applications. In 100V utility AC power applications and systems, an active voltage clamped quasi-resonant inverter circuit topology sing IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped asymmetrical soft switching PWM high-frequency inverter type AC-DC converter using IGBTs which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. The zero voltage soft switching inverter treated here can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant inverter using the IGBTs that has already been used for 100V utility AC power source. The operating performances of the voltage source single ended push pull (SEPP) type soft switching PWM inverter are evaluated and discussed for 100V and 200V common use consumer microwave oven. The harmonic line current components in the utility AC power side of the AC-DC power converter with ZVS-PWM SEPP inverter are reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

  20. Fast adaptive schemes for tracking voltage phasor and local frequency in power transmission and distribution systems

    SciTech Connect

    Kamwa, I.; Grondin, R. )

    1992-04-01

    Real-time measurements of voltage phasor and local frequency deviation find applications in computer-based relaying, static state estimation, disturbance monitoring and control. This paper proposes two learning schemes for fast estimation of these basic quantities. We attacked the problem from a system identification perspective, in opposition to the well-established Extended Kalman Filtering (EKF) technique. It is shown that, from a simple non-linear model of the system voltage which involves only two parameters, the Recursive Least Squares (RLS) and the Least Means Squares (LMS) algorithms can each provide dynamic estimates of the voltage phasor. The finite derivative of the phase deviation, followed by a moving-average filter, then leads to the local frequency deviation. A constant forgetting factor included in these algorithms provides both fast adaptation in time-varying situations and good smoothing of the estimates when necessary.

  1. The proposed use of GPS to provide the frequency traceability for a Josephson array voltage standard

    SciTech Connect

    Marais, E.L.

    1994-12-31

    A Josephson Array Voltage Standard (JAVS) has been established at the National Metrology Laboratory (NML) in South Africa, with the assistance of NIST and the PTB. We are currently working on what we believe to be the first use of the global positioning system (GPS) to provide direct frequency traceability for a JAVS.

  2. Static current-voltage characteristics for radio-frequency induction discharge

    SciTech Connect

    Budyansky, A.; Zykov, A.

    1995-12-31

    The aim of this work was to obtain experimentally such characteristic of Radio-Frequency Induction Discharge (RFID) that can play the role of its current-voltage characteristic (CVC) and to explain the nature of current and voltage jumps arising in RF coils at exciting of discharge. Experiments were made in quartz 5.5, 11, 20 cm diam tubes with outer RF coil at pressures 10--100 mTorr, at frequency 13.56 MHz and discharge power to 500 W. In case of outer coil as analogue of discharge voltage it`s convenient to use the value of the RF voltage U{sub R}, induced around outer perimeter of discharge tube. It is evident that current and voltage jumps arising at exciting of discharge are due to low output resistance of standard generators and negative slope of initial part of CVC. Three sets of such dependencies for different pressures were obtained for each diameter of tubes. The influence of different metal electrodes placed into discharge volume on CVC`s shape has been studied also. Experimental results can explain the behavior of HFI discharge as a load of RF generator and give data for calculation of RF circuit.

  3. Bioelectric fields of marine organisms: voltage and frequency contributions to detectability by electroreceptive predators.

    PubMed

    Bedore, Christine N; Kajiura, Stephen M

    2013-01-01

    Behavioral responses of elasmobranch fishes to weak electric fields have been well studied. These studies typically employ a stimulator that produces a dipole electric field intended to simulate the natural electric field of prey items. However, the characteristics of bioelectric fields have not been well described. The magnitude and frequency of the electric field produced by 11 families of marine organisms were quantified in this study. Invertebrate electric potentials ranged from 14 to 28 μV and did not differ from those of elasmobranchs, which ranged from 18 to 30 μV. Invertebrates and elasmobranchs produced electric potentials smaller than those of teleost fishes, which ranged from 39 to 319 μV. All species produced electric fields within the frequency range that is detectable by elasmobranch predators (<16 Hz), with the highest frequencies produced by the penaeids (10.3 Hz) and the gerreids (4.6 Hz). Although voltage differed by family, there was no relationship between voltage and mass or length of prey. Differences in prey voltage may be related to osmoregulatory strategies; invertebrates and elasmobranchs are osmoconformers and have less ion exchange with the surrounding seawater than teleosts species, which are hyposmotic. As predicted, voltage production was greatest at the mucous membrane-lined mouth and gills, which are sites of direct ion exchange with the environment. PMID:23629880

  4. Low noise frequency synthesizer with self-calibrated voltage controlled oscillator and accurate AFC algorithm

    NASA Astrophysics Data System (ADS)

    Peng, Qin; Jinbo, Li; Jian, Kang; Xiaoyong, Li; Jianjun, Zhou

    2014-09-01

    A low noise phase locked loop (PLL) frequency synthesizer implemented in 65 nm CMOS technology is introduced. A VCO noise reduction method suited for short channel design is proposed to minimize PLL output phase noise. A self-calibrated voltage controlled oscillator is proposed in cooperation with the automatic frequency calibration circuit, whose accurate binary search algorithm helps reduce the VCO tuning curve coverage, which reduces the VCO noise contribution at PLL output phase noise. A low noise, charge pump is also introduced to extend the tuning voltage range of the proposed VCO, which further reduces its phase noise contribution. The frequency synthesizer generates 9.75-11.5 GHz high frequency wide band local oscillator (LO) carriers. Tested 11.5 GHz LO bears a phase noise of-104 dBc/Hz at 1 MHz frequency offset. The total power dissipation of the proposed frequency synthesizer is 48 mW. The area of the proposed frequency synthesizer is 0.3 mm2, including bias circuits and buffers.

  5. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  6. Tuning of liquid-crystal birefringence using a square ac variable frequency voltage

    NASA Astrophysics Data System (ADS)

    Hamdi, Rachid; Falih Bendimerad, Djalal; Benkelfat, Badr-Eddine; Vinouze, Bruno

    2015-10-01

    We demonstrate that the birefringence of the liquid-crystal cell (LCC) can be varied by applying different frequency values of a single applied ac square voltage. For the experimental evaluation of the birefringence, associated with a certain wavelength λ, as a function of the frequency F LCC of the electrical signal applied to the LCC, we use, for the first time to our knowledge, what we call here a frequency-dependent transmission technique. It consists in measuring the transmission responses between crossed and parallel polarizers as a function of the frequency F LCC. Experimental tests were carried out using a 7 μm-thick E63 nematic LCC and a laser source emitting at λ = 1.55 μm with a launch power of -3 dBm. The tuning voltage V LCC applied to the LCC is an alternative square wave electrical signal whose frequency ranges from 0.5 to 15 kHz. The peak to peak amplitude of the electrical signal is 5 V. The curve of the measured variations of the optical path difference of the LCC versus the frequency F LCC has a positive slope. Application to the tuning of the center wavelength of the transmission response of a one stage hybrid birefringent filter is shown as a proof-of-principle test.

  7. Breakdown voltages for discharges initiated from plasma pulses produced by high-frequency excimer lasers

    SciTech Connect

    Yamaura, Michiteru

    2006-06-19

    The triggering ability under the different electric field was investigated using a KrF excimer laser with a high repetition rate of kilohertz order. Measurements were made of the magnitude of impulse voltages that were required to initiate a discharge from plasmas produced by a high-frequency excimer laser. Breakdown voltages were found to be reduced by 50% through the production of plasmas in the discharge gap by a high-frequency excimer laser. However, under direct-current electric field, triggering ability decreased drastically due to low plasma density. It is considered that such laser operation applied for laser-triggered lightning due to the produced location of plasma channel is formed under the impulse electric field since an electric field of the location drastically reduces temporary when the downward leader from thunderclouds propagates to the plasma channel.

  8. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  9. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed. PMID:27131709

  10. Fast optical frequency sweeping using voltage controlled oscillator driven single sideband modulation combined with injection locking.

    PubMed

    Wang, Jian; Chen, Dijun; Cai, Haiwen; Wei, Fang; Qu, Ronghui

    2015-03-23

    An ultrafast optical frequency sweeping technique for narrow linewidth lasers is reported. This technique exploits the large frequency modulation bandwidth of a wideband voltage controlled oscillator (VCO) and a high speed electro-optic dual parallel Mach-Zehnder modulator (DPMZM) which works on the state of carrier suppressed single sideband modulation(CS-SSB). Optical frequency sweeping of a narrow linewidth fiber laser with 3.85 GHz sweeping range and 80 GHz/μs tuning speed is demonstrated, which is an extremely high tuning speed for frequency sweeping of narrow linewidth lasers. In addition, injection locking technique is adopted to improve the sweeper's low optical power output and small side-mode suppression ratio (SMSR). PMID:25837048

  11. Calcium channel dynamics limit synaptic release in response to prosthetic stimulation with sinusoidal waveforms

    PubMed Central

    Freeman, Daniel K.; Jeng, Jed S.; Kelly, Shawn K.; Hartveit, Espen; Fried, Shelley I.

    2011-01-01

    Extracellular electric stimulation with sinusoidal waveforms has been shown to allow preferential activation of individual types of retinal neurons by varying stimulus frequency. It is important to understand the mechanisms underlying this frequency dependence as a step towards improving methods of preferential activation. In order to elucidate these mechanisms, we implemented a morphologically realistic model of a retinal bipolar cell and measured the response to extracellular stimulation with sinusoidal waveforms. We compared the frequency response of a passive membrane model to the kinetics of voltage-gated calcium channels that mediate synaptic release. The passive electrical properties of the membrane exhibited lowpass filtering with a relatively high cutoff frequency (nominal value = 717 Hz). This cutoff frequency was dependent on intra-axonal resistance, with shorter and wider axons yielding higher cutoff frequencies. However, we found that the cutoff frequency of bipolar cell synaptic release was primarily limited by the relatively slow opening kinetics of Land T-type calcium channels. The cutoff frequency of calcium currents depended nonlinearly on stimulus amplitude, but remained lower than the cutoff frequency of the passive membrane model for a large range of membrane potential fluctuations. These results suggest that while it may be possible to modulate the membrane potential of bipolar cells over a wide range of stimulus frequencies, synaptic release will only be initiated at the lower end of this range. PMID:21628768

  12. Sinusoidal nonlinearity in wavelength-sweeping interferometry

    SciTech Connect

    Perret, Luc; Pfeiffer, Pierre

    2007-11-20

    We report the influence of the nonlinearities in the wavelength-sweeping speed on the resulting interferometric signals in an absolute distance interferometer. The sweeping signal is launched in the reference and target interferometers from an external cavity laser source. The experimental results demonstrate a good resolution in spite of the presence of nonlinearities in the wavelength sweep. These nonlinearities can be modeled by a sum of sinusoids. A simulation is then implemented to analyze the influence of their parameters. It shows that a sinusoidal nonlinearity is robust enough to give a good final measurement uncertainty through a Fourier transform technique. It can be concluded that an optimal value of frequency and amplitude exists in the case of a sinusoidal nonlinearity.

  13. Sinusoidal nonlinearity in wavelength-sweeping interferometry.

    PubMed

    Perret, Luc; Pfeiffer, Pierre

    2007-11-20

    We report the influence of the nonlinearities in the wavelength-sweeping speed on the resulting interferometric signals in an absolute distance interferometer. The sweeping signal is launched in the reference and target interferometers from an external cavity laser source. The experimental results demonstrate a good resolution in spite of the presence of nonlinearities in the wavelength sweep. These nonlinearities can be modeled by a sum of sinusoids. A simulation is then implemented to analyze the influence of their parameters. It shows that a sinusoidal nonlinearity is robust enough to give a good final measurement uncertainty through a Fourier transform technique. It can be concluded that an optimal value of frequency and amplitude exists in the case of a sinusoidal nonlinearity. PMID:18026546

  14. Unique mechanization to fault isolate failures of an electron tube Radio Frequency (RF) amplifier and its high voltage power supply

    NASA Astrophysics Data System (ADS)

    Miller, D. G.

    1986-03-01

    An electronics circuit for improving the fault isolation of failures between an electron tube radio frequency (RF) amplifier and its high voltage power supply is disclosed. High voltage power supplies control their output voltage by comparing a feedback voltage against a reference. This comparison is used to develop an error voltage which, in turn, drives a pulsewidth modulator that corrects the feedback voltage to the reference. The output of a digital-to-analog converter (DAC) is used as the reference voltage. The DAC is driven by a counter which would count to the correct reference voltage represented by a specific count. The final count is determined by a comparator which compares the counter output to the desired final counter and stops the counter when it is reached.

  15. Voltage-clamp frequency domain analysis of NMDA-activated neurons.

    PubMed

    Moore, L E; Hill, R H; Grillner, S

    1993-02-01

    1. Voltage and current-clamp steps were added to a sum of sine waves to measure the tetrodotoxin-insensitive membrane properties of neurons in the intact lamprey spinal cord. A systems analysis in the frequency domain was carried out on two types of cells that have very different morphologies in order to investigate the structural dependence of their electrophysiological properties. The method explicitly takes into account the geometrical shapes of (i) nearly spherical dorsal cells with one or two processes and (ii) motoneurons and interneurons that have branched dendritic structures. Impedance functions were analysed to obtain the cable properties of these in situ neurons. These measurements show that branched neurons are not isopotential and, therefore, a conventional voltage-clamp analysis is not valid. 2. The electrophysiological data from branched neurons were curve-fitted with a lumped soma-equivalent cylinder model consisting of eight equal compartments coupled to an isopotential cell body to obtain membrane parameters for both passive and active properties. The analysis provides a quantitative description of both the passive electrical properties imposed by the geometrical structure of neurons and the voltage-dependent ionic conductances determined by ion channel kinetics. The model fitting of dorsal cells was dominated by a one-compartment resistance and capacitance in parallel (RC) corresponding to the spherical, non-branched shape of these cells. Branched neurons required a model that contained both an RC compartment and a cable that reflected the structure of the cells. At rest, the electrotonic length of the cable was about two. Uniformly distributed voltage-dependent ionic conductance sites were adequate to describe the data at different membrane potentials. 3. The frequency domain admittance method in conjunction with a step voltage clamp was used to control and measure the oscillatory behavior induced by N-methyl-D-aspartate (NMDA) on lamprey spinal

  16. Sensorless optimal sinusoidal brushless direct current for hard disk drives

    NASA Astrophysics Data System (ADS)

    Soh, C. S.; Bi, C.

    2009-04-01

    Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.

  17. High voltage-power frequency electrical heating in-situ conversion technology of oil shale

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Yang, Yang; Lopatin, Vladimir; Guo, Wei; Liu, Baochang; Yu, Ping; Gao, Ke; Ma, Yinlong

    2014-05-01

    With the depletion of conventional energy sources,oil shale has got much attention as a new type of energy resource,which is rich and widespread in the world.The conventional utilization of oil shale is mainly focused on resorting to produce shale oil and fuel gas with low extraction efficiency about one in a million due to many shortcomings and limitations.And the in-situ conversion of oil shale,more environmentally friendly,is still in the experimental stage.High voltage-power frequency electrical heating in-situ conversion of oil shale is a new type of in-situ pyrolysis technology.The main equipment includes a high voltage-power frequency generator and interior reactor. The high voltage-power frequency generator can provide a voltage between 220-8000 V which can be adjusted in real time according to the actual situation.Firstly,high voltage is used to breakdown the oil shale to form a dendritic crack between two electrodes providing a conductive channel inside the oil shale rock.And then the power frequency(220V) is used to generate the electric current for heating the internal surface of conductive channel,so that the energy can be transmitted to the surrounding oil shale.When the temperature reaches 350 degree,the oil shale begins to pyrolysis.In addition,the temperature in the conductive channel can be extremely high with high voltage,which makes the internal surface of conductive channel graphitization and improves its heat conduction performance.This technology can successfully make the oil shale pyrolysis, based on a lot of lab experiments,and also produce the combustible shale oil and fuel gas.Compared to other in-situ conversion technology,this method has the following advantages: high speed of heating oil shale,the equipment underground is simple,and easy to operate;it can proceed without the limitation of shale thickness, and can be used especially in the thin oil shale reservoir;the heating channel is parallel to the oil shale layers,which has more

  18. Spontaneous low-frequency voltage oscillations in frog saccular hair cells

    PubMed Central

    Catacuzzeno, Luigi; Fioretti, Bernard; Perin, Paola; Franciolini, Fabio

    2004-01-01

    Spontaneous membrane voltage oscillations were found in 27 of 130 isolated frog saccular hair cells. Voltage oscillations had a mean peak-to-peak amplitude of 23 mV and a mean oscillatory frequency of 4.6 Hz. When compared with non-oscillatory cells, oscillatory cells had significantly greater hyperpolarization-activated and lower depolarization-activated current densities. Two components, the hyperpolarization-activated cation current, Ih, and the K+-selective inward-rectifier current, IK1, contributed to the hyperpolarization-activated current, as assessed by the use of the IK1-selective inhibitor Ba2+ and the Ih-selective inhibitor ZD-7288. Five depolarization-activated currents were present in these cells (transient IBK, sustained IBK, IDRK, IA, and ICa), and all were found to have significantly lower densities in oscillatory cells than in non-oscillatory cells (revealed by using TEA to block IBK, 4-AP to block IDRK, and prepulses at different voltages to isolate IA). Bath application of either Ba2+ or ZD-7288 suppressed spontaneous voltage oscillations, indicating that Ih and IK1 are required for generating this activity. On the contrary, TEA or Cd2+ did not inhibit this activity, suggesting that IBK and ICa do not contribute. A mathematical model has been developed to test the interpretation derived from the pharmacological and biophysical data. This model indicates that spontaneous voltage oscillations can be generated when the electrophysiological features of oscillatory cells are used. The oscillatory behaviour is principally driven by the activity of IK1 and Ih, with IA playing a modulatory role. In addition, the model indicates that the high densities of depolarization-activated currents expressed by non-oscillatory cells help to stabilize the resting membrane potential, thus preventing the spontaneous oscillations. PMID:15489251

  19. Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump.

    PubMed

    Gregersen, Misha Marie; Olesen, Laurits Højgaard; Brask, Anders; Hansen, Mikkel Fougt; Bruus, Henrik

    2007-11-01

    Microfluidic chips have been fabricated in Pyrex glass to study electrokinetic pumping generated by a low-voltage ac bias applied to an in-channel asymmetric metallic electrode array. A measurement procedure has been established and followed carefully resulting in a high degree of reproducibility of the measurements over several days. A large coverage fraction of the electrode array in the microfluidic channels has led to an increased sensitivity allowing for pumping measurements at low bias voltages. Depending on the ionic concentration a hitherto unobserved reversal of the pumping direction has been measured in a regime, where both the applied voltage and the frequency are low, V(rms)<1.5 V and f<20 kHz , compared to previously investigated parameter ranges. The impedance spectrum has been thoroughly measured and analyzed in terms of an equivalent circuit diagram to rule out trivial circuit explanations of our findings. Our observations agree qualitatively, but not quantitatively, with theoretical electrokinetic models published in the literature. PMID:18233754

  20. Radio-frequency sheath voltages and slow wave electric field spatial structure

    SciTech Connect

    Colas, Laurent Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan

    2015-12-10

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the RF parallel electric field emitted by Ion Cyclotron (IC) wave launchers, using a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a plasma-filled 2-dimensional (parallel, radial) rectangle. Within a “wide sheaths” asymptotic regime, valid for large-amplitude near RF fields, our model becomes partly linear: the sheath oscillating voltage at open field line boundaries is a linear combination of elementary contributions by every source point of the radiated RF field map. These individual contributions are all the more intense as the SW emission point is toroidally nearer to the sheath walls. A limit formula is given for a source infinitely close to the sheaths. The decay of sheath RF voltages with the sheath/source parallel distance is quantified as a function of two characteristic SW evanescence lengths. Decay lengths are smaller than antenna parallel extensions. The sheath RF voltages at an IC antenna side limiter are therefore mainly sensitive to SW emission near this limiter, as recent observations suggest. Toroidal proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could also justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  1. Improvement in power frequency strength of high voltage insulation structures. Final report

    SciTech Connect

    Lanoue, T.J.

    1980-09-01

    The need is foreseen to improve the power frequency strength of multi-dielectric insulation structures compared to the lightning and switching impulse strength. A fundamental investigation of the reaction of complex insulation models to voltages from the lightning impulse range through the long time power frequency range has been conducted. The results of this investigation will make it possible to determine principles for improving the power frequency strengths. The improvement in the power frequency strength should then make it possible to design insulation systems with optimized insulation spaces which would have adequate margin for power frequency overvoltages and would be properly coordinated with the arresters. The project involved three main areas of investigation: a review of system overvoltages; insulation studies in oil, using small models and complex insulation modes; and insulation studies in SF/sub 6/ gas. The studies and experiments are described, and the results are itemized. It is recommended that future insulation studies in oil should include a thorough investigation to correlate impurity particle concentration, size, shape, and type (metallic, dielectric) commonly found in power apparatus with 60 Hz breakdown of ASTM-D1816 standard electrodes, and a fundamental investigation should be undertaken to sort out the role played by electrohydrodynamic liquid motion in the AC breakdown of simple non-uniform field gaps and oil-paper insulation models for very pure and contaminated oil.

  2. Mechanism of voltage production and frequency dependence of the ultrasonic vibration potential

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong K.; Wang, Shougang; Diebold, Gerald

    2009-05-01

    Imaging with the ultrasonic vibration potential is based on voltage generation by a colloidal or ionic suspension in response to the passage of ultrasound. The polarization within a body arising from the oscillatory displacement in the ultrasonic field produces a current in a pair of external electrodes that is measured as a function of time or frequency. Existing theory gives the current in the electrodes as arising from both a time varying polarization and ionic conduction. Here, experiments are reported that show the production of the polarization current is the dominant mechanism for current generation in soft tissue. Experiments are also reported giving the frequency dependence of the ultrasonic vibration current in canine blood and in several dilutions of aqueous silica suspensions.

  3. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    NASA Astrophysics Data System (ADS)

    Bora, B.

    2015-10-01

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found to work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage.

  4. Sinusoidal Forcing of Interfacial Films

    NASA Astrophysics Data System (ADS)

    Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir; Lopez, Juan

    2015-11-01

    Fluid transport, in vivo, is accomplished via pumping mechanisms of the heart and lungs, which results in biological fluids being subjected to oscillatory shear. Flow is known to influence biological macromolecules, but predicting the effect of shear is incomplete without also accounting for the influence of complex interfaces ubiquitous throughout the body. Here, we investigated the oscillatory response of the structure of aqueous interfacial films using a cylindrical knife edge viscometer. Vitamin K1 was used as a model monolayer because its behaviour has been thoroughly quantified and it doesn't show any measurable hysteresis. The monolayer was subjected to sinusoidal forcing under varied conditions of surface concentrations, periodic frequencies, and knife edge amplitudes. Particle Image Velocimetry(PIV) data was collected using Brewster Angle Microscopy(BAM), revealing the influence of oscillatory interfacial shear stress on the monolayer. Insights were gained as to how the velocity profile dampens at specific distances from the knife edge contact depending on the amplitude, frequency, and concentration of Vitamin K1. Supported by NNX13AQ22G, National Aeronautics and Space Administration.

  5. Computationally Efficient Steady-State Solution of the Bloch Equations for Rapid Sinusoidal Scans Based on Fourier Expansion in Harmonics of the Scan Frequency

    PubMed Central

    Tseitlin, Mark; Eaton, Gareth R.; Eaton, Sandra S.

    2014-01-01

    Rapid-scan EPR has been shown to improve the signal-to-noise ratio relative to conventional continuous wave spectroscopy. Equations are derived for the steady-state solution to the Bloch equations as a Fourier expansion in the harmonics of the scan frequency. This simulation method is about two orders of magnitude faster than time-domain numerical integration. PMID:24678142

  6. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    SciTech Connect

    Eslami, E. Barjasteh, A.; Morshedian, N.

    2015-06-15

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.

  7. A High Frequency Active Voltage Doubler in Standard CMOS Using Offset-Controlled Comparators for Inductive Power Transmission

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2014-01-01

    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std. CMOS process, occupying 0.144 mm2 of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321

  8. A high frequency active voltage doubler in standard CMOS using offset-controlled comparators for inductive power transmission.

    PubMed

    Lee, Hyung-Min; Ghovanloo, Maysam

    2013-06-01

    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std . CMOS process, occupying 0.144 mm(2) of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321

  9. Direct Rotor-Position Estimation Method for Salient Pole PM Motor by Using High-Frequency Voltage

    NASA Astrophysics Data System (ADS)

    Ito, Masato; Kinpara, Yoshihiko

    Recently, a number of methods have been proposed for estimating the rotor position of a salient pole PM motor, and methods using a high-frequency voltage can estimate the rotor position accurately, even at low speeds. In the conventional method, the rotor position is estimated indirectly by minimizing the position error signal associated with the difference between the estimated position and the real one. This paper proposes a novel direct rotor-position estimation method for salient pole PM motors. In this method, a rotating high-frequency voltage is supplied to the motor, and the rotor position is estimated directly from the high-frequency current in the motor.

  10. Tailored voltage waveform capacitively coupled plasmas in electronegative gases: frequency dependence of asymmetry effects

    NASA Astrophysics Data System (ADS)

    Schüngel, E.; Korolov, I.; Bruneau, B.; Derzsi, A.; Johnson, E.; O’Connell, D.; Gans, T.; Booth, J.-P.; Donkó, Z.; Schulze, J.

    2016-07-01

    Capacitively coupled radio frequency plasmas operated in an electronegative gas (CF4) and driven by voltage waveforms composed of four consecutive harmonics are investigated for different fundamental driving frequencies using PIC/MCC simulations and an analytical model. As has been observed previously for electropositive gases, the application of peak-shaped waveforms (that are characterized by a strong amplitude asymmetry) results in the development of a DC self-bias due to the electrical asymmetry effect (EAE), which increases the energy of ions arriving at the powered electrode. In contrast to the electropositive case (Korolov et al 2012 J. Phys. D: Appl. Phys. 45 465202) the absolute value of the DC self-bias is found to increase as the fundamental frequency is reduced in this electronegative discharge, providing an increased range over which the DC self-bias can be controlled. The analytical model reveals that this increased DC self-bias is caused by changes in the spatial profile and the mean value of the net charge density in the grounded electrode sheath. The spatio-temporally resolved simulation data show that as the frequency is reduced the grounded electrode sheath region becomes electronegative. The presence of negative ions in this sheath leads to very different dynamics of the power absorption of electrons, which in turn enhances the local electronegativity and plasma density via ionization and attachment processes. The ion flux to the grounded electrode (where the ion energy is lowest) can be up to twice that to the powered electrode. At the same time, while the mean ion energies at both electrodes are quite different, their ratio remains approximately constant for all base frequencies studied here.

  11. Potential therapeutic mechanism of extremely low-frequency high-voltage electric fields in cells.

    PubMed

    Kim, Ka-Eun; Park, Soon-Kwon; Nam, Sang-Yun; Han, Tae-Jong; Cho, Il-Young

    2016-05-18

    The aim of this survey was to provide background theory based on previous research to elucidate the potential pathway by which medical devices using extremely low-frequency high-voltage electric fields (ELF-HVEF) exert therapeutic effects on the human body, and to increase understanding of the AC high-voltage electrotherapeutic apparatus for consumers and suppliers of the relevant devices. Our review revealed that an ELF field as weak as 1-10 μ V/m can induce diverse alterations of membrane proteins such as transporters and channel proteins, including changes in Ca + + binding to a specific site of the cell surface, changes in ion (e.g., Ca + + ) influx or efflux, and alterations in the ligand-receptor interaction. These alterations then induce cytoplasmic responses within cells (Ca + + , cAMP, kinases, etc.) that can have impacts on cell growth, differentiation, and other functional properties by promoting the synthesis of macromolecules. Moreover, increased cytoplasmic Ca + + involves calmodulin-dependent signaling and consequent Ca + + /calmodulin-dependent stimulation of nitric oxide synthesis. This event in turn induces the nitric oxide-cGMP-protein kinase G pathway, which may be an essential factor in the observed physiological and therapeutic responses. PMID:26684400

  12. Application of bias voltage to tune the resonant frequency of membrane-based electroactive polymer energy harvesters

    NASA Astrophysics Data System (ADS)

    Dong, Lin; Grissom, Michael; Fisher, Frank T.

    2016-05-01

    Vibration-based energy harvesting has been widely investigated to as a means to generate low levels of electrical energy for applications such as wireless sensor networks. However, for optimal performance it is necessary to ensure that resonant frequencies of the device match the ambient vibration frequencies for maximum energy harvested. Here a novel resonant frequency tuning approach is proposed by applying a bias voltage to a pre-stretched electroactive polymer (EAP) membrane, such that the resulting changes in membrane tension can tune the device to match the environmental vibration source. First, a material model which accounts for the change in properties due to the pre-stretch of a VHB 4910 EAP membrane is presented. The effect of the bias voltage on the EAP membrane, which induces an electrostatic pressure and corresponding reduction in membrane thickness, are then determined. The FEM results from ANSYS agree well with an analytical hyperelastic model of the activation response of the EAP membrane. Lastly, through a mass-loaded circular membrane vibration model, the effective resonant frequency of the energy harvester can be determined as a function of changes in membrane tension due to the applied bias voltage. In the case of an EAP membrane, pre-stretch contributes to the pre-stretch stiffness of the system while the applied bias voltage contributes to a change in bias voltage stiffness of the membrane. Preliminary experiments verified the resonant frequencies corresponding to the bias voltages predicted from the appropriate models. The proposed bias voltage tuning approach for the EAP membrane may provide a novel tuning strategy to enable energy harvesting from various ambient vibration sources in various application environments.

  13. Optimization of energy harvesting efficiency of an oscillating hydrofoil: Sinusoidal and Non-sinusoidal trajectories

    NASA Astrophysics Data System (ADS)

    Miller, Michael; Strom, Ben; Breuer, Kenneth; Mandre, Shreyas

    2014-11-01

    We determine the feasibility of applying optimization algorithms to an oscillating hydrofoil's motion trajectory to determine maximum efficiency of energy capture. Optimization is performed using the Nelder-Meade downhill simplex method. The objective function is the energy captured measured experimentally in run-time with an oscillating hydrofoil capable of measuring mechanical energy capture in a laboratory flume. For sinusoidal trajectories, optimization is performed over pitch and heave amplitudes as well as frequency; this system is shown to be capable of optimization in run-time. The optimum efficiency of 30% is found for a pitch amplitude of 70°, a heave amplitude of 0.8* chord and a dimensionless frequency of 0.13. To treat non-sinusoidal trajectories, we expand them in a truncated Fourier series and consider the coefficients of this series as variables for optimization. The sinusoidal case is simply an extreme case of such a truncated Fourier series, with only one term in the series retained. We present a systematic method for optimization over general non-sinusoidal trajectories by including more and more terms in the Fourier series.

  14. Lightning-induced voltages caused by lighting strike to tall objects considering the effect of frequency dependent soil

    NASA Astrophysics Data System (ADS)

    Zhang, Qilin; Chen, Yuan; Hou, Wenhao

    2015-10-01

    In this paper we have analyzed the effect of frequency dependent soil (FDS) on the lightning-induced voltages caused by lightning subsequent return stroke for strike to tall objects ranging from 100 m to 300 m. It is found that the effect of FDS on the induced voltages peak can be approximately ignored when the low frequency conductivity (LFC) is equal to or larger than 0.01 S/m, and with the decrease of LFC, the effect of FDS on the lightning induced voltages is more obvious. Compared with the constant LFC, the induced voltage peak becomes less for FDS. For example, for a constant LFC of 0.001 S/m, the ratio of the induced voltages peak value for FDS to that for LFC is 83.2% at the line center and 66.8% at the line end for strike to 300-m-tall object, respectively. By using the decomposition method, we divide the lightning induced voltages into two components named by the incident induced waves (Vi) related with the vertical field and scattered induced waves (Vs) related with horizontal field, and it is found that FDS results into a less initial peak of tangential horizontal field along the overhead line and further results into a less induced voltage. Also, compared FDS with LFC, the FDS reduces the disparity of lightning induced voltages caused by different tall objects. For example, for the constant LFC, the induced voltage peak for strike to 300-m-tall object is 1.69 times larger than that for strike to 50-m-tall object. However, for the case of FDS, the corresponding ratio is about 1.2.

  15. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    SciTech Connect

    Bora, B.

    2015-10-15

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found to work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage.

  16. Force Sensor Characterization Under Sinusoidal Excitations

    PubMed Central

    Medina, Nieves; de Vicente, Jesús

    2014-01-01

    The aim in the current work is the development of a method to characterize force sensors under sinusoidal excitations using a primary standard as the source of traceability. During this work the influence factors have been studied and a method to minimise their contributions, as well as the corrections to be performed under dynamic conditions have been established. These results will allow the realization of an adequate characterization of force sensors under sinusoidal excitations, which will be essential for its further proper use under dynamic conditions. The traceability of the sensor characterization is based in the direct definition of force as mass multiplied by acceleration. To do so, the sensor is loaded with different calibrated loads and is maintained under different sinusoidal accelerations by means of a vibration shaker system that is able to generate accelerations up to 100 m/s2 with frequencies from 5 Hz up to 2400 Hz. The acceleration is measured by means of a laser vibrometer with traceability to the units of time and length. A multiple channel data acquisition system is also required to simultaneously acquire the electrical output signals of the involved instrument in real time. PMID:25290287

  17. Design of a H{sub {infinity}}-optimal servo compensator for the frequency and voltage control of power plants

    SciTech Connect

    Kiffmeier, U.; Unbehauen, H.

    1994-12-31

    This contribution investigates modern H{sub {infinity}} control concepts for frequency and voltage control of power plants. Based on a linearized model for a national grid H{sub {infinity}}-optimal servo compensators have been designed using a frequency domain approach recently published by the authors. As demonstrated in this paper, the multivariable H{sub {infinity}}-controller shows superior performance with respect to setting time and damping of oscillations compared to classical controllers of P/PID type.

  18. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    SciTech Connect

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-15

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and {+-}0.2{sup 0}, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ('Dee' voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  19. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.20, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  20. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata.

    PubMed

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.2(0), respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result. PMID:23464200

  1. A MEMS Interface IC With Low-Power and Wide-Range Frequency-to-Voltage Converter for Biomedical Applications.

    PubMed

    Arefin, Md Shamsul; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2016-04-01

    This paper presents an interface circuit for capacitive and inductive MEMS biosensors using an oscillator and a charge pump based frequency-to-voltage converter. Frequency modulation using a differential crossed coupled oscillator is adopted to sense capacitive and inductive changes. The frequency-to-voltage converter is designed with a negative feedback system and external controlling parameters to adjust the sensitivity, dynamic range, and nominal point for the measurement. The sensitivity of the frequency-to-voltage converter is from 13.28 to 35.96 mV/MHz depending on external voltage and charging current. The sensitivity ranges of the capacitive and inductive interface circuit are 17.08 to 54.4 mV/pF and 32.11 to 82.88 mV/mH, respectively. A capacitive MEMS based pH sensor is also connected with the interface circuit to measure the high acidic gastric acid throughout the digestive tract. The sensitivity for pH from 1 to 3 is 191.4 mV/pH with 550 μV(pp) noise. The readout circuit is designed and fabricated using the UMC 0.18 μm CMOS technology. It occupies an area of 0.18 mm (2) and consumes 11.8 mW. PMID:26954843

  2. RF voltage modulation at discrete frequencies with applications to crystal channeling extraction

    SciTech Connect

    Gabella, W.; Rosenzweig, J. . Dept. of Physics); Kick, R. ); Peggs, S. )

    1992-05-01

    RF voltage modulation at a finite number of discrete frequencies is described in a Hamiltonian resonance framework. The theory is applied to the problem of parasitic extraction of a fixed target beam from a high energy proton collider, using a bent crystal as a thin septum'' within an effective width of about one micron. Three modes of employment of discrete resonances are proposed.First, a single relatively strong static drive'' resonance may be used to excite a test proton so that it will penetrate deeply into the channeling crystal. Second, a moderately strong feed'' resonance with a ramped modulation tune may be used to adiabatically trap protons near the edge of the beam core, and transport them to the drive resonance. Third, several weak resonances may be overlapped to create a chaotic amplitude band, either to transport protons to the drive resonance, or to provide a pulse stretching'' buffer between a feed resonance and the drive resonance. Extraction efficiency is semi- quantitatively described in terms of characteristic penetration,'' depletion,'' and repetition'' times. simulations are used to quantitatively confirm the fundamental results of the theory, and to show that a prototypical extraction scheme using all three modes promises good extraction performance.

  3. Ground fault location on a transmission line using high frequency transient voltages

    NASA Astrophysics Data System (ADS)

    Almteiri, Haifaa Abdulla

    This thesis addresses two different problems in the location of ground faults on transmission lines. The first problem is related to the reflected waves which arise for near faults to the busses. The second problem is utilizing wavelet in some special studies that required the manual measurement for determining the time difference between two consecutives signals of initial waves. Novel method is presented by using traveling wave approach with no exploiting of reflected waves to overcome the aforementioned difficulties. A simple effective approach to accurately and rapidly obtain the ground fault location along a transmission line during fault transients is presented. The objective of the presented method is to eliminate the need to use the reflected in ground fault measurement especially for a case of one-end measurement where there is no synchronization required for initial signals at both sides. This is accomplished by developing a new automatic technique for the time measurement to determine the time difference between the initial waves of ground and aerial mode voltages. Proposed approach is implemented in different environments such as electromagnetic Transients Program ATP/EMTP and MATLAB. High voltage transmission system will be modeled and different ground faults will be generated at different locations in the entire length of the transmission line. Further, a study of different factors that may have a remarkable effect to the accuracy is obtained such as the fault resistance and fault type. Simulation results and further statistical analysis show high correlation between the actual and estimated fault locations for all the studied cases. An extended comparative study between former method of fault location and the proposed method is obtained for better understanding and pinpointing the difficulties concerning the accuracy and rapid fault computations. The proposed approach has added a main advantage of requiring high frequency transient fault signals only

  4. High frequency input impedance modeling of low-voltage residential installations - influence on lightning overvoltage simulations results.

    PubMed

    Bassi, Welson

    2014-01-01

    The overvoltage level of a system is strongly dependent on the connected loads and with more precise models, better and more reliable simulation results are obtained. This paper presents the input impedance characteristics, measured over a wide range of frequencies, of various actual low-voltage residential installations. The measured frequency responses were fitted by effective RLC models and a general model was also developed. The range of frequencies considered in the study, nearly d.c. up to 5 MHz, allows the use of these models for lightning or switching studies. It is also presented overvoltage simulations, using different residential installations models presented in the paper, of a distribution network subjected to lightning surges on the medium voltage circuit. PMID:26034685

  5. Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour

    NASA Astrophysics Data System (ADS)

    Chang, Hung-wen; Hsu, Cheng-che

    2012-06-01

    In this work, three major problems, namely severe electrode damage, poor plasma stability and excess power consumption, arising in ac-driven plasmas in saline solutions are solved using a rectified power source. Diagnostic studies on the effects of power source polarity and frequency on the plasma behaviour are performed. Examination of I-V characteristics and temporally resolved light emission shows that the polarity significantly influences the current amplitude when the plasma exists, while the frequency alters the bubble dynamics, which in turn affects the plasma ignition voltage. When the plasma is driven by a rectified ac power source, the electrode erosion is reduced substantially. With a low frequency, moderate applied voltage and positively rectified ac power source (e.g. 100 Hz and 350 V), a stable plasma is ignited in nearly every power cycle.

  6. High frequency capacitance-voltage characteristics of thermally grown SiO2 films on beta-SiC

    NASA Technical Reports Server (NTRS)

    Tang, S. M.; Berry, W. B.; Kwor, R.; Zeller, M. V.; Matus, L. G.

    1990-01-01

    Silicon dioxide films grown under dry and wet oxidation environment on beta-SiC films have been studied. The beta-SiC films had been heteroepitaxially grown on both on-axis and 2-deg off-axis (001) Si substrates. Capacitance-voltage and conductance-voltage characteristics of metal-oxide-semiconductor structures were measured in a frequency range of 10 kHz to 1 MHz. From these measurements, the interface trap density and the effective fixed oxide charge density were observed to be generally lower for off-axis samples.

  7. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, Douglas C.; Marcus, R. Kenneth; Donohue, David L.; Lewis, Trousdale A.

    1994-01-01

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.

  8. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

    1994-06-28

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

  9. Systematic Review of the Exposure Assessment and Epidemiology of High-Frequency Voltage Transients.

    PubMed

    de Vocht, Frank; Olsen, Robert G

    2016-01-01

    Conclusions of epidemiological studies describing adverse health effects as a result of exposure to electromagnetic fields are not unanimous and often contradictory. It has been proposed that an explanation could be that high-frequency voltage transients [dirty electricity (DE)] which are superimposed on 50/60-Hz fields, but are generally not measured, are the real causal agent. DE has been linked to many different health and wellbeing effects, and on the basis of this, an industry selling measurement and filtering equipment is growing. We reviewed the available peer-reviewed evidence for DE as a causal agent for adverse human health effects. A literature search was performed in the Cochrane Library, PubMed, Web of Science, Google Scholar, and additional publications were obtained from reference lists and from the gray literature. This search resulted in 25 publications; 16 included primary epidemiological and/or exposure data. All studies were reviewed by both authors independently, and including a re-review of studies included in a review of data available up to July 31, 2009 by one of the authors. DE has been measured differently in different studies and comparison data are not available. There is no evidence for 50 Graham/Stetzer (GS) units as a safety threshold being anything more than arbitrary. The epidemiological evidence on human health effects of DE is primarily based on, often re-used, case descriptions. Quantitative evidence relies on self-reporting in non-blinded interventions, ecological associations, and one cross-sectional cohort study of cancer risk, which does not point to DE as the causal agent. The available evidence for DE as an exposure affecting human health at present does not stand up to scientific scrutiny. PMID:27066469

  10. Systematic Review of the Exposure Assessment and Epidemiology of High-Frequency Voltage Transients

    PubMed Central

    de Vocht, Frank; Olsen, Robert G.

    2016-01-01

    Conclusions of epidemiological studies describing adverse health effects as a result of exposure to electromagnetic fields are not unanimous and often contradictory. It has been proposed that an explanation could be that high-frequency voltage transients [dirty electricity (DE)] which are superimposed on 50/60-Hz fields, but are generally not measured, are the real causal agent. DE has been linked to many different health and wellbeing effects, and on the basis of this, an industry selling measurement and filtering equipment is growing. We reviewed the available peer-reviewed evidence for DE as a causal agent for adverse human health effects. A literature search was performed in the Cochrane Library, PubMed, Web of Science, Google Scholar, and additional publications were obtained from reference lists and from the gray literature. This search resulted in 25 publications; 16 included primary epidemiological and/or exposure data. All studies were reviewed by both authors independently, and including a re-review of studies included in a review of data available up to July 31, 2009 by one of the authors. DE has been measured differently in different studies and comparison data are not available. There is no evidence for 50 Graham/Stetzer (GS) units as a safety threshold being anything more than arbitrary. The epidemiological evidence on human health effects of DE is primarily based on, often re-used, case descriptions. Quantitative evidence relies on self-reporting in non-blinded interventions, ecological associations, and one cross-sectional cohort study of cancer risk, which does not point to DE as the causal agent. The available evidence for DE as an exposure affecting human health at present does not stand up to scientific scrutiny. PMID:27066469

  11. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    PubMed

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  12. The Effect of High Voltage, High Frequency Pulsed Electric Field on Slain Ovine Cortical Bone

    PubMed Central

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-01-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  13. Experimental studies on power frequency breakdown voltage of CF3I/N2 mixed gas under different electric fields

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Xiao, Song; Han, Yefei; Cressault, Yann

    2016-02-01

    To verify the feasibility of replacing SF6 by CF3I/N2, we compared their power frequency breakdown performance with the influence of gas pressure, mixing ratio, and electric field utilization coefficient. Under different electric fields and mixing ratios, the power frequency breakdown voltage of CF3I/N2 increases linearly along with gas pressure. Besides, with the rise of the electric field utilization coefficient, the linear growth rate of breakdown voltage along with gas pressure gradually rises. The sensitivity of pure CF3I to electric field is particularly high and can be improved by the addition of N2. The mixture 30% CF3I/70% N2 at 0.3 MPa could replace pure SF6 in equipment requiring a low insulation, but the gas pressure or the content of CF3I need to be increased for higher insulation requirements.

  14. A Position- and Velocity-Sensorless Control for Synchronous Reluctance Motor with Disturbance Observer Using High Frequency Voltages and Currents

    NASA Astrophysics Data System (ADS)

    Tamaoki, Masakazu; Tomita, Mutuwo; Chen, Zhiqian; Doki, Shinji; Okuma, Shigeru

    Synchronous reluctance motors (SynRMs) are characterized by their sturdiness, and several sensorless control methods of SynRMs have been proposed. In their methods, flux is estimated and the rotor position is estimated from the flux. The induced voltages for flux estimation are small at low speed. In this paper, new position estimation method is proposed using the disturbance observer based on high frequency currents. Simulation results show that the proposed system is very useful.

  15. Current-voltage characteristics and low-frequency noise in carbon nanotube thin films with disordered networks

    NASA Astrophysics Data System (ADS)

    Avetisyan, Vardan; Makaryan, Taron; Chen, Gugang; Harutyunyan, Avetik; Makaryan, Armen

    2015-03-01

    Efficient exploitation of carbon nanotubes in electronics requires knowledge of their current-voltage (I-V) and noise parameters. We studied the dependence of these parameters for two single walled carbon nanotube (SWNT) thin films with different thicknesses in the voltage range of 0-130 V and frequency range of 0-160 kHz. Hidden nonlinear I-V dependence in the range of 10 to 120 V was detected by carrying out transient measurements with minimized heat-induced effect. The thinner film demonstrates enhanced non-linear characteristics, which suggests its potential application in pulse-pumped THz generation. We also distinct a 1/f and a shot type noise in the low-frequency range up to 20 kHz and in the frequency range up to 160 kHz, respectively. Based on the noise dispersion dependence on applied voltage and film thicknesses we attribute its origin to charge carrier tunneling through tube-tube contacts. These findings can be valuable for controlling the noise for efficient vertical downscaling of conventional electronics systems. Second Affiliation: Instutute of Radiophysics and Electronics, 0203 Ashtarak, Armenia.

  16. 30 Dorados & the Sinusoidal Potential

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.; Cumalat, J. P.

    2011-05-01

    The sinusoidal potential is an alternative to the Newtonian potential. In this alternative, the potential of a point mass is φ= -(GM/r) Cos[kor], where ko = 2π/ λo and λo is determined empirically to be Ro/20, Ro=8 kpc. A parallel modification to electromagnetism has also been suggested φ=-(Q/r) Exp -[kor] (Bartlett 2004). Recently an equivalent absolute value for ko has been posited: ko2= πG (α 2 me) 4 c/ (h-bar)3. The sinusoidal potential has been developed in presentations at many recent meetings of the AAS & the DDA. Generally, short-range structure (galaxies and smaller) are dominated by gravitation; long-range (clusters of galaxies and larger) by electromagnetism. 30 Dorados is still a puzzle. Why should this region of intense star formation be between the Large Magellanic Cloud and the Milky Way, but much closer to the former than the latter. Why should its size be roughly 400 pc? What is its connection to the Magellanic Stream? The sinusoidal potential may help.

  17. High frequency capacitor-diode voltage multiplier dc-dc converter development

    NASA Technical Reports Server (NTRS)

    Kisch, J. J.; Martinelli, R. M.

    1977-01-01

    A power conditioner was developed which used a capacitor diode voltage multiplier to provide a high voltage without the use of a step-up transformer. The power conditioner delivered 1200 Vdc at 100 watts and was operated from a 120 Vdc line. The efficiency was in excess of 90 percent. The component weight was 197 grams. A modified boost-add circuit was used for the regulation. A short circuit protection circuit was used which turns off the drive circuit upon a fault condition, and recovers within 5 ms after removal of the short. High energy density polysulfone capacitors and high speed diodes were used in the multiplier circuit.

  18. Induction generator produces constant-frequency voltage from variable-speed drive

    NASA Technical Reports Server (NTRS)

    Riaz, M.

    1970-01-01

    Two-stage polyphase generator is usable as induction motor operable over range of speeds while powered from constant frequency source. It requires neither slip rings nor special adjustable-frequency power supplies or external reactive sources.

  19. Design of Multilphase Sinusoidal Oscillator Based on FTFN

    NASA Astrophysics Data System (ADS)

    Xi, Yanhui; Peng, Liangyu

    A new multiphase sinusoidal oscillator is presented. The circuit realization uses the four-terminal floating nullor (FTFN) to generate arbitrary n current sinusoidal signals equally spaced in phase. The proposed circuit consists of n CCCIIs, n grounded capacitors and 2n grounded resistors. The oscillation condition and oscillation frequency are independently controlled. The former depends on the grounded resistance R 1 and the latter depends on the grounded capacitor C. The circuit also enjoys having simple structure and very low component count and it is highly suitable for monolithic implementation.

  20. The piezoelectronic stress transduction switch for very large-scale integration, low voltage sensor computation, and radio frequency applications

    NASA Astrophysics Data System (ADS)

    Magdǎu, I.-B.; Liu, X.-H.; Kuroda, M. A.; Shaw, T. M.; Crain, J.; Solomon, P. M.; Newns, D. M.; Martyna, G. J.

    2015-08-01

    The piezoelectronic transduction switch is a device with potential as a post-CMOS transistor due to its predicted multi-GHz, low voltage performance on the VLSI-scale. However, the operating principle of the switch has wider applicability. We use theory and simulation to optimize the device across a wide range of length scales and application spaces and to understand the physics underlying its behavior. We show that the four-terminal VLSI-scale switch can operate at a line voltage of 115 mV while as a low voltage-large area device, ≈200 mV operation at clock speeds of ≈2 GHz can be achieved with a desirable 104 On/Off ratio—ideal for on-board computing in sensors. At yet larger scales, the device is predicted to operate as a fast (≈250 ps) radio frequency (RF) switch exhibiting high cyclability, low On resistance and low Off capacitance, resulting in a robust switch with a RF figure of merit of ≈4 fs. These performance benchmarks cannot be approached with CMOS which has reached fundamental limits. In detail, a combination of finite element modeling and ab initio calculations enables prediction of switching voltages for a given design. A multivariate search method then establishes a set of physics-based design rules, discovering the key factors for each application. The results demonstrate that the piezoelectronic transduction switch can offer fast, low power applications spanning several domains of the information technology infrastructure.

  1. Design of a constant-voltage and constant-current controller with dual-loop and adaptive switching frequency control

    NASA Astrophysics Data System (ADS)

    Yingping, Chen; Zhiqian, Li

    2015-05-01

    A 5.0-V 2.0-A flyback power supply controller providing constant-voltage (CV) and constant-current (CC) output regulation without the use of an optical coupler is presented. Dual-close-loop control is proposed here due to its better regulation performance of tolerance over process and temperature compared with open loop control used in common. At the same time, the two modes, CC and CV, could switch to each other automatically and smoothly according to the output voltage level not sacrificing the regulation accuracy at the switching phase, which overcomes the drawback of the digital control scheme depending on a hysteresis comparator to change the mode. On-chip compensation using active capacitor multiplier technique is applied to stabilize the voltage loop, eliminate an additional package pin, and save on the die area. The system consumes as little as 100 mW at no-load condition without degrading the transient response performance by utilizing the adaptive switching frequency control mode. The proposed controller has been implemented in a commercial 0.35-μm 40-V BCD process, and the active chip area is 1.5 × 1.0 mm2. The total error of the output voltage due to line and load variations is less than ±1.7%.

  2. A doping concentration-dependent upper limit of the breakdown voltage cutoff frequency product in Si bipolar transistors

    NASA Astrophysics Data System (ADS)

    Rieh, Jae-Sung; Jagannathan, Basanth; Greenberg, David; Freeman, Greg; Subbanna, Seshadri

    2004-02-01

    Recent high-speed Si-based bipolar transistors apparently exceed the Johnson Limit in terms of breakdown voltage-cutoff frequency product, and this paper addresses the relevant issues. First, BV CES rather than BV CEO is shown to be the representative breakdown voltage in describing the breakdown-speed trade-off in collector design, since BV CEO is modulated by the current gain which is irrelevant of the collector design and also practical bipolar circuits are rarely operated with open-base condition for which BV CEO is defined. In the same context, it is suggested BV CES be employed in representing the upper limit of breakdown voltage-cutoff frequency product. Second, a collector doping concentration-dependent upper limit of BV CES· fT product is proposed incorporating the doping concentration-dependent critical electric field and accurate values for related device parameters. With this new approach, it is shown that the limit is far larger than the Johnson Limit and the limit is still yet to be reached.

  3. Challenges and opportunities for multi-functional oxide thin films for voltage tunable radio frequency/microwave components

    SciTech Connect

    Subramanyam, Guru; Cole, M. W.; Sun, Nian X.; Kalkur, Thottam S.; Sbrockey, Nick M.; Tompa, Gary S.; Guo, Xiaomei; Chen, Chonglin; Alpay, S. P.; Rossetti, G. A.; Dayal, Kaushik; Chen, Long-Qing; Schlom, Darrell G.

    2013-11-21

    There has been significant progress on the fundamental science and technological applications of complex oxides and multiferroics. Among complex oxide thin films, barium strontium titanate (BST) has become the material of choice for room-temperature-based voltage-tunable dielectric thin films, due to its large dielectric tunability and low microwave loss at room temperature. BST thin film varactor technology based reconfigurable radio frequency (RF)/microwave components have been demonstrated with the potential to lower the size, weight, and power needs of a future generation of communication and radar systems. Low-power multiferroic devices have also been recently demonstrated. Strong magneto-electric coupling has also been demonstrated in different multiferroic heterostructures, which show giant voltage control of the ferromagnetic resonance frequency of more than two octaves. This manuscript reviews recent advances in the processing, and application development for the complex oxides and multiferroics, with the focus on voltage tunable RF/microwave components. The over-arching goal of this review is to provide a synopsis of the current state-of the-art of complex oxide and multiferroic thin film materials and devices, identify technical issues and technical challenges that need to be overcome for successful insertion of the technology for both military and commercial applications, and provide mitigation strategies to address these technical challenges.

  4. Design and fabrication of sinusoidal spectral filters for multispectral imaging

    NASA Astrophysics Data System (ADS)

    Ni, Chuan; Jia, Jie; Hirakawa, Keigo; Sarangan, Andrew

    2015-08-01

    Multispectral imaging beyond the three RGB colors still remains a challenge, especially in portable inexpensive systems. In this paper, we describe the design and fabrication of broadband multichroic filters that have a sinusoidal transmission spectra to utilize a novel methodology based on the Fourier spectral reconstruction in the frequency domain. Since the spectral filters are posed as an optimal sampling of hyperspectral images, they also allow for the reconstruction of the full spectrum from subsequent demosaicking algorithms. Unlike conventional Color Filter Arrays (CFA) which utilizes absorption dyes embedded in a polymeric material, the sinusoidal multichroic filters require an all-dielectric interference filter design. However, the goal of most dielectric filter designs is to achieve sharp transitions with high-contrast. A smoothly varying sinusoidal transition is more difficult with conventional approaches. However, this can be achieved by trading off the contrast. Following the principles of a simple Fabry-Perot cavity, we have designed and built interference filters from 0.5 sinusoidal periods to 3 sinusoidal periods from 450nm to 900nm spectral range. Also, in order to maintain a uniform period across the entire spectrum, the material must have a very low dispersion. In this design, we have used ZnS as the cavity material. The six filters have been used in a multispectral imaging test bed.

  5. Electron power absorption dynamics in capacitive radio frequency discharges driven by tailored voltage waveforms in CF4

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Berger, B.; Schüngel, E.; Korolov, I.; Derzsi, A.; Bruneau, B.; Johnson, E.; Lafleur, T.; O’Connell, D.; Koepke, M.; Gans, T.; Booth, J.-P.; Donkó, Z.; Schulze, J.

    2016-08-01

    The power absorption dynamics of electrons and the electrical asymmetry effect in capacitive radio-frequency plasmas operated in CF4 and driven by tailored voltage waveforms are investigated experimentally in combination with kinetic simulations. The driving voltage waveforms are generated as a superposition of multiple consecutive harmonics of the fundamental frequency of 13.56 MHz. Peaks/valleys and sawtooth waveforms are used to study the effects of amplitude and slope asymmetries of the driving voltage waveform on the electron dynamics and the generation of a DC self-bias in an electronegative plasma at different pressures. Compared to electropositive discharges, we observe strongly different effects and unique power absorption dynamics. At high pressures and high electronegativities, the discharge is found to operate in the drift-ambipolar (DA) heating mode. A dominant excitation/ionization maximum is observed during sheath collapse at the edge of the sheath which collapses fastest. High negative-ion densities are observed inside this sheath region, while electrons are confined for part of the RF period in a potential well formed by the ambipolar electric field at this sheath edge and the collapsed (floating potential) sheath at the electrode. For specific driving voltage waveforms, the plasma becomes divided spatially into two different halves of strongly different electronegativity. This asymmetry can be reversed electrically by inverting the driving waveform. For sawtooth waveforms, the discharge asymmetry and the sign of the DC self-bias are found to reverse as the pressure is increased, due to a transition of the electron heating mode from the α-mode to the DA-mode. These effects are interpreted with the aid of the simulation results.

  6. Flexible low-voltage organic integrated circuits with megahertz switching frequencies (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zschieschang, Ute; Takimiya, Kazuo; Zaki, Tarek; Letzkus, Florian; Richter, Harald; Burghartz, Joachim N.; Klauk, Hagen

    2015-09-01

    A process for the fabrication of integrated circuits based on bottom-gate, top-contact organic thin-film transistors (TFTs) with channel lengths as short as 1 µm on flexible plastic substrates has been developed. In this process, all TFT layers (gate electrodes, organic semiconductors, source/drain contacts) are patterned with the help of high-resolution silicon stencil masks, thus eliminating the need for subtractive patterning and avoiding the exposure of the organic semiconductors to potentially harmful organic solvents or resists. The TFTs employ a low-temperature-processed gate dielectric that is sufficiently thin to allow the TFTs and circuits to operate with voltages of about 3 V. Using the vacuum-deposited small-molecule organic semiconductor 2,9-didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C10 DNTT), TFTs with an effective field-effect mobility of 1.2 cm2/Vs, an on/off current ratio of 107, a width-normalized transconductance of 1.2 S/m (with a standard deviation of 6%), and a signal propagation delay (measured in 11-stage ring oscillators) of 420 nsec per stage at a supply voltage of 3 V have been obtained. To our knowledge, this is the first time that megahertz operation has been achieved in flexible organic transistors at supply voltages of less than 10 V. In addition to flexible ring oscillators, we have also demonstrated a 6-bit digital-to-analog converter (DAC) in a binary-weighted current-steering architecture, based on TFTs with a channel length of 4 µm and fabricated on a glass substrate. This DAC has a supply voltage of 3.3 V, a circuit area of 2.6 × 4.6 mm2, and a maximum sampling rate of 100 kS/s.

  7. Control of plasma process by use of harmonic frequency components of voltage and current

    DOEpatents

    Miller, Paul A.; Kamon, Mattan

    1994-01-01

    The present invention provides for a technique for taking advantage of the intrinsic electrical non-linearity of processing plasmas to add additional control variables that affect process performance. The technique provides for the adjustment of the electrical coupling circuitry, as well as the electrical excitation level, in response to measurements of the reactor voltage and current and to use that capability to modify the plasma characteristics to obtain the desired performance.

  8. Verification of voltage/frequency requirement for emergency diesel generator in nuclear power plant using dynamic modeling

    SciTech Connect

    Hur, Jin-Suk; Roh, Myung- Sub

    2014-02-12

    One major cause of the plant shutdown is the loss of electrical power. The study is to comprehend the coping action against station blackout including emergency diesel generator, sequential loading of safety system and to ensure that the emergency diesel generator should meet requirements, especially voltage and frequency criteria using modeling tool. This paper also considered the change of the sequencing time and load capacity only for finding electrical design margin. However, the revision of load list must be verified with safety analysis. From this study, it is discovered that new load calculation is a key factor in EDG localization and in-house capability increase.

  9. Low-voltage polyphasic circuits

    NASA Astrophysics Data System (ADS)

    Baird, William H.; Jaynes, Michael L.

    2010-05-01

    Experimentation with polyphasic voltages is greatly simplified when microcontrollers are used to generate multiple square waves with fixed phase offsets. Each square wave is sent through a simple second-order Sallen-Key filter to produce an approximately sinusoidal voltage signal. The microcontroller allows the reproduction of split-phase and three-phase voltage relationships, mirroring those commonly distributed on the North American power grid, at safe voltage levels.

  10. High-frequency voltage-controlled-oscillator for use with inverted- mesa quartz resonators

    SciTech Connect

    Wessendorf, K.O.

    1996-08-01

    An oscillator circuit has been developed that uses inverted mesa resonators, in a high precision VCO application, at frequencies historically dominated by SAW designs. This design incorporates a frequency tripler that provides a 600 MHz output capability using a 200 MHz 3{sup rd} overtone resonator. This design has advantages over equivalent SAW alternatives: lower power consumption, superior aging characteristics, linear frequency pulling and low frequency versus temperature sensitivity. The VCO presented demonstrates {gt} +/- 60 ppm pullability (0 to 7V control), tuning linearity better than +/- 5% with phase noise at 1 kHz {lt} -110 DBc/Hz. this oscillator- tripler exploits the nonlinear characteristics of an emitter-coupled pair differential amplifier to obtain a high performance oscillator design.

  11. Collector optimization for improving the product of the breakdown voltage-cutoff frequency in SiGe HBT

    NASA Astrophysics Data System (ADS)

    Qiang, Fu; Wanrong, Zhang; Dongyue, Jin; Yanxiao, Zhao; Lianghao, Zhang

    2015-04-01

    Compared with BVCEO, BVCES is more related to collector optimization and more practical significance, so that BVCES × fT rather than BVCEO × fT is employed in representing the limit of the product of the breakdown voltage-cutoff frequency in SiGe HBT for collector engineering design. Instead of a single decrease in collector doping to improve BVCES × fT and BVCEO × fT, a novel thin composite of N- and P+ doping layers inside the CB SCR is presented to improve the well-known tradeoff between the breakdown voltage and cut-off frequency in SiGe HBT, and BVCES and BVCEO are improved respectively with slight degradation in fT. As a result, the BVCES × fT product is improved from 537.57 to 556.4 GHz·V, and the BVCEO × fT product is improved from 309.51 to 326.35 GHz·V. Project supported by the National Natural Science Foundation of China (Nos. 60776051, 61006059, 61006044), the Beijing Natural Science Foundation (Nos. 4082007, 4143059, 4142007, 4122014), and the Beijing Municipal Education Committee (Nos. KM200710005015, KM200910005001).

  12. Frequency and voltage dependence of series resistance in a solar cell

    NASA Astrophysics Data System (ADS)

    Ogle, Alexander; Cox, Thaddeus; Heath, Jennifer

    While admittance measurements of solar cells are typically conducted in reverse or at zero bias, and analyzed using the depletion approximation, the operating point of the solar cell is in forward bias, and the series resistance is often estimated using IV curves with a high forward current. In this mode, the device is no longer in the depletion regime, and the large number of injected minority carriers alter the transport properties significantly. In our Cu(In,Ga)Se2 devices, we measure negative values of capacitance at high forward bias, which may be linked to injected minority carriers and carrier transport limitations, although our calculations of capacitance may also be influenced by series resistance. In this study, we compare ac and dc measurements of voltage dependent series resistance to try to better understand the negative capacitance signal.

  13. Electrolyte-Gated Graphene Ambipolar Frequency Multipliers for Biochemical Sensing.

    PubMed

    Fu, Wangyang; Feng, Lingyan; Mayer, Dirk; Panaitov, Gregory; Kireev, Dmitry; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-04-13

    In this Letter, the ambipolar properties of an electrolyte-gated graphene field-effect transistor (GFET) have been explored to fabricate frequency-doubling biochemical sensor devices. By biasing the ambipolar GFETs in a common-source configuration, an input sinusoidal voltage at frequency f applied to the electrolyte gate can be rectified to a sinusoidal wave at frequency 2f at the drain electrode. The extraordinary high carrier mobility of graphene and the strong electrolyte gate coupling provide the graphene ambipolar frequency doubler an unprecedented unity gain, as well as a detection limit of ∼4 pM for 11-mer single strand DNA molecules in 1 mM PBS buffer solution. Combined with an improved drift characteristics and an enhanced low-frequency 1/f noise performance by sampling at doubled frequency, this good detection limit suggests the graphene ambipolar frequency doubler a highly promising biochemical sensing platform. PMID:26928906

  14. Frequency-dependent reduction of voltage-gated sodium current modulates retinal ganglion cell response rate to electrical stimulation

    NASA Astrophysics Data System (ADS)

    Tsai, David; Morley, John W.; Suaning, Gregg J.; Lovell, Nigel H.

    2011-10-01

    The ability to elicit visual percepts through electrical stimulation of the retina has prompted numerous investigations examining the feasibility of restoring sight to the blind with retinal implants. The therapeutic efficacy of these devices will be strongly influenced by their ability to elicit neural responses that approximate those of normal vision. Retinal ganglion cells (RGCs) can fire spikes at frequencies greater than 200 Hz when driven by light. However, several studies using isolated retinas have found a decline in RGC spiking response rate when these cells were stimulated at greater than 50 Hz. It is possible that the mechanism responsible for this decline also contributes to the frequency-dependent 'fading' of electrically evoked percepts recently reported in human patients. Using whole-cell patch clamp recordings of rabbit RGCs, we investigated the causes for the spiking response depression during direct subretinal stimulation of these cells at 50-200 Hz. The response depression was not caused by inhibition arising from the retinal network but, instead, by a stimulus-frequency-dependent decline of RGC voltage-gated sodium current. Under identical experimental conditions, however, RGCs were able to spike at high frequency when driven by light stimuli and intracellular depolarization. Based on these observations, we demonstrated a technique to prevent the spiking response depression.

  15. Voltage tuning of the resonance frequency of electroactive polymer membranes over a range of more than 75%

    NASA Astrophysics Data System (ADS)

    Dubois, Philippe; Rosset, Samuel; Niklaus, Muhamed; Shea, Herbert

    2009-05-01

    We report on a novel technique to control the resonance frequency of polymer membranes, without additional external actuators. An electrostatic force is used to apply compressive stress to a dielectric electroactive polymers membrane, consisting of a 25 micron thick, 1 to 4 mm diameter, polydimethylsiloxane (PDMS) film bonded onto patterned silicon or Pyrex wafers. Both sides of the membranes are rendered conductive by low-energy metal ion implantation. Ion implantation is chosen because it stiffens the membrane much less than sputtering a film of similar thickness [1][2]. The initial resonance frequency of the membrane is given by its geometry, the Young's modulus and stress of the composite film. The technique presented here allows tuning the resonance frequency from this initial value down to zero (at the buckling threshold) by adding compressive stress due to a voltage difference applied to the electrodes on both sides of the membrane. We have measured a reduction of the first mode resonance frequency of up to 77% (limited by dielectric breakdown) for ion-implanted membranes [3]. The tuning is repeatable and allows for continuous variation. Excellent agreement was found between our measurements and an analytical model we developed based on the Rayleigh-Ritz theory.

  16. High-frequency trigger generators for CuBr-laser high voltage pumping source

    NASA Astrophysics Data System (ADS)

    Torgaev, S.; Kozhemyak, O.; Yaroslavtsev, E.; Trigub, M.; Musorov, I.; Chertikhina, D.

    2016-04-01

    In this paper the circuits of high frequency trigger generators of pulses of the nanosecond duration are presented. A detailed study of a generator based on the avalanche transistor with the use of a coaxial cable instead of a capacitor is described. This circuit showed advanced characteristics of the output pulses. A circuit of a generator built on high-speed digital components is also considered. The basic advantages and disadvantages of both generators are presented in this paper.

  17. Selective Activation of Neuronal Targets With Sinusoidal Electric Stimulation

    PubMed Central

    Freeman, Daniel K.; Eddington, Donald K.; Rizzo, Joseph F.

    2010-01-01

    Electric stimulation of the CNS is being evaluated as a treatment modality for a variety of neurological, psychiatric, and sensory disorders. Despite considerable success in some applications, existing stimulation techniques offer little control over which cell types or neuronal substructures are activated by stimulation. The ability to more precisely control neuronal activation would likely improve the clinical outcomes associated with these applications. Here, we show that specific frequencies of sinusoidal stimulation can be used to preferentially activate certain retinal cell types: photoreceptors are activated at 5 Hz, bipolar cells at 25 Hz, and ganglion cells at 100 Hz. In addition, low-frequency stimulation (≤25 Hz) did not activate passing axons but still elicited robust synaptically mediated responses in ganglion cells; therefore, elicited neural activity is confined to within a focal region around the stimulating electrode. Our results suggest that sinusoidal stimulation provides significantly improved control over elicited neural activity relative to conventional pulsatile stimulation. PMID:20810683

  18. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry

    SciTech Connect

    Schaefer, R. T.; Mojarradi, M.; MacAskill, J. A.; Chutjian, A.; Darrach, M. R.; Madzunkov, S. M.; Shortt, B. J.

    2008-09-15

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  19. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schaefer, R. T.; MacAskill, J. A.; Mojarradi, M.; Chutjian, A.; Darrach, M. R.; Madzunkov, S. M.; Shortt, B. J.

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  20. Propulsion by sinusoidal locomotion: A motion inspired by Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Ulrich, Xialing

    Sinusoidal locomotion is commonly seen in snakes, fish, nematodes, or even the wings of some birds and insects. This doctoral thesis presents the study of sinusoidal locomotion of the nematode C. elegans in experiments and the application of the state-space airloads theory to the theoretical forces of sinusoidal motion. An original MATLAB program has been developed to analyze the video records of C. elegans' movement in different fluids, including Newtonian and non-Newtonian fluids. The experimental and numerical studies of swimming C. elegans has revealed three conclusions. First, though the amplitude and wavelength are varying with time, the motion of swimming C. elegans can still be viewed as sinusoidal locomotion with slips. The average normalized wavelength is a conserved character of the locomotion for both Newtonian and non-Newtonian fluids. Second, fluid viscosity affects the frequency but not the moving speed of C. elegans, while fluid elasticity affects the moving speed but not the frequency. Third, by the resistive force theory, for more elastic fluids the ratio of resistive coefficients becomes smaller. Inspired by the motion of C. elegans and other animals performing sinusoidal motion, we investigated the sinusoidal motion of a thin flexible wing in theory. Given the equation of the motion, we have derived the closed forms of propulsive force, lift and other generalized forces applying on the wing. We also calculated the power required to perform the motion, the power lost due to the shed vortices and the propulsive efficiency. These forces and powers are given as functions of reduced frequency k, dimensionless wavelength z, dimensionless amplitude A/b, and time. Our results show that a positive, time-averaged propulsive force is produced for all k>k0=pi/ z. At k=k0, which implies the moment when the moving speed of the wing is the same as the wave speed of its undulation, the motion reaches a steady state with all forces being zero. If there were no

  1. A Voltage Controlled Oscillator for a Phase-Locked Loop Frequency Synthesizer in a Silicon-on-Sapphire Process

    SciTech Connect

    Garrison, Sean

    2009-05-21

    Engineers from a government-owned engineering and manufacturing facility were contracted by government-owned research laboratory to design and build an S-band telemetry transmitter using Radio Frequency Integrated Circuit (RFIC) technology packaged in a Low-Temperature Co-fired Ceramic (LTCC) Multi-Chip Module. The integrated circuit technology chosen for the Phase-Locked Loop Frequency Synthesizer portion of the telemetry transmitter was a 0.25 um CMOS process that utilizes a sapphire substrate and is fabricated by Peregrine Semiconductor corporation. This thesis work details the design of the Voltage Controlled Oscillator (VCO) portion of the PLL frequency synthesizer and constitutes an fully integrated VCO core circuit and a high-isolation buffer amplifier. The high-isolation buffer amplifier was designed to provide 16 dB of gain for 2200-3495 MHz as well as 60 dB of isolation for the oscillator core to provide immunity to frequency pulling due to RF load mismatch. Actual measurements of the amplifier gain and isolation showed the gain was approximately 5 dB lower than the simulated gain when all bond-wire and test substrate parasitics were taken into account. The isolation measurements were shown to be 28 dB at the high end of the frequency band but the measurement was more than likely compromised due to the aforementioned bond-wire and test substrate parasitics. The S-band oscillator discussed in this work was designed to operate over a frequency range of 2200 to 2300 MHz with a minimum output power of 0 dBm with a phase-noise of -92 dBc/Hz at a 100 kHz offset from the carrier. The tuning range was measured to be from 2215 MHz to 2330 MHz with a minimum output power of -7 dBm over the measured frequency range. A phase-noise of -90 dBc was measured at a 100 kHz offset from the carrier.

  2. A 300 mV sub-threshold region 2.4 GHz voltage-controlled oscillator and frequency divider with transformer technique for ultralow power RF applications

    NASA Astrophysics Data System (ADS)

    Miyahara, Yasunori; Ishikawa, Keisuke; Kuroda, Tadahiro

    2014-01-01

    A new ultralow voltage 2.4 GHz voltage-controlled oscillator (VCO) and a divide-by-2 frequency divider circuits operating in a CMOS sub-threshold region using a transformer technique have been developed. In the sub-threshold region, the CMOS transistor high frequency performances are decreased to the point where oscillation and frequency division are challenging to achieve. The new proposed VCO uses the transformer feedback complementary VCO technique to improves VCO negative feedback gain. The circuits have been fabricated in a 65 nm standard CMOS process. The oscillation frequency is designed at 2.4 GHz under a 300 mV supply voltage. The total power consumption is 202 µW with noise performance of -96 dBc/Hz at 1 MHz offset. The new proposed frequency divider circuit consists of two stages master-slave D-type flip-flop (DFF). The DFF differential input is coupled to a transformer circuit instead of transistors to reduce the number of stacks. The minimum operating supply voltage is 300 mV with power consumption of 34 µW with a free-run frequency of 1.085 GHz.

  3. Nonlinear dynamics control in single-phase inverter with sinusoidal pulse-width modulation

    NASA Astrophysics Data System (ADS)

    Andriyanov, A. I.; Mikhal'tsov, D. Yu

    2016-04-01

    A variant of technical implementation of the control system of a single-phase voltage inverter with sinusoidal pulse-width modulation, based on target-oriented control, which ensures the desired nonlinear dynamic properties of the system, is proposed. The control system under discussion solves the problem of providing a sinusoidal output voltage of the inverter when changing its parameters in a wide range, accompanied by bifurcations. This eliminates unwanted dynamic modes without parametric synthesis of the system. The target-oriented control for managing the dynamics of nonlinear systems with sinusoidal pulse-width modulation is used for the first time and gives a number of advantages compared to other known methods.

  4. On the frequency dispersion of the capacitance-voltage behavior of epitaxial Ge on Si p+-n junctions

    NASA Astrophysics Data System (ADS)

    Yang, R.; Eneman, G.; Wang, G.; Claeys, C.; Simoen, E.

    2009-10-01

    The electrically active defects in epitaxial germanium layers grown selectively on silicon-shallow trench isolation (STI) wafers have been investigated by means of p+-n junction characterization. The main focus is on the capacitance-voltage (C-V) analysis in reverse operation. A pronounced frequency dispersion in the C-V characteristics has been found for Ge Si-STI layers, while this is not the case for thick epitaxial Ge on Si layers, which contain a significantly lower density of threading dislocations. It is shown that the apparent free carrier density profile derived from the C-V plot at high frequency exhibits a pronounced overshoot in the vicinity of the Ge-Si heterointerface. However, this feature is not only determined by the band offset between the Ge and Si conduction band edges but also by the high density of extended defects and associated deep levels present near the interface. Finally, the impact of a postgrowth high-temperature annealing on the electrical properties of Ge Si-STI epitaxial layers will be discussed in view of the resulting change in extended defect density and profile.

  5. I Found Sinusoids in My Gas Bill.

    ERIC Educational Resources Information Center

    Schloemer, Cathy G.

    2000-01-01

    Uses the average-monthly-temperature function as an application of the sine wave. Argues that the attractive aspect of gas bill graphs is that they clearly illustrate that sinusoidal curves are useful and meaningful in an everyday context. (ASK)

  6. Deconvolution of sinusoidal rapid EPR scans.

    PubMed

    Tseitlin, Mark; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2011-02-01

    In rapid scan EPR the magnetic field is scanned through the signal in a time that is short relative to electron spin relaxation times. Previously it was shown that the slow-scan lineshape could be recovered from triangular rapid scans by Fourier deconvolution. In this paper a general Fourier deconvolution method is described and demonstrated to recover the slow-scan lineshape from sinusoidal rapid scans. Since an analytical expression for the Fourier transform of the driving function for a sinusoidal scan was not readily apparent, a numerical method was developed to do the deconvolution. The slow scan EPR lineshapes recovered from rapid triangular and sinusoidal scans are in excellent agreement for lithium phthalocyanine, a trityl radical, and the nitroxyl radical, tempone. The availability of a method to deconvolute sinusoidal rapid scans makes it possible to scan faster than is feasible for triangular scans because of hardware limitations on triangular scans. PMID:21163677

  7. Deconvolution of Sinusoidal Rapid EPR Scans

    PubMed Central

    Tseitlin, Mark; Rinard, George A.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    In rapid scan EPR the magnetic field is scanned through the signal in a time that is short relative to electron spin relaxation times. Previously it was shown that the slow scan lineshape could be recovered from triangular rapid scans by Fourier deconvolution. In this paper a general Fourier deconvolution method is described and demonstrated to recover the slow scan lineshape from sinusoidal rapid scans. Since an analytical expression for the Fourier transform of the driving function for a sinusoidal scan was not readily apparent, a numerical method was developed to do the deconvolution. The slow scan EPR lineshapes recovered from rapid triangular and sinusoidal scans are in excellent agreement for lithium phthalocyanine, a trityl radical, and the nitroxyl radical, tempone. The availability of a method to deconvolute sinusoidal rapid scans makes it possible to scan faster than is feasible for triangular scans because of hardware limitations on triangular scans. PMID:21163677

  8. Filtering Characteristics of Doubly Sinusoidal Periodic Media

    NASA Astrophysics Data System (ADS)

    Dong, Tian-Lin; Chen, Ping

    2006-03-01

    Dispersion and filtering characteristics of doubly sinusoidal periodic (DSP) medium is investigated. Based on its feature different from singly sinusoidal periodic medium, a novel dual-band filter model is realized and measured. The results show that even a single unit cell of DSP medium can provide rather good filtering performance. And the filter is of perfect compatibility with regular waveguide and substrate integrated waveguide technology.

  9. Simulation of temperature field for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and temperature-varied voltage calibration: a liver-mimicking phantom study.

    PubMed

    Zhang, Man; Zhou, Zhuhuang; Wu, Shuicai; Lin, Lan; Gao, Hongjian; Feng, Yusheng

    2015-12-21

    This study aims at improving the accuracy of temperature simulation for temperature-controlled radio frequency ablation (RFA). We proposed a new voltage-calibration method in the simulation and investigated the feasibility of a hyperbolic bioheat equation (HBE) in the RFA simulation with longer durations and higher power. A total of 40 RFA experiments was conducted in a liver-mimicking phantom. Four mathematical models with multipolar electrodes were developed by the finite element method in COMSOL software: HBE with/without voltage calibration, and the Pennes bioheat equation (PBE) with/without voltage calibration. The temperature-varied voltage calibration used in the simulation was calculated from an experimental power output and temperature-dependent resistance of liver tissue. We employed the HBE in simulation by considering the delay time [Formula: see text] of 16 s. First, for simulations by each kind of bioheat equation (PBE or HBE), we compared the differences between the temperature-varied voltage-calibration and the fixed-voltage values used in the simulations. Then, the comparisons were conducted between the PBE and the HBE in the simulations with temperature-varied voltage calibration. We verified the simulation results by experimental temperature measurements on nine specific points of the tissue phantom. The results showed that: (1) the proposed voltage-calibration method improved the simulation accuracy of temperature-controlled RFA for both the PBE and the HBE, and (2) for temperature-controlled RFA simulation with the temperature-varied voltage calibration, the HBE method was 0.55 °C more accurate than the PBE method. The proposed temperature-varied voltage calibration may be useful in temperature field simulations of temperature-controlled RFA. Besides, the HBE may be used as an alternative in the simulation of long-duration high-power RFA. PMID:26583919

  10. Simulation of temperature field for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and temperature-varied voltage calibration: a liver-mimicking phantom study

    NASA Astrophysics Data System (ADS)

    Zhang, Man; Zhou, Zhuhuang; Wu, Shuicai; Lin, Lan; Gao, Hongjian; Feng, Yusheng

    2015-12-01

    This study aims at improving the accuracy of temperature simulation for temperature-controlled radio frequency ablation (RFA). We proposed a new voltage-calibration method in the simulation and investigated the feasibility of a hyperbolic bioheat equation (HBE) in the RFA simulation with longer durations and higher power. A total of 40 RFA experiments was conducted in a liver-mimicking phantom. Four mathematical models with multipolar electrodes were developed by the finite element method in COMSOL software: HBE with/without voltage calibration, and the Pennes bioheat equation (PBE) with/without voltage calibration. The temperature-varied voltage calibration used in the simulation was calculated from an experimental power output and temperature-dependent resistance of liver tissue. We employed the HBE in simulation by considering the delay time τ of 16 s. First, for simulations by each kind of bioheat equation (PBE or HBE), we compared the differences between the temperature-varied voltage-calibration and the fixed-voltage values used in the simulations. Then, the comparisons were conducted between the PBE and the HBE in the simulations with temperature-varied voltage calibration. We verified the simulation results by experimental temperature measurements on nine specific points of the tissue phantom. The results showed that: (1) the proposed voltage-calibration method improved the simulation accuracy of temperature-controlled RFA for both the PBE and the HBE, and (2) for temperature-controlled RFA simulation with the temperature-varied voltage calibration, the HBE method was 0.55 °C more accurate than the PBE method. The proposed temperature-varied voltage calibration may be useful in temperature field simulations of temperature-controlled RFA. Besides, the HBE may be used as an alternative in the simulation of long-duration high-power RFA.

  11. Readily implemented enhanced sinusoid detection in noise

    NASA Astrophysics Data System (ADS)

    Lindsay, K. V.

    1992-03-01

    Significant efforts have been devoted, spanning many years, to the problem of sinusoid detection in noise. Many of these efforts have produced superb, yet complex, algorithms which may be difficult to use for a wide segment of the Digital Signal Processing (DSP) community. This paper presents a simple, easily implemented and highly effective method which solves this problem. This method severely degrades non-sinusoidal noise while leaving the embedded sinusoid(s) relatively undisturbed. The algorithm, simply put, exploits the difference between the net effect of integration and differentiation of sinusoids versus the effect of these operations on random noise and other signal sequences. The cross-correlation of sine wave with its differentiated (and/or integrated) self is quite high. Conversely, the cross-reduction of a noise sequence with its differentiated (and/or integrated) self is much lower. Therefore, it is reasonable to assume that for sequences consisting of a sinusoid in noise, significant signal-to-noise-ratios (SNRs) in the correlation results are achievable using a combination of differentiation (and/or integration) and cross-correlation operations on such sequences. This technique has been applied to actual Doppler radar data, as well as to synthesized data, with excellent improvement in signal detection capability.

  12. Readily implemented enhanced sinusoid detection in noise

    SciTech Connect

    Lindsay, K.V.

    1992-03-05

    Significant efforts have been devoted, spanning many years, to the problem of sinusoid detection in noise. Many of these efforts have produced superb, yet complex, algorithms which may be difficult to use for a wide segment of the Digital Signal Processing (DSP) community. This paper presents a simple, easily implemented and high effective method which solves this problem. This method severely degrades non-sinusoidal noise while leaving the embedded sinusoid(s) relatively undisturbed. The algorithm, simply put, exploits the difference between the net effect of integration and differentiation of sinusoids versus the effect of these operations on random noise and other signal sequences. The cross-correlation of sine wave with its differentiated (and/or integrated) self is quite high. Conversely, the cross-reduction of a noise sequence with its differentiated (and/or integrated) self is much lower. Therefore, it is reasonable to assume that for sequences consisting of a sinusoid in noise, significant signal-to-noise-ratios (SNRs) in the correlation results are achievable using a combination of differentiation (and/or integration) and cross-correlation operations on such sequences. This technique has been applied to actual Doppler radar data, as well as to synthesized data, with excellent improvement in signal detection capability. 4 refs.

  13. Old age and the hepatic sinusoid.

    PubMed

    Le Couteur, David G; Warren, Alessandra; Cogger, Victoria C; Smedsrød, Bård; Sørensen, Karen K; De Cabo, Rafael; Fraser, Robin; McCuskey, Robert S

    2008-06-01

    Morphological changes in the hepatic sinusoid with old age are increasingly recognized. These include thickening and defenestration of the liver sinusoidal endothelial cell, sporadic deposition of collagen and basal lamina in the extracellular space of Disse, and increased numbers of fat engorged, nonactivated stellate cells. In addition, there is endothelial up-regulation of von Willebrand factor and ICAM-1 with reduced expression of caveolin-1. These changes have been termed age-related pseudocapillarization. The effects of old age on Kupffer cells are inconsistent, but impaired responsiveness is likely. There are functional implications of these aging changes in the hepatic sinusoid. There is reduced sinusoidal perfusion, which will impair the hepatic clearance of highly extracted substrates. Blood clearance of a variety of waste macromolecules takes place in liver sinusoidal endothelial cells (LSECs). Previous studies indicated either that aging had no effect, or reduced the endocytic capacity of LSECs. However, a recent study in mice showed reduced endocytosis in pericentral regions of the liver lobules. Reduced endocytosis may increase systemic exposure to potential harmful waste macromolecules such as advanced glycation end products Loss of fenestrations leads to impaired transfer of lipoproteins from blood to hepatocytes. This provides a mechanism for impaired chylomicron remnant clearance and postprandial hyperlipidemia associated with old age. Given the extensive range of substrates metabolized by the liver, age-related changes in the hepatic sinusoid and microcirculation have important systemic implications for aging and age-related diseases. PMID:18484614

  14. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears.

    PubMed

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-01-01

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor. PMID:27472331

  15. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System.

    PubMed

    Liu, Ying-Pei; Liang, Hai-Ping; Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane. PMID:26098556

  16. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System

    PubMed Central

    Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane. PMID:26098556

  17. Frequency-dependence of the switching voltage in electronic switching of Pt-dispersed SiO2 thin films

    NASA Astrophysics Data System (ADS)

    Choi, Byung Joon; Chen, I.-Wei

    2016-06-01

    The switching time-voltage dependence of electronic resistive switching was studied for understanding the switching dynamics in Pt-dispersed SiO2 thin film devices. Trapezoidal voltage pulses with opposite polarities were consecutively introduced and thereby transient on-switching and offswitching were examined. A prior on-switching voltage determines the off-switching voltage regardless of the sweeping rate of the pulse for the prior on-switching. However, the off-switching voltage was sensitive to the sweeping rate of the subsequent pulses for off-switching. The frequencydependent impedance of both the device and the surrounding circuit element are thought to result in the variation of the off-switching voltage; otherwise, the switching voltage is independent of time.

  18. Design and Operation of 6-bit, 0.25-mVpp Quasi-sine Voltage Waveform Generator based on SFQ Pulse-frequency Modulation

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshitaka; Shimada, Hiroshi; Maezawa, Masaaki; Mizugaki, Yoshinao

    A digital-to-analogue converter (DAC) consisting of single-flux-quantum (SFQ) circuitry is known to generate accurate analogue voltages defined by the Josephson relationship. We have been developing SFQ-DACs of the pulse-frequency modulation (PFM) type. Toward voltage standard applications of SFQ-DACs, we have set the target values for the voltage amplitude and resolution at 20 mVpp and 10 bits, respectively. So far, we have reported a 5-bit, 10-μVpp quasi-sine voltage waveform generator comprising a PFM-type SFQ-DAC integrated with an on-chip digital code generator. Its small peak-to-peak voltage amplitude was due to the lack of an on-chip voltage multiplier (VM). In this paper, we present a 6-bit, 0.25-mVpp quasi-sine voltage waveform generator integrated with a 10-fold VM. The resolution is improved by introducing efficient logic sequences into the SFQ-DAC.

  19. Dilatation of sinusoidal capillary and swelling of sinusoidal fenestration in obesity: an ultrastructural study.

    PubMed

    Nakadate, Kazuhiko; Motojima, Kento; Tanaka-Nakadate, Sawako

    2015-02-01

    Obesity, which is one of the causes of the lifestyle-related disease, is a hepatopathic exacerbation factor that causes a chronic hepatic disorder. In this study, we examined the pathological changes in the liver in mice with obesity induced by monosodium glutamate administration. Pathological analysis revealed the deposition of many lipid droplets in hepatocytes and sinusoidal dilatation in obese mice. Scanning electron microscopic analysis revealed the presence of sinusoidal dilatation, and the fenestrations of the sinusoid were significantly swollen in obese mice. These results suggest that a dysfunction of the sinusoidal endothelium occurs in chronic obesity. PMID:25192055

  20. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    NASA Astrophysics Data System (ADS)

    Demirezen, S.; Kaya, A.; Yerişkin, S. A.; Balbaşı, M.; Uslu, İ.

    In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε‧, ε‧, tanδ, electric modulus (M‧ and M″) and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε‧, ε‧, tanδ, M‧, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε‧, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε‧ and ε″ values at low frequencies may be attributed to the Maxwell-Wagner and space charge polarization. The high values of ε‧ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M‧ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M‧ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε‧, ε″, tanδ, M‧, M″ and ac electric conductivity (σac) is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization.

  1. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Young; Kang, In Man; Shon, Chae-Hwa; Lee, Se-Hee

    2015-05-01

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. To improve accuracy, the B-H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.

  2. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    SciTech Connect

    Lee, Ho-Young; Kang, In Man; Shon, Chae-Hwa; Lee, Se-Hee

    2015-05-07

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. To improve accuracy, the B–H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.

  3. Child and adult vibrotactile thresholds for sinusoidal and pulsatile stimuli.

    PubMed

    Bernstein, L E; Schechter, M B; Goldstein, M H

    1986-07-01

    Three experiments were performed to obtain vibrotactile sensitivity thresholds from hearing children and adults, and from deaf children. An adaptive two-interval forced-choice procedure was used to obtain estimates of the 70.7% point on the psychometric sensitivity curve. When hearing children of 5-6 and 9-10 years of age and adults were tested with sinusoids and haversine pulse stimuli, at 10, 100, 160, and 250 Hz or pps, respectively, only the 10-Hz stimulus resulted in an age effect. For this stimulus, young children were significantly less sensitive than adults. When sinusoids were again tested at 20, 40, 80, and 160 Hz, a small overall effect of age was observed with a significant effect only at 20 Hz. Two prelingually profoundly deaf children were tested with haversine pulse trains at 10, 50, 100, 160, and 250 pps. Both children were at least as sensitive to the tactile stimulation as were the hearing children and adults. Pulsatile stimulation, compared to sinusoidal stimulation, exhibited relatively flat threshold versus frequency functions. The present results, demonstrating no age effect for pulsatile stimulation and similar performance for deaf and hearing children, suggest that pulsatile stimulation would be appropriate in vibrotactile speech communication aids for the deaf. PMID:3745657

  4. Dietary macronutrients and the aging liver sinusoidal endothelial cell.

    PubMed

    Cogger, Victoria Carroll; Mohamad, Mashani; Solon-Biet, Samantha Marie; Senior, Alistair M; Warren, Alessandra; O'Reilly, Jennifer Nicole; Tung, Bui Thanh; Svistounov, Dmitri; McMahon, Aisling Clare; Fraser, Robin; Raubenheimer, David; Holmes, Andrew J; Simpson, Stephen James; Le Couteur, David George

    2016-05-01

    Fenestrations are pores within the liver sinusoidal endothelial cells (LSECs) that line the sinusoids of the highly vascularized liver. Fenestrations facilitate the transfer of substrates between blood and hepatocytes. With pseudocapillarization of the hepatic sinusoid in old age, there is a loss of fenestrations. LSECs are uniquely exposed to gut-derived dietary and microbial substrates delivered by the portal circulation to the liver. Here we studied the effect of 25 diets varying in content of macronutrients and energy on LSEC fenestrations using the Geometric Framework method in a large cohort of mice aged 15 mo. Macronutrient distribution rather than total food or energy intake was associated with changes in fenestrations. Porosity and frequency were inversely associated with dietary fat intake, while fenestration diameter was inversely associated with protein or carbohydrate intake. Fenestrations were also linked to diet-induced changes in gut microbiome, with increased fenestrations associated with higher abundance of Firmicutes and reduced abundance of Bacteroidetes Diet-induced changes in levels of several fatty acids (C16:0, C19:0, and C20:4) were also significantly inversely associated with fenestrations, suggesting a link between dietary fat and modulation of lipid rafts in the LSECs. Diet influences fenestrations and these data reflect both the key role of the LSECs in clearing gut-derived molecules from the vascular circulation and the impact these molecules have on LSEC morphology. PMID:26921440

  5. A calculable, transportable audio-frequency AC reference standard

    SciTech Connect

    Oldham, N.M.; Hetrick, P.S. ); Zeng, X. )

    1989-04-01

    A transportable ac voltage source is described, in which sinusoidal signals are synthesized digitally in the audio-frequency range. The rms value of the output waveform may be calculated by measuring the dc level of the individual steps used to generate the waveform. The uncertainty of this calculation at the 7-V level is typically less than +-5 ppm from 60 Hz to 2 kHz and less than +-10 ppm from 30 Hz to 15 kHz.

  6. Fixed costs of providing ancillary services from power plants: Reactive supply and voltage control, regulation and frequency response, operating reserve--spinning. Final report

    SciTech Connect

    Boyle, R.; Kure-Jensen, J.

    1998-12-01

    This report describes methodologies to determine the fixed costs for a steam cycle generating unit to participate in Reactive Supply and Voltage Control (RS-VC), Regulation and Frequency Response (RFR), and Operating Reserve-Spinning (ORS) services. It is intended for use by a Generator of electricity who is planning to offer these ancillary services in a competitive market. The methodology is based on common steam power plant engineering and economic principles. Reactive supply and voltage control provides reactive supply through changes to generator reactive output to maintain acceptable transmission system voltages and facilitate electricity transfers and provides the ability to continually adjust transmission system voltage in response to system changes. Regulation and frequency response service include all rapid load changes whether their purpose is to meet the instantaneous load demand, to balance control area supply resources with load, or to maintain frequency. Spinning reserve is provided by generating units that are on-line and loaded at less than maximum output. They are available to serve load immediately in an unexpected contingency such as an unplanned outage of a generating unit.

  7. An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.

    PubMed

    Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2016-01-01

    This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications. PMID:25474814

  8. Cavitation on hydrofoils with sinusoidal leading edge

    NASA Astrophysics Data System (ADS)

    Johari, H.

    2015-12-01

    Cavitation characteristics of hydrofoils with sinusoidal leading edge were examined experimentally at a Reynolds number of 7.2 × 105. The hydrofoils had an underlying NACA 634-021 profile and an aspect ratio of 4.3. The sinusoidal leading edge geometries included three amplitudes of 2.5%, 5%, and 12% and two wavelengths of 25% and 50% of the mean chord length. Results revealed that cavitation on the leading edge-modified hydrofoils existed in pockets behind the troughs whereas the baseline hydrofoil produced cavitation along its entire span. Moreover, cavitation on the modified hydrofoils appeared at consistently lower angles of attack than on the baseline hydrofoil.

  9. Analysis of a modular generator for high-voltage, high-frequency pulsed applications, using low voltage semiconductors (< 1 kV) and series connected step-up (1:10) transformers.

    PubMed

    Redondo, L M; Fernando Silva, J; Margato, E

    2007-03-01

    This article discusses the operation of a modular generator topology, which has been developed for high-frequency (kHz), high-voltage (kV) pulsed applications. The proposed generator uses individual modules, each one consisting of a pulse circuit based on a modified forward converter, which takes advantage of the required low duty cycle to operate with a low voltage clamp reset circuit for the step-up transformer. This reduces the maximum voltage on the semiconductor devices of both primary and secondary transformer sides. The secondary winding of each step-up transformer is series connected, delivering a fraction of the total voltage. Each individual pulsed module is supplied via an isolation transformer. The assembled modular laboratorial prototype, with three 5 kV modules, 800 V semiconductor switches, and 1:10 step-up transformers, has 80% efficiency, and is capable of delivering, into resistive loads, -15 kV1 A pulses with 5 micros width, 10 kHz repetition rate, with less than 1 micros pulse rise time. Experimental results for resistive loads are presented and discussed. PMID:17411205

  10. A plasma aerodynamic actuator supplied by a multilevel generator operating with different voltage waveforms

    NASA Astrophysics Data System (ADS)

    Borghi, Carlo A.; Cristofolini, Andrea; Grandi, Gabriele; Neretti, Gabriele; Seri, Paolo

    2015-08-01

    In this work a high voltage—high frequency generator for the power supply of a dielectric barrier discharge (DBD) plasma actuator for the aerodynamic control obtained by the electro-hydro-dynamic (EHD) interaction is described and tested. The generator can produce different voltage waveforms. The operating frequency is independent of the load characteristics and does not require impedance matching. The peak-to-peak voltage is 30 kV at a frequency up to 20 kHz and time variation rates up to 60 kV μs-1. The performance of the actuator when supplied by several voltage waveforms is investigated. The tests have been performed in still air at atmospheric pressure. Voltage and current time behaviors have been measured. The evaluation of the energy delivered to the actuator allowed the estimation of the periods in which the plasma was ignited. Vibrational and rotational temperatures of the plasma have been estimated through spectroscopic acquisitions. The flow field induced in the region above the surface of the DBD actuator has been studied and the EHD conversion efficiency has been evaluated for the voltage waveforms investigated. The nearly sinusoidal multilevel voltage of the proposed generator and the sinusoidal voltage waveform of a conventional ac generator obtain comparable plasma features, EHD effects, and efficiencies. Inverse saw tooth waveform presents the highest effects and efficiency. The rectangular waveform generates suitable EHD effects but with the lowest efficiency. The voltage waveforms that induce plasmas with higher rotational temperatures are less efficient for the conversion of the electric into kinetic energy.

  11. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  12. A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support

    NASA Astrophysics Data System (ADS)

    Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao

    2015-07-01

    A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).

  13. Connecting Renewables Directly to the Grid: Resilient Multi-Terminal HVDC Networks with High-Voltage High-Frequency Electronics

    SciTech Connect

    2012-01-23

    GENI Project: GE is developing electricity transmission hardware that could connect distributed renewable energy sources, like wind farms, directly to the grid—eliminating the need to feed the energy generated through intermediate power conversion stations before they enter the grid. GE is using the advanced semiconductor material silicon carbide (SiC) to conduct electricity through its transmission hardware because SiC can operate at higher voltage levels than semiconductors made out of other materials. This high-voltage capability is important because electricity must be converted to high-voltage levels before it can be sent along the grid’s network of transmission lines. Power companies do this because less electricity is lost along the lines when the voltage is high.

  14. Riding the Ferris Wheel: A Sinusoidal Model

    ERIC Educational Resources Information Center

    Mittag, Kathleen Cage; Taylor, Sharon E.

    2011-01-01

    When thinking of models for sinusoidal waves, examples such as tides of the ocean, daily temperatures for one year in your town, light and sound waves, and certain types of motion are used. Many textbooks [1, p. 222] also present a "Ferris wheel description problem" for students to work. This activity takes the Ferris wheel problem out of the…

  15. Comparative analysis of the intrinsic voltage gain and unit gain frequency between SOI and bulk FinFETs up to high temperatures

    NASA Astrophysics Data System (ADS)

    Oliveira, Alberto Vinicius de; Agopian, Paula Ghedini Der; Martino, Joao Antonio; Simoen, Eddy; Claeys, Cor; Collaert, Nadine; Thean, Aaron

    2016-09-01

    This paper presents an experimental analysis of the analog application figures of merit: the intrinsic voltage gain (AV) and unit gain frequency, focusing on the performance comparison between silicon triple gate pFinFET devices, which were processed on both Si and Silicon-On-Insulator (SOI) substrates. The high temperature (from 25 °C to 150 °C) influence and different channel lengths and fin widths were also taken into account. While the temperature impact on the intrinsic voltage gain (AV) is limited, the unit gain frequency was strongly affected due to the carrier mobility degradation at higher temperatures, for both p- and n-type FinFET structures. In addition, the pFinFETs showed slightly larger AV values compared to the n-type counterparts, whereby the bulk FinFETs presented a higher dispersion than the SOI FinFETs.

  16. Probing deep level centers in GaN epilayers with variable-frequency capacitance-voltage characteristics of Au /GaN Schottky contacts

    NASA Astrophysics Data System (ADS)

    Wang, R. X.; Xu, S. J.; Shi, S. L.; Beling, C. D.; Fung, S.; Zhao, D. G.; Yang, H.; Tao, X. M.

    2006-10-01

    Under identical preparation conditions, Au /GaN Schottky contacts were prepared on two kinds of GaN epilayers with significantly different background electron concentrations and mobility as well as yellow emission intensities. Current-voltage (I-V) and variable-frequency capacitance-voltage (C-V) characteristics show that the Schottky contacts on the GaN epilayer with a higher background carrier concentration and strong yellow emission exhibit anomalous reverse-bias I-V and C-V characteristics. This is attributed to the presence of deep level centers. Theoretical simulation of the low-frequency C-V curves leads to a determination of the density and energy level position of the deep centers.

  17. Comparison between piezoelectric material properties obtained by using low-voltage magnitude frequency sweeping and high-level short impulse signals.

    PubMed

    Petošić, Antonio; Budimir, Marko; Pavlović, Nikola

    2013-08-01

    Determination of electromechanical piezoceramic material parameters is usually done by fitting the measured input electrical impedance of the piezoceramic sample to the theoretical modelling equation for the input electrical impedance of the unloaded free piezoceramic resonator. The input electrical impedance of the sample is usually measured by using low voltage or current magnitude frequency sweeping signals. In this work, the complex material parameters of piezoceramic samples are determined in the real operating conditions by using the high voltage short impulse excitation signals. The input electrical impedance determined in the impulse mode around thickness extensional vibration mode (TE) and calculated piezoceramic parameters (clamped dielectric permittivity, electromechanical coupling factor, elastic stiffness and piezoelectric constant) are compared to the results obtained by using the low voltage magnitude frequency sweeping signals. When impulse excitation is used, the series resonance frequency is decreased and the input electrical impedance magnitude at series resonance is increased, which means that overall losses included in the piezoceramic parameters are increased. The complex material parameters obtained from the input electrical impedances determined by using the low voltage magnitude sweeping signal and high level short impulse signals are included in the KLM theoretical model describing the piezoceramic sample behaviour around TE mode. Better agreement between measured and theoretically determined current magnitude response around TE mode has been obtained, in the KLM model, when piezoceramic parameters determined by using the impulse signal excitations are included in the modelling. The physical reason for increase of the losses in piezoceramic material could lie in the fact that the ferroelectric domains in the piezoceramic respond harder on very short impulse excitation signals than on continuous frequency sweeping signals which are usually

  18. Sensorless Sinusoidal Drives for Fan and Pump Motors by V/f Control

    NASA Astrophysics Data System (ADS)

    Kiuchi, Mitsuyuki; Ohnishi, Tokuo

    This paper proposes sensorless sinusoidal driving methods of permanent magnet synchronous motors for fans and pumps by V/f control. The proposed methods are simple methods that control the motor peak current constant by voltage or frequency control, and are characterized by DC link current detection using a single shunt resistor at carrier wave signal bottom timing. As a result of the dumping factor from square torque load characteristics of fan and pump motors, it is possible to control stable starting and stable steady state by V/f control. In general, pressure losses as a result of the fluid pass of fan and pump systems are nearly constant; therefore, the flow rate and motor torque are determined by revolutions. Accordingly, high efficiency driving is possible by setting corresponding currents to q-axis currents (torque currents) at target revolutions. Because of the simple current detection and motor control methods, the proposed methods are optimum for fan and pump motor driving systems of home appliances.

  19. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    NASA Astrophysics Data System (ADS)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  20. Space-time resolved density of helium metastable atoms in a nanosecond pulsed plasma jet: influence of high voltage and pulse frequency

    NASA Astrophysics Data System (ADS)

    Douat, Claire; Kacem, Issaad; Sadeghi, Nader; Bauville, Gérard; Fleury, Michel; Puech, Vincent

    2016-07-01

    Using tunable diode laser absorption spectroscopy, the spatio-temporal distributions of the helium He(23S1) metastable atoms’ density were measured in a plasma jet propagating in ambient air. The plasma jet was produced by applying short duration high voltage pulses on the electrodes of a DBD-like structure, at a repetition rate in the range 1–30 kHz. In addition to the metastable density, the spatial distribution of helium 587 nm emission intensity was also investigated to give insight into the excitation mechanisms of the He(33D) excited state inside the dielectric tube, in which no laser measurement can be performed. It is demonstrated that the shape of the radial distribution of helium He(23S1) metastable atoms strongly depends on the polarity of the applied voltage and on the repetition frequency. For positive applied voltages, a dramatic constriction of the excited species production is observed whenever the pulse repetition frequency is higher than 6 kHz, and the voltage higher than 5 kV. This shrinking of the jet structure induces an increase by one order of magnitude of the metastable atoms’ density in the jet centre which reaches values as high as 1014 cm‑3. Beyond a critical distance, associated to a transition between a positive streamer and a negative one, the distribution of the excited atoms gets back to an annular structure. For the negative polarity, no shrinking effect correlated to the pulse repetition frequency was observed. The on-axis constriction of the excited species for the high repetition rate and positive polarity is attributed to a memory effect induced by the negative ions, having a lifetime of hundreds of microseconds, left between successive pulses at the periphery of the helium gas flow.

  1. Human comfort in relation to sinusoidal vibration

    NASA Technical Reports Server (NTRS)

    Jones, B.; Rao, B. K. N.

    1975-01-01

    An investigation was made to assess the overall subjective comfort levels to sinusoidal excitations over the range 1 to 19 Hz using a two axis electrohydraulic vibration simulator. Exposure durations of 16 minutes, 25 minutes, 1 hour, and 2.5 hours have been considered. Subjects were not exposed over such durations, but were instructed to estimate the overall comfort levels preferred had they been constantly subjected to vibration over such durations.

  2. Immunological functions of liver sinusoidal endothelial cells.

    PubMed

    Knolle, Percy A; Wohlleber, Dirk

    2016-05-01

    Liver sinusoidal endothelial cells (LSECs) line the liver sinusoids and separate passenger leukocytes in the sinusoidal lumen from hepatocytes. LSECs further act as a platform for adhesion of various liver-resident immune cell populations such as Kupffer cells, innate lymphoid cells or liver dendritic cells. In addition to having an extraordinary scavenger function, LSECs possess potent immune functions, serving as sentinel cells to detect microbial infection through pattern recognition receptor activation and as antigen (cross)-presenting cells. LSECs cross-prime naive CD8 T cells, causing their rapid differentiation into memory T cells that relocate to secondary lymphoid tissues and provide protection when they re-encounter the antigen during microbial infection. Cross-presentation of viral antigens by LSECs derived from infected hepatocytes triggers local activation of effector CD8 T cells and thereby assures hepatic immune surveillance. The immune function of LSECs complements conventional immune-activating mechanisms to accommodate optimal immune surveillance against infectious microorganisms while preserving the integrity of the liver as a metabolic organ. PMID:27041636

  3. Orbital component extraction by time-variant sinusoidal modeling.

    NASA Astrophysics Data System (ADS)

    Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan

    2016-04-01

    Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on the (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic makes it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. Here, we circumvent this drawback by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach has been proven useful to characterize audio signals (music and speech), which are non-stationary in nature (Zivanovic and Schoukens, 2010, 2012). Paleoclimate proxy signals and audio signals have in nature similar dynamics; the only difference is the frequency relationship between the different components. A harmonic frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, the latter difference is irrelevant for the problem at hand. Using a sliding window approach, the model captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretation, whereas the latter are estimated by means of linear least-squares. As an output, the model provides the orbital component waveform, either in the depth or time domain. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns can be used to reconstruct changes in accumulation rate, whereas amplitude modulation can be used to reconstruct e.g. eccentricity-modulated precession. The time-variant sinusoidal model

  4. Fast and slow voltage modulation of apical Cl- permeability in toad skin at high [K+].

    PubMed

    Procopio, J

    1997-08-01

    The influence of voltage on the conductance of toad skin was studied to identify the time course of the activation/deactivation dynamics of voltage-dependent Cl- channels located in the apical membrane of mitochondrion-rich cells in this tissue. Positive apical voltage induced an important conductance inhibition which took a few seconds to fully develop and was instantaneously released by pulse inversion to negative voltage, indicating a short-duration memory of the inhibiting factors. Sinusoidal stimulation at 23.4 mM [Cl-] showed hysteresis in the current versus voltage curves, even at very low frequency, suggesting that the rate of voltage application was also relevant for the inhibition/releasing effect to develop. We conclude that the voltage modulation of apical Cl- permeability is essentially a fast process and the apparent slow components of activation/deactivation obtained in the whole skin are a consequence of a gradual voltage build-up across the apical membrane due to voltage sharing between apical and basolateral membranes. PMID:9361735

  5. Admittance–voltage profiling of Al{sub x}Ga{sub 1−x}N/GaN heterostructures: Frequency dependence of capacitance and conductance

    SciTech Connect

    Köhler, K.; Pletschen, W.; Godejohann, B.; Müller, S.; Menner, H. P.; Ambacher, O.

    2015-11-28

    Admittance–voltage profiling of Al{sub x}Ga{sub 1−x}N/GaN heterostructures was used to determine the frequency dependent capacitance and conductance of FET devices in the frequency range from 50 Hz to 1 MHz. The nominally undoped low pressure metal-organic vapor-phase epitaxy structures were grown with an Al-content of 30%. An additional 1 nm thick AlN interlayer was placed in one structure before the Al{sub 0.3}Ga{sub 0.7}N layer growth. For frequencies below 10{sup 8} Hz it is convenient to use equivalent circuits to represent electric or dielectric properties of a material, a method widely used, for example, in impedance spectroscopy. We want to emphasize the relation between frequency dependent admittance–voltage profiling and the corresponding equivalent circuits to the complex dielectric function. Debye and Drude models are used for the description of the frequency dependent admittance profiles in a range of depletion onset of the two-dimensional electron gas. Capacitance- and conductance-frequency profiles are fitted in the entire measured range by combining both models. Based on our results, we see contributions to the two-dimensional electron gas for our samples from surface states (80%) as well as from background doping in the Al{sub 0.3}Ga{sub 0.7}N barriers (20%). The specific resistance of the layers below the gate is above 10{sup 5} Ω cm for both samples and increases with increasing negative bias, i.e., the layers below the gate are essentially depleted. We propose that the resistance due to free charge carriers, determined by the Drude model, is located between gate and drain and, because of the AlN interlayer, the resistance is lowered by a factor of about 30 if compared to the sample without an AlN layer.

  6. Admittance-voltage profiling of AlxGa1-xN/GaN heterostructures: Frequency dependence of capacitance and conductance

    NASA Astrophysics Data System (ADS)

    Köhler, K.; Pletschen, W.; Godejohann, B.; Müller, S.; Menner, H. P.; Ambacher, O.

    2015-11-01

    Admittance-voltage profiling of AlxGa1-xN/GaN heterostructures was used to determine the frequency dependent capacitance and conductance of FET devices in the frequency range from 50 Hz to 1 MHz. The nominally undoped low pressure metal-organic vapor-phase epitaxy structures were grown with an Al-content of 30%. An additional 1 nm thick AlN interlayer was placed in one structure before the Al0.3Ga0.7N layer growth. For frequencies below 108 Hz it is convenient to use equivalent circuits to represent electric or dielectric properties of a material, a method widely used, for example, in impedance spectroscopy. We want to emphasize the relation between frequency dependent admittance-voltage profiling and the corresponding equivalent circuits to the complex dielectric function. Debye and Drude models are used for the description of the frequency dependent admittance profiles in a range of depletion onset of the two-dimensional electron gas. Capacitance- and conductance-frequency profiles are fitted in the entire measured range by combining both models. Based on our results, we see contributions to the two-dimensional electron gas for our samples from surface states (80%) as well as from background doping in the Al0.3Ga0.7N barriers (20%). The specific resistance of the layers below the gate is above 105 Ω cm for both samples and increases with increasing negative bias, i.e., the layers below the gate are essentially depleted. We propose that the resistance due to free charge carriers, determined by the Drude model, is located between gate and drain and, because of the AlN interlayer, the resistance is lowered by a factor of about 30 if compared to the sample without an AlN layer.

  7. Cochlear hearing loss and the detection of sinusoidal versus random amplitude modulation.

    PubMed

    Grose, John H; Porter, Heather L; Buss, Emily; Hall, Joseph W

    2016-08-01

    This study assessed the effect of cochlear hearing loss on detection of random and sinusoidal amplitude modulation. Listeners with hearing loss and normal-hearing listeners (eight per group) generated temporal modulation transfer functions (TMTFs) for envelope fluctuations carried by a 2000-Hz pure tone. TMTFs for the two groups were similar at low modulation rates but diverged at higher rates presumably because of differences in frequency selectivity. For both groups, detection of random modulation was poorer than for sinusoidal modulation at lower rates but the reverse occurred at higher rates. No evidence was found that cochlear hearing loss, per se, affects modulation detection. PMID:27586778

  8. Optical voltage reference

    DOEpatents

    Rankin, Richard; Kotter, Dale

    1994-01-01

    An optical voltage reference for providing an alternative to a battery source. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function.

  9. Optical voltage reference

    DOEpatents

    Rankin, R.; Kotter, D.

    1994-04-26

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  10. Interplay between low threshold voltage-gated K(+) channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis.

    PubMed

    Hamlet, William R; Liu, Yu-Wei; Tang, Zheng-Quan; Lu, Yong

    2014-01-01

    Central auditory neurons that localize sound in horizontal space have specialized intrinsic and synaptic cellular mechanisms to tightly control the threshold and timing for action potential generation. However, the critical interplay between intrinsic voltage-gated conductances and extrinsic synaptic conductances in determining neuronal output are not well understood. In chicken, neurons in the nucleus laminaris (NL) encode sound location using interaural time difference (ITD) as a cue. Along the tonotopic axis of NL, there exist robust differences among low, middle, and high frequency (LF, MF, and HF, respectively) neurons in a variety of neuronal properties such as low threshold voltage-gated K(+) (LTK) channels and depolarizing inhibition. This establishes NL as an ideal model to examine the interactions between LTK currents and synaptic inhibition across the tonotopic axis. Using whole-cell patch clamp recordings prepared from chicken embryos (E17-E18), we found that LTK currents were larger in MF and HF neurons than in LF neurons. Kinetic analysis revealed that LTK currents in MF neurons activated at lower voltages than in LF and HF neurons, whereas the inactivation of the currents was similar across the tonotopic axis. Surprisingly, blockade of LTK currents using dendrotoxin-I (DTX) tended to broaden the duration and increase the amplitude of the depolarizing inhibitory postsynaptic potentials (IPSPs) in NL neurons without dependence on coding frequency regions. Analyses of the effects of DTX on inhibitory postsynaptic currents led us to interpret this unexpected observation as a result of primarily postsynaptic effects of LTK currents on MF and HF neurons, and combined presynaptic and postsynaptic effects in LF neurons. Furthermore, DTX transferred subthreshold IPSPs to spikes. Taken together, the results suggest a critical role for LTK currents in regulating inhibitory synaptic strength in ITD-coding neurons at various frequencies. PMID:24904297

  11. Skin Sympathetic Nerve Activity is Modulated during Slow Sinusoidal Linear Displacements in Supine Humans

    PubMed Central

    Bolton, Philip S.; Hammam, Elie; Kwok, Kenny; Macefield, Vaughan G.

    2016-01-01

    Low-frequency sinusoidal linear acceleration (0.08 Hz, ±4 mG) modulates skin sympathetic nerve activity (SSNA) in seated subjects (head vertical), suggesting that activation of the utricle in the peripheral vestibular labyrinth modulates SSNA. The aim of the current study was to determine whether SSNA is also modulated by input from the saccule. Tungsten microelectrodes were inserted into the common peroneal nerve to record oligounitary SSNA in 8 subjects laying supine on a motorized platform with the head aligned with the longitudinal axis of the body. Slow sinusoidal (0.08 Hz, 100 cycles) linear acceleration-decelerations (peak ±4 mG) were applied rostrocaudally to predominately activate the saccules, or mediolaterally to predominately activate the utricles. Cross-correlation histograms were constructed between the negative-going sympathetic spikes and the positive peaks of the sinusoidal stimuli. Sinusoidal linear acceleration along the rostrocaudal axis or mediolateral axis both resulted in sinusoidal modulation of SSNA (Median, IQR 27.0, 22–33% and 24.8, 17–39%, respectively). This suggests that both otolith organs act on sympathetic outflow to skin and muscle in a similar manner during supine displacements. PMID:26909019

  12. Skin Sympathetic Nerve Activity is Modulated during Slow Sinusoidal Linear Displacements in Supine Humans.

    PubMed

    Bolton, Philip S; Hammam, Elie; Kwok, Kenny; Macefield, Vaughan G

    2016-01-01

    Low-frequency sinusoidal linear acceleration (0.08 Hz, ±4 mG) modulates skin sympathetic nerve activity (SSNA) in seated subjects (head vertical), suggesting that activation of the utricle in the peripheral vestibular labyrinth modulates SSNA. The aim of the current study was to determine whether SSNA is also modulated by input from the saccule. Tungsten microelectrodes were inserted into the common peroneal nerve to record oligounitary SSNA in 8 subjects laying supine on a motorized platform with the head aligned with the longitudinal axis of the body. Slow sinusoidal (0.08 Hz, 100 cycles) linear acceleration-decelerations (peak ±4 mG) were applied rostrocaudally to predominately activate the saccules, or mediolaterally to predominately activate the utricles. Cross-correlation histograms were constructed between the negative-going sympathetic spikes and the positive peaks of the sinusoidal stimuli. Sinusoidal linear acceleration along the rostrocaudal axis or mediolateral axis both resulted in sinusoidal modulation of SSNA (Median, IQR 27.0, 22-33% and 24.8, 17-39%, respectively). This suggests that both otolith organs act on sympathetic outflow to skin and muscle in a similar manner during supine displacements. PMID:26909019

  13. Measuring of object vibration using sinusoidal-modulation laser-diode active interferometer

    NASA Astrophysics Data System (ADS)

    Ai, Yong; Cao, Qinfeng; Lu, Su

    1996-09-01

    Using the character that the emitting optical frequency of the laser diode is controlled by the injected current, the ability of eliminating environmental disturbance of the sinusoidal modulation laser diode active interferometer will be raised by more than one hundred times through putting the disturbed interference signal produced by the environment into the interferometer. When vibrating frequency of objects is different from that of the sinusoidol modulation, 'beat- frequency' will be produced in the interfere signal, which can be analyzed to get the vibrating frequency of objects. This paper described the operation principle and theoretical delusion of the 'beat-frequency' method.

  14. Phonological awareness and sinusoidal amplitude modulation in phonological dislexia.

    PubMed

    Peñaloza-López, Yolanda; Herrera-Rangel, Aline; Pérez-Ruiz, Santiago J; Poblano, Adrián

    2016-04-01

    Objective Dyslexia is the difficulty of children in learning to read and write as results of neurological deficiencies. The objective was to test the Phonological awareness (PA) and Sinusoidal amplitude modulation (SAM) threshold in children with Phonological dyslexia (PD). Methods We performed a case-control, analytic, cross sectional study. We studied 14 children with PD and 14 control children from 7 to 11 years of age, by means of PA measurement and by SAM test. The mean age of dyslexic children was 8.39 years and in the control group was 8.15. Results Children with PD exhibited inadequate skills in PA, and SAM. We found significant correlations between PA and SAM at 4 Hertz frequency, and calculated regression equations that predicts between one-fourth and one-third of variance of measurements. Conclusion Alterations in PA and SAM found can help to explain basis of deficient language processing exhibited by children with PD. PMID:27097001

  15. Response of a radial-bladed centrifugal pump to sinusoidal disturbances for noncavitating flow

    NASA Technical Reports Server (NTRS)

    Anderson, D. A.; Blade, R. J.; Stevans, W.

    1971-01-01

    A radial-bladed centrifugal pump was run in water with sinusoidal fluctuations of pressure and flow rate imposed at the pump inlet. Since the flow was noncavitating, zero gain was assumed in computing pump impedance. The inertive reactance became greater than the resistance at relatively low frequencies. An electric circuit model was developed in order to explain the trends of inertance and resistance with frequency.

  16. A theoretical study of the incandescent filament lamp performance under voltage flicker

    SciTech Connect

    Peretto, L.; Emanuel, A.E.

    1997-01-01

    Incandescent filament lamp flicker, produced by voltage fluctuation, is a power quality problem that caused engineering concern since the onset of electrical illumination technology. The flicker phenomenon was analyzed and explained in early studies. Standards dealing with acceptable flicker levels are well known, nevertheless, today the discussion about flicker continues to be a top priority topic due to the fact that steady-state and transient voltage waveform distortion is a growing problem in low and medium voltage systems. In many situations voltage flicker is caused by subharmonics and interharmonics of voltage. Cycloconverters, welders and arc furnaces, eccentrically operating tools and integral cycle controlled power equipment are notorious for producing voltage flicker. The goal of this paper is to provide solid mathematical basis for the analytical modeling of incandescent filament lamp flicker when the voltage is nonsinusoidal. A mathematical model that enables the evaluation of the luminous flux modulation caused by noninteger harmonics (subharmonics and interharmonics) is presented. Three situations are detailed: square-wave voltage modulation, sinusoidal modulation and the case of noninteger harmonics with nearly contiguous frequencies.

  17. Gate-tunable zero-frequency current cross correlations of the quartet state in a voltage-biased three-terminal Josephson junction

    NASA Astrophysics Data System (ADS)

    Mélin, Régis; Sotto, Moïse; Feinberg, Denis; Caputo, Jean-Guy; Douçot, Benoît

    2016-03-01

    A three-terminal Josephson junction biased at opposite voltages can sustain a phase-sensitive dc current carrying three-body static phase coherence, known as the "quartet current." We calculate the zero-frequency current noise cross correlations and answer the question of whether this current is noisy (like a normal current in response to a voltage drop) or noiseless (like an equilibrium supercurrent in response to a phase drop). A quantum dot with a level at energy ɛ0 is connected to three superconductors Sa,Sb, and Sc with gap Δ , biased at Va=V ,Vb=-V , and Vc=0 , and with intermediate contact transparencies. At zero temperature, nonlocal quartets (in the sense of four-fermion correlations) are noiseless at subgap voltage in the nonresonant dot regime ɛ0/Δ ≫1 , which is demonstrated with a semianalytical perturbative expansion of the cross correlations. Noise reveals the absence of granularity of the superflow splitting from Sc towards (Sa,Sb) in the nonresonant dot regime, in spite of finite voltage. In the resonant dot regime ɛ0/Δ ≲1 , cross correlations measured in the (Va,Vb) plane should reveal an "anomaly" in the vicinity of the quartet line Va+Vb=0 , related to an additional contribution to the noise, manifesting the phase sensitivity of cross correlations under the appearance of a three-body phase variable. Phase-dependent effective Fano factors Fφ are introduced, defined as the ratio between the amplitudes of phase modulations of the noise and the currents. At low bias, the Fano factors Fφ are of order unity in the resonant dot regime ɛ0/Δ ≲1 , and they are vanishingly small in the nonresonant dot regime ɛ0/Δ ≫1 .

  18. Spur-reduced digital sinusoid synthesis

    NASA Technical Reports Server (NTRS)

    Flanagan, M. J.; Zimmerman, G. A.

    1993-01-01

    This article presents and analyzes a technique for reducing the spurious signal content in digital sinusoid synthesis. Spurious-harmonic (spur) reduction is accomplished through dithering both amplitude and phase values prior to word-length reduction. The analytical approach developed for analog quantization is used to produce new bounds on spur performance in these dithered systems. Amplitude dithering allows output word-length reduction without introducing additional spurs. Effects of periodic dither similar to those produced by a pseudonoise (PN) generator are analyzed. This phase-dithering method provides a spur reduction of 6(M plus one) dB per phase bit when the dither consists of M uniform variates. While the spur reduction is at the expense of an increase in system noise, the noise power can be made white, making the power spectral density small. This technique permits the use of a smaller number of phase bits addressing sinusoid lookup tables, resulting in an exponential decrease in system complexity. Amplitude dithering allows the use of less complicated multipliers and narrower data paths in purely digital applications, as well as the use of coarse resolution, highly linear digital to analog converters (DAC's) to obtain spur performance limited by the DAC linearity rather than its resolution.

  19. Potential damage to DC superconducting magnets due to the high frequency electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Gabriel, G. J.

    1977-01-01

    Experimental data are presented in support of the hypothesis that a dc superconducting magnet coil does not behave strictly as an inductor, but as a complicated electrodynamic device capable of supporting electromagnetic waves. Travel times of nanosecond pulses and evidence of sinusoidal standing waves were observed on a prototype four-layer solenoidal coil at room temperature. Ringing observed during switching transients appears as a sequence of multiple reflected square pulses whose durations are related to the layer lengths. With sinusoidal excitation of the coil, the voltage amplitude between a pair of points on the coil exhibits maxima at those frequencies such that the distance between these points is an odd multiple of half wavelength in free space. Evidence indicates that any disturbance, such as that resulting from switching or sudden fault, initiates multiple reflections between layers, thus raising the possibility for sufficiently high voltages to cause breakdown.

  20. Regorafenib could cause sinusoidal obstruction syndrome.

    PubMed

    Takahashi, Motoi; Harada, Shigeru; Suzuki, Hideo; Yamashita, Naoki; Orita, Hiroyuki; Kato, Masaki; Kotoh, Kazuhiro

    2016-06-01

    A 74-year-old man with advanced colon cancer was admitted to our hospital with jaundice and ascites. Four weeks before admission, he had started treatment with regorafenib because other chemotherapies had failed. Blood tests showed a characteristic increase in his serum lactate dehydrogenase level, which indicated intrahepatic hypoxia. The liver was not cirrhotic, but Doppler ultrasonography (US) showed that the portal flow was markedly decreased. These findings suggested that his liver failure could be caused by sinusoidal obstruction syndrome (SOS). We therefore started treatment with anticoagulants that included antithrombin III and recombinant thrombomodulin. His portal flow gradually increased, and his hepatic function improved in parallel with the increased flow. Although regorafenib could cause fatal liver failure, the mechanism remains unclear. SOS might be a route by which regorafenib induces liver failure. Additionally, lactate dehydrogenase could be a marker for identifying the adverse effects at an early stage of regorafenib-induced liver failure. PMID:27284487

  1. Regorafenib could cause sinusoidal obstruction syndrome

    PubMed Central

    Takahashi, Motoi; Harada, Shigeru; Suzuki, Hideo; Yamashita, Naoki; Orita, Hiroyuki; Kato, Masaki

    2016-01-01

    A 74-year-old man with advanced colon cancer was admitted to our hospital with jaundice and ascites. Four weeks before admission, he had started treatment with regorafenib because other chemotherapies had failed. Blood tests showed a characteristic increase in his serum lactate dehydrogenase level, which indicated intrahepatic hypoxia. The liver was not cirrhotic, but Doppler ultrasonography (US) showed that the portal flow was markedly decreased. These findings suggested that his liver failure could be caused by sinusoidal obstruction syndrome (SOS). We therefore started treatment with anticoagulants that included antithrombin III and recombinant thrombomodulin. His portal flow gradually increased, and his hepatic function improved in parallel with the increased flow. Although regorafenib could cause fatal liver failure, the mechanism remains unclear. SOS might be a route by which regorafenib induces liver failure. Additionally, lactate dehydrogenase could be a marker for identifying the adverse effects at an early stage of regorafenib-induced liver failure. PMID:27284487

  2. Field oriented control of an induction machine in a high frequency link power system

    NASA Technical Reports Server (NTRS)

    Sul, Seung K.; Lipo, Thomas A.

    1988-01-01

    A field-oriented controlled induction machine drive operating with a high-frequency single-phase sinusoidal voltage link is presented. System performance is investigated by computer simulation and is verified by a test on a prototype system. A novel control loop to minimize the link voltage fluctuation is proposed. The capability of rapid demagnetization of the induction machine by current regulation is investigated. A current-modulation technique termed mode control is proposed, and its performance is compared with that of the conventional delta-modulation technique.

  3. Design and implementation of a new modified sliding mode controller for grid-connected inverter to controlling the voltage and frequency.

    PubMed

    Ghanbarian, Mohammad Mehdi; Nayeripour, Majid; Rajaei, Amirhossein; Mansouri, Mohammad Mahdi

    2016-03-01

    As the output power of a microgrid with renewable energy sources should be regulated based on the grid conditions, using robust controllers to share and balance the power in order to regulate the voltage and frequency of microgrid is critical. Therefore a proper control system is necessary for updating the reference signals and determining the proportion of each inverter in the microgrid control. This paper proposes a new adaptive method which is robust while the conditions are changing. This controller is based on a modified sliding mode controller which provides adapting conditions in linear and nonlinear loads. The performance of the proposed method is validated by representing the simulation results and experimental lab results. PMID:26704720

  4. High sensitivity measurement system for the direct-current, capacitance-voltage, and gate-drain low frequency noise characterization of field effect transistors

    NASA Astrophysics Data System (ADS)

    Giusi, G.; Giordano, O.; Scandurra, G.; Rapisarda, M.; Calvi, S.; Ciofi, C.

    2016-04-01

    Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz1/2, while DC performances are limited only by the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.

  5. High sensitivity measurement system for the direct-current, capacitance-voltage, and gate-drain low frequency noise characterization of field effect transistors.

    PubMed

    Giusi, G; Giordano, O; Scandurra, G; Rapisarda, M; Calvi, S; Ciofi, C

    2016-04-01

    Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz(1/2), while DC performances are limited only by the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances. PMID:27131690

  6. Energy harvesting under excitations of time-varying frequency

    NASA Astrophysics Data System (ADS)

    Seuaciuc-Osório, Thiago; Daqaq, Mohammed F.

    2010-06-01

    The design and optimization of energy harvesters capable of scavenging energy efficiently from realistic environments require a deep understanding of their transduction under non-stationary and random excitations. Otherwise, their small energy outputs can be further decreased lowering their efficiency and rendering many critical and possibly life saving technologies inefficient. As a first step towards this critical understanding, this effort investigates the response of energy harvesters to harmonic excitations of time-varying frequency. Such excitations can be used to represent the behavior of realistic vibratory environments whose frequency varies or drifts with time. Specifically, we consider a piezoelectric stack-type harvester subjected to a harmonic excitation of constant amplitude and a sinusoidally varying frequency. We analyze the response of the harvester in the fixed-frequency scenario then use the Jacobi-Anger's expansion to analyze the response in the time-varying case. We obtain analytical expressions for the harvester's response, output voltage, and power. In-depth analysis of the attained results reveals that the solution to the more complex time-varying frequency can be understood through a process which "samples" the fixed-frequency response curve at a discrete and fixed frequency interval then multiplies the response by proper weights. Extensive discussions addressing the effect of the excitation parameters on the output power is presented leading to some initial suggestions pertinent to the harvester's design and optimization in the sinusoidally varying frequency case.

  7. Improved temporal coding of sinusoids in electric stimulation of the auditory nerve using desynchronizing pulse trains

    NASA Astrophysics Data System (ADS)

    Litvak, Leonid M.; Delgutte, Bertrand; Eddington, Donald K.

    2003-10-01

    Rubinstein et al. [Hearing Res. 127, 108-118 (1999)] suggested that the representation of electric stimulus waveforms in the temporal discharge patterns of auditory-nerve fiber (ANF) might be improved by introducing an ongoing, high-rate, desynchronizing pulse train (DPT). To test this hypothesis, activity of ANFs was studied in acutely deafened, anesthetized cats in response to 10-min-long, 5-kpps electric pulse trains that were sinusoidally modulated for 400 ms every second. Two classes of responses to sinusoidal modulations of the DPT were observed. Fibers that only responded transiently to the unmodulated DPT showed hyper synchronization and narrow dynamic ranges to sinusoidal modulators, much as responses to electric sinusoids presented without a DPT. In contrast, fibers that exhibited sustained responses to the DPT were sensitive to modulation depths as low as 0.25% for a modulation frequency of 417 Hz. Over a 20-dB range of modulation depths, responses of these fibers resembled responses to tones in a healthy ear in both discharge rate and synchronization index. This range is much wider than the dynamic range typically found with electrical stimulation without a DPT, and comparable to the dynamic range for acoustic stimulation. These results suggest that a stimulation strategy that uses small signals superimposed upon a large DPT to encode sounds may evoke temporal discharge patterns in some ANFs that resemble responses to sound in a healthy ear.

  8. Dynamic responses to sinusoidal excitations of beams with frictional joints

    NASA Astrophysics Data System (ADS)

    Lee, Yongsik; Feng, Z. C.

    2004-12-01

    We consider the dynamic responses of a beam with a frictional joint. The frictional force at the joint is modeled using the Coulomb friction model. The frictional force at the joint makes the nature of the boundary conditions at the joint uncertain. Therefore, this problem represents a type of nonlinear problems where the boundary conditions are coupled to the solutions. Using numerical integration of the resulting differential equations obtained by combining the finite element method and the Lagrange equations, we study the steady-state solutions of the system to sinusoidal excitations. We explore the dependence of the system responses to various parameters including the frictional force, the forcing frequency and the forcing amplitude. A result of special interest is the existence of an optimum friction force if the frictional joint is used to control the system response amplitude. We also examine the ways that friction affects the resonance frequency of the structure. Experiments are carried out, which agree qualitatively with the numerical results.

  9. Attenuation of Sinusoidal Perturbations Superimposed on Laminar Flow of a Liquid in a Long Line

    NASA Technical Reports Server (NTRS)

    Holland, Carl M.; Blade, Robert J.; Dorsch, Robert G.

    1965-01-01

    The attenuation constant for sinusoidal pressure and flow perturbations superimposed on the laminar flow of a viscous liquid was measured in a system consisting of a long, straight, cylindrical hydraulic line. The upstream and downstream ends of the line were securely fastened t o the ground. A sinusoidal perturbation was imposed on the mean flow at the upstream end by means of a s m a l l oscillation of a throttle valve abmt a partly open mean position. The downstream end was terminated in a restricting orifice. Pressure perturbations were measured at three locations along the line for frequencies from 15 t o 100 cps. These pressure measurements were reduced by use of a pair of complex damped acoustic one-dimensional wave equations to obtain the attenuation constant along with the phase constant and the dimensionless downstream admittance. For the range of frequencies investigated, the experimental values of the attenuation constant are in good agreement with classical theory.

  10. Optical frequency comb generation based on chirping of Mach-Zehnder Modulators

    NASA Astrophysics Data System (ADS)

    Hmood, Jassim K.; Emami, Siamak D.; Noordin, Kamarul A.; Ahmad, Harith; Harun, Sulaiman W.; Shalaby, Hossam M. H.

    2015-06-01

    A new approach for the generation of an optical frequency comb, based on chirping of modulators, is proposed and numerically demonstrated. The setup includes two cascaded Mach-Zehnder Modulators (MZMs), a sinusoidal wave oscillator, and an electrical time delay. The first MZM is driven directly by a sinusoidal wave, while the second MZM is driven by a delayed replica of the sinusoidal wave. A mathematical model of the proposed system is formulated and modeled using the Matlab software. It is shown that the number of the frequency lines is directly proportional to the chirp factor. In order to achieve the highest number of frequency comb lines with the best flatness, the time delay between the driving voltages of the two MZMs is optimized. Our results reveal that at least 51 frequency lines can be observed at the output spectrum. In addition, 27 of these lines have power fluctuations of less than 1 dB. The performance of the proposed system is also simulated using a split-step numerical analysis. An optical frequency comb, with tunable frequency spacing ranging from 5 to 40 GHz, is successfully generated.

  11. A Statistical and Spectral Model for Representing Noisy Sounds with Short-Time Sinusoids

    NASA Astrophysics Data System (ADS)

    Hanna, Pierre; Desainte-Catherine, Myriam

    2005-12-01

    We propose an original model for noise analysis, transformation, and synthesis: the CNSS model. Noisy sounds are represented with short-time sinusoids whose frequencies and phases are random variables. This spectral and statistical model represents information about the spectral density of frequencies. This perceptually relevant property is modeled by three mathematical parameters that define the distribution of the frequencies. This model also represents the spectral envelope. The mathematical parameters are defined and the analysis algorithms to extract these parameters from sounds are introduced. Then algorithms for generating sounds from the parameters of the model are presented. Applications of this model include tools for composers, psychoacoustic experiments, and pedagogy.

  12. Three-dimensional shape measurement with sinusoidal phase-modulating fiber-optic interferometer fringe

    NASA Astrophysics Data System (ADS)

    Lv, Changrong; Duan, Fajie; Fu, Xiao; Huang, Tingting

    2016-05-01

    A three-dimensional (3-D) shape measurement system using a fiber-optic interferometer fringe projector is presented and demonstrated. The system utilizes sinusoidal phase shifting interferometry to detect the desired phase which is improved by introducing constant scaling factors from linear phase shift interferometry algorithm, and the relationship between the modulation voltage and the phase modulation coefficient is analyzed; the system also utilizes the reflection signal to realize measurement of the disturbance and feed back to the modulated signal. Practical experiments validate the feasibility of this method. The phase accuracy is nearly 37.6 mrad and the measurement error is about 10 nm.

  13. Optical antennas with sinusoidal modulation in width.

    PubMed

    Dikken, Dirk Jan; Segerink, Frans B; Korterik, Jeroen P; Pfaff, Stefan S; Prangsma, Jord C; Herek, Jennifer L

    2016-08-01

    Small metal structures sustaining plasmon resonances in the optical regime are of great interest due to their large scattering cross sections and ability to concentrate light to subwavelength volumes. In this paper, we study the dipolar plasmon resonances of optical antennas with a constant volume and a sinusoidal modulation in width. We experimentally show that by changing the phase of the width-modulation, with a small 10 nm modulation amplitude, the resonance shifts over 160 nm. Using simulations we show how this simple design can create resonance shifts greater than 600 nm. The versatility of this design is further shown by creating asymmetric structures with two different modulation amplitudes, which we experimentally and numerically show to give rise to two resonances. Our results on both the symmetric and asymmetric antennas show the capability to control the localization of the fields outside the antenna, while still maintaining the freedom to change the antenna resonance wavelength. The antenna design we tested combines a large spectral tunability with a small footprint: all the antenna dimensions are factor 7 to 13 smaller than the wavelength, and hold potential as a design element in meta-surfaces for beam shaping. PMID:27505755

  14. Sinusoidal nanotextures for light management in silicon thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Köppel, G.; Rech, B.; Becker, C.

    2016-04-01

    Recent progresses in liquid phase crystallization enabled the fabrication of thin wafer quality crystalline silicon layers on low-cost glass substrates enabling conversion efficiencies up to 12.1%. Because of its indirect band gap, a thin silicon absorber layer demands for efficient measures for light management. However, the combination of high quality crystalline silicon and light trapping structures is still a critical issue. Here, we implement hexagonal 750 nm pitched sinusoidal and pillar shaped nanostructures at the sun-facing glass-silicon interface into 10 μm thin liquid phase crystallized silicon thin-film solar cell devices on glass. Both structures are experimentally studied regarding their optical and optoelectronic properties. Reflection losses are reduced over the entire wavelength range outperforming state of the art anti-reflective planar layer systems. In case of the smooth sinusoidal nanostructures these optical achievements are accompanied by an excellent electronic material quality of the silicon absorber layer enabling open circuit voltages above 600 mV and solar cell device performances comparable to the planar reference device. For wavelengths smaller than 400 nm and higher than 700 nm optical achievements are translated into an enhanced quantum efficiency of the solar cell devices. Therefore, sinusoidal nanotextures are a well-balanced compromise between optical enhancement and maintained high electronic silicon material quality which opens a promising route for future optimizations in solar cell designs for silicon thin-film solar cells on glass.

  15. Sinusoidal nanotextures for light management in silicon thin-film solar cells.

    PubMed

    Köppel, G; Rech, B; Becker, C

    2016-04-28

    Recent progresses in liquid phase crystallization enabled the fabrication of thin wafer quality crystalline silicon layers on low-cost glass substrates enabling conversion efficiencies up to 12.1%. Because of its indirect band gap, a thin silicon absorber layer demands for efficient measures for light management. However, the combination of high quality crystalline silicon and light trapping structures is still a critical issue. Here, we implement hexagonal 750 nm pitched sinusoidal and pillar shaped nanostructures at the sun-facing glass-silicon interface into 10 μm thin liquid phase crystallized silicon thin-film solar cell devices on glass. Both structures are experimentally studied regarding their optical and optoelectronic properties. Reflection losses are reduced over the entire wavelength range outperforming state of the art anti-reflective planar layer systems. In case of the smooth sinusoidal nanostructures these optical achievements are accompanied by an excellent electronic material quality of the silicon absorber layer enabling open circuit voltages above 600 mV and solar cell device performances comparable to the planar reference device. For wavelengths smaller than 400 nm and higher than 700 nm optical achievements are translated into an enhanced quantum efficiency of the solar cell devices. Therefore, sinusoidal nanotextures are a well-balanced compromise between optical enhancement and maintained high electronic silicon material quality which opens a promising route for future optimizations in solar cell designs for silicon thin-film solar cells on glass. PMID:27065440

  16. Response of the seated human body to whole-body vertical vibration: biodynamic responses to sinusoidal and random vibration.

    PubMed

    Zhou, Zhen; Griffin, Michael J

    2014-01-01

    The dependence of biodynamic responses of the seated human body on the frequency, magnitude and waveform of vertical vibration has been studied in 20 males and 20 females. With sinusoidal vibration (13 frequencies from 1 to 16 Hz) at five magnitudes (0.1-1.6 ms(-2) r.m.s.) and with random vibration (1-16 Hz) at the same magnitudes, the apparent mass of the body was similar with random and sinusoidal vibration of the same overall magnitude. With increasing magnitude of vibration, the stiffness and damping of a model fitted to the apparent mass reduced and the resonance frequency decreased (from 6.5 to 4.5 Hz). Male and female subjects had similar apparent mass (after adjusting for subject weight) and a similar principal resonance frequency with both random and sinusoidal vibration. The change in biodynamic response with increasing vibration magnitude depends on the frequency of the vibration excitation, but is similar with sinusoidal and random excitation. PMID:24730687

  17. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    SciTech Connect

    Wieserman, W.R.; Schwarze, G.E.; Niedra, J.M.

    1994-09-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglass 2605SC over the frequency range of 1-50 kHz and temperature range of 23-300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  18. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  19. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loop for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  20. Suppression of axonal conduction by sinusoidal stimulation in rat hippocampus in vitro

    NASA Astrophysics Data System (ADS)

    Jensen, A. L.; Durand, D. M.

    2007-06-01

    Deep brain stimulation (DBS), also known as high frequency stimulation (HFS), is a well-established therapy for Parkinson's disease and essential tremor, and shows promise for the therapeutic control of epilepsy. However, the direct effect of DBS on neural elements close to the stimulating electrode remains an important unanswered question. Computational studies have suggested that HFS has a dual effect on neural elements inhibiting cell bodies, while exciting axons. Prior experiments have shown that sinusoidal HFS (50 Hz) can suppress synaptic and non-synaptic cellular activity in several in vitro epilepsy models, in all layers of the hippocampus. However, the effects of HFS on axons near the electrode are still unclear. In the present study, we tested the hypothesis that HFS suppresses axonal conduction in vitro. Sinusoidal HFS was applied to the alvear axon field of transverse rat hippocampal slices. The results show that HFS suppresses the alvear compound action potential (CAP) as well as the CA1 antidromic evoked potential (AEP). Complete suppression was observed as a 100% reduction in the amplitude of the evoked field potential for the duration of the stimulus. Evoked potential width and latency were not significantly affected by sinusoidal HFS. Suppression was dependent on HFS amplitude and frequency, but independent of stimulus duration and synaptic transmission. The frequency dependence of sinusoidal HFS is similar to that observed in clinical DBS, with maximal suppression between 50 and 200 Hz. HFS produced not only suppression of axonal conduction but also a correlated rise in extracellular potassium. These data provide new insights into the effects of HFS on neuronal elements, and show that HFS can block axonal activity through non-synaptic mechanisms.

  1. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    NASA Astrophysics Data System (ADS)

    Lipo, Thomas A.; Alan, Irfan

    1991-06-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the

  2. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    NASA Technical Reports Server (NTRS)

    Lipo, Thomas A.; Alan, Irfan

    1991-01-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the

  3. [Pathology along the liver sinusoids: endothelial and perisinusoidal findings].

    PubMed

    Fischer, H-P; Flucke, U; Zhou, H

    2008-02-01

    Sinusoidal alterations unrelated to primary hepatocellular damage present without characteristic clinical findings and in these cases the liver biopsy is particularly important. Capillarization of sinusoids is characterized by closing of fenestration, formation of a basal membrane and by the expression of CD34 and is typical for active cirrhosis. In nodular regeneratory hyperplasia, capillarization indicates a local or general disturbance of perfusion. In large regenerative nodules, focal nodular hyperplasia and liver cell adenoma CD34-positive capillaries reflect afferent parts and CD34-negative sinusoids the efferent parts of the parenchymal vascular bed. HCC generally have a completely capillarized CD34-positive vascular bed. Hepatic angiosarcomas and epithelioid hemangioendotheliomas can be easily overseen in liver biopsies, if they spread along the sinusoids without detoriation of the acinar architecture and without significant alteration of the surrounding liver cell plates. Toxic damage of endothelial cells, post-sinusoidal stasis and sinusoidal hyperperfusion are the underlying pathogenetic principles of sinusoidal injury. Rupture and loss of the perisinusoidal reticulin fibres lead to peliosis hepatis. In these cases liver biopsy might disclose occlusion of the terminal liver veins (VOD). Perisinusoidal fibrosis can be caused by intrasinusoidal accumulation of pathologic cells, advanced intrasinusoidal macrophagocytic storage diseases and by activation of the vitamin A-storing hepatic stellate cells. Perisinusoidal amyloidosis can be the first sign of an underlying B-cell neoplasia. PMID:18210108

  4. Coherent Voltage Oscillations in Superconducting Polycrystalline Y1Ba2Cu3O7-x

    NASA Astrophysics Data System (ADS)

    Altinkok, A.; Yetiş, H.; Olutaş, M.; Kiliç, K.; Kiliç, A.; Çetin, O.

    2006-06-01

    We have investigated the voltage response of superconducting polycrystalline bulk Y1Ba2Cu3O7-x (YBCO) material to a bidirectional square wave current with long periods and dc current by means of the evolution of the voltage-time (V-t) curves near the critical temperature. In a well-defined range of amplitudes and periods of driving current, and temperatures, it was observed that a non-linear response to bidirectional square wave current rides on a time independent background voltage value and manifests itself as regular sinusoidal-like voltage oscillations. It was found that the non-linear response disappears when the bidirectional current was switched to dc current. The spectral content of the voltage oscillations analyzed by the Fast Fourier Transform of the corresponding V-t curves revealed that the fundamental harmonics is comparable to the frequency of bidirectional square wave current. The coherent voltage oscillations were discussed mainly in terms of the dynamic competition between pinning and depinning together with the disorder in the coupling strength between the superconducting grains (i.e Josephson coupling effects). The density fluctuations and semi-elastic coupling of the flux lines with the pinning centers were also considered as possible physical mechanisms in the interpretation of the experimental results.

  5. Self-sustained oscillations of a sinusoidally-deformed plate

    NASA Astrophysics Data System (ADS)

    Muriel, Diego F.; Cowen, Edwin A.

    2015-11-01

    Motivated by energy harvesting, the oscillatory motion of a deformed elastic material with aspect ratio Length/Width=2, immerse in an incompressible flow is studied experimentally. To induce the wave-like deformation a polycarbonate sheet is placed under longitudinal compression with external forcing provided by equispaced tension lines anchored in a frame. No additional constrains are placed in the material. Based on quantitative image-based edge detection, ADV, and PIV measurements, we document the existence of three natural states of motion. Bellow a critical velocity, a stable state presents a sinusoidal-like deformation with weak small perturbations. Above a critical velocity, instability appears in the form of a traveling wave with predictable dominant frequency accompanied by higher-order harmonics. As the flow velocity increases the instability converges faster to its limit cycle in the phase plane (e.g., vertical velocity and position), until the stable oscillatory mode transitions to chaos showing a broad energy spectrum and unstable limit cycle. The underlying objective is to induce the onset of the instability at lower critical velocities for higher bending rigidities, promoting possible energy extraction and increasing the range at which stable oscillations appear.

  6. Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources

    SciTech Connect

    Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei; Wang, Xiao-Min; Yin, Gui-Qin; Dong, Chen-Zhong

    2013-11-15

    An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperature of atmospheric pressure plasma could also be obtained using dual-frequency excitation.

  7. The postural response of normal dogs to sinusoidal displacement

    PubMed Central

    Brookhart, John M.; Talbott, Richard E.

    1974-01-01

    1. Normal dogs were trained to adopt a laterally symmetric stance on a horizontal platform. Sinusoidal oscillation of the platform in the cephalocaudal direction caused the dogs to adopt a strategy of response which would keep them from falling down during the period of imposed motion or perturbation. 2. A Fourier analysis of the response variables provided a quantitative measure of the distortion in the induced movement at the various hind leg joints and in the motion of the body. Certain aspects of the distortion could be accounted for by recognized random events such as drift and panting. The remainder of the distortion was task related and therefore provided evidence that the dog's postural control system behaved essentially as a non-linear system. 3. The motion of the body was less distorted than the motion at the joints. The frequency response of the body motion resembled that of a second order linear system, but the amplitude of the body motion did not vary in constant proportion with changes in the amplitude of the input. Further, the phase relation between body motion and platform motion was not constant when the amplitude of the input was changed. Therefore, it was concluded that the control of the body position was probably non-linearly related to the input disturbance but that the low pass filter characteristics tended to minimize the appearance of distortion in that system output. 4. Control of the position of the hind limb is related to the control of the torque generated at the hind limb joints. To the extent that joint angle and change in joint angle are related to the torque at a joint, the distortion of the motion at the joints clearly demonstrates that control of the hind limb during this postural task was non-linearly related to the sinusoidal input. 5. The uniformity of the response parameters, as assessed from the Fourier coefficients, indicated that all of the tested dogs adopted the same or nearly the same strategy for solving the problem of

  8. Computer Program for Thin Wire Antenna over a Perfectly Conducting Ground Plane. [using Galerkins method and sinusoidal bases

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.

    1974-01-01

    A computer program is presented for a thin-wire antenna over a perfect ground plane. The analysis is performed in the frequency domain, and the exterior medium is free space. The antenna may have finite conductivity and lumped loads. The output data includes the current distribution, impedance, radiation efficiency, and gain. The program uses sinusoidal bases and Galerkin's method.

  9. Using composite sinusoidal patterns in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presented a first exploration of using composite sinusoidal patterns that integrated two and three spatial frequencies of interest, in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food (e.g., bruises in apples). Three methods based on Fourier tra...

  10. Digital state feedback control of a three phase sinusoidal PWM inverter

    SciTech Connect

    Matin, Md.A.; Divsalar, D.

    1994-12-31

    This paper proposes a method of three phase voltage control sinusoidal PWM (Pulse Width Modulation) inverter. The state equation of the inverter main circuit has been derived and transformed to the d-q frame. Afterwards, an algorithm of dead-beat control has been developed by considering only the load current as disturbing variable. The advantage of dead-beat control is that it can control very fast within short time (sampling period) comparing to other methods. The main objective of the controller design is to get the sinusoidal voltage at inverter`s output with low harmonic distortions. To compensate the calculation delay and to realize physically, a 3d order prediction method has been adopted. A new switching technique has been developed. This switching technique can reduce unnecessary switching so that switching loss can be minimized. Finally, simulations has been done under a typical load condition (rectifier with capacitor load) and harmonic analysis has also been done. Throughout all simulations, very good results have been found where total harmonic distortions (THD) is less than 5%.

  11. Spoof plasmon radiation using sinusoidally modulated corrugated reactance surfaces.

    PubMed

    Panaretos, Anastasios H; Werner, Douglas H

    2016-02-01

    In this paper we theoretically investigate the feasibility of creating leaky wave antennas capable of converting spoof plasmons to radiating modes. Spoof plasmons are surface waves excited along metallic corrugated surfaces and they are considered the microwave and THz equivalent of optical surface plasmon polaritons. Given that a corrugated surface is essentially a reactance surface, the proposed design methodology relies on engineering a corrugated surface so that it exhibits a sinusoidally modulated reactance profile. Through such non-uniform periodic reactance surfaces, guided surface waves can efficiently couple into free-space radiating modes. This requires the development of a realistic methodology that effectively maps the necessary sinusoidal reactance variation to a sinusoidal variation corresponding to the depth of the grooves. Both planar and cylindrical corrugated surfaces are examined and it is numerically demonstrated that the corresponding sinusoidally modulated leaky wave structures can very efficiently convert guided spoof plasmons to radiating modes. PMID:26906820

  12. Voltage regulator

    SciTech Connect

    Rossetti, N.

    1986-12-09

    This patent describes a prior art integrated circuit voltage regulator having an unregulated voltage input terminal and a regulated voltage output terminal, and further comprising: a first transistor having an emitter, a collector and a base, the first transistor having a first base-emitter voltage characteristic, the collector of the first transistor being connected through a first resistor to a current source. The current source is derived from the unregulated voltage, the emitter of the first transistor being connected through a second resistor to a reference voltage; and a second transistor having an emitter, a collector and a base, the second transistor having a second base-emitter voltage characteristic, the base of the second transistor being connected to the collector of the first transistor. The collector of the second transistor is connected to the current source, the emitter of the second transistor being connected to the reference voltage. The regulated output of the voltage regulator is provided at the collector of the second transistor and the regulated voltage output is a function of the first base-emitter voltage characteristic of the first transistor plus the quantity comprising the difference between the first base-emitter voltage characteristic of the first transistor and the second base-emitter voltage characteristic of the second transistor, times the ratio of the value of resistance of the first resistor and the value of resistance of the second resistor. The improvement described here comprises: a third transistor having a collector, an emitter and a base.

  13. Mutual impedance of nonplanar-skew sinusoidal dipoles

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.; Geary, N. H.

    1974-01-01

    The mutual impedance of nonplanar-skew sinusoidal dipoles is presented as a summation of several exponential integrals with complex arguments. Mathematical models are developed to show the near-zone field of the sinusoidal dipole. The mutual impedance of coupled dipoles is expressed as the sum of four monopole-mobopole impedances to simplify the analysis procedure. The subroutines for solving the parameters of the dipoles are discussed.

  14. Signal Analysis Algorithms for Optimized Fitting of Nonresonant Laser Induced Thermal Acoustics Damped Sinusoids

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Miller, Corey A.

    2008-01-01

    This study seeks a numerical algorithm which optimizes frequency precision for the damped sinusoids generated by the nonresonant LITA technique. It compares computed frequencies, frequency errors, and fit errors obtained using five primary signal analysis methods. Using variations on different algorithms within each primary method, results from 73 fits are presented. Best results are obtained using an AutoRegressive method. Compared to previous results using Prony s method, single shot waveform frequencies are reduced approx.0.4% and frequency errors are reduced by a factor of approx.20 at 303K to approx. 0.1%. We explore the advantages of high waveform sample rates and potential for measurements in low density gases.

  15. Low-frequency noise reduction in vertical MOSFETs having tunable threshold voltage fabricated with 60 nm CMOS technology on 300 mm wafer process

    NASA Astrophysics Data System (ADS)

    Imamoto, Takuya; Ma, Yitao; Muraguchi, Masakazu; Endoh, Tetsuo

    2015-04-01

    In this paper, DC and low-frequency noise (LFN) characteristics have been investigated with actual measurement data in both n- and p-type vertical MOSFETs (V-MOSFETs) for the first time. The V-MOSFETs which was fabricated on 300 mm bulk silicon wafer process have realized excellent DC performance and a significant reduction of flicker (1/f) noise. The measurement results show that the fabricated V-MOSFETs with 60 nm silicon pillar and 100 nm gate length achieve excellent steep sub-threshold swing (69 mV/decade for n-type and 66 mV/decade for p-type), good on-current (281 µA/µm for n-type 149 µA/µm for p-type), low off-leakage current (28.1 pA/µm for n-type and 79.6 pA/µm for p-type), and excellent on-off ratio (1 × 107 for n-type and 2 × 106 for p-type). In addition, it is demonstrated that our fabricated V-MOSFETs can control the threshold voltage (Vth) by changing the channel doping condition, which is the useful and low-cost technique as it has been widely used in the conventional bulk planar MOSFET. This result indicates that V-MOSFETs can control Vth more finely and flexibly by the combined the use of the doping technique with other techniques such as work function engineering of metal-gate. Moreover, it is also shown that V-MOSFETs can suppress 1/f noise (L\\text{gate}WS\\text{Id}/I\\text{d}2 of 10-13-10-11 µm2/Hz for n-type and 10-12-10-10 µm2/Hz for p-type) to one or two order lower level than previously reported nanowire type MOSFET, FinFET, Tri-Gate, and planar MOSFETs. The results have also proved that both DC and 1/f noise performances are independent from the bias voltage which is applied to substrate or well layer. Therefore, it is verified that V-MOSFETs can eliminate the effects from substrate or well layer, which always adversely affects the circuit performances due to this serial connection.

  16. Improved method on image detection at low light level using a sinusoidal-shaped-function signal

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhao, Longfei; Zhou, Mei; Wang, Mengjun; Lin, Ling

    2015-10-01

    This study proposes an improved method which employs the shaped-function technology and Discrete Fourier Series Transform (DFST)-based algorithm to improve the subjective impression at low light level. A sinusoidal wave light signal which is generated in the low frequency range plays the role of a shaped-function signal. The basic procedure of the proposed method is that an LED with a time-varying (sinusoidal) beam is used to illuminate the image sensor evenly. Then, a DFST-based algorithm is employed to remove the sinusoidal wave signal from the captured images for restoring the low-light-level image signal with a low gray resolution. The main purpose of this method was to improve gray-level resolution and signal-to-noise ratio of the acquired image and process the image data in real time by sliding the window. The derivation processes and experiments verify that the improved method not only can reveal a better result than the algorithms we have proposed before, but also have a better performance on the imaging speed.

  17. Speckle suppression in pattern projection profilometry with a thin sinusoidal phase grating by polychromatic illumination

    NASA Astrophysics Data System (ADS)

    Berberova, Nataliya; Stoykova, Elena; Park, Joo Sup; Kang, Hoonjong; Sainov, Ventseslav

    2013-03-01

    Pattern projection profilometry is a powerful tool to reconstruct three-dimensional (3D) surface of diffuse objects. A variety of pattern projection methods for 3D capture of objects is based on the generation of sinusoidal fringes. A sinusoidal phase grating under divergent coherent illumination with a point source produces high visibility and high spectral purity sinusoidal fringes in a large longitudinal region. In the present work we study the speckle suppression in the fringes by using a polychromatic light source. Such an approach makes use of the fact that the lateral fringe spacing does not depend on the wavelength of the illuminating light. The wavelength has an impact on the locations and the number of the Talbot planes, where self-imaging of the grating occurs, and on variation of the contrast and the frequency content of fringes along the distance from the grating. We analyze the multi-wavelength illumination of the grating by solving the Fresnel diffraction integral for a point source illumination in paraxial approximation. We verified the obtained results by experiments with a thin holographic grating recorded on a silver-halide holographic plate under illumination with a laser diode operating in single mode and multimode regimes.

  18. Structural 3d Monitoring Using a New Sinusoidal Fitting Adjustment

    NASA Astrophysics Data System (ADS)

    Detchev, I.; Habib, A.; Lichti, D.; El-Badry, M.

    2016-06-01

    Digital photogrammetric systems combined with image processing techniques have been used for structural monitoring purposes for more than a decade. For applications requiring sub-millimetre level precision, the use of off-the-shelf DSLR cameras is a suitable choice, especially when the low cost of the involved sensors is a priority. The disadvantage in the use of entry level DSLRs is that there is a trade-off between frame rate and burst rate - a high frame rate is either not available or it cannot be sustained long enough. This problem must be overcome when monitoring a structural element undergoing a dynamic test, where a range of loads are cycled through multiple times a second. In order to estimate deflections during such a scenario, this paper proposes a new least-squares adjustment for sinusoidal fitting. The new technique is capable of processing multiple back-to-back bursts of data within the same adjustment, which synthetically increases the de-facto temporal resolution of the system. The paper describes a beam deformation test done in a structures laboratory. The experimental results were assessed in terms of both their precision and accuracy. The new method increased the effective sampling frequency three-fold, which improved the standard deviations of the estimated parameters with up to two orders of magnitude. A residual RMSE as low as 30 μm was attained, and likewise the RMSE of the computed amplitudes between the photogrammetric system and the control laser transducers was as small as 34 μm.

  19. System analysis of Phycomyces light-growth response with sum-of-sinusoids test stimuli.

    PubMed Central

    Pratap, P; Palit, A; Lipson, E D

    1986-01-01

    The light-growth response of Phycomyces has been studied with the sum-of-sinusoids method of nonlinear system identification (Victor, J.D., and R.M. Shapley, 1980, Biophys. J., 29:459). This transient response of the sporangiophore has been treated as a black-box system with one input (logarithm of the light intensity, I) and one output (elongation rate). The light intensity was modulated so that log I, as a function of time, was a sum of sinusoids. The log-mean intensity was 10(-4) W m-2 and the wavelength was 477 nm. The first- and second-order frequency kernels, which represent the linear and nonlinear behavior of the system, were obtained from the Fourier transform of the response at the appropriate component and combination frequencies. Although the first-order kernel accounts for most of the response, there remains a significant nonlinearity beyond the logarithmic transducer presumed to occur at the input of the sensory transduction chain. From the analysis of the frequency kernels, we have derived a dynamic nonlinear model of the light-growth response system. The model consists of a nonlinear subsystem followed by a linear subsystem. The model parameters were estimated from a combined nonlinear least-squares fit to the first- and second-order frequency kernels. PMID:3779003

  20. Thresholds for the perception of whole-body linear sinusoidal motion in the horizontal plane

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Young, Laurence R.; Steele, Charles R.; Schubert, Earl D.

    1989-01-01

    An improved linear sled has been developed to provide precise motion stimuli without generating perceptible extraneous motion cues (a noiseless environment). A modified adaptive forced-choice method was employed to determine perceptual thresholds to whole-body linear sinusoidal motion in 25 subjects. Thresholds for the detection of movement in the horizontal plane were found to be lower than those reported previously. At frequencies of 0.2 to 0.5 Hz, thresholds were shown to be independent of frequency, while at frequencies of 1.0 to 3.0 Hz, thresholds showed a decreasing sensitivity with increasing frequency, indicating that the perceptual process is not sensitive to the rate change of acceleration of the motion stimulus. The results suggest that the perception of motion behaves as an integrating accelerometer with a bandwidth of at least 3 Hz.

  1. Voltage-programmable liquid optical interface

    NASA Astrophysics Data System (ADS)

    Brown, C. V.; Wells, G. G.; Newton, M. I.; McHale, G.

    2009-07-01

    Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices.

  2. Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge

    NASA Astrophysics Data System (ADS)

    Profili, J.; Levasseur, O.; Naudé, N.; Chaneac, C.; Stafford, L.; Gherardi, N.

    2016-08-01

    This work examines the growth dynamics of TiO2-SiO2 nanocomposite coatings in plane-to-plane Dielectric Barrier Discharges (DBDs) at atmospheric pressure operated in a Townsend regime using nebulized TiO2 colloidal suspension in hexamethyldisiloxane as the growth precursors. For low-frequency (LF) sinusoidal voltages applied to the DBD cell, with voltage amplitudes lower than the one required for discharge breakdown, Scanning Electron Microscopy of silicon substrates placed on the bottom DBD electrode reveals significant deposition of TiO2 nanoparticles (NPs) close to the discharge entrance. On the other hand, at higher frequencies (HF), the number of TiO2 NPs deposited strongly decreases due to their "trapping" in the oscillating voltage and their transport along the gas flow lines. Based on these findings, a combined LF-HF voltage waveform is proposed and used to achieve significant and spatially uniform deposition of TiO2 NPs across the whole substrate surface. For higher voltage amplitudes, in the presence of hexamethyldisiloxane and nitrous oxide for plasma-enhanced chemical vapor deposition of inorganic layers, it is found that TiO2 NPs become fully embedded into a silica-like matrix. Similar Raman spectra are obtained for as-prepared TiO2 NPs and for nanocomposite TiO2-SiO2 coating, suggesting that plasma exposure does not significantly alter the crystalline structure of the TiO2 NPs injected into the discharge.

  3. VOLTAGE REGULATOR

    DOEpatents

    Von Eschen, R.L.; Scheele, P.F.

    1962-04-24

    A transistorized voltage regulator which provides very close voitage regulation up to about 180 deg F is described. A diode in the positive line provides a constant voltage drop from the input to a regulating transistor emitter. An amplifier is coupled to the positive line through a resistor and is connected between a difference circuit and the regulating transistor base which is negative due to the difference in voltage drop across thc diode and the resistor so that a change in the regulator output causes the amplifier to increase or decrease the base voltage and current and incrcase or decrease the transistor impedance to return the regulator output to normal. (AEC)

  4. A surface profile reconstruction system using sinusoidal phase-modulating interferometry and fiber-optic fringe projection

    NASA Astrophysics Data System (ADS)

    En, Bo; Fa-jie, Duan; Chang-rong, Lv; Fan, Feng; Xiao, Fu

    2014-06-01

    A fiber-optic sinusoidal phase modulating (SPM) interferometer for surface profile reconstruction is presented. Sinusoidal phase modulation is created by modulating the drive voltage of the piezoelectric transducer. The surface profile is constructed basing on fringe projection. Fringe patterns are vulnerable to external disturbances such as temperature fluctuation and mechanical vibration, which cause phase drift and decrease measuring accuracy. We build a closed-loop feedback phase compensation system, the bias value of external disturbances superimposed on fringe patterns can be reduced to about 50 mrad, and the phase stability for interference fringes is less than 5.76 mrad. By measuring the surface profile of a paper plate for two times, the repeatability is estimated to be about 11 nm, and is equivalent to be about λ/69. For a plane with 100 × 100 points, a single measurement takes less than 140 ms, and the feasibility for real-time profile measurement with high accuracy has been verified.

  5. An analysis of receptor potential and tension of isolated cat muscle spindles in response to sinusoidal stretch.

    PubMed Central

    Hunt, C C; Wilkinson, R S

    1980-01-01

    In isolated cat muscle spindles the receptor potential responses of primary and secondary endings as well as tension responses to sinusoidal length changes in the steady state have been analysed. 1. At a given stimulus frequency, receptor potential per unit length change (receptor potential gain) in both primary and secondary endings is constant when displacement is less than about 10 micrometer. With larger stretches, receptor potential gain decreases approximately as a power function of displacement, the gain of primary endings decreasing more rapidly with increasing displacement than that of secondary endings. Tension per unit length change (tension gain) shows a similar constant range above which it also decreases as a power function of displacement. 2. In spite of the large reduction in gain at high displacement amplitudes, response wave forms remained essentially sinusoidal. The gain reduction results principally from a displacement-dependent non-linearity which has a rapid onset and slow decay. 3. Receptor potential and tension responses to small amplitude sinusoidal stretch depend, in a parallel manner, on the initial length of the preparation. 4. Both receptor potential and tension responses are highly dependent on frequency of sinusoidal stretch. In primary endings receptor potential gain increased as a power function of frequency over the range 0 . 01 to about 40 Hz, above which frequency the gain decreased; phase advance remained relatively constant up to 10 Hz then decreased to become a phase lag at higher frequency. In secondary endings receptor potential gain remained fairly constant between 0 . 01 and 1 Hz then rose as a power function of frequency but less steeply than in primary endings. 3. The possible mechanisms underlying these findings are discussed. PMID:6447781

  6. Time-dependent perturbation of a two-state quantum system by a sinusoidal field

    NASA Technical Reports Server (NTRS)

    Dion, D. R.; Hirschfelder, J. O.

    1976-01-01

    Different methods for solving the 'two-level problem' are discussed, namely, the problem of what happens to a material system having only two nondegenerate energy levels when it is perturbed by an electromagnetic field that varies with time in a monochromatic sinusoidal fashion. The various methods discussed include: (1) the Sen Gupta technique using nondegenerate Rayleigh-Schroedinger perturbation theory, (2) the Salwen-Winter-Shirley partitioning perturbation technique, (3) the Shirley and series degenerate Rayleigh-Schroedinger expansion, (4) the degenerate Rayleigh-Schroedinger technique for considering high frequency fields, and (5) the singular perturbation expansion technique.

  7. Half-Tone Video Images Of Drifting Sinusoidal Gratings

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1991-01-01

    Digital technique for generation of slowly moving video image of sinusoidal grating avoids difficulty of transferring full image data from disk storage to image memory at conventional frame rates. Depends partly on trigonometric identity by which moving sinusoidal grating decomposed into two stationary patterns spatially and temporally modulated in quadrature. Makes motion appear smooth, even at speeds much less than one-tenth picture element per frame period. Applicable to digital video system in which image memory consists of at least 2 bits per picture element, and final brightness of picture element determined by contents of "lookup-table" memory programmed anew each frame period and indexed by coordinates of each picture element.

  8. Production and propagation of Hermite-sinusoidal-Gaussian laser beams.

    PubMed

    Tovar, A A; Casperson, L W

    1998-09-01

    Hermite-sinusoidal-Gaussian solutions to the wave equation have recently been obtained. In the limit of large Hermite-Gaussian beam size, the sinusoidal factors are dominant and reduce to the conventional modes of a rectangular waveguide. In the opposite limit the beams reduce to the familiar Hermite-Gaussian form. The propagation of these beams is examined in detail, and resonators are designed that will produce them. As an example, a special resonator is designed to produce hyperbolic-sine-Gaussian beams. This ring resonator contains a hyperbolic-cosine-Gaussian apodized aperture. The beam mode has finite energy and is perturbation stable. PMID:9729853

  9. High frequency pressure oscillator for microcryocoolers.

    PubMed

    Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers. PMID:18447548

  10. Detection of DNA hybridization and extension reactions by an extended-gate field-effect transistor: characterizations of immobilized DNA-probes and role of applying a superimposed high-frequency voltage onto a reference electrode.

    PubMed

    Kamahori, Masao; Ishige, Yu; Shimoda, Maki

    2008-02-28

    As we have already shown in a previous publication [Kamahori, M., Ihige, Y., Shimoda, M., 2007. Anal. Sci. 23, 75-79], an extended-gate field-effect transistor (FET) sensor with a gold electrode, on which both DNA probes and 6-hydroxyl-1-hexanethiol (6-HHT) molecules are immobilized, can detect DNA hybridization and extension reactions by applying a superimposed high-frequency voltage to a reference electrode. However, kinetic parameters such as the dissociation constant (K(d)(s)) and the apparent DNA-probe concentration (C(probe)(s)) on a surface were not clarified. In addition, the role of applying the superimposed high-frequency voltage was not considered in detail. In this study, the values of K(d)(s) and C(probe)(s) were estimated using a method involving single-base extension reaction combined with bioluminescence detection. The value of K(d)(s) on the surface was 0.38 microM, which was about six times that in a liquid phase. The value of C(probe)(s), which expressed the upper detection limit for the solid phase reaction, was 0.079 microM at a DNA-probe density of 2.6 x 10(12)molecules/cm(2). We found that applying the superimposed high-frequency voltage accelerated the DNA molecules to reach the gold surface. Also, the distance between the DNA-probes immobilized on the gold surface was controlled to be over 6 nm by applying a method of competitive reaction with DNA probes and 6-HHT molecules. This space was sufficient to enable the immobilized DNA-probes to lie down on the 6-HHT monolayer in the space between them. Thus, the FET sensor could detect DNA hybridization and extension reactions by applying a superimposed high-frequency voltage to the DNA-probes density-controlling gold surface. PMID:18054478