Science.gov

Sample records for frequency-dependent stress fiber

  1. Differential frequency-dependent antidromic resonance of the Schaffer collaterals and mossy fibers.

    PubMed

    Franco, Luis M; Beltrán, Jesús Q; Tapia, Jesús A; Ortiz, Franco; Manjarrez, Elías; Gutiérrez, Rafael

    2016-05-01

    To better understand information transfer along the hippocampal pathways and its plasticity, here we studied the antidromic responses of the dentate gyrus (DG) and CA3 to activation of the mossy fibers and Schaffer collaterals, respectively, in hippocampal slices from naïve and epileptic rats. We applied trains of 600 electrical stimuli at functionally meaningful frequencies (θ, β/γ and γ). The responses of the DG to θ frequency trains underwent rapid potentiation that lasted about 400 stimuli, after which they progressively returned to control value. At β/γ and γ frequencies, however, the initial potentiation was followed by a strong frequency-dependent depression within the first 50 stimuli. In kindled animals, the initial potentiation was stronger than in control preparations and the resonant phase at θ frequency lasted longer. In contrast, CA3 responses were exponentially depressed at all frequencies, but depression was significantly less intense at θ frequency in epileptic preparations. Failure of fibers to fire action potentials could account for some of the aforementioned characteristics, but waveforms of the intracellular action potentials also changed as the field responses did, i.e., half-duration and time-to-peak increased in both structures along the stimulation trains. Noteworthy, block of glutamate and GABA ionotropic receptors prevented resonance and reduced the depression of antidromic responses to β/γ and γ stimulation recorded in the DG, but not in CA3. We show that the different behavior in the information transfer along these pathways depends on the frequency at which action potentials are generated, excitability history and anatomical features, including myelination and tortuosity. In addition, the mossy fibers are endowed with ionotropic receptors and terminal active properties conferring them their sui generis non-passive antidromic responses. PMID:25665800

  2. Frequency dependence of power and its implications for contractile function of muscle fibers from the digital flexors of horses.

    PubMed

    Butcher, Michael T; Bertram, John E A; Syme, Douglas A; Hermanson, John W; Chase, P Bryant

    2014-10-01

    The digital flexors of horses must produce high force to support the body weight during running, and a need for these muscles to generate power is likely limited during locomotion over level ground. Measurements of power output from horse muscle fibers close to physiological temperatures, and when cyclic strain is imposed, will help to better understand the in vivo performance of the muscles as power absorbers and generators. Skinned fibers from the deep (DDF) and superficial (SDF) digital flexors, and the soleus (SOL) underwent sinusoidal oscillations in length over a range of frequencies (0.5-16 Hz) and strain amplitudes (0.01-0.06) under maximum activation (pCa 5) at 30°C. Results were analyzed using both workloop and Nyquist plot analyses to determine the ability of the fibers to absorb or generate power and the frequency dependence of those abilities. Power absorption was dominant at most cycling frequencies and strain amplitudes in fibers from all three muscles. However, small amounts of power were generated (0.002-0.05 Wkg(-1)) at 0.01 strain by all three muscles at relatively slow cycling frequencies: DDF (4-7 Hz), SDF (4-5 Hz) and SOL (0.5-1 Hz). Nyquist analysis, reflecting the influence of cross-bridge kinetics on power generation, corroborated these results. The similar capacity for power generation by DDF and SDF versus lower for SOL, and the faster frequency at which this power was realized in DDF and SDF fibers, are largely explained by the fast myosin heavy chain isoform content in each muscle. Contractile function of DDF and SDF as power absorbers and generators, respectively, during locomotion may therefore be more dependent on their fiber architectural arrangement than on the physiological properties of their muscle fibers. PMID:25293602

  3. Frequency dependence of power and its implications for contractile function of muscle fibers from the digital flexors of horses

    PubMed Central

    Butcher, Michael T.; Bertram, John E.A.; Syme, Douglas A.; Hermanson, John W.; Chase, P. Bryant

    2014-01-01

    Abstract The digital flexors of horses must produce high force to support the body weight during running, and a need for these muscles to generate power is likely limited during locomotion over level ground. Measurements of power output from horse muscle fibers close to physiological temperatures, and when cyclic strain is imposed, will help to better understand the in vivo performance of the muscles as power absorbers and generators. Skinned fibers from the deep (DDF) and superficial (SDF) digital flexors, and the soleus (SOL) underwent sinusoidal oscillations in length over a range of frequencies (0.5–16 Hz) and strain amplitudes (0.01–0.06) under maximum activation (pCa 5) at 30°C. Results were analyzed using both workloop and Nyquist plot analyses to determine the ability of the fibers to absorb or generate power and the frequency dependence of those abilities. Power absorption was dominant at most cycling frequencies and strain amplitudes in fibers from all three muscles. However, small amounts of power were generated (0.002–0.05 Wkg−1) at 0.01 strain by all three muscles at relatively slow cycling frequencies: DDF (4–7 Hz), SDF (4–5 Hz) and SOL (0.5–1 Hz). Nyquist analysis, reflecting the influence of cross‐bridge kinetics on power generation, corroborated these results. The similar capacity for power generation by DDF and SDF versus lower for SOL, and the faster frequency at which this power was realized in DDF and SDF fibers, are largely explained by the fast myosin heavy chain isoform content in each muscle. Contractile function of DDF and SDF as power absorbers and generators, respectively, during locomotion may therefore be more dependent on their fiber architectural arrangement than on the physiological properties of their muscle fibers. PMID:25293602

  4. Extended parametric gain range in photonic crystal fibers with strongly frequency-dependent field distributions.

    PubMed

    Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper

    2014-08-15

    The parametric gain range of a degenerate four-wave mixing process is determined in the undepleted pump regime. The gain range is considered with and without taking the mode field distributions of the four-wave mixing components into account. It is found that the mode field distributions have to be included to evaluate the parametric gain correctly in dispersion-tailored speciality fibers and that mode profile engineering can provide a way to increase the parametric gain range. PMID:25121901

  5. Frequency-dependent response of the vascular endothelium to pulsatile shear stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most cells of the circulatory system are exposed to shear forces that occur at the frequency of the heartbeat. However, as a result of the complicated blood flow patterns that occur at arterial branches, small regions of the arterial wall experience fluctuations in shear stress that are dominated by...

  6. Fiber networks amplify active stress.

    PubMed

    Ronceray, Pierre; Broedersz, Chase P; Lenz, Martin

    2016-03-15

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325

  7. Fiber networks amplify active stress

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Ronceray, Pierre; Broedersz, Chase

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. I will present a comprehensive theoretical study of force transmission in these networks. I will show that the linear, small-force response of the networks is remarkably simple, as the macroscopic active stress depends only on the geometry of the force-exerting unit. In contrast, as non-linear buckling occurs around these units, local active forces are rectified towards isotropic contraction and strongly amplified. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. I will show that our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and that they shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

  8. Stress optic coefficient and stress profile in optical fibers.

    PubMed

    Lagakos, N; Mohr, R; El-Bayoumi, O H

    1981-07-01

    The stress optic coefficient and stress profile in optical fibers have been determined photoelastically using a polariscope having good reproducibility and high sensitivity. The results of the work presented in this paper indicate that the photoelastic behavior may be different in fibers and in bulk glasses. The photoelastically determined clad compression in strengthened fibers was found to correlate well with the strengthening observed in these fibers using tensile tests. PMID:20332937

  9. Isolation and Contraction of the Stress Fiber

    PubMed Central

    Katoh, Kazuo; Kano, Yumiko; Masuda, Michitaka; Onishi, Hirofumi; Fujiwara, Keigi

    1998-01-01

    Stress fibers were isolated from cultured human foreskin fibroblasts and bovine endothelial cells, and their contraction was demonstrated in vitro. Cells in culture dishes were first treated with a low-ionic-strength extraction solution and then further extracted using detergents. With gentle washes by pipetting, the nucleus and the apical part of cells were removed. The material on the culture dish was scraped, and the freed material was forced through a hypodermic needle and fractionated by sucrose gradient centrifugation. Isolated, free-floating stress fibers stained brightly with fluorescently labeled phalloidin. When stained with anti-α-actinin or anti-myosin, isolated stress fibers showed banded staining patterns. By electron microscopy, they consisted of bundles of microfilaments, and electron-dense areas were associated with them in a semiperiodic manner. By negative staining, isolated stress fibers often exhibited gentle twisting of microfilament bundles. Focal adhesion–associated proteins were also detected in the isolated stress fiber by both immunocytochemical and biochemical means. In the presence of Mg-ATP, isolated stress fibers shortened, on the average, to 23% of the initial length. The maximum velocity of shortening was several micrometers per second. Polystyrene beads on shortening isolated stress fibers rotated, indicating spiral contraction of stress fibers. Myosin regulatory light chain phosphorylation was detected in contracting stress fibers, and a myosin light chain kinase inhibitor, KT5926, inhibited isolated stress fiber contraction. Our study demonstrates that stress fibers can be isolated with no apparent loss of morphological features and that they are truly contractile organelle. PMID:9658180

  10. Axial residual stresses in boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1978-01-01

    The axial residual stress distribution as a function of radius was determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diameter fibers were similar, being compressive at the surface and changing monotonically to a region of tensile within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile stress of about 860 mn/sq.m and then decreases to a compressive stress near the tungsten boride core. Data were presented for 203 micron diameter B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102 micron diameter B/W and boron on carbon (b/C) shows that the residual stresses were similar in the outer regions of the fibers, but that large differences near and in the core were observed. The effects of these residual stresses on the fracture of boron fibers were discussed.

  11. Thermoelastic stresses in composite ceramic fibers

    SciTech Connect

    Filimonov, I.A.; Grigor`ev, Yu. M.

    1995-08-01

    A calculation of stress and deformation fields in ceramic fibers formed by the method of chemical vapor deposition onto a heated substrate is performed within the framework of linear elasticity theory. Optimum parameters for fibers with a homogeneous structure, a layered structure, and a gradient one are sought.

  12. Triboluminescent Fiber-Optic Sensors Measure Stresses

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.

    1994-01-01

    Triboluminescence exploited in fiber-optic sensor system for measuring changes in pressures, strains, vibrations, and acoustic emissions, in structural members. Sensors embedded in members for in situ monitoring of condition of structure. System passive in sense no source of radiation required to interrogate optical fiber. Technique has potential for wide range of applications in which detection and measurement of structural stress required.

  13. Focal adhesions, stress fibers and mechanical tension

    PubMed Central

    Burridge, Keith; Guilluy, Christophe

    2016-01-01

    Stress fibers and focal adhesions are complex protein arrays that produce, transmit and sense mechanical tension. Evidence accumulated over many years led to the conclusion that mechanical tension generated within stress fibers contributes to the assembly of both stress fibers themselves and their associated focal adhesions. However, several lines of evidence have recently been presented against this model. Here we discuss the evidence for and against the role of mechanical tension in driving the assembly of these structures. We also consider how their assembly is influenced by the rigidity of the substratum to which cells are adhering. Finally, we discuss the recently identified connections between stress fibers and the nucleus, and the roles that these may play, both in cell migration and regulating nuclear function. PMID:26519907

  14. Longitudinal residual stresses in boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1976-01-01

    A method of measuring the longitudinal residual stress distribution in boron fibers is presented. The residual stresses in commercial CVD boron on tungsten fibers of 102, 142, and 203 microns (4, 5.6, and 8 mil) diameters were determined. Results for the three sizes show a compressive stress at the surface 800 to -1400 MN/sq m 120 to -200 ksi), changing monotonically to a region of tensile stress within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile 600 to 1000 MN/sq m(90 to 150 ksi) and then decreases to compressive near the tungsten boride core. The core itself is under a compressive stress of approximately -1300 MN/sq m (-190 ksi). The effects of surface removal on core residual stress and core-initiated fracture are discussed.

  15. Fiber Creep Evaluation by Stress Relaxation Measurements

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Dicarlo, James A.; Wagner, Timothy

    1991-01-01

    A simple bend stress relaxation (BSR) test has been used to measure the creep related properties of a chemically vapor-deposited SiC fiber. Time, temperature, and strain dependent BSR data were analyzed to ascertain the ability of the stress relaxation results to predict tensile creep as a function of the same parameters. The predictions compared very well to actual creep data obtained by axial measurements, indicating that the BSR test could be used for determining both creep and stress relaxation of polycrystalline ceramic fibers under tensile loading.

  16. Frequency dependence of the magnetoimpedance in nanocrystalline FeCuNbSiB with high transverse stress-induced magnetic anisotropy

    SciTech Connect

    Vazquez, M.; Kurlyandskaya, G.V.; Garcia-Beneytez, J.M.; Sinnecker, J.P.; Barandiaran, J.M.; Lukshina, V.A.; Potapov, A.P.

    1999-09-01

    Stress-annealed nanocrystalline FeCuNbSiB ribbons show correlation between induced magnetic anisotropy and magnetoimpedance. Two types of crystallization process were used in order to induce a transverse magnetic anisotropy: the first one was performed submitting the original amorphous samples to an applied tensile stress of {sigma} = 150 MPa. In the second one, samples are nanocrystallized in a first stage and submitted to stress annealing at {sigma} = 290 MPa afterwards. The maximum of the magnetoimpedance can be obtained for dc fields larger than the anisotropy field of the sample of close to the irreversibility field. This behavior can be explained based in the simultaneous switching of two different magnetization processes taking place in the samples with high transverse magnetic anisotropy.

  17. Behaviour of a few mode fiber modal pattern under stress

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1991-01-01

    A numerical model was developed to calculate the interference pattern at the end of a multimode weakly guiding optical fiber under stress. Whenever an optical fiber is under stress, the modal phase in the interference term of the intensity formula changes. Plots of the simulated output of a stressed fiber are presented. For multimode fibers, very complicated patterns result. Under stress, lobes in the pattern are generated, displaced and power is exchanged among them.

  18. Monitoring Fiber Stress During Curing of Single Fiber Glass- and Graphite-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Madhukar, Madhu S.; Kosuri, Ranga P.; Bowles, Kenneth J.

    1994-01-01

    The difference in thermal expansion characteristics of epoxy matrices and graphite fibers can produce significant residual stresses in the fibers during curing of composite materials. Tests on single fiber glass-epoxy and graphite-epoxy composite specimens were conducted in which the glass and graphite fibers were preloaded in tension, and the epoxy matrix was cast around the fibers. The fiber tension was monitored while the matrix was placed around the fiber and subjected to the temperature-time curing cycle. Two mechanisms responsible for producing stress in embedded fibers were identified as matrix thermal expansion and contraction and matrix cure shrinkage. A simple analysis based on the change in fiber tension during the curing cycle was conducted to estimate the produced stresses. Experimental results on single fiber glass- and graphite-epoxy composites show that the fiber was subjected to significant tensile stresses when the temperature was raised from the first to the second dwell period. When initial fiber pretension is about 60 percent of the fiber failure load, these curing-induced stresses can cause tensile fracture of the embedded fiber.

  19. Oxidation induced stress-rupture of fiber bundles

    SciTech Connect

    Lara-Curzio, E.

    1997-03-01

    The effect of oxidation on the stress-rupture behavior of fiber bundles was modeled. It is shown that oxidation-induced fiber strength degradation results in the delayed failure of the associated fiber bundle and that the fiber bundle strength decreases with time as t{sup {minus}1/4}. It is also shown that the temperature dependence of the bundle loss of strength reflects the thermal dependence of the mechanism controlling the oxidation of the fibers. The effect of gauge length on the fiber bundle strength was also analyzed. Numerical examples are presented for the special case of Nicalon{trademark} fibers.

  20. An analysis of fiber-matrix interface failure stresses for a range of ply stress states

    NASA Technical Reports Server (NTRS)

    Crews, J. H.; Naik, R. A.; Lubowinski, S. J.

    1993-01-01

    A graphite/bismaleimide laminate was prepared without the usual fiber treatment and was tested over a wide range of stress states to measure its ply cracking strength. These tests were conducted using off-axis flexure specimens and produced fiber-matrix interface failure data over a correspondingly wide range of interface stress states. The absence of fiber treatment, weakened the fiber-matrix interfaces and allowed these tests to be conducted at load levels that did not yield the matrix. An elastic micromechanics computer code was used to calculate the fiber-matrix interface stresses at failure. Two different fiber-array models (square and diamond) were used in these calculations to analyze the effects of fiber arrangement as well as stress state on the critical interface stresses at failure. This study showed that both fiber-array models were needed to analyze interface stresses over the range of stress states. A linear equation provided a close fit to these critical stress combinations and, thereby, provided a fiber-matrix interface failure criterion. These results suggest that prediction procedures for laminate ply cracking can be based on micromechanics stress analyses and appropriate fiber-matrix interface failure criteria. However, typical structural laminates may require elastoplastic stress analysis procedures that account for matrix yielding, especially for shear-dominated ply stress states.

  1. Simultaneous Stretching and Contraction of Stress Fibers In Vivo

    PubMed Central

    Peterson, Lynda J.; Rajfur, Zenon; Maddox, Amy S.; Freel, Christopher D.; Chen, Yun; Edlund, Magnus; Otey, Carol; Burridge, Keith

    2004-01-01

    To study the dynamics of stress fiber components in cultured fibroblasts, we expressed α-actinin and the myosin II regulatory myosin light chain (MLC) as fusion proteins with green fluorescent protein. Myosin activation was stimulated by treatment with calyculin A, a serine/threonine phosphatase inhibitor that elevates MLC phosphorylation, or with LPA, another agent that ultimately stimulates phosphorylation of MLC via a RhoA-mediated pathway. The resulting contraction caused stress fiber shortening and allowed observation of changes in the spacing of stress fiber components. We have observed that stress fibers, unlike muscle myofibrils, do not contract uniformly along their lengths. Although peripheral regions shortened, more central regions stretched. We detected higher levels of MLC and phosphorylated MLC in the peripheral region of stress fibers. Fluorescence recovery after photobleaching revealed more rapid exchange of myosin and α-actinin in the middle of stress fibers, compared with the periphery. Surprisingly, the widths of the myosin and α-actinin bands in stress fibers also varied in different regions. In the periphery, the banding patterns for both proteins were shorter, whereas in central regions, where stretching occurred, the bands were wider. PMID:15133124

  2. Effects of stress and strain on scintillating and clear fibers

    SciTech Connect

    Chung, M.; Margulies, S.

    1995-08-01

    Among the improvements planned for the 1997--98 upgrade of the D0 detector at Fermilab are installation of a scintillating-fiber central tracker and a lead-scintillator central preshower counter read out with wave-shifting fibers. Because of space limitations, fibers in both systems may need to undergo bends with fairly small radii, and the resulting stresses and strains may cause light losses. This paper presents results of a study of the effects of deformation on fiber light transmission. Particular emphasis is placed on the new multiclad fibers developed by Kuraray.

  3. A Multimodular Tensegrity Model of an Actin Stress Fiber

    PubMed Central

    Luo, Yaozhi; Xu, Xian; Lele, Tanmay; Kumar, Sanjay; Ingber, Donald E.

    2008-01-01

    Stress fibers are contractile bundles in the cytoskeleton that stabilize cell structure by exerting traction forces on extracellular matrix. Individual stress fibers are molecular bundles composed of parallel actin and myosin filaments linked by various actin-binding proteins, which are organized end-on-end in a sarcomere-like pattern within an elongated three-dimensional network. While measurements of single stress fibers in living cells show that they behave like tensed viscoelastic fibers, precisely how this mechanical behavior arises from this complex supramolecular arrangement of protein components remains unclear. Here we show that computationally modeling a stress fiber as a multi-modular tensegrity network can predict several key behaviors of stress fibers measured in living cells, including viscoelastic retraction, fiber splaying after severing, non-uniform contraction, and elliptical strain of a puncture wound within the fiber. The tensegrity model also can explain how they simultaneously experience passive tension and generate active contraction forces; in contrast, a tensed cable net model predicts some, but not all, of these properties. Thus, tensegrity models may provide a useful link between molecular and cellular scale mechanical behaviors, and represent a new handle on multi-scale modeling of living materials. PMID:18632107

  4. Dynamics of Mechanical Signal Transmission through Prestressed Stress Fibers

    PubMed Central

    Hwang, Yongyun; Barakat, Abdul I.

    2012-01-01

    Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid mechanical signal transmission and allows

  5. Creep and stress relaxation modeling of polycrystalline ceramic fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.; Morscher, Gregory N.

    1994-01-01

    A variety of high performance polycrystalline ceramic fibers are currently being considered as reinforcement for high temperature ceramic matrix composites. However, under mechanical loading about 800 C, these fibers display creep related instabilities which can result in detrimental changes in composite dimensions, strength, and internal stress distributions. As a first step toward understanding these effects, this study examines the validity of a mechanism-based empirical model which describes primary stage tensile creep and stress relaxation of polycrystalline ceramic fibers as independent functions of time, temperature, and applied stress or strain. To verify these functional dependencies, a simple bend test is used to measure stress relaxation for four types of commercial ceramic fibers for which direct tensile creep data are available. These fibers include both nonoxide (SCS-6, Nicalon) and oxide (PRD-166, FP) compositions. The results of the Bend Stress Relaxation (BSR) test not only confirm the stress, time, and temperature dependencies predicted by the model, but also allow measurement of model empirical parameters for the four fiber types. In addition, comparison of model tensile creep predictions based on the BSR test results with the literature data show good agreement, supporting both the predictive capability of the model and the use of the BSR text as a simple method for parameter determination for other fibers.

  6. Creep and stress relaxation modeling of polycrystalline ceramic fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.; Morscher, Gregory N.

    1991-01-01

    A variety of high performance polycrystalline ceramic fibers are currently being considered as reinforcement for high temperature ceramic matrix composites. However, under mechanical loading above 800 C, these fibers display creep-related instabilities which can result in detrimental changes in composite dimensions, strength, and internal stress distributions. As a first step toward understanding these effects, this study examines the validity of mechanistic-based empirical model which describes primary stage tensile creep and stress relaxation of polycrystalline ceramic fibers as independent functions of time, temperature, and applied stress or strain. To verify these functional dependencies, a simple bend test is used to measure stress relaxation for four types of commercial ceramic fibers for which direct tensile creep data are available. These fibers include both nonoxide (SCS-6, Nicalon) and oxide (PRD-166, FP) compositions. The results of the bend stress relaxation (BSR) test not only confirm the stress, time, and temperature dependencies predicted by the model but also allow measurement of model empirical parameters for the four fiber types. In addition, comparison of model predictions and BSR test results with the literature tensile creep data show good agreement, supporting both the predictive capability of the model and the use of the BSR test as a simple method for parameter determination for other fibers.

  7. Frequency-dependent selection by predators.

    PubMed

    Allen, J A

    1988-07-01

    Sometimes predators tend to concentrate on common varieties of prey and overlook rare ones. Within prey species, this could result in the fitness of each variety being inversely related to its frequency in the population. Such frequency-dependent or 'apostatic' selection by predators hunting by sight could maintain polymorphism for colour pattern, and much of the supporting evidence for this idea has come from work on birds and artificial prey. These and other studies have shown that the strength of the observed selection is affected by prey density, palatability, coloration and conspicuousness. When the prey density is very high, selection becomes 'anti-apostatic': predators preferentially remove rare prey. There is still much to be learned about frequency-dependent selection by predators on artificial prey: work on natural polymorphic prey has hardly begun. PMID:2905488

  8. Analysis of frequency dependent pump light absorption

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Matthias; Pflaum, Christoph

    2011-03-01

    Simulations have to accurately model thermal lensing in order to help improving resonator design of diode pumped solid state lasers. To this end, a precise description of the pump light absorption is an important prerequisite. In this paper, we discuss the frequency dependency of the pump light absorption in the laser crystal and its influence on the simulated laser performance. The results show that the pump light absorption has to include the spectral overlap of the emitting pump source and the absorbing laser material. This information can either be used for a fully frequency dependent absorption model or, at least in the shown examples, to compute an effective value for an exponential Beer-Lambert law of absorption. This is particularly significant at pump wavelengths coinciding with a peak of absorption. Consequences for laser stability and performance are analyzed for different pump wavelengths in a Nd:YAG laser.

  9. Kinship as a frequency dependent strategy.

    PubMed

    Ji, Ting; Zheng, Xiu-Deng; He, Qiao-Qiao; Wu, Jia-Jia; Mace, Ruth; Tao, Yi

    2016-02-01

    Humans divide themselves up into separate cultures, which is a unique and ubiquitous characteristic of our species. Kinship norms are one of the defining features of such societies. Here we show how norms of marital residence can evolve as a frequency-dependent strategy, using real-world cases from southwestern China and an evolutionary game model. The process of kinship change has occurred in the past and is also occurring now in southwestern China. Our data and models show how transitions between residence types can occur both as response to changing costs and benefits of co-residence with kin, and also due to the initial frequency of the strategies adopted by others in the population: patrilocal societies can become matrilocal, and neolocal societies can become duolocal. This illustrates how frequency-dependent selection plays a role both in the maintenance of group-level cultural diversity and in cultural extinction. PMID:26998333

  10. Two-frequency-dependent Gauss quadrature rules

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Joong

    2005-02-01

    We construct two-frequency-dependent Gauss quadrature rules which can be applied for approximating the integration of the product of two oscillatory functions with different frequencies [beta]1 and [beta]2 of the forms,yi(x)=fi,1(x) cos([beta]ix)+fi,2(x) sin([beta]ix), i=1,2,where the functions fi,j(x) are smooth. A regularization procedure is presented to avoid the singularity of the Jacobian matrix of nonlinear system of equations which is induced as one frequency approaches the other frequency. We provide numerical results to compare the accuracy of the classical Gauss rule and one- and two-frequency-dependent rules.

  11. Kinship as a frequency dependent strategy

    PubMed Central

    Ji, Ting; Zheng, Xiu-Deng; He, Qiao-Qiao; Wu, Jia-Jia; Tao, Yi

    2016-01-01

    Humans divide themselves up into separate cultures, which is a unique and ubiquitous characteristic of our species. Kinship norms are one of the defining features of such societies. Here we show how norms of marital residence can evolve as a frequency-dependent strategy, using real-world cases from southwestern China and an evolutionary game model. The process of kinship change has occurred in the past and is also occurring now in southwestern China. Our data and models show how transitions between residence types can occur both as response to changing costs and benefits of co-residence with kin, and also due to the initial frequency of the strategies adopted by others in the population: patrilocal societies can become matrilocal, and neolocal societies can become duolocal. This illustrates how frequency-dependent selection plays a role both in the maintenance of group-level cultural diversity and in cultural extinction. PMID:26998333

  12. Efficient computational simulation of actin stress fiber remodeling.

    PubMed

    Ristori, T; Obbink-Huizer, C; Oomens, C W J; Baaijens, F P T; Loerakker, S

    2016-09-01

    Understanding collagen and stress fiber remodeling is essential for the development of engineered tissues with good functionality. These processes are complex, highly interrelated, and occur over different time scales. As a result, excessive computational costs are required to computationally predict the final organization of these fibers in response to dynamic mechanical conditions. In this study, an analytical approximation of a stress fiber remodeling evolution law was derived. A comparison of the developed technique with the direct numerical integration of the evolution law showed relatively small differences in results, and the proposed method is one to two orders of magnitude faster. PMID:26823159

  13. Core stress distribution of phase shifting multimode polymer optical fiber

    SciTech Connect

    Furukawa, Rei Matsuura, Motoharu; Nagata, Morio; Mishima, Kenji; Inoue, Azusa; Tagaya, Akihiro; Koike, Yasuhiro

    2013-11-18

    Poly-(methyl methacrylate-co-benzyl methacrylate) polarization-maintaining optical fibers are known for their high response to normal stress. In this report, responses to higher stress levels up to 0.45 MPa were investigated. The stress amplitude and direction in the fiber cross section were calculated and analyzed with a coincident mode-field obtained from the near-field pattern. The stress amplitude varies significantly in the horizontal direction and is considered to create multiple phases, explaining the measurement results. To investigate possible permanent deformation, the core yield point profile was analyzed. Although it largely exceeds the average applied stress, the calculated stress distribution indicates that the core could partially experience stress that exceeds the yield point.

  14. A constitutive law for continuous fiber reinforced brittle matrix composites with fiber fragmentation and stress recovery

    NASA Astrophysics Data System (ADS)

    Neumeister, Jonas M.

    1993-08-01

    THE TENSILE BEHAVIOR of a brittle matrix composite is studied for post matrix crack saturation conditions. Scatter of fiber strength following the Weibull distribution as well as the influence of the major microstructural variables is considered. The stress in a fiber is assumed to recover linearly around a failure due to a fiber-matrix interface behavior mainly ruled by friction. The constitutive behavior for such a composite is analysed. Results are given for a simplified and a refined approximate description and compared with an analysis resulting from the exact analytical theory of fiber fragmentation. It is shown that the stress-strain relation for the refined model excellently follows the exact solution and gives the location of the maximum to within 1% in both stress and strain; for most materials the agreement is even better. Also it is shown that all relations can be normalized to depend on only two variables; a stress reference and the Weibull exponent. For systems with low scatter in fiber strength the simplified model is sufficient to determine the stress maximum but not the postcritical behavior. In addition, the simplified model gives explicit analytical expressions for the maximum stress and corresponding strain. None of the models contain any volume dependence or statistical scatter, but the maximum stress given by the stress-strain relation constitutes an upper bound for the ultimate tensile strength of the composite.

  15. Effects of stress and strain on scintillating and clear fibers

    NASA Astrophysics Data System (ADS)

    Chung, Manho; Margulies, Seymour

    1994-09-01

    Among the improvements planned for the 1997 upgrade of the D0 detector at Fermilab are installation of a new scintillating-fiber central tracker and a new lead-scintillator preshower counter read out with wave-shifting fibers. Because of space limitations, fibers in both systems may need to undergo bends of fairly small radius, and the resulting stresses and strains may cause light losses. This paper presents interim results from a study of the effects of deformation on fiber light transmission. A variety of scintillating, wave-shifting, and clear fibers with diameters near 1 mm have been examined. Particular emphasis was placed on the new, multiclad fibers developed by Kuraray. Light loss was measured by injecting light into one end of a fiber sample and measuring the exiting light before, during, and after controlled deformation of the fiber. The deformations studied include bending, tensile elongation, compression, and torsion. Generally, except for severe bending or considerable compression, light loss was found to be less than a few percent. The effect of bending were investigated using single-turn and multiple-turn loops of various radii. Light loss was found to increase with decreasing radius, but little dependence on either core dopants or diameter was observed. Generally, the light loss, L, in an N-turn loop of radius r could be parameterized by the form L equals A(root)N/rn, where A is a constant and n is near 1.5. Kuraray multiclad fiber was found to be superior to single-clad fiber in that the former can be bent into single- turn loops with radii as small as 1 cm before introducing a light loss of 3%, while the latter produces this loss at a 2 cm radius. Tensile stress for forces up to 1.3 kg for 2-m-long fibers produced less than 1% light loss. On the other hand, compressive stress exerted over a 10-cm- long fiber section could cause a loss of 10%. Finally, a single observation of the effects of torsion indicated no change in light transmission for a

  16. Determining the frequency dependence of elastic properties of fractured rocks

    NASA Astrophysics Data System (ADS)

    Ahrens, Benedikt; Renner, Jörg

    2016-04-01

    In the brittle crust, rocks often contain joints or faults on various length scales that have a profound effect on fluid flow and heat transport, as well as on the elastic properties of rocks. Improving the understanding of the effect of fractures and the role of stress state and heterogeneity along the fractures on elastic properties of rocks is potentially important for the characterization of deep geothermal reservoirs. Seismic surveys, typically covering a frequency range of about 1 to 1000 Hz, are a valuable tool to investigate fractured rocks but the extraction of fracture properties remains difficult. The elementary frequency-dependent interaction between fractured rock matrix and viscous pore fluids and the resulting effects on wave propagation require well-founded dispersion analyses of heterogeneous rocks. In this laboratory study, we investigate the stress dependence of the effective elastic properties of fractured reservoir rocks over a broad frequency range. To assess the effect of faults on the effective elastic properties, we performed cyclic axial loading tests on intact and fractured samples of Solnhofen limestone and Padang granodiorite. The samples contained an idealized fault, which was created by stacking two sample discs on top of each other that experienced various surface treatments to vary their roughness. The dynamic loading tests were conducted with frequencies up to 10 Hz and amplitudes reaching 10% of the statically applied stress. Simultaneously, P- and S-wave measurements were performed in the ultrasonic frequency range (above 100 kHz) with a total of 16 sensors, whose positioning above and below the samples guarantees a wide range of transmission and reflection angles. Preliminary results of static and dynamic elastic properties of intact Padang granodiorite show a pronounced increase in Young's moduli and Poisson's ratio with increasing axial stress. Stress relaxation is accompanied by a decrease of the modulus and the Poisson

  17. Model of cellular mechanotransduction via actin stress fibers.

    PubMed

    Gouget, Cecile L M; Hwang, Yongyun; Barakat, Abdul I

    2016-04-01

    Mechanical stresses due to blood flow regulate vascular endothelial cell structure and function and play a key role in arterial physiology and pathology. In particular, the development of atherosclerosis has been shown to correlate with regions of disturbed blood flow where endothelial cells are round and have a randomly organized cytoskeleton. Thus, deciphering the relation between the mechanical environment, cell structure, and cell function is a key step toward understanding the early development of atherosclerosis. Recent experiments have demonstrated very rapid ([Formula: see text]100 ms) and long-distance ([Formula: see text]10 [Formula: see text]m) cellular mechanotransduction in which prestressed actin stress fibers play a critical role. Here, we develop a model of mechanical signal transmission within a cell by describing strains in a network of prestressed viscoelastic stress fibers following the application of a force to the cell surface. We find force transmission dynamics that are consistent with experimental results. We also show that the extent of stress fiber alignment and the direction of the applied force relative to this alignment are key determinants of the efficiency of mechanical signal transmission. These results are consistent with the link observed experimentally between cytoskeletal organization, mechanical stress, and cellular responsiveness to stress. Based on these results, we suggest that mechanical strain of actin stress fibers under force constitutes a key link in the mechanotransduction chain. PMID:26081725

  18. Frequency dependent thermal expansion in binary viscoelasticcomposites

    SciTech Connect

    Berryman, James G.

    2007-12-01

    The effective thermal expansion coefficient beta* of abinary viscoelastic composite is shown to be frequency dependent even ifthe thermal expansion coefficients beta A and beta B of both constituentsare themselves frequency independent. Exact calculations for binaryviscoelastic systems show that beta* is related to constituent valuesbeta A, beta B, volume fractions, and bulk moduli KA, KB, as well as tothe overall bulk modulus K* of the composite system. Then, beta* isdetermined for isotropic systems by first bounding (or measuring) K* andtherefore beta*. For anisotropic systems with hexagonal symmetry, theprincipal values of the thermal expansion beta*perp and beta*para can bedetermined exactly when the constituents form a layered system. In allthe examples studied, it is shown explicitly that the eigenvectors of thethermoviscoelastic system possess non-negative dissipation -- despite thecomplicated analytical behavior of the frequency dependent thermalexpansivities themselves. Methods presented have a variety ofapplications from fluid-fluid mixtures to fluid-solid suspensions, andfrom fluid-saturated porous media to viscoelastic solid-solidcomposites.

  19. Local Frequency Dependence in Transcranial Ultrasound Transmission

    NASA Astrophysics Data System (ADS)

    White, P. J.; Clement, G. T.; Hynynen, K.

    2006-05-01

    The development of large-aperture multiple-source transducer arrays for ultrasound transmission through the human skull has demonstrated the possibility of controlled and substantial acoustic energy delivery into the brain parenchyma without the necessitation of a craniotomy. The individual control of acoustic parameters from each ultrasound source allows for the correction of distortions arising from transmission through the skull bone and also opens up the possibility for electronic steering of the acoustic focus within the brain. In addition, the capability to adjust the frequency of sonication at different locations on the skull can have an effect on ultrasound transmission. To determine the efficacy and applicability of a multiple-frequency approach with such a device, this study examined the frequency dependence of ultrasound transmission in the range of 0.6-1.4 MHz through a series of seventeen points on four ex vivo human skulls. Effects beyond those that are characteristic of frequency-dependent attenuation were examined. Using broadband pulses, it was shown that the reflected spectra from the skull revealed information regarding ultrasound transmission at specific frequencies. This finding demonstrates a potential applicability of a multiple-frequency approach in transcranial ultrasound transmission.

  20. Local frequency dependence in transcranial ultrasound transmission.

    PubMed

    White, P J; Clement, G T; Hynynen, K

    2006-05-01

    The development of large-aperture multiple-source transducer arrays for ultrasound transmission through the human skull has demonstrated the possibility of controlled and substantial acoustic energy delivery into the brain parenchyma without the necessitation of a craniotomy. The individual control of acoustic parameters from each ultrasound source allows for the correction of distortions arising from transmission through the skull bone and also opens up the possibility for electronic steering of the acoustic focus within the brain. In addition, the capability to adjust the frequency of insonation at different locations on the skull can have an effect on ultrasound transmission. To determine the efficacy and applicability of a multiple-frequency approach with such a device, this study examined the frequency dependence of ultrasound transmission in the range of 0.6-1.4 MHz through a series of 17 points on four ex vivo human skulls. Effects beyond those that are characteristic of frequency-dependent attenuation were examined. Using broadband pulses, it was shown that the reflected spectra from the skull revealed information regarding ultrasound transmission at specific frequencies. A multiple-frequency insonation with optimized frequencies over the entirety of five skull specimens was found to yield on average a temporally brief 230% increase in the transmitted intensity with an 88% decrease in time-averaged intensity transmission within the focal volume. This finding demonstrates a potential applicability of a multiple-frequency approach in transcranial ultrasound transmission. PMID:16625043

  1. Anomalous frequency dependent diamagnetism in metal silicide

    NASA Astrophysics Data System (ADS)

    Dahal, Ashutosh; Gunasekera, Jagat; Harriger, Leland; Singh, David J.; Singh, Deepak K.; Leland Harriger Collaboration

    Discovery of superconductivity in PbO-type FeSe has generated a lot of interest. Among the samples we synthesize with similar structure, NiSi has showed anomalous but very interesting results. Nickel silicides are important electronic materials that have been used as contacts for field effect transistors, as interconnects and in nanoelectronic devices. The magnetic properties of NiSi are not well known, however. In this presentation, we report a highly unusual magnetic phenomenon in NiSi. The ac susceptibility measurements on NiSi reveal strong frequency dependence of static and dynamic susceptibilities that are primarily diamagnetic at room temperature. The static susceptibility is found to exhibit a strong frequency dependence of the diamagnetic response below 100K, while dynamic susceptibility showed peak type feature at 10KHz frequency around 50K. Detailed neutron scattering measurements on high quality powder sample of NiSi on SPINS cold spectrometer further revealed an inelastic peak around 1.5meV, even though no magnetic order is detected. The inelastic peak dissipates above 100K, which is where the static susceptibility starts to diverge with frequency. Research is supported by U.S. Department of Energy, Office of Basic Energy Sciences under Grant No. DE-SC0014461.

  2. Actomyosin stress fiber mechanosensing in 2D and 3D

    PubMed Central

    Lee, Stacey; Kumar, Sanjay

    2016-01-01

    Mechanotransduction is the process through which cells survey the mechanical properties of their environment, convert these mechanical inputs into biochemical signals, and modulate their phenotype in response. These mechanical inputs, which may be encoded in the form of extracellular matrix stiffness, dimensionality, and adhesion, all strongly influence cell morphology, migration, and fate decisions. One mechanism through which cells on planar or pseudo-planar matrices exert tensile forces and interrogate microenvironmental mechanics is through stress fibers, which are bundles composed of actin filaments and, in most cases, non-muscle myosin II filaments. Stress fibers form a continuous structural network that is mechanically coupled to the extracellular matrix through focal adhesions. Furthermore, myosin-driven contractility plays a central role in the ability of stress fibers to sense matrix mechanics and generate tension. Here, we review the distinct roles that non-muscle myosin II plays in driving mechanosensing and focus specifically on motility. In a closely related discussion, we also describe stress fiber classification schemes and the differing roles of various myosin isoforms in each category. Finally, we briefly highlight recent studies exploring mechanosensing in three-dimensional environments, in which matrix content, structure, and mechanics are often tightly interrelated. Stress fibers and the myosin motors therein represent an intriguing and functionally important biological system in which mechanics, biochemistry, and architecture all converge.

  3. The influence of motion and stress on optical fibers

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy D.; Hill, Gary J.; MacQueen, Phillip J.; Taylor, Trey; Soukup, Ian; Moreira, Walter; Cornell, Mark E.; Good, John; Anderson, Seth; Fuller, Lindsay; Lee, Hanshin; Kelz, Andreas; Rafal, Marc; Rafferty, Tom; Tuttle, Sarah; Vattiat, Brian

    2012-09-01

    We report on extensive testing carried out on the optical fibers for the VIRUS instrument. The primary result of this work explores how 10+ years of simulated wear on a VIRUS fiber bundle affects both transmission and focal ratio degradation (FRD) of the optical fibers. During the accelerated lifetime tests we continuously monitored the fibers for signs of FRD. We find that transient FRD events were common during the portions of the tests when motion was at telescope slew rates, but dropped to negligible levels during rates of motion typical for science observation. Tests of fiber transmission and FRD conducted both before and after the lifetime tests reveal that while transmission values do not change over the 10+ years of simulated wear, a clear increase in FRD is seen in all 18 fibers tested. This increase in FRD is likely due to microfractures that develop over time from repeated flexure of the fiber bundle, and stands in contrast to the transient FRD events that stem from localized stress and subsequent modal diffusion of light within the fibers. There was no measurable wavelength dependence on the increase in FRD over 350 nm to 600 nm. We also report on bend radius tests conducted on individual fibers and find the 266 μm VIRUS fibers to be immune to bending-induced FRD at bend radii of R 10 cm. Below this bend radius FRD increases slightly with decreasing radius. Lastly, we give details of a degradation seen in the fiber bundle currently deployed on the Mitchell Spectrograph (formally VIRUS-P) at McDonald Observatory. The degradation is shown to be caused by a localized shear in a select number of optical fibers that leads to an explosive form of FRD. In a few fibers, the overall transmission loss through the instrument can exceed 80%. These results are important for the VIRUS instrument, and for both current and proposed instruments that make use of optical fibers, particularly when the fibers are in continual motion during an observation, or experience

  4. Failure mechanics of fiber composite notched charpy specimens. [stress analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1976-01-01

    A finite element stress analysis was performed to determine the stress variation in the vicinity of the notch and far field of fiber composites Charpy specimens (ASTM Standard). NASTRAN was used for the finite element analysis assuming linear behavior and equivalent static load. The unidirectional composites investigated ranged from Thornel 75 Epoxy to S-Glass/Epoxy with the fiber direction parallel to the long dimension of the specimen. The results indicate a biaxial stress state exists in (1) the notch vicinity which is dominated by transverse tensile and interlaminar shear and (2) near the load application point which is dominated by transverse compression and interlaminar shear. The results also lead to the postulation of hypotheses for the predominant failure modes, the fracture initiation, and the fracture process. Finally, the results indicate that the notched Charpy test specimen is not suitable for assessing the impact resistance of nonmetallic fiber composites directly.

  5. Stress-rupture behavior of small diameter polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; Goldsby, Jon C.; Dicarlo, James A.

    1993-01-01

    Continuous length polycrystalline alumina fibers are candidates as reinforcement in high temperature composite materials. Interest therefore exists in characterizing the thermomechanical behavior of these materials, obtaining possible insights into underlying mechanisms, and understanding fiber performance under long term use. Results are reported on the time-temperature dependent strength behavior of Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Below 1000 C and 100 hours, Nextel 610 with the smaller grain size had a greater fast fracture and rupture strength than Fiber FP. The time exponents for stress-rupture of these fibers were found to decrease from approximately 13 at 900 C to below 3 near 1050 C, suggesting a transition from slow crack growth to creep rupture as the controlling fracture mechanism. For both fiber types, an effective activation energy of 690 kJ/mol was measured for rupture. This allowed stress-rupture predictions to be made for extended times at use temperatures below 1000 C.

  6. Frequency dependent squeezed light at audio frequencies

    NASA Astrophysics Data System (ADS)

    Miller, John

    2015-04-01

    Following successful implementation in the previous generation of instruments, squeezed states of light represent a proven technology for the reduction of quantum noise in ground-based interferometric gravitational-wave detectors. As a result of lower noise and increased circulating power, the current generation of detectors places one further demand on this technique - that the orientation of the squeezed ellipse be rotated as function of frequency. This extension allows previously negligible quantum radiation pressure noise to be mitigated in addition to quantum shot noise. I will present the results of an experiment which performs the appropriate rotation by reflecting the squeezed state from a detuned high-finesse optical cavity, demonstrating frequency dependent squeezing at audio frequencies for the first time and paving the way for broadband quantum noise reduction in Advanced LIGO. Further, I will indicate how a realistic implementation of this approach will impact Advanced LIGO both alone and in combination with other potential upgrades.

  7. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress

    SciTech Connect

    P.E. Klingsporn

    2011-08-01

    Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

  8. Near infrared frequency dependence of high-order sideband generation

    SciTech Connect

    Zaks, Benjamin; Banks, Hunter; Sherwin, Mark; Liu, Ren-Bao

    2013-12-04

    The near infrared frequency dependence of high order sideband generation in InGaAs quantum wells is discussed. The NIR frequency dependence of the sidebands indicates that the HSG phenomenon is excitonic in nature.

  9. Stress analysis of carbon fiber embedded composite material of rubber

    SciTech Connect

    Watanabe, O.; Taya, M.

    1995-12-31

    Thermo-mechanical properties of a composite of rubber embedded by carbon fill has been studied from the viewpoint of developing an electric device. The objective of the present study is to show stress analysis of carbon fiber embedded composite material of rubber by using a mixed-type finite element method. Based on the condition o plane strain, the geometry of composite material is taken as the two types of orientation of carbon fiber, which are distributed regularly according the specified volume fraction along the horizontal and vertical directions in the base material of rubber. The loading condition is assumed to be the two types of axial and shearing deformations. Through the calculated results of equivalent and mean stress distributions and the load-deflection curve, effects of the geometry size, the carbon fiber orientation and the loading condition are clarified. The results for the typical axial deformation is compared with the experimental results.

  10. Rho-Kinase–Mediated Contraction of Isolated Stress Fibers

    PubMed Central

    Katoh, Kazuo; Kano, Yumiko; Amano, Mutsuki; Onishi, Hirofumi; Kaibuchi, Kozo; Fujiwara, Keigi

    2001-01-01

    It is widely accepted that actin filaments and the conventional double-headed myosin interact to generate force for many types of nonmuscle cell motility, and that this interaction occurs when the myosin regulatory light chain (MLC) is phosphorylated by MLC kinase (MLCK) together with calmodulin and Ca2+. However, recent studies indicate that Rho-kinase is also involved in regulating the smooth muscle and nonmuscle cell contractility. We have recently isolated reactivatable stress fibers from cultured cells and established them as a model system for actomyosin-based contraction in nonmuscle cells. Here, using isolated stress fibers, we show that Rho-kinase mediates MLC phosphorylation and their contraction in the absence of Ca2+. More rapid and extensive stress fiber contraction was induced by MLCK than was by Rho-kinase. When the activity of Rho-kinase but not MLCK was inhibited, cells not only lost their stress fibers and focal adhesions but also appeared to lose cytoplasmic tension. Our study suggests that actomyosin-based nonmuscle contractility is regulated by two kinase systems: the Ca2+-dependent MLCK and the Rho-kinase systems. We propose that Ca2+ is used to generate rapid contraction, whereas Rho-kinase plays a major role in maintaining sustained contraction in cells. PMID:11331307

  11. Stress transfer of a Kevlar 49 fiber pullout test studied by micro-Raman spectroscopy.

    PubMed

    Lei, Zhenkun; Wang, Quan; Qiu, Wei

    2013-06-01

    The interfacial stress transfer behavior of a Kevlar 49 aramid fiber-epoxy matrix was studied with fiber pullout tests, the fibers of which were stretched by a homemade microloading device. Raman spectra on the embedded fiber were recorded by micro-Raman spectroscopy, under different strain levels. Then, the fiber axial stress was obtained by the relationship between the stress and Raman shift of the aramid fiber. Experimental results revealed that the fiber axial stress increased significantly with the load. The shear stress concentration occurred at the fiber entry to the epoxy resin. Thus, interfacial friction stages exist in the debonded fiber segment, and the interfacial friction shear stress is constant within one stage. The experimental results are consistent with the theoretical model predictions. PMID:23735244

  12. The influence of the fiber drawing process on intrinsic stress and the resulting birefringence optimization of PM fibers

    NASA Astrophysics Data System (ADS)

    Just, Florian; Spittel, Ron; Bierlich, Jörg; Grimm, Stephan; Jäger, Matthias; Bartelt, Hartmut

    2015-04-01

    The propagation properties of optical fibers can be significantly influenced by intrinsic stress. These effects are often undesired but in some cases essential for certain applications, e.g. in polarization maintaining (PM) fibers. In this paper, we present systematic studies on the influence of the fiber drawing process on the generated stress and demonstrate an approach to significantly increase the stress induced birefringence of PM-fibers. It is shown that the thermal stress caused by the material composition is superimposed with the mechanical stress caused by the fiber fabrication process. This intrinsic stress has a strong effect on the optical and mechanical properties of the glass and thus influences the fiber stability and modal behavior. By applying a thermal annealing step, the mechanical stress due to the fiber drawing process can be canceled. It is shown that this annealing step compensates the stress reducing influence of the drawing process on the birefringence of PM-fibers with panda structure. The comparison of the intrinsic stress states after fabrication with the state after the additional high temperature annealing step clearly shows that it is possible to improve the overall birefringence of panda fibers using appropriate preparation steps.

  13. Stress-displacement relation of fiber for fiber-reinforced ceramic composites during (indentation) loading and unloading

    SciTech Connect

    Hsueh, C.; Ferber, M.K.; Becher, P.F. )

    1989-11-01

    The stress-displacement relation of the fiber is analyzed for fiber-reinforced ceramic composites during axial compressive loading (indentation) and unloading on the exposed end of an embedded fiber. An unbonded fiber/matrix interface subject to Coulomb friction and residual radial clamping stresses is considered in the present study. The results show that the stress-displacement curves during loading and unloading can be used to evaluate the magnitude of the clamping stress, the coefficient of friction, and the frictional stress distribution at the interface. Specifically, in the absence of Poisson's effect (i.e., when Poisson's ratio of the fiber is zero), the interfacial shear stress is constant, the loading curve is parabolic, and, after complete unloading, the residual fiber displacement equals half of the maximum fiber displacement at the peak loading stress. In the presence of Poisson's effect, the interfacial shear stress is not constant, and, after complete unloading, the residual fiber displacement is less than half of the maximum fiber displacement at the peak loading stress.

  14. AC Magnetic Field Frequency Dependence of Magnetoacoustic Emission

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Fulton, J. P.; DeNale, R.

    1992-01-01

    Our recent study has proved a strong correlation between the low-frequency AC applied magnetic field amplitude dependence of the asymmetry of the magnetoacoustic emission (MAE) burst and the strength of the domain wall-defect interaction in iron-base ferromagnets. For the present study the AC magnetic field frequency dependence of the asymmetry has been investigated in the range of 1 to 200 Hz. When represented by the third moment of the rectified acoustic emission pulses, the asymmetry becomes a bell-shaped function of frequency with its center located around 25 Hz. This experiment has been performed with low carbon, high yield stress steel specimens of three different levels of domain wall-defect interaction strength. The results show that the increase in the interaction strength causes a vertical down shift of the asymmetry in the entire frequency range investigated.

  15. Optical fiber sensor for measurement of concrete structure stress

    NASA Astrophysics Data System (ADS)

    Zangaro, Renato A.; Silveira, Landulfo, Jr.; Barreto da Silva, R.

    1994-09-01

    In this work we describe an optical sensor to determine the stress applied at a concrete structure. The optical sensor is a monomode fiber optic, that is embedded in the concrete. The principle of these sensors is based on photoelastic effect, that produces a birefringence in the optical fiber and induces a rotation on the polarization angle of the guided polarized light. The photoelastic effect is produced due to a controlled applied charge in the center of the concrete structure. The shift of polarization is analyzed by a polaroid analyzer.

  16. Lamination residual stresses in fiber composites

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1975-01-01

    An experimental investigation was conducted to determine the magnitude of lamination residual stresses in angle-ply composites and to evaluate their effects on composite structural integrity. The materials investigated were boron/epoxy, boron/polyimide, graphite/low modulus epoxy, graphite/high modulus epoxy, graphite/polyimide and s-glass/epoxy. These materials were fully characterized. Static properties of laminates were also determined. Experimental techniques using embedded strain gages were developed and used to measure residual strains during curing. The extent of relaxation of lamination residual stresses was investigated. It was concluded that the degree of such relaxation is low. The behavior of angle-ply laminates subjected to thermal cycling, tensile load cycling, and combined thermal cycling with tensile load was investigated. In most cases these cycling programs did not have any measurable influence on residual strength and stiffness of the laminates. In the tensile load cycling tests, the graphite/polyimide shows the highest endurance with 10 million cycle runouts at loads up to 90 percent of the static strength.

  17. Increased molecular mobility in humid silk fibers under tensile stress

    NASA Astrophysics Data System (ADS)

    Seydel, Tilo; Knoll, Wiebke; Greving, Imke; Dicko, Cedric; Koza, Michael M.; Krasnov, Igor; Müller, Martin

    2011-01-01

    Silk fibers are semicrystalline nanocomposite protein fibers with an extraordinary mechanical toughness that changes with humidity. Diffusive or overdamped motion on a molecular level is absent in dry silkworm silk, but present in humid silk at ambient temperature. This microscopic diffusion distinctly depends on the externally applied macroscopic tensile force. Quasielastic and inelastic neutron-scattering data as a function of humidity and of tensile strain on humid silk fibers support the model that both the adsorbed water and parts of the amorphous polymers participate in diffusive motion and are affected by the tensile force. It is notable that the quasielastic linewidth of humid silk at 100% relative humidity increases significantly with the applied force. The effect of the tensile force is discussed in terms of an increasing alignment of the polymer chains in the amorphous fraction with increasing tensile stress which changes the geometrical restrictions of the diffusive motions.

  18. Possible translocation of actin and alpha-actinin along stress fibers.

    PubMed

    McKenna, N M; Wang, Y L

    1986-11-01

    We have employed fluorescent analogue cytochemistry and fluorescence photobleaching to study the mobility of actin and alpha-actin along stress fibers. Rhodamine-labeled actin or alpha-actinin microinjected into embryonic chick cardiac fibroblasts soon became incorporated into stress fibers. A pulse of a laser microbeam was used to photobleach small spots on the fluorescent stress fibers. Images of the bleached fiber were recorded with an intensified image processing system at 2-3 min intervals. The distance between the bleached spot and the terminus of the stress fiber, which remained stationary throughout the experiment, was then measured in the successive images. Movement of bleached spots was detected along stress fibers located in the apparently trailing processes of polygonal fibroblasts, and only occurred in one direction: away from the distal tip of the stress fiber. The rate of movement calculated for alpha-actinin-injected cells was 0.24 +/- 0.12 micron/min, for actin-injected cells, 0.29 +/- 0.11 micron/min. The rate did not seem to be affected by the location of the spot relative to the distal end of the stress fiber unless the spot was located within the most distal 5 microns of the stress fiber. Anti-myosin antibody staining indicated that stress fibers which demonstrated translocation were relatively depleted of myosin. The apparent translocation of proteins along stress fibers, possibly generated by stretching, may be related to the retraction of cell processes during locomotion. PMID:3758212

  19. Frequency-dependent fitness in gynodioecious Lobelia siphilitica.

    PubMed

    Rivkin, L Ruth; Case, Andrea L; Caruso, Christina M

    2015-05-01

    Selection is frequency dependent when an individual's fitness depends on the frequency of its phenotype. Frequency-dependent selection should be common in gynodioecious plants, where individuals are female or hermaphroditic; if the fitness of females is limited by the availability of pollen to fertilize their ovules, then they should have higher fitness when rare than when common. To test whether the fitness of females is frequency dependent, we manipulated the sex ratio in arrays of gynodioecious Lobelia siphilitica. To test whether fitness was frequency dependent because of variation in pollen availability, we compared open-pollinated and supplemental hand-pollinated plants. Open-pollinated females produced more seeds when they were rare than when they were common, as expected if fitness is negatively frequency dependent. However, hand-pollinated females also produced more seeds when they were rare, indicating that variation in pollen availability was not the cause of frequency-dependent fitness. Instead, fitness was frequency dependent because both hand- and open-pollinated females opened more flowers when they were rare than when they were common. This plasticity in the rate of anthesis could cause fitness to be frequency dependent even when reproduction is not pollen limited, and thus expand the conditions under which frequency-dependent selection operates in gynodioecious species. PMID:25824809

  20. Nonlinear stress-strain behavior of carbon nanotube fibers subject to slow sustained strain rate

    NASA Astrophysics Data System (ADS)

    Sun, Gengzhi; Wang, Dong; Pang, John H. L.; Liu, Jun; Zheng, Lianxi

    2013-09-01

    Nonlinear stress-strain behavior of carbon nanotube (CNT) fibers is studied based on the test data where fiber strength can be modeled by the Weibull distribution. CNT fibers spun from vertically aligned arrays are tensioned at slow sustained strain rate (0.00001 1/s) to study the tensile strength resulting from sliding-to-failure effects. A model is developed to estimate the Weibull modulus which characterizes the dispersion of fiber strengths in terms of the maximum sustained stress and failure strain of the fibers. The results show that the sliding indeed has great influence on the stress-strain relation of CNT fibers at low strain rate.

  1. Cyclic stretch-induced stress fiber dynamics - Dependence on strain rate, Rho-kinase and MLCK

    SciTech Connect

    Lee, Chin-Fu; Haase, Candice; Deguchi, Shinji; Kaunas, Roland

    2010-10-22

    Research highlights: {yields} Cyclic stretch induces stress fiber disassembly, reassembly and fusion perpendicular to the direction of stretch. {yields} Stress fiber disassembly and reorientation were not induced at low stretch frequency. {yields} Stretch caused actin fiber formation parallel to stretch in distinct locations in cells treated with Rho-kinase and MLCK inhibitors. -- Abstract: Stress fiber realignment is an important adaptive response to cyclic stretch for nonmuscle cells, but the mechanism by which such reorganization occurs is not known. By analyzing stress fiber dynamics using live cell microscopy, we revealed that stress fiber reorientation perpendicular to the direction of cyclic uniaxial stretching at 1 Hz did not involve disassembly of the stress fiber distal ends located at focal adhesion sites. Instead, these distal ends were often used to assemble new stress fibers oriented progressively further away from the direction of stretch. Stress fiber disassembly and reorientation were not induced when the frequency of stretch was decreased to 0.01 Hz, however. Treatment with the Rho-kinase inhibitor (Y27632) reduced stress fibers to thin fibers located in the cell periphery which bundled together to form thick fibers oriented parallel to the direction of stretching at 1 Hz. In contrast, these thin fibers remained diffuse in cells subjected to stretch at 0.01 Hz. Cyclic stretch at 1 Hz also induced actin fiber formation parallel to the direction of stretch in cells treated with the myosin light chain kinase (MLCK) inhibitor ML-7, but these fibers were located centrally rather than peripherally. These results shed new light on the mechanism by which stress fibers reorient in response to cyclic stretch in different regions of the actin cytoskeleton.

  2. Residual stresses in continuous graphite fiber Al metal matrix composites

    NASA Technical Reports Server (NTRS)

    Park, Hun Sub; Zong, Gui Sheng; Marcus, Harris L.

    1988-01-01

    The residual stresses in graphite fiber reinforced aluminum (Gr/Al) composites with various thermal histories are measured using X-ray diffraction (XRD) methods. The XRD stress analysis is based on the determination of lattice strains by precise measurements of the interplanar spacings in different directions of the sample. The sample is a plate consisting of two-ply P 100 Gr/Al 6061 precursor wires and Al 6061 overlayers. Prior to XRD measurement, the 6061 overlayers are electrochemically removed. In order to calibrate the relationship between stress magnitude and lattice spacing shift, samples of Al 6061 are loaded at varying stress levels in a three-point bend fixture, while the stresses are simultaneously determined by XRD and surface-attached strain gages. The stresses determined by XRD closely match those determined by the strain gages. Using these calibrations, the longitudinal residual stresses of P 100 Gr/Al 6061 composites are measured for various heat treatments, and the results are presented.

  3. Accelerated stress rupture lifetime assessment for fiber composites

    SciTech Connect

    Groves, S.E.; DeTeresa, S.J.; Sanchez, R.J.; Zocher, M.A.; Christensen, R.M.

    1997-02-01

    Objective was to develop a theoretical and experimental framework for predicting stress rupture lifetime for fiber polymer composites based on short-term accelerated testing. Originally a 3-year project, it was terminated after the first year, which included stress rupture experiments and viscoelastic material characterization. In principle, higher temperature, stress, and saturated environmental conditions are used to accelerate stress rupture. Two types of specimens were to be subjected to long-term and accelerated static tensile loading at various temperatures, loads in order to quantify both fiber and matrix dominated failures. Also, we were to apply state-of-the-art analytical and experimental characterization techniques developed under a previous DOE/DP CRADA for capturing and tracking incipient degradation mechanisms associated with mechanical performance. Focus was increase our confidence to design, analyze, and build long-term composite structures such as flywheels and hydrogen gas storage vessels; other applications include advanced conventional weapons, infrastructures, marine and offshore systems, and stockpile stewardship and surveillance. Capabilities developed under this project, though not completed or verified, are being applied to NIF, AVLIS, and SSMP programs.

  4. Developing Fiber Specific Promoter-Reporter Transgenic Lines to Study the Effect of Abiotic Stresses on Fiber Development in Cotton

    PubMed Central

    Chen, Junping; Burke, John J.

    2015-01-01

    Cotton is one of the most important cash crops in US agricultural industry. Environmental stresses, such as drought, high temperature and combination of both, not only reduce the overall growth of cotton plants, but also greatly decrease cotton lint yield and fiber quality. The impact of environmental stresses on fiber development is poorly understood due to technical difficulties associated with the study of developing fiber tissues and lack of genetic materials to study fiber development. To address this important question and provide the need for scientific community, we have generated transgenic cotton lines harboring cotton fiber specific promoter (CFSP)-reporter constructs from six cotton fiber specific genes (Expansin, E6, Rac13, CelA1, LTP, and Fb late), representing genes that are expressed at different stages of fiber development. Individual CFSP::GUS or CFSP::GFP construct was introduced into Coker 312 via Agrobacterium mediated transformation. Transgenic cotton lines were evaluated phenotypically and screened for the presence of selectable marker, reporter gene expression, and insertion numbers. Quantitative analysis showed that the patterns of GUS reporter gene activity during fiber development in transgenic cotton lines were similar to those of the native genes. Greenhouse drought and heat stress study showed a correlation between the decrease in promoter activities and decrease in fiber length, increase in micronaire and changes in other fiber quality traits in transgenic lines grown under stressed condition. These newly developed materials provide new molecular tools for studying the effects of abiotic stresses on fiber development and may be used in study of cotton fiber development genes and eventually in the genetic manipulation of fiber quality. PMID:26030401

  5. Effect of stress on ultrasonic pulses in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Hemann, J. H.; Baaklini, G. Y.

    1986-01-01

    An acoustical-ultrasonic technique was used to demonstrate relationships existing between changes in attenuation of stress waves and tensile stress on an eight ply 0 degree graphite-epoxy fiber reinforced composite. All tests were conducted in the linear range of the material for which no mechanical or macroscopic damage was evident. Changes in attenuation were measured as a function of tensile stress in the frequency domain and in the time domain. Stress wave propagation in these specimens was dispersive, i.e., the wave speed depends on frequency. Wave speeds varied from 267,400 cm/sec to 680,000 cm/sec as the frequency of the signal was varied from 150 kHz to 1.9 MHz which strongly suggests that flexural/lamb wave modes of propagation exist. The magnitude of the attenuation changes depended strongly on tensile stress. It was further observed that the wave speeds increased slightly for all tested frequencies as the stress was increased.

  6. Noninvasive detection of plant nutrient stress using fiber optic spectrophotometry

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Wei; Asundi, Anand K.; Liew, Oi Wah; Boey, William S. L.

    2001-05-01

    In a previous paper, we described the use of fiber optic spectrophotometry as a non-destructive and sensitive method to detect early symptoms of plant nutrient deficiency. We report further developments of our work on Brassica chinensis var parachinensis (Bailey) showing reproducibility of our data collected at a different seasonal period. Plants at the mid-log growth phase were subjected to nutrient stress by transferring them to nitrate- and calcium- deficient nutrient solution in a standing aerated hydroponic system. After tracking changes in leaf reflectance by FOSpectr for nine days, the plants were returned to complete nutrient solution and their recovery was monitored for a further nine days. The responses of nutrient stressed plants were compared with those grown under complete nutrient solution over the 18-day trial period. We also compared the sensitivity of FOSpectr detection against plant growth measurements vis-a-vis average leaf number and leaf width and show that the former method gave an indication of nutrient stress much earlier than the latter. In addition, this work indicated that while normal and nutrient-stressed plants could not be distinguished within the first 7 days by tracking plant growth indicators, stressed plants did show a clear decline in average leaf number and leaf width in later stages of growth even after the plants were returned to complete nutrient solution. The results further reinforce the need for early detection of nutrient stress, as late remedial action could not reverse the loss in plant growth in later stages of plant development.

  7. Modeling of stress/strain behavior of fiber-reinforced ceramic matrix composites including stress redistribution

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.

    1994-01-01

    A computational simulation procedure is presented for nonlinear analyses which incorporates microstress redistribution due to progressive fracture in ceramic matrix composites. This procedure facilitates an accurate simulation of the stress-strain behavior of ceramic matrix composites up to failure. The nonlinearity in the material behavior is accounted for at the constituent (fiber/matrix/interphase) level. This computational procedure is a part of recent upgrades to CEMCAN (Ceramic Matrix Composite Analyzer) computer code. The fiber substructuring technique in CEMCAN is used to monitor the damage initiation and progression as the load increases. The room-temperature tensile stress-strain curves for SiC fiber reinforced reaction-bonded silicon nitride (RBSN) matrix unidirectional and angle-ply laminates are simulated and compared with experimentally observed stress-strain behavior. Comparison between the predicted stress/strain behavior and experimental stress/strain curves is good. Collectively the results demonstrate that CEMCAN computer code provides the user with an effective computational tool to simulate the behavior of ceramic matrix composites.

  8. The tension mounts: Stress fibers as force-generating mechanotransducers

    PubMed Central

    Wittchen, Erika S.

    2013-01-01

    Stress fibers (SFs) are often the most prominent cytoskeletal structures in cells growing in tissue culture. Composed of actin filaments, myosin II, and many other proteins, SFs are force-generating and tension-bearing structures that respond to the surrounding physical environment. New work is shedding light on the mechanosensitive properties of SFs, including that these structures can respond to mechanical tension by rapid reinforcement and that there are mechanisms to repair strain-induced damage. Although SFs are superficially similar in organization to the sarcomeres of striated muscle, there are intriguing differences in their organization and behavior, indicating that much still needs to be learned about these structures. PMID:23295347

  9. Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers.

    PubMed

    Mamdem, Y Sikali; Burov, E; de Montmorillon, L-A; Jaouën, Y; Moreau, G; Gabet, R; Taillade, F

    2012-01-16

    Residual stresses inside optical fibers can impact significantly on Brillouin spectrum properties. We have analyzed the importance of internal stresses on the Brillouin Gain Spectrum (BGS) for a conventional G.652 fiber and compared modeling results to measurements. Then the residual internal stresses have been investigated for a set of trench-assisted fibers: fibers are coming from a single preform with different draw tensions. Numerical modeling based on measured internal stresses profiles are compared with corresponding BGS experimental results. Clearly, Brillouin spectrum is shifted linearly versus draw tension with a coefficient of -20MHz/100g and its linewidth increases. PMID:22274523

  10. Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices

    NASA Astrophysics Data System (ADS)

    Hutsel, Michael R.

    2011-07-01

    Optical fiber technology continues to advance rapidly as a result of the increasing demands on communication systems and the expanding use of fiber-based sensing. New optical fiber types and fiber-based communications components are required to permit higher data rates, an increased number of channels, and more flexible installation requirements. Fiber-based sensors are continually being developed for a broad range of sensing applications, including environmental, medical, structural, industrial, and military. As optical fibers and fiber-based devices continue to advance, the need to understand their fundamental physical properties increases. The residual-stress distribution (RSD) and the refractive-index distribution (RID) play fundamental roles in the operation and performance of optical fibers. Custom RIDs are used to tailor the transmission properties of fibers used for long-distance transmission and to enable fiber-based devices such as long-period fiber gratings (LPFGs). The introduction and modification of RSDs enable specialty fibers, such as polarization-maintaining fiber, and contribute to the operation of fiber-based devices. Furthermore, the RSD and the RID are inherently linked through the photoelastic effect. Therefore, both the RSD and the RID need to be characterized because these fundamental properties are coupled and affect the fabrication, operation, and performance of fibers and fiber-based devices. To characterize effectively the physical properties of optical fibers, the RSD and the RID must be measured without perturbing or destroying the optical fiber. Furthermore, the techniques used must not be limited in detecting small variations and asymmetries in all directions through the fiber. Finally, the RSD and the RID must be characterized concurrently without moving the fiber to enable the analysis of the relationship between the RSD and the RID. Although many techniques exist for characterizing the residual stress and the refractive index in

  11. FREQUENCY-DEPENDENT ABSORPTION OF ELECTROMAGNETIC ENERGY IN BIOLOGICAL TISSUE

    EPA Science Inventory

    The frequency-dependent absorption of electromagnetic energy in biological tissue is illustrated by use of the Debye equations, model calculations for different irradiation conditions, and measured electrical properties (conductivity and permittivity) of different tissues. Four s...

  12. Frequency-dependent FDTD methods using Z transforms

    NASA Technical Reports Server (NTRS)

    Sullivan, Dennis M.

    1992-01-01

    While the frequency-dependent finite-difference time-domain, or (FD)2TD, method can correctly calculate EM propagation through media whose dielectric properties are frequency-dependent, more elaborate applications lead to greater (FD)2TD complexity. Z-transform theory is presently used to develop the mathematical bases of the (FD)2TD method, simultaneously obtaining a clearer formulation and allowing researchers to draw on the existing literature of systems analysis and signal-processing.

  13. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    SciTech Connect

    Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J

    2010-11-17

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.

  14. Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices

    NASA Astrophysics Data System (ADS)

    Hutsel, Michael R.

    2011-07-01

    Optical fiber technology continues to advance rapidly as a result of the increasing demands on communication systems and the expanding use of fiber-based sensing. New optical fiber types and fiber-based communications components are required to permit higher data rates, an increased number of channels, and more flexible installation requirements. Fiber-based sensors are continually being developed for a broad range of sensing applications, including environmental, medical, structural, industrial, and military. As optical fibers and fiber-based devices continue to advance, the need to understand their fundamental physical properties increases. The residual-stress distribution (RSD) and the refractive-index distribution (RID) play fundamental roles in the operation and performance of optical fibers. Custom RIDs are used to tailor the transmission properties of fibers used for long-distance transmission and to enable fiber-based devices such as long-period fiber gratings (LPFGs). The introduction and modification of RSDs enable specialty fibers, such as polarization-maintaining fiber, and contribute to the operation of fiber-based devices. Furthermore, the RSD and the RID are inherently linked through the photoelastic effect. Therefore, both the RSD and the RID need to be characterized because these fundamental properties are coupled and affect the fabrication, operation, and performance of fibers and fiber-based devices. To characterize effectively the physical properties of optical fibers, the RSD and the RID must be measured without perturbing or destroying the optical fiber. Furthermore, the techniques used must not be limited in detecting small variations and asymmetries in all directions through the fiber. Finally, the RSD and the RID must be characterized concurrently without moving the fiber to enable the analysis of the relationship between the RSD and the RID. Although many techniques exist for characterizing the residual stress and the refractive index in

  15. Residual stress effects on the impact resistance and strength of fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1973-01-01

    Equations have been derived to predict degradation effects of microresidual stresses on impact resistance of unidirectional fiber composites. Equations also predict lamination residual stresses in multilayered angle ply composites.

  16. Thermal dependence of stress-induced birefringence in single mode optical fibers

    NASA Technical Reports Server (NTRS)

    Berthold, J. W., III; Thompson, L. B.

    1984-01-01

    Measurements of the change in stress-induced birefringence with temperature in single mode optical fibers are reported. The fibers examined include those with low residual stress birefringence that have circular and elliptical cores. A section of each fiber was placed under constant load with weights and heated inside a furnace. Polarized light was coupled into and out of the fiber ends outside the furnace. Two mutually perpendicular polarization components were analyzed and detected at the fiber output end. Changes in the detected signal levels were monitored as a function of the temperature of the single mode fiber stressed under constant load. Discussion of results and applications to localized stress measurements at high temperatures are presented.

  17. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    SciTech Connect

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao E-mail: wangzhibiao@haifu.com.cn; Song, Dan; Lei, Guangrong; Lin, Zhou; Zhang, Dong E-mail: wangzhibiao@haifu.com.cn; Wu, Junru

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  18. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    NASA Astrophysics Data System (ADS)

    Li, Faqi; Song, Dan; Zeng, Deping; Lin, Zhou; He, Min; Lei, Guangrong; Wu, Junru; Zhang, Dong; Wang, Zhibiao

    2015-12-01

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  19. Analysis of stress distributions in metal-matrix composites with variations in fiber spacing

    NASA Astrophysics Data System (ADS)

    Yancey, Robert Neil

    1997-09-01

    Results of micromechanical and finite element analyses are presented to quantify the effects of fiber spacing in unidirectional metal-matrix composites (MMC's). Computed tomography (CT) data of unidirectional metal-matrix composite samples provide information on fiber locations for the analysis of the fiber distribution within the composite. Image processing methods are developed to extract fiber centers from the CT data. A micromechanical model, based on the Generalized Method of Cells (GMC), is developed to include interface and crack elements and model the stress variations in a representative unit cell containing two half fibers. The minimum, average, and maximum distance between fibers, as measured from the CT data, is used as input to the model. The model results show that the stress between fibers increases as they get closer together. The CT data are also processed to produce a rectangular grid of finite elements which model the composite cross-section and where the stiffness matrix for each element is based on the local fiber volume fraction. The finite element results show that in some cases, stresses in the composite can be as high as 56% greater than the average stress and thereby set up stress concentrations which can initiate yielding and/or damage at loads well below those that would be calculated using average stress considerations only.

  20. Simplified micromechanical equations for thermal residual stress analysis of coated fiber composites

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.

    1992-01-01

    The fabrication of metal matrix composites poses unique problems to the materials engineer. The large thermal expansion coefficient mismatch between the fiber and matrix leads to high tensile residual stresses at the fiber/matrix interface which could lead to premature matrix cracking during cooldown. Fiber coating could be used to reduce thermal residual stresses. A simple closed-form analysis, based on a three-phase composite cylinder model, was developed to calculate thermal residual stresses in a fiber/interface/matrix system. Guidelines, in the form of simple equations, for the selection of appropriate material properties of the fiber coating, were also derived to minimize thermal residual stresses in the matrix during fabrication.

  1. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop.

    PubMed

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-01-01

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700

  2. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop

    PubMed Central

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-01-01

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700

  3. Frequency dependent elastic impedance inversion for interstratified dispersive elastic parameters

    NASA Astrophysics Data System (ADS)

    Zong, Zhaoyun; Yin, Xingyao; Wu, Guochen

    2016-08-01

    The elastic impedance equation is extended to frequency dependent elastic impedance equation by taking partial derivative to frequency. With this equation as the forward solver, a practical frequency dependent elastic impedance inversion approach is presented to implement the estimation of the interstratified dispersive elastic parameters which makes full use of the frequency information of elastic impedances. Three main steps are included in this approach. Firstly, the elastic Bayesian inversion is implemented for the estimation of elastic impedances from different incident angle. Secondly, with those estimated elastic impedances, their variations are used to estimate P-wave velocity and S-wave velocity. Finally, with the prior elastic impedance and P-wave and S-wave velocity information, the frequency dependent elastic variation with incident angle inversion is presented for the estimation of the interstratified elastic parameters. With this approach, the interstratified elastic parameters rather than the interface information can be estimated, making easier the interpretation of frequency dependent seismic attributes. The model examples illustrate the feasibility and stability of the proposed method in P-wave velocity dispersion and S-wave velocity dispersion estimation. The field data example validates the possibility and efficiency in hydrocarbon indication of the estimated P-wave velocity dispersion and S-wave velocity dispersion.

  4. Nondestructive evaluation of residual stress in short-fiber reinforced plastics by x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tanaka, Keisuke; Tokoro, Syouhei; Akiniwa, Yoshiaki; Egami, Noboru

    2014-06-01

    The X-ray diffraction method is used to measure the residual stress in injection-molded plates of short-fiber reinforced plastics (SFRP) made of crystalline thermoplastics, polyphenylene sulphide (PPS), reinforced by carbon fibers with 30 mass%. Based on the orientation of carbon fibers, injection molded plates can be modeled as three-layered lamella where the core layer is sandwiched by skin layers. The stress in the matrix in the skin layer was measured using Cr-Kα radiation with the sin2Ψ method. Since the X-ray penetration depth is shallow, the state of stresses measured by X-rays in FRP can be assumed to be plane stress. The X-ray measurement of stress in carbon fibers was not possible because of high texture. A new method was proposed to evaluate the macrostress in SFRP from the measurement of the matrix stress. According to micromechanics analysis of SFRP, the matrix stresses in the fiber direction, σ1m, and perpendicular to the fiber direction, σ2m, and shear stress τ12m can be expressed as the functions of the applied (macro-) stresses, σ1A, σ2A , τ12A as follows: σ1m = α11σ1A +α12σ2A, σ2m = α21σ1A + α22σ2A, τ12m = α66τ12A, where α11 ,α12, α21, α22, α66 are stress-partitioning coefficients. Using skin-layer strips cut parallel, perpendicular and 45° to the molding direction, the stress in the matrix was measured under the uniaxial applied stress and the stress-partitioning coefficients of the above equations were determined. Once these relations are established, the macrostress in SFRP can be determined from the measurements of the matrix stresses by X-rays.

  5. Stresses in a three-dimensional unidirectional composite containing broken fibers

    NASA Technical Reports Server (NTRS)

    Goree, J. G.; Gross, R. S.

    1980-01-01

    An approximate solution is developed for the determination of the interlaminar normal and shear stresses in the vicinity of a crack in a three dimensional composite containing unidirectional linearly elastic fibers in an infinite linearly elastic matrix. In order to reduce the complexity of the formulation, certain assumptions are made as to the physically significant stresses to be retained. These simplifications reduce the partial differential equations of elasticity to differential-difference equations which are tractable using Fourier transform techniques. This 'material modeling' approach is in contrast with solutions developed by considering each lamina as a homogeneous, orthotropic layer. The resulting solution does not contain the classical singular stress field for the fibers and the influence of broken fibers on unbroken fibers is felt by a change in stress concentration factors. The matrix stresses however, are unbounded as the fiber spacing vanishes and an equivalent fiber-matrix geometry is proposed which gives the correct singular behavior. The numerical solution is considered in detail and several specific examples are presented. The potential for damaged or debonded zones to be generated by an embedded crack is discussed, and stress concentration factors for fibers near the crack are given. Detailed comparisons are made between the present solution, the analogous two-dimensional problem, and corresponding shear-lag models.

  6. Arc-discharge effects on residual stress and refractive index in single-mode optical fibers.

    PubMed

    Wang, Pengfei; Jenkins, Micah H; Gaylord, Thomas K

    2016-03-20

    Arc-discharge effects on the residual stress and refractive index in single-mode optical fibers are investigated using a previously developed three-dimensional concurrent stress-index measurement method. Using commercial optical fibers and a commercial fusion splicer, the residual stress and refractive index perturbations caused by weak electrical arc discharges in single-mode fibers were measured. Refractive index changes greater than 10-4 and longitudinal perturbation lengths of less than 500 μm were shown to be possible. The subsequent prospects for arc-induced long-period fiber gratings are analyzed, and a typical transmission resonance is predicted to have a depth of 56 dB and a bandwidth of 0.08 nm at a wavelength of 1585 nm. The results of this investigation will be useful in modeling device performance and optimization of arc-induced long-period fiber grating fabrication. PMID:27140587

  7. Augmented stress fiber arrays after cytopharmacologic disassembly of microtubules

    SciTech Connect

    Godman, G.C.; Tannenbaum, J.; Brett, J.B.

    1986-03-01

    Disruption of microtubules (mt) of bovine aortic endothelial (BAE) cells, and normal and transformed fibroblasts, by exposure to 2.5 ..mu..M colchicine; 12 ..mu..M vinblastine; or 1 ..mu..M nocodazole, for 5 or 20 hrs results in aggregation of vimentin-intermediate filament (IF) and the development of markedly augmented stress fiber (SF) arrays. After disassembly of mt, confluent BAE, with circumferential marginal microfilament bands and few central SF, develop dense ribbon-like SF arrays, and spontaneously transformed fibroblasts (tHmf-e), which before treatment are apolar or epithelioid and have few or no SF, acquire extensive organized SF arrays. The axially oriented SF span the entire cell length and terminate in vinculin-containing adhesion plaques, polarizing these cells. The visible increase in SF associated actin is not accompanied by an increase either in actin synthesis (determined from electropherograms after pulse labeling with (/sup 35/S)methionine), or content (DNAse I assay for total cell actin). The reorganization of actin into SF and the development of vinculin adhesion plaques is independent of protein synthesis and occurs in the presence of cycloheximide (10 ..mu..g/ml). These results suggest a role for mt and IF in the regulation of the organizational state of the actin-based cytoskeleton.

  8. Dynamic changes in stress fiber expression in rat uterine vein endothelial cells associated with pregnancy.

    PubMed

    Sago, H; Sugimoto, K; Fujii, S; Iinuma, K; Yamashita, K; Kitagawa, M; Terashima, Y

    1993-09-01

    En face endothelial preparations of rat uterine vein were stained with rhodamine-phalloidin to investigate the dynamics of stress fiber expression during pregnancy. In prepregnant animals, somewhat plump, spindle-like endothelial cells of the uterine vein had only a few short stress fibers. With the progress of pregnancy, however, many long stress fibers appeared within the elongated endothelial cells. Within 2 hr after delivery, these stress fibers became dramatically decreased in number as the cells reverted from an elongated to a plump shape and returned to the prepregnancy level by 14 days postpartum. The uterine vein showed a significant increase in length during pregnancy and quickly shortened after delivery. Thus, expression of stress fibers in endothelial cells of the uterine vein seems to be related to the tension loaded on this vessel during its elongation in parallel with the marked growth of the uterine body during pregnancy. This study shows that stress fibers are dynamic structures that may serve to maintain endothelial cell integrity during the exertion of tensile stress on the vessel wall. PMID:8246817

  9. Optical fiber sensors and their application in monitoring stress build-up in dental resin cements

    NASA Astrophysics Data System (ADS)

    Ottevaere, H.; Tabak, M.; Fernandez Fernandez, A.; Berghmans, F.; Thienpont, H.

    2005-09-01

    The field of optical fiber sensing is highly diverse and this diversity is perceived as a great advantage over more conventional sensors in that an optical sensor can be tailored to measure any of a myriad of physical parameters. In this paper we present a niche application for optical fiber sensors in the domain of biophotonics, namely the monitoring of stress build-up during the curing process of dental resin cements. We discuss the origin of this stress build-up and the problems it can cause when treating patients. Optical fiber sensors aim at excelling in two kind of applications: firstly to perform quality control on batch produced dental cements and measure their total material shrinkage, secondly to monitor the hardening of the cement during in-vivo measurements resulting in the dynamic measurement of the shrinkage and to control the stress in a facing based restoration. We therefore investigated two types of optical fiber sensors as alternatives to conventional measurement techniques; namely polarimetric optical fiber sensors and fiber Bragg gratings written in polarization maintaining fibers. After discussing the results obtained with both optical fiber sensors, we will conclude with a critical assessment of the suitability of the two proposed sensing configurations for multi-parameter stress monitoring.

  10. Multi-port frequency dependent network equivalents for the EMTP

    SciTech Connect

    Morched, A.S.; Ottevangers, J.H.; Marti, L. )

    1993-07-01

    A method is developed to reduce large power systems to single and multi-port frequency dependent equivalents. These equivalents consist of simple RLC modules that faithfully reproduce the frequency characteristics of the network. The method is implemented in the EMTP and has been extensively tested at Ontario Hydro. The implementation involves a pre-processor program to generate the model: the Frequency Dependent Equivalent (FDNE), and a EMTP time step loop module to calculate the transient response. The use of the FDNE results in major reductions in computer time and is especially beneficial for multi-case statistical EMTP studies. An example showing the accuracy and efficiency of the FDNE when used to reduce a large 500 kV network is presented.

  11. Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant infer that fiber cell wall development is associated with stress responses

    PubMed Central

    2013-01-01

    Background Cotton fiber maturity is an important factor for determining the commercial value of cotton. How fiber cell wall development affects fiber maturity is not well understood. A comparison of fiber cross-sections showed that an immature fiber (im) mutant had lower fiber maturity than its near isogenic wild type, Texas marker-1 (TM-1). The availability of the im mutant and TM-1 provides a unique way to determine molecular mechanisms regulating cotton fiber maturity. Results Transcriptome analysis showed that the differentially expressed genes (DEGs) in the im mutant fibers grown under normal stress conditions were similar to those in wild type cotton fibers grown under severe stress conditions. The majority of these DEGs in the im mutant were related to stress responses and cellular respiration. Stress is known to reduce the activity of a classical respiration pathway responsible for energy production and reactive oxygen species (ROS) accumulation. Both energy productions and ROS levels in the im mutant fibers are expected to be reduced if the im mutant is associated with stress responses. In accord with the prediction, the transcriptome profiles of the im mutant showed the same alteration of transcriptional regulation that happened in energy deprived plants in which expressions of genes associated with cell growth processes were reduced whereas expressions of genes associated with recycling and transporting processes were elevated. We confirmed that ROS production in developing fibers from the im mutant was lower than that from the wild type. The lower production of ROS in the im mutant fibers might result from the elevated levels of alternative respiration induced by stress. Conclusion The low degree of fiber cell wall thickness of the im mutant fibers is associated with deregulation of the genes involved in stress responses and cellular respiration. The reduction of ROS levels and up-regulation of the genes involved in alternative respirations suggest that

  12. Frequency-dependent effective hydraulic conductivity of strongly heterogeneous media.

    PubMed

    Caspari, E; Gurevich, B; Müller, T M

    2013-10-01

    The determination of the transport properties of heterogeneous porous rocks, such as an effective hydraulic conductivity, arises in a range of geoscience problems, from groundwater flow analysis to hydrocarbon reservoir modeling. In the presence of formation-scale heterogeneities, nonstationary flows, induced by pumping tests or propagating elastic waves, entail localized pressure diffusion processes with a characteristic frequency depending on the pressure diffusivity and size of the heterogeneity. Then, on a macroscale, a homogeneous equivalent medium exists, which has a frequency-dependent effective conductivity. The frequency dependence of the conductivity can be analyzed with Biot's equations of poroelasticity. In the quasistatic frequency regime of this framework, the slow compressional wave is a proxy for pressure diffusion processes. This slow compressional wave is associated with the out-of-phase motion of the fluid and solid phase, thereby creating a relative fluid-solid displacement vector field. Decoupling of the poroelasticity equations gives a diffusion equation for the fluid-solid displacement field valid in a poroelastic medium with spatial fluctuations in hydraulic conductivity. Then, an effective conductivity is found by a Green's function approach followed by a strong-contrast perturbation theory suggested earlier in the context of random dielectrics. This theory leads to closed-form expressions for the frequency-dependent effective conductivity as a function of the one- and two-point probability functions of the conductivity fluctuations. In one dimension, these expressions are consistent with exact solutions in both low- and high-frequency limits for arbitrary conductivity contrast. In 3D, the low-frequency limit depends on the details of the microstructure. However, the derived approximation for the effective conductivity is consistent with the Hashin-Shtrikman bounds. PMID:24229128

  13. Frequency Dependent Microwave Impedance Microscopy of Ferroelectric Domain Walls

    NASA Astrophysics Data System (ADS)

    Johnston, Scott; Shen, Zhi-Xun

    ABO3 ferroelectrics are known to exhibit domain wall conductivity which is of great fundamental and technological interest. Microwave Impedance Microscopy is a near field measurement technique which allows local, non-contact measurement of AC conductivity and permittivity. In this work, Microwave Impedance Microscopy over a wide frequency range is used to probe the electrical properties of domain walls in ABO3 ferroelectrics. An unexpected, strong frequency dependence in the microwave dissipation near domain walls is observed.

  14. Stress-and-Strain Analysis Of Hot Metal/Fiber Composites

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Chamis, Christos C.

    1988-01-01

    Macroscopic mechanical properties derived from micromechanics. Stress-and-strain equations developed to express microscopic and macroscopic mechanical properties of metals reinforced by unidirectional fibers, over range of temperatures. New equations reduce computational load by providing approximate, closed-form expressions for microscopic and pseudohomogeneous anisotropic properties of single ply reinforced by unidirectional fibers. Typical application is calculation of residual stress in newly manufactured article.

  15. Developing fiber specific promoter-reporter transgenic lines to study the effect of abiotic stresses on fiber development in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is one of the most important cash crops in US agricultural industry. Environmental stresses, such as drought, high temperature and combination of both, not only reduce the overall growth of cotton plants, but also greatly decrease cotton lint yield and fiber quality. The impact of environment...

  16. Species coexistence and pathogens with frequency-dependent transmission.

    PubMed

    Rudolf, Volker H W; Antonovics, Janis

    2005-07-01

    Pathogens that infect multiple hosts are commonly transmitted by vectors, and their transmission rate is often thought to depend on the proportion of hosts or vectors infected (i.e., frequency dependence). A model of a two-host, one-pathogen system with frequency-dependent transmission is used to investigate how sharing a pathogen with an alternative host influences pathogen-mediated extinction. The results show that if there is frequency-dependent transmission, a host can be rescued from pathogen-mediated extinction by the presence of a second host with which it shares a pathogen. The study provides an important conceptual counterexample to the idea that shared pathogens necessarily result in apparent competition by showing that shared pathogens can mediate apparent mutualism. We distinguish two types of dilution effect (pathogen reduction with increasing host diversity), each resulting from different underlying pathogen transmission processes and host density effects. These results have important consequences for understanding the role of pathogens in species interactions and in maintaining host species diversity. PMID:15937794

  17. Frequency-dependent force fields for QMMM calculations.

    PubMed

    Harczuk, Ignat; Vahtras, Olav; Ågren, Hans

    2015-03-28

    We outline the construction of frequency-dependent polarizable force fields. The force fields are derived from analytic response theory for different frequencies using a generalization of the LoProp algorithm giving a decomposition of a molecular dynamical polarizability to localized atomic dynamical polarizabilities. These force fields can enter in a variety of applications - we focus on two such applications in this work: firstly, they can be incorporated in a physical, straightforward, way for current existing methods that use polarizable embeddings, and we can show, for the first time, the effect of the frequency dispersion within the classical environment of a quantum mechanics-molecular mechanics (QMMM) method. Our methodology is here evaluated for some test cases comprising water clusters and organic residues. Secondly, together with a modified Silberstein-Applequist procedure for interacting inducible point-dipoles, these frequency-dependent polarizable force fields can be used for a classical determination of frequency-dependent cluster polarizabilities. We evaluate this methodology by comparing with the corresponding results obtained from quantum mechanics or QMMM where the absolute mean [small alpha, Greek, macron] is determined with respect to the size of the QM and MM parts of the total system. PMID:25714984

  18. In situ stress measurement of fiber reinforced composite in low temperature state by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Nishida, Masayuki; Jing, Tian; Muslih, M. Refai; Doi, Taisei; Matsue, Tatsuya; Hanabusa, Takao

    2015-03-01

    The tungsten fiber reinforced titanium composite (W/Ti) was produced by the spot welding method. The internal stress alteration of the W/Ti composite was measured by the neutron diffractometer, DN1, which had been installed at beam port #6 in National Nuclear Energy Agency Indonesia. The two-dimensional detector and cryostat system were mounted on the DN1 diffractometer, and the residual stress alterations were measured by the in situ neutron stress measurement technique under the cooling cycles from 300 K to 10 K. Residual stresses in tungsten fiber were investigated at several temperatures. In the longitudinal fiber direction, the thermal residual stresses of tungsten fiber became a large compressive state and represented the maximum value is about -950 MPa. The calculated results of the simple elastic model agreed with the experimental results of the in situ thermal stress measurement qualitatively. It is assumed that the stresses in the fiber longitudinal direction are the dominant stresses in the W/Ti composite.

  19. Simplified micromechanical equations for thermal residual stress analysis of coated fiber composites

    NASA Technical Reports Server (NTRS)

    Naik, R. A.

    1991-01-01

    The fabrication of metal matrix composites poses unique problems to the materials engineer. The large thermal expansion coefficient (CTE) mismatch between the fiber and matrix leads to high tensile residual stresses at the fiber/matrix (F/M) interface which could lead to premature matrix cracking during cooldown. Fiber coatings could be used to reduce thermal residual stresses. A simple closed form analysis, based on a three phase composite cylinder model, was developed to calculate thermal residual stresses in a fiber/interphase/matrix system. Parametric studies showed that the tensile thermal residual stresses at the F/M interface were very sensitive to the CTE and thickness of the interphase layer. The modulus of the layer had only a moderate effect on tensile residual stresses. For a silicon carbide titanium aluminide composite, the tangential stresses were 20 to 30 pct. larger than the axial stresses, over a wide range of interphase layer properties, indicating a tendency to form radial matrix cracks during cooldown. Guidelines for the selection of appropriate material properties of the fiber coating were also derived in order to minimize thermal residual stresses in the matrix during fabrication.

  20. Frequency-dependent Lg Q within the continental United States

    USGS Publications Warehouse

    Erickson, D.; McNamara, D.E.; Benz, H.M.

    2004-01-01

    Frequency-dependent crustal attenuation (1/Q) is determined for seven distinct physiographic/tectonic regions of the continental United States using high-quality Lg waveforms recorded on broadband stations in the frequency band 0.5 to 16 Hz. Lg attenuation is determined from time-domain amplitude measurements in one-octave frequency bands centered on the frequencies 0.75, 1.0, 3.0, 6.0, and 12.0 Hz. Modeling errors are determined using a delete-j jackknife resampling technique. The frequency-dependent quality factor is modeled in the form of Q = Q0f??. Regions were initially selected based on tectonic provinces but were eventually limited and adjusted to maximize ray path coverage in each area. Earthquake data was recorded on several different networks and constrained to events occurring within the crust (<40 km depth) and at least mb 3.5 in size. A singular value decomposition inversion technique was applied to the data to simultaneously solve for source and receiver terms along with Q for each region at specific frequencies. The lowest crustal Q was observed in northern and southern California where Q is described by the functions Q = 152(?? 37)f0.72(??0.16) and Q = 105(??26) f0.67(??0.16), respectively. The Basin and Range Province, Pacific Northwest, and Rocky Mountain states also display lower Q and a strong frequency dependence characterized by the functions Q = 200(??40)f0.68(??0.12), Q = 152(??49) f0.76(??0.18), and Q = 166(??37) f0.61(??0.14), respectively. In contrast, in the central and northeast United States Q functions are Q = 640(?? 225) f0.344(??0.22) and Q = 650(??143) f0.36(??0.14), respectively, show a high crustal Q and a weaker frequency dependence. These results improve upon previous Lg modeling by subdividing the United States into smaller, distinct tectonic regions and using significantly more data that provide improved constraints on frequency-dependent attenuation and errors. A detailed attenuation map of the continental United States can

  1. Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers.

    PubMed

    Sulejmani, Sanne; Sonnenfeld, Camille; Geernaert, Thomas; Luyckx, Geert; Van Hemelrijck, Danny; Mergo, Pawel; Urbanczyk, Waclaw; Chah, Karima; Caucheteur, Christophe; Mégret, Patrice; Thienpont, Hugo; Berghmans, Francis

    2013-08-26

    We demonstrate shear stress sensing with a Bragg grating-based microstructured optical fiber sensor embedded in a single lap adhesive joint. We achieved an unprecedented shear stress sensitivity of 59.8 pm/MPa when the joint is loaded in tension. This corresponds to a shear strain sensitivity of 0.01 pm/µε. We verified these results with 2D and 3D finite element modeling. A comparative FEM study with conventional highly birefringent side-hole and bow-tie fibers shows that our dedicated fiber design yields a fourfold sensitivity improvement. PMID:24105585

  2. Nucleation and Crystallization as Induced by Bending Stress in Lithium Silicate Glass Fibers

    NASA Technical Reports Server (NTRS)

    Reis, Signo T.; Kim, Cheol W.; Brow, Richard K.; Ray, Chandra S.

    2003-01-01

    Glass Fibers of Li2O.2SiO2 (LS2) and Li2O.1.6SiO2 (LS1.6) compositions were heated near, but below, the glass transition temperature for different times while subjected to a constant bending stress of about 1.2 GPa. The nucleation density and the crystallization tendency estimated by differential thermal analysis (DTA) of a glass sample in the vicinity of the maximum of the bending stress increased relative to that of stress-free glass fibers. LS2 glass fibers were found more resistant to nucleation and crystallization than the Ls1.6 glass fibers. These results are discussed in regards to shear thinning effects on glass stability.

  3. Correlation of fiber composite tensile strength with the ultrasonic stress wave factor

    NASA Technical Reports Server (NTRS)

    Vary, A.; Lark, R. F.

    1978-01-01

    An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A 'stress wave factor' was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), (0 deg/+ or - 45 deg/0) symmetrical, and (+ or - 45 deg) symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.

  4. Correlation of Fiber Composite Tensile Strength with the Ultrasonic Stress Wave Factor

    NASA Technical Reports Server (NTRS)

    Vary, A.; Lark, R. F.

    1978-01-01

    An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A stress wave factor was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), 0 deg + or - 45 deg/0 deg symmetrical, and + or - 45 deg] symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.

  5. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  6. Stress-induced birefringence and fabrication of in-fiber polarization devices by controlled femtosecond laser irradiations.

    PubMed

    Yuan, Lei; Cheng, Baokai; Huang, Jie; Liu, Jie; Wang, Hanzheng; Lan, Xinwei; Xiao, Hai

    2016-01-25

    Optical birefringence was created in a single-mode fiber by introducing a series of symmetric cuboid stress rods on both sides of the fiber core along the fiber axis using a femtosecond laser. The stress-induced birefringence was estimated to be 2.4 × 10(-4) at the wavelength of 1550 nm. By adding the desired numbers of stressed rods, an in-fiber quarter waveplate was fabricated with a insertion loss of 0.19 dB. The stress-induced birefringence was further explored to fabricate in-fiber polarizers based on the polarization-dependent long-period fiber grating (LPFG) structure. A polarization extinction ratio of more than 20 dB was observed at the resonant wavelength of 1523.9 nm. The in-fiber polarization devices may be useful in optical communications and fiber optic sensing applications. PMID:26832490

  7. Stress-Rupture of New Tyranno Si-C-O-Zr Fiber Reinforced Minicomposites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Minicomposites consisting of two varieties of Zr containing SiC-based fibers from Ube (Tyranno) with BN interphases and CVI SiC matrices were studied. The two fiber-types were the ZMI and ZE fiber-types that contain approximately 8 and 2% oxygen, respectively. The minicomposites were precracked and tested under constant load testing at temperatures ranging from 700 to 1200 C. The data were then compared to the rupture behavior of Hi- Nicalon (TM) fiber reinforced minicomposites tested under identical conditions. It was found that the Ube fiber-types had stress rupture life equivalent to Hi- Nicalon (TM) over the entire temperature range. A potential benefit of the ZMI fiber-type is that it offers rupture properties almost as good as Hi-Nicalon (TM) at the cost of ceramic grade Nicalon (TM).

  8. Frequency dependence and partitioning of respiratory impedance in dogs.

    PubMed

    Kappos, A D; Rodarte, J R; Lai-Fook, S J

    1981-09-01

    Total pulmonary resistance (Rt) and reactance (Xt) from 1 to 30 Hz were determined by time series analysis in open-chest vagotomized dogs. Rt and Xt were partitioned by retrograde catheter into central airway resistance (Rc) and reactance (Xc) and peripheral resistance (Rp) and reactance (Xp). Rt, Rc, or Rp did not change with transpulmonary pressure (Pst) from 5 to 15 cmH2O, although Rc tended to decrease and Rp to increase. Vagal stimulation (Vs) and intravenous histamine (H) increased all resistances (R) at all lung volumes (V) and produced an inverse relationship between R and V. The increases in Rt produced by H and Vs were not significantly different at any volume, but H predominantly increased Rp and Vs predominantly increased Rc. In the control (vagotomized) dogs at Pst of 5 cmH2O, Rp/Rt was 0.41 +/- 0.03 (SE). Rp/Rt was significantly increased by H but not by Vs. Control Rt decreased slightly from 5 to 10 Hz and increased from 15 to 30 Hz. The increase of Rt at higher frequencies caused by the frequency dependence of Rc was not changed by H but was augmented by Vs. The slope of Xt and Xc vs. frequency was increased by Vs but not by H. The frequency dependence of Rt and Xt above 10 Hz appears to be caused by inertial losses proximal to the 2-mm airways. Thus central and peripheral bronchoconstriction caused by Vs and H, respectively, could be differentiated by increased frequency dependence of Rt and Xt above 15 Hz. PMID:7327963

  9. Divergences in the vacuum energy for frequency-dependent interactions

    SciTech Connect

    Vassilevich, D. V.

    2009-03-15

    We propose a method for determining ultraviolet divergences in the vacuum energy for systems whose spectrum of perturbations is defined through a nonlinear spectrum problem, i.e., when the fluctuation operator itself depends on the frequency. The method is applied to the plasma shell model, which describes some properties of the interaction of electromagnetic field with fullerenes. We formulate a scalar model, which simplifies the matrix structure, but keeps the frequency dependence of the plasma shell, and calculate the ultraviolet divergences in the case when the plasma sheet is slightly curved. The divergent terms are expressed in terms of surface integrals of corresponding invariants.

  10. In-situ Frequency Dependent Dielectric Sensing of Cure

    NASA Technical Reports Server (NTRS)

    Kranbuehl, David E.

    1996-01-01

    With the expanding use of polymeric materials as composite matrices, adhesives, coatings and films, the need to develop low cost, automated fabrication processes to produce consistently high quality parts is critical. Essential to the development of reliable, automated, intelligent processing is the ability to continuously monitor the changing state of the polymeric resin in-situ in the fabrication tool. This final report discusses work done on developing dielectric sensing to monitor polymeric material cure and which provides a fundamental understanding of the underlying science for the use of frequency dependent dielectri sensors to monitor the cure process.

  11. Frequency-dependent Lg-wave attenuation in northern Morocco

    NASA Astrophysics Data System (ADS)

    Noriega, Raquel; Ugalde, Arantza; Villaseñor, Antonio; Harnafi, Mimoun

    2015-11-01

    Frequency-dependent attenuation (Q- 1) in the crust of northern Morocco is estimated from Lg-wave spectral amplitude measurements every quarter octave in the frequency band 0.8 to 8 Hz. This study takes advantage of the improved broadband data coverage in the region provided by the deployment of the IberArray seismic network. Earthquake data consist of 71 crustal events with magnitudes 4 ≤ mb ≤ 5.5 recorded on 110 permanent and temporary seismic stations between January 2008 and December 2013 with hypocentral distances between 100 and 900 km. 1274 high-quality Lg waveforms provide dense path coverage of northern Morocco, crossing a region with a complex structure and heterogeneous tectonic setting as a result of continuous interactions between the African and Eurasian plates. We use two different methods: the coda normalization (CN) analysis, that allows removal of the source and site effects from the Lg spectra, and the spectral amplitude decay (SAD) method, that simultaneously inverts for source, site, and path attenuation terms. The CN and SAD methods return similar results, indicating that the Lg Q models are robust to differences in the methodologies. Larger errors and no significant frequency dependence are observed for frequencies lower than 1.5 Hz. For distances up to 400 km and the frequency band 1.5 ≤ ƒ (Hz) ≤ 4.5, the model functions Q(f) = (529- 22+ 23)(f/1.5)0.23 ± 0.06 and Q(f) = (457- 7+ 7)(f/1.5)0.44 ± 0.02 are obtained using the CN and SAD methods, respectively. A change in the frequency dependence is observed above 4.5 Hz for both methods which may be related to the influence of the Sn energy on the Lg window. The frequency-dependent Q- 1 estimates represent an average attenuation beneath a broad region including the Rif and Tell mountains, the Moroccan and Algerian mesetas, the Atlas Mountains and the Sahara Platform structural domains, and correlate well with areas of moderate seismicity where intermediate Q values have been obtained.

  12. Bond stress-slip mechanisms in high-performance fiber-reinforced cement composites

    NASA Astrophysics Data System (ADS)

    Guerrero Z., Aydee Patricia

    This research covers integrated experimental and analytical investigations of the mechanisms that influence the fiber pull-out versus slip response of typical fibers used in the production of fiber reinforced cementitious composites, in order to improve their mechanical performance. The fibers investigated include smooth steel fibers, hooked steel fibers, Torex twisted steel fibers and PVA (polyvinyl alcohol) fibers. Torex is a newly developed steel fiber, of general polygonal shape, that is twisted along its longitudinal axis to improve the mechanical component of bond. PVA fibers, currently used as replacement for asbestos fibers, have good mechanical properties and are believed to develop an adhesive or chemical bond component with cement matrices. Matrix parameters investigated comprised four different additives (fly ash, metakaolin, PVA polymer and latex) and the fineness of the sand. The experimental program included two types of tests, a single fiber pull-out test and a tensile test on notched prisms, considered an indirect test to measure bond. The first test was used when the fiber diameter exceeded 200 microns. The second test was primarily carried out for PVA fibers with a diameter in the range of 11 to 50 microns. Closed-loop control was used in the notched prism tests where the rate of crack opening at the notch controlled the machine displacement. Also in these tests, three different volume fractions of fibers were investigated for each parameter in order to back-calculate the bond strength. The analytical program includes three parts: (1) a study to model the contribution of the hook to the mechanical component of bond in hooked steel fibers, (2) a study to back-calculate adhesive-frictional bond of fine PVA fibers from the stress versus crack opening response of notched tensile prisms, and (3) a study to model the effect of twisting on the mechanical contribution of bond in Torex steel fibers. This last model utilizes a finite element code (based on

  13. Bend stress relaxation and tensile primary creep of a polycrystalline alpha-SiC fiber

    NASA Technical Reports Server (NTRS)

    Hee Man, Yun; Goldsby, Jon C.; Morscher, Gregory N.

    1995-01-01

    Understanding the thermomechanical behavior (creep and stress relaxation) of ceramic fibers is of both practical and basic interest. On the practical level, ceramic fibers are the reinforcement for ceramic matrix composites which are being developed for use in high temperature applications. It is important to understand and model the total creep of fibers at low strain levels where creep is predominantly in the primary stage. In addition, there are many applications where the component will only be subjected to thermal strains. Therefore, the stress relaxation of composite consituents in such circumstances will be an important factor in composite design and performance. The objective of this paper is to compare and analyze bend stress relaxation and tensile creep data for alpha-SiC fibers produced by the Carborundum Co. (Niagara Falls, NY). This fiber is of current technical interest and is similar in composition to bulk alpha-SiC which has been studied under compressive creep conditions. The temperature, time, and stress dependences will be discussed for the stress relaxation and creep results. In addition, some creep and relaxation recovery experiments were performed in order to understand the complete viscoelastic behavior, i.e. both recoverable and nonrecoverable creep components of these materials. The data will be presented in order to model the deformation behavior and compare relaxation and/or creep behavior for relatively low deformation strain conditions of practical concern. Where applicable, the tensile creep results will be compared to bend stress relaxation data.

  14. High extensibility of stress fibers revealed by in vitro micromanipulation with fluorescence imaging

    SciTech Connect

    Matsui, Tsubasa S.; Sato, Masaaki; Deguchi, Shinji

    2013-05-10

    Highlights: •We isolate contractile stress fibers from vascular smooth muscle cells. •We measure the extensibility of individual stress fibers. •We present the first direct evidence that individual stress fibers are highly extensible. •We quantitatively determine the local strain along the length of stress fibers. •The high extensibility we found is beyond that explained by a conventional model. -- Abstract: Stress fibers (SFs), subcellular bundles of actin and myosin filaments, are physically connected at their ends to cell adhesions. The intracellular force transmitted via SFs plays an essential role in cell adhesion regulation and downstream signaling. However, biophysical properties intrinsic to individual SFs remain poorly understood partly because SFs are surrounded by other cytoplasmic components that restrict the deformation of the embedded materials. To characterize their inherent properties independent of other structural components, we isolated SFs from vascular smooth muscle cells and mechanically stretched them by in vitro manipulation while visualizing strain with fluorescent quantum dots attached along their length. SFs were elongated along their entire length, with the length being approximately 4-fold of the stress-free length. This surprisingly high extensibility was beyond that explained by the tandem connection of actin filaments and myosin II bipolar filaments present in SFs, thus suggesting the involvement of other structural components in their passive biophysical properties.

  15. Micromechanics analysis of space simulated thermal deformations and stresses in continuous fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1990-01-01

    Space simulated thermally induced deformations and stresses in continuous fiber reinforced composites were investigated with a micromechanics analysis. The investigation focused on two primary areas. First, available explicit expressions for predicting the effective coefficients of thermal expansion (CTEs) for a composite were compared with each other, and with a finite element (FE) analysis, developed specifically for this study. Analytical comparisons were made for a wide range of fiber/matrix systems, and predicted values were compared with experimental data. The second area of investigation focused on the determination of thermally induced stress fields in the individual constituents. Stresses predicted from the FE analysis were compared to those predicted from a closed-form solution to the composite cylinder (CC) model, for two carbon fiber/epoxy composites. A global-local formulation, combining laminated plate theory and FE analysis, was used to determine the stresses in multidirectional laminates. Thermally induced damage initiation predictions were also made.

  16. Research on the fiber Bragg grating sensor for the shock stress measurement

    PubMed Central

    Deng, Xiangyang; Chen, Guanghua; Peng, Qixian; Li, Zeren; Meng, Jianhua; Liu, Jun

    2011-01-01

    A fiber Bragg grating (FBG) sensor with an unbalanced Mach-Zehnder fiber interferometer for the shock stress measurement is proposed and demonstrated. An analysis relationship between the shock stress and the central reflection wavelength shift of the FBG is firstly derived. In this sensor, the optical path difference of the unbalanced Mach-Zehnder fiber interferometer is ∼3.1 mm and the length of the FBG is 2 mm. An arctangent function reduction method, which can avoid sine function's insensitive zone where the shock stress measurement has a reduced accuracy, is presented. A shock stress measurement of water driven by one stage gun (up to 1.4 GPa), with good theoretical accuracy (∼10%), is launched. PMID:22047282

  17. Fiber optic stress-independent helical torsion sensor.

    PubMed

    Fernandes, Luís A; Grenier, Jason R; Aitchison, J Stewart; Herman, Peter R

    2015-02-15

    Femtosecond laser-fabricated waveguides have been formed into helical paths throughout the cladding of single-mode optical fibers to demonstrate a strain-independent fiber torsion sensor. A comparison between a Bragg grating sensor and a Mach-Zehnder based on helical waveguides (HWs) showed a much weaker twist sensitivity of 1.5 pm/(rad/m) for the grating in contrast with a value of 261 pm/(rad/m) for the interferometer. The HW geometry provided an unambiguous determination of the rotational direction of the twist while facilitating a convenient and efficient means for optical coupling into the single-mode core of the fiber. The flexible three-dimensional writing by the femtosecond laser fabrication method enabled the direct inscription of compact and robust optical cladding devices without the need for combining or splicing multiple-fiber segments. PMID:25680174

  18. Spatial frequency dependence of target signature for infrared performance modeling

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd; Olson, Jeffrey

    2011-05-01

    The standard model used to describe the performance of infrared imagers is the U.S. Army imaging system target acquisition model, based on the targeting task performance metric. The model is characterized by the resolution and sensitivity of the sensor as well as the contrast and task difficulty of the target set. The contrast of the target is defined as a spatial average contrast. The model treats the contrast of the target set as spatially white, or constant, over the bandlimit of the sensor. Previous experiments have shown that this assumption is valid under normal conditions and typical target sets. However, outside of these conditions, the treatment of target signature can become the limiting factor affecting model performance accuracy. This paper examines target signature more carefully. The spatial frequency dependence of the standard U.S. Army RDECOM CERDEC Night Vision 12 and 8 tracked vehicle target sets is described. The results of human perception experiments are modeled and evaluated using both frequency dependent and independent target signature definitions. Finally the function of task difficulty and its relationship to a target set is discussed.

  19. Reversible frequency-dependent switches in male mate choice.

    PubMed

    van Gossum, H; Stoks, R; De Bruyn, L

    2001-01-01

    Current sexual-selection theories predict that mating should occur preferentially with the highest-quality partner, and assume that for distinguishing among potential mates the choosy sex applies an internal representation of the characteristics of the desired mate, i.e. a template. Binary choice experiments were performed to test male mate choice between two different female colour morphs in the damselfly Ischnura elegans. Choice experiments were conducted before and after an habituation period, during which males were exposed to only one female colour morph. Given the choice between the two female morphs, males did exhibit a choice for the most recently experienced female morph. This is the first evidence for a reversible switch in mate choice in a frequency-dependent way. In contrast with previous studies on mate choice, template formation in male I. elegans seems not to be based on quality. Switching mate choice in a frequency-dependent manner, choosing the most common morph, probably allows males to minimize their search efforts and to maximize fitness. PMID:12123302

  20. Spatial-frequency dependent binocular imbalance in amblyopia

    PubMed Central

    Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C.; Bex, Peter J.

    2015-01-01

    While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p < 0.01). Good test-retest reliability of the method was demonstrated by the Bland-Altman plot. Our findings suggest that spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy. PMID:26603125

  1. Spatial-frequency dependent binocular imbalance in amblyopia.

    PubMed

    Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C; Bex, Peter J

    2015-01-01

    While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p < 0.01). Good test-retest reliability of the method was demonstrated by the Bland-Altman plot. Our findings suggest that spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy. PMID:26603125

  2. Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors

    NASA Astrophysics Data System (ADS)

    Ghosh, Aswini

    1990-01-01

    The first measurements are reported for the frequency-dependent (ac) conductivity (real as well as imaginary parts) for various compositions of the bismuth-vanadate glassy semiconductors in the frequency range 102-105 Hz and in the temperature range 77-420 K. The behavior of the ac conductivity is broadly similar to what has been observed previously in many other types of amorphous semiconductors, namely, nearly linear frequency dependence and weak temperature dependence. The experimental results are analyzed with reference to various theoretical models based on quantum-mechanical tunneling and classical hopping over barriers. The analysis shows that the temperature dependence of the ac conductivity is consistent with the simple quantum-mechanical tunneling model at low temperatures; however, this model completely fails to predict the observed temperature dependence of the frequency exponent. The overlapping-large-polaron tunneling model can explain the temperature dependence of the frequency exponent at low temperatures. Fitting of this model to the low-temperature data yields a reasonable value of the wave-function decay constant. However, this model predicts the temperature dependence of the ac conductivity much higher than what actual data showed. The correlated barrier hopping model is consistent with the temperature dependence of both the ac conductivity and its frequency exponent. This model provides reasonable values of the maximum barrier heights but higher values of characteristic relaxation times.

  3. Dissecting Regional Variations in Stress Fiber Mechanics in Living Cells with Laser Nanosurgery

    SciTech Connect

    Tanner, Kandice; Boudreau, Aaron; Bissell, Mina J; Kumar, Sanjay

    2010-03-02

    The ability of a cell to distribute contractile stresses across the extracellular matrix in a spatially heterogeneous fashion underlies many cellular behaviors, including motility and tissue assembly. Here we investigate the biophysical basis of this phenomenon by using femtosecond laser nanosurgery to measure the viscoelastic recoil and cell-shape contributions of contractile stress fibers (SFs) located in specific compartments of living cells. Upon photodisruption and recoil, myosin light chain kinase-dependent SFs located along the cell periphery display much lower effective elasticities and higher plateau retraction distances than Rho-associated kinase-dependent SFs located in the cell center, with severing of peripheral fibers uniquely triggering a dramatic contraction of the entire cell within minutes of fiber irradiation. Image correlation spectroscopy reveals that when one population of SFs is pharmacologically dissipated, actin density flows toward the other population. Furthermore, dissipation of peripheral fibers reduces the elasticity and increases the plateau retraction distance of central fibers, and severing central fibers under these conditions triggers cellular contraction. Together, these findings show that SFs regulated by different myosin activators exhibit different mechanical properties and cell shape contributions. They also suggest that some fibers can absorb components and assume mechanical roles of other fibers to stabilize cell shape.

  4. Reduction of thermal stresses in continuous fiber reinforced metal matrix composites with interface layers

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1992-01-01

    The potential of using interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix has been investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.

  5. Reduction of thermal stresses in continuous fiber reinforced metal matrix composites with interface layers

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1990-01-01

    The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix was investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.

  6. Neural tuning matches frequency-dependent time differences between the ears.

    PubMed

    Benichoux, Victor; Fontaine, Bertrand; Franken, Tom P; Karino, Shotaro; Joris, Philip X; Brette, Romain

    2015-01-01

    The time it takes a sound to travel from source to ear differs between the ears and creates an interaural delay. It varies systematically with spatial direction and is generally modeled as a pure time delay, independent of frequency. In acoustical recordings, we found that interaural delay varies with frequency at a fine scale. In physiological recordings of midbrain neurons sensitive to interaural delay, we found that preferred delay also varies with sound frequency. Similar observations reported earlier were not incorporated in a functional framework. We find that the frequency dependence of acoustical and physiological interaural delays are matched in key respects. This suggests that binaural neurons are tuned to acoustical features of ecological environments, rather than to fixed interaural delays. Using recordings from the nerve and brainstem we show that this tuning may emerge from neurons detecting coincidences between input fibers that are mistuned in frequency. PMID:25915620

  7. Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging.

    PubMed

    Gavara, Núria; Chadwick, Richard S

    2016-06-01

    Actomyosin stress fibers, one of the main components of the cell's cytoskeleton, provide mechanical stability to adherent cells by applying and transmitting tensile forces onto the extracellular matrix (ECM) at the sites of cell-ECM adhesion. While it is widely accepted that changes in spatial and temporal distribution of stress fibers affect the cell's mechanical properties, there is no quantitative knowledge on how stress fiber amount and organization directly modulate cell stiffness. We address this key open question by combining atomic force microscopy with simultaneous fluorescence imaging of living cells, and combine for the first time reliable quantitative parameters obtained from both techniques. We show that the amount of myosin and (to a lesser extent) actin assembled in stress fibers directly modulates cell stiffness in adherent mouse fibroblasts (NIH3T3). In addition, the spatial distribution of stress fibers has a second-order modulatory effect. In particular, the presence of either fibers located in the cell periphery, aligned fibers or thicker fibers gives rise to reinforced cell stiffness. Our results provide basic and significant information that will help design optimal protocols to regulate the mechanical properties of adherent cells via pharmacological interventions that alter stress fiber assembly or via micropatterning techniques that restrict stress fiber spatial organization. PMID:26206449

  8. Frequency-dependent viability in mutant strains of Drosophila melanogaster.

    PubMed

    Curtsinger, J W; Sheen, F M

    1991-01-01

    We investigated the effects of genotypic frequencies on egg-to-adult viabilities in pairwise combinations of four strains of Drosophila melanogaster. The experiments involved mixture of a total of 42,000 eggs in varying proportions under controlled densities and observation of surviving adults. Viabilities were found to depend on frequencies in several genotypic combinations. In the most extreme case, the absolute viability of cn;bw females increased monotonically from 54% when common to 70% when rare. The results illustrate several statistical and methodological problems that might explain why some experiments have failed to detect frequency-dependent viabilities. These problems include heterogeneity between replications, sex differences in susceptibility to competition, and strong dependence of the experimental outcome on the choice of competitor genotypes. PMID:1901577

  9. Fixation probabilities of random mutants under frequency dependent selection.

    PubMed

    Huang, Weini; Traulsen, Arne

    2010-03-21

    Evolutionary game dynamics describes frequency dependent selection in asexual, haploid populations. It typically considers predefined strategies and fixed payoff matrices. Mutations occur between these known types only. Here, we consider a situation in which a mutation has produced an entirely new type which is characterized by a random payoff matrix that does not change during the fixation or extinction of the mutant. Based on the probability distribution underlying the payoff values, we address the fixation probability of the new mutant. It turns out that for weak selection, only the first moments of the distribution matter. For strong selection, the probability that a new payoff entry is larger than the wild type's payoff against itself is the crucial quantity. PMID:19995564

  10. Drive frequency dependent phase imaging in piezoresponse force microscopy

    SciTech Connect

    Bo Huifeng; Kan Yi; Lu Xiaomei; Liu Yunfei; Peng Song; Wang Xiaofei; Cai Wei; Xue Ruoshi; Zhu Jinsong

    2010-08-15

    The drive frequency dependent piezoresponse (PR) phase signal in near-stoichiometric lithium niobate crystals is studied by piezoresponse force microscopy. It is clearly shown that the local and nonlocal electrostatic forces have a great contribution to the PR phase signal. The significant PR phase difference of the antiparallel domains are observed at the contact resonances, which is related to the electrostatic dominated electromechanical interactions of the cantilever and tip-sample system. Moreover, the modulation voltage induced frequency shift at higher eigenmodes could be attributed to the change of indention force depending on the modulation amplitude with a piezoelectric origin. The PR phase of the silicon wafer is also measured for comparison. It is certificated that the electrostatic interactions are universal in voltage modulated scanning probe microscopy and could be extended to other phase imaging techniques.

  11. Frequency-dependent complex modulus of the uterus: preliminary results

    NASA Astrophysics Data System (ADS)

    Kiss, Miklos Z.; Hobson, Maritza A.; Varghese, Tomy; Harter, Josephine; Kliewer, Mark A.; Hartenbach, Ellen M.; Zagzebski, James A.

    2006-08-01

    The frequency-dependent complex moduli of human uterine tissue have been characterized. Quantification of the modulus is required for developing uterine ultrasound elastography as a viable imaging modality for diagnosing and monitoring causes for abnormal uterine bleeding and enlargement, as well assessing the integrity of uterine and cervical tissue. The complex modulus was measured in samples from hysterectomies of 24 patients ranging in age from 31 to 79 years. Measurements were done under small compressions of either 1 or 2%, at low pre-compression values (either 1 or 2%), and over a frequency range of 0.1-100 Hz. Modulus values of cervical tissue monotonically increased from approximately 30-90 kPa over the frequency range. Normal uterine tissue possessed modulus values over the same range, while leiomyomas, or uterine fibroids, exhibited values ranging from approximately 60-220 kPa.

  12. A frequency dependent preconditioned wavelet method for atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Yudytskiy, Mykhaylo; Helin, Tapio; Ramlau, Ronny

    2013-12-01

    Atmospheric tomography, i.e. the reconstruction of the turbulence in the atmosphere, is a main task for the adaptive optics systems of the next generation telescopes. For extremely large telescopes, such as the European Extremely Large Telescope, this problem becomes overly complex and an efficient algorithm is needed to reduce numerical costs. Recently, a conjugate gradient method based on wavelet parametrization of turbulence layers was introduced [5]. An iterative algorithm can only be numerically efficient when the number of iterations required for a sufficient reconstruction is low. A way to achieve this is to design an efficient preconditioner. In this paper we propose a new frequency-dependent preconditioner for the wavelet method. In the context of a multi conjugate adaptive optics (MCAO) system simulated on the official end-to-end simulation tool OCTOPUS of the European Southern Observatory we demonstrate robustness and speed of the preconditioned algorithm. We show that three iterations are sufficient for a good reconstruction.

  13. Improving Planck calibration by including frequency-dependent relativistic corrections

    NASA Astrophysics Data System (ADS)

    Quartin, Miguel; Notari, Alessio

    2015-09-01

    The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10-3, due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.

  14. FREQUENCY DEPENDENCE OF PULSE WIDTH FOR 150 RADIO NORMAL PULSARS

    SciTech Connect

    Chen, J. L.; Wang, H. G.

    2014-11-01

    The frequency dependence of the pulse width is studied for 150 normal pulsars, mostly selected from the European Pulsar Network, for which the 10% multifrequency pulse widths can be well fit with the Thorsett relationship W {sub 10} = Aν{sup μ} + W {sub 10,} {sub min}. The relative fraction of pulse width change between 0.4 GHz and 4.85 GHz, η = (W {sub 4.85} – W {sub 0.4})/W {sub 0.4}, is calculated in terms of the best-fit relationship for each pulsar. It is found that 81 pulsars (54%) have η < –10% (group A), showing considerable profile narrowing at high frequencies, 40 pulsars (27%) have –10% ≤η ≤ 10% (group B), meaning a marginal change in pulse width, and 29 pulsars (19%) have η > 10% (group C), showing a remarkable profile broadening at high frequencies. The fractions of the group-A and group-C pulsars suggest that the profile narrowing phenomenon at high frequencies is more common than the profile broadening phenomenon, but a large fraction of the group-B and group-C pulsars (a total of 46%) is also revealed. The group-C pulsars, together with a portion of group-B pulsars with slight pulse broadening, can hardly be explained using the conventional radius-to-frequency mapping, which only applies to the profile narrowing phenomenon. Based on a recent version of the fan beam model, a type of broadband emission model, we propose that the diverse frequency dependence of pulse width is a consequence of different types of distribution of emission spectra across the emission region. The geometrical effect predicting a link between the emission beam shrinkage and spectrum steepening is tested but disfavored.

  15. Thermal Stress-Induced Depolarization Loss in Conventional and Panda-Shaped Photonic Crystal Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyedeh Laleh; Sabaeian, Mohammad

    2016-07-01

    We report on the modeling of the depolarization loss in the conventional and panda-shaped photonic crystal fiber lasers (PCFLs) due to the self-heating of the fiber, which we call it thermal stress-induced depolarization loss (TSIDL). We first calculated the temperature distribution over the fiber cross sections and then calculated the thermal stresses/strains as a function of heat load per meter. Thermal stress-induced birefringence (TSIB), which is defined as |n x - n y |, in the core and cladding regions was calculated. Finally, TSIDL was calculated for the conventional and panda-shaped PCFLs as a function of fiber length and, respectively, saturated values of 22 and 25 % were obtained which were independent of heat load per meter. For panda-shaped PCFLs, prior to being saturated, an oscillating and damping behavior against the fiber length was seen where in some lengths reached 35 %. The results are close to an experimental value of 30 % reported for a pulsed PCFL (Limpert et al., Opt Express 12:1313-1319, 2004) where the authors reported a degree of polarization of 70 % (i.e., a depolarization of 30 %). The most important result of this work is a saturation behavior of TSIDL at long-enough lengths of the fiber laser which is independent of heat load per meter. To our knowledge, this the first report of TSIBL for PCFLs.

  16. Analysis of shear stress distribution in pushout process of fiber-reinforced ceramics

    SciTech Connect

    Honda, Kouichi; Kagawa, Yutaka

    1995-04-01

    The interfacial shear stress distribution of a thin specimen of SiC fiber-reinforced glass matrix composite (fiber volume fraction of 0.1, 0.5, and 0.7) during a fiber pushout process was subjected to finite element analysis using a three concentric axisymmetrical model which consisted of fiber, matrix, and composite. A stress criterion was used to determine interface debonding. Effects of thermally-induced stress and a post debond sliding process at the interface were also included in the analysis. The analytical result showed that shear stress near the specimen surface was introduced during the specimen preparation process. Before the interfacial debonding, the distribution of shear stress during the pushout test was affected by the existence of thermally-induced stress in the specimen. The interfacial shear debonding initiated {approximately}30 {mu}m below the pushing surface and the sliding at the debonded interface proceeded in the direction of both the pushing surface and back surface from the peak shear position; the debonding from the back surface initiated just before the complete debonding of the interface. The pushout load-displacement curve near the origin was straight, however, after the existence of interface sliding at the debonded interface, the curve exhibited non-linearity with the increase in applied load up to the complete debonding at the interface. This debonding process was essentially independent of the fiber volume fraction. The results indicate that the total of thermally-induced stress in the specimen and shear stress distribution generated by applied load are important for the initiation of debonding and the frictional sliding process of the thin specimen pushout test.

  17. Effect of Simultaneous Water Deficit Stress and Meloidogyne incognita Infection on Cotton Yield and Fiber Quality

    PubMed Central

    Davis, R. F.; Earl, H. J.; Timper, P.

    2014-01-01

    Both water deficit stress and Meloidogyne incognita infection can reduce cotton growth and yield, and drought can affect fiber quality, but the effect of nematodes on fiber quality is not well documented. To determine whether nematode parasitism affects fiber quality and whether the combined effects of nematode and drought stress on yield and quality are additive (independent effects), synergistic, or antagonistic, we conducted a study for 7 yr in a field infested with M. incognita. A split-plot design was used with the main plot factor as one of three irrigation treatments (low [nonirrigated], moderate irrigation, and high irrigation [water-replete]) and the subplot factor as 0 or 56 l/ha 1,3-dichloropropene. We prevented water deficit stress in plots designated as water-replete by supplementing rainfall with irrigation. Plots receiving moderate irrigation received half the water applied to the water-replete treatment. The severity of root galling was greater in nonfumigated plots and in plots receiving the least irrigation, but the amount of irrigation did not influence the effect of fumigation on root galling (no irrigation × fumigation interaction). The weights of lint and seed harvested were reduced in nonfumigated plots and also decreased as the level of irrigation decreased, but fumigation did not influence the effect of irrigation. Nematodes affected fiber quality by increasing micronaire readings but typically had little or no effect on percent lint, fiber length (measured by HVI), uniformity, strength, elongation, length (based on weight or number measured by AFIS), upper quartile length, or short fiber content (based on weight or number). Micronaire also was increased by water deficit stress, but the effects from nematodes and water stress were independent. We conclude that the detrimental effects caused to cotton yield and quality by nematode parasitism and water deficit stress are independent and therefore additive. PMID:24987162

  18. Effect of Simultaneous Water Deficit Stress and Meloidogyne incognita Infection on Cotton Yield and Fiber Quality.

    PubMed

    Davis, R F; Earl, H J; Timper, P

    2014-06-01

    Both water deficit stress and Meloidogyne incognita infection can reduce cotton growth and yield, and drought can affect fiber quality, but the effect of nematodes on fiber quality is not well documented. To determine whether nematode parasitism affects fiber quality and whether the combined effects of nematode and drought stress on yield and quality are additive (independent effects), synergistic, or antagonistic, we conducted a study for 7 yr in a field infested with M. incognita. A split-plot design was used with the main plot factor as one of three irrigation treatments (low [nonirrigated], moderate irrigation, and high irrigation [water-replete]) and the subplot factor as 0 or 56 l/ha 1,3-dichloropropene. We prevented water deficit stress in plots designated as water-replete by supplementing rainfall with irrigation. Plots receiving moderate irrigation received half the water applied to the water-replete treatment. The severity of root galling was greater in nonfumigated plots and in plots receiving the least irrigation, but the amount of irrigation did not influence the effect of fumigation on root galling (no irrigation × fumigation interaction). The weights of lint and seed harvested were reduced in nonfumigated plots and also decreased as the level of irrigation decreased, but fumigation did not influence the effect of irrigation. Nematodes affected fiber quality by increasing micronaire readings but typically had little or no effect on percent lint, fiber length (measured by HVI), uniformity, strength, elongation, length (based on weight or number measured by AFIS), upper quartile length, or short fiber content (based on weight or number). Micronaire also was increased by water deficit stress, but the effects from nematodes and water stress were independent. We conclude that the detrimental effects caused to cotton yield and quality by nematode parasitism and water deficit stress are independent and therefore additive. PMID:24987162

  19. Tensile Creep and Stress-rupture Behavior of Polymer Derived Sic Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1994-01-01

    Tensile creep and stress-rupture studies were conducted on polymer derived Nicalon, Hi-Nicalon, and SiC/BN-coated Nicalon SiC fibers. Test conditions were temperatures from 1200 to 1400 C, stresses from 100 to 1600 MPa, stress application times up to 200 hours, and air, argon, and vacuum test environments. For all fibers, creep occurred predominantly in the primary stage. Hi-Nicalon had much higher 0.2 and 1 percent creep strengths than as-produced as well as-coated Nicalon fibers. The stress-rupture strength of Hi-Nicalon up to 100 hours was also higher than that of the coated and as-produced Nicalon fibers. SiC/BN coating on Nicalon increased only the short-term low-temperature rupture strength. Limited testing in argon and vacuum suggests that for all fiber types, creep and rupture resistances are reduced in comparison to the results in air. Possible mechanisms for the observed behavior are discussed.

  20. Fiber-matrix interface effects in the presence of thermally induced residual stresses

    SciTech Connect

    Nimmer, R.P. )

    1990-01-01

    The mechanics of transversely loaded high-temperature composites with a thermally induced residual stress field and a vanishingly weak fiber-matrix interface strength was investigated using two analytical models. In particular, the effects of several physical properties defining the performance of the constituent fiber, matrix, and interface are examined relative to their effect on composite's behavior. Both models demonstrate that, if there is a thermally induced residual stress field in the composite, the initial transverse modulus for the composite will be the same regardless of whether there is a well-bonded or an unbonded interface. 10 refs.

  1. Closed-form analysis of fiber-matrix interface stresses under thermo-mechanical loadings

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.

    1992-01-01

    Closed form techniques for calculating fiber matrix (FM) interface stresses, using repeating square and diamond regular arrays, were presented for a unidirectional composite under thermo-mechanical loadings. An Airy's stress function micromechanics approach from the literature, developed for calculating overall composite moduli, was extended in the present study to compute FM interface stresses for a unidirectional graphite/epoxy (AS4/3501-6) composite under thermal, longitudinal, transverse, transverse shear, and longitudinal shear loadings. Comparison with finite element results indicate excellent agreement of the FM interface stresses for the square array. Under thermal and longitudinal loading, the square array has the same FM peak stresses as the diamond array. The square array predicted higher stress concentrations under transverse normal and longitudinal shear loadings than the diamond array. Under transverse shear loading, the square array had a higher stress concentration while the diamond array had a higher radial stress concentration. Stress concentration factors under transverse shear and longitudinal shear loadings were very sensitive to fiber volume fraction. The present analysis provides a simple way to calculate accurate FM interface stresses for both the square and diamond array configurations.

  2. Evaluation of the Fiber Stress Distribution in Aramid/Epoxy Model Composite Using Micro-Raman Spectroscopy and FEM Analysis

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuto; Minoshima, Kohji; Yamada, Hideo

    A single-fiber pull-out model composite for an aramid/epoxy system was specially designed to measure the stress distribution of the aramid fiber embedded in the matrix using micro-Raman spectroscopy. The stress transfer length of the fiber obtained was about 400-500 μm, which was equal to the result of FEM analysis. Just after the initiation and propagation of the fiber/matrix interfacial debonding, the fiber was broken, and the fiber in the matrix had the axial tensile residual stress. The tensile residual axial stress showed the maximum at around the tip of the interfacial debonding. The stress was reduced after the specimen was kept in air at 80°C for 44h, and it became almost equal to zero after being immersed in deionized water at 80°C for 44h. This behavior agreed with the result of FEM analysis, in which the friction coefficient was introduced in the fiber/matrix interface. The axial residual stress was caused by the friction between the fiber and matrix, due to the compressive stress acting between the resin and the fiber, which was caused by the difference of the coefficient of thermal expansion.

  3. Yeh-Stratton Criterion for Stress Concentrations on Fiber-Reinforced Composite Materials

    NASA Technical Reports Server (NTRS)

    Yeh, Hsien-Yang; Richards, W. Lance

    1996-01-01

    This study investigated the Yeh-Stratton Failure Criterion with the stress concentrations on fiber-reinforced composites materials under tensile stresses. The Yeh-Stratton Failure Criterion was developed from the initial yielding of materials based on macromechanics. To investigate this criterion, the influence of the materials anisotropic properties and far field loading on the composite materials with central hole and normal crack were studied. Special emphasis was placed on defining the crack tip stress fields and their applications. The study of Yeh-Stratton criterion for damage zone stress fields on fiber-reinforced composites under tensile loading was compared with several fracture criteria; Tsai-Wu Theory, Hoffman Theory, Fischer Theory, and Cowin Theory. Theoretical predictions from these criteria are examined using experimental results.

  4. Microsurgery-aided in-situ force probing reveals extensibility and viscoelastic properties of individual stress fibers

    PubMed Central

    Labouesse, Céline; Gabella, Chiara; Meister, Jean-Jacques; Vianay, Benoît; Verkhovsky, Alexander B.

    2016-01-01

    Actin-myosin filament bundles (stress fibers) are critical for tension generation and cell shape, but their mechanical properties are difficult to access. Here we propose a novel approach to probe individual peripheral stress fibers in living cells through a microsurgically generated opening in the cytoplasm. By applying large deformations with a soft cantilever we were able to fully characterize the mechanical response of the fibers and evaluate their tension, extensibility, elastic and viscous properties. PMID:27025817

  5. Matrix cracking initiation stress in fiber-reinforced ceramic-matrix composites

    SciTech Connect

    Kangutkar, P.B.

    1991-01-01

    One of the important design parameters in CMC's is the matrix cracking initiation stress (MCIS) which corresponds to the stress at which first matrix cracks are observed. Above the MCIS, the fibers will be exposed to the oxidizing environment which may degrade the mechanical property of the fibers and thus of the composite. In this thesis, a systematic study to explore the effects of matrix toughness and inherent strength, fiber diameter, stiffness and volume fraction, temperature and interfacial bonding on the MCIS was carried out. Composites were fabricated using three different matrices - borosilicate glass, aluminosilicate glass and polycrystalline zirconium silicate (or zircon), and two different reinforcing fibers - an SiC monofilament (140 {mu}m diameter) and an SiC yarn (16 {mu}m diameter). In-situ observations during 3-point bend test inside the SEM indicate that matrix cracking is a local phenomenon and occurs first in the matrix between widest spaced fibers. In all composites the MCIS was found to increase with fiber additions and scaled with the monolithic strength.

  6. The relationship between stress and temperature distribution during tension test of GFRP by fiber orientation variation

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Woo; Lee, Seung-Chul

    2013-12-01

    This study was investigated what affect strength and temperature distribution by fiber orientation variation under tension test of GFRP. Temperature distribution was proposed through IR thermography camera. Lock-in method, which is one of technique in IR thermography camera to measure minute change in temperature, was utilized to monitor temperature distribution and change during crack propagation. At the maximum stress point, temperature was significantly increased. As shown previously, specimen with shorter fracture time showed abrupt increment of temperature at the maximum stress point. Specimen with longer fracture time displayed increment of temperature after the maximum stress point. In this study, tension strength of 0° direction of GFRP increased being proportional the fiber content and fiber orientation function as change from isotropy (J=0) to anisotropy (J=1). But, tensile strength of 90° direction by separation of fiber filament decreased when tensile load is imposed for width direction of reinforcement fiber length direction. And, method to analyze of temperature distribution via IR thermography camera was suggested. The correlation of the tension strength and the temperature distribution was investigated.

  7. Advanced Reservoir Imaging Using Frequency-Dependent Seismic Attributes

    SciTech Connect

    Fred Hilterman; Tad Patzek; Gennady Goloshubin; Dmitriy Silin; Charlotte Sullivan; Valeri Korneev

    2007-12-31

    Our report concerning advanced imaging and interpretation technology includes the development of theory, the implementation of laboratory experiments and the verification of results using field data. We investigated a reflectivity model for porous fluid-saturated reservoirs and demonstrated that the frequency-dependent component of the reflection coefficient is asymptotically proportional to the reservoir fluid mobility. We also analyzed seismic data using different azimuths and offsets over physical models of fractures filled with air and water. By comparing our physical model synthetics to numerical data we have identified several diagnostic indicators for quantifying the fractures. Finally, we developed reflectivity transforms for predicting pore fluid and lithology using rock-property statistics from 500 reservoirs in both the shelf and deep-water Gulf of Mexico. With these transforms and seismic AVO gathers across the prospect and its down-dip water-equivalent reservoir, fluid saturation can be estimated without a calibration well that ties the seismic. Our research provides the important additional mechanisms to recognize, delineate, and validate new hydrocarbon reserves and assist in the development of producing fields.

  8. Frequency-dependent alterations in regional homogeneity in major depression.

    PubMed

    Xue, Song; Wang, Xu; Wang, Wanqian; Liu, Jia; Qiu, Jiang

    2016-06-01

    Previous studies using resting-state functional magnetic resonance imaging (fMRI) have found abnormal spontaneous neural activity in patients with major depressive disorder (MDD). Yet, the frequency-dependent neural activity in MDD is largely unknown. Here, we used resting-state fMRI and regional homogeneity (ReHo) methods to investigate spontaneous neural activity in specific frequency bands of 31 MDD patients and 31 age-, gender- and education-matched healthy controls. We examined spontaneous neural activity in three frequency bands: slow-4 (0.027-0.073Hz), slow-5 (0.010-0.027Hz), and the typical band (0.01-0.08Hz). Compared to controls, MDD patients showed increased ReHo in the middle frontal gyrus (MFG) and decreased ReHo in the fusiform and postcentral gyrus at the typical band. Importantly, MDD patients showed increased ReHo in the middle occipital gyrus (MOG) and decreased ReHo in the anterior cingulate cortex (ACC), inferior frontal gyrus (IFG), superior frontal gyrus (SFG) and the bilateral thalamus in the slow-4 band, while they showed increased ReHo in the medial prefrontal cortex (mPFC) in the slow-5 band. Our results suggest that the abnormality of ReHo in MDD is associated with the frequency band and that future studies should take frequency band effect into account when examining spontaneous neural activity. PMID:26968135

  9. Frequency-dependent loudness balancing in bimodal cochlear implant users.

    PubMed

    Veugen, Lidwien C E; Chalupper, Josef; Snik, Ad F M; van Opstal, A John; Mens, Lucas H M

    2016-08-01

    Conclusion In users of a cochlear implant (CI) and a hearing aid (HA) in contralateral ears, frequency-dependent loudness balancing between devices did, on average, not lead to improved speech understanding as compared to broadband balancing. However, nine out of 15 bimodal subjects showed significantly better speech understanding with either one of the fittings. Objectives Sub-optimal fittings and mismatches in loudness are possible explanations for the large individual differences seen in listeners using bimodal stimulation. Methods HA gain was adjusted for soft and loud input sounds in three frequency bands (0-548, 548-1000, and >1000 Hz) to match loudness with the CI. This procedure was compared to a simple broadband balancing procedure that reflected current clinical practice. In a three-visit cross-over design with 4 weeks between sessions, speech understanding was tested in quiet and in noise and questionnaires were administered to assess benefit in real world. Results Both procedures resulted in comparable HA gains. For speech in noise, a marginal bimodal benefit of 0.3 ± 4 dB was found, with large differences between subjects and spatial configurations. Speech understanding in quiet and in noise did not differ between the two loudness balancing procedures. PMID:26986743

  10. Frequency-dependent selection at rough expanding fronts

    NASA Astrophysics Data System (ADS)

    Kuhr, Jan-Timm; Stark, Holger

    2015-10-01

    Microbial colonies are experimental model systems for studying the colonization of new territory by biological species through range expansion. We study a generalization of the two-species Eden model, which incorporates local frequency-dependent selection, in order to analyze how social interactions between two species influence surface roughness of growing microbial colonies. The model includes several classical scenarios from game theory. We then concentrate on an expanding public goods game, where either cooperators or defectors take over the front depending on the system parameters. We analyze in detail the critical behavior of the nonequilibrium phase transition between global cooperation and defection and thereby identify a new universality class of phase transitions dealing with absorbing states. At the transition, the number of boundaries separating sectors decays with a novel power law in time and their superdiffusive motion crosses over from Eden scaling to a nearly ballistic regime. In parallel, the width of the front initially obeys Eden roughening and, at later times, passes over to selective roughening.

  11. Frequency-Dependent Gating of Hippocampal-Neocortical Interactions.

    PubMed

    Moreno, Andrea; Morris, Richard G M; Canals, Santiago

    2016-05-01

    How and where hippocampal-neocortical interactions required for memory formation take place is a major issue of current research. Using a combined in vivo functional magnetic resonance imaging/electrophysiology approach, we have investigated whether specific frequencies of CA3 neuronal activation, inducing different forms of short-term plasticity at CA1 synapses, contribute to differential activity propagation in brain-wide networks connected to the hippocampus. We report that localized activation of CA3 neurons in dorsal hippocampus produced activity propagation within the hippocampal formation, including the subiculum and entorhinal cortex, which increased monotonically with frequency to a maximum at 20-40 Hz. However, robust extrahippocampal propagation was seen specifically at theta-beta frequencies (10-20 Hz), reaching a network of midline neocortical and mesolimbic structures. Activation in those regions correlated with a frequency-dependent facilitation of spiking activity recorded in CA1. These results provide a mechanistic link between the dynamic properties of short-term plasticity in the efferent synapses of CA3 neurons in CA1 and activity propagation in brain-wide networks, and identify polysynaptic information channels segregated in the frequency domain. PMID:25761637

  12. Frequency-dependent energy harvesting via magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Sayyaadi, Hassan; Askari Farsangi, Mohammad Amin

    2015-11-01

    This paper is focused on presenting an accurate framework to describe frequency-dependent energy harvesting via magnetic shape memory alloys (MSMAs). Modeling strategy incorporates the phenomenological constitutive model developed formerly together with the magnetic diffusion equation. A hyperbolic hardening function is employed to define reorientation-induced strain hardening in the material, and the diffusion equation is used to add dynamic effects to the model. The MSMA prismatic specimen is surrounded by a pickup coil, and the induced voltage during martensite-variant reorientation is investigated with the help of Faraday’s law of magnetic field induction. It has been shown that, in order to harvest the maximum RMS voltage in the MSMA-based energy harvester, an optimum value of bias magnetic field exists, which is the corresponding magnetic field for the start of pseudoelasticity behavior. In addition, to achieve a more compact energy harvester with higher energy density, a specimen with a lower aspect ratio can be chosen. As the main novelty of the paper, it is found that the dynamic effects play a major role in determining the harvested voltage and power, especially for high excitation frequency or specimen thickness.

  13. Fiber

    MedlinePlus

    ... it can help with weight control. Fiber aids digestion and helps prevent constipation . It is sometimes used ... fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  14. Interplay between Solo and keratin filaments is crucial for mechanical force–induced stress fiber reinforcement

    PubMed Central

    Fujiwara, Sachiko; Ohashi, Kazumasa; Mashiko, Toshiya; Kondo, Hiroshi; Mizuno, Kensaku

    2016-01-01

    Mechanical force–induced cytoskeletal reorganization is essential for cell and tissue remodeling and homeostasis; however, the underlying cellular mechanisms remain elusive. Solo (ARHGEF40) is a RhoA-targeting guanine nucleotide exchange factor (GEF) involved in cyclical stretch–induced human endothelial cell reorientation and convergent extension cell movement in zebrafish gastrula. In this study, we show that Solo binds to keratin-8/keratin-18 (K8/K18) intermediate filaments through multiple sites. Solo overexpression promotes the formation of thick actin stress fibers and keratin bundles, whereas knockdown of Solo, expression of a GEF-inactive mutant of Solo, or inhibition of ROCK suppresses stress fiber formation and leads to disorganized keratin networks, indicating that the Solo-RhoA-ROCK pathway serves to precisely organize keratin networks, as well as to promote stress fibers. Of importance, knockdown of Solo or K18 or overexpression of GEF-inactive or deletion mutants of Solo suppresses tensile force–induced stress fiber reinforcement. Furthermore, knockdown of Solo or K18 suppresses tensile force-induced RhoA activation. These results strongly suggest that the interplay between Solo and K8/K18 filaments plays a crucial role in tensile force–induced RhoA activation and consequent actin cytoskeletal reinforcement. PMID:26823019

  15. Interplay between Solo and keratin filaments is crucial for mechanical force-induced stress fiber reinforcement.

    PubMed

    Fujiwara, Sachiko; Ohashi, Kazumasa; Mashiko, Toshiya; Kondo, Hiroshi; Mizuno, Kensaku

    2016-03-15

    Mechanical force-induced cytoskeletal reorganization is essential for cell and tissue remodeling and homeostasis; however, the underlying cellular mechanisms remain elusive. Solo (ARHGEF40) is a RhoA-targeting guanine nucleotide exchange factor (GEF) involved in cyclical stretch-induced human endothelial cell reorientation and convergent extension cell movement in zebrafish gastrula. In this study, we show that Solo binds to keratin-8/keratin-18 (K8/K18) intermediate filaments through multiple sites. Solo overexpression promotes the formation of thick actin stress fibers and keratin bundles, whereas knockdown of Solo, expression of a GEF-inactive mutant of Solo, or inhibition of ROCK suppresses stress fiber formation and leads to disorganized keratin networks, indicating that the Solo-RhoA-ROCK pathway serves to precisely organize keratin networks, as well as to promote stress fibers. Of importance, knockdown of Solo or K18 or overexpression of GEF-inactive or deletion mutants of Solo suppresses tensile force-induced stress fiber reinforcement. Furthermore, knockdown of Solo or K18 suppresses tensile force-induced RhoA activation. These results strongly suggest that the interplay between Solo and K8/K18 filaments plays a crucial role in tensile force-induced RhoA activation and consequent actin cytoskeletal reinforcement. PMID:26823019

  16. A model for cell density effect on stress fiber alignment and collective directional migration

    NASA Astrophysics Data System (ADS)

    Abeddoust, Mohammad; Shamloo, Amir

    2015-12-01

    In this study, numerical simulation of collective cell migration is presented in order to mimic the group migration of endothelial cells subjected to the concentration gradients of a biochemical factor. The developed 2D model incorporates basic elements of the cell, including both the cell membrane and the cell cytoskeleton, based on a viscoelastic cell mechanic model. Various cell processes—including cell random walk, cell-cell interactions, cell chemotaxis, and cellular cytoskeleton rearrangements—are considered and analyzed in our developed model. After validating the model by using available experimental data, the model is used to investigate various important parameters during collective cell chemotaxis, such as cell density, cytoskeleton organization, stress fiber reorientations, and intracellular forces. The results suggest that increasing the cell density causes the cell-cell interactions to affect the orientation of stress fibers throughout the cytoskeleton and makes the stress fibers more aligned in the direction of the imposed concentration gradient. This improved alignment of the stress fibers correlates with the intensification of the intracellular forces transferred in the gradient direction; this improves the cell group migration. Comparison of the obtained results with available experimental observations of collective chemotaxis of endothelial cells shows an interesting agreement.

  17. Neural correlates of stimulus spatial frequency-dependent contrast detection

    PubMed Central

    Meng, Jianjun; Liu, Ruilong; Wang, Ke; Hua, Tianmiao; Lu, Zhong-Lin; Xi, Minmin

    2016-01-01

    Psychophysical studies on human and non-human vertebrate species have shown that visual contrast sensitivity function (CSF) peaks at a certain stimulus spatial frequency and declines in both lower and higher spatial frequencies. The underlying neural substrate and mechanisms remain in debate. Here, we investigated the role of primary visual cortex (V1: area 17) in spatial frequency-dependent contrast detection in cats. Perceptual CSFs of three cats were measured using a two-alternative forced choice task. The responses of V1 neurons to their optimal visual stimuli in a range of luminance contrast levels (from 0 to 1.0) were recorded subsequently using in vivo extracellular single-unit recording techniques. The contrast sensitivity of each neuron was determined. The neuronal CSF for each cat was constructed from the mean contrast sensitivity of neurons with different preferred stimulus spatial frequencies. Results (1) The perceptual and neuronal CSFs of each of the three cats exhibited a similar shape with peak amplitude near 0.4 c/deg. (2) The neuronal CSF of each cat was highly correlated with its perceptual CSF. (3) V1 neurons with different preferred stimulus spatial frequencies had different contrast gains. Conclusion (1) Contrast detection of visual stimuli with different spatial frequencies may likely involve population coding of V1 neurons with different preferred stimulus spatial frequencies. (2) Difference in contrast-gain may underlie the observed contrast sensitivity variation of V1 neurons with different preferred stimulus spatial frequencies, possibly from either evolution or postnatal visual experiences. PMID:23314692

  18. Frequency-dependent Dispersion Measures and Implications for Pulsar Timing

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Shannon, R. M.; Stinebring, D. R.

    2016-01-01

    The dispersion measure (DM), the column density of free electrons to a pulsar, is shown to be frequency dependent because of multipath scattering from small-scale electron-density fluctuations. DMs vary between propagation paths whose transverse extent varies strongly with frequency, yielding arrival times that deviate from the high-frequency scaling expected for a cold, uniform, unmagnetized plasma (1/frequency2). Scaling laws for thin phase screens are verified with simulations; extended media are also analyzed. The rms DM difference across an octave band near 1.5 GHz is ˜ 4 × 10-5 pc cm-3 for pulsars at ˜1 kpc distance. The corresponding arrival-time variations are a few to hundreds of nanoseconds for DM ≲ 30 pc cm-3 but increase rapidly to microseconds or more for larger DMs and wider frequency ranges. Chromatic DMs introduce correlated noise into timing residuals with a power spectrum of “low pass” form. The correlation time is roughly the geometric mean of the refraction times for the highest and lowest radio frequencies used, ranging from days to years, depending on the pulsar. We discuss implications for methodologies that use large frequency separations or wide bandwidth receivers for timing measurements. Chromatic DMs are partially mitigable by including an additional chromatic term in arrival time models. Without mitigation, an additional term in the noise model for pulsar timing is implied. In combination with measurement errors from radiometer noise, an arbitrarily large increase in total frequency range (or bandwidth) will yield diminishing benefits and may be detrimental to overall timing precision.

  19. Fibers in the extracellular matrix enable long-range stress transmission between cells.

    PubMed

    Ma, Xiaoyue; Schickel, Maureen E; Stevenson, Mark D; Sarang-Sieminski, Alisha L; Gooch, Keith J; Ghadiali, Samir N; Hart, Richard T

    2013-04-01

    Cells can sense, signal, and organize via mechanical forces. The ability of cells to mechanically sense and respond to the presence of other cells over relatively long distances (e.g., ∼100 μm, or ∼10 cell-diameters) across extracellular matrix (ECM) has been attributed to the strain-hardening behavior of the ECM. In this study, we explore an alternative hypothesis: the fibrous nature of the ECM makes long-range stress transmission possible and provides an important mechanism for long-range cell-cell mechanical signaling. To test this hypothesis, confocal reflectance microscopy was used to develop image-based finite-element models of stress transmission within fibroblast-seeded collagen gels. Models that account for the gel's fibrous nature were compared with homogenous linear-elastic and strain-hardening models to investigate the mechanisms of stress propagation. Experimentally, cells were observed to compact the collagen gel and align collagen fibers between neighboring cells within 24 h. Finite-element analysis revealed that stresses generated by a centripetally contracting cell boundary are concentrated in the relatively stiff ECM fibers and are propagated farther in a fibrous matrix as compared to homogeneous linear elastic or strain-hardening materials. These results support the hypothesis that ECM fibers, especially aligned ones, play an important role in long-range stress transmission. PMID:23561517

  20. Fibers in the Extracellular Matrix Enable Long-Range Stress Transmission between Cells

    PubMed Central

    Ma, Xiaoyue; Schickel, Maureen E.; Stevenson, Mark D.; Sarang-Sieminski, Alisha L.; Gooch, Keith J.; Ghadiali, Samir N.; Hart, Richard T.

    2013-01-01

    Cells can sense, signal, and organize via mechanical forces. The ability of cells to mechanically sense and respond to the presence of other cells over relatively long distances (e.g., ∼100 μm, or ∼10 cell-diameters) across extracellular matrix (ECM) has been attributed to the strain-hardening behavior of the ECM. In this study, we explore an alternative hypothesis: the fibrous nature of the ECM makes long-range stress transmission possible and provides an important mechanism for long-range cell-cell mechanical signaling. To test this hypothesis, confocal reflectance microscopy was used to develop image-based finite-element models of stress transmission within fibroblast-seeded collagen gels. Models that account for the gel’s fibrous nature were compared with homogenous linear-elastic and strain-hardening models to investigate the mechanisms of stress propagation. Experimentally, cells were observed to compact the collagen gel and align collagen fibers between neighboring cells within 24 h. Finite-element analysis revealed that stresses generated by a centripetally contracting cell boundary are concentrated in the relatively stiff ECM fibers and are propagated farther in a fibrous matrix as compared to homogeneous linear elastic or strain-hardening materials. These results support the hypothesis that ECM fibers, especially aligned ones, play an important role in long-range stress transmission. PMID:23561517

  1. Fracture strength and stress distributions of pulpless premolars restored with fiber posts.

    PubMed

    Furuya, Yu; Huang, Shih-Hao; Takeda, Yuko; Fok, Alex; Hayashi, Mikako

    2014-01-01

    This study examined the effect of glass fiber posts on increasing the fracture resistance of endodontically treated teeth. Extracted upper premolars with two canals in a root were divided into three groups according to the number of posts they were restored with: none, one, or two. All teeth were endodontically treated, crown-sectioned, and restored with a composite core and a metallic crown. A static oblique load was applied to the restored tooth until fracture, and the fracture pattern was recorded. Stress distributions were examined by finite element analysis (FEA). Teeth with glass fiber post(s) showed significantly higher fracture loads compared with those without posts. In the premolars without posts, von Mises and maximum principal stresses were found on the root surface alone; in premolars restored with posts, stresses were distributed on both root and post surfaces. Risk of root dentin fracture was significantly lowest in teeth restored with two posts. PMID:25483385

  2. Smart carbon nanotube/fiber and PVA fiber-reinforced composites for stress sensing and chloride ion detection

    NASA Astrophysics Data System (ADS)

    Hoheneder, Joshua

    Fiber reinforced composites (FRC) with polyvinyl alcohol (PVA) fibers and carbon nanofibers (CNF) had an excellent flexural strength in excess of 18.5 MPa compared to reference samples of 15.8 MPa. It was found that the developed, depending on applied stress and exposure to chloride solutions, composites exhibit some electrical conductivity, from 4.20×10 -4 (Ω-1m-1 to 4.13×10 -4 Ω-1m-1. These dependences can be characterized by piezioresistive and chemoresistive coefficients demonstrating that the material possesses self-sensing capabilities. The sensitivity to stain and chloride solutions can be enhanced by incorporating small amounts of carbon nanofibers (CNF) or carbon nanotube (CNT) into composite structure. Conducted research has demonstrated a strong dependency of electrical properties of composite on crack formation in moist environments. The developed procedure is scalable for industrial application in concrete structures that require nondestructive stress monitoring, integrity under high service loads and stability in harsh environments.

  3. Effect of stress and temperature on the optical phonons of aramid fibers

    NASA Astrophysics Data System (ADS)

    Bollas, D.; Parthenios, J.; Galiotis, C.

    2006-03-01

    The wave-number dependence upon stress and/or strain and temperature of two adjacent optical phonons of aramid fibers has been investigated. The results showed that both phonons soften considerably under axial tension. Experiments at various temperatures under fixed strain conditions have demonstrated that one of the phonons (ν1=1611cm-1) is moderately anharmonic whereas the adjacent phonon (ν2=1648cm-1) exhibits harmonic behavior. By modeling the fibers as one-dimensional molecular wires very good agreement between experiment and theory is obtained for the phonon temperature dependence under isostress conditions.

  4. Influence of pressure, temperature, and pore fluid on the frequency-dependent attenuation of elastic waves in Berea sandstone

    NASA Astrophysics Data System (ADS)

    O'hara, Stephen G.

    1985-07-01

    The effects of pore fluid, effective stress, pore fluid pressure, and temperature on the frequency dependence of elastic wave attenuation in Berea sandstone are interrelated in a series of systematic experiments. The attenuation of both the extensional and torsional modes of cylindrical samples of the sandstone is measured on the frequency range 3-30 kHz. To simulate conditions within the earth, the sandstone is subjected to confining stress to 70.0 MPa and temperature from 24.0 °C to 120.0 °C. Confining pressure and pore fluid pressure are varied independently. Data for two different pore fluids, brine and n-heptane, suggest that a scaling law exists for the pressure and temperature dependence of the attenuation in terms of the pore fluid. The logarithmic decrement of the sandstone is almost frequency independent in a vacuum evacuated sample, but shows a linear frequency dependence, once the sample is saturated. Extrapolation of this linear trend to low frequencies suggests that the decrement in fluid-filled sandstone is effectively frequency independent at seismic frequencies (<100 Hz). The frequency dependence becomes more pronounced as either the effective stress or the temperature is decreased. When the difference between the external stress on the sandstone and the pore fluid pressure is large, the attenuation depends only on the effective stress and is relatively temperature independent. But at low effective stress, the attenuation increases linearly with increasing pore fluid pressure and decreases linearly with increasing temperature. While a specific model is lacking, the attenuation process is apparently influenced most strongly by chemical processes at the pore fluid-matrix interface accompanied by subtle changes in the sandstone matrix dimensions.

  5. Intermediate Temperature Stress Rupture of Woven SiC Fiber, BN Interphase, SiC Matrix Composites in Air

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Levine, Stanley (Technical Monitor)

    2000-01-01

    Tensile stress-rupture experiments were performed on woven Hi-Nicalon reinforced SiC matrix composites with BN interphases in air. Modal acoustic emission (AE) was used to monitor the damage accumulation in the composites during the tests and microstructural analysis was performed to determine the amount of matrix cracking that occurred for each sample. Fiber fractograph), was also performed for individual fiber failures at the specimen fracture surface to determine the strengths at which fibers failed. The rupture strengths were significantly worse than what would have been expected front the inherent degradation of the fibers themselves when subjected to similar rupture conditions. At higher applied stresses the rate of rupture "?as larger than at lower applied stresses. It was observed that the change in rupture rate corresponded to the onset of through-thickness cracking in the composites themselves. The primary cause of the sen,ere degradation was the ease with which fibers would bond to one another at their closest separation distances, less than 100 nanometers, when exposed to the environment. The near fiber-to-fiber contact in the woven tows enabled premature fiber failure over large areas of matrix cracks due to the stress-concentrations created b), fibers bonded to one another after one or a few fibers fail. i.e. the loss of global load sharing. An@, improvement in fiber-to-fiber separation of this composite system should result in improved stress- rupture properties. A model was den,eloped in order to predict the rupture life-time for these composites based on the probabilistic nature of indin,idual fiber failure at temperature. the matrix cracking state during the rupture test, and the rate of oxidation into a matrix crack. Also incorporated into the model were estimates of the stress-concentration that would occur between the outer rim of fibers in a load-bearing bundle and the unbridged region of a matrix crack after Xia et al. For the lower stresses

  6. Stress and strength analysis of fiber reinforced plastic pipe tees with reinforcement

    SciTech Connect

    Wei, Z.; Widera, G.E.O.; Xue, M.

    1996-12-01

    In this paper, a stress and strength analysis of fiber reinforced plastic (FRP) pipe tees with reinforcement by use of 3-D finite element method is presented. Wilson`s incompatible elements and the 16-node 3-D element with relative degrees of freedom have been employed to carry out the analysis. The reliability of the program is also investigated. Two reinforcing methods, pad and compact reinforcement, are investigated. The fact that the properties and principal directions of the materials of the two intersecting pipes and the reinforcement are different has been taken into account in the analysis. The continuity of stress and strain fields at the intersecting surface of two different materials is considered in the post processing of the FEM results. The results show that the stress concentration in a FRP pipe intersection without reinforcement (r/R = 0.4--0.7) is significant. A reasonable design can be obtained by considering both stress fields and the orthotropic strength parameters of the materials. The in-plane shear stress may be the controlling factor because of the relatively low shear strength of most composites. Use of either reinforcing method does not change the location of the maximum tensile stress and the maximum shear stress, and both alleviate the stress concentration at the intersection. It is shown that the compact reinforcing method is more effective than the pad one. The larger the reinforcing area of the compact reinforcing method, the smaller the stress concentration factor, but the lower the rate of reduction.

  7. Stressed-Oxidation Lifetime of Different SiC Fiber, CVI Matrix SiC Minicomposites in Air

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Martinez-Fernandez, Julian

    1998-01-01

    The stressed-oxidation lifetime properties of several minicomposites composed of single fiber tows with a CVI SiC matrix were compared. The minicomposites were made up of Nicalon(Tm) and Hi-Nicalon(Tm) SiC fibers with carbon or BN interphases. Constant load stress-rupture tests were performed between 600 and 13000 C in air for all of the minicomposite systems. Cyclic load testing was performed on the Hi-Nicalon minicomposite systems. The factors controlling the different lifetime behaviors: fiber rupture properties, interphase oxidation, fiber degradation, and fiber-matrix bonding, are discussed in light of different minicomposite constituents. All of the systems were subject to intermediate temperature embrittlement. The Hi-Nicalon fiber, BN interphase system, performed the best for constant load conditions. For cyclic load conditions, both the BN- interphase and C-interphase minicomposites displayed poor, but different failure behavior.

  8. Optical fiber fatigue behavior over very extended periods at low stress levels in the field and in laboratory tests

    NASA Astrophysics Data System (ADS)

    Stockton, David J.; Mayhew, Andi J.

    1999-12-01

    The reliability of optical fiber exposed to relatively high static strains (> 2%) has been extensively modelled and investigated by experiment. Fatigue `knees' have been demonstrated predicting the premature fracture of fiber particularly where elevated temperatures and relatively large volumes of water have been used to soak the samples. The cause has been attributed to simultaneous stress- assisted and stress-free corrosion of the fiber surface. In this paper we show that, a t more moderate strains (1 to 2%) and using a limited volume of water, there is evidence of a strength recovery caused either by a healing process or the observance of some form of lower strain threshold. The expected strength reduction of the fiber, from contemporary models is contrasted to that observed. The unusually high strength retention shown by the test fiber in water is shown to have important implications for optical cable design and for the bending of fiber within joint housings.

  9. Optical measurements on overhead optical fiber cables for stresses and damage identification

    NASA Astrophysics Data System (ADS)

    Ravet, Fabien L.; Heens, Bernard; Daniaux, D.; Froidure, Jean-Christophe; Blondel, Michel; Dascotte, M.; Lots, P.

    1998-12-01

    This paper concerns the characterization of various trunks of an OPGW based network. No strong fiber aging has been observed but combined OTDR and PMD measurements have pointed out strong cable clamping at suspension pylon. Large local losses have been measured at both 1.55 micrometers and 1.6 micrometers and stress induced birefringent behavior have been experienced. PMD temporal evolution has also been studied. A correlation between temperature variation and PMD evolution has been observed.

  10. Combined-load stress-strain relationship for advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sullivan, T. L.

    1975-01-01

    It was demonstrated experimentally that only one test specimen is required to determine the combined-load stress-strain relationships of a given fiber composite system. These relationships were determined using a thin angle-plied laminate tube and subjecting it to a number of combined-loading conditions. The measured data obtained are compared with theoretical predictions. Some important considerations associated with such a test are identified, and the significance of combined-load stress-strain relationships in certain practical designs are discussed.

  11. Calculation of Stress Intensity Factors for Interfacial Cracks in Fiber Metal Laminates

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2009-01-01

    Stress intensity factors for interfacial cracks in Fiber Metal Laminates (FML) are computed by using the displacement ratio method recently developed by Sun and Qian (1997, Int. J. Solids. Struct. 34, 2595-2609). Various FML configurations with single and multiple delaminations subjected to different loading conditions are investigated. The displacement ratio method requires the total energy release rate, bimaterial parameters, and relative crack surface displacements as input. Details of generating the energy release rates, defining bimaterial parameters with anisotropic elasticity, and selecting proper crack surface locations for obtaining relative crack surface displacements are discussed in the paper. Even though the individual energy release rates are nonconvergent, mesh-size-independent stress intensity factors can be obtained. This study also finds that the selection of reference length can affect the magnitudes and the mode mixity angles of the stress intensity factors; thus, it is important to report the reference length used with the calculated stress intensity factors.

  12. Stress generated by customized glass fiber posts and other types by photoelastic analysis.

    PubMed

    Bosso, Kátia; Gonini Júnior, Alcides; Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Lopes, Murilo Baena

    2015-01-01

    Endodontic posts are necessary to provide adequate retention and support when no sufficient remaining structure is available to retain the core. There are different materials and techniques to construct post-and-core, but there is no consensus about which one promotes better stress distribution on the remaining tooth structure. This study aimed to quantify and evaluate the distribution of stress in the root produced by customized glass fiber posts compared to different endodontic posts. Twenty-five simulated roots from photoelastic resin were made and divided into 5 groups: CPC, cast post-and-core; SP, screw post; CF, carbon fiber post; GF, glass fiber post; and CGF, customized glass fiber post. After cementing CPC and SP posts with zinc phosphate cement, and CF, GF and CGF posts with resin cement, resin cores were made for groups 2-5. Specimens were evaluated with vertical or 45° oblique loading. To analyze the fringes, the root was divided into 6 parts: palatal cervical, palatal middle, palatal apical, vestibular cervical, vestibular middle, and vestibular apical. The formed fringes were photographed and quantified. Data were recorded and subjected to two-way ANOVA and Tukey's test (5%). SP (1.95±0.60) showed higher stress (p<0.05) compared to the others (CPC-0.52±0.74; CF-0.50±0.75, GF-0.23±0.48 and CGF-0.45±0.83). All posts showed high stress in apical third (CPC-1.40±0.65; SP-2.30±0.44, CF-1.80±0.45, GF-1.20±0.45, CGF-1.70±1.03) Low stress was found in cervical third (CPC-0.20±0.45; CF-0.00±0.00, GF-0.00±0.00, CGF-0.00±0.00), except by SP (1.90±0.65), which showed statistical difference (p<0.05). Customized post showed high stress concentration at the root and conventional glass fiber posts showed more favorable biomechanical behavior. PMID:26200144

  13. Impact damage characterization in cross-plied carbon fiber/thermoplastic composites using thermoelastic stress analysis

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Uenoya, T.; Miyamoto, H.

    2012-04-01

    Carbon fiber (CF)-plastic composites are expected from the view point of light weighting vehicle structures. The CF/thermoset plastic laminates have low damage resistance to out-of-plane impact as a problem to be solved, because they behave as a low strength inter-laminar as compared with high-strength in fiber direction. Accordingly it is strongly desired to develop CF-composite materials based thermoplastics that have higher toughness than thermoset, for vehicle use. The present paper describes investigation of impact damages through thermoelastic stress analysis (TSA). Lowvelocity impact test using drop weight was conducted on stitched non-crimp-fabric CF/NY6 composite specimens. Stress distribution of the specimens under impact loading was monitored by a lock-in thermography system from the opposite side of the impact direction. The instrumentation system, which had a focal plane array detector, provided a succession of thermoelastic stress information as a sequence of TSA images at a high rate. The measured stress distribution agreed well with a theoretical. And also, selecting a contour feature of the stress distribution determined with a suitable level conformed approximately to the internal damage image that was processed from the TSA images obtained before and after impact.

  14. Intensity and frequency dependence of laryngeal afferent inputs to respiratory hypoglossal motoneurons.

    PubMed

    Mifflin, S W

    1997-12-01

    Inspiratory hypoglossal motoneurons (IHMs) mediate contraction of the genioglossus muscle and contribute to the regulation of upper airway patency. Intracellular recordings were obtained from antidromically identified IHMs in anesthetized, vagotomized cats, and IHM responses to electrical activation of superior laryngeal nerve (SLN) afferent fibers at various frequencies and intensities were examined. SLN stimulus frequencies <2 Hz evoked an excitatory-inhibitory postsynaptic potential (EPSP-IPSP) sequence or only an IPSP in most IHMs that did not change in amplitude as the stimulus was maintained. During sustained stimulus frequencies of 5-10 Hz, there was a reduction in the amplitude of SLN-evoked IPSPs with time with variable changes in the EPSP. At stimulus frequencies >25 Hz, the amplitude of EPSPs and IPSPs was reduced over time. At a given stimulus frequency, increasing stimulus intensity enhanced the decay of the SLN-evoked postsynaptic potentials (PSPs). Frequency-dependent attenuation of SLN inputs to IHMs also occurred in newborn kittens. These results suggest that activation of SLN afferents evokes different PSP responses in IHMs depending on the stimulus frequency. At intermediate frequencies, inhibitory inputs are selectively filtered so that excitatory inputs predominate. At higher frequencies there was no discernible SLN-evoked PSP temporally locked to the SLN stimuli. Alterations in SLN-evoked PSPs could play a role in the coordination of genioglossal contraction during respiration, swallowing, and other complex motor acts where laryngeal afferents are activated. PMID:9390960

  15. A Critique of a Phenomenological Fiber Breakage Model for Stress Rupture of Composite Materials

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2010-01-01

    Stress rupture is not a critical failure mode for most composite structures, but there are a few applications where it can be critical. One application where stress rupture can be a critical design issue is in Composite Overwrapped Pressure Vessels (COPV's), where the composite material is highly and uniformly loaded for long periods of time and where very high reliability is required. COPV's are normally required to be proof loaded before being put into service to insure strength, but it is feared that the proof load may cause damage that reduces the stress rupture reliability. Recently, a fiber breakage model was proposed specifically to estimate a reduced reliability due to proof loading. The fiber breakage model attempts to model physics believed to occur at the microscopic scale, but validation of the model has not occurred. In this paper, the fiber breakage model is re-derived while highlighting assumptions that were made during the derivation. Some of the assumptions are examined to assess their effect on the final predicted reliability.

  16. Development of In-Fiber Reflective Bragg Gratings as Shear Stress Monitors in Aerodynamic Facilities

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Sprinkle, Danny R.; Singh, Jag J.

    1998-01-01

    Bragg gratings centered at nominal wavelengths of 1290 nm and 1300 run were inscribed in a 9/125 microns germano-silicate optical fiber, using continuous wave frequency doubled Ar+ laser radiation at 244 nm. Such gratings have been used extensively as temperature and strain monitors in smart structures. They have, however, never been used for measuring aerodynamic shear stresses. As a test of their sensitivity as shear stress monitors, a Bragg fiber attached to a metal plate was subjected to laminar flows in a glass pipe. An easily measurable large flow-induced wavelength shift (Delta Lambda(sub B)) was observed in the Bragg reflected wavelength. Thereafter, the grating was calibrated by making one time, simultaneous measurements of Delta Lambda(sub B) and the coefficient of skin friction (C(sub f)) with a skin friction balance, as a function of flow rates in a subsonic wind tunnel. Onset of fan-induced transition in the tunnel flow provided a unique flow rate for correlating Delta Lambda(sub B) and (C(sub f) values needed for computing effective modulus of rigidity (N(sub eff)) of the fiber attached to the metal plate. This value Of N(sub eff) is expected to remain constant throughout the elastic stress range expected during the Bragg grating aerodynamic tests. It has been used for calculating the value of Cf at various tunnel speeds, on the basis of measured values of Bragg wavelength shifts at those speeds.

  17. Stress distribution of oval and circular fiber posts in amandibular premolar: a three-dimensional finite element analysis

    PubMed Central

    Kilic, Kerem; Esim, Emir; Aslan, Tugrul; Kilinc, Halil Ibrahim; Yildirim, Sahin

    2013-01-01

    PURPOSE The aim of the present study was to evaluate the effects of posts with different morphologies on stress distribution in an endodontically treated mandibular premolar by using finite element models (FEMs). MATERIALS AND METHODS A mandibular premolar was modeled using the ANSYS software program. Two models were created to represent circular and oval fiber posts in this tooth model. An oblique force of 300 N was applied at an angle of 45° to the occlusal plane and oriented toward the buccal side. von Mises stress was measured in three regions each for oval and circular fiber posts. RESULTS FEM analysis showed that the von Mises stress of the circular fiber post (426.81 MPa) was greater than that of the oval fiber post (346.34 MPa). The maximum distribution of von Mises stress was in the luting agent in both groups. Additionally, von Mises stresses accumulated in the coronal third of root dentin, close to the post space in both groups. CONCLUSION Oval fiber posts are preferable to circular fiber posts in oval-shaped canals given the stress distribution at the post-dentin interface. PMID:24353882

  18. An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints

    NASA Astrophysics Data System (ADS)

    Dennison, Christopher R.; Wild, Peter M.; Wilson, David R.; Gilbart, Michael K.

    2010-11-01

    We present an in-fiber Bragg grating-based sensor (240 µm diameter) for contact force/stress measurements in articular joints. The contact force sensor and another Bragg grating-based pressure sensor (400 µm diameter) are used to conduct the first simultaneous measurements of contact force/stress and fluid pressure in intact cadaveric human hips. The contact force/stress sensor addresses limitations associated with stress-sensitive films, the current standard tools for contact measurements in joints, including cartilage modulus-dependent sensitivity of films and the necessity to remove biomechanically relevant anatomy to implant the films. Because stress-sensitive films require removal of anatomy, it has been impossible to validate the mechanical rationale underlying preventive or corrective surgeries, which repair these anatomies, by conducting simultaneous stress and pressure measurements in intact hips. Methods are presented to insert the Bragg grating-based sensors into the joint, while relevant anatomy is left largely intact. Sensor performance is predicted using numerical models and the predicted sensitivity is verified through experimental calibrations. Contact force/stress and pressure measurements in cadaveric joints exhibited repeatability. With further validation, the Bragg grating-based sensors could be used to study the currently unknown relationships between contact forces and pressures in both healthy and degenerated joints.

  19. Effects of stress ratio and fiber orientation on fatigue crack growth behavior in APAL

    SciTech Connect

    Oh, S.W.; Park, W.J.; Yoon, H.K.; Lee, K.G.; Cho, J.M.; Lee, K.B.

    1993-12-31

    A new hybrid composite (APAL; Aramid Patched Aluminum Alloy), consisting of 2024-T3 aluminum alloy plate sandwiched between aramid/epoxy prepregs (HK 285/RS 1222), was developed. Fatigue crack growth behavior was examined at stress ratios of R = 0.2, 0.5 using two kinds of APAL with different fiber orientation (0{degree}/90{degree} and {+-} 45{degree} for crack direction). The APAL showed superior fatigue crack growth resistance, which may be attributed to the crack bridging effect imposed by the intact fibers in the crack wave. The magnitude of crack bridging was estimated quantitatively and determined by a new technique on the basis of the compliances of 2024-T3 aluminum alloy and APAL specimens. The crack growth rate of the APAL specimens was reduced significantly as comparison to the monolithic aluminum alloy and was not adequately correlated with the conventional stress intensity factor range ({Delta}K). It was found that the crack growth rate was successfully correlated with the effective stress intensity factor range ( {Delta}K{sub eff} = K{sub br} {minus} K{sub cl}) allowing for the crack closure and the crack bridging. The relation between da/dN and {Delta}K{sub eff} was plotted within a narrow scatter band regardless at loading line of 2024-T3 aluminum alloy, two kinds of the APAL (APAL 0{degree}/90{degree}, APAL {+-} 45{degree}) and two kinds of stress ratios (R = 0.2, 0.5).

  20. The frequency dependence of demagnetizing factor of a Fe-based amorphous ribbon

    NASA Astrophysics Data System (ADS)

    Zhmetko, D. N.; Troschenkov, Yu. N.; Matsura, A. V.

    2012-08-01

    The frequency dependence of total and internal demagnetizing factors has been investigated. A minimum of the demagnetizing factor at optimal frequency of magnetization reversal is revealed. The influence of the demagnetizing factor on the frequency dependence of magnetic properties of amorphous ribbon is studied.

  1. Modeling for Fatigue Hysteresis Loops of Carbon Fiber-Reinforced Ceramic-Matrix Composites under Multiple Loading Stress Levels

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    In this paper, the fatigue hysteresis loops of fiber-reinforced ceramic-matrix composites (CMCs) under multiple loading stress levels considering interface wear has been investigated using micromechanical approach. Under fatigue loading, the fiber/matrix interface shear stress decreases with the increase of cycle number due to interface wear. Upon increasing of fatigue peak stress, the interface debonded length would propagate along the fiber/matrix interface. The difference of interface shear stress existed in the new and original debonded region would affect the interface debonding and interface frictional slipping between the fiber and the matrix. Based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading, the interface slip lengths, i.e., the interface debonded length, interface counter-slip length and interface new-slip length, are determined by fracture mechanics approach. The fatigue hysteresis loops models under multiple loading stress levels have been developed. The effects of single/multiple loading stress levels and different loading sequences on fatigue hysteresis loops have been investigated. The fatigue hysteresis loops of unidirectional C/SiC composite under multiple loading stress levels have been predicted.

  2. Three-dimensional finite element analysis of stress distribution in composite resin cores with fiber posts of varying diameters.

    PubMed

    Okamoto, Kazuhiko; Ino, Teruno; Iwase, Naoki; Shimizu, Eitaroh; Suzuki, Megumi; Satoh, Goh; Ohkawa, Shuji; Fujisawa, Masanori

    2008-01-01

    Using three-dimensional finite element analysis (3D-FEA), stress distributions in the remaining radicular tooth structure were investigated under the condition of varying diameters of fiber post for fiber post-reinforced composite resin cores (fiber post and core) in maxillary central incisors. Four 3D-FEA models were constructed: (1) fiber post (ø1.2, ø1.4, and ø1.6 mm) and composite resin core; and (2) gold-cast post and core. Maximum stresses in the tooth structure for fiber post and core were higher than that for gold-cast post and core. In the former models, stresses in the tooth structure as well as in the composite resin were slightly reduced with increase in fiber post diameter. These results thus suggested that to reduce stress in the remaining radicular tooth with a large coronal defect, it is recommended to accompany a composite resin core with a fiber post of a large diameter. PMID:18309611

  3. The Role of Stress Fibers in the Shape Determination Mechanism of Fish Keratocytes.

    PubMed

    Nakata, Takako; Okimura, Chika; Mizuno, Takafumi; Iwadate, Yoshiaki

    2016-01-19

    Crawling cells have characteristic shapes that are a function of their cell types. How their different shapes are determined is an interesting question. Fish epithelial keratocytes are an ideal material for investigating cell shape determination, because they maintain a nearly constant fan shape during their crawling locomotion. We compared the shape and related molecular mechanisms in keratocytes from different fish species to elucidate the key mechanisms that determine cell shape. Wide keratocytes from cichlids applied large traction forces at the rear due to large focal adhesions, and showed a spatially loose gradient associated with actin retrograde flow rate, whereas round keratocytes from black tetra applied low traction forces at the rear small focal adhesions and showed a spatially steep gradient of actin retrograde flow rate. Laser ablation of stress fibers (contractile fibers connected to rear focal adhesions) in wide keratocytes from cichlids increased the actin retrograde flow rate and led to slowed leading-edge extension near the ablated region. Thus, stress fibers might play an important role in the mechanism of maintaining cell shape by regulating the actin retrograde flow rate. PMID:26789770

  4. Prediction of the Elastic-Plastic Stress/Strain Response for Injection-Molded Long-Fiber Thermoplastics

    SciTech Connect

    Nguyen, Ba N.; Kunc, Vlastimil; Phelps, Jay H; TuckerIII, Charles L.; Bapanapalli, Satish K

    2009-01-01

    This paper proposes a model to predict the elastic-plastic response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the elastic-plastic behavior obeying the Ramberg-Osgood relation and J-2 deformation theory of plasticity. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber orientation was predicted using an anisotropic rotary diffusion model recently developed for LFTs. An incremental procedure using Eshelby's equivalent inclusion method and the Mori-Tanaka assumption is proposed to compute the overall stress increment resulting from an overall strain increment for an aligned-fiber composite that contains the same fiber volume fraction and length distribution as the actual composite. The incremental response of the latter is then obtained from the solution for the aligned-fiber composite by averaging over all fiber orientations. Failure during incremental loading is predicted using the Van Hattum-Bernado model. The model is validated against the experimental stress-strain results obtained for long-glass-fiber/polypropylene specimens.

  5. Prediction of the Elastic-Plastic Stress/Strain Response for Injection-Molded Long-Fiber Thermoplastics

    SciTech Connect

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Kunc, Vlastimil; Phelps, Jay; Tucker III, Charles L.

    2009-01-26

    This paper proposes a model to predict the elastic-plastic response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the elastic-plastic behavior obeying the Ramberg-Osgood relation and J-2 deformation theory of plasticity. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber orientation was predicted using the anisotropic rotary diffusion model recently developed by Phelps and Tucker for LFTs. An incremental procedure using the Eshelby’s equivalent inclusion method and the Mori-Tanaka model is proposed to compute the overall stress increment resulting from an overall strain increment for an aligned fiber composite that contains the same fiber volume fraction and length distribution as the actual composite. The incremental response of the later is then obtained from the solution for the aligned fiber composite that is averaged over all possible fiber orientations using the orientation averaging method. Failure during incremental loading is predicted using the Van Hattum-Bernado model. The elastic-plastic and strength prediction model for LFTs was validated against the experimental stress-strain results obtained for long glass fiber/polypropylene specimens.

  6. The effect of stress on ultrasonic pulses in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Hemann, J. H.; Baaklini, G. Y.

    1983-01-01

    An acoustical-ultrasonic technique was used to demonstrate relationships existing between changes in attenuation of stress waves and tensile stress for an eight ply 0 degree graphite-epoxy fiber reinforced composite. All tests were conducted in the linear range of the material for which no mechanical or macroscopic damage was evident. Changes in attenuation were measured as a function of tensile stress in the frequency domain and in the time domain. Stress wave propagation in these specimens was dispersive, i.e., the wave speed depends on frequency. Wave speeds varied from 267 400 cm/sec to 680 000 cm/sec as the frequency of the signal was varied from 150 kHz to 1.9 MHz which strongly suggests that flexural/lamb wave modes of propagation exist. The magnitude of the attenuation changes depended strongly on tensile stress. It was further observed that the wave speeds increased slightly for all tested frequencies as the stress was increased.

  7. The mechanics of delamination in fiber-reinforced composite materials. I - Stress singularities and solution structure

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be different from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites. Previously announced in STAR as N84-13221

  8. Stress- and polarization-induced stimulated Raman scattering in optical fiber

    NASA Astrophysics Data System (ADS)

    Tan, Yong; Cai, Hongxing; Sun, Xiuping; Gao, Xun; Zhang, Xihe

    2013-04-01

    In this letter, the dependence of stimulated Raman scattering spectra on external pressure levels of tens of kPa and the polarized pump light is investigated in optical fibers. The Raman peaks show blueshift under a lower external pressure because of the self-phase modulation. But under a higher external pressure, the Raman peaks begin to redshift, because the change of the inter-tetrahedral angle of the glassy AX2 systems plays a more important role. Moreover, the shifts of an elliptically polarized pump beam are smaller than the those of a linearly polarized pump beam under external pressure. These results could provide new applications for silica fibers as optical frequency generators or stress sensors.

  9. Stress Distribution in Roots Restored with Fiber Posts and An Experimental Dentin Post: 3D-FEA.

    PubMed

    Diana, Hugo Henrique; Oliveira, Juliana Santos; Ferro, Mariana Carolina de Lara; Silva-Sousa, Yara T Corrêa; Gomes, Érica Alves

    2016-04-01

    The aim of this study was to compare the stress distribution in radicular dentin of a maxillary canine restored with either a glass fiber post, carbon fiber post or an experimental dentin post using finite element analysis (3D-FEA). Three 3D virtual models of a maxillary canine restored with a metal-ceramic crown and glass fiber post (GFP), carbon fiber post (CFP), and experimental dentin post (DP) were obtained based on micro-CT images. A total of 180 N was applied on the lingual surface of the incisal third of each tooth at 45 degrees. The models were supported by the periodontal ligament fixed in three axes (x=y=z=0). The von Mises stress (VMS) of radicular dentin and the intracanal posts was calculated. The structures of all groups showed similar values (MPa) and distribution of maximum von Mises stress. Higher stress was found in the apical third of dentin while the posts presented homogeneous stress distribution along the axis. The fiber and dentin posts exhibited similar stress values and distribution. Thus, the experimental dentin post is a promising restorative material. PMID:27058388

  10. Viscoelastic Retraction of Single Living Stress Fibers and Its Impact on Cell Shape, Cytoskeletal Organization, and Extracellular Matrix Mechanics

    PubMed Central

    Kumar, Sanjay; Maxwell, Iva Z.; Heisterkamp, Alexander; Polte, Thomas R.; Lele, Tanmay P.; Salanga, Matthew; Mazur, Eric; Ingber, Donald E.

    2006-01-01

    Cells change their form and function by assembling actin stress fibers at their base and exerting traction forces on their extracellular matrix (ECM) adhesions. Individual stress fibers are thought to be actively tensed by the action of actomyosin motors and to function as elastic cables that structurally reinforce the basal portion of the cytoskeleton; however, these principles have not been directly tested in living cells, and their significance for overall cell shape control is poorly understood. Here we combine a laser nanoscissor, traction force microscopy, and fluorescence photobleaching methods to confirm that stress fibers in living cells behave as viscoelastic cables that are tensed through the action of actomyosin motors, to quantify their retraction kinetics in situ, and to explore their contribution to overall mechanical stability of the cell and interconnected ECM. These studies reveal that viscoelastic recoil of individual stress fibers after laser severing is partially slowed by inhibition of Rho-associated kinase and virtually abolished by direct inhibition of myosin light chain kinase. Importantly, cells cultured on stiff ECM substrates can tolerate disruption of multiple stress fibers with negligible overall change in cell shape, whereas disruption of a single stress fiber in cells anchored to compliant ECM substrates compromises the entire cellular force balance, induces cytoskeletal rearrangements, and produces ECM retraction many microns away from the site of incision; this results in large-scale changes of cell shape (> 5% elongation). In addition to revealing fundamental insight into the mechanical properties and cell shape contributions of individual stress fibers and confirming that the ECM is effectively a physical extension of the cell and cytoskeleton, the technologies described here offer a novel approach to spatially map the cytoskeletal mechanics of living cells on the nanoscale. PMID:16500961

  11. Frequency-dependent seismic attenuation in shales: experimental results and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Delle Piane, Claudio; Sarout, Joel; Madonna, Claudio; Saenger, Erik H.; Dewhurst, David N.; Raven, Mark

    2014-07-01

    Samples of shales from the Ordovician Bongabinni and Goldwyer source rock formations were recovered from the Canning Basin (Western Australia). Attenuation was experimentally measured on preserved plugs from these formations in the frequency range between 10-2 and 102 Hz. Samples cored with different orientations with respect to the sedimentary bedding were prepared and tested in their native saturated state and after drying in the oven at 105 °C for 24 hr to assess the effect of fluids and of the sediment anisotropy on attenuation. To aid the interpretation of the experimental results, the clay-rich samples were characterized in terms of mineralogy, water content, porosity, permeability and microstructure. The two shales have significantly different quality factors; and this is seen to be dependent on both the saturation state of the samples and the propagation direction of the oscillatory signal. The attenuation coefficient for compression/extension parallel to bedding is less than that vertical to bedding in both the preserved and partially dehydrated situations. No frequency dependency is observed in the preserved samples within the range of frequencies explored in this study. On the other hand partially saturated samples show peaks in attenuation at around 40 Hz when the stress perturbation is transmitted normal to the macroscopic bedding. The interpretation of the attenuation measurements in terms of well-established theoretical models is discussed in view of the physical characteristics and microstructure of the tested rocks.

  12. Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP pathway

    PubMed Central

    Huang, Z; Zhang, L; Chen, Y; Zhang, H; Zhang, Q; Li, R; Ma, J; Li, Z; Yu, C; Lai, Y; Lin, T; Zhao, X; Zhang, B; Ye, Z; Liu, S; Wang, W; Liang, X; Liao, R; Shi, W

    2016-01-01

    Podocyte apoptosis is a major mechanism that leads to proteinuria in many chronic kidney diseases. However, the concert mechanisms that cause podocyte apoptosis in these kidney diseases are not fully understood. The Rho family of small GTPases has been shown to be required in maintaining podocyte structure and function. Recent studies have indicated that podocyte-specific deletion of Cdc42 in vivo, but not of RhoA or Rac1, leads to congenital nephrotic syndrome and glomerulosclerosis. However, the underlying cellular events in podocyte controlled by Cdc42 remain unclear. Here, we assessed the cellular mechanisms by which Cdc42 regulates podocyte apoptosis. We found that the expression of Cdc42 and its activity were significantly decreased in high glucose-, lipopolysaccharide- or adriamycin-injured podocytes. Reduced Cdc42 expression in vitro and in vivo by small interfering RNA and selective Cdc42 inhibitor ML-141, respectively, caused podocyte apoptosis and proteinuria. Our results further demonstrated that insufficient Cdc42 or Nwasp, its downstream effector, could decrease the mRNA and protein expression of YAP, which had been regarded as an anti-apoptosis protein in podocyte. Moreover, our data indicated that the loss of stress fibers caused by Cdc42/Nwasp deficiency also decreased Yes-associated protein (YAP) mRNA and protein expression, and induced podocyte apoptosis. Podocyte apoptosis induced by Cdc42/Nwasp/stress fiber deficiency was significantly inhibited by overexpressing-active YAP. Thus, the Cdc42/Nwasp/stress fibers/YAP signal pathway may potentially play an important role in regulating podocyte apoptosis. Maintaining necessary Cdc42 would be one potent way to prevent proteinuria kidney diseases. PMID:26986510

  13. Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall.

    PubMed Central

    Arts, T; Bovendeerd, P H; Prinzen, F W; Reneman, R S

    1991-01-01

    Pumping power as delivered by the heart is generated by the cells in the myocardial wall. In the present model study global left-ventricular pump function as expressed in terms of cavity pressure and volume is related to local wall tissue function as expressed in terms of myocardial fiber stress and strain. On the basis of earlier studies in our laboratory, it may be concluded that in the normal left ventricle muscle fiber stress and strain are homogeneously distributed. So, fiber stress and strain may be approximated by single values, being valid for the whole wall. When assuming rotational symmetry and homogeneity of mechanical load in the wall, the dimensionless ratio of muscle fiber stress (sigma f) to left-ventricular pressure (Plv) appears to depend mainly on the dimensionless ratio of cavity volume (Vlv) to wall volume (Vw) and is quite independent of other geometric parameters. A good (+/- 10%) and simple approximation of this relation is sigma f/Plv = 1 + 3 Vlv/Vw. Natural fiber strain is defined by ef = In (lf/lf,ref), where lf,ref indicates fiber length (lf) in a reference situation. Using the principle of conservation of energy for a change in ef, it holds delta ef = (1/3)delta In (1 + 3Vlv/Vw). PMID:2015392

  14. Interface resistance in copper coated carbon determined by frequency dependent photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Kijamnajsuk, P.; Giuliani, F.; Chirtoc, M.; Horny, N.; Gibkes, J.; Chotikaprakhan, S.; Bein, B. K.; Pelzl, J.

    2010-03-01

    The heat transfer in copper-carbon flat model systems was studied by frequency dependent photothermal radiometry. A novel approach which relies on the frequency dependence of the photothermal signal phase and amplitude at intermediate frequencies was introduced to determine the thermal interface resistance between the Cu-film and the substrate. The frequency dependent amplitude and phase of the photothermal signals were analyzed in the frame of a model of a one- dimensional heat flow perpendicular to the film plane. The interface resistance of the investigated CuC-sample with a Ti-bonding layer was found to increase by a factor two on heat treatment.

  15. Investigation on Stress-Rupture Behavior of a Chopped-Glass-Fiber Composite for Automotive Durability Design Criteria

    SciTech Connect

    Ren, W

    2001-08-24

    Practical and inexpensive testing methods were developed to investigate stress-rupture properties of a polymeric composite with chopped glass fiber reinforcement for automotive applications. The material was tested in representative automotive environments to generate experimental data. The results indicate that environments have substantial effects on the stress-rupture behavior. The data were analyzed and developed into stress-rupture design criteria to address one of the durability aspects of the material for automotive structural applications.

  16. Fiber

    MedlinePlus

    ... broccoli, spinach, and artichokes legumes (split peas, soy, lentils, etc.) almonds Look for the fiber content of ... salsa, taco sauce, and cheese for dinner. Add lentils or whole-grain barley to your favorite soups. ...

  17. Fiber

    MedlinePlus

    ... short period of time can cause intestinal gas ( flatulence ), bloating , and abdominal cramps . This problem often goes ... 213. National Research Council. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and ...

  18. Dynamic stress analysis of smooth and notched fiber composite flexural specimens

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1984-01-01

    A detailed analysis of the dynamic stress field in smooth and notched fiber composite (Charpy-type) specimens is reported in this paper. The analysis is performed with the aid of the direct transient response analysis solution sequence of MSC/NASTRAN. Three unidirectional composites were chosen for the study. They are S-Glass/Epoxy, Kevlar/Epoxy and T-300/Epoxy composite systems. The specimens are subjected to an impact load which is modeled as a triangular impulse with a maximum of 2000 lb and a duration of 1 ms. The results are compared with those of static analysis of the specimens subjected to a peak load of 2000 lb. For the geometry and type of materials studied, the static analysis results gave close conservative estimates for the dynamic stresses. Another interesting inference from the study is that the impact induced effects are felt by S-Glass/Epoxy specimens sooner than Kevlar/Epoxy or T-300/Epoxy specimens.

  19. Dynamic stress analysis of smooth and notched fiber composite flexural specimens

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1986-01-01

    A detailed analysis of the dynamic stress field in smooth and notched fiber composite (Charpy-type) specimens is reported in this paper. The analysis is performed with the aid of the direct transient response analysis solution sequence of MSC/NASTRAN. Three unidirectional composites were chosen for the study. They are S-Glass/Epoxy, Kevlar/Epoxy and T-300/Epoxy composite systems. The specimens are subjected to an impact load which is modeled as a triangular impulse with a maximum of 2000 lb and a duration of 1 ms. The results are compared with those of static analysis of the specimens subjected to a peak load of 2000 lb. For the geometry and type of materials studied, the static analysis results gave close conservative estimates for the dynamic stresses. Another interesting inference from the study is that the impact induced effects are felt by S-Glass/Epoxy specimens sooner than Kevlar/Epoxy or T-300/Epoxy specimens.

  20. Fatigue surviving, fracture resistance, shear stress and finite element analysis of glass fiber posts with different diameters.

    PubMed

    Wandscher, Vinícius Felipe; Bergoli, César Dalmolin; de Oliveira, Ariele Freitas; Kaizer, Osvaldo Bazzan; Souto Borges, Alexandre Luiz; Limberguer, Inácio da Fontoura; Valandro, Luiz Felipe

    2015-03-01

    This study evaluated the shear stress presented in glass fiber posts with parallel fiber (0°) and different coronal diameters under fatigue, fracture resistance and FEA. 160 glass-fiber posts (N=160) with eight different coronal diameters were used (DT=double tapered, number of the post=coronal diameter and W=Wider - fiber post with coronal diameter wider than the conventional): DT1.4; DT1.8W; DT1.6; DT2W; DT1.8; DT2.2W; DT2; DT2.2. Eighty posts were submitted to mechanical cycling (3×10(6) cycles; inclination: 45°; load: 50N; frequency: 4Hz; temperature: 37°C) to assess the surviving under intermittent loading and other eighty posts were submitted to fracture resistance testing (resistance [N] and shear-stress [MPa] values were obtained). The eight posts types were 3D modeled (Rhinoceros 4.0) and the shear-stress (MPa) evaluated using FEA (Ansys 13.0). One-way ANOVA showed statistically differences to fracture resistance (DT2.2W and DT2.2 showed higher values) and shear stress values (DT1.4 showed lower values). Only the DT1.4 fiber posts failed after mechanical cycling. FEA showed similar values of shear stress between the groups and these values were similar to those obtained by shear stress testing. The failure analysis showed that 95% of specimens failed by shear. Posts with parallel fiber (0°) may suffer fractures when an oblique shear load is applied on the structure; except the thinner group, greater coronal diameters promoted the same shear stresses. PMID:25553557

  1. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  2. Velocity form of the Kohn-Sham frequency-dependent polarizability equations

    SciTech Connect

    Bartolotti, L.J.

    1987-11-01

    A single equation is derived for the determination of the first-order correction to the frequency-dependent density, due to the perturbation of a time-varying electric field. This new expression for the first-order correction to the frequency-dependent Kohn-Sham amplitudes depends explicitly upon the velocity form of the dipole-moment operator and the square of the Kohn-Sham Hamiltonian.

  3. Seismic dynamic monitoring in CO2 flooding based on characterization of frequency-dependent velocity factor

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Hua; Li, Jun; Xiao, Wen; Tan, Ming-You; Zhang, Yun-Ying; Cui, Shi-Ling; Qu, Zhi-Peng

    2016-06-01

    The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.

  4. Time-Dependent Stress Rupture Strength Degradation of Hi-Nicalon Fiber-Reinforced Silicon Carbide Composites at Intermediate Temperatures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2016-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide composites with a boron nitride fiber coating decreases with time within the intermediate temperature range of 700 to 950 degree Celsius. Various theories have been proposed to explain the cause of the time-dependent stress rupture strength. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of silicon carbide fiber-reinforced silicon carbide composites. This is achieved through the development of a numerically based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time-marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time-dependent behavior.

  5. Strain Measurement during Stress Rupture of Composite Over-Wrapped Pressure Vessel with Fiber Bragg Gratings Sensors

    NASA Technical Reports Server (NTRS)

    Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn

    2008-01-01

    Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPV). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPY liner.

  6. Strain measurement during stress rupture of composite over-wrapped pressure vessel with fiber Bragg gratings sensors

    NASA Astrophysics Data System (ADS)

    Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn

    2008-03-01

    Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPVs). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPV liner.

  7. WAXS studies of heat - mechanically modified amorphous PET fibers. Role of the tensile stress

    NASA Astrophysics Data System (ADS)

    Velev, V.; Popov, A.; Kyurkchiev, P.; Veleva, L.; Pencheva, M.

    2014-12-01

    The present work is devoted to the investigation of the structure developments in as- spun amorphous poly (ethylene terephthalate) (PET) filaments occurred as a result of heat mechanically modification. The degree of crystallinity of the untreated samples was 1,7 %. The thermal deformation experiments were carried out under isothermal conditions. PET yarn was annealed during 10 min at constant temperature of 80°C after which the sample is subjected to a well-defined constant tensile stress for 120 s at the same temperature. The mechanical load is gravitationally in the range from 0 MPa to 30 MPa and with increment step of 3 MPa. Using of wide angle X-ray scattering (WAXS) were investigated the structural rearrangements in the studied samples caused by the fibers treatments. Dependences between the strain force values and the running in the specimen's structure development are established. And in particular, it was found that a small increase of the tensile stress from 3 MPa to 6 MPa leads to a massive increase in the fibers degree of crystallinity with more than 33%.

  8. Characterization of Palladin, a Novel Protein Localized to Stress Fibers and Cell Adhesions

    PubMed Central

    Parast, Mana M.; Otey, Carol A.

    2000-01-01

    Here, we describe the identification of a novel phosphoprotein named palladin, which colocalizes with α-actinin in the stress fibers, focal adhesions, cell–cell junctions, and embryonic Z-lines. Palladin is expressed as a 90–92-kD doublet in fibroblasts and coimmunoprecipitates in a complex with α-actinin in fibroblast lysates. A cDNA encoding palladin was isolated by screening a mouse embryo library with mAbs. Palladin has a proline-rich region in the NH2-terminal half of the molecule and three tandem Ig C2 domains in the COOH-terminal half. In Northern and Western blots of chick and mouse tissues, multiple isoforms of palladin were detected. Palladin expression is ubiquitous in embryonic tissues, and is downregulated in certain adult tissues in the mouse. To probe the function of palladin in cultured cells, the Rcho-1 trophoblast model was used. Palladin expression was observed to increase in Rcho-1 cells when they began to assemble stress fibers. Antisense constructs were used to attenuate expression of palladin in Rcho-1 cells and fibroblasts, and disruption of the cytoskeleton was observed in both cell types. At longer times after antisense treatment, fibroblasts became fully rounded. These results suggest that palladin is required for the normal organization of the actin cytoskeleton and focal adhesions. PMID:10931874

  9. A versatile micro-mechanical tester for actin stress fibers isolated from cells.

    PubMed

    Matsui, Tsubasa S; Deguchi, Shinji; Sakamoto, Naoya; Ohashi, Toshiro; Sato, Masaaki

    2009-01-01

    Conventional atomic force microscopy is one of the major techniques to evaluate mechanical properties of cells and subcellular components. The use of a cantilever probe for sample manipulation within the vertical plane often makes absolute positioning of the probe, subject to thermal drift, difficult. In addition, the vertical test is unable to observe changes in the sample structure responsible for mechanical behavior detected by the probe. In the present study, an alternative mechanical tester was developed that incorporated a pair of micro-needles to manipulate a sample in a project plane, allowing acquisition of the accurate probe position and entire sample image. Using a vision-based feedback control, a micro-needle driven by a piezo actuator is moved to give user-defined displacements or forces to sample. To show its usefulness and versatility, three types of viscoelastic measurements on actin stress fibers isolated from smooth muscle cells were demonstrated: strain rate-controlled tensile tests, relaxation tests and creep tests. Fluorescence imaging of the stress fibers using Qdots over the course of the measurements, obtained through multiple image detectors, was also carried out. The technique described here is useful for examining the quantitative relationship between mechanical behavior and related structural changes of biomaterials. PMID:19940356

  10. ADF and Cofilin1 Control Actin Stress Fibers, Nuclear Integrity, and Cell Survival

    PubMed Central

    Kanellos, Georgios; Zhou, Jing; Patel, Hitesh; Ridgway, Rachel A.; Huels, David; Gurniak, Christine B.; Sandilands, Emma; Carragher, Neil O.; Sansom, Owen J.; Witke, Walter; Brunton, Valerie G.; Frame, Margaret C.

    2015-01-01

    Summary Genetic co-depletion of the actin-severing proteins ADF and CFL1 triggers catastrophic loss of adult homeostasis in multiple tissues. There is impaired cell-cell adhesion in skin keratinocytes with dysregulation of E-cadherin, hyperproliferation of differentiated cells, and ultimately apoptosis. Mechanistically, the primary consequence of depleting both ADF and CFL1 is uncontrolled accumulation of contractile actin stress fibers associated with enlarged focal adhesions at the plasma membrane, as well as reduced rates of membrane protrusions. This generates increased intracellular acto-myosin tension that promotes nuclear deformation and physical disruption of the nuclear lamina via the LINC complex that normally connects regulated actin filaments to the nuclear envelope. We therefore describe a pathway involving the actin-severing proteins ADF and CFL1 in regulating the dynamic turnover of contractile actin stress fibers, and this is vital to prevent the nucleus from being damaged by actin contractility, in turn preserving cell survival and tissue homeostasis. PMID:26655907

  11. Modeling of the cooling rate effect on the residual stress formation in the cantala fiber/recycled HDPE composites

    NASA Astrophysics Data System (ADS)

    Probotinanto, Yosafat C.; Raharjo, Wijang W.; Budiana, Eko P.

    2016-03-01

    Residual stress has great influence on the mechanical properties of polymer composites. Therefore, its formation during the manufacturing process needs to be investigated. The aim of this study is to investigate the influences of cooling rate on the residual stress distribution of the cantala/rHDPE composite by simulation. The simulation was done by using a SOLID227 element type of ANSYS. The cooling rates that used in this study are 0.5°C/minute, 1°C/minute, and 60°C/minute. The values of the residual stress correspond to the increasing of the cooling rate are 1171.31 kPa, 1171.42 kPa, 1172.36 kPa. In the radial direction, the residual stress was tensile inside the fibers, while in the longitudinal direction, the tensile residual stress occurred in the matrix zones and compressive in the fiber zones.

  12. Carbon fiber based composites stress analysis. Experimental and computer comparative studies

    NASA Astrophysics Data System (ADS)

    Sobek, M.; Baier, A.; Buchacz, A.; Grabowski, Ł.; Majzner, M.

    2015-11-01

    Composite materials used nowadays for the production of composites are the result of advanced research. This allows assuming that they are among the most elaborate tech products of our century. That fact is evidenced by the widespread use of them in the most demanding industries like aerospace and space industry. But the heterogeneous materials and their advantages have been known to mankind in ancient times and they have been used by nature for millions of years. Among the fibers used in the industry most commonly used are nylon, polyester, polypropylene, boron, metal, glass, carbon and aramid. Thanks to their physical properties last three fiber types deserve special attention. High strength to weight ratio allow the use of many industrial solutions. Composites based on carbon and glass fibers are widely used in the automotive. Aramid fibers ideal for the fashion industry where the fabric made from the fibers used to produce the protective clothing. In the paper presented issues of stress analysis of composite materials have been presented. The components of composite materials and principles of composition have been discussed. Particular attention was paid to the epoxy resins and the fabrics made from carbon fibers. The article also includes basic information about strain measurements performed on with a resistance strain gauge method. For the purpose of the laboratory tests a series of carbon - epoxy composite samples were made. For this purpose plain carbon textile was used with a weight of 200 g/mm2 and epoxy resin LG730. During laboratory strain tests described in the paper Tenmex's delta type strain gauge rosettes were used. They were arranged in specific locations on the surface of the samples. Data acquisition preceded using HBM measurement equipment, which included measuring amplifier and measuring head. Data acquisition was performed using the Easy Catman. In order to verify the results of laboratory tests numerical studies were carried out in a

  13. HIPPOCAMPAL MOSSY FIBER LEU-ENKEPHALIN IMMUNOREACTIVITY IN FEMALE RATS IS SIGNIFICANTLY ALTERED FOLLOWING BOTH ACUTE AND CHRONIC STRESS

    PubMed Central

    Pierce, Joseph P.; Kelter, David T.; McEwen, Bruce S.; Waters, Elizabeth M.; Milner, Teresa A.

    2013-01-01

    Research indicates that responses to stress are sexually dimorphic, particularly in regard to learning and memory processes: while males display impaired cognitive performance and hippocampal CA3 pyramidal cell dendritic remodeling following chronic stress, females exhibit enhanced performance and no remodeling. Leu-enkephalin, an endogenous opioid peptide found in the hippocampal mossy fiber pathway, plays a critical role in mediating synaptic plasticity at the mossy fiber-CA3 pyramidal cell synapse. Estrogen is known to influence the expression of leu-enkephalin in the mossy fibers of females, with leu-enkephalin levels being highest at proestrus and estrus, when estrogen levels are elevated. Since stress is also known to alter the expression of leu-enkephalin in various brain regions, this study was designed to determine whether acute or chronic stress had an effect on mossy fiber leu-enkephalin levels in females or males, through the application of correlated quantitative light and electron microscopic immunocytochemistry. Both acute and chronic stress eliminated the estrogen-dependence of leu-enkephalin levels across the estrous cycle in females, but had no effect on male levels. However, following acute stress leu-enkephalin levels in females were consistently lowered to values comparable to the lowest control values, while following chronic stress they were consistently elevated to values comparable to the highest control values. Ultrastructural changes in leu-enkephalin labeled dense core vesicles paralleled light microscopic observations, with acute stress inducing a decrease in leu-enkephalin labeled dense core vesicles, and chronic stress inducing an increase in leu-enkephalin labeled dense-core vesicles in females. These findings suggest that alterations in leu-enkephalin levels following stress could play an important role in the sex-specific responses that females display in learning processes, including those important in addiction. PMID:24275289

  14. Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO₂-laser annealing.

    PubMed

    Lai, Man-Hong; Lim, Kok-Sing; Gunawardena, Dinusha S; Yang, Hang-Zhou; Chong, Wu-Yi; Ahmad, Harith

    2015-03-01

    In this work, we have demonstrated thermal stress relaxation in regenerated fiber Bragg gratings (RFBGs) by using direct CO₂-laser annealing technique. After the isothermal annealing and slow cooling process, the Bragg wavelength of the RFBG has been red-shifted. This modification is reversible by re-annealing and rapid cooling. It is repeatable with different cooling process in the subsequent annealing treatments. This phenomenon can be attributed to the thermal stress modification in the fiber core by means of manipulation of glass transition temperature with different cooling rates. This finding in this investigation is important for accurate temperature measurement of RFBG in dynamic environment. PMID:25723423

  15. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  16. Effects of Thermal Treatment on Tensile Creep and Stress-Rupture Behavior of Hi-Nicalon SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1995-01-01

    Tensile creep and stress-rupture studies were conducted on Hi-Nicalon SiC fibers at 1200 and 1400 C in argon and air. Examined were as-received fibers as well as fibers annealed from 1400 to 1800 C for 1 hour in argon before testing. The creep and rupture results for these annealed fibers were compared to those of the as-received fibers to determine the effects of annealing temperature, test temperature, and test environment. Argon anneals up to 1500 C degrade room temperature strength of Hi-Nicalon fibers, but improve fiber creep resistance in argon or air by as much as 100% with no significant degradation in rupture strength. Argon anneals above 1500 C continue to improve fiber creep resistance when tested in argon, but significantly degrade creep resistance and rupture strength when tested in air. Decrease in creep resistance in air is greater at 1200 C than at 1400 C. Mechanisms are suggested for the observed behavior.

  17. Role of stress fibers and focal adhesions as a mediator for mechano-signal transduction in endothelial cells in situ

    PubMed Central

    Katoh, Kazuo; Kano, Yumiko; Ookawara, Shigeo

    2008-01-01

    Fluid shear stress is the mechanical force generated by the blood flow which is applied over the apical surface of endothelial cells in situ. The findings of a recent study suggest that stress fibers and its associated focal adhesions play roles in mechano-signal transduction mechanism. Stress fibers are present along the apical and the basal portion of the endothelial cells. Endothelial cells respond to fluid shear stress and change their morphological characteristics in both their cell shape and cytoskeletal organization. Atherosclerosis is a common disease of the arteries and it occurs in areas around the branching site of blood vessels where the cells are exposed to low fluid shear stress. The organization of stress fibers and focal adhesions are strongly influenced by shear stress, and therefore the generation of atherosclerotic lesions seem to be associated with the cytoskeletal components of endothelial cells. This review describes the possible role of the cytoskeleton as a mechano-transducer in endothelial cells in situ. PMID:19337541

  18. Frequency-dependent seismic attenuation in shales: Experimental results and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Delle Piane, C.; Madonna, C.; Sarout, J.; Saenger, E. H.; Dewhurst, D.

    2012-12-01

    Shale samples of from the Ordovician Bongabinni and Goldwyer source rock formations (Canning Basin, Western Australia) were characterized in terms of mineralogy, water content, porosity, permeability and microstructure. Additionally attenuation was experimentally measured in the frequency range between 10-2-102 Hz. Preserved samples cored with different orientation with respect to the bedding were prepared and tested in their native saturated state and after drying at 105°C for 24 hours to assess the effect of fluids and of the sediment anisotropy on attenuation. The two shales have significantly different quality factors; and this is seen to be dependent on both the saturation state of the samples and the propagation direction of the oscillatory signal. The attenuation coefficient parallel to bedding is less than that vertical to bedding in both the saturated and partially dehydrated situations. No frequency dependency is observed in the fully saturated samples within the range of frequencies explored in this study. On the other hand partially saturated samples show peaks in attenuation at around 40 Hz when the stress perturbation is transmitted normal to the macroscopic bedding. Through theroetical models we interpret this behavior to be due to fluid motion at the meso- and microscale; i.e. a combination of squirt flow between compliant pores (aspect ratio ≈ 10-3) and fluid motion within saturated portions of the samples with characteristic size ≈ 10-4m . This interpretation is compatible with microstructural investigation by SEM, mercury injection porosimetry and synchrotron micro-tomographic images revealing both quantitative and qualitative information on the pore geometry and size within the two shales.

  19. Effect of inelastic shear stress at the interfaces in the material with a unidirectional fibrous structure on the SIF for a crack in the fiber and the energy absorbed at fiber fracture.

    PubMed

    Borovik, Alexandra V; Borovik, Valery G

    2014-06-01

    The paper suggests considering the presence of inelastic shear mechanisms in the direction of the maximum tensile stress and the absence of these mechanisms in the other directions as the main feature of a structural material of biological origin. A "cracked fiber in tube" model is used for the study of the effect of interface cohesive strength on the stress intensity factor (SIF) for a crack in the fiber and on the energy absorbed under inelastic shear at the interface of fibers at their fracture. The values of the cohesive strength of the interface between the fibers and the distance between the cracks in the fiber at which the maximum energy is absorbed at material fracture at the stage of the crack growth in the fibers are obtained. This stage precedes the pullout process of the completely fractured fibers. PMID:24566378

  20. Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis

    NASA Astrophysics Data System (ADS)

    Harrison, Mark C.; Armani, Andrea M.

    2015-05-01

    Non-destructive materials characterization methods have significantly changed our fundamental understanding of material behavior and have enabled predictive models to be developed. However, the majority of these efforts have focused on crystalline and metallic materials, and transitioning to biomaterials, such as tissue samples, is non-trivial, as there are strict sample handling requirements and environmental controls which prevent the use of conventional equipment. Additionally, the samples are smaller and more complex in composition. Therefore, more advanced sample analysis methods capable of operating in these environments are needed. In the present work, we demonstrate an all-fiber-based material analysis system based on optical polarimetry. Unlike previous polarimetric systems which relied on free-space components, our method combines an in-line polarizer, polarization-maintaining fiber, and a polarimeter to measure the arbitrary polarization state of the output, eliminating all free-space elements. Additionally, we develop a more generalized theoretical analysis which allows more information about the polarization state to be obtained via the polarimeter. We experimentally verify our system using a series of elastomer samples made from polydimethylsiloxane (PDMS), a commonly used biomimetic material. By adjusting the base:curing agent ratio of the PDMS, we controllably tune the Young's modulus of the samples to span over an order of magnitude. The measured results are in good agreement with those obtained using a conventional load-frame system. Our fiber-based polarimetric stress sensor shows promise for use as a simple research tool that is portable and suitable for a wide variety of applications.

  1. Mathematical modeling of the dynamic mechanical behavior of neighboring sarcomeres in actin stress fibers

    PubMed Central

    Chapin, L.M.; Edgar, L.T.; Blankman, E.; Beckerle, M.C.; Shiu, Y T

    2014-01-01

    Actin stress fibers (SFs) in live cells consist of series of dynamic individual sarcomeric units. Within a group of consecutive SF sarcomeres, individual sarcomeres can spontaneously shorten or lengthen without changing the overall length of this group, but the underlying mechanism is unclear. We used a computational model to test our hypothesis that this dynamic behavior is inherent to the heterogeneous mechanical properties of the sarcomeres and the cytoplasmic viscosity. Each sarcomere was modeled as a discrete element consisting of an elastic spring, a viscous dashpot and an active contractile unit all connected in parallel, and experiences forces as a result of actin filament elastic stiffness, myosin II contractility, internal viscoelasticity, or cytoplasmic drag. When all four types of forces are considered, the simulated dynamic behavior closely resembles the experimental observations, which include a low-frequency fluctuation in individual sarcomere length and compensatory lengthening and shortening of adjacent sarcomeres. Our results suggest that heterogeneous stiffness and viscoelasticity of actin fibers, heterogeneous myosin II contractility, and the cytoplasmic drag are sufficient to cause spontaneous fluctuations in SF sarcomere length. Our results shed new light to the dynamic behavior of SF and help design experiments to further our understanding of SF dynamics. PMID:25110525

  2. Image Analysis for the Quantitative Comparison of Stress Fibers and Focal Adhesions

    PubMed Central

    Elosegui-Artola, Alberto; Jorge-Peñas, Alvaro; Moreno-Arotzena, Oihana; Oregi, Amaia; Lasa, Marta; García-Aznar, José Manuel; De Juan-Pardo, Elena M.; Aldabe, Rafael

    2014-01-01

    Actin stress fibers (SFs) detect and transmit forces to the extracellular matrix through focal adhesions (FAs), and molecules in this pathway determine cellular behavior. Here, we designed two different computational tools to quantify actin SFs and the distribution of actin cytoskeletal proteins within a normalized cellular morphology. Moreover, a systematic cell response comparison between the control cells and those with impaired actin cytoskeleton polymerization was performed to demonstrate the reliability of the tools. Indeed, a variety of proteins that were present within the string beginning at the focal adhesions (vinculin) up to the actin SFs contraction (non-muscle myosin II (NMMII)) were analyzed. Finally, the software used allows for the quantification of the SFs based on the relative positions of FAs. Therefore, it provides a better insight into the cell mechanics and broadens the knowledge of the nature of SFs. PMID:25269086

  3. Implementation of thermal residual stresses in the analysis of fiber bridged matrix crack growth in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, John G., Jr.; Johnson, W. Steven

    1994-01-01

    In this research, thermal residual stresses were incorporated in an analysis of fiber-bridged matrix cracks in unidirectional and cross-ply titanium matrix composites (TMC) containing center holes or center notches. Two TMC were investigated, namely, SCS-6/Timelal-21S laminates. Experimentally, matrix crack initiation and growth were monitored during tension-tension fatigue tests conducted at room temperature and at an elevated temperature of 200 C. Analytically, thermal residual stresses were included in a fiber bridging (FB) model. The local R-ratio and stress-intensity factor in the matrix due to thermal and mechanical loadings were calculated and used to evaluate the matrix crack growth behavior in the two materials studied. The frictional shear stress term, tau, assumed in this model was used as a curve-fitting parameter to matrix crack growth data. The scatter band in the values of tau used to fit the matrix crack growth data was significantly reduced when thermal residual stresses were included in the fiber bridging analysis. For a given material system, lay-up and temperature, a single value of tau was sufficient to analyze the crack growth data. It was revealed in this study that thermal residual stresses are an important factor overlooked in the original FB models.

  4. Fiber-based polarimetric stress sensor for measuring the Young's modulus of biomaterials

    NASA Astrophysics Data System (ADS)

    Harrison, Mark C.; Armani, Andrea M.

    2015-03-01

    Polarimetric optical fiber-based stress and pressure sensors have proven to be a robust tool for measuring and detecting changes in the Young's modulus (E) of materials in response to external stimuli, including the real-time monitoring of the structural integrity of bridges and buildings. These sensors typically work by using a pair of polarizers before and after the sensing region of the fiber, and often require precise alignment to achieve high sensitivity. The ability to perform similar measurements in natural and in engineered biomaterials could provide significant insights and enable research advancement and preventative healthcare. However, in order for this approach to be successful, it is necessary to reduce the complexity of the system by removing free-space components and the need for alignment. As the first step in this path, we have developed a new route for performing these measurements. By generalizing and expanding established theoretical analyses for these types of sensors, we have developed a predictive theoretical model. Additionally, by replacing the conventional free space components and polarization filters with a polarimeter, we have constructed a sensor system with higher sensitivity and which is semi-portable. In initial experiments, a series of polydimethylsiloxane (PDMS) samples with several base:curing agent ratios ranging from 5:1 up to 30:1 were prepared to simulate tissues with different stiffnesses. By simultaneously producing stress-strain curves using a load frame and monitoring the polarization change of light traveling through the samples, we verified the accuracy of our theoretical model.

  5. FAST TRACK COMMUNICATION: Characterization of frequency-dependent glass transition temperature by Vogel-Fulcher relationship

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Jin, Li

    2008-08-01

    The complex mechanical modulus of polymer and polymer based composite materials showed a frequency-dependent behaviour during glass transition relaxation, which was historically modelled by the Arrhenius equation. However, this might not be true in a broad frequency domain based on the experience from the frequency dependence of the complex dielectric permittivity, which resulted from the same glass transition relaxation as for the complex mechanical modulus. Considering a good correspondence between dielectric and mechanical relaxation during glass transition, the Vogel-Fulcher relationship, previously proposed for the frequency dependence of dielectric permittivity, is introduced for that of the mechanical modulus; and the corresponding static glass transition temperature (Tf) was first determined for polymer and polymer based composite materials.

  6. Stabilizing soliton-based multichannel transmission with frequency dependent linear gain-loss

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debananda; Peleg, Avner; Nguyen, Quan M.

    2016-07-01

    We report several major theoretical steps towards realizing stable long-distance multichannel soliton transmission in Kerr nonlinear waveguide loops. We find that transmission destabilization in a single waveguide is caused by resonant formation of radiative sidebands and investigate the possibility to increase transmission stability by optimization with respect to the Kerr nonlinearity coefficient γ. Moreover, we develop a general method for transmission stabilization, based on frequency dependent linear gain-loss in Kerr nonlinear waveguide couplers, and implement it in two-channel and three-channel transmission. We show that the introduction of frequency dependent loss leads to significant enhancement of transmission stability even for non-optimal γ values via decay of radiative sidebands, which takes place as a dynamic phase transition. For waveguide couplers with frequency dependent linear gain-loss, we observe stable oscillations of soliton amplitudes due to decay and regeneration of the radiative sidebands.

  7. A kinetic model for the frequency dependence of cholinergic modulation at hippocampal GABAergic synapses.

    PubMed

    Stone, Emily; Haario, Heikki; Lawrence, J Josh

    2014-12-01

    In this paper we use a simple model of presynaptic neuromodulation of GABA signaling to decipher paired whole-cell recordings of frequency dependent cholinergic neuromodulation at CA1 parvalbumin-containing basket cell (PV BC)-pyramidal cell synapses. Variance-mean analysis is employed to normalize the data, which is then used to estimate parameters in the mathematical model. Various parameterizations and hidden parameter dependencies are investigated using Markov Chain Monte Carlo (MCMC) parameter estimation techniques. This analysis reveals that frequency dependence of cholinergic modulation requires both calcium-dependent recovery from depression and mAChR-induced inhibition of presynaptic calcium entry. A reduction in calcium entry into the presynaptic terminal in the kinetic model accounted for the frequency-dependent effects of mAChR activation. PMID:25445738

  8. On the modal decoupling of linear mechanical systems with frequency-dependent viscoelastic behavior

    NASA Astrophysics Data System (ADS)

    Mastroddi, Franco; Calore, Paolo

    2016-03-01

    Linear Multi-Degree of Freedom (MDOF) mechanical systems having frequency-dependent viscoelastic behaviors are often studied and modelled in frequency or Laplace domains. Indeed, once this modelling process is carried out, it is not generally possible to reduce the obtained MDOF damped mechanical system to a set of uncoupled damped modal oscillators apart from some special cases. In this paper a general procedure has been proposed to transform a coupled linear mechanical system having frequency-dependent viscoelastic characteristics to a set of independent damped modal oscillators. The procedure is based on a linear co-ordinate transformation procedure using matrices in real field only. The approach is exact and based on the solution of one associated eigenproblem for the case of linearly viscous damping. In the general case of frequency-dependent viscoelastic materials, the approach includes an iterative procedure solving local eigenproblems.Some numerical results are reported to show the capabilities of the proposed approach.

  9. A kinetic model for the frequency dependence of cholinergic modulation at hippocampal GABAergic synapses

    PubMed Central

    Stone, Emily; Haario, Heikki; Lawrence, J. Josh

    2014-01-01

    In this paper we use a simple model of presynaptic neuromodulation of GABA signalling to decipher paired whole-cell recordings of frequency dependent cholinergic neuromodulation at CA1 parvalbumin-containing basket cell (PV BC)-pyramidal cell synapses. Variance-mean analysis is employed to normalize the data, which is then used to estimate parameters in the mathematical model. Various parameterizations and hidden parameter dependencies are investigated using Monte Carlo Markov Chain (MCMC) parameter estimation techniques. This analysis reveals that frequency dependence of cholinergic modulation requires both calcium-dependent recovery from depression and mAChR-induced inhibition of presynaptic calcium entry. A reduction in calcium entry into the presynaptic terminal in the kinetic model accounted for the frequency-dependent effects of mAChR activation. PMID:25445738

  10. Cytotoxicity, oxidative stress and genotoxicity induced by glass fibers on human alveolar epithelial cell line A549.

    PubMed

    Rapisarda, Venerando; Loreto, Carla; Ledda, Caterina; Musumeci, Giuseppe; Bracci, Massimo; Santarelli, Lory; Renis, Marcella; Ferrante, Margherita; Cardile, Venera

    2015-04-01

    Man-made vitreous fibers have been widely used as insulation material as asbestos substitutes; however their morphology and composition raises concerns. In 1988 the International Agency for Research on Cancer classified fiberglass, rock wool, slag wool, and ceramic fibers as Group 2B, i.e. possibly carcinogenic to humans. In 2002 it reassigned fiberglass, rock and slag wool, and continuous glass filaments to Group 3, not classifiable as carcinogenic to humans. The aim of this study was to verify the cytotoxic and genotoxic effects and oxidative stress production induced by in vitro exposure of human alveolar epithelial cells A549 to glass fibers with a predominant diameter <3 μm (97%) and length >5 μm (93%). A549 cells were incubated with 5, 50, or 100 μg/ml (2.1, 21, and 42 μg/cm(2), respectively) of glass fibers for 72 h. Cytotoxicity and DNA damage were tested by the MTT and the Comet assay, respectively. Oxidative stress was determined by measuring inducible nitric oxide synthase (iNOS) expression by Western blotting, production of nitric oxide (NO) with Griess reagent, and concentration of reactive oxygen species by fluorescent quantitative analysis with 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The results showed that glass fiber exposure significantly reduced cell viability and increased DNA damage and oxidative stress production in a concentration-dependent manner, demonstrating that glass fibers exert cytotoxic and genotoxic effects related to increased oxidative stress on the human alveolar cell line A549. PMID:25620604

  11. Thermal stress and Ca-independent contractile activation in mammalian skeletal muscle fibers at high temperatures.

    PubMed Central

    Ranatunga, K W

    1994-01-01

    Temperature dependence of the isometric tension was examined in chemically skinned, glycerinated, rabbit Psoas, muscle fibers immersed in relaxing solution (pH approximately 7.1 at 20 degrees C, pCa approximately 8, ionic strength 200 mM); the average rate of heating/cooling was 0.5-1 degree C/s. The resting tension increased reversibly with temperature (5-42 degrees C); the tension increase was slight in warming to approximately 25 degrees C (a linear thermal contraction, -alpha, of approximately 0.1%/degree C) but became more pronounced above approximately 30 degrees C (similar behavior was seen in intact rat muscle fibers). The extra tension rise at the high temperatures was depressed in acidic pH and in the presence of 10 mM inorganic phosphate; it was absent in rigor fibers in which the tension decreased with heating (a linear thermal expansion, alpha, of approximately 4 x 10(-5)/degree C). Below approximately 20 degrees C, the tension response after a approximately 1% length increase (complete < 0.5 ms) consisted of a fast decay (approximately 150.s-1 at 20 degrees C) and a slow decay (approximately 10.s-1) of tension. The rate of fast decay increased with temperature (Q10 approximately 2.4); at 35-40 degrees C, it was approximately 800.s-1, and it was followed by a delayed tension rise (stretch-activation) at 30-40.s-1. The linear rise of passive tension in warming to approximately 25 degrees C may be due to increase of thermal stress in titin (connectin)-myosin composite filament, whereas the extra tension above approximately 30 degrees C may arise from cycling cross-bridges; based on previous findings from regulated actomyosin in solution (Fuchs, 1975), it is suggested that heating reversibly inactivates the troponin-tropomyosin control mechanism and leads to Ca-independent thin filament activation at high temperatures. Additionally, we propose that the heating-induced increase of endo-sarcomeric stress within titin-myosin composite filament makes the

  12. Modelling the vibration of sandwich beams using frequency-dependent parameters

    NASA Astrophysics Data System (ADS)

    Backström, D.; Nilsson, A. C.

    2007-03-01

    Various types of sandwich beams with foam or honeycomb cores are currently used in the industry, indicating the need for simple methods describing the dynamics of these complex structures. By implementing frequency-dependent parameters, the vibration of sandwich composite beams can be approximated using simple fourth-order beam theory. A higher-order sandwich beam model is utilized in order to obtain estimates of the frequency-dependent bending stiffness and shear modulus of the equivalent Bernoulli-Euler and Timoshenko models. The resulting predicted eigenfrequencies and transfer accellerance functions are compared to the data obtained from the higher-order model and from measurements.

  13. Creep and Stress-strain Behavior After Creep from Sic Fiber Reinforced, Melt-infiltrated Sic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay

    2004-01-01

    Silicon carbide fiber (Hi-Nicalon Type S, Nippon Carbon) reinforced silicon carbide matrix composites containing melt-infiltrated Si were subjected to creep at 1315 C for a number of different stress conditions, This study is aimed at understanding the time-dependent creep behavior of CMCs for desired use-conditions, and also more importantly, how the stress-strain response changes as a result of the time-temperature-stress history of the crept material. For the specimens that did not rupture, fast fracture experiments were performed at 1315 C or at room temperature immediately following tensile creep. In many cases, the stress-strain response and the resulting matrix cracking stress of the composite change due to stress-redistribution between composite constituents during tensile creep. The paper will discuss these results and its implications on applications of these materials for turbine engine components.

  14. Sialylation of vitronectin regulates stress fiber formation and cell spreading of dermal fibroblasts via a heparin-binding site.

    PubMed

    Miyamoto, Yasunori; Tanabe, Mio; Date, Kimie; Sakuda, Kanoko; Sano, Kotone; Ogawa, Haruko

    2016-04-01

    Vitronectin (VN) plays an important role in tissue regeneration. We previously reported that VN from partial hepatectomized (PH) rats results in a decrease of sialylation of VN and de-sialylation of VN decreases the cell spreading of hepatic stellate cells. In this study, we analyzed the mechanism how sialylation of VN regulates the properties of mouse primary cultured dermal fibroblasts (MDF) and a dermal fibroblast cell line, Swiss 3T3 cells. At first, we confirmed that VN from PH rats or de-sialylated VN also decreased cell spreading in MDF and Swiss 3T3 cells. The de-sialylation suppressed stress fiber formation in Swiss 3T3 cells. Next, we analyzed the effect of the de-sialylation of VN on stress fiber formation in Swiss 3T3 cells. RGD peptide, an inhibitor for a cell binding site of VN, did not affect the cell attachment of Swiss 3T3 cells on untreated VN but significantly decreased it on de-sialylated VN, suggesting that the de-sialylation attenuates the binding activity of an RGD-independent binding site in VN. To analyze a candidate RGD-independent binding site, an inhibition experiment of stress fiber formation for a heparin binding site was performed. The addition of heparin and treatment of cells with heparinase decreased stress fiber formation in Swiss 3T3 cells. Furthermore, de-sialylation increased the binding activity of VN to heparin, as detected by surface plasmon resonance (SPR). These results demonstrate that sialylation of VN glycans regulates stress fiber formation and cell spreading of dermal fibroblast cells via a heparin binding site. PMID:26979432

  15. Stress-intensity factors of r-cracks in fiber-reinforced composites under thermal and mechanical loading

    NASA Astrophysics Data System (ADS)

    Mueller, W. H.; Schmauder, S.

    1993-02-01

    The plane stress/plane strain problem of radial matrix cracking in fiber-reinforced composites, due to thermal mismatch and externally applied stress is solved numerically in the framework of linear elasticity, using Erdogan's integral equation technique. It is shown that, in order to obtain the results of the combined loading case, the solutions of purely thermal and purely mechanical loading can simply be superimposed. Stress-intensity factors are calculated for various lengths and distances of the crack from the interface for each of these loading conditions.

  16. Effect of rolling on the high temperature tensile and stress-rupture properties of tungsten fiber-superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.

    1974-01-01

    An investigation was conducted to determine the effects of mechanical working on the 1093 C tensile and stress-rupture strength of tungsten alloy/superalloy composites. Hot pressed composites containing either conventional tungsten lamp filament wire or tungsten-1% ThO2 wire and a nickel base alloy matrix were hot rolled at 1093 C. The hot pressed and rolled composite specimens were then tested in tension and stress-rupture at 1093 C. Rolling decreased the degree of fiber-matrix reaction as a function of time of exposure at 1093 C. The stress-rupture properties of the rolled composites were superior to hot pressed composites containing equivalent diameter fibers. Rolling did not appreciably affect the 1093 C ultimate tensile strength of the composites.

  17. Effect of rolling on the high temperature tensile and stress-rupture properties of tungsten fiber-superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.

    1974-01-01

    An investigation was conducted to determine the effects of mechanical working on the 1093 C (2000 F) tensile and stress-rupture strength of tungsten alloy/superalloy composites. Hot pressed composites containing either conventional tungsten lamp filament wire or tungsten-1% ThO2 wire and a nickel base alloy matrix were hot rolled at 1093 C (2000 F). The hot pressed and rolled composite specimens were then tested in tension and stress-rupture at 1093 C (2000 F). Rolling decreased the degree of fiber-matrix reaction as a function of time of exposure at 1093 C (2000 F). The stress-rupture properties of the rolled composites were superior to hot pressed composites containing equivalent diameter fibers. Rolling did not appreciably affect the 1093 C (2000 F) ultimate tensile strength of the composites.

  18. Dynamic characterization of short duration stress pulses generated by a magnetic flyer plate in carbon-fiber/epoxy laminates

    SciTech Connect

    Bruck, H.A.; Epstein, J.S.; Perry, K.E. Jr.; Abdallah, M.G.

    1995-11-01

    There is a great deal of interest in characterizing the dynamic mechanical behavior of laminated carbon-fiber/epoxy composites for military and aerospace applications. Current research efforts have been directed at measuring the strength lost because of accumulated damage. Very little work has been done to determine how this damage is accumulated during dynamic mechanical loading. Of particular interest is the effect of short duration (< 1 {micro}s) stress pulses on mechanical behavior such as delamination. In this paper, a magnetic flyer plate apparatus is presented for generating a short duration stress pulse in a unidirectional carbon-fiber/epoxy laminated composite. The stress pulse is characterized using a dynamic moire interferometer.

  19. Effects of mechanical properties of adhesive resin cements on stress distribution in fiber-reinforced composite adhesive fixed partial dentures.

    PubMed

    Yokoyama, Daiichiro; Shinya, Akikazu; Gomi, Harunori; Vallittu, Pekka K; Shinya, Akiyoshi

    2012-01-01

    Using finite element analysis (FEA), this study investigated the effects of the mechanical properties of adhesive resin cements on stress distributions in fiber-reinforced resin composite (FRC) adhesive fixed partial dentures (AFPDs). Two adhesive resin cements were compared: Super-Bond C&B and Panavia Fluoro Cement. The AFPD consisted of a pontic to replace a maxillary right lateral incisor and retainers on a maxillary central incisor and canine. FRC framework was made of isotropic, continuous, unidirectional E-glass fibers. Maximum principal stresses were calculated using finite element method (FEM). Test results revealed that differences in the mechanical properties of adhesive resin cements led to different stress distributions at the cement interfaces between AFPD and abutment teeth. Clinical implication of these findings suggested that the safety and longevity of an AFPD depended on choosing an adhesive resin cement with the appropriate mechanical properties. PMID:22447051

  20. Negative frequency-dependent selection between Pasteuria penetrans and its host Meloidogyne arenaria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In negative frequency-dependant selection (NFDS), parasite genotypes capable of infecting the numerically dominant host genotype are favored, while host genotypes resistant to the dominant parasite genotype are favored, creating a cyclical pattern of resistant genotypes in the host population and, a...

  1. Colour polymorphism torn apart by opposing positive frequency-dependent selection, yet maintained in space.

    PubMed

    Gordon, Swanne P; Kokko, Hanna; Rojas, Bibiana; Nokelainen, Ossi; Mappes, Johanna

    2015-11-01

    Polymorphic warning signals in aposematic species are enigmatic because predator learning and discrimination should select for the most common coloration, resulting in positive frequency-dependent survival selection. Here, we investigated whether differential mating success could create sufficiently strong negative frequency-dependent selection for rare morphs to explain polymorphic (white and yellow) warning coloration in male wood tiger moths (Parasemia plantaginis). We conducted an experiment in semi-natural conditions where we estimated mating success for both white and yellow male moths under three different morph frequencies. Contrary to expectations, mating success was positively frequency-dependent: white morph males had high relative fitness when common, likewise yellow morph males had high relative fitness when instead they were common. We hence built a model parameterized with our data to examine whether polymorphism can be maintained despite two sources of positive frequency dependence. The model includes known spatial variation in the survival advantage enjoyed by the yellow morph and assumes that relative mating success follows our experimentally derived values. It predicts that polymorphism is possible under migration for up to approximately 20% exchange of individuals between subpopulations in each generation. Our results suggest that differential mating success combined with spatial variation in predator communities may operate as a selection mosaic that prevents complete fixation of either morph. PMID:26114930

  2. FREQUENCY-DEPENDENT CHANGES IN GAP JUNCTION FUNCTION IN PRIMARY HEPATOCYTES

    EPA Science Inventory

    FREQUENCY-DEPENDENT CHANGES IN GAP JUNCTION FUNCTION IN PRIMARY HEPATOCYTES. X. Wang1 *, D.E. Housel *, J. Page2, C.F. Blackmanl. 1 National Health and Environmental Effects Research Laboratory, USEPA, Research Triangle Park, North Carolina 27711 USA, 2Oakland, California USA
    ...

  3. Assessing the utility of frequency dependent nudging for reducing biases in biogeochemical models

    NASA Astrophysics Data System (ADS)

    Lagman, Karl B.; Fennel, Katja; Thompson, Keith R.; Bianucci, Laura

    2014-09-01

    Bias errors, resulting from inaccurate boundary and forcing conditions, incorrect model parameterization, etc. are a common problem in environmental models including biogeochemical ocean models. While it is important to correct bias errors wherever possible, it is unlikely that any environmental model will ever be entirely free of such errors. Hence, methods for bias reduction are necessary. A widely used technique for online bias reduction is nudging, where simulated fields are continuously forced toward observations or a climatology. Nudging is robust and easy to implement, but suppresses high-frequency variability and introduces artificial phase shifts. As a solution to this problem Thompson et al. (2006) introduced frequency dependent nudging where nudging occurs only in prescribed frequency bands, typically centered on the mean and the annual cycle. They showed this method to be effective for eddy resolving ocean circulation models. Here we add a stability term to the previous form of frequency dependent nudging which makes the method more robust for non-linear biological models. Then we assess the utility of frequency dependent nudging for biological models by first applying the method to a simple predator-prey model and then to a 1D ocean biogeochemical model. In both cases we only nudge in two frequency bands centered on the mean and the annual cycle, and then assess how well the variability in higher frequency bands is recovered. We evaluate the effectiveness of frequency dependent nudging in comparison to conventional nudging and find significant improvements with the former.

  4. Stress-intensity factors of r-cracks in fiber-reinforced composites under thermal and mechanical loading

    NASA Astrophysics Data System (ADS)

    Mueller, W. H.; Schmauder, S.

    1993-02-01

    This paper is concerned with the problem of the calculation of stress-intensity factors at the tips of radial matrix cracks (r-cracks) in fiber-reinforced composites under thermal and/or transverse uniaxial or biaxial mechanical loading. The crack is either located in the immediate vicinity of a single fiber or it terminates at the interface between the fiber and the matrix. The problem is stated and solved numerically within the framework of linear elasticity using Erdogan's integral equation technique. It is shown that the solutions for purely thermal and purely mechanical loading can simply be superimposed in order to obtain the results of the combined loading case. Stress-intensity factors (SIFs) are calculated for various lengths and distances of the crack from the interface for each of these loading conditions. The behavior of the SIFs for cracks growing towards or away from the interface is examined. The role of the elastic mismatch between the fibers and the matrix is emphasized and studied extensively using the so-called Dundurs' parameters. It is shown that an r-crack, which is remotely located from the fiber, can either be stabilized or destabilized depending on both the elastic as well as the thermal mismatch of the fibrous composite. Furthermore, Dundurs' parameters are used to predict the exponent of the singularity of the crack tip elastic field and the behavior of the corresponding SIFs for cracks which terminate at the interface. An analytical solution for the SIFs is derived for all three loading conditions under the assumption that the elastic constants of the matrix and the fiber are equal. It is shown that the analytical solution is in good agreement with the corresponding numerical results. Moreover, another analytical solution from the literature, which is based upon Paris' equation for the calculation of stress-intensity factors, is compared with the numerical results and it is shown to be valid only for extremely short r-cracks touching the

  5. Phase-Shifted Based Numerical Method for Modeling Frequency-Dependent Effects on Seismic Reflections

    NASA Astrophysics Data System (ADS)

    Chen, Xuehua; Qi, Yingkai; He, Xilei; He, Zhenhua; Chen, Hui

    2016-04-01

    The significant velocity dispersion and attenuation has often been observed when seismic waves propagate in fluid-saturated porous rocks. Both the magnitude and variation features of the velocity dispersion and attenuation are frequency-dependent and related closely to the physical properties of the fluid-saturated porous rocks. To explore the effects of frequency-dependent dispersion and attenuation on the seismic responses, in this work, we present a numerical method for seismic data modeling based on the diffusive and viscous wave equation (DVWE), which introduces the poroelastic theory and takes into account diffusive and viscous attenuation in diffusive-viscous-theory. We derive a phase-shift wave extrapolation algorithm in frequencywavenumber domain for implementing the DVWE-based simulation method that can handle the simultaneous lateral variations in velocity, diffusive coefficient and viscosity. Then, we design a distributary channels model in which a hydrocarbon-saturated sand reservoir is embedded in one of the channels. Next, we calculated the synthetic seismic data to analytically and comparatively illustrate the seismic frequency-dependent behaviors related to the hydrocarbon-saturated reservoir, by employing DVWE-based and conventional acoustic wave equation (AWE) based method, respectively. The results of the synthetic seismic data delineate the intrinsic energy loss, phase delay, lower instantaneous dominant frequency and narrower bandwidth due to the frequency-dependent dispersion and attenuation when seismic wave travels through the hydrocarbon-saturated reservoir. The numerical modeling method is expected to contribute to improve the understanding of the features and mechanism of the seismic frequency-dependent effects resulted from the hydrocarbon-saturated porous rocks.

  6. Phase-Shifted Based Numerical Method for Modeling Frequency-Dependent Effects on Seismic Reflections

    NASA Astrophysics Data System (ADS)

    Chen, Xuehua; Qi, Yingkai; He, Xilei; He, Zhenhua; Chen, Hui

    2016-08-01

    The significant velocity dispersion and attenuation has often been observed when seismic waves propagate in fluid-saturated porous rocks. Both the magnitude and variation features of the velocity dispersion and attenuation are frequency-dependent and related closely to the physical properties of the fluid-saturated porous rocks. To explore the effects of frequency-dependent dispersion and attenuation on the seismic responses, in this work, we present a numerical method for seismic data modeling based on the diffusive and viscous wave equation (DVWE), which introduces the poroelastic theory and takes into account diffusive and viscous attenuation in diffusive-viscous-theory. We derive a phase-shift wave extrapolation algorithm in frequencywavenumber domain for implementing the DVWE-based simulation method that can handle the simultaneous lateral variations in velocity, diffusive coefficient and viscosity. Then, we design a distributary channels model in which a hydrocarbon-saturated sand reservoir is embedded in one of the channels. Next, we calculated the synthetic seismic data to analytically and comparatively illustrate the seismic frequency-dependent behaviors related to the hydrocarbon-saturated reservoir, by employing DVWE-based and conventional acoustic wave equation (AWE) based method, respectively. The results of the synthetic seismic data delineate the intrinsic energy loss, phase delay, lower instantaneous dominant frequency and narrower bandwidth due to the frequency-dependent dispersion and attenuation when seismic wave travels through the hydrocarbon-saturated reservoir. The numerical modeling method is expected to contribute to improve the understanding of the features and mechanism of the seismic frequency-dependent effects resulted from the hydrocarbon-saturated porous rocks.

  7. Finite element analysis of stress concentration in three popular brands of fiber posts systems used for maxillary central incisor teeth

    PubMed Central

    Aggarwal, Shalini; Garg, Vaibhav

    2011-01-01

    Aims and Objectives: To study the stress concentrations in endodontically treated maxillary central incisor teeth restored with 3 different fiber post systems subjected to various oblique occlusal loads. Materials and Methods: FEM analysis was used to analyze stress concentrations generated in maxillary anterior teeth. Computer aided designing was used to create a 2-D model of an upper central incisor. Post systems analyzed were the DT Light Post (RDT, Bisco), Luscent Anchor (Dentatus) & RelyX (3M-ESPE). The entire design assembly was subjected to analysis by ANSYS for oblique loading forces of 25N, 80N & 125 N Results: The resultant data showed that the RelyX generated the least amount of stress concentration. Conclusions: Minimal stress buildups contribute to the longevity of the restorations. Thus RelyX by virtue of judicious stress distribution is the better option for restoration of grossly decayed teeth. PMID:22025836

  8. Effect of preconditioning and stress relaxation on local collagen fiber re-alignment: inhomogeneous properties of rat supraspinatus tendon.

    PubMed

    Miller, Kristin S; Edelstein, Lena; Connizzo, Brianne K; Soslowsky, Louis J

    2012-03-01

    Repeatedly and consistently measuring the mechanical properties of tendon is important but presents a challenge. Preconditioning can provide tendons with a consistent loading history to make comparisons between groups from mechanical testing experiments. However, the specific mechanisms occurring during preconditioning are unknown. Previous studies have suggested that microstructural changes, such as collagen fiber re-alignment, may be a result of preconditioning. Local collagen fiber re-alignment is quantified throughout tensile mechanical testing using a testing system integrated with a polarized light setup, consisting of a backlight, 90 deg-offset rotating polarizer sheets on each side of the test sample, and a digital camera, in a rat supraspinatus tendon model, and corresponding mechanical properties are measured. Local circular variance values are compared throughout the mechanical test to determine if and where collagen fiber re-alignment occurred. The inhomogeneity of the tendon is examined by comparing local circular variance values, optical moduli and optical transition strain values. Although the largest amount of collagen fiber re-alignment was found during preconditioning, significant re-alignment was also demonstrated in the toe and linear regions of the mechanical test. No significant changes in re-alignment were seen during stress relaxation. The insertion site of the supraspinatus tendon demonstrated a lower linear modulus and a more disorganized collagen fiber distribution throughout all mechanical testing points compared to the tendon midsubstance. This study identified a correlation between collagen fiber re-alignment and preconditioning and suggests that collagen fiber re-alignment may be a potential mechanism of preconditioning and merits further investigation. In particular, the conditions necessary for collagen fibers to re-orient away from the direction of loading and the dependency of collagen reorganization on its initial distribution

  9. Free radical activity of industrial fibers: role of iron in oxidative stress and activation of transcription factors.

    PubMed Central

    Gilmour, P S; Brown, D M; Beswick, P H; MacNee, W; Rahman, I; Donaldson, K

    1997-01-01

    We studied asbestos, vitreous fiber (MMVF10), and refractory ceramic fiber (RCF1) from the Thermal Insulation Manufacturers' Association fiber repository regarding the following: free radical damage to plasmid DNA, iron release, ability to deplete glutathione (GSH), and activate redox-sensitive transcription factors in macrophages. Asbestos had much more free radical activity than any of the man-made vitreous fibers. More Fe3+ was released than Fe2+ and more of both was released at pH 4.5 than at pH 7.2. Release of iron from the different fibers was generally not a good correlate of ability to cause free radical injury to the plasmid DNA. All fiber types caused some degree of oxidative stress, as revealed by depletion of intracellular GSH. Amosite asbestos upregulated nuclear binding of activator protein 1 transcription factor to a greater level than MMVF10 and RCF1; long-fiber amosite was the only fiber to enhance activation of the transcription factor nuclear factor kappa B (NF kappa B). The use of cysteine methyl ester and buthionine sulfoximine to modulate GSH suggested that GSH homeostasis was important in leading to activation of transcription factors. We conclude that the intrinsic free radical activity is the major determinant of transcription factor activation and therefore gene expression in alveolar macrophages. Although this was not related to iron release or ability to deplete macrophage GSH at 4 hr, GSH does play a role in activation of NF kappa B. Images Figure 1. Figure 5. A Figure 5. B Figure 6. A Figure 6. B PMID:9400744

  10. The Evolution of Interfacial Sliding Stresses During Cyclic Push-in Testing of C- and BN-Coated Hi-Nicalon Fiber-Reinforced CMCs

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Bansal, N. P.; Bhatt, R. T.

    1998-01-01

    Interfacial debond cracks and fiber/matrix sliding stresses in ceramic matrix composites (CMCs) can evolve under cyclic fatigue conditions as well as with changes in the environment, strongly affecting the crack growth behavior, and therefore, the useful service lifetime of the composite. In this study, room temperature cyclic fiber push-in testing was applied to monitor the evolution of frictional sliding stresses and fiber sliding distances with continued cycling in both C- and BN-coated Hi-Nicalon SiC fiber-reinforced CMCs. A SiC matrix composite reinforced with C-coated Hi-Nical on fibers as well as barium strontium aluminosilicate (BSAS) matrix composites reinforced with BN-coated (four different deposition processes compared) Hi-Nicalon fibers were examined. For failure at a C interface, test results indicated progressive increases in fiber sliding distances during cycling in room air but not in nitrogen. These results suggest the presence of moisture will promote crack growth when interfacial failure occurs at a C interface. While short-term testing environmental effects were not apparent for failure at the BN interfaces, long-term exposure of partially debonded BN-coated fibers to humid air resulted in large increases in fiber sliding distances and decreases in interfacial sliding stresses for all the BN coatings, presumably due to moisture attack. A wide variation was observed in debond and frictional sliding stresses among the different BN coatings.

  11. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations

    NASA Astrophysics Data System (ADS)

    Sun, Wenjun; Jiang, Song; Xu, Kun; Li, Shu

    2015-12-01

    This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP) scheme in all

  12. Non-channel mechanosensors working at focal adhesion-stress fiber complex.

    PubMed

    Hirata, Hiroaki; Tatsumi, Hitoshi; Hayakawa, Kimihide; Sokabe, Masahiro

    2015-01-01

    Mechanosensitive ion channels (MSCs) have long been the only established molecular class of cell mechanosensors; however, in the last decade, a variety of non-channel type mechanosensor molecules have been identified. Many of them are focal adhesion-associated proteins that include integrin, talin, and actin. Mechanosensors must be non-soluble molecules firmly interacting with relatively rigid cellular structures such as membranes (in terms of lateral stiffness), cytoskeletons, and adhesion structures. The partner of MSCs is the membrane in which MSC proteins efficiently transduce changes in the membrane tension into conformational changes that lead to channel opening. By contrast, the integrin, talin, and actin filament form a linear complex of which both ends are typically anchored to the extracellular matrices via integrins. Upon cell deformation by forces, this structure turns out to be a portion that efficiently transduces the generated stress into conformational changes of composite molecules, leading to the activation of integrin (catch bond with extracellular matrices) and talin (unfolding to induce vinculin bindings). Importantly, this structure also serves as an "active" mechanosensor to detect substrate rigidity by pulling the substrate with contraction of actin stress fibers (SFs), which may induce talin unfolding and an activation of MSCs in the vicinity of integrins. A recent study demonstrates that the actin filament acts as a mechanosensor with unique characteristics; the filament behaves as a negative tension sensor in which increased torsional fluctuations by tension decrease accelerate ADF/cofilin binding, leading to filament disruption. Here, we review the latest progress in the study of those non-channel mechanosensors and discuss their activation mechanisms and physiological roles. PMID:24965068

  13. Thermal effects of fiber sensing coils in different winding pattern considering both thermal gradient and thermal stress

    NASA Astrophysics Data System (ADS)

    Ling, Weiwei; Li, Xuyou; Xu, Zhenlong; Zhang, Zhiyong; Wei, Yanhui

    2015-12-01

    By studying the temperature gradient and thermal stress of the difference-winding interferometric fiber optic gyroscope (IFOG) sensing coils, the improvement of the IFOG's temperature performance is realized. A new turn-by-turn quantization thermal-induced bias error model including the traditional "pure Shupe effect", elastic strain interactions and elasto-optical interactions are established. Compared with the traditional "pure Shupe effect" model, the experimental results show that the new model can more fully describe the thermal effect of the coils. Based on the temperature and stress distribution models mentioned above, the effects of the fiber coils with the quadrupolar (QAD) winding pattern, octupolar winding pattern and cross winding pattern on the temperature performance of IFOG are simulated under the same temperature gradient, respectively. The results show that the elastic strain and the elasto-optical effect must be considered when calculated the thermal-induced bias error of the fiber coil. Furthermore, we also come to the conclusion that cross-winding coil of the IFOG have more wonderful temperature performance than the fiber coil with quadruple winding and octupole-winding.

  14. Differential Contributions of Nonmuscle Myosin II Isoforms and Functional Domains to Stress Fiber Mechanics.

    PubMed

    Chang, Ching-Wei; Kumar, Sanjay

    2015-01-01

    While is widely acknowledged that nonmuscle myosin II (NMMII) enables stress fibers (SFs) to generate traction forces against the extracellular matrix, little is known about how specific NMMII isoforms and functional domains contribute to SF mechanics. Here we combine biophotonic and genetic approaches to address these open questions. First, we suppress the NMMII isoforms MIIA and MIIB and apply femtosecond laser nanosurgery to ablate and investigate the viscoelastic retraction of individual SFs. SF retraction dynamics associated with MIIA and MIIB suppression qualitatively phenocopy our earlier measurements in the setting of Rho kinase (ROCK) and myosin light chain kinase (MLCK) inhibition, respectively. Furthermore, fluorescence imaging and photobleaching recovery reveal that MIIA and MIIB are enriched in and more stably localize to ROCK- and MLCK-controlled central and peripheral SFs, respectively. Additional domain-mapping studies surprisingly reveal that deletion of the head domain speeds SF retraction, which we ascribe to reduced drag from actomyosin crosslinking and frictional losses. We propose a model in which ROCK/MIIA and MLCK/MIIB functionally regulate common pools of SFs, with MIIA crosslinking and motor functions jointly contributing to SF retraction dynamics and cellular traction forces. PMID:26336830

  15. Cell shape, spreading symmetry, and the polarization of stress-fibers in cells

    NASA Astrophysics Data System (ADS)

    Zemel, A.; Rehfeldt, F.; Brown, A. E. X.; Discher, D. E.; Safran, S. A.

    2010-05-01

    The active regulation of cellular forces during cell adhesion plays an important role in the determination of cell size, shape, and internal structure. While on flat, homogeneous and isotropic substrates some cells spread isotropically, others spread anisotropically and assume elongated structures. In addition, in their native environment as well as in vitro experiments, the cell shape and spreading asymmetry can be modulated by the local distribution of adhesive molecules and topography of the environment. We present a simple elastic model and experiments on stem cells to explain the variation of cell size with the matrix rigidity. In addition, we predict the experimental consequences of two mechanisms of acto-myosin polarization and focus here on the effect of the cell spreading asymmetry on the regulation of the stress-fiber alignment in the cytoskeleton. We show that when cell spreading is sufficiently asymmetric the alignment of acto-myosin forces in the cell increases monotonically with the matrix rigidity; however, in general this alignment is non-monotonic, as shown previously. These results highlight the importance of the symmetry characteristics of cell spreading in the regulation of cytoskeleton structure and suggest a mechanism by which different cell types may acquire different morphologies and internal structures in different mechanical environments.

  16. Differential Contributions of Nonmuscle Myosin II Isoforms and Functional Domains to Stress Fiber Mechanics

    PubMed Central

    Chang, Ching-Wei; Kumar, Sanjay

    2015-01-01

    While is widely acknowledged that nonmuscle myosin II (NMMII) enables stress fibers (SFs) to generate traction forces against the extracellular matrix, little is known about how specific NMMII isoforms and functional domains contribute to SF mechanics. Here we combine biophotonic and genetic approaches to address these open questions. First, we suppress the NMMII isoforms MIIA and MIIB and apply femtosecond laser nanosurgery to ablate and investigate the viscoelastic retraction of individual SFs. SF retraction dynamics associated with MIIA and MIIB suppression qualitatively phenocopy our earlier measurements in the setting of Rho kinase (ROCK) and myosin light chain kinase (MLCK) inhibition, respectively. Furthermore, fluorescence imaging and photobleaching recovery reveal that MIIA and MIIB are enriched in and more stably localize to ROCK- and MLCK-controlled central and peripheral SFs, respectively. Additional domain-mapping studies surprisingly reveal that deletion of the head domain speeds SF retraction, which we ascribe to reduced drag from actomyosin crosslinking and frictional losses. We propose a model in which ROCK/MIIA and MLCK/MIIB functionally regulate common pools of SFs, with MIIA crosslinking and motor functions jointly contributing to SF retraction dynamics and cellular traction forces. PMID:26336830

  17. High temperature fiber optic microphone having a pressure-sensing reflective membrane under tensile stress

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor); Hopson, Purnell, Jr. (Inventor)

    1992-01-01

    A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a backplate for damping membrane motion. The backplate further provides a means for on-line calibration of the microphone.

  18. Demonstrating frequency-dependent transmission of sarcoptic mange in red foxes

    PubMed Central

    Devenish-Nelson, Eleanor S.; Richards, Shane A.; Harris, Stephen; Soulsbury, Carl; Stephens, Philip A.

    2014-01-01

    Understanding the relationship between disease transmission and host density is essential for predicting disease spread and control. Using long-term data on sarcoptic mange in a red fox Vulpes vulpes population, we tested long-held assumptions of density- and frequency-dependent direct disease transmission. We also assessed the role of indirect transmission. Contrary to assumptions typical of epidemiological models, mange dynamics are better explained by frequency-dependent disease transmission than by density-dependent transmission in this canid. We found no support for indirect transmission. We present the first estimates of R0 and age-specific transmission coefficients for mange in foxes. These parameters are important for managing this poorly understood but highly contagious and economically damaging disease. PMID:25296930

  19. Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors.

    PubMed

    Oelker, Eric; Isogai, Tomoki; Miller, John; Tse, Maggie; Barsotti, Lisa; Mavalvala, Nergis; Evans, Matthew

    2016-01-29

    Quantum vacuum fluctuations impose strict limits on precision displacement measurements, those of interferometric gravitational-wave detectors among them. Introducing squeezed states into an interferometer's readout port can improve the sensitivity of the instrument, leading to richer astrophysical observations. However, optomechanical interactions dictate that the vacuum's squeezed quadrature must rotate by 90° around 50 Hz. Here we use a 2-m-long, high-finesse optical resonator to produce frequency-dependent rotation around 1.2 kHz. This demonstration of audio-band frequency-dependent squeezing uses technology and methods that are scalable to the required rotation frequency and validates previously developed theoretical models, heralding application of the technique in future gravitational-wave detectors. PMID:26871318

  20. Influence of damping on the frequency-dependent polarizabilities of doped quantum dot

    NASA Astrophysics Data System (ADS)

    Pal, Suvajit; Ghosh, Manas

    2014-09-01

    We investigate the profiles of diagonal components of frequency-dependent linear (αxx and αyy), and first nonlinear (βxxx and βyyy) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally focuses on investigating the role of damping on the polarizability components. In view of this the dopant is considered to be propagating under damped condition which is otherwise linear inherently. The frequency-dependent polarizabilities are then analyzed by placing the doped dot to a periodically oscillating external electric field of given intensity. The damping strength, in conjunction with external oscillation frequency and confinement potentials, fabricate the polarizability components in a fascinating manner which is adorned with emergence of maximization, minimization, and saturation. The discrimination in the values of the polarizability components in x and y-directions has also been addressed in the present context.

  1. Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Oelker, Eric; Isogai, Tomoki; Miller, John; Tse, Maggie; Barsotti, Lisa; Mavalvala, Nergis; Evans, Matthew

    2016-01-01

    Quantum vacuum fluctuations impose strict limits on precision displacement measurements, those of interferometric gravitational-wave detectors among them. Introducing squeezed states into an interferometer's readout port can improve the sensitivity of the instrument, leading to richer astrophysical observations. However, optomechanical interactions dictate that the vacuum's squeezed quadrature must rotate by 90° around 50 Hz. Here we use a 2-m-long, high-finesse optical resonator to produce frequency-dependent rotation around 1.2 kHz. This demonstration of audio-band frequency-dependent squeezing uses technology and methods that are scalable to the required rotation frequency and validates previously developed theoretical models, heralding application of the technique in future gravitational-wave detectors.

  2. Frequency dependence of thermal noise in gram-scale cantilever flexures

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh T.-H.; Mow-Lowry, Conor M.; Slagmolen, Bram J. J.; Miller, John; Mullavey, Adam J.; Goßler, Stefan; Altin, Paul A.; Shaddock, Daniel A.; McClelland, David E.

    2015-12-01

    We present measurements of the frequency dependence of thermal noise in aluminum and niobium flexures. Our measurements cover the audio-frequency band from 10 Hz to 10 kHz, which is of particular relevance to ground-based interferometric gravitational wave detectors, and span up to an order of magnitude above and below the fundamental flexure resonances. Results from two flexures are well explained by a simple model in which both structural and thermoelastic loss play a role. The ability of such a model to explain this interplay is important for investigations of quantum-radiation-pressure noise and the standard quantum limit. Furthermore, measurements on a third flexure provide evidence that surface damage can affect the frequency dependence of thermal noise in addition to reducing the quality factor, a result which will aid the understanding of how aging effects impact on thermal noise behavior.

  3. Negative frequency-dependent preferences and variation in male facial hair

    PubMed Central

    Janif, Zinnia J.; Brooks, Robert C.; Dixson, Barnaby J.

    2014-01-01

    Negative frequency-dependent sexual selection maintains striking polymorphisms in secondary sexual traits in several animal species. Here, we test whether frequency of beardedness modulates perceived attractiveness of men's facial hair, a secondary sexual trait subject to considerable cultural variation. We first showed participants a suite of faces, within which we manipulated the frequency of beard thicknesses and then measured preferences for four standard levels of beardedness. Women and men judged heavy stubble and full beards more attractive when presented in treatments where beards were rare than when they were common, with intermediate preferences when intermediate frequencies of beardedness were presented. Likewise, clean-shaven faces were least attractive when clean-shaven faces were most common and more attractive when rare. This pattern in preferences is consistent with negative frequency-dependent selection. PMID:24740903

  4. Negative frequency-dependent preferences and variation in male facial hair.

    PubMed

    Janif, Zinnia J; Brooks, Robert C; Dixson, Barnaby J

    2014-01-01

    Negative frequency-dependent sexual selection maintains striking polymorphisms in secondary sexual traits in several animal species. Here, we test whether frequency of beardedness modulates perceived attractiveness of men's facial hair, a secondary sexual trait subject to considerable cultural variation. We first showed participants a suite of faces, within which we manipulated the frequency of beard thicknesses and then measured preferences for four standard levels of beardedness. Women and men judged heavy stubble and full beards more attractive when presented in treatments where beards were rare than when they were common, with intermediate preferences when intermediate frequencies of beardedness were presented. Likewise, clean-shaven faces were least attractive when clean-shaven faces were most common and more attractive when rare. This pattern in preferences is consistent with negative frequency-dependent selection. PMID:24740903

  5. Non-Markovian electron transfer reactions with frequency-dependent friction

    SciTech Connect

    Tang, J.

    1993-12-31

    A modified non-Markovian Zusman equation for electron transfer reactions with frequency-dependent friction is presented. The derivation is based on the spin-boson model with a two-level system coupled to a non-Debye polar solvent bath with frequency-dependent friction. The diffusion constant in the Smoluchowski diffusion operator of the ordinary Zusman equation should be replaced by a convolution of a retarded time-dependent diffusion constant. An analytical expression for the electron transfer rate constant was derived using the Green`s function method. In the adiabatic regime, electron transfer process is generally nonexponential. Because of the time-retardation, initial electron transfer reaction is influenced more by the higher frequency components in the solvent relaxation.

  6. A hybrid transport-diffusion Monte Carlo method for frequency-dependent radiative-transfer simulations

    SciTech Connect

    Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.

    2012-08-15

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.

  7. Shear Wave Splitting Analysis to Estimate Fracture Orientation and Frequency Dependent Anisotropy

    NASA Astrophysics Data System (ADS)

    Gholami, Raoof; Moradzadeh, Ali; Rasouli, Vamegh; Hanachi, Javid

    2016-02-01

    Shear wave splitting is a well-known method for indication of orientation, radius, and length of fractures in subsurface layers. In this paper, a three component near offset VSP data acquired from a fractured sandstone reservoir in southern part of Iran was used to analyse shear wave splitting and frequency-dependent anisotropy assessment. Polarization angle obtained by performing rotation on radial and transverse components of VSP data was used to determine the direction of polarization of fast shear wave which corresponds to direction of fractures. It was shown that correct implementation of shear wave splitting analysis can be used for determination of fracture direction. During frequency-dependent anisotropy analysis, it was found that the time delays in shear-waves decrease as the frequency increases. It was clearly demonstrated throughout this study that anisotropy may have an inverse relationship with frequency. The analysis presented in this paper complements the studied conducted by other researchers in this field of research.

  8. Time-domain representation of frequency-dependent foundation impedance functions

    USGS Publications Warehouse

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  9. Investigating the frequency-dependent amplification of a tapered amplifier in atom interferometers.

    PubMed

    Zhan, Su; Duan, Xiao-Chun; Zhou, Min-Kang; Yao, Hui-Bin; Xu, Wen-Jie; Hu, Zhong-Kun

    2015-01-01

    We present the investigation on the frequency-dependent amplification (FDA) of a tapered amplifier (TA) and the corresponding influence on Raman-type atom interferometers. In our interferometer, the output of two phase-locked diode lasers is injected into a TA to generate Raman beams. The frequency of one laser is chirped during the interfering process, which induces a variance of the Raman lasers power as a result of the FDA of the TA. The corresponding power ratio variation of the Raman lasers is measured by beat note method, which shows a linear dependence with a slope of -0.087(4)/GHz when the laser frequency changes over 2 GHz at 780 nm. The corresponding error related to AC Stark effect due to this frequency-dependent variation is estimated for our atom interferometer. The investigation presented here may provide hints for other experiments involving TAs. PMID:25531600

  10. Demonstrating frequency-dependent transmission of sarcoptic mange in red foxes.

    PubMed

    Devenish-Nelson, Eleanor S; Richards, Shane A; Harris, Stephen; Soulsbury, Carl; Stephens, Philip A

    2014-10-01

    Understanding the relationship between disease transmission and host density is essential for predicting disease spread and control. Using long-term data on sarcoptic mange in a red fox Vulpes vulpes population, we tested long-held assumptions of density- and frequency-dependent direct disease transmission. We also assessed the role of indirect transmission. Contrary to assumptions typical of epidemiological models, mange dynamics are better explained by frequency-dependent disease transmission than by density-dependent transmission in this canid. We found no support for indirect transmission. We present the first estimates of R0 and age-specific transmission coefficients for mange in foxes. These parameters are important for managing this poorly understood but highly contagious and economically damaging disease. PMID:25296930

  11. Effect of Frequency-Dependent Attenuation on Predicted Histotripsy Waveforms in Tissue-Mimicking Phantoms.

    PubMed

    Bader, Kenneth B; Crowe, Michael J; Raymond, Jason L; Holland, Christy K

    2016-07-01

    Tissue-mimicking phantoms are employed for the assessment of shocked histotripsy pulses in vitro. These broadband shock waves are critical for tissue ablation and are influenced by the frequency-dependent attenuation of the medium. The density, sound speed and attenuation spectra (2-25 MHz) were measured for phantoms that mimic key histotripsy targets. The influence of non-linear propagation relative to the attenuation was described in terms of Gol'dberg number. An expression was derived to estimate the bandwidth of shocked histotripsy pulses for power law-dependent attenuation. The expression is independent of the fundamental frequency of the histotripsy pulse for linear frequency-dependent attenuation. PMID:27108036

  12. Frequency-dependent success of aggressive mimics in a cleaning symbiosis

    PubMed Central

    Cheney, Karen L; Côté, Isabelle M

    2005-01-01

    Batesian mimics—palatable organisms that resemble unpalatable ones—are usually maintained in populations by frequency-dependent selection. We tested whether this mechanism was also responsible for the maintenance of aggressive mimicry in natural populations of coral reef fishes. The attack success of bluestriped fangblennies (Plagiotremus rhinorhynchos), which mimic juvenile bluestreaked cleaner wrasses (Labroides dimidiatus) in colour but tear flesh and scales from fishes instead of removing ectoparasites, was frequency-dependent, increasing as mimics became rarer relative to their model. However, cleaner mimics were also more successful on reefs with higher densities of potential victims, perhaps because a dilution-like effect creates few opportunities for potential victims to learn to avoid mimics. Further studies should reveal whether this second mechanism is specific to aggressive mimicry. PMID:16321786

  13. Frequency Dependence of Single-Event Upset in Highly Advanced PowerPC Microprocessors

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Farmanesh, Farhad; White, Mark; Kouba, Coy K.

    2006-01-01

    Single-event upset effects from heavy ions were measured for Motorola silicon-on-insulator (SOI) microprocessor with 90 nm feature sizes at three frequencies of 500, 1066 and 1600 MHz. Frequency dependence of single-event upsets is discussed. The results of our studies suggest the single-event upset in registers and D-Cache tend to increase with frequency. This might have important implications for the overall single-event upset trend as technology moves toward higher frequencies.

  14. Positively Frequency-Dependent Interference Competition Maintains Diversity and Pervades a Natural Population of Cooperative Microbes.

    PubMed

    Rendueles, Olaya; Amherd, Michaela; Velicer, Gregory J

    2015-06-29

    Positively frequency-dependent selection is predicted from theory to promote diversity in patchily structured populations and communities, but empirical support for this prediction has been lacking. Here, we investigate frequency-dependent selection among isolates from a local natural population of the highly social bacterium Myxococcus xanthus. Upon starvation, closely related cells of M. xanthus cooperate to construct multicellular fruiting bodies, yet recently diverged genotypes co-residing in a local soil population often antagonize one another during fruiting-body development in mixed groups. In the experiments reported here, both fitness per se and strong forms of interference competition exhibit pervasive and strong positive frequency dependence (PFD) among many isolates from a centimeter-scale soil population of M. xanthus. All strains that compete poorly at intermediate frequency are shown to be competitively dominant at high frequency in most genotype pairings during both growth and development, and strongly so. Interference competition is often lethal and appears to be contact dependent rather than mediated by diffusible compounds. Finally, we experimentally demonstrate that positively frequency-dependent selection maintains diversity when genotype frequencies vary patchily in structured populations. These results suggest that PFD contributes to the high levels of local diversity found among M. xanthus social groups in natural soil populations by reinforcing social barriers to cross-territory invasion and thereby also promotes high within-group relatedness. More broadly, our results suggest that potential roles of PFD in maintaining patchily distributed diversity should be investigated more extensively in other species. PMID:26051889

  15. Sensitivity of frequency-dependent traveltimes to laterally heterogeneous, anisotropic Earth structure

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Jordan, Thomas H.

    1998-06-01

    We investigate the effect of lateral heterogeneity on the frequency-dependent traveltime residuals of various seismic arrivals, for example P, S, SS, SS, SSS, SSS, Love and Rayleigh waves. These residuals, which are examples of generalized seismological data functionals (GSDFs), are measured from narrow-band cross-correlagrams between observed seismograms and isolated waveforms (isolation filters) synthesized by weighted (partial) normal-mode summations. The effect of lateral heterogeneity is incorporated through the coupling between normal-mode multiplets with the help of first-order perturbation theory. Based upon the normal-mode coupling matrix for the eigenfrequency shifts, the sensitivity kernels of the frequency-dependent traveltime residuals to the model parameter perturbations are derived by an application of the Born approximation. In order to reduce the computational labour so that tomographic inversions can practically be conducted, 2-D sensitivity kernels of the traveltime residuals to the lateral structure within the source-receiver great-circle plane are obtained with a stationary-phase integration. In addition, a normal-mode coupling scheme is adopted to increase further the computational efficiency in which a pair of modes are coupled only when the differences between their eigenfrequencies and group velocities are small. We present numerical examples for the 2-D Fréchet kernels of frequency-dependent traveltime residuals for various model parameters in a transversely isotropic model, namely the velocities of vertically and horizontally polarized and/or propagating shear and compressional waves and the topographies of the 410 and 660 km discontinuities. Wherever possible, physical explanations are also provided on the different aspects of the 2-D Fréchet kernels with emphasis on the complex phenomenon of interference among multiple seismic waves. We also demonstrate, both algebraically and numerically, that when the waveforms used in the

  16. Optimal SNR exposure time for speckle imaging: experimental results with frequency-dependent detector noise

    NASA Astrophysics Data System (ADS)

    Tyler, David W.; Suzuki, Andrew H.; von Bokern, Mark A.; Keating, Donna D.; Roggemann, Michael C.

    1994-06-01

    We review recent arguments for using increased spectral bandwidth and exposure times to optimize the signal-to-noise ratio of speckle imaging estimators and discuss the tradeoff between camera exposure time and the number of data frames collected when observing time is fixed. We compare experimental results with a previously-derived expression for optimal exposure time and find reasonable agreement after accounting for frequency-dependent camera noise.

  17. Robust H∞ Control for Time-Varying Delay Systems with Frequency-Dependent Performance Weights

    NASA Astrophysics Data System (ADS)

    Nagahara, Masanori; Arai, Shingo; Uchimura, Yutaka

    This paper proposes a control design that enables us to shape the frequency-dependent performance using a modified Lyapunov-Krasovskii-based stabilizing condition. A stabilizing controller can be obtained by solving the condition formulated in Linear Matrix Inequality (LMI). The designed controller is evaluated using numerical simulations, and it is employed to realize the velocity control of a DC motor. Experimental results verified that the proposed controller achieved better performance with less conservativeness and that it is applicable to real plants.

  18. Elastic-plastic stress concentrations around crack-like notches in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Bigelow, C. A.

    1989-01-01

    Continuous fiber silicon-carbide/aluminum composite laminates with slits were tested statically to failure. Five different layups were examined: (0) sub 8, (0 sub 2/ + or - 45) sub s, (0/90) sub 2s), (0/ + or - 45/90 sub s), and (+ or - 45) sub 2s. Either a 9.5 or a 19 mm slit was machined in the center of each specimen. The strain distribution ahead of the slit tip was found experimentally with a series of strain gages bonded ahead of the slit tip. A three-dimensional finite element program (PAFAC) was used to predict the strain distribution ahead of the slit tip for several layups. For all layups, except the (0) sub 8, the yielding of the metal matrix caused the fiber stress concentration factor to increase with increasing load. This is contrary to the behavior seen in homogeneous materials where yielding causes the stress concentration to drop. For the (0) sub 8 laminate, yielding of the matrix caused a decrease in the fiber stress concentration. The finite element analysis predicted these trends correctly.

  19. Elastic-plastic stress concentrations around crack-like notches in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Bigelow, C. A.

    1987-01-01

    Continuous fiber silicon-carbide/aluminum composite laminates with slits were tested statically to failure. Five different layups were examined: (0) sub 8, (0 sub 2/ + or - 45) sub s, (0/90) sub 2s), (0/ + or - 45/90 sub s), and (+ or - 45) sub 2s. Either a 9.5 or a 19 mm slit was machined in the center of each specimen. The strain distribution ahead of the slit tip was found experimentally with a series of strain gages bonded ahead of the slit tip. A three-dimensional finite element program (PAFAC) was used to predict the strain distribution ahead of the slit tip for several layups. For all layups, except the (0) sub 8, the yielding of the metal matrix caused the fiber stress concentration factor to increase with increasing load. This is contrary to the behavior seen in homogeneous materials where yielding causes the stress concentration to drop. For the (0) sub 8 laminate, yielding of the matrix caused a decrease in the fiber stress concentration. The finite element analysis predicted these trends correctly.

  20. Actin stress fiber disruption and tropomysin isoform switching in normal thyroid epithelial cells stimulated by thyrotropin and phorbol esters

    SciTech Connect

    Roger, P.P.; Rickaert, F.; Lamy, F.; Authelet, M.; Dumont, J.E. )

    1989-05-01

    Thyrotropin (TSH), through cyclic AMP, promotes both proliferation and differentiation expression in dog thyroid epithelial cells in primary culture, whereas the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) also stimulates proliferation but antagonizes differentiating effects of TSH. In this study, within 20 min both factors triggered the disruption of actin-containing stress fibers. This process preceded distinct morphological changes: cytoplasmic retraction and arborization in response to TSH and cyclic AMP, cell shape distortion, and increased motility in response to TPA and diacylglycerol. TSH and TPA also induced a marked decrease in the synthesis of three high M{sub r} tropomyosin isoforms, which were not present in dog thyroid tissue but appeared in culture during cell spreading and stress fiber formation. The tropomyosin isoform switching observed here closely resembled similar processes in various cells transformed by oncogenic viruses. However, it did not correlate with differentiation or mitogenic activation. Contrasting with current hypothesis on this process in transformed cells, tropomyosin isoform switching in normal thyroid cells was preceded and thus might be caused by early disruption of stress fibers.

  1. Modeling CO2 vertical migration based on seismic frequency-dependent AVO responses

    NASA Astrophysics Data System (ADS)

    Li, Bonan; Liu, Cai; Lu, Qi; Pang, Shuo

    2016-04-01

    Injection of CO2 into a geological subsurface will cause seismic dispersion and attenuation, which will change with the migration of the CO2 plume. Therefore, temporal attenuation changes from the seismic section with the CO2 plume can provide additional information about CO2 storage, migration, and possible leakage. The frequency-dependent amplitude variation with offset (FDAVO) attribute, as a seismic characteristic, which quantifies frequency-dependent anomalies from various kinds of sources, is widely applied in fields of hydrocarbon indication and fluid identification. In this work we aim to investigate the potential of the FDAVO attribute as a monitoring tool during the process of CO2 migration. We combine the Buckley-Leverett equation and the patchy-saturation model to simulate the substitution process. We then apply a novel tool, the FDAVO inversion method, to estimate the dispersion level at the target interface. What is more, the characteristic of the frequency-dependent attribute versus time is studied for the first time. The result of the numerical simulation reveals that: (1) caused by CO2 injection, there is significant dispersion and attenuation within the seismic band; (2) the level of dispersion reflects the migration of CO2 plume; (3) dispersion anomalies are well quantified by the inverted FDAVO attributes, which can be utilized to characterize the vertical distribution of the CO2 plume.

  2. Frequency dependence of electron spin-lattice relaxation for semiquinones in alcohol solutions

    NASA Astrophysics Data System (ADS)

    Elajaili, Hanan B.; Biller, Joshua R.; Eaton, Sandra S.; Eaton, Gareth R.

    2014-10-01

    The spin-lattice relaxation rates at 293 K for three anionic semiquinones (2,5-di-t-butyl-1,4-benzosemiquinone, 2,6-di-t-butyl-1,4-benzosemiquinone, and 2,3,5,6-tetramethoxy-1,4-benzosemiquinone) were studied at up to 8 frequencies between 250 MHz and 34 GHz in ethanol or methanol solution containing high concentrations of OH-. The relaxation rates are about a factor of 2 faster at lower frequencies than at 9 or 34 GHz. However, in perdeuterated alcohols the relaxation rates exhibit little frequency dependence, which demonstrates that the dominant frequency-dependent contribution to relaxation is modulation of dipolar interactions with solvent nuclei. The relaxation rates were modeled as the sum of two frequency-independent contributions (spin rotation and a local mode) and two frequency-dependent contributions (modulation of dipolar interaction with solvent nuclei and a much smaller contribution from modulation of g anisotropy). The correlation time for modulation of the interaction with solvent nuclei is longer than the tumbling correlation time of the semiquinone and is consistent with hydrogen bonding of the alcohol to the oxygen atoms of the semiquinones.

  3. Real-time seismic intensity prediction using frequency-dependent site amplification factors

    NASA Astrophysics Data System (ADS)

    Ogiso, Masashi; Aoki, Shigeki; Hoshiba, Mitsuyuki

    2016-05-01

    A promising approach for the next generation of earthquake early warning system is based on predicting ground motion directly from observed ground motion, without any information of hypocenter. In this study, we predicted seismic intensity at the target stations from the observed ground motion at adjacent stations, employing two different methods of correction for site amplification factors. The first method was frequency-dependent correction prediction, in which we used a digital causal filter to correct the site amplification for the observed waveform in the time domain. The second method was scalar correction, in which we used average differences in seismic intensity between two stations for the site amplification correction. Results from thousands of station pairs that covered almost all of Japan showed that seismic intensity prediction with frequency-dependent correction prediction was more accurate than prediction with scalar correction. Frequency-dependent correction for site amplification in the time domain may lead to more accurate prediction of ground motion in real time.

  4. Raman Study of Uncoated and P-bn/sic-coated Hi-nicalon Reinforced Celsian Matrix Composites. Part 2; Residual Stress in the Fibers

    NASA Technical Reports Server (NTRS)

    Gouadec, Gwenael; Colomban, Philippe; Bansal, Narottam P.

    2000-01-01

    Band shifts on Raman spectra were used to assess, at a microscopic scale, the residual strain existing in Hi-Nicalon fibers reinforcing celsian matrix composites. Uncoated as well as p-BN/SiC- and p-B(Si)N/SiC-coated Hi-Nicalon fibers were used as the reinforcements. We unambiguously conclude that the fibers are in a state of compressive residual stress. Quantitative determination of the residual stress was made possible by taking into account the heating induced by laser probing and by using a reference line, of fixed wavenumber. We found fiber compressive residual stress values between 110 and 960 MPa depending on the fiber/matrix coating in the composite. A stress relaxation-like phenomenon was observed at the surface of p-BN/SiC-coated Hi-Nicalon fibers whereas the uncoated or p-B(Si)N/SiC-coated Hi-Nicalon fibers did not show any stress relaxation in the Celsian matrix composites.

  5. Feeding and lying behavior of heat-stressed early lactation cows fed low fiber diets containing roughage and nonforage fiber sources.

    PubMed

    Kanjanapruthipong, J; Junlapho, W; Karnjanasirm, K

    2015-02-01

    In addition to reduced nutrient intake, an environmental thermal load may directly affect milk yield in heat-stressed dairy cows. Feeding and lying behaviors of early lactation cows fed low fiber diets containing neutral detergent fiber (NDF) from roughage and nonforage fiber sources (NFFS) were investigated under summer conditions in Thailand. Immediately after calving, 30 multiparous cows (87.5% Holstein × 12.5% Sahiwal) were randomly allocated to dietary treatments for 63 d in a completely randomized design. The dietary treatments contained 25% of dry matter (DM) as dietary NDF. The control diet consisted of 13.9% roughage NDF from rice straw (RS). Two additional treatments were created by replacing 3.9% of DM with NDF from either soy hulls (SH) or cassava (Manihot esculenta Grantz) residues (CR), so that the roughage NDF content was reduced to 10%. During the experimental period, the minimum and maximum temperature-humidity indices (THI) were 86.4±2.5 and 91.5±2.7 during the day and 74.2±2.1 and 81.0±2.5 during the night, respectively, indicating conditions appropriate for induction of extreme heat stress. The duration of feeding and lying bouts decreased linearly with increasing THI. The DM intake during the day was greater for cows fed diets containing SH and CR than for those fed the diet containing NDF from RS. The number of meals during the day and night was lower, whereas meal size and meal length during the day and night were greater for cows fed diets containing SH and CR. Cows fed diets containing SH and CR lay down less frequently and longer during the day. These results suggest that under the severe heat stress during the day, early lactation cows fed the diet containing NFFS increased DM intake by increasing meal length and meal size rather than by increasing meal frequency and they spent more time lying. Cows fed diets containing NDF from SH and CR produced more 4% fat-corrected milk, lost less body weight, and had lower rectal temperatures

  6. VEGF induces stress fiber formation in fibroblasts isolated from dystrophic muscle.

    PubMed

    Gutpell, Kelly M; Hoffman, Lisa M

    2015-12-01

    Treatment with vascular endothelial growth factor (VEGF) to reduce ischemia and enhance both endogenous muscle repair and regenerative cell therapy in Duchenne muscular dystrophy (DMD) has been widely proposed in recent years. However, the interaction between angiogenesis and fibrosis, a hallmark feature of DMD, remains unclear. To date, it has not been determined whether VEGF exerts a pro-fibrotic effect on DMD-derived fibroblasts, which may contribute to further disease progression. Thus, the purpose of this study was to investigate the effect of exogenous VEGF on fibroblast cultures established from a murine model of DMD. Primary fibroblast cultures were established from gastrocnemius and diaphragm muscles of 10 week-old mdx/utrn+/- mice. Quantitative polymerase chain reaction (qPCR) was employed to assess changes in transcript expression of alpha-smooth muscle actin (Acta2), type-1 collagen (Col1a1), connective tissue growth factor (Ctgf/ccn2) and fibronectin (Fn1). Immunofluorescence and Western blot analysis was further employed to visualize changes in protein expression of alpha-smooth muscle actin (α-SMA), CTGF/CCN2 and fibronectin. mRNA levels of Col1a1, Ctgf/ccn2, and FN did not increase following treatment with VEGF in fibroblasts derived from either diaphragm or gastrocnemius muscles. Acta2 expression increased significantly in diaphragm-derived fibroblasts following treatment with VEGF. Morphological assessment revealed increased stress fiber formation in VEGF-treated fibroblasts compared to the untreated control fibroblasts. The findings from this study suggest that further investigation into the effect of VEGF on fibroblast function is required prior to the utilization of the growth factor as a treatment for DMD. PMID:26219981

  7. Fiber Bragg Grating Sensor to Monitor Stress Kinetics in Drying Process of Commercial Latex Paints

    PubMed Central

    de Lourenço, Ivo; Possetti, Gustavo R. C.; Muller, Marcia; Fabris, José L.

    2010-01-01

    In this paper, we report a study about the application of packaged fiber Bragg gratings used as strain sensors to monitor the stress kinetics during the drying process of commercial latex paints. Three stages of drying with distinct mechanical deformation and temporal behaviors were identified for the samples, with mechanical deformation from 15 μm to 21 μm in the longitudinal film dimension on time intervals from 370 to 600 minutes. Drying time tests based on human sense technique described by the Brazilian Technical Standards NBR 9558 were also done. The results obtained shows that human sense technique has a limited perception of the drying process and that the optical measurement system proposed can be used to characterize correctly the dry-through stage of paint. The influence of solvent (water) addition in the drying process was also investigated. The paint was diluted with four parts paint and one part water (80% paint), and one part paint and one part water (50% paint). It was observed that the increase of the water ratio mixed into the paint decreases both the mechanical deformation magnitude and the paint dry-through time. Contraction of 5.2 μm and 10.4 μm were measured for concentrations of 50% and 80% of paint in the mixture, respectively. For both diluted paints the dry-through time was approximately 170 minutes less than undiluted paint. The optical technique proposed in this work can contribute to the development of new standards to specify the drying time of paint coatings. PMID:22399906

  8. Thermal stress problem for a partly debonded rigid circular-arc fiber inclusion in an infinite matrix

    SciTech Connect

    Kattis, M.A.; Patia, A.P.

    1994-06-01

    The heat conduction and thermoelastic problem of a circular-arc fiber bonded along one of its faces to an elastic plate while the other face forms an interfacial crack, is examined. Explicit solutions in the form of the complex potentials are provided, when a uniform heat flow is applied at infinity and the interface crack is an insulated and an `open` crack. It is shown that the stress field at the crack tip exhibits two singularities of orders 0.75 and 0.25 and the well known logarithmic oscillation of the interface crack. Generalized stress intensity factors of the stress singularities are defined and analytical and numerical results of these are provided. 8 refs.

  9. Sensitivity of seismic measurements to frequency-dependent attenuation and upper mantle structure: An initial approach

    NASA Astrophysics Data System (ADS)

    Bellis, C.; Holtzman, B.

    2014-07-01

    This study addresses the sensitivity of seismic attenuation measurements to dissipative mechanisms and structure in the Earth's upper mantle. The Andrade anelastic model fits experimental attenuation data with a mild power law frequency dependence and can be scaled from laboratory to Earth conditions. We incorporate this anelastic model into 400km 1-D thermal profiles of the upper mantle. These continuous-spectrum models are approximated by multiple relaxation mechanisms that are implemented within a finite-difference scheme to perform wave propagation simulations in 1-D domains. In two sets of numerical experiments, we evaluate the measurable signature of the intrinsic attenuation structure. The two sets are defined by thermal profiles with added step functions of temperature, varying in (i) amplitude and depth or (ii) amplitude and sharpness. The corresponding synthetic data are processed using both the conventional t* approach, i.e., a linear regression of the displacement frequency spectrum, and an alternative nonlinear fit to identify the integrated value of attenuation and its frequency dependence. The measured sensitivity patterns are analyzed to assess the effects of the anelastic model and its spatial distribution on seismic data (in the absence of scattering effects). We have two straightforward results: (1) the frequency dependence power law is recoverable from the measurements; (2) t* is sensitive to both the depth and the amplitude of the step, and it is insensitive to the sharpness of the step, in the 0.25 to 2 Hz band. There is much potential for gaining information about the upper mantle thermodynamic state from careful interpretation of attenuation.

  10. Frequency dependence of optical third-harmonic generation from doped graphene

    NASA Astrophysics Data System (ADS)

    Margulis, Vl. A.; Muryumin, E. E.; Gaiduk, E. A.

    2016-01-01

    In connection with the controversial question about the frequency dependence of the optical third-harmonic generation (THG) from doped graphene, which has recently been discussed in the literature, we develop an analytical theory for the THG susceptibility of doped graphene by using the original Genkin-Mednis nonlinear-conductivity-theory formalism including mixed intra- and interband terms. The theory is free of any nonphysical divergences at zero frequency, and it predicts the main resonant peak in the THG spectrum to be located at the photon energy ħω equal to two thirds of the Fermi energy EF of charge carriers in doped graphene.

  11. Frequency-dependent traveltime tomography for near-surface seismic refraction data

    NASA Astrophysics Data System (ADS)

    Zelt, Colin A.; Chen, Jianxiong

    2016-07-01

    Traveltime tomography is the main method by which the Earth's seismic velocity is determined on all scales, from the near-surface (< 100 m) to the core. Usually traveltime tomography uses ray theory, an infinite-frequency approximation of wave propagation. A theory developed in global seismology to account for the finite-frequency nature of seismic data, known as finite-frequency traveltime tomography (FFTT), can theoretically provide a more accurate estimation of velocity. But the FFTT theory is generally not applicable to near-surface data because there is no reference velocity model known in advance that is capable of yielding synthetic waveforms that are close enough to the recorded seismograms to yield a reliable delay time. Also, there is usually no reference model for which the unknown velocity model represents a small (linear) perturbation from the reference model. This paper presents a frequency dependent form of nonlinear traveltime tomography specifically designed for near-surface seismic data in which a starting model, iterative approach with recalculated travel paths at each iteration, and the calculation of a frequency-dependent total traveltime, as opposed to a delay time, are used. Frequency-dependent traveltime tomography (FDTT) involves two modifications to conventional traveltime tomography: (1) the calculation of frequency-dependent traveltimes using wavelength-dependent velocity smoothing (WDVS), and (2) the corresponding sensitivity kernels that arise from using WDVS. Results show that the former modification is essential to achieve significant benefits from FDTT, whereas the latter is optional in that similar results can be achieved using infinite-frequency kernels. The long seismic wavelengths relative to the total path lengths and the size of subsurface heterogeneities of typical near-surface data means the improvements over ray theory tomography are significant. The benefits of FDTT are demonstrated using conventional minimum

  12. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy.

    PubMed

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V; Lee, Shinbuhm; Lee, Ho Nyung; Morozovska, Anna N; Kim, Yunseok

    2016-01-01

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. However, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. Here, we suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. Our combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute to the EM response. PMID:27466086

  13. Monitoring cure of composite resins using frequency dependent electromagnetic sensing techniques

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.; Hoff, M. S.; Loos, A. C.; Freeman, W. T., Jr.; Eichinger, D. A.

    1988-01-01

    A nondestructive in situ measurement technique has been developed for monitoring and measuring the cure processing properties of composite resins. Frequency dependent electromagnetic sensors (FDEMS) were used to directly measure resin viscosity during cure. The effects of the cure cycle and resin aging on the viscosity during cure were investigated using the sensor. Viscosity measurements obtained using the sensor are compared with the viscosities calculated by the Loos-Springer cure process model. Good overall agreement was obtained except for the aged resin samples.

  14. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V.; Lee, Shinbuhm; Lee, Ho Nyung; Morozovska, Anna N.; Kim, Yunseok

    2016-07-01

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. However, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. Here, we suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. Our combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute to the EM response.

  15. KARAT-LAMBDA - frequency dependent ray-traced troposphere delays for space applications

    NASA Astrophysics Data System (ADS)

    Hobiger, Thomas; Baron, Philippe

    2014-05-01

    Space-geodetic microwave techniques work under the assumption that the only dispersive, i.e. frequency dependent delay contribution is caused by the ionosphere. In general, the refractivity, even for the troposphere, is a complex quantity which can be denoted as N = N0 + (N'(f) + i N''(f)) where N0 is a frequency independent term, and N'(f) and N''(f) represent the complex frequency dependence. Thereby, the imaginary part can be used to derive the loss of energy (absorption) and the real part can be assigned to the changes in the propagation velocity (refraction) and thus describes the delay of an electromagnetic wave which propagates through that medium. Although the frequency dependent delay contribution appears to be of small order, one has to consider that signals are propagating through few kilometers of troposphere at high elevations to hundredths of kilometers at low elevations. Therefore, the Kashima Ray-Tracing package (Hobiger et al., 2008) has been modified (and named KARAT-LAMBDA) to enable the consideration of a frequency dependent refractivity. By using this tool, it was studied if and to which extent future space geodetic instruments are affected from dispersive troposphere delays. Moreover, a semi-empirical correction model for the microwave link of the Atomic Clock Ensemble in Space (ACES) has been developed, based on ray-tracing calculations with KARAT-LAMBDA. The proposed model (Hobiger et al., 2013) has been tested with simulated ISS overflights at different potential ACES ground station sites and it could be demonstrated that this model is capable to remove biases and elevation dependent features caused by the dispersive troposphere delay difference between the up-link and down-link. References: T. Hobiger, R. Ichikawa, T. Kondo, and Y. Koyama (2008), Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models, Journal of Geophysical Research, vol. 113, iss. D203027, pp. 1-14. T. Hobiger, D

  16. ac Dynamics of Ferroelectric Domains from an Investigation of the Frequency Dependence of Hysteresis Loops

    SciTech Connect

    Yang, Sang Mo; Jo, Ji Young; Kim, T. H.; Yoon, J. -G.; Song, T. K.; Lee, Ho Nyung; Marton, Zsolt; Park, S.; Jo, Y.; Noh, Tae Won

    2010-01-01

    We investigated nonequilibrium domain wall dynamics under an ac field by measuring the hystere- sis loops of epitaxial ferroelectric capacitors at various frequencies and temperatures. Polarization switching is induced mostly by thermally activated creep motion at lower frequencies, and by vis- cous ow motion at higher frequencies. The dynamic crossover between the creep and ow regimes unveils two frequency-dependent scaling regions of hysteresis loops. Based on these findings, we constructed a dynamic phase diagram for hysteretic ferroelectric domain dynamics in the presence of ac fields.

  17. Finite element modeling of truss structures with frequency-dependent material damping

    NASA Technical Reports Server (NTRS)

    Lesieutre, George A.

    1991-01-01

    A physically motivated modelling technique for structural dynamic analysis that accommodates frequency dependent material damping was developed. Key features of the technique are the introduction of augmenting thermodynamic fields (AFT) to interact with the usual mechanical displacement field, and the treatment of the resulting coupled governing equations using finite element analysis methods. The AFT method is fully compatible with current structural finite element analysis techniques. The method is demonstrated in the dynamic analysis of a 10-bay planar truss structure, a structure representative of those contemplated for use in future space systems.

  18. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy

    PubMed Central

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V.; Lee, Shinbuhm; Lee, Ho Nyung; Morozovska, Anna N.; Kim, Yunseok

    2016-01-01

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. However, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. Here, we suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. Our combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute to the EM response. PMID:27466086

  19. Frequency-dependent polarization-angle-phase-shift in the microwave-induced magnetoresistance oscillations

    SciTech Connect

    Liu, Han-Chun; Ye, Tianyu; Mani, R. G.; Wegscheider, W.

    2015-02-14

    Linear polarization angle, θ, dependent measurements of the microwave radiation-induced oscillatory magnetoresistance, R{sub xx}, in high mobility GaAs/AlGaAs 2D electron devices have shown a θ dependence in the oscillatory amplitude along with magnetic field, frequency, and extrema-dependent phase shifts, θ{sub 0}. Here, we suggest a microwave frequency dependence of θ{sub 0}(f) using an analysis that averages over other smaller contributions, when those contributions are smaller than estimates of the experimental uncertainty.

  20. The mechanics of delamination in fiber-reinforced composite materials. Part 1: Stress singularities and solution structure

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be diferent from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites.

  1. Hygrothermomechanical fracture stress criteria for fiber composites with sense-parity

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Ginty, C. A.

    1983-01-01

    Hygrothermomechanical fracture stress criteria are developed and evaluated for unidirectional composites (plies) with sense-parity. These criteria explicity quantify the individual contributions of applied, hygral and thermal stresses as well as couplings among these stresses. The criteria are for maximum stress, maximum strain, internal friction, work-to-fracture and combined-stress fracture. Predicted results obtained indicate that first ply failure will occur at stress levels lower than those predicted using criteria currently available in the literature. Also, the contribution of the various stress couplings (predictable only by fracture criteria with sense-parity) is significant to first ply failure and attendant fracture modes.

  2. Negative frequency-dependent interactions can underlie phenotypic heterogeneity in a clonal microbial population.

    PubMed

    Healey, David; Axelrod, Kevin; Gore, Jeff

    2016-01-01

    Genetically identical cells in microbial populations often exhibit a remarkable degree of phenotypic heterogeneity even in homogenous environments. Such heterogeneity is commonly thought to represent a bet-hedging strategy against environmental uncertainty. However, evolutionary game theory predicts that phenotypic heterogeneity may also be a response to negative frequency-dependent interactions that favor rare phenotypes over common ones. Here we provide experimental evidence for this alternative explanation in the context of the well-studied yeast GAL network. In an environment containing the two sugars glucose and galactose, the yeast GAL network displays stochastic bimodal activation. We show that in this mixed sugar environment, GAL-ON and GAL-OFF phenotypes can each invade the opposite phenotype when rare and that there exists a resulting stable mix of phenotypes. Consistent with theoretical predictions, the resulting stable mix of phenotypes is not necessarily optimal for population growth. We find that the wild-type mixed strategist GAL network can invade populations of both pure strategists while remaining uninvasible by either. Lastly, using laboratory evolution we show that this mixed resource environment can directly drive the de novo evolution of clonal phenotypic heterogeneity from a pure strategist population. Taken together, our results provide experimental evidence that negative frequency-dependent interactions can underlie the phenotypic heterogeneity found in clonal microbial populations. PMID:27487817

  3. Pulsed arrays: A new method of flaw detection by generating a frequency dependent angle of propagation

    NASA Astrophysics Data System (ADS)

    Hill, S. J.; Dixon, S. M.

    2012-05-01

    A new method of using an array of generation sources, pulsed simultaneously to generate a wavefront with a frequency dependant angle of propagation, has been developed. If pulsed arrays are used to generate a wave with a frequency dependent angle of propagation, the angle at which the wave was launched can be identified by measuring the frequency of the detected wave. In an isotropic material this means that it is possible use a second transducer to locate the position of the scatterer, whereas with a conventional single element generator method, it can only be located onto an ellipse. In addition to an increased scan speed, the resolution of detection should also be improved. A theoretical framework is put forward to explain how the wavefront is created from the superposition of the waves from the individual elements, and how the frequency varies along the wavefront. Finite element models and experimental measurements were also carried out, and both agreed with the analytic model. This method will have applications within NDE, but could also extend to sonar and radar techniques.

  4. Dynamics of structural systems with various frequency-dependent damping models

    NASA Astrophysics Data System (ADS)

    Li, Li; Hu, Yujin; Deng, Weiming; Lü, Lei; Ding, Zhe

    2015-03-01

    The aim of this paper is to present the dynamic analyses of the system involving various damping models. The assumed frequency-dependent damping forces depend on the past history of motion via convolution integrals over some damping kernel functions. By choosing suitable damping kernel functions of frequency-dependent damping model, it may be derived from the familiar viscoelastic materials. A brief review of literature on the choice of available damping models is presented. Both the mode superposition method and Fourier transform method are developed for calculating the dynamic response of the structural systems with various damping models. It is shown that in the case of non-deficient systems with various damping models, the modal analysis with repeated eigenvalues are very similar to the traditional modal analysis used in undamped or viscously damped systems. Also, based on the pseudo-force approach, we transform the original equations of motion with nonzero initial conditions into an equivalent one with zero initial conditions and therefore present a Fourier transform method for the dynamics of structural systems with various damping models. Finally, some case studies are used to show the application and effectiveness of the derived formulas.

  5. On the frequency dependence and spatial coherence of PKP precursor amplitudes

    NASA Astrophysics Data System (ADS)

    Mancinelli, Nicholas; Shearer, Peter; Thomas, Christine

    2016-03-01

    Studies now agree that small-scale (˜10 km) weak (˜0.1%) velocity perturbations throughout the lowermost mantle generate the globally averaged amplitudes of 1 Hz precursors to the core phase, . The possible frequency dependence and spatial coherence of this scattered phase, however, has been given less attention. Using a large global data set of ˜150,000 PKP precursor recordings, we characterize the frequency dependence of PKP precursors at central frequencies ranging from 0.5 to 4 Hz. At greater frequencies, we observe more scattered energy (relative to the reference phase PKPdf), particularly at shorter ranges. We model this observation by invoking heterogeneity at length scales from 2 to 30 km. Amplitudes at 0.5 Hz, in particular, suggest the presence of more heterogeneity at scales >8 km than present in previously published models. Using a regional bootstrap approach, we identify large (>20°), spatially coherent regions of anomalously strong scattering beneath the West Pacific, Central/North America, and—to a lesser extent—East Africa. Finally, as proof of concept, we use array processing techniques to locate the origin of scattered energy observed in Southern California by the Anza and Southern California Seismic Networks. The energy appears to come primarily from out-of-plane scattering on the receiver side. We suggest that such improvised arrays can increase global coverage and may reveal whether a majority of precursor energy comes from localized heterogeneity in the lowermost mantle.

  6. In situ evidence for frequency dependence of near-surface Q

    NASA Astrophysics Data System (ADS)

    Li, Guofa; Sacchi, Mauricio D.; Zheng, Hao

    2016-02-01

    The frequency dependence of the quality factor Q has long been predicted by mathematical modelling and laboratory measurements; however, in situ evidence from seismic surveys is still lacking. We have conducted the cross-hole seismic surveys to investigate the near-surface seismic attenuation in the Daqing oilfield in northeastern China. The seismic waves were fired in a source hole of 40 m from the bottom to the surface at an interval of 1 m and were recorded in a receiver hole of 40 m by two geophones with one at the surface and the other one at the bottom. The direct waves were extracted to avoid the noise disturbance and the reflection interference, and the attenuations without the effects of the source signature and the receiver coupling were estimated by a method we proposed. The nonlinear attenuations were observed and fitted using the power-law-based Q. The reliability of Q estimate was verified by the high similarity between the real and the simulated attenuations. Therefore, the experiment we have conducted can be treated as a reliable evidence for the frequency dependence of near-surface Q.

  7. Frequency-dependent social dominance in a color polymorphic cichlid fish.

    PubMed

    Dijkstra, Peter D; Lindström, Jan; Metcalfe, Neil B; Hemelrijk, Charlotte K; Brendel, Mischa; Seehausen, Ole; Groothuis, Ton G G

    2010-10-01

    A mechanism commonly suggested to explain the persistence of color polymorphisms in animals is negative frequency-dependent selection. It could result from a social dominance advantage to rare morphs. We tested for this in males of red and blue color morphs of the Lake Victoria cichlid, Pundamilia. Earlier work has shown that males preferentially attack the males of their own morph, while red males are more likely to win dyadic contests with blue males. In order to study the potential contribution of both factors to the morph co-existence, we manipulated the proportion of red and blue males in experimental assemblages and studied its effect on social dominance. We then tried to disentangle the effects of the own-morph attack bias and social dominance of red using simulations. In the experiment, we found that red males were indeed socially dominant to the blue ones, but only when rare. However, blue males were not socially dominant when rare. The simulation results suggest that an own-morph attack bias reduces the social dominance of red males when they are more abundant. Thus, there is no evidence of symmetric negative frequency-dependent selection acting on social dominance, suggesting that additional fitness costs to the red morph must explain their co-existence. PMID:20500213

  8. Frequency-dependent damping in propagating slow magneto-acoustic waves

    SciTech Connect

    Prasad, S. Krishna; Banerjee, D.; Van Doorsselaere, T.

    2014-07-10

    Propagating slow magneto-acoustic waves are often observed in polar plumes and active region fan loops. The observed periodicities of these waves range from a few minutes to a few tens of minutes and their amplitudes were found to decay rapidly as they travel along the supporting structure. Previously, thermal conduction, compressive viscosity, radiation, density stratification, and area divergence were identified to be some of the causes for change in the slow wave amplitude. Our recent studies indicate that the observed damping in these waves is frequency-dependent. We used imaging data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly to study this dependence in detail and for the first time via observations we attempted to deduce a quantitative relation between the damping length and frequency of these oscillations. We developed a new analysis method to obtain this relation. The observed frequency dependence does not seem to agree with the current linear wave theory and it was found that the waves observed in the polar regions show a different dependence from those observed in the on-disk loop structures despite the similarity in their properties.

  9. Fracture characterization using frequency-dependent shear wave anisotropy analysis of microseismic data

    NASA Astrophysics Data System (ADS)

    Al-Harrasi, O. H.; Kendall, J.-M.; Chapman, M.

    2011-05-01

    The presence of fractures in hydrocarbon reservoirs can enhance porosity and permeability, and consequently increase production. The use of seismic anisotropy to characterize fracture systems has gained much interest in the last two decades. However, estimating fracture sizes from observations of seismic anisotropy has not been possible. Recent work has shown that frequency-dependent anisotropy (FDA) is very sensitive to the length-scale of the causative mechanism for the anisotropy. In this study, we observe FDA in a microseismic data set acquired from a carbonate gas field in Oman. The frequency-dependent shear wave anisotropy observations are modelled using a poroelastic model, which considers fluid communication between grain size pore spaces and larger scale fractures. A grid search is performed over fracture parameters (radius, density and strike) to find the model that best fits the real data. The results show that fracture size varies from the microscale within the shale cap rocks, to the metre-scale within the gas reservoir, to the centimetre-scale within the non-producing part of the carbonate formation. The lateral variation in fracture density agrees with previous conclusions from ordinary shear wave splitting (SWS) analysis. Cumulatively, the results show the potential for characterizing fracture systems using observations of FDA.

  10. Frequency dependence of the onset voltage of electroconvection in the nematic liquid crystal N4

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochao; Bowers, Steve; Bajaj, Kapil; Ahlers, Guenter

    2003-03-01

    Onset voltages Vc of electroconvection in a nematic liquid crystal (NLC) cell were measured as a function of the drive frequency ω/ 2 π. The cell (from E.H.C Co, Ltd Japan) had a nominal spacing of 25 μm and planar alignment. It was filled with the NLC Merck phase IV (N4). The NLC was doped with 0.1% by weight of tetra butylammonium bromide(TBAB) and the conductivity was near 1.0 × 10-6 (Ω m)-1 at 30^oC. At low frequencies (15 to 80Hz) the onset voltage dropped as the frequency increased. This is contrary to the usual interpretation of the standard model which yields Vc (1+ω^2 τ^2)/[ξ^2-(1+ω^2 τ^2)] (ξ is related to NLC material properities), with the charge relaxation time τ=ɛ/ ( 4π σ) assumed to be independent of ω. Measurements at higher frequencies agreed reasonably with the standard model prediction. Further measurements using an AC bridge revealed that the dielectric constant ɛ is strongly frequency dependent at low frequencies, whereas the conductivity σ was roughly constant. Taking into account the frequency dependence of ɛ (and thus of τ), the onset-voltage measurements agreed fairly well with the standard-model prediction.

  11. Frequency-dependent learning achieved using semiconducting polymer/electrolyte composite cells

    NASA Astrophysics Data System (ADS)

    Dong, W. S.; Zeng, F.; Lu, S. H.; Liu, A.; Li, X. J.; Pan, F.

    2015-10-01

    Frequency-dependent learning has been achieved using semiconducting polymer/electrolyte composite cells. The cells composed of polymer/electrolyte double layers realized the conventional spike-rate-dependent plasticity (SRDP) learning model. These cells responded to depression upon low-frequency stimulation and to potentiation upon high-frequency stimulation and presented long-term memory. The transition threshold θm from depression to potentiation varied depending on the previous stimulations. A nanostructure resembling a bio-synapse in its transport passages was demonstrated and a random channel model was proposed to describe the ionic kinetics at the polymer/electrolyte interface during and after stimulations with various frequencies, accounting for the observed SRDP.Frequency-dependent learning has been achieved using semiconducting polymer/electrolyte composite cells. The cells composed of polymer/electrolyte double layers realized the conventional spike-rate-dependent plasticity (SRDP) learning model. These cells responded to depression upon low-frequency stimulation and to potentiation upon high-frequency stimulation and presented long-term memory. The transition threshold θm from depression to potentiation varied depending on the previous stimulations. A nanostructure resembling a bio-synapse in its transport passages was demonstrated and a random channel model was proposed to describe the ionic kinetics at the polymer/electrolyte interface during and after stimulations with various frequencies, accounting for the observed SRDP. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02891d

  12. Positive frequency dependence undermines the success of restoration using historical disturbance regimes.

    PubMed

    Crandall, Raelene; Knight, Tiffany M

    2015-09-01

    Anthropogenic alterations of historical disturbance regimes (e.g. suppressing floods and wildfires) is a primary mechanism by which exotic species can come to dominate native communities. Unfortunately, reinstating historical disturbance regimes to restore native communities has achieved mixed success. The presence of positive frequency dependence (PFD) is commonly invoked to explain why exotic plant invasions are so difficult to eradicate. However, models examining PFD have not considered the effect of reintroducing disturbances. Using a spatially explicit individual-based model, we consider how magnitude and direction of frequency dependence of native and exotic species affects the success of reintroducing disturbances that favour fitness of natives over exotics. Our model illustrates why restoration is difficult; there is a narrow range of parameters that allows for native species to eliminate or coexist with exotics once they have established. Dominance by exotic invaders occurs with moderate initial frequencies of exotic individuals, aggregation of these individuals, or an exotic propagule production advantage. Reintroducing disturbances allows native dominance only when PFD of the exotic is weaker than that of the native species, disturbance intervals are short, and/or exotics are not initially frequent. Our framework provides guidelines for conditions in which the reintroduction of disturbances will effectively restore invaded habitats. PMID:26147188

  13. Frequency-dependent attenuation of the Hispaniola Island region of the Caribbean Sea

    USGS Publications Warehouse

    McNamara, D.; Meremonte, M.; Maharrey, J.Z.; Mildore, S-L.; Altidore, J.R.; Anglade, D.; Hough, S.E.; Given, D.; Benz, H.; Gee, L.; Frankel, A.

    2012-01-01

    We determine frequency-dependent attenuation 1/Q(f) for the Hispaniola region using direct S and Lg waves over five distinct passbands from 0.5 to 16 Hz. Data consist of 832 high-quality vertical and horizontal component waveforms recorded on short-period and broadband seismometers from the devastating 12 January 2010 M 7.0 Haiti earthquake and the rich sequence of aftershocks. For the distance range 250–700 km, we estimate an average frequency-dependent Q(f)=224(±27)f0.64(±0.073) using horizontal components of motion and note that Q(f) estimated with Lg at regional distances is very consistent across vertical and horizontal components. We also determine a Q(f)=142(±21)f0.71(±0.11) for direct S waves at local distances, ≤100 km. The strong attenuation observed on both vertical and horizontal components of motion is consistent with expectations for a tectonically active region.

  14. TECHNICAL NOTE: Active control for stress intensity of crack-tips under mixed mode by shape memory TiNi fiber epoxy composites

    NASA Astrophysics Data System (ADS)

    Shimamoto, A.; Zhao, H.; Azakami, T.

    2007-06-01

    The paper presented the effectiveness of a shape memory alloy hybrid composite. It was designed to actively suppress stress intensity in the vicinity of a crack-tip. A shape memory alloy (SMA) TiNi fiber reinforced epoxy composite was fabricated based on the proposed design concept and its material and mechanical properties were investigated by photoelastic examinations. The stress intensity factors, KI and KII, at a crack-tip decreased temperatures greater than Af under mixed mode. The phenomenon was caused by the recovery force of the TiNi fiber. The relationship of the stress intensity factors with the prestrain in the SMA fiber as well as with the ambient temperature in an isothermal furnace was clarified. On this basis, the active control for stress intensity by a shape memory composite was discussed.

  15. Polarization-maintaining, double-clad fiber amplifier employing externally applied stress-induced birefringence

    SciTech Connect

    Koplow, Jeffrey P.; Goldberg, Lew; Moeller, Robert P.; Kliner, Dahv A. V.

    2000-03-15

    We report a new approach to obtaining linear-polarization operation of a rare-earth-doped fiber amplifier in which the gain fiber is coiled under tension to induce birefringence. We demonstrated this method by constructing an Er/Yb-doped, double-clad, single-mode fiber amplifier with an output power of 530 mW and a polarization extinction ratio of >17 dB (when seeded with linearly polarized light) at a wavelength of {approx}1.5 {mu}m . The technique is achromatic, permits single- or multiple-pass operation of the amplifier, requires no additional components in the optical path, leaves the fiber ends unobstructed, and is inexpensive to implement. (c) 2000 Optical Society of America.

  16. Development of a fiber Bragg grating sensor for in-shoe shear stress measurement: design and preliminary results

    NASA Astrophysics Data System (ADS)

    Koulaxouzidis, Andreas V.; Roberts, V. C.; Holmes, Melanie J.; Handerek, Vincent A.

    2000-08-01

    In-shoe shear stress sensors are a required tool for the investigation of plantar ulcer development after the onset of diabetes. Recently, several transducers have been developed for measuring in-shoe shear stress using magneto- resistive technology, light intensity modulation, and copolymer piezoelectric materials. Common drawbacks in the previous methods are the relatively large size of the sensors and the difficulty in interrogating many sensors simultaneously in order to achieve distributed sensing. In this paper we demonstrate for the first time a shear stress sensor using Fiber Bragg gratings (FBGs). The small size and the multiplexing capability of FBGs enables quasi- distributed sensing of shear stress on the plantar surface by interrogating a large number of identical sensors. The sensor design is based on the theory of elastic bending of columns. The sensor consists of two FBGs fitted inside a metallic structure which is able to deform elastically under shear stress. This elastic deformation produces strain on the FBGs, which can be detected by measuring the Bragg wavelength shift of the reflected light of each FBG using a CCD spectrometer. Preliminary results on an enlarged version of the sensor have shown the applicability of FBGs for the implementation of the in-shoe sensor.

  17. Three-dimensional finite element analysis of stress distribution in a tooth restored with metal and fiber posts of varying diameters: An in-vitro study

    PubMed Central

    Kumar, Pradeep; Rao, R. Nageswar

    2015-01-01

    Objective: To compare stress distribution in a tooth restored with metal and fiber posts of varying diameters (1.2 and 1.4 mm) by means of three-dimensional finite element analysis (3D-FEA). Materials and Methods: Four 3D-FEA models were constructed: (1) fiber post (1.2 and 1.4 mm) and (2) metal post (1.2 and 1.4 mm). The material properties were assigned and a force of 100 N was applied at 45° angle to the longitudinal axis of the tooth onto the palatal surface incisal to the cingulum. Analysis was run and stress distribution pattern was studied. Results: Maximum stresses in the radicular tooth structure for fiber post were higher than that for metal post. In the former models, stresses in the tooth structure were slightly reduced with increase in fiber post diameter. Conclusions: To reduce stress in the remaining radicular tooth structure, it is better to use a fiber post of a large diameter. PMID:25829685

  18. Stress distribution of endodontically treated teeth with titanium alloy post and carbon fiber post with different alveolar bone height: A three-dimensional finite element analysis

    PubMed Central

    Singh, S. Vijay; Bhat, Manohar; Gupta, Saurabh; Sharma, Deepak; Satija, Harsha; Sharma, Sumeet

    2015-01-01

    Objective: A three-dimensional (3D) finite element analysis (FEA) on the stress distribution of endodontically treated teeth with titanium alloy post and carbon fiber post with different alveolar bone height. Materials and Methods: The 3D model was fabricated using software to represent an endodontically treated mandibular second premolar with post and restored with a full ceramic crown restoration, which was then analyzed using FEA using FEA ANSYS Workbench V13.0 (ANSYS Inc., Canonsburg, Pennsylvania, U.S.A) software. Results: The FEA showed the maximum stresses of 137.43 Mpa in dentin with alveolar bone height of 4 mm when the titanium post was used, 138.48 Mpa when carbon fiber post was used as compared to 105.91 Mpa in the model with alveolar bone height of 2 mm from the cement enamel junction (CEJ) when the titanium post was used and 107.37 Mpa when the carbon fiber post was used. Conclusions: Stress was observed more in alveolar bone height level of 4 mm from CEJ than 2 mm from CEJ. Stresses in the dentin were almost similar when the carbon fiber post was compared to titanium post. However, stresses in the post and the cement were much higher when titanium post was used as compared to carbon fiber post. PMID:26430375

  19. Frequency dependence 3.0: an attempt at codifying the evolutionary ecology perspective.

    PubMed

    Metz, Johan A J; Geritz, Stefan A H

    2016-03-01

    The fitness concept and perforce the definition of frequency independent fitnesses from population genetics is closely tied to discrete time population models with non-overlapping generations. Evolutionary ecologists generally focus on trait evolution through repeated mutant substitutions in populations with complicated life histories. This goes with using the per capita invasion speed of mutants as their fitness. In this paper we develop a concept of frequency independence that attempts to capture the practical use of the term by ecologists, which although inspired by population genetics rarely fits its strict definition. We propose to call the invasion fitnesses of an eco-evolutionary model frequency independent when the phenotypes can be ranked by competitive strength, measured by who can invade whom. This is equivalent to the absence of weak priority effects, protected dimorphisms and rock-scissor-paper configurations. Our concept differs from that of Heino et al. (TREE 13:367-370, 1998) in that it is based only on the signs of the invasion fitnesses, whereas Heino et al. based their definitions on the structure of the feedback environment, summarising the effect of all direct and indirect interactions between individuals on fitness. As it turns out, according to our new definition an eco-evolutionary model has frequency independent fitnesses if and only if the effect of the feedback environment on the fitness signs can be summarised by a single scalar with monotonic effect. This may be compared with Heino et al.'s concept of trivial frequency dependence defined by the environmental feedback influencing fitness, and not just its sign, in a scalar manner, without any monotonicity restriction. As it turns out, absence of the latter restriction leaves room for rock-scissor-paper configurations. Since in 'realistic' (as opposed to toy) models frequency independence is exceedingly rare, we also define a concept of weak frequency dependence, which can be interpreted

  20. Frequency dependent attenuation characteristics of coda waves in the Northwestern Himalayan (India) region

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Singh, Priyamvada; Singh, Pitam; Biswal, Shubhasmita; Parija, Mahesh Prasad

    2016-03-01

    Digital seismogram data of 82 earthquakes from the Northwestern Himalayan (India) region recorded at different stations during 2004-2006 were analyzed to study the seismic coda wave attenuation characteristics in this region. We used 132 seismic observations from local earthquakes with a hypocentral distance <240 km and a magnitude range of 1.2-4.9 to study the coda QC using the single isotropic scattering model. These earthquakes were recorded at 20 temporary seismic stations installed in the Northwestern Himalayas (India) by the Wadia institute of Himalayan Geology, Dehradun. The QC values were estimated at 10 central frequencies: 1.5, 3, 5, 7, 9, 12, 16, 20, 24, and 28 Hz using starting lapse-times of 10, 20, 30, 40, 50, and 60 s and coda window-lengths of 10, 20, 30, 40, and 50 s. The QC fits the frequency dependent power-law, QC =Q0fn . For a 10 s lapse time with a 10-s coda window length QC = 47.42f1.012 and for a 50 s lapse time with a 50 s coda window length, QC = 204.1f0.934 . Q0 (QC at 1 Hz) varied from ∼47 for a 10 s lapse time and a 10 s window length, to ∼204 for a 50 s lapse time and a 50 s window length. An average frequency dependent power law fit for the study region may be given as QC = 116.716f0.9943 . The exponent of the frequency dependence law n ranged from 1.08 to 0.9, which correlates well with values obtained in other seismically and tectonically active and heterogeneous regions of the world. In our study region, QC increases both with respect to lapse time and frequency, i.e., the attenuation decreases as the quality factor is inversely proportional to attenuation. The low QC values or high attenuation at lower frequencies and high QC values or low attenuation at higher frequencies suggest that the heterogeneity decreases with increasing depth in our study region.

  1. Mild heat stress enhances differentiation and proliferation of Japanese quail myoblasts and enhances slow muscle fiber characteristics.

    PubMed

    Choi, Y M; Chen, P R; Shin, S; Zhang, J; Hwang, S; Lee, K

    2016-08-01

    The objective of this study was to investigate the effect of mild heat stress on muscle fiber hyperplastic and hypertrophic growth in quail primary myogenic cells to better understand the mechanisms leading to increased skeletal muscle development in avian embryos incubated at a higher temperature. Compared to control cultures maintained at 37°C, incubation at 39°C enhanced myotube length (P < 0.01) and diameter (P < 0.001) at 3 days after differentiation (D3). This enlargement of the myotubes incubated at 39°C can be explained by differences in the fusion index (56.7 vs. 46.2%, P < 0.05) and nuclei number per myotube (18.1 vs. 10.8, P < 0.001) compared to the control cells at D3. Additionally, a higher density of myotubes at D3 in cultures exposed to a higher temperature were related to higher levels of Pax-7 (P < 0.05) compared to the control cells incubated continuously at 37°C. These results indicated a higher proliferative capacity in cells exposed to mild heat stress compared to the control cells. On the other hand, mild heat stress enhanced protein levels of slow myosin heavy chain isoform (P < 0.01) and cytochrome c oxidase subunit IV (P < 0.01) compared to the control cells at D3. These discrepancies in protein expression indicated maintenance of slow muscle fiber type characteristics in myotubes incubated at 39°C. Our results suggest that mild heat stress plays a significant role in myogenic mechanisms related to muscle mass and development. PMID:27038421

  2. Frequency dependence of the nonlinear response in YBa2Cu3O7-x transmission lines

    NASA Astrophysics Data System (ADS)

    Mateu, Jordi; Booth, James C.; Moeckly, Brian H.

    2007-01-01

    The authors evaluate the frequency dependence of the nonlinear response in high-temperature superconductor YBa2Cu3O7-x thin films by simultaneously measuring the nonlinear intermodulation products and harmonic generation in broadband superconducting transmission lines at 76K. The frequencies of the two-tone incident signal are set to produce spurious signals from 1to21GHz. They extract a nonlinear term ∣ΔR2+jωΔL2∣ by applying a model of spurious signal generation in superconducting transmission lines to their measurement results. They found that this nonlinear term follows a linear dependence on frequency, indicating a dominant contribution of the nonlinear inductance ΔL2 over the nonlinear resistance ΔR2, (ωΔL2≫ΔR2), for the superconducting nonlinear response.

  3. Negative frequency-dependent selection is intensified at higher population densities in protist populations.

    PubMed

    Minter, Ewan J A; Watts, Phillip C; Lowe, Chris D; Brockhurst, Michael A

    2015-06-01

    Natural populations of free-living protists often exhibit high-levels of intraspecific diversity, yet this is puzzling as classic evolutionary theory predicts dominance by genotypes with high fitness, particularly in large populations where selection is efficient. Here, we test whether negative frequency-dependent selection (NFDS) plays a role in the maintenance of diversity in the marine flagellate Oxyrrhis marina using competition experiments between multiple pairs of strains. We observed strain-specific responses to frequency and density, but an overall signature of NFDS that was intensified at higher population densities. Because our strains were not selected a priori on the basis of particular traits expected to exhibit NFDS, these data represent a relatively unbiased estimate of the role for NFDS in maintaining diversity in protist populations. These findings could help to explain how bloom-forming plankton, which periodically achieve exceptionally high population densities, maintain substantial intraspecific diversity. PMID:26063750

  4. Mechanism of voltage production and frequency dependence of the ultrasonic vibration potential

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong K.; Wang, Shougang; Diebold, Gerald

    2009-05-01

    Imaging with the ultrasonic vibration potential is based on voltage generation by a colloidal or ionic suspension in response to the passage of ultrasound. The polarization within a body arising from the oscillatory displacement in the ultrasonic field produces a current in a pair of external electrodes that is measured as a function of time or frequency. Existing theory gives the current in the electrodes as arising from both a time varying polarization and ionic conduction. Here, experiments are reported that show the production of the polarization current is the dominant mechanism for current generation in soft tissue. Experiments are also reported giving the frequency dependence of the ultrasonic vibration current in canine blood and in several dilutions of aqueous silica suspensions.

  5. Picosecond laser-induced breakdown at 5321 and 5347 A - Observation of frequency-dependent behavior

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1977-01-01

    A study is presented of picosecond laser-induced breakdown at 3547 and 5321 A of several materials. The thresholds obtained for breakdown at 5321 A are compared to previous results obtained at 1.064 microns using the same laser system. This comparison illustrates the transition of bulk laser-induced breakdown as it becomes increasingly frequency dependent. UV picosecond pulses are obtained by mixing 5321 A and 1.064 micron pulses in a KH2PO4 crystal. Upper and lower bounds on the 3547 A breakdown threshold are defined, although some effects of walk-off distortion and self-focusing are observed. The results are discussed with reference to models for the intrinsic processes involved in the breakdown, i.e., avalanche and multiphoton ionization.

  6. Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement.

    PubMed

    Paolino, P; Bellon, L

    2009-10-01

    We measure the mechanical thermal noise of soft silicon atomic force microscope cantilevers. Using an interferometric setup, we obtain a resolution down to 10(-14) m Hz(-1/2) on a wide spectral range (3-10(5) Hz). The low frequency behavior depends dramatically on the presence of a reflective coating: almost flat spectra for uncoated cantilevers versus a 1/f like trend for coated ones. The addition of a viscoelastic term in models of the mechanical system can account for this observation. Use of Kramers-Kronig relations validate this approach with a complete determination of the response of the cantilever: a power law with a small coefficient is found for the frequency dependence of viscoelasticity due to the coating, whereas the viscous damping due to the surrounding atmosphere is accurately described by the Sader model. PMID:19738311

  7. A novel theory to explain species diversity in landscapes: positive frequency dependence and habitat suitability.

    PubMed Central

    Molofsky, Jane; Bever, James D

    2002-01-01

    Theories to explain the diversity of species have required that individual species occupy unique niches and/or vary in their response to environmental factors. Positive interactions within a species, although common in communities, have not been thought to maintain species diversity because in non-spatial models the more abundant species always outcompetes the rarer species. Here, we show, using a stochastic spatial model, that positive intraspecific interactions such as those caused by positive frequency dependence and/or priority effects, can maintain species diversity if interactions between individuals are primarily local and the habitat contains areas that cannot be colonized by any species, such as boulders or other physical obstructions. When intraspecific interactions are primarily neutral, species diversity will eventually erode to a single species. When the landscape is homogeneous (i.e. does not contain areas that cannot be colonized by any species), the presence of strong intraspecific interactions will not maintain diversity. PMID:12495479

  8. Constraints on frequency-dependent violations of Shapiro delay from GW150914

    NASA Astrophysics Data System (ADS)

    Kahya, Emre O.; Desai, Shantanu

    2016-05-01

    On 14th September 2015, a transient gravitational wave (GW150914) was detected by the two LIGO detectors at Hanford and Livingston from the coalescence of a binary black hole system located at a distance of about 400 Mpc. We point out that GW150914 experienced a Shapiro delay due to the gravitational potential of the mass distribution along the line of sight of about 1800 days. Also, the near-simultaneous arrival of gravitons over a frequency range of about 200 Hz within a 0.2 s window allows us to constrain any violations of Shapiro delay and Einstein's equivalence principle between the gravitons at different frequencies. From the calculated Shapiro delay and the observed duration of the signal, frequency-dependent violations of the equivalence principle for gravitons are constrained to an accuracy of O (10-9).

  9. Negative frequency-dependent selection is intensified at higher population densities in protist populations

    PubMed Central

    Minter, Ewan J. A.; Watts, Phillip C.; Lowe, Chris D.; Brockhurst, Michael A.

    2015-01-01

    Natural populations of free-living protists often exhibit high-levels of intraspecific diversity, yet this is puzzling as classic evolutionary theory predicts dominance by genotypes with high fitness, particularly in large populations where selection is efficient. Here, we test whether negative frequency-dependent selection (NFDS) plays a role in the maintenance of diversity in the marine flagellate Oxyrrhis marina using competition experiments between multiple pairs of strains. We observed strain-specific responses to frequency and density, but an overall signature of NFDS that was intensified at higher population densities. Because our strains were not selected a priori on the basis of particular traits expected to exhibit NFDS, these data represent a relatively unbiased estimate of the role for NFDS in maintaining diversity in protist populations. These findings could help to explain how bloom-forming plankton, which periodically achieve exceptionally high population densities, maintain substantial intraspecific diversity. PMID:26063750

  10. The frequency-dependent directivity of a planar fabry-perot polymer film ultrasound sensor.

    PubMed

    Cox, Benjamin T; Beard, Paul C

    2007-02-01

    A model of the frequency-dependent directivity of a planar, optically-addressed, Fabry-Perot (FP), polymer film ultrasound sensor is described and validated against experimental directivity measurements made over a frequency range of 1 to 15 MHz and angles from normal incidence to 80 degrees. The model may be used, for example, as a predictive tool to improve sensor design, or to provide a noise-free response function that could be deconvolved from sound-field measurements in order to improve accuracy in high-frequency metrology and imaging applications. The specific question of whether effective element sizes as small as the optical-diffraction limit can be achieved was investigated. For a polymer film sensor with a FP cavity of thickness d, the minimum effective element radius was found to be about 0.9 d, and that an illumination spot radius of less than d/4 is required to achieve it. PMID:17328336

  11. Fundamental resonance frequency dependence of the proximity effect of quartz crystal resonators

    NASA Astrophysics Data System (ADS)

    Yao, Yao

    2015-11-01

    The fundamental frequency dependence of the proximity effect of a quartz crystal resonator (QCR) has been experimentally observed. By an impedance analysis method, the response mechanism underlying this effect has been examined. It is found that the disturbance of the fringing electric field of QCR due to adjacent metal is the main reason. Moreover, this experiment demonstrates that the proximity effect of QCR is strongly associated with the fundamental resonance frequency. Also, the effect of the size of the adjacent copper disk on the proximity effect of QCR has also been studied. The accurate understanding and prediction of this effect, on one hand, can help us distinguish abnormal frequency fluctuation especially in the presence of the adjacent metal. On the other hand, this effect can also be used for sensing applications.

  12. Wideband Power Amplifier Modeling Incorporating Carrier Frequency Dependent AM/AM and AM/PM Characteristics

    NASA Astrophysics Data System (ADS)

    Tkacenko, A.

    2013-05-01

    In this article, we present a complex baseband model for a wideband power amplifier that incorporates carrier frequency dependent amplitude modulation (AM) and phase modulation (PM) (i.e., AM/AM and AM/PM) characteristics in the design process. The structure used to implement the amplifier model is a Wiener system which accounts for memory effects caused by the frequency selective nature of the amplifier, in addition to the nonlinearities caused by gain compression and saturation. By utilizing piecewise polynomial nonlinearities in the structure, it is shown how to construct the Wiener model to exactly accommodate all given AM/AM and AM/PM measurement constraints. Simulation results using data from a 50 W 32-way Ka-band solid-state power amplifier (SSPA) are provided, highlighting the differences in degradation incurred for a wideband input signal as compared with a narrowband input.

  13. On intrinsic stress fiber contractile forces in semilunar heart valve interstitial cells using a continuum mixture model.

    PubMed

    Sakamoto, Yusuke; Buchanan, Rachel M; Sacks, Michael S

    2016-02-01

    Heart valve interstitial cells (VICs) play a critical role in the maintenance and pathophysiology of heart valve tissues. Normally quiescent in the adult, VICs can become activated in periods of growth and disease. When activated, VICs exhibit increased levels of cytokines and extracellular matrix (ECM) synthesis, and upregulated expression and strong contraction of α-smooth muscle actin (α-SMA) fibers. However, it remains unknown how expression and contraction of the α-SMA fibers, which vary among different VIC types, contribute to the overall VIC mechanical responses, including the nucleus and cytoskeleton contributions. In the present study, we developed a novel solid-mixture model for VIC biomechanical behavior that incorporated 1) the underlying cytoskeletal network, 2) the oriented α-SMA stress fibers with passive elastic and active contractile responses, 3) a finite deformable elastic nucleus. We implemented the model in a full 3D finite element simulation of a VIC based on known geometry. Moreover, we examined the respective mechanical responses of aortic and pulmonary VICs (AVICs and PVICs, respectively), which are known to have different levels of α-SMA expression levels and contractile behaviors. To calibrate the model, we simulated the combined mechanical responses of VICs in both micropipette aspiration (MA) and atomic force microscopy (AFM) experiments. These two states were chosen as the VICs were under significantly different mechanical loading conditions and activation states, with the α-SMA fibers inactivated in the MA studies while fully activated in the AFM studies. We also used the AFM to study the mechanical property of the nucleus. Our model predicted that the substantial differences found in stiffening of the AVIC compared to the PVICs was due to a 9 to 16 times stronger intrinsic AVIC α-SMA stress fiber contractile force. Model validation was done by simulating a traction force microscopy experiment to estimate the forces the VICs

  14. Is it possible to infer the frequency-dependent seismic attenuation of fractured materials from high-strain creep tests?

    NASA Astrophysics Data System (ADS)

    mallet, celine; quintal, beatriz; caspari, eva; holliger, klaus

    2016-04-01

    The seismic and hydraulic characterization of fractured rocks is an important objective for reservoir development in general and the production of geothermal energy in particular. The attenuation of seismic waves in saturated fractured media is governed by local displacements of the fluid relative to the solid induced by the compressions and extensions associated with the passing wavefield. This phenomenon is generally referred to as wave-induced fluid flow (WIFF). Recent evidence suggests that this energy dissipation mechanism is sensitive to the interconnectivity of the fractures, which offers the perspective of linking seismic observations to the hydraulic properties of fractured rocks. Here, we consider the results of laboratory experiments, which are referred to as creep tests. Such tests consist of applying a constant stress to a water-saturated thermally cracked glass sample and recording the resulting strain response as a function of time. The primary advantages of the considered material are (i) that the fracture network is well documented and (ii) that the homogeneous and non-porous glass matrix limits WIFF to the fracture network. Due to the high stress levels as well as other technical issues, creep tests are not commonly used for laboratory-based measurements of energy dissipation. Therefore, an objective of this study is to explore whether and to what extent such data can be interpreted in terms of the seismic attenuation characteristics of the probed samples, as this might open access to a vast reservoir of corresponding data, notably for cracked materials. Transforming the observed time-dependent stress-strain relation into the Fourier domain, allows us to infer the corresponding frequency-dependent attenuation characteristics, which we then seek to interpret through numerical simulations based on Biot's quasi-static poroelastic equations. The 2D geometry of the fracture network considered in these simulations is derived from a scanning electron

  15. Modeling soil magnetic susceptibility and frequency-dependent susceptibility to aid landmine clearance.

    NASA Astrophysics Data System (ADS)

    Hannam, Jacqueline A.; Dearing, John A.

    2006-05-01

    Information on the electromagnetic properties of soils and their effects on metal detectors is increasingly necessary for effective demining due to limited detector efficacy in highly magnetic soils and the difficulty of detecting minimummetal mines. Magnetic measurements of soils, such as magnetic susceptibility and frequency dependent susceptibility can aid the detection of problem soils, but are not part of standard soil analyses. Consequently, little information about soil magnetism exists within the soil, environmental science and environmental geophysics communities. Lack of empirical data may be compensated through the estimation of soil magnetic characteristics by predictive modeling approaches. Initial modeling of soil types in Bosnia and Herzegovina (BiH) was attempted by expert and analogue approaches, using only coarse scale soil type information, which resulted in the production of national soil maps for low field and frequency-dependent susceptibility. Validation of the maps was achieved by comparison of empirical magnetic data from soil samples in the National Bosnian soil archive in Sarajevo. Discrepancies between the model and empirical data are explained in part by the differences in soil parent material within each soil type, which controls the amount of Fe released into the soil system available for in situ conversion to magnetic Fe oxides. The integration of soil information (type and parent material), expert knowledge and empirical data refines the predictive modeling of soil magnetic characteristics in temperate-Mediterranean environments such as BiH. Further spatial separation of soil types in the landscape can be achieved by digital terrain modeling. Preliminary fine-scale, landscape-soil modeling indicates improved spatial resolution of soil types compared with the original coarsely-mapped soil units, and the potential to synthesize local scale soil magnetic maps.

  16. The nest site lottery: how selectively neutral density dependent growth suppression induces frequency dependent selection.

    PubMed

    Argasinski, K; Broom, M

    2013-12-01

    Modern developments in population dynamics emphasize the role of the turnover of individuals. In the new approaches stable population size is a dynamic equilibrium between different mortality and fecundity factors instead of an arbitrary fixed carrying capacity. The latest replicator dynamics models assume that regulation of the population size acts through feedback driven by density dependent juvenile mortality. Here, we consider a simplified model to extract the properties of this approach. We show that at the stable population size, the structure of the frequency dependent evolutionary game emerges. Turnover of individuals induces a lottery mechanism where for each nest site released by a dead adult individual a single newborn is drawn from the pool of newborn candidates. This frequency dependent selection leads towards the strategy maximizing the number of newborns per adult death. However, multiple strategies can maximize this value. Among them, the strategy with the greatest mortality (which implies the greatest instantaneous growth rate) is selected. This result is important for the discussion about universal fitness measures and which parameters are maximized by natural selection. This is related to the fitness measures R0 and r, because the number of newborns per single dead individual equals the lifetime production of newborn R0 in models without aging. We thus have a two-stage procedure, instead of a single fitness measure, which is a combination of R0 and r. According to the nest site lottery mechanism, at stable population size, selection favors strategies with the greatest r, i.e. those with the highest turnover, from those with the greatest R0. PMID:24071631

  17. Frequency-dependent signal processing in apical dendrites of hippocampal CA1 pyramidal cells.

    PubMed

    Watanabe, H; Tsubokawa, H; Tsukada, M; Aihara, T

    2014-10-10

    Depending on an animal's behavioral state, hippocampal CA1 pyramidal cells receive distinct patterns of excitatory and inhibitory synaptic inputs. The time-dependent changes in the frequencies of these inputs and the nonuniform distribution of voltage-gated channels lead to dynamic fluctuations in membrane conductance. In this study, using a whole-cell patch-clamp method, we attempted to record and analyze the frequency dependencies of membrane responsiveness in Wistar rat hippocampal CA1 pyramidal cells following noise current injection directly into dendrites and somata under pharmacological blockade of all synaptic inputs. To estimate the frequency-dependent properties of membrane potential, membrane impedance was determined from the voltage response divided by the input current in the frequency domain. The cell membrane of most neurons showed low-pass filtering properties in all regions. In particular, the properties were strongly expressed in the somata or proximal dendrites. Moreover, the data revealed nonuniform distribution of dendritic impedance, which was high in the intermediate segment of the apical dendritic shaft (∼220-260μm from the soma). The low-pass filtering properties in the apical dendrites were more enhanced by membrane depolarization than those in the somata. Coherence spectral analysis revealed high coherence between the input signal and the output voltage response in the theta-gamma frequency range, and large lags emerged in the distal dendrites in the gamma frequency range. Our results suggest that apical dendrites of hippocampal CA1 pyramidal cells integrate synaptic inputs according to the frequency components of the input signal along the dendritic segments receiving the inputs. PMID:25135353

  18. Negative frequency-dependent selection or alternative reproductive tactics: maintenance of female polymorphism in natural populations

    PubMed Central

    2013-01-01

    Background Sex-limited polymorphisms have long intrigued evolutionary biologists and have been the subject of long-standing debates. The coexistence of multiple male and/or female morphs is widely believed to be maintained through negative frequency-dependent selection imposed by social interactions. However, remarkably few empirical studies have evaluated how social interactions, morph frequencies and fitness parameters relate to one another under natural conditions. Here, we test two hypotheses proposed to explain the maintenance of a female polymorphism in a species with extreme geographical variation in morph frequencies. We first elucidate how fecundity traits of the morphs vary in relation to the frequencies and densities of males and female morphs in multiple sites over multiple years. Second, we evaluate whether the two female morphs differ in resource allocation among fecundity traits, indicating alternative tactics to maximize reproductive output. Results We present some of the first empirical evidence collected under natural conditions that egg number and clutch mass was higher in the rarer female morph. This morph-specific fecundity advantage gradually switched with the population morph frequency. Our results further indicate that all investigated fecundity traits are negatively affected by relative male density (i.e. operational sex ratio), which confirms male harassment as selective agent. Finally, we show a clear trade-off between qualitative (egg mass) and quantitative (egg number) fecundity traits. This trade-off, however, is not morph-specific. Conclusion Our reported frequency- and density-dependent fecundity patterns are consistent with the hypothesis that the polymorphism is driven by a conflict between sexes over optimal mating rate, with costly male sexual harassment driving negative frequency-dependent selection on morph fecundity. PMID:23822745

  19. Temporal dissociation of frequency-dependent acceleration of relaxation and protein phosphorylation by CaMKII.

    PubMed

    Huke, Sabine; Bers, Donald M

    2007-03-01

    Frequency-dependent acceleration of relaxation (FDAR) is an important intrinsic mechanism that allows for diastolic filling of the ventricle at higher heart rates, yet its molecular mechanism is still not understood. Previous studies showed that FDAR is dependent on functional sarcoplasmic reticulum (SR) and can be abolished by phosphatase or by Ca/CaM kinase (CaMKII) inhibition. Additionally, CaMKII activity/autophosphorylation has been shown to be frequency-dependent. Thus, we tested the hypothesis that CaMKII phosphorylation of SR Ca(2+)-handling proteins (Phospholamban (PLB), Ca(2+) release channel (RyR)) mediates FDAR. Here we show that FDAR occurs abruptly in fluo-4 loaded isolated rat ventricular myocytes when frequency is raised from 0.1 to 2 Hz. The effect is essentially complete within four beats (2 s) with the tau of [Ca(2+)](i) decline decreasing by 42+/-3%. While there is a detectable increase in PLB Thr-17 and RyR Ser-2814 phosphorylation, the increase is quantitatively small (PLB<5%, RyR approximately 8%) and the time-course is clearly delayed with regard to FDAR. The low substrate phosphorylation indicates that pacing of myocytes only mildly activates CaMKII and consistent with this CaMKIIdelta autophosphorylation did not increase with pacing alone. However, in the presence of phosphatase 1 inhibition pacing triggered a net-increase in autophosphorylated CaMKII and also greatly enhanced PLB and RyR phosphorylation. We conclude that FDAR does not rely on phosphorylation of PLB or RyR. Even though CaMKII does become activated when myocytes are paced, phosphatases immediately antagonize CaMKII action, limit substrate phosphorylation and also prevent sustained CaMKII autophosphorylation (thereby suppressing global CaMKII effects). PMID:17239900

  20. Frequency-dependent traveltime tomography using fat rays: application to near-surface seismic imaging

    NASA Astrophysics Data System (ADS)

    Jordi, Claudio; Schmelzbach, Cedric; Greenhalgh, Stewart

    2016-08-01

    Frequency-dependent traveltime tomography does not rely on the high frequency assumption made in classical ray-based tomography. By incorporating the effects of velocity structures in the first Fresnel volume around the central ray, it offers a more realistic and accurate representation of the actual physics of seismic wave propagation and thus, enhanced imaging of near-surface structures is expected. The objective of this work was to apply frequency-dependent first arrival traveltime tomography to surface seismic data that were acquired for exploration scale and near-surface seismic imaging. We adapted a fat ray tomography algorithm from global-earth seismology that calculates the Fresnel volumes based on source and receiver (adjoint source) traveltime fields. The fat ray tomography algorithm was tested on synthetic model data that mimics the dimensions of two field data sets. The field data sets are presented as two case studies where fat ray tomography was applied for near-surface seismic imaging. The data set of the first case study was recorded for high-resolution near-surface imaging of a Quaternary valley (profile length < 1 km); the second data set was acquired for hydrocarbon search (profile length > 10 km). All results of fat ray tomography are compared against the results of classical ray-based tomography. We show that fat ray tomography can provide enhanced tomograms and that it is possible to recover more information on the subsurface when compared to ray tomography. However, model assessment based on the column sum of the Jacobian matrix revealed that especially the deep parts of the structure in the fat ray tomograms might not be adequately covered by fat rays. Furthermore, the performance of the fat ray tomography depends on the chosen input frequency in relation to the scale of the seismic survey. Synthetic data testing revealed that the best results were obtained when the frequency was chosen to correspond to an approximate wavelength

  1. The Frequency-Dependent Neuronal Length Constant in Transcranial Magnetic Stimulation

    PubMed Central

    Ilmoniemi, Risto J.; Mäki, Hanna; Saari, Jukka; Salvador, Ricardo; Miranda, Pedro C.

    2016-01-01

    Background: The behavior of the dendritic or axonal membrane voltage due to transcranial magnetic stimulation (TMS) is often modeled with the one-dimensional cable equation. For the cable equation, a length constant λ0 is defined; λ0 describes the axial decay of the membrane voltage in the case of constant applied electric field. In TMS, however, the induced electric field waveform is typically a segment of a sinusoidal wave, with characteristic frequencies of the order of several kHz. Objective: To show that the high frequency content of the stimulation pulse causes deviations in the spatial profile of the membrane voltage as compared to the steady state. Methods: We derive the cable equation in complex form utilizing the complex frequency-dependent representation of the membrane conductivity. In addition, we define an effective length constant λeff, which governs the spatial decay of the membrane voltage. We model the behavior of a dendrite in an applied electric field oscillating at 3.9 kHz with the complex cable equation and by solving the traditional cable equation numerically. Results: The effective length constant decreases as a function of frequency. For a model dendrite or axon, for which λ0 = 1.5 mm, the effective length constant at 3.9 kHz is decreased by a factor 10 to 0.13 mm. Conclusion: The frequency dependency of the neuronal length constant has to be taken into account when predicting the spatial behavior of the membrane voltage as a response to TMS. PMID:27555808

  2. Cross-terms and weak frequency-dependent signals in the cosmic microwave background sky

    NASA Astrophysics Data System (ADS)

    Hernández-Monteagudo, C.; Sunyaev, R. A.

    2005-05-01

    In this paper, we study the amplification of weak frequency-dependent signals in the cosmic microwave background (CMB) sky due to their cross-correlation to intrinsic anisotropies. In particular, we centre our attention on mechanisms generating a weak signal, of peculiar spectral behaviour, such as resonant scattering in ionic, atomic or molecular lines, the thermal Sunyaev-Zel'dovich (tSZ) effect or extragalactic foreground emissions, whose typical amplitude (denoted by ɛ) is significantly smaller than the intrinsic CMB fluctuations. We find that all these effects involve either the autocorrelation of anisotropies generated during recombination (zrec) or the cross-correlation of those anisotropies with fluctuations arising at redshift zi. The former case accounts for the slight blurring of original anisotropies generated in the last scattering surface, and shows up in the small angular scale (high multipole) range. The latter term describes, instead, the generation of new anisotropies, and is non-zero only if fluctuations generated at redshifts zrec, zi, are correlated. The degree of this correlation can be computed under the assumption that density fluctuations were generated as standard inflationary models dictate and that they evolved in time according to linear theory. When the weak signal is frequency dependent (i.e. the spectral dependence of the secondary anisotropies is distinct from that of the CMB), we show that, by subtracting power spectra at different frequencies, it is possible to avoid the limit associated with cosmic variance and unveil weaker terms linear in ɛ. We find that the correlation term shows a different spectral dependence than the squared (~ɛ2) term usually considered, making its extraction particularly straightforward for the tSZ effect. Furthermore, we find that in most cases the correlation terms are particularly relevant at low multipoles due to the integrated Sachs-Wolfe effect and must be taken into account when characterizing

  3. The effect of microstructure on residual-stress development in short-fiber composites

    SciTech Connect

    Eduljee, R.F.

    1991-01-01

    The aim of this study was the identification of the key processing and microstructural parameters that affect thermal residual stresses through a series of parametric analyses on an infinite-plate geometry. In these analyses polycarbonate was chosen as a representative amorphous resin while polyetheretherketone (PEEK) was used as an example of a semicrystalline resin. The residual stress model of Indenbom was used to investigate residual stresses in amorphous polymers. Due to the inapplicability of this model to semicrystalline polymers and composites where the material properties varied through the thickness of the specimen, a residual stress model based on incremental stress analysis was developed. The parametric analyses on the neat polymers showed that the thermal history and the thermoelastic properties played major roles in the residual stress development in both amorphous and semicrystalline polymers. Crystallization increased the level of residual stresses. The mechanisms for this increase are discussed.

  4. Numerical analysis of stress distribution in embedded highly birefringent PANDA fibers

    NASA Astrophysics Data System (ADS)

    Lesiak, Piotr; Woliński, Tomasz

    2015-09-01

    The paper presents numerical analysis compared with experimental data of influence of polymerization shrinkage on highly birefringent (HB) PANDA optical fibers embedded in a composite material. Since polymerization is a chemical process consisting in combining single molecules in a macromolecular compound [1], principal directions of the polymerization shrinkage depend on a number of the composite layers associated with this process. In this paper a detailed analysis of the piezo-optic effects occurring in HB optical fibers before and after the lamination process answers the question to what extent a degree of the material degradation can be properly estimated.

  5. Self-affine nature of the stress-strain behavior of thin fiber networks

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Susarrey, Orlando; Bravo, Armando

    2001-12-01

    The stress-strain behavior of toilet paper is studied. We find that the damaged parts of stress-strain curves possess a self-affine scaling invariance. Moreover, we find that the stress-strain behavior and the rupture line roughness are characterized by the same scaling (Hurst) exponent H, which is not universal: rather it changes from sample to sample. The variations on H are mainly due to fluctuations in the paper structure, which are larger than statistical errors within a sample. Furthermore, the same exponent governs the changes in the stress-strain curve as the strain rate increases. The fractal damage model is employed to explain experimental observations.

  6. Soluble fiber-enriched diets improve inflammation and oxidative stress biomarkers in Zucker fatty rats.

    PubMed

    Sánchez, David; Quiñones, Mar; Moulay, Leila; Muguerza, Begoña; Miguel, Marta; Aleixandre, Amaya

    2011-07-01

    In this study we evaluated the effect of the administration of different soluble fiber enriched-diets on inflammatory and redox state of Zucker fatty rats. Four groups of ten 8 week-old female Zucker fatty rats were used. The four groups were respectively fed the following diets until the 15th week of life: standard diet (obese control), 10% high methoxylated apple pectin (HMAP)-, 5% soluble cocoa fiber (SCF)-, and 10% β-glucan-enriched diets. A group of Zucker lean rats fed the standard diet was also used as control for normal values of this rat strain. The plasma levels of tumoral necrosis factor-α (TNF-α), adiponectin, and malondialdehyde (MDA) were measured at the end of treatment. The reduced glutathione liver levels were also obtained at that moment. TNF-α plasma levels decreased somewhat in Zucker fatty rats fed the different fibers, and MDA plasma levels significantly decreased in these animals. Nevertheless, adiponectin plasma levels increased in the Zucker fatty rats fed the SCF enriched diet, but did not change in the HMAP and the β-glucan group. The Zucker fatty rats fed the different fiber showed a trend towards increased the reduced glutathione liver levels, but significant differences with obese control rats were only obtained in the β-glucan group. The results obtained in this study suggest that the intake of the different soluble fiber-enriched diets that we have evaluated could prevent and/or attenuate the inflammatory and/or the prooxidative state of the metabolic syndrome. PMID:21349333

  7. Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant reveal that fiber cell wall development is associated with sensitivity to stress.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Cotton fiber maturity refers the degree of fiber cell wall development and is an important factor for determining commercial value of cotton. The molecular mechanism regulating the fiber cell wall development has not been well characterized. Microscopic image analysis of the cross-sect...

  8. New molecular tools to study fiber develop and the effect of environmental stresses: development of transgenic cotton lines harboring fiber specific

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is one of the most important cash crops in US agricultural industry. Cotton fibers are differentiated elongated epidermal cell of the seed coat. Fiber development consists of four distinct but overlapping stages, fiber initiation, cell elongation, secondary cell wall deposition, and matura...

  9. AtRAV1 and AtRAV2 overexpression in cotton increases fiber length differentially under drought stress and delays flowering.

    PubMed

    Mittal, Amandeep; Jiang, Yingwen; Ritchie, Glen L; Burke, John J; Rock, Christopher D

    2015-12-01

    There is a longstanding problem of an inverse relationship between cotton fiber qualities versus high yields. To better understand drought stress signaling and adaptation in cotton (Gossypium hirsutum) fiber development, we expressed the Arabidopsis transcription factors RELATED_TO_ABA-INSENSITIVE3/VIVIPAROUS1/(RAV1) and AtRAV2, which encode APETALA2-Basic3 domain proteins shown to repress transcription of FLOWERING_LOCUS_T (FT) and to promote stomatal opening cell-autonomously. In three years of field trials, we show that AtRAV1 and AtRAV2-overexpressing cotton had ∼5% significantly longer fibers with only marginal decreases in yields under well-watered or drought stress conditions that resulted in 40-60% yield penalties and 3-7% fiber length penalties in control plants. The longer transgenic fibers from drought-stressed transgenics could be spun into yarn which was measurably stronger and more uniform than that from well-watered control fibers. The transgenic AtRAV1 and AtRAV2 lines flowered later and retained bolls at higher nodes, which correlated with repression of endogenous GhFT-Like (FTL) transcript accumulation. Elevated expression early in development of ovules was observed for GhRAV2L, GhMYB25-Like (MYB25L) involved in fiber initiation, and GhMYB2 and GhMYB25 involved in fiber elongation. Altered expression of RAVs controlling critical nodes in developmental and environmental signaling hierarchies has the potential for phenotypic modification of crops. PMID:26706061

  10. Effect of Environment on Stress-Rupture Behavior of a Carbon Fiber-Reinforced Silicon Carbide (C/SiC) Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Opila, Elizabeth J.; Calomino, Anthony; Kiser, J. Douglas

    2002-01-01

    Stress-rupture tests were conducted in air, vacuum, and steam-containing environments to identify the failure modes and degradation mechanisms of a carbon fiber-reinforced silicon carbide (C/SiC) composite at two temperatures, 600 and 1200 C. Stress-rupture lives in air and steam containing environments (50 - 80% steam with argon) are similar for a composite stress of 69 MPa at 1200 C. Lives of specimens tested in a 20% steam/argon environment were about twice as long. For tests conducted at 600 C, composite life in 20% steam/argon was 20 times longer than life in air. Thermogravimetric analysis of the carbon fibers was conducted under similar conditions to the stress-rupture tests. The oxidation rate of the fibers in the various environments correlated with the composite stress-rupture lives. Examination of the failed specimens indicated that oxidation of the carbon fibers was the primary damage mode for specimens tested in air and steam environments at both temperatures.

  11. Characterization of the ultrasonic attenuation coefficient and its frequency dependence in a polymer gel dosimeter.

    PubMed

    Crescenti, Remo A; Bamber, Jeffrey C; Partridge, Mike; Bush, Nigel L; Webb, Steve

    2007-11-21

    Research on polymer-gel dosimetry has been driven by the need for three-dimensional dosimetry, and because alternative dosimeters are unsatisfactory or too slow for that task. Magnetic resonance tomography is currently the most well-developed technique for determining radiation-induced changes in polymer structure, but quick low-cost alternatives remain of significant interest. In previous work, ultrasound attenuation and speed of sound were found to change as a function of absorbed radiation dose in polymer-gel dosimeters, although the investigations were restricted to one ultrasound frequency. Here, the ultrasound attenuation coefficient mu in one polymer gel (MAGIC) was investigated as a function of radiation dose D and as a function of ultrasonic frequency f in a frequency range relevant for imaging dose distributions. The nonlinearity of the frequency dependence was characterized, fitting a power-law model mu = af(b); the fitting parameters were examined for potential use as additional dose readout parameters. In the observed relationship between the attenuation coefficient and dose, the slopes in a quasi-linear dose range from 0 to 30 Gy were found to vary with the gel batch but lie between 0.0222 and 0.0348 dB cm(-1) Gy(-1) at 2.3 MHz, between 0.0447 and 0.0608 dB cm(-1) Gy(-1) at 4.1 MHz and between 0.0663 and 0.0880 dB cm(-1) Gy(-1) at 6.0 MHz. The mean standard deviation of the slope for all samples and frequencies was 15.8%. The slope was greater at higher frequencies, but so were the intra-batch fluctuations and intra-sample standard deviations. Further investigations are required to overcome the observed variability, which was largely associated with the sample preparation technique, before it can be determined whether any frequency is superior to others in terms of accuracy and precision in dose determination. Nevertheless, lower frequencies will allow measurements through larger samples. The fit parameter a of the frequency dependence, describing the

  12. Cav1.1 controls frequency-dependent events regulating adult skeletal muscle plasticity.

    PubMed

    Jorquera, Gonzalo; Altamirano, Francisco; Contreras-Ferrat, Ariel; Almarza, Gonzalo; Buvinic, Sonja; Jacquemond, Vincent; Jaimovich, Enrique; Casas, Mariana

    2013-03-01

    An important pending question in neuromuscular biology is how skeletal muscle cells decipher the stimulation pattern coming from motoneurons to define their phenotype as slow or fast twitch muscle fibers. We have previously shown that voltage-gated L-type calcium channel (Cav1.1) acts as a voltage sensor for activation of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P₃]-dependent Ca(2+) signals that regulates gene expression. ATP released by muscle cells after electrical stimulation through pannexin-1 channels plays a key role in this process. We show now that stimulation frequency determines both ATP release and Ins(1,4,5)P₃ production in adult skeletal muscle and that Cav1.1 and pannexin-1 colocalize in the transverse tubules. Both ATP release and increased Ins(1,4,5)P₃ was seen in flexor digitorum brevis fibers stimulated with 270 pulses at 20 Hz, but not at 90 Hz. 20 Hz stimulation induced transcriptional changes related to fast-to-slow muscle fiber phenotype transition that required ATP release. Addition of 30 µM ATP to fibers induced the same transcriptional changes observed after 20 Hz stimulation. Myotubes lacking the Cav1.1-α1 subunit released almost no ATP after electrical stimulation, showing that Cav1.1 has a central role in this process. In adult muscle fibers, ATP release and the transcriptional changes produced by 20 Hz stimulation were blocked by both the Cav1.1 antagonist nifedipine (25 µM) and by the Cav1.1 agonist (-)S-BayK 8644 (10 µM). We propose a new role for Cav1.1, independent of its calcium channel activity, in the activation of signaling pathways allowing muscle fibers to decipher the frequency of electrical stimulation and to activate specific transcriptional programs that define their phenotype. PMID:23321639

  13. Hemispheric asymmetry of frequency-dependent suppression in the ipsilateral primary motor cortex during finger movement: a functional magnetic resonance imaging study.

    PubMed

    Hayashi, Masamichi J; Saito, Daisuke N; Aramaki, Yu; Asai, Tatsuya; Fujibayashi, Yasuhisa; Sadato, Norihiro

    2008-12-01

    Electrophysiological studies have suggested that the activity of the primary motor cortex (M1) during ipsilateral hand movement reflects both the ipsilateral innervation and the transcallosal inhibitory control from its counterpart in the opposite hemisphere, and that their asymmetry might cause hand dominancy. To examine the asymmetry of the involvement of the ipsilateral motor cortex during a unimanual motor task under frequency stress, we conducted block-design functional magnetic resonance imaging with 22 normal right-handed subjects. The task involved visually cued unimanual opponent finger movement at various rates. The contralateral M1 showed symmetric frequency-dependent activation. The ipsilateral M1 showed task-related deactivation at low frequencies without laterality. As the frequency of the left-hand movement increased, the left M1 showed a gradual decrease in the deactivation. This data suggests a frequency-dependent increased involvement of the left M1 in ipsilateral hand control. By contrast, the right M1 showed more prominent deactivation as the frequency of the right-hand movement increased. This suggests that there is an increased transcallosal inhibition from the left M1 to the right M1, which overwhelms the right M1 activation during ipsilateral hand movement. These results demonstrate the dominance of the left M1 in both ipsilateral innervation and transcallosal inhibition in right-handed individuals. PMID:18413350

  14. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.; Song, G.

    2015-06-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.

  15. Study on Frequency Dependency of ON-Resistance and Pulse-Loss Calculation of MOSFETs for Switch Mode Power Supply

    NASA Astrophysics Data System (ADS)

    Yamamura, Hideho; Sato, Ryohei; Iwata, Yoshiharu

    Global efforts toward energy conservation, increasing data centers, and the increasing use of IT equipments are leading to a demand in reduced power consumption of equipments, and power efficiency improvement of power supply units is becoming a necessity. MOSFETs are widely used for their low ON-resistances. Power efficiency is designed using time-domain circuit simulators, except for transformer copper-loss, which has frequency dependency which is calculated separately using methods based on skin and proximity effects. As semiconductor technology reduces the ON-resistance of MOSFETs, frequency dependency due to the skin effect or proximity effect is anticipated. In this study, ON-resistance of MOSFETs are measured and frequency dependency is confirmed. Power loss against rectangular current pulse is calculated. The calculation method for transformer copper-loss is expanded to MOSFETs. A frequency function for the resistance model is newly developed and parametric calculation is enabled. Acceleration of calculation is enabled by eliminating summation terms. Using this method, it is shown that the frequency dependent component of the measured MOSFETs increases the dissipation from 11% to 32% at a switching frequency of 100kHz. From above, this paper points out the importance of the frequency dependency of MOSFETs' ON-resistance, provides means of calculating its pulse losses, and improves loss calculation accuracy of SMPSs.

  16. A General Model of Negative Frequency Dependent Selection Explains Global Patterns of Human ABO Polymorphism.

    PubMed

    Villanea, Fernando A; Safi, Kristin N; Busch, Jeremiah W

    2015-01-01

    The ABO locus in humans is characterized by elevated heterozygosity and very similar allele frequencies among populations scattered across the globe. Using knowledge of ABO protein function, we generated a simple model of asymmetric negative frequency dependent selection and genetic drift to explain the maintenance of ABO polymorphism and its loss in human populations. In our models, regardless of the strength of selection, models with large effective population sizes result in ABO allele frequencies that closely match those observed in most continental populations. Populations must be moderately small to fall out of equilibrium and lose either the A or B allele (N(e) ≤ 50) and much smaller (N(e) ≤ 25) for the complete loss of diversity, which nearly always involved the fixation of the O allele. A pattern of low heterozygosity at the ABO locus where loss of polymorphism occurs in our model is consistent with small populations, such as Native American populations. This study provides a general evolutionary model to explain the observed global patterns of polymorphism at the ABO locus and the pattern of allele loss in small populations. Moreover, these results inform the range of population sizes associated with the recent human colonization of the Americas. PMID:25946124

  17. Frequency-dependent photothermal measurement of transverse thermal diffusivity of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Brill, J. W.; Shahi, Maryam; Payne, Marcia M.; Edberg, Jesper; Yao, Y.; Crispin, Xavier; Anthony, J. E.

    2015-12-01

    We have used a photothermal technique, in which chopped light heats the front surface of a small (˜1 mm2) sample and the chopping frequency dependence of thermal radiation from the back surface is measured with a liquid-nitrogen-cooled infrared detector. In our system, the sample is placed directly in front of the detector within its dewar. Because the detector is also sensitive to some of the incident light, which leaks around or through the sample, measurements are made for the detector signal that is in quadrature with the chopped light. Results are presented for layered crystals of semiconducting 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pn) and for papers of cellulose nanofibrils coated with semiconducting poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (NFC-PEDOT). For NFC-PEDOT, we have found that the transverse diffusivity, smaller than the in-plane value, varies inversely with thickness, suggesting that texturing of the papers varies with thickness. For TIPS-pn, we have found that the interlayer diffusivity is an order of magnitude larger than the in-plane value, consistent with previous estimates, suggesting that low-frequency optical phonons, presumably associated with librations in the TIPS side groups, carry most of the heat.

  18. Finite element analysis of the dynamic behavior of a laminated windscreen with frequency dependent viscoelastic core.

    PubMed

    Bouayed, Kaïss; Hamdi, Mohamed-Ali

    2012-08-01

    This paper presents numerical and experimental validation of results obtained by a shell finite element, which has been developed for modeling of the dynamic behavior of sandwich multilayered structures with a viscoelastic core. The proposed shell finite element is very easy to implement in existing finite element solvers, since it uses only the displacements as degrees of freedom at external faces and at inter-layer interfaces. The displacement field is linearly interpolated in the thickness direction of each layer, and analytical integration is made in the thickness direction in order to avoid meshing of each sandwich layer by solid elements. Only the two dimensional mid-surface of reference is meshed, facilitating the mesh generation task. A simplified modal approach using a real modal basis is also proposed to efficiently calculate the dynamic response of the sandwich structure. The proposed method reduces the memory size and computing time and takes into account the frequency-dependence of the polymer core mechanical properties. Results obtained by the proposed element in conjunction with the simplified modal method have been numerically and experimentally validated by comparison to results obtained by commercial software codes (MSC/NASTRAN and ESI/RAYON-VTM), and to measurements done on automobile windscreens. PMID:22894198

  19. Frequency Dependence of Petechial Hemorrhage and Cardiomyocyte Injury Induced during Myocardial Contrast Echocardiography.

    PubMed

    Miller, Douglas L; Lu, Xiaofang; Fabiilli, Mario; Fields, Kristina; Dou, Chunyan

    2016-08-01

    Myocardial contrast echocardiography (MCE) for perfusion imaging can induce microscale bio-effects during intermittent high-Mechanical Index scans. The dependence of MCE-induced bio-effects on the ultrasonic frequency was examined in rats at 1.6, 2.5 and 3.5 MHz. Premature complexes were counted in the electrocardiogram, petechial hemorrhages with microvascular leakage on the heart surface were observed at the time of exposure, plasma troponin elevation was measured after 4 h and cardiomyocyte injury was detected at 24 h. Increasing response to exposure above an apparent threshold was observed for all endpoints at each frequency. The effects decreased with increasing ultrasonic frequency, and the thresholds increased. Linear regressions for frequency-dependent thresholds indicated coefficients and exponents of 0.6 and 1.07 for petechial hemorrhages, respectively, and 1.02 and 0.8 for cardiomyocyte death, compared with 1.9 and 0.5 (square root) for the guideline limit of the mechanical index. The results clarify the dependence of cardiac bio-effects on frequency, and should allow development of theoretical descriptions of the phenomena and improved safety guidance for MCE. PMID:27126240

  20. Modeling ballistic effects in frequency-dependent transient thermal transport using diffusion equations

    NASA Astrophysics Data System (ADS)

    Maassen, Jesse; Lundstrom, Mark

    2016-03-01

    Understanding ballistic phonon transport effects in transient thermoreflectance experiments and explaining the observed deviations from classical theory remains a challenge. Diffusion equations are simple and computationally efficient but are widely believed to break down when the characteristic length scale is similar or less than the phonon mean-free-path. Building on our prior work, we demonstrate how well-known diffusion equations, namely, the hyperbolic heat equation and the Cattaneo equation, can be used to model ballistic phonon effects in frequency-dependent periodic steady-state thermal transport. Our analytical solutions are found to compare excellently to rigorous numerical results of the phonon Boltzmann transport equation. The correct physical boundary conditions can be different from those traditionally used and are paramount for accurately capturing ballistic effects. To illustrate the technique, we consider a simple model problem using two different, commonly used heating conditions. We demonstrate how this framework can easily handle detailed material properties, by considering the case of bulk silicon using a full phonon dispersion and mean-free-path distribution. This physically transparent approach provides clear insights into the nonequilibrium physics of quasi-ballistic phonon transport and its impact on thermal transport properties.

  1. Frequency-dependent performance and handedness in professional baseball players (Homo sapiens).

    PubMed

    Clotfelter, Ethan D

    2008-02-01

    I used data on handedness and pitching and hitting performance in annual cohorts of professional baseball players (1957-2005) to test the hypothesis that handedness among pitchers was subject to negative frequency-dependent selection. As predicted by this hypothesis, right-handed pitchers were more successful (i.e., opposing batters hit more poorly against them) when they were relatively rare in the population. Contrary to the predictions of this hypothesis, however, left-handed pitchers were more successful when they were relatively common. Both right- and left-handed batters performed better in years dominated by right-handed pitchers, despite the fact that right-handed batters perform relatively poorly against right-handed pitchers. I suggest that batters form cognitive representations based on pitcher handedness, and that these representations are strengthened by repeated exposure or priming. When the pitcher handedness polymorphism is more balanced (e.g., 67% right-handed, 33% left-handed), these cognitive representations are less effective, which leads to decreased batting averages and improved performance by all pitchers. Furthermore, these cognitive representations are likely to be more critical to the success of right-handed hitters, who have reduced visuomotor skills relative to left-handed hitters. PMID:18298283

  2. Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes.

    PubMed

    Bakewell, David J; Morgan, Hywel

    2006-06-01

    This paper reports measurements that characterize the collection of DNA onto interdigitated microelectrodes by high-frequency dielectrophoresis. Measurements of time-dependent collection of 12 kilobase pair plasmid DNA onto microelectrodes by dielectrophoresis show significant reduction in the response as the frequency increases from 100 kHz to 20 MHz. Collection time profiles are quantitatively measured using fluorescence microscopy over the range 100 kHz to 5 MHz and are represented in terms of two parameters: the initial dielectrophoretic collection rate, and the initial to steady-state collection transition. Measured values for both parameters are consistent with trends in the frequency-dependent real part of the effective polarizability measured for the same plasmid DNA using dielectric spectroscopy. The experimentally measured parameters are qualitatively compared with trends predicted by theory that takes into account dielectrophoretic particle movement and diffusion. The differences between experiment and theory are discussed with suggested improvements to theoretical models, for example, including the effects of electrohydrodynamically driven fluid motion. PMID:16805110

  3. Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes.

    PubMed

    Bakewell, David J; Morgan, Hywel

    2006-03-01

    This paper reports measurements that characterize the collection of DNA onto interdigitated microelectrodes by high-frequency dielectrophoresis. Measurements of time-dependent collection of 12 kilobase pair plasmid DNA onto microelectrodes by dielectrophoresis show significant reduction in the response as the frequency increases from 100 kHz to 20 MHz. Collection time profiles are quantitatively measured using fluorescence microscopy over the range 100 kHz to 5 MHz and are represented in terms of two parameters: the initial dielectrophoretic collection rate, and the initial to steady-state collection transition. Measured values for both parameters are consistent with trends in the frequency-dependent real part of the effective polarizability measured for the same plasmid DNA using dielectric spectroscopy. The experimentally measured parameters are qualitatively compared with trends predicted by theory that takes into account dielectrophoretic particle movement and diffusion. The differences between experiment and theory are discussed with suggested improvements to theoretical models, for example, including the effects of electrohydrodynamically driven fluid motion. PMID:16570867

  4. Warning signals are under positive frequency-dependent selection in nature.

    PubMed

    Chouteau, Mathieu; Arias, Mónica; Joron, Mathieu

    2016-02-23

    Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS operating on the warning color patterns of chemically defended butterflies forming multiple coexisting mimicry assemblages in the Amazon. Using malleable prey models placed in localities showing differences in the relative frequencies of warningly colored prey, we demonstrate that the efficiency of a warning signal increases steadily with its local frequency in the natural community, up to a threshold where protection stabilizes. The shape of this relationship is consistent with the direct effect of the local abundance of each warning signal on the corresponding avoidance knowledge of the local predator community. This relationship, which differs from purifying selection acting on each mimetic pattern, indicates that predator knowledge, integrated over the entire community, is saturated only for the most common warning signals. In contrast, among the well-established warning signals present in local prey assemblages, most are incompletely known to local predators and enjoy incomplete protection. This incomplete predator knowledge should generate strong benefits to life history traits that enhance warning efficiency by increasing the effective frequency of prey visible to predators. Strategies such as gregariousness or niche convergence between comimics may therefore readily evolve through their effects on predator knowledge and warning efficiency. PMID:26858416

  5. Relationship between Frequency Dependence of Lung Compliance and Distribution of Ventilation

    PubMed Central

    Wanner, Adam; Zarzecki, Stephen; Atkins, Neal; Zapata, Angel; Sackner, Marvin A.

    1974-01-01

    The previously demonstrated empirical association between frequency dependence of lung compliance and distribution of ventilation, the latter determined by the N2 washout technique, was confirmed by establishing a mathematical link between the two tests. By assuming a two-compartment system with known compliances and making corrections for Pendelluft and common dead space mixing effects, the ratio of dynamic to static compliance (Cdyn/Cst) for any respiratory frequency can be calculated from the compartmental analysis of the N2 washout at a single respiratory frequency. By using these equations, a good correlation was found between calculated and measured Cdyn/Cst in dogs with artificially induced bronchial obstruction and in young smokers or young nonsmokers after carbachol inhalation. A two-compartment N2 washout was demonstrated in 10 young healthy smokers at one or two respiratory frequencies whereas all 10 normal controls showed a single exponential curve. These findings indicate that the non-invasive N2 washout test is capable of predicting Cdyn/Cst and at the same time gives a direct measure of gas distribution. Further, it appears to be a highly sensitive method for the detection of “small airway disease.” PMID:4424721

  6. Frequency-dependent photothermal measurement of transverse thermal diffusivity of organic semiconductors

    SciTech Connect

    Brill, J. W.; Shahi, Maryam; Yao, Y.; Payne, Marcia M.; Anthony, J. E.; Edberg, Jesper; Crispin, Xavier

    2015-12-21

    We have used a photothermal technique, in which chopped light heats the front surface of a small (∼1 mm{sup 2}) sample and the chopping frequency dependence of thermal radiation from the back surface is measured with a liquid-nitrogen-cooled infrared detector. In our system, the sample is placed directly in front of the detector within its dewar. Because the detector is also sensitive to some of the incident light, which leaks around or through the sample, measurements are made for the detector signal that is in quadrature with the chopped light. Results are presented for layered crystals of semiconducting 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pn) and for papers of cellulose nanofibrils coated with semiconducting poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (NFC-PEDOT). For NFC-PEDOT, we have found that the transverse diffusivity, smaller than the in-plane value, varies inversely with thickness, suggesting that texturing of the papers varies with thickness. For TIPS-pn, we have found that the interlayer diffusivity is an order of magnitude larger than the in-plane value, consistent with previous estimates, suggesting that low-frequency optical phonons, presumably associated with librations in the TIPS side groups, carry most of the heat.

  7. Viscoelastic characterization of compacted pharmaceutical excipient materials by analysis of frequency-dependent mechanical relaxation processes.

    PubMed

    Welch, K; Mousavi, S; Lundberg, B; Strømme, M

    2005-09-01

    A newly developed method for determining the frequency-dependent complex Young's modulus was employed to analyze the mechanical response of compacted microcrystalline cellulose, sorbitol, ethyl cellulose and starch for frequencies up to 20 kHz. A Debye-like relaxation was observed in all the studied pharmaceutical excipient materials and a comparison with corresponding dielectric spectroscopy data was made. The location in frequency of the relaxation peak was shown to correlate to the measured tensile strength of the tablets, and the relaxation was interpreted as the vibrational response of the interparticle hydrogen and van der Waals bindings in the tablets. Further, the measured relaxation strength, holding information about the energy loss involved in the relaxation processes, showed that the weakest material in terms of tensile strength, starch, is the material among the four tested ones that is able to absorb the most energy within its structure when exposed to external perturbations inducing vibrations in the studied frequency range. The results indicate that mechanical relaxation analysis performed over relatively broad frequency ranges should be useful for predicting material properties of importance for the functionality of a material in applications such as, e.g., drug delivery, drug storage and handling, and also for clarifying the origin of hitherto unexplained molecular processes. PMID:16184321

  8. Viscoelastic characterization of compacted pharmaceutical excipient materials by analysis of frequency-dependent mechanical relaxation processes

    NASA Astrophysics Data System (ADS)

    Welch, K.; Mousavi, S.; Lundberg, B.; Strømme, M.

    2005-09-01

    A newly developed method for determining the frequency-dependent complex Young's modulus was employed to analyze the mechanical response of compacted microcrystalline cellulose, sorbitol, ethyl cellulose and starch for frequencies up to 20 kHz. A Debye-like relaxation was observed in all the studied pharmaceutical excipient materials and a comparison with corresponding dielectric spectroscopy data was made. The location in frequency of the relaxation peak was shown to correlate to the measured tensile strength of the tablets, and the relaxation was interpreted as the vibrational response of the interparticle hydrogen and van der Waals bindings in the tablets. Further, the measured relaxation strength, holding information about the energy loss involved in the relaxation processes, showed that the weakest material in terms of tensile strength, starch, is the material among the four tested ones that is able to absorb the most energy within its structure when exposed to external perturbations inducing vibrations in the studied frequency range. The results indicate that mechanical relaxation analysis performed over relatively broad frequency ranges should be useful for predicting material properties of importance for the functionality of a material in applications such as, e.g., drug delivery, drug storage and handling, and also for clarifying the origin of hitherto unexplained molecular processes.

  9. Frequency dependence of specific heat in supercooled liquid water and emergence of correlated dynamics

    NASA Astrophysics Data System (ADS)

    Saito, Shinji; Ohmine, Iwao; Bagchi, Biman

    2013-03-01

    Molecular origin of the well-known specific heat anomaly in supercooled liquid water is investigated here by using extensive computer simulations and theoretical analyses. A rather sharp increase in the values of isobaric specific heat with lowering temperature and the weak temperature dependence of isochoric specific heat in the same range are reproduced in simulations. We calculated the spatio-temporal correlation among temperature fluctuations and examined the frequency dependent specific heat. The latter shows a rapid growth in the low frequency regime as temperature is cooled below 270 K. In order to understand the microscopic basis of this increase, we have performed a shellwise decomposition of contributions of distant molecules to the temperature fluctuations in a central molecule. This decomposition reveals the emergence, at low temperatures, of temporally slow, spatially long ranged large temperature fluctuations. The temperature fluctuation time correlation function (TFCF) can be fitted to a William-Watts stretched exponential form with the stretching parameter close to 0.6 at low temperatures, indicating highly non-exponential relaxation. Temperature dependence of the relaxation time of the correlation function can be fitted to Vogel-Fulcher-Tamermann expression which provides a quantitative measure of the fragility of the liquid. Interestingly, we find that the rapid growth in the relaxation time of TFCF with lowering temperature undergoes a sharp crossover from a markedly fragile state to a weakly fragile state around 220 K.

  10. Frequency dependence of quantum path interference in non-collinear high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Shi-Yang, Zhong; Xin-Kui, He; Hao, Teng; Peng, Ye; Li-Feng, Wang; Peng, He; Zhi-Yi, Wei

    2016-02-01

    High-order harmonic generation (HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders. This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB922401 and 2013CB922402), the National Key Scientific Instrument and Equipment Development Projects, China (Grant No. 2012YQ12004704), the National Natural Science Foundation of China (Grant No. 11374356), and the International Joint Research Program of National Natural Science Foundation of China (Grant No. 61210017).

  11. Plant-soil feedbacks promote negative frequency dependence in the coexistence of two aridland grasses.

    PubMed

    Chung, Y Anny; Rudgers, Jennifer A

    2016-07-27

    Understanding the mechanisms of species coexistence is key to predicting patterns of species diversity. Historically, the ecological paradigm has been that species coexist by partitioning resources: as a species increases in abundance, self-limitation kicks in, because species-specific resources decline. However, determining coexistence mechanisms has been a particular puzzle for sedentary organisms with high overlap in their resource requirements, such as plants. Recent evidence suggests that plant-associated microbes could generate the stabilizing self-limitation (negative frequency dependence) that is required for species coexistence. Here, we test the key assumption that plant-microbe feedbacks cause such self-limitation. We used competition experiments and modelling to evaluate how two common groups of soil microbes (rhizospheric microbes and biological soil crusts) influenced the self-limitation of two competing desert grass species. Negative feedbacks between the dominant plant competitor and its rhizospheric microbes magnified self-limitation, whereas beneficial interactions between both plant species and biological soil crusts partly counteracted this stabilizing effect. Plant-microbe interactions have received relatively little attention as drivers of vegetation dynamics in dry land ecosystems. Our results suggest that microbial mechanisms can contribute to patterns of plant coexistence in arid grasslands. PMID:27466448

  12. Shear wave anisotropy from aligned inclusions: ultrasonic frequency dependence of velocity and attenuation

    NASA Astrophysics Data System (ADS)

    de Figueiredo, J. J. S.; Schleicher, J.; Stewart, R. R.; Dayur, N.; Omoboya, B.; Wiley, R.; William, A.

    2013-04-01

    To understand their influence on elastic wave propagation, anisotropic cracked media have been widely investigated in many theoretical and experimental studies. In this work, we report on laboratory ultrasound measurements carried out to investigate the effect of source frequency on the elastic parameters (wave velocities and the Thomsen parameter γ) and shear wave attenuation) of fractured anisotropic media. Under controlled conditions, we prepared anisotropic model samples containing penny-shaped rubber inclusions in a solid epoxy resin matrix with crack densities ranging from 0 to 6.2 per cent. Two of the three cracked samples have 10 layers and one has 17 layers. The number of uniform rubber inclusions per layer ranges from 0 to 100. S-wave splitting measurements have shown that scattering effects are more prominent in samples where the seismic wavelength to crack aperture ratio ranges from 1.6 to 1.64 than in others where the ratio varied from 2.72 to 2.85. The sample with the largest cracks showed a magnitude of scattering attenuation three times higher compared with another sample that had small inclusions. Our S-wave ultrasound results demonstrate that elastic scattering, scattering and anelastic attenuation, velocity dispersion and crack size interfere directly in shear wave splitting in a source-frequency dependent manner, resulting in an increase of scattering attenuation and a reduction of shear wave anisotropy with increasing frequency.

  13. Estimation of size and number density of microbubbles based on analysis of frequency-dependent attenuation

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenji; Tamura, Kazuki; Yamaguchi, Tadashi

    2016-07-01

    A method of estimating the size and number density of microbubbles in suspension is proposed, which matches the theoretically calculated frequency dependent attenuation coefficient with the experimental data. Assuming that the size distribution of bubbles is given by a log-normal function, three parameters (expected value and standard deviation of radius and the number density of bubbles) of Sonazoid® in the steady flow were estimated. Bubbles are exposed to ultrasound with a center frequency of 5 MHz and mechanical indices of 0.4, 0.5, 0.7, and 1.1. The expected value and standard deviation for the size distribution were estimated to be 70–85 and 45–60% of the reference values in the case of a lower mechanical index, respectively. The number density was estimated to be 20–30 times smaller than the reference values. This fundamental examination indicates that the number density of bubbles can be qualitatively evaluated by the proposed method.

  14. Frequency dependent electrical properties of nano-CdS/Ag junctions

    NASA Astrophysics Data System (ADS)

    Mohanta, D.; Choudhury, A.

    2005-05-01

    Polymer embedded cadmium sulfide nanoparticles/quantum dots were synthesized by a chemical route using polyvinyl alcohol (lmw) as the desired matrix. In an attempt to measure the electrical properties of nano-CdS/Ag samples, we propose that contribution from surface traps are mainly responsible in determining the I˜ V and C˜ V characteristics in high frequency ranges. To be specific, beyond 1.2 MHz, the carrier injection from the trap centers of the embedded quantum dots is ensured by large current establishment even at negative biasing condition of the junction. The unexpected nonlinear signature of C˜ V response is believed to be due to the fact that while trying to follow very high signal frequency (at least 10-3 of recombination frequency), there is complete abruptness in carrier trapping (charging) or/and detrapping (decay) in a given CdS nanoparticle assembly. The frequency dependent unique role of the trap carriers certainly find application in nanoelectronic devices at a desirable frequency of operation.

  15. Direction of information flow in large-scale resting-state networks is frequency-dependent.

    PubMed

    Hillebrand, Arjan; Tewarie, Prejaas; van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A; van Straaten, Elisabeth C W; Stam, Cornelis J

    2016-04-01

    Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow. PMID:27001844

  16. Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures

    PubMed Central

    Yao, Huajian; Shearer, Peter M.; Gerstoft, Peter

    2013-01-01

    Megathrust earthquakes rupture a broad zone of the subducting plate interface in both along-strike and along-dip directions. The along-dip rupture characteristics of megathrust events, e.g., their slip and energy radiation distribution, reflect depth-varying frictional properties of the slab interface. Here, we report high-resolution frequency-dependent seismic radiation of the four largest megathrust earthquakes in the past 10 y using a compressive-sensing (sparse source recovery) technique, resolving generally low-frequency radiation closer to the trench at shallower depths and high-frequency radiation farther from the trench at greater depths. Together with coseismic slip models and early aftershock locations, our results suggest depth-varying frictional properties at the subducting plate interfaces. The shallower portion of the slab interface (above ∼15 km) is frictionally stable or conditionally stable and is the source region for tsunami earthquakes with large coseismic slip, deficient high-frequency radiation, and few early aftershocks. The slab interface at intermediate depths (∼15–35 km) is the main unstable seismogenic zone for the nucleation of megathrust quakes, typically with large coseismic slip, abundant early aftershocks, and intermediate- to high-frequency radiation. The deeper portion of the slab interface (∼35–45 km) is seismically unstable, however with small coseismic slip, dominant high-frequency radiation, and relatively fewer aftershocks.

  17. Self-consistent modeling of terahertz waveguide and cavity with frequency-dependent conductivity

    SciTech Connect

    Huang, Y. J.; Chu, K. R.; Thumm, M.

    2015-01-15

    The surface resistance of metals, and hence the Ohmic dissipation per unit area, scales with the square root of the frequency of an incident electromagnetic wave. As is well recognized, this can lead to excessive wall losses at terahertz (THz) frequencies. On the other hand, high-frequency oscillatory motion of conduction electrons tends to mitigate the collisional damping. As a result, the classical theory predicts that metals behave more like a transparent medium at frequencies above the ultraviolet. Such a behavior difference is inherent in the AC conductivity, a frequency-dependent complex quantity commonly used to treat electromagnetics of metals at optical frequencies. The THz region falls in the gap between microwave and optical frequencies. However, metals are still commonly modeled by the DC conductivity in currently active vacuum electronics research aimed at the development of high-power THz sources (notably the gyrotron), although a small reduction of the DC conductivity due to surface roughness is sometimes included. In this study, we present a self-consistent modeling of the gyrotron interaction structures (a metallic waveguide or cavity) with the AC conductivity. The resulting waveguide attenuation constants and cavity quality factors are compared with those of the DC-conductivity model. The reduction in Ohmic losses under the AC-conductivity model is shown to be increasingly significant as the frequency reaches deeper into the THz region. Such effects are of considerable importance to THz gyrotrons for which the minimization of Ohmic losses constitutes a major design consideration.

  18. Frequency Dependence of Polarization of Zebra Pattern in Type-IV Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Kaneda, Kazutaka; Misawa, H.; Iwai, K.; Tsuchiya, F.; Obara, T.

    2015-08-01

    We investigated the polarization characteristics of a zebra pattern (ZP) in a type-IV solar radio burst observed with AMATERAS on 2011 June 21 for the purpose of evaluating the generation processes of ZPs. Analyzing highly resolved spectral and polarization data revealed the frequency dependence of the degree of circular polarization and the delay between two polarized components for the first time. The degree of circular polarization was 50%-70% right-handed and it varied little as a function of frequency. Cross-correlation analysis determined that the left-handed circularly polarized component was delayed by 50-70 ms relative to the right-handed component over the entire frequency range of the ZP and this delay increased with the frequency. We examined the obtained polarization characteristics by using pre-existing ZP models and concluded that the ZP was generated by the double-plasma-resonance process. Our results suggest that the ZP emission was originally generated in a completely polarized state in the O-mode and was partly converted into the X-mode near the source. Subsequently, the difference between the group velocities of the O-mode and X-mode caused the temporal delay.

  19. On the frequency dependence of the otoacoustic emission latency in hypoacoustic and normal ears

    NASA Astrophysics Data System (ADS)

    Sisto, R.; Moleti, A.

    2002-01-01

    Experimental measurements of the otoacoustic emission (OAE) latency of adult subjects have been obtained, as a function of frequency, by means of wavelet time-frequency analysis based on the iterative application of filter banks. The results are in agreement with previous OAE latency measurements by Tognola et al. [Hear. Res. 106, 112-122 (1997)], as regards both the latency values and the frequency dependence, and seem to be incompatible with the steep 1/f law that is predicted by scale-invariant full cochlear models. The latency-frequency relationship has been best fitted to a linear function of the cochlear physical distance, using the Greenwood map, and to an exponential function of the cochlear distance, for comparison with derived band ABR latency measurements. Two sets of ears [94 audiometrically normal and 42 impaired with high-frequency (f>3 kHz) hearing loss] have been separately analyzed. Significantly larger average latencies were found in the impaired ears in the mid-frequency range. Theoretical implications of these findings on the transmission of the traveling wave are discussed.

  20. Warning signals are under positive frequency-dependent selection in nature

    PubMed Central

    Chouteau, Mathieu; Arias, Mónica; Joron, Mathieu

    2016-01-01

    Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS operating on the warning color patterns of chemically defended butterflies forming multiple coexisting mimicry assemblages in the Amazon. Using malleable prey models placed in localities showing differences in the relative frequencies of warningly colored prey, we demonstrate that the efficiency of a warning signal increases steadily with its local frequency in the natural community, up to a threshold where protection stabilizes. The shape of this relationship is consistent with the direct effect of the local abundance of each warning signal on the corresponding avoidance knowledge of the local predator community. This relationship, which differs from purifying selection acting on each mimetic pattern, indicates that predator knowledge, integrated over the entire community, is saturated only for the most common warning signals. In contrast, among the well-established warning signals present in local prey assemblages, most are incompletely known to local predators and enjoy incomplete protection. This incomplete predator knowledge should generate strong benefits to life history traits that enhance warning efficiency by increasing the effective frequency of prey visible to predators. Strategies such as gregariousness or niche convergence between comimics may therefore readily evolve through their effects on predator knowledge and warning efficiency. PMID:26858416

  1. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

    PubMed Central

    2010-01-01

    A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed. PMID:21886342

  2. Flax Fiber - Interfacial Bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measured flax fiber physical and chemical properties potentially impact bonding and thus stress transfer between the matrix and fiber within composites. These first attempts at correlating flax fiber quality and biofiber composites contain the initial steps towards identifying key flax fiber charac...

  3. Testing of Carbon Fiber Composite Overwrapped Pressure Vessel Stress-Rupture Lifetime

    NASA Technical Reports Server (NTRS)

    Grimes-Ledesma, Lorie; Phoenix, S. Leigh; Beeson, Harold; Yoder, Tommy; Greene, Nathaniel

    2006-01-01

    This paper contains summaries of testing procedures and analysis of stress rupture life testing for two stress rupture test programs, one for Kevlar COPVs performed at Lawrence Livermore National Laboratory, and the other a joint study between NASA JSC White Sands Test Facility and the Jet Propulsion Laboratory. These will be discussed in detail including test setup and issues encountered during testing. Lessons learned from testing in these two programs will be discussed.

  4. Inverted formin 2 in focal adhesions promotes dorsal stress fiber and fibrillar adhesion formation to drive extracellular matrix assembly

    PubMed Central

    Skau, Colleen T.; Plotnikov, Sergey V.; Doyle, Andrew D.; Waterman, Clare M.

    2015-01-01

    Actin filaments and integrin-based focal adhesions (FAs) form integrated systems that mediate dynamic cell interactions with their environment or other cells during migration, the immune response, and tissue morphogenesis. How adhesion-associated actin structures obtain their functional specificity is unclear. Here we show that the formin-family actin nucleator, inverted formin 2 (INF2), localizes specifically to FAs and dorsal stress fibers (SFs) in fibroblasts. High-resolution fluorescence microscopy and manipulation of INF2 levels in cells indicate that INF2 plays a critical role at the SF–FA junction by promoting actin polymerization via free barbed end generation and centripetal elongation of an FA-associated actin bundle to form dorsal SF. INF2 assembles into FAs during maturation rather than during their initial generation, and once there, acts to promote rapid FA elongation and maturation into tensin-containing fibrillar FAs in the cell center. We show that INF2 is required for fibroblasts to organize fibronectin into matrix fibers and ultimately 3D matrices. Collectively our results indicate an important role for the formin INF2 in specifying the function of fibrillar FAs through its ability to generate dorsal SFs. Thus, dorsal SFs and fibrillar FAs form a specific class of integrated adhesion-associated actin structure in fibroblasts that mediates generation and remodeling of ECM. PMID:25918420

  5. Frequency-dependent AMS of rocks: A tool for the investigation of the fabric of ultrafine magnetic particles

    NASA Astrophysics Data System (ADS)

    Hrouda, František; Ježek, Josef

    2014-08-01

    In some geological processes, new very fine-grained magnetic minerals may originate. The variation in content of these minerals is routinely investigated by frequency-dependent magnetic susceptibility, which is traditionally interpreted in terms of the presence of viscous superparamagnetic (SP) particles in addition to stable single domain (SSD) and multidomain (MD) magnetic particles. In addition, the fabric of these grains can be investigated through the frequency-dependent AMS. Through standard AMS measurement at different frequencies, one can evaluate the contribution of SP particles to the whole-rock AMS; appropriate methods were developed. Various rocks, soils and ceramics, showing frequency-dependent magnetic susceptibility, were investigated. Measurable changes of AMS with operating frequency were revealed and attempts are made of their fabric interpretation.

  6. Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium)

    PubMed Central

    2009-01-01

    Background Reactive oxygen species (ROS) play a prominent role in signal transduction and cellular homeostasis in plants. However, imbalances between generation and elimination of ROS can give rise to oxidative stress in growing cells. Because ROS are important to cell growth, ROS modulation could be responsive to natural or human-mediated selection pressure in plants. To study the evolution of oxidative stress related genes in a single plant cell, we conducted comparative expression profiling analyses of the elongated seed trichomes ("fibers") of cotton (Gossypium), using a phylogenetic approach. Results We measured expression changes during diploid progenitor species divergence, allopolyploid formation and parallel domestication of diploid and allopolyploid species, using a microarray platform that interrogates 42,429 unigenes. The distribution of differentially expressed genes in progenitor diploid species revealed significant up-regulation of ROS scavenging and potential signaling processes in domesticated G. arboreum. Similarly, in two independently domesticated allopolyploid species (G. barbadense and G. hirsutum) antioxidant genes were substantially up-regulated in comparison to antecedent wild forms. In contrast, analyses of three wild allopolyploid species indicate that genomic merger and ancient allopolyploid formation had no significant influences on regulation of ROS related genes. Remarkably, many of the ROS-related processes diagnosed as possible targets of selection were shared among diploid and allopolyploid cultigens, but involved different sets of antioxidant genes. Conclusion Our data suggests that parallel human selection for enhanced fiber growth in several geographically widely dispersed species of domesticated cotton resulted in similar and overlapping metabolic transformations of the manner in which cellular redox levels have become modulated. PMID:19686594

  7. Influence of damped propagation of dopant on the static and frequency-dependent third nonlinear polarizability of quantum dot

    NASA Astrophysics Data System (ADS)

    Pal, Suvajit; Ghosh, Manas

    2014-07-01

    We investigate the profiles of diagonal components of static and frequency-dependent third nonlinear (γxxxx and γyyyy) polarizability of repulsive impurity doped quantum dots. The dopant impurity potential takes a GAUSSIAN form. We have considered propagation of the dopant within an environment that damps the motion. The study focuses on role of damping strength on the diagonal components of both static and frequency-dependent third nonlinear polarizability of the doped system. The doped system is further exposed to an external electric field of given intensity. Damping subtly modulates the dot-impurity interaction and fabricates the polarizability components in a noticeable manner.

  8. Ultrabroadband chirped pulse second-harmonic spectroscopy: measuring the frequency-dependent second-order response of different metal films.

    PubMed

    Metzger, Bernd; Gui, Lili; Giessen, Harald

    2014-09-15

    We introduce a spectroscopic method for measuring the frequency-dependent second-order response using ultrabroadband strongly chirped laser pulses. The dispersion suppresses nonlinear frequency mixing, hence the second-order response of a material can be unambiguously retrieved. We demonstrate this method by measuring the frequency-dependent second-harmonic (SH) response of the metals gold, aluminium, silver, and copper in the wavelength range of about 900-1150 nm and compare the results to classical SH spectroscopy. The SH spectra indicate that interband transitions in the metals influence the overall nonlinear optical response. PMID:26466254

  9. Frequency-dependent effects of rupture for the 2004 Parkfield main shock, results from UPSAR

    NASA Astrophysics Data System (ADS)

    Fletcher, Jon B.

    2014-09-01

    The frequency-dependent effects of rupture propagation of the Parkfield, California, earthquake (28 September 2004, M6) to the northwest along the San Andreas Fault can be seen in acceleration records at UPSAR (USGS Parkfield Seismic Array) in at least two ways. First, we can see the effects of directivity in the acceleration traces at UPSAR, which is about 11.5 km from the epicenter. Directivity or the seismic equivalent of a Doppler shift has been documented in many cases by comparing short-duration, high-amplitude pulses (P or S) in the forward direction with longer-duration body waves in the backward direction. In this case we detect a change from a relatively large amplitude, coherent, high-frequency signal at the start of rupture to a low-amplitude, low-coherent, low-frequency signal at about the time the rupture front transfers from the forward azimuth to the back azimuth at about 34-36 s (time is UTC and is the seconds after day 272 and 17 h and 15 min. S arrival is just after 30 s) for rays leaving the fault and propagating to UPSAR. The frequency change is obvious in the band about 5 to 30 Hz, which is significantly above the corner frequency of the earthquake (about 0.11 Hz). From kinematic source models, the duration of faulting is about 9.2 s, and the change in frequency is during faulting as the rupture extends to the northwest. Understanding the systematic change in frequency and amplitude of seismic waves in relation to the propagation of the rupture front is important for predicting strong ground motion. Second, we can filter the acceleration records from the array to determine if the low-frequency energy emerges from the same part of the fault as the high-frequency signal (e.g., has the same back azimuth and apparent velocity at UPSAR), an important clue to the dynamics of rupture. Analysis of sources of strong motion (characterized by relatively high frequencies) compared to kinematic slip models (relatively low frequency) for the 11 March 2011

  10. Frequency-dependent effects of rupture for the 2004 Parkfield mainshock, results from UPSAR

    USGS Publications Warehouse

    Fletcher, Jon B.

    2014-01-01

    The frequency-dependent effects of rupture propagation of the Parkfield, California earthquake (Sept. 28, 2004, M6) to the northwest along the San Andreas fault can be seen in acceleration records at UPSAR (USGS Parkfield Seismic Array) in at least two ways. First, we can see the effects of directivity in the acceleration traces at UPSAR, which is about 11.5 km from the epicenter. Directivity or the seismic equivalent of a Doppler shift has been documented in many cases by comparing short duration, high-amplitude pulses (P or S) in the forward direction with longer duration body waves in the backward direction. In this case we detect a change from a relatively large amplitude, coherent, high-frequency signal at the start of rupture to a low-amplitude, low-coherent, low-frequency signal at about the time the rupture front transfers from the forward azimuth to the back azimuth at about 34-36 s (time is UTC and are the seconds after day 272 and 17 hours and 15 minutes. S arrival is just after 30s) for rays leaving the fault and propagating to UPSAR. The frequency change is obvious in the band about 5 to 30 Hz, which is significantly above the corner frequency of the earthquake (about 0.11Hz). From kinematic source models, the duration of faulting is about 9.2 s and the change in frequency is during faulting as the rupture extends to the northwest. Understanding the systematic change in frequency and amplitude of seismic waves in relation to the propagation of the rupture front is important for predicting strong ground motion. Second, we can filter the acceleration records from the array to determine if the low frequency energy emerges from the same part of the fault as the high frequency signal (e.g. has the same back azimuth and apparent velocity at UPSAR) an important clue to the dynamics of rupture. Analysis of sources of strong motion (characterized by relatively high frequencies) compared to kinematic slip models (relatively low frequency) for the

  11. A new AC susceptibility instrument for detecting frequency dependence over a wide range of frequencies

    NASA Astrophysics Data System (ADS)

    Kodama, K.

    2008-12-01

    A unique equipment was developed for measuring low-field AC susceptibility over a frequency spectrum ranging from 10 Hz to 4 kHz. The coil system consists of a primary coil for applying an excitation field, and a set of pickup coils linked in series and wound oppositely for compensation. The number of turns for the primary coil is 6,000 and that for the pickup coils is 4,400, using 0.1 mm thick copper wire, wound around a quartz-glass tube of 36 mm in diameter, allowing to measure conventional 10cc samples. The excitation field is produced by a commercial function generator with two independent outputs, capable of generating sinusoidal current with frequencies of 0 to 10 MHz. A mutual inductor coil is connected in series, to which the wave generator supplies, through the second output, a small current that can be adjusted in phase and magnitude to compensate the out-of-balance of the pickup coils. The resulting signal output voltage is fed to a digital rock-in amplifier. The AC frequency spans practically from 10 Hz to 4 kHz due to the limitation of the lock-in amplifier, but can be swept over the entire range with a constant amplitude of the applied field, which is changeable from 0.4 to 1.0 Oe. The outputs from the lock-in amplifier, in both magnitude and phase, are transferred to a PC to obtain the frequency dependence spectrum of both real and imaginary parts of AC susceptibility. The system calibration was made using a paramagnetic Gd2O3 powder as well as several natural samples that have ever been used for inter-laboratory calibrations.

  12. In vitro characterization of HCN channel kinetics and frequency dependence in myocytes predicts biological pacemaker functionality.

    PubMed

    Zhao, Xin; Bucchi, Annalisa; Oren, Ronit V; Kryukova, Yelena; Dun, Wen; Clancy, Colleen E; Robinson, Richard B

    2009-04-01

    The pacemaker current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, contributes to the initiation and regulation of cardiac rhythm. Previous experiments creating HCN-based biological pacemakers in vivo found that an engineered HCN2/HCN1 chimeric channel (HCN212) resulted in significantly faster rates than HCN2, interrupted by 1-5 s pauses. To elucidate the mechanisms underlying the differences in HCN212 and HCN2 in vivo functionality as biological pacemakers, we studied newborn rat ventricular myocytes over-expressing either HCN2 or HCN212 channels. The HCN2- and HCN212-over-expressing myocytes manifest similar voltage dependence, current density and sensitivity to saturating cAMP concentrations, but HCN212 has faster activation/deactivation kinetics. Compared with HCN2, myocytes expressing HCN212 exhibit a faster spontaneous rate and greater incidence of irregular rhythms (i.e. periods of rapid spontaneous rate followed by pauses). To explore these rhythm differences further, we imposed consecutive pacing and found that activation kinetics of the two channels are slower at faster pacing frequencies. As a result, time-dependent HCN current flowing during diastole decreases for both constructs during a train of stimuli at a rapid frequency, with the effect more pronounced for HCN2. In addition, the slower deactivation kinetics of HCN2 contributes to more pronounced instantaneous current at a slower frequency. As a result of the frequency dependence of both instantaneous and time-dependent current, HCN2 exhibits more robust negative feedback than HCN212, contributing to the maintenance of a stable pacing rhythm. These results illustrate the benefit of screening HCN constructs in spontaneously active myocyte cultures and may provide the basis for future optimization of HCN-based biological pacemakers. PMID:19171659

  13. Frequency-dependent pollinator discrimination acts against female plants in the gynodioecious Geranium maculatum

    PubMed Central

    Van Etten, Megan L.; Chang, Shu-Mei

    2014-01-01

    Background and Aims Gynodioecy, the co-occurrence of female and hermaphroditic individuals, is thought to be an intermediate step between hermaphroditism and separate sexes, a major transition in flowering plants. Because retaining females in a population requires that they have increased seed fitness (to compensate for the lack of pollen fitness), factors that affect seed fitness are of great importance to the evolution of this mating system and have often been studied. However, factors negatively affecting female fitness are equally important and have been largely neglected. One such factor stems from female flowers being less attractive to insects than hermaphrodite flowers, thereby decreasing their relative fitness. Methods To test the severity and consequences of this type of pollinator discrimination in Geranium maculatum, experimental populations with the range of sex ratios observed in nature were created, ranging from 13 % to 42 % females. Pollinators were observed in order to measure the strength of discrimination, and pollen deposition and seed production of both sexes were measured to determine the fitness consequences of this discrimination. Additionally a comparison was made across the sex ratios to determine whether discrimination was frequency-dependent. Key Results It was found that female flowers, on average, were visited at half of the rate of hermaphrodite flowers, which decreased their pollen receipt and seed production. Additionally, females were most discriminated against when rare, due to both changes in the pollinators' behaviour and a shift in pollinator composition. Conclusions The results suggest that pollinator discrimination negatively affects females' relative fitness when they are rare. Thus, the initial spread of females in a population, the first step in the evolution of gynodioecy, may be made more difficult due to pollinator discrimination. PMID:25326647

  14. Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability.

    PubMed

    Nakazono, Hisato; Ogata, Katsuya; Kuroda, Tsuyoshi; Tobimatsu, Shozo

    2016-01-01

    Transcranial alternating current stimulation (tACS) can entrain ongoing brain oscillations and modulate the motor system in a frequency-dependent manner. Recent animal studies have demonstrated that the phase of a sinusoidal current also has an important role in modulation of neuronal activity. However, the phase effects of tACS on the human motor system are largely unknown. Here, we systematically investigated the effects of tACS phase and frequency on the primary motor cortex (M1) by using motor evoked potentials (MEPs) with transcranial magnetic stimulation (TMS). First, we compared the phase effects (90°, 180°, 270° or 360°) of 10 and 20 Hz tACS on MEPs. The 20 Hz tACS significantly increased M1 excitability compared with the 10 Hz tACS at 90° phase only. Second, we studied the 90° phase effect on MEPs at different tACS frequencies (5, 10, 20 or 40 Hz). The 20 vs. 10 Hz difference was again observed, but the 90° phase in 5 and 40 Hz tACS did not influence M1 excitability. Third, the 90° phase effects of 10 and 20 Hz tACS were compared with sham stimulation. The 90° phase of 20 Hz tACS enhanced MEP amplitudes compared with sham stimulation, but there was no significant effect of 10 Hz tACS. Taken together, we assume that the differential 90° phase effects on 20 Hz and 10 Hz tACS can be attributed to the neural synchronization modulated by tACS. Our results further underline that phase and frequency are the important factors in the effects of tACS on M1 excitability. PMID:27607431

  15. Frequency-dependent PSP depression contributes to low-pass temporal filtering in Eigenmannia.

    PubMed

    Rose, G J; Fortune, E S

    1999-09-01

    This study examined the contribution of frequency-dependent short-term depression of PSP amplitude to low-pass temporal filtering in the weakly electric fish Eigenmannia. Behavioral and neurophysiological methods were used. Decelerations of the electric organ discharge frequency were measured in response to continuous and discontinuous electrosensory stimuli. Decelerations were strongest (median = 4.7 Hz; range, 3.5-5.9 Hz) at continuous beat rates of approximately 5 Hz and weakest (median = 0.4 Hz; range, 0.0-0.8 Hz) at beat rates of 30 Hz. Gating 20 or 30 Hz stimuli at a rate of 5 Hz, however, elicited decelerations that were sixfold greater than that of continuous stimuli at these beat rates (median = 2.6 Hz; range, 2.0-4.7 Hz for 30 Hz). These results support the hypothesis that short-term processes enhance low-pass filtering by reducing responses to fast beat rates. This hypothesis was tested by recording intracellularly the responses of 33 midbrain neurons to continuous and discontinuous stimuli. Results indicate that short-term depression of PSP amplitude primarily accounts for the steady-state low-pass filtering of these neurons beyond that contributed by their passive and active membrane properties. Previous results demonstrate that passive properties can contribute up to 7 dB of low-pass filtering; PSP depression can add up to an additional 12.5 dB (median = 4.5). PSP depression increased in magnitude with stimulus frequency and showed a prominent short-term component (t(1) = 66 msec at 30 Hz). Initial PSP amplitude recovered fully after a gap of 150 msec for most neurons. Remarkably, recovery of PSP amplitude could be produced by inserting a brief low-temporal frequency component in the stimulus. PMID:10460268

  16. The evolution of social learning rules: payoff-biased and frequency-dependent biased transmission.

    PubMed

    Kendal, Jeremy; Giraldeau, Luc-Alain; Laland, Kevin

    2009-09-21

    Humans and other animals do not use social learning indiscriminately, rather, natural selection has favoured the evolution of social learning rules that make selective use of social learning to acquire relevant information in a changing environment. We present a gene-culture coevolutionary analysis of a small selection of such rules (unbiased social learning, payoff-biased social learning and frequency-dependent biased social learning, including conformism and anti-conformism) in a population of asocial learners where the environment is subject to a constant probability of change to a novel state. We define conditions under which each rule evolves to a genetically polymorphic equilibrium. We find that payoff-biased social learning may evolve under high levels of environmental variation if the fitness benefit associated with the acquired behaviour is either high or low but not of intermediate value. In contrast, both conformist and anti-conformist biases can become fixed when environment variation is low, whereupon the mean fitness in the population is higher than for a population of asocial learners. Our examination of the population dynamics reveals stable limit cycles under conformist and anti-conformist biases and some highly complex dynamics including chaos. Anti-conformists can out-compete conformists when conditions favour a low equilibrium frequency of the learned behaviour. We conclude that evolution, punctuated by the repeated successful invasion of different social learning rules, should continuously favour a reduction in the equilibrium frequency of asocial learning, and propose that, among competing social learning rules, the dominant rule will be the one that can persist with the lowest frequency of asocial learning. PMID:19501102

  17. Angular and Frequency-Dependent Wave Velocity and Attenuation in Fractured Porous Media

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Gurevich, Boris; Santos, Juan E.; Picotti, Stefano

    2013-11-01

    Wave-induced fluid flow generates a dominant attenuation mechanism in porous media. It consists of energy loss due to P-wave conversion to Biot (diffusive) modes at mesoscopic-scale inhomogeneities. Fractured poroelastic media show significant attenuation and velocity dispersion due to this mechanism. The theory has first been developed for the symmetry axis of the equivalent transversely isotropic (TI) medium corresponding to a poroelastic medium containing planar fractures. In this work, we consider the theory for all propagation angles by obtaining the five complex and frequency-dependent stiffnesses of the equivalent TI medium as a function of frequency. We assume that the flow direction is perpendicular to the layering plane and is independent of the loading direction. As a consequence, the behaviour of the medium can be described by a single relaxation function. We first consider the limiting case of an open (highly permeable) fracture of negligible thickness. We then compute the associated wave velocities and quality factors as a function of the propagation direction (phase and ray angles) and frequency. The location of the relaxation peak depends on the distance between fractures (the mesoscopic distance), viscosity, permeability and fractures compliances. The flow induced by wave propagation affects the quasi-shear (qS) wave with levels of attenuation similar to those of the quasi-compressional (qP) wave. On the other hand, a general fracture can be modeled as a sequence of poroelastic layers, where one of the layers is very thin. Modeling fractures of different thickness filled with CO2 embedded in a background medium saturated with a stiffer fluid also shows considerable attenuation and velocity dispersion. If the fracture and background frames are the same, the equivalent medium is isotropic, but strong wave anisotropy occurs in the case of a frameless and highly permeable fracture material, for instance a suspension of solid particles in the fluid.

  18. Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system

    NASA Astrophysics Data System (ADS)

    Punia, R.; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Kishore, N.

    2012-10-01

    The ac conductivity of bismuth zinc vanadate glasses with compositions 50V2O5. xBi2O3. (50-x) ZnO has been studied in the frequency range 10-1 Hz to 2 MHz and in temperature range 333.16 K to 533.16 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of bismuth zinc vanadate glass system. The dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. It has been observed that mobility of charge carriers and ac conductivity in case of zinc vanadate glass system increases with increase in Bi2O3 content. In order to determine the conduction mechanism, the ac conductivity and its frequency exponent have been analyzed in the frame work of various theoretical models based on classical hopping over barriers and quantum mechanical tunneling. The ac conduction takes place via tunneling of overlapping large polarons in all the compositions of presently studied vanadate glasses. The fitting of experimental data of ac conductivity with overlapping large polarons tunneling model has also been done. The parameters; density of states at Fermi level (N(EF)), activation energy associated with charge transfer between the overlapping sites (WHO), inverse localization length (α) and polaron radius (rp) obtained from fitting of this model with experimental data are reasonable.

  19. Single all-optical platform for measurement of twist and transverse stress using polarization modulation in distinct dual-mode fiber placed in a Sagnac loop.

    PubMed

    Khan, Saba N; Chatterjee, Sudip K; Chaudhuri, Partha Roy

    2016-01-01

    We report here the experimental demonstration of measurement of both twist and transverse stress using polarization modulation in a single all-fiber circuit consisting of a single-mode fiber (SMF)/dual-mode fiber (DMF) in a Sagnac interferometer (SI) loop. The SMF-SI prototype setup is seen to be suitable for precise measurement of twist over a broad range of ±50° and transverse stress up to 5 N with a sensitivity as high as 2.85×10(6)  pW/° and 2.08×10(7)  pW/N, respectively. It is envisaged that nearly ideal operation for twist measurement can be achieved by appropriately selecting the operating domain (pretwisted Sagnac loop for practical realization of the device) and required magnitude of applied transverse stress (weight yielding maximum sensitivity). Unlike SMF-SI, a DMF assisted SI exhibits asymmetric transmittance yielding a peak shift (∼45°) in addition to falling/rising peak amplitude of effective power(∼20  μW). This key characteristic is further utilized for tunable measurement of torsion (unidirectional from -70° to 40°) while keeping the sensitivity fixed. This research problem is then analyzed on the avenue of theoretical consideration and using classical polarization optics; we have derived the Jones birefringence matrix that accurately describes the transmission behavior of the configured fiber circuit (SMF-SI and DMF-SI) for each of the three cases, namely, transverse stress, twist, and both twist and transverse stress. Series of experimental measurements for various conditions of induced birefringence (linear/circular) were performed at length, and the results were compared with those determined theoretically towards configuring a twist and stress measuring device. The study provides an understanding of the underlying physics of dual-mode interference in a Sagnac configuration experiencing linear and circular birefringence. PMID:26831594

  20. Permeability and Frequency Dependence of the Seismoelectric Effect Associated with Compressional Waves in Unconsolidated Sediments

    NASA Astrophysics Data System (ADS)

    West, M.; Dupuis, C.; Butler, K. E.

    2009-05-01

    The propagation of seismic waves through saturated poroelastic media can generate electric fields, known as seismoelectric effects, as a consequence of electrokinetic coupling associated with movement of pore fluid relative to solid matrix. There has, as a result, been a longstanding interest in using the seismoelectric effect to estimate permeability. Indeed, recent analyses and borehole logging experiments indicate that the amplitudes of seismoelectric signals induced by Stoneley waves may be used to estimate permeability. Curiously, however, theoretical models for the co-seismic electric fields that travel with compressional waves in homogeneous poroelastic media indicate that there is no explicit dependence on permeability at low frequencies. Rather, it would appear that the estimation of permeability from such co-seismic seismoelectric effects may require broadband measurements and the identification of a critical frequency above which the frequency dependence changes. Theoretical seismoelectric transfer functions for the case of compressional waves, and equations for the above-mentioned critical frequency (expressed in terms of permeability and other physical properties) have been derived independently by at least two groups. These equations have not been fully reconciled with each other and have not yet been extensively tested by comparison to field or lab measurements. We have analysed the frequency response of co-seismic seismoelectric effects induced by compressional seismic waves during vertical seismoelectric profiling experiments in a borehole penetrating glaciofluvial sediments. The measurements were made using electrodes and a clamped geophone in the borehole, and a special seismic source at surface that produced pulses with a bandwidth of several hundred Hz. Measurements within a sand layer confirmed that seismoelectric amplitudes scaled approximately linearly with the product of frequency and seismic particle velocity as predicted by theoretical

  1. Fundamental x-ray interaction limits in diagnostic imaging detectors: frequency-dependent Swank noise.

    PubMed

    Hajdok, G; Battista, J J; Cunningham, I A

    2008-07-01

    A frequency-dependent x-ray Swank factor based on the "x-ray interaction" modulation transfer function and normalized noise power spectrum is determined from a Monte Carlo analysis. This factor was calculated in four converter materials: amorphous silicon (a-Si), amorphous selenium (a-Se), cesium iodide (CsI), and lead iodide (PbI2) for incident photon energies between 10 and 150 keV and various converter thicknesses. When scaled by the quantum efficiency, the x-ray Swank factor describes the best possible detective quantum efficiency (DQE) a detector can have. As such, this x-ray interaction DQE provides a target performance benchmark. It is expressed as a function of (Fourier-based) spatial frequency and takes into consideration signal and noise correlations introduced by reabsorption of Compton scatter and photoelectric characteristic emissions. It is shown that the x-ray Swank factor is largely insensitive to converter thickness for quantum efficiency values greater than 0.5. Thus, while most of the tabulated values correspond to thick converters with a quantum efficiency of 0.99, they are appropriate to use for many detectors in current use. A simple expression for the x-ray interaction DQE of digital detectors (including noise aliasing) is derived in terms of the quantum efficiency, x-ray Swank factor, detector element size, and fill factor. Good agreement is shown with DQE curves published by other investigators for each converter material, and the conditions required to achieve this ideal performance are discussed. For high-resolution imaging applications, the x-ray Swank factor indicates: (i) a-Si should only be used at low-energy (e.g., mammography); (ii) a-Se has the most promise for any application below 100 keV; and (iii) while quantum efficiency may be increased at energies just above the K edge in CsI and PbI2, this benefit is offset by a substantial drop in the x-ray Swank factor, particularly at high spatial frequencies. PMID:18697544

  2. Fundamental x-ray interaction limits in diagnostic imaging detectors: Frequency-dependent Swank noise

    SciTech Connect

    Hajdok, G.; Battista, J. J.; Cunningham, I. A.

    2008-07-15

    A frequency-dependent x-ray Swank factor based on the ''x-ray interaction'' modulation transfer function and normalized noise power spectrum is determined from a Monte Carlo analysis. This factor was calculated in four converter materials: amorphous silicon (a-Si), amorphous selenium (a-Se), cesium iodide (CsI), and lead iodide (PbI{sub 2}) for incident photon energies between 10 and 150 keV and various converter thicknesses. When scaled by the quantum efficiency, the x-ray Swank factor describes the best possible detective quantum efficiency (DQE) a detector can have. As such, this x-ray interaction DQE provides a target performance benchmark. It is expressed as a function of (Fourier-based) spatial frequency and takes into consideration signal and noise correlations introduced by reabsorption of Compton scatter and photoelectric characteristic emissions. It is shown that the x-ray Swank factor is largely insensitive to converter thickness for quantum efficiency values greater than 0.5. Thus, while most of the tabulated values correspond to thick converters with a quantum efficiency of 0.99, they are appropriate to use for many detectors in current use. A simple expression for the x-ray interaction DQE of digital detectors (including noise aliasing) is derived in terms of the quantum efficiency, x-ray Swank factor, detector element size, and fill factor. Good agreement is shown with DQE curves published by other investigators for each converter material, and the conditions required to achieve this ideal performance are discussed. For high-resolution imaging applications, the x-ray Swank factor indicates: (i) a-Si should only be used at low-energy (e.g., mammography); (ii) a-Se has the most promise for any application below 100 keV; and (iii) while quantum efficiency may be increased at energies just above the K edge in CsI and PbI{sub 2}, this benefit is offset by a substantial drop in the x-ray Swank factor, particularly at high spatial frequencies.

  3. Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Alves, M. I. R.; Aniano, G.; Armitage-Caplan, C.; Arnaud, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Magalhães, A. M.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wandelt, B. D.; Zacchei, A.; Zonca, A.

    2015-04-01

    Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We use these data to characterize the frequency dependence of dust emission. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them with the Planck and WMAP data at 12 frequencies from 23 to 353 GHz, over circular patches with 10° radius. The cross-correlation analysis is performed for both intensity and polarization data in a consistent manner. The results are corrected for the chance correlation between the templates and the anisotropies of the cosmic microwave background. We use a mask that focuses our analysis on the diffuse interstellar medium at intermediate Galactic latitudes. We determine the spectral indices of dust emission in intensity and polarization between 100 and 353 GHz, for each sky patch. Both indices are found to be remarkably constant over the sky. The mean values, 1.59 ± 0.02 for polarization and 1.51 ± 0.01 for intensity, for a mean dust temperature of 19.6 K, are close, but significantly different (3.6σ). We determine the mean spectral energy distribution (SED) of the microwave emission, correlated with the 353 GHz dust templates, by averaging the results of the correlation over all sky patches. We find that the mean SED increases for decreasing frequencies at ν< 60 GHz for both intensity and polarization. The rise of the polarization SED towards low frequencies may be accounted for by a synchrotron component correlated with dust, with no need for any polarization of the anomalous microwave emission. We use a spectral model to separate the synchrotron and dust polarization and to characterize the spectral dependence of the dust polarization fraction. The polarization fraction (p) of the dust emission decreases by (21 ± 6)% from 353 to 70 GHz. We discuss this result within the context of existing dust models. The decrease in p could indicate differences in polarization

  4. Quasi-interferometric scheme improved by fiber Bragg grating for detection of outer mechanical stress influence on distributed sensor being silica multimode optical fiber operating in a few-mode regime

    NASA Astrophysics Data System (ADS)

    Kafarova, Anastasia M.; Faskhutdinov, Lenar M.; Kuznetzov, Artem A.; Minaeva, Alina Y.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Bourdine, Anton V.; Morozov, Oleg G.; Burdin, Vladimir A.

    2016-03-01

    This work presents results of experimental approbation of modified fiber optic stress sensor based on a few-mode effects occurring during laser-excited optical signal propagation over silica multimode optical fiber (MMF). Modification is concerned with adding of quasi-interferometric scheme realized by two multimode Y-couplers with equalized arm lengths improved by fiber Bragg grating (FBG) and special offset launching conditions providing laser-based excitation of higher-order modes. We tested FBGs written on graded-index MMFs 50/125 with Bragg wavelength 1550 nm connected to different parts of proposed scheme. Researches are focused on comparing analysis of both spectral and pulse responses under changing of selected mode mixing and power diffusion processes due to stress local and distributed action to sensor fiber depending on scheme configuration. Here we considered FBGs not only as particular wavelength reflector during spectral response measurement but also as local periodic microstructure defect strongly effecting few-mode signal components mixing process that provides pulse response variation. Some results of spectral and pulse response measurements produced for different scheme configuration and their comparison analysis are represented.

  5. Weathering effects on tensile and stress rupture strength of glass fiber reinforced vinylester and epoxy thermoset pipes

    NASA Astrophysics Data System (ADS)

    Nizamuddin, Syed

    Glass fiber reinforced vinylester (GFRE) and epoxy (GFRE) pipes have been used for more than three decades to mitigate corrosion problems in oil fields, chemical and industrial plants. In these services, both GFRV and GFRE pipes are exposed to various environmental conditions. Long-term mechanical durability of these pipes after exposure to environmental conditions, which include natural weathering exposure to seasonal temperature variation, sea water, humidity and other corrosive fluids like crude oil, should be well known. Although extensive research has been undertaken, several major issues pertaining to the performance of these pipes under a number of environmental conditions still remain unresolved. The main objective of this study is to investigate the effects of natural weathering, combined natural weathering with seawater and crude oil exposure, for time periods ranging from 3 to 36 months respectively, on the tensile and stress rupture behavior of GFRV and GFRE pipes. Ring specimens are machined from GFRV and GFRE pipes and tested before and after exposure to different weathering conditions prevalent in the eastern region (Dhahran) of Saudi Arabia and present under service conditions. The natural weathering and combined natural weathering with crude oil exposure of GFRV specimens revealed increased tensile strength even after 36 months of exposure when compared with that of the as received samples. However, the combined natural weathering with seawater exposure of GFRV samples revealed better tensile behavior till 24 months of exposure, and after 36 months their tensile strength was seen to be below that of the as received GFRV samples. The stress rupture behavior of natural weather exposed GFRV samples showed an improvement after 12 months of exposure and it decreased after 24 and 36 months of exposure when compared with the as received GFRV samples. The combined natural weathering with crude oil and seawater exposure of GFRV sample revealed improved

  6. Fiber Breakage Model for Carbon Composite Stress Rupture Phenomenon: Theoretical Development and Applications

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2010-01-01

    Stress rupture failure of Carbon Composite Overwrapped Pressure Vessels (COPVs) is of serious concern to Science Mission and Constellation programs since there are a number of COPVs on board space vehicles with stored gases under high pressure for long durations of time. It has become customary to establish the reliability of these vessels using the so called classic models. The classical models are based on Weibull statistics fitted to observed stress rupture data. These stochastic models cannot account for any additional damage due to the complex pressure-time histories characteristic of COPVs being supplied for NASA missions. In particular, it is suspected that the effects of proof test could significantly reduce the stress rupture lifetime of COPVs. The focus of this paper is to present an analytical appraisal of a model that incorporates damage due to proof test. The model examined in the current paper is based on physical mechanisms such as micromechanics based load sharing concepts coupled with creep rupture and Weibull statistics. For example, the classic model cannot accommodate for damage due to proof testing which every flight vessel undergoes. The paper compares current model to the classic model with a number of examples. In addition, several applications of the model to current ISS and Constellation program issues are also examined.

  7. Residual stress and debonding analysis using a fiber Bragg grating in a model composite specimen

    NASA Astrophysics Data System (ADS)

    Colpo, F.; Dunkel, G.; Humbert, L.; Botsis, J.

    2005-05-01

    Optical Fibre Bragg Grating (FBG) sensors are excellent non-destructive tools for internal strain characterization of composite materials and structures. They can be embedded at selected locations during material preparation to provide accurate in-situ measurements. In this study, long-gauge-FBGs are introduced in cylindrical specimens of epoxy. This configuration is particularly attractive because it simplifies the study of some relevant phenomena in micromechanics of composites, for instance residual stresses and fracture of the fibre-matrix interface. Because the matrix epoxy shrinks during the polymerisation process, the optical sensor undergoes substantial non-uniform strain along the fibre. The response of a FBG to a non-uniform strain distribution is investigated using a new Optical Low-Coherence Reflectometry (OLCR) technique developed at EPFL. This method provides a direct reconstruction of the optical period and the corresponding strain distribution along the grating without any a priori assumption about the strain field. Considering the non-uniform residual strain as a reference state, new Bragg wavelength distributions are obtained for two configurations. First, a new Bragg wavelength distribution is measured as a function of the depth of circular cracks machined in the radial direction. These measurements lead to the knowledge of (a) the zone of perturbation of the reinforcing fibre on the residual stresses and (b) the effect of the presence of the mechanically induced crack on the residual stress state in the specimen. A finite element modelling of the residual stress field based on an equivalent thermo-elastic approach is also proposed, showing a very good agreement with experimental data. Second, an interface crack (debonding) between the epoxy and the fibre is introduced by fatigue and monitored using a specifically designed video acquisition system. The induced variations in the FBG response are measured when the fibre is unloaded and then

  8. Stress and strain analysis of the bone-implant interface: a comparison of fiber-reinforced composite and titanium implants utilizing 3-dimensional finite element study.

    PubMed

    Shinya, Akikazu; Ballo, Ahmed M; Lassila, Lippo V J; Shinya, Akiyoshi; Närhi, Timo O; Vallittu, Pekka K

    2011-03-01

    This study analyzed stress and strain mediated by 2 different implant materials, titanium (Ti) and experimental fiber-reinforced composite (FRC), on the implant and on the bone tissue surrounding the implant. Three-dimensional finite element models constructed from a mandibular bone and an implant were subjected to a load of 50 N in vertical and horizontal directions. Postprocessing files allowed the calculation of stress and strain within the implant materials and stresses at the bone-to-implant interface (stress path). Maximum stress concentrations were located around the implant on the rim of the cortical bone in both implant materials; Ti and overall stresses decreased toward the Ti implant apex. In the FRC implant, a stress value of 0.6 to 2.0 MPa was detected not only on the screw threads but also on the implant surface between the threads. Clear differences were observed in the strain distribution between the materials. Based on the results, the vertical load stress range of the FRC implant was close to the stress level for optimal bone growth. Furthermore, the stress at the bone around the FRC implant was more evenly distributed than that with Ti implant. PMID:20545537

  9. Tidal dissipation in the Moon. Learning from the "incorrect" frequency dependence measured by the LLR

    NASA Astrophysics Data System (ADS)

    Efroimsky, M.

    2012-09-01

    It was demonstrated back in 2001 that fitting of the LLR data results in the quality factor Q of the Moon scaling as the frequency ξ to a negative power [8]: Q ˜ ξp , where p = -0.19 . (1) At the same time, numerous measurements by various seismological teams agree on the exponent being positive, not negative [4]. The positive sign of the exponent stems also from geodetic measurements [1], and it finds its explanation within the theory of friction in minerals [5]. On all these grounds, the aforementioned finding by the LLR team appears to be implausible and to disagree with the conventional wisdom of solid state mechanics and seismology. A later reexamination in [9] rendered a less upsetting value, p = -0.09 , which was still negative and still seemed to contradict our knowledge of microphysical processes in solids. The authors later wrote [10]: "There is a weak dependence of tidal specific dissipation Q on period. The Q increases from ˜ 30 at a month to ˜ 35 at one year. Q for rock is expected to have a weak dependence on tidal period, but it is expected to decrease with period rather than increase. The frequency dependence of Q deserves further attention and should be improved." A possible explanation of this paradox comes from the observation that the LLR measurements provided information on the tidal and not seismic dissipation. The difference between these two processes comes from self-gravitation of the celestial body. To address the problem accurately, one has to calculate the tidal factors kl sin ɛl showing up in the Darwin-Kaula expansion for the tidal torque or force. Here kl is the degree-l Love number, while ɛl is the appropriate tidal lag. Sometimes sin ɛl is denoted with 1/Q , which is not recommended, because this notation does not distinguish between the tidal reaction appropriate to harmonics of different degree. This notation also puts one at risk of confusing the tidal damping with the seismic damping, two process that have much in common

  10. Numerical analysis of residual stresses in preforms of stress applying part for PANDA-type polarization maintaining optical fibers in view of technological imperfections of the doped zone geometry

    NASA Astrophysics Data System (ADS)

    Trufanov, Aleksandr N.; Trufanov, Nikolay A.; Semenov, Nikita V.

    2016-09-01

    The experimental data analysis of the stress applying rod section geometry for the PANDA-type polarization maintaining optical fiber has been performed. The dependencies of the change in the radial dimensions of the preform and the doping boundary on the angular coordinate have been obtained. The original algorithm of experimental data statistic analysis, which enables determination of the specimens' characteristic form of section, has been described. The influence of actual doped zone geometry on the residual stress fields formed during the stress rod preform fabrication has been investigated. It has been established that the deviation of the boundary between pure silica and the doped zone from the circular shape results in dissymmetry and local concentrations of the residual stress fields along the section, which can cause preforms destruction at high degrees of doping. The observed geometry deviations of up to 10% lead to the increase of the maximum stress intensity value by over 20%.

  11. Temperature Dependence on the Strength and Stress Rupture Behavior of a Carbon-Fiber Reinforced Silicon Carbide (C/SiC) Composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Calomino, Anthony

    2002-01-01

    Tensile strengths and stress rupture lives of carbon-fiber reinforced silicon carbide (C/SiC) specimens were measured at 800 C and are compared to previously reported 1200 C data. All tests were conducted in an environmental chamber containing 1000 ppm of oxygen in argon. The average 800 C tensile strength of 610 MPa is 10% greater than at 1200 C. Average stress rupture lives at 800 C were 2.5 times longer than those obtained at 1200 C. The difference in the 800 and 1200 C lives is related to the oxidation rate of the reinforcing carbon fibers, which is the primary damage mode of C/SiC composites in oxygen-containing environments.

  12. Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization

    PubMed Central

    Nunan, Robert; Campbell, Jessica; Mori, Ryoichi; Pitulescu, Mara E.; Jiang, Wen G.; Harding, Keith G.; Adams, Ralf H.; Nobes, Catherine D.; Martin, Paul

    2015-01-01

    Summary For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal) junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man. PMID:26549443

  13. Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization.

    PubMed

    Nunan, Robert; Campbell, Jessica; Mori, Ryoichi; Pitulescu, Mara E; Jiang, Wen G; Harding, Keith G; Adams, Ralf H; Nobes, Catherine D; Martin, Paul

    2015-11-17

    For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal) junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man. PMID:26549443

  14. Temperature and frequency dependence of AC conductivity of new quaternary Se-Te-Bi-Pb chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2016-05-01

    The aim of the present work is to study the temperature and frequency dependence of ac conductivity of new quaternary Se84-xTe15Bi1.0Pbx chalcogenide glasses. The Se84-xTe15Bi1.0Pbx (x = 2, 6) glassy alloys are prepared by using melt quenching technique. The temperature and frequency dependent behavior of ac conductivity σac(ω) has been carried out in the frequency range 42 Hz to 5 MHz and in the temperature range of 298-323 K below glass transition temperature. The behavior of ac conductivity is described in terms of the power law ωs. The obtained temperature dependence behavior of ac conductivity and frequency component (s) are explained by means of correlated barrier hopping model recommended by Elliot.

  15. Influence of Gaussian white noise on the frequency-dependent first nonlinear polarizability of doped quantum dot

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Ghosh, Manas

    2014-05-01

    We investigate the profiles of diagonal components of frequency-dependent first nonlinear (βxxx and βyyy) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.

  16. Influence of Gaussian white noise on the frequency-dependent first nonlinear polarizability of doped quantum dot

    SciTech Connect

    Ganguly, Jayanta; Ghosh, Manas

    2014-05-07

    We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.

  17. Frequency-Dependent Activation of Glucose Utilization in the Superior Cervical Ganglion by Electrical Stimulation of Cervical Sympathetic Trunk

    NASA Astrophysics Data System (ADS)

    Yarowsky, Paul; Kadekaro, Massako; Sokoloff, Louis

    1983-07-01

    Electrical stimulation of the distal stump of the transected cervical sympathetic trunk produces a frequency-dependent activation of glucose utilization, measured by the deoxy[14C]glucose method, in the superior cervical ganglion of the urethane-anesthetized rat. The frequency dependence falls between 0-15 Hz; at 20 Hz the activation of glucose utilization is no greater than at 15 Hz. Deafferentation of the superior cervical ganglion by transection of the cervical sympathetic trunk does not diminish the rate of glucose utilization in the ganglion in the urethane-anesthetized rat. These results indicate that the rate of energy metabolism in an innervated neural structure is, at least in part, regulated by the impulse frequency of the electrical input to the structure, and this regulation may be an essential component of the mechanism of the coupling of metabolic activity to functional activity in the nervous system.

  18. Comparison of papaverine and verapamil on frequency-dependent changes in Vmax of K-depolarized ventricular tissue.

    PubMed

    Sanguinetti, M C; West, T C

    1982-01-01

    The maximum upstroke velocity (Vmax) of K-depolarized guinea pig ventricular strips was used to indirectly measure frequency-dependent changes in slow inward current (Isi) caused by papaverine, verapamil, Ba2+, and isoproterenol. The effects of verapamil were studied after pretreatment with 0.8 mM Ba2+ to restore excitability of the K-depolarized tissue. Similar steady-state, frequency-dependent (0.1--4.0 Hz) changes in Vmax were observed in tissues exposed to papaverine (10(-5), Ba2+ (0.2 mM, 0.8 mM), or isoproterenol (5 x 10(-7) M). Verapamil (10(-7) M) caused a marked frequency-dependent inhibition of Vmax relative to the Ba2+-treated condition. Step increases in stimulation frequency resulted in a new steady state after only one to three depolarizations under all conditions except during exposure to verapamil. Vmax decreased exponentially after an increase in stimulation frequency during verapamil exposure, and therefore required many stimuli before a new quasi-steady-state was attained. The time constant for the recovery from inactivation of Isi determined by a paired pulse protocol was 169 +/- 16 ms for 10(-5) M papaverine, 185 +/- 14 ms for 0.8 mM Ba2+, and about 390 ms for 10(-7) M verapamil. The time required for half-recovery of Vmax after a train of 1-Hz stimuli (preceded by a rest period) was 2.5--3 s for papaverine or Ba2+ but 30--38 s for verapamil-treated preparations. The results show that papaverine is not a Ca antagonist like verapamil. The results also suggest that Ba2+ may be useful for restoring excitability in K-depolarized tissues to study the frequency-dependent changes in Vmax caused by drugs that alter Isi. PMID:6182411

  19. Rupture and frequency-dependent seismic radiation of the 2012 Mw 8.6 Sumatra strike-slip earthquake

    NASA Astrophysics Data System (ADS)

    Yin, Jiuxun; Yao, Huajian

    2016-06-01

    On 2012 April 11, a great strike-slip earthquake (moment magnitude of Mw 8.6) occurred off the west coast of northern Sumatra area followed by an Mw 8.2 aftershock 2 hr later. Different geophysical data and methods have been used to investigate the mechanism, faulting, seismic radiation and slip propagation of this event, but frequency-dependent features of its rupture process have not been discussed much. In this study, we use a compressive sensing method based on sparsity inversion in the frequency domain to study the frequency-dependent seismic radiation and rupture process of this event. Our results indicate a very complex rupture process concerning at least three different rupture stages on multiple subfaults with nearly conjugate geometries. The main shock has triggered seismicity on a series of ridge-perpendicular or ridge-parallel conjugate strike-slip faults around the Nighty East Ridge. Obvious frequency-dependent rupture process has been presented and discussed. Combining results from slip inversion based on the finite-fault model, we observe that in the beginning stage of the rupture lower frequency radiation appears to originate from the areas with large slip, while the high-frequency radiation is located at the boundary of large-slip region or rupture front. Some radiation probably originates from the repeating slip on the main faults or triggered events on some nearby faults in the rupture area. The complex frequency-dependent seismic radiation patterns observed in this study provide important information for future investigation of rupture physics of this complex strike-slip event.

  20. Algebraic processing technique for extracting frequency-dependent shear-wave splitting parameters in an anisotropic medium

    NASA Astrophysics Data System (ADS)

    Han, Kai-Feng; Zeng, Xin-Wu

    2011-06-01

    Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth (1993), a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component VSP data in frequency-dependent medium has been developed. By using this dual source cumulative rotation technique in the frequency-domain (DCTF), anisotropic parameters, including polarization direction of the shear-waves and timedelay between the fast and slow shear-waves, can be estimated for each frequency component in the frequency domain. It avoids the possible error which comes from using a narrow-band filter in the current commonly used method. By using synthetic seismograms, the feasibility and validity of the technique was tested and a comparison with the currently used method was also given. The results demonstrate that the shear-wave splitting parameters frequency dependence can be extracted directly from four-component seismic data using the DCTF. In the presence of larger scale fractures, substantial frequency dependence would be found in the seismic frequency range, which implies that dispersion would occur at seismic frequencies. Our study shows that shear-wave anisotropy decreases as frequency increases.

  1. Similar patterns of frequency-dependent selection on animal personalities emerge in three species of social spiders.

    PubMed

    Lichtenstein, J L L; Pruitt, J N

    2015-06-01

    Frequency-dependent selection is thought to be a major contributor to the maintenance of phenotypic variation. We tested for frequency-dependent selection on contrasting behavioural strategies, termed here 'personalities', in three species of social spiders, each thought to represent an independent evolutionary origin of sociality. The evolution of sociality in the spider genus Anelosimus is consistently met with the emergence of two temporally stable discrete personality types: an 'aggressive' or 'docile' form. We assessed how the foraging success of each phenotype changes as a function of its representation within a colony. We did this by creating experimental colonies of various compositions (six aggressives, three aggressives and three dociles, one aggressive and five dociles, six dociles), maintaining them in a common garden for 3 weeks, and tracking the mass gained by individuals of either phenotype. We found that both the docile and aggressive phenotypes experienced their greatest mass gain in mixed colonies of mostly docile individuals. However, the performance of both phenotypes decreased as the frequency of the aggressive phenotype increased. Nearly identical patterns of phenotype-specific frequency dependence were recovered in all three species. Naturally occurring colonies of these spiders exhibit mixtures dominated by the docile phenotype, suggesting that these spiders may have evolved mechanisms to maintain the compositions that maximize the success of the colony without compromising the expected reproductive output of either phenotype. PMID:25940218

  2. The effect of frequency-dependent electron swarm parameters on fluid modeling of high-frequency CCP discharges

    NASA Astrophysics Data System (ADS)

    Upadhyay, Rochan; Mahadevan, Shankar; Sawada, Ikuo; Vukovic, Mirko; Ventzek, Peter; Raja, Laxminarayan

    2012-10-01

    Fluid models are computationally the most feasible approach for the multidimensional simulation of reactive CCPs. Fluid models require the specification of species reaction-rate and transport coefficients. For electrons, these closure terms are dependent on the assumed/computed EEDF that depend on the excitation frequency. However the excitation frequency dependence of these electron properties for fluid models are rarely discussed. Here we explore the significance of frequency-dependent electron transport and reaction rate coefficients for high-frequency CCP discharges. We use pre-computed electron properties from a zero-dimensional electron Boltzmann solver which are used in the simulation of an argon CCP at 60MHz and pressures of 15 mTorr and 100 mTorr. A high-resolution computational mesh is developed and used to overcome any uncertainty associated with numerical discretization. We report significant differences in the pre-computed electron reaction-rate and transport coefficients for a 60 MHz EEDF compared to direct-current EEDF or assumed Maxwellian EEDF. The effects of these differences on the discharge structure are found to be significant; clearly emphasizing the importance of using frequency-dependent electron properties in high-frequency CCP models.

  3. A damage assessment model of slender bridge members based on 1D linear member theory with frequency dependent parameters

    NASA Astrophysics Data System (ADS)

    Yu, Chih-Peng; Cheng, Chia-Chi; Lai, Jiunnren; Chiang, Chih-Hung

    2012-04-01

    In this study, a linear model with frequency dependent structural property was used to generate the corresponding frequency response function and dynamic stiffness for selected dynamic problems where certain nonlinearity can be resulted from time/space varying characteristics of the bridge vibrations. Derivation of the proposed formula is based on the vibration theory of the elementary member with frequency dependent elastic properties, in which Modulus of Elasticity can be interpreted as serial and parallel connections of springs and dashpots. This paper first describes the use of the proposed formulation to reasonably depict the nonlinear cable vibration associated with the varying tension forces over time. The proposed formulation can also be used to simulate flexural vibration of damage beams in which the elastic property involves certain space varying or time varying characteristics. Simple numerical/experimental data were next used to demonstrate and confirm the potential application of such simulation idea. Consequently, it is concluded that such assessment model with frequency dependent parameters can be practically feasible and serve as a useful tool in the spectral analysis regarding dynamic problems of slender bridge members.

  4. Bidirectional frequency-dependent effect of extremely low-frequency electromagnetic field on E. coli K-12.

    PubMed

    Martirosyan, Varsik; Baghdasaryan, Naira; Ayrapetyan, Sinerik

    2013-09-01

    In the present work, the frequency-dependent effects of extremely low-frequency electromagnetic field (ELF EMF) on Escherichia coli K-12 growth have been studied. The frequency-dependent effects of ELF EMF have shown that it can either stimulate or inhibit the growth of microbes. However, the mechanism by which the ELF EMF affects the bacterial cells is not clear yet. It was suggested that the aqua medium can serve as a target through which the biological effect of ELF EMF on microbes may be realized. To check this hypothesis, the frequency-dependent effects (2, 4, 6, 8, 10 Hz, B = 0.4 mT, 30 min) of ELF EMF on the bacterial growth were studied in both cases where the microbes were in the culture media during the exposure and where culture media was preliminarily exposed to the ELF EMF before the addition of bacteria. For investigating the cell proliferation, the radioactive [(3)H]-thymidine assay was carried out. It has been shown that EMF at 4 Hz exposure has pronounced stimulation while at 8 Hz it has inhibited cell proliferation. PMID:23046211

  5. Altered stress fibers and integrin expression in the Malpighian epithelium of Drosophila type IV collagen mutants

    PubMed Central

    Kiss, András A.; Popovics, Nikoletta; Szabó, Gábor; Csiszár, Katalin; Mink, Mátyás

    2016-01-01

    Basement membranes (BMs) are highly specialized extracellular matrices (ECMs) that provide support and polarization cues for epithelial cells. Proper adhesion to the BM is pivotal in epithelial cell function and survival. Type IV collagens are the predominant components of all types of BMs, that form an irregular, polygonal lattice and serve as a scaffold for numerous other BM components and BM-associated cells. Mutations in the ubiquitous human BM components COL4A1 and COL4A2 cause a multisystem disorder involving nephropathy. Affected patients develop renal dysfunction and chronic kidney failure with or without hematuria. Mouse Col4a1 and Col4a2 mutants recapitulate the human symptoms. In vertebrates, excretion is accomplished by the kidneys and by the Malpighian tubules in insects, including the fruit fly Drosophila. Our present results with dominant, temperature-sensitive mutation of the Drosophila col4a1 gene demonstrate altered integrin expression and amplified effects of mechanical stress on the Malpighian epithelial cytoskeleton. PMID:27077087

  6. Altered stress fibers and integrin expression in the Malpighian epithelium of Drosophila type IV collagen mutants.

    PubMed

    Kiss, András A; Popovics, Nikoletta; Szabó, Gábor; Csiszár, Katalin; Mink, Mátyás

    2016-06-01

    Basement membranes (BMs) are highly specialized extracellular matrices (ECMs) that provide support and polarization cues for epithelial cells. Proper adhesion to the BM is pivotal in epithelial cell function and survival. Type IV collagens are the predominant components of all types of BMs, that form an irregular, polygonal lattice and serve as a scaffold for numerous other BM components and BM-associated cells. Mutations in the ubiquitous human BM components COL4A1 and COL4A2 cause a multisystem disorder involving nephropathy. Affected patients develop renal dysfunction and chronic kidney failure with or without hematuria. Mouse Col4a1 and Col4a2 mutants recapitulate the human symptoms. In vertebrates, excretion is accomplished by the kidneys and by the Malpighian tubules in insects, including the fruit fly Drosophila. Our present results with dominant, temperature-sensitive mutation of the Drosophila col4a1 gene demonstrate altered integrin expression and amplified effects of mechanical stress on the Malpighian epithelial cytoskeleton. PMID:27077087

  7. SFRR-E Young Investigator AwardeeαB-crystallin modulation after acute exercise in skeletal muscle: the role of oxidative stress and fiber composition.

    PubMed

    Grazioli, Elisa; Dimauro, Ivan; Mercatelli, Neri; Barone, Rosario; Macaluso, Filippo; Fittipaldi, Simona; Di Felice, Valentina; Caporossi, Daniela

    2014-10-01

    αB-crystallin (CRYAB) is a member of the small heat shock proteins implicated in various biological functions, particularly in skeletal muscle where it is involved in adaptive remodelling processes, activation of gene transcription and stabilization of nascent proteins.In this research we analysed αB-crystallin' response in mouse gastrocnemius at 15' and 30' of recovery from an acute aerobic exercise (1hour), correlating its modulation with oxidative stress level and fiber composition, red (RG) and white gastrocnemius (WG).We found for the first time that the acute exercise lead to a short term, specific increase of phospho-αB-crystallin level (pCRYAB) in the RG, while no changes were observed in the WG. Moreover, this induction was correlated with increased level of 4-hydroxynonenal (HNE),suggesting a putative role for oxidative stress in driving CRYAB, but not hsp70 or hsp27, activity during exercise. Any increased level of αB-crystallin' protein was observed neither in RG nor in WG. These data were also supported by our in vitro experiments showing a significant enhancement of pCRYAB in H2O2-treated C2C12 myotubes.Although our results seem suggest a fiber-dependent role of CRYAB, further experiments are in progress to clarify both the molecular pathway driving CRYAB phosphorylation and its fiber-specific induction after exercise -induced oxidative stress.This work was supported by MIUR - PRIN 2012 grant. PMID:26461288

  8. Arg Kinase-binding Protein 2 (ArgBP2) Interaction with α-Actinin and Actin Stress Fibers Inhibits Cell Migration*

    PubMed Central

    Anekal, Praju Vikas; Yong, Jeffery; Manser, Ed

    2015-01-01

    Cell migration requires dynamic remodeling of the actomyosin network. We report here that an adapter protein, ArgBP2, is a component of α-actinin containing stress fibers and inhibits migration. ArgBP2 is undetectable in many commonly studied cancer-derived cell lines. COS-7 and HeLa cells express ArgBP2 (by Western analysis), but expression was detectable only in approximately half the cells by immunofluorescence. Short term clonal analysis demonstrated 0.2–0.3% of cells switch ArgBP2 expression (on or off) per cell division. ArgBP2 can have a fundamental impact on the actomyosin network: ArgBP2 positive COS-7 cells, for example, are clearly distinguishable by their denser actomyosin (stress fiber) network. ArgBP2γ binding to α-actinin appears to underlie its ability to localize to stress fibers and decrease cell migration. We map a small α-actinin binding region in ArgBP2 (residues 192–228) that is essential for these effects. Protein kinase A phosphorylation of ArgBP2γ at neighboring Ser-259 and consequent 14-3-3 binding blocks its interaction with α-actinin. ArgBP2 is known to be down-regulated in some aggressively metastatic cancers. Our work provides a biochemical explanation for the anti-migratory effect of ArgBP2. PMID:25429109

  9. Estimates of frequency-dependent compressibility from a quasistatic double-porosity model

    SciTech Connect

    Berryman, J. G.; Wang, H. F.

    1998-09-16

    Gassmann's relationship between the drained and undrained bulk modulus of a porous medium is often used to relate the dry bulk modulus to the saturated bulk modulus for elastic waves, because the compressibility of air is considered so high that the dry rock behaves in a drained fashion and the frequency of elastic waves is considered so high that the saturated rock behaves in an undrained fashion. The bulk modulus calculated from ultrasonic velocities, however, often does not match the Gassmann prediction. Mavko and Jizba examined how local flow effects and unequilibrated pore pressures can lead to greater stiffnesses. Their conceptual model consists of a distribution of porosities obtained from the strain-versus-confining-pressure behavior. Stiff pores that close at higher confining pressures are considered to remain undrained (unrelaxed) while soft pores drain even for high-frequency stress changes. If the pore shape distribution is bimodal, then the rock approximately satisfies the assumptions of a double-porosity, poroelastic material. Berryman and Wang [1995] established linear constitutive equations and identified four different time scales of ow behavior: (1) totally drained, (2) soft pores are drained but stiff pores are undrained, (3) soft and stiff pores are locally equilibrated, but undrained beyond the grain scale, and (4) both soft and stiff pores are undrained. The relative magnitudes of the four associated bulk moduli will be examined for all four moduli and illustrated for several sandstones.

  10. Frequency-dependence of Vmax in K-depolarized guinea pig ventricle: effects of nifedipine and verapamil.

    PubMed

    Woods, J P; West, T C

    1985-01-01

    Right ventricular strips from guinea pig hearts were used to compare the effects of nifedipine and verapamil on the maximal upstroke velocity (Vmax) of rapid depolarization in potassium-depolarized preparations. The Vmax was used as an indirect measure of the slow inward current (Isi). Barium (0.8 mM) was added to the Tyrode solution to restore excitability of the K-depolarized tissue. The effects of nifedipine and verapamil on rested state Vmax (VmaxRS), frequency-dependent changes in Vmax, and recovery of Vmax as a function of diastolic interval were studied. The depression of Vmax at rested state (RS), following 3-5-min rest, was concentration-dependent for both drugs, although the effect of nifedipine was greater. The percentage depression of VmaxRS by nifedipine was 24.3 +/- 6.4 at 10(-8)M, 51.3 +/- 2.6 at 5 X 10(-8)M, and 74.0 +/- 1.0 at 10(-7)M. For verapamil the values were 6.2 +/- 3.8 at 10(-7)M, 13.1 +/- 0.9 at 5 X 10(-7)M, and 42.0 +/- 0.5 at 10(-6)M. The depression of Vmax by each drug was frequency-dependent over a range from 0.05 to 2.0 Hz. Frequency-dependence was quantitatively greater with verapamil. The kinetics of recovery of Vmax were assessed by means of paired stimuli given at varying diastolic intervals during recovery from a RS depolarization. The recovery curve was biexponential. In the drug-free condition, the time constant for the first phase of recovery (Tr1) was 140 +/- 12 ms and the time constant for the second phase (Tr2) was 2689 +/- 146 ms.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2580143

  11. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    SciTech Connect

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-12-31

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  12. Capacitively-Coupled Resistivity measurements to determine frequency dependent electrical parameters in periglacial environment - theoretical considerations and first field tests.

    NASA Astrophysics Data System (ADS)

    Przyklenk, A.; Hördt, A.; Radić, T.

    2016-05-01

    Capacitively-Coupled Resistivity (CCR) is conventionally used to emulate DC resistivity measurements and may provide important information about the ice content of material in periglacial areas. The application of CCR theoretically enables the determination of both electrical parameters, i.e. the resistivity and the electrical permittivity, by analyzing magnitude and phase shift spectra. The electrical permittivity may dominate the impedance, especially in periglacial areas or regions of hydrogeological interest. However, previous theoretical work suggested that the phase shift may strongly depend on electrode height above ground, implying that electrode height must be known with great accuracy to determine electrical permittivity. Here, we demonstrate with laboratory test measurements, theoretical modelling and by analysing the Jacobian matrix of the inversion, that the sensitivity towards electrode height is drastically reduced if the electrical permittivity is frequency dependent in a way that is typical for ice. For the fist time, we used a novel broadband CCR device "Chameleon" for a field test located in one of the ridge galleries beneath the crest of Mount Zugspitze. A permanently ice covered bottom of a tunnel was examined. For the inversion of the measured spectra, the frequency dependance of the electrical parameters was parameterized in 3 different ways. A Debye Model for pure ices, a Cole-Cole Model for pure ices and a dual Cole-Cole Model including interfacial water additionally. The frequency-dependent resistivity and permittivity spectra obtained from the inversion, including low and high frequency limits, agree reasonably well with laboratory and field measurements reported in the literature.

  13. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-12-01

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  14. Capacitively-Coupled Resistivity measurements to determine frequency dependent electrical parameters in periglacial environment - theoretical considerations and first field tests

    NASA Astrophysics Data System (ADS)

    Przyklenk, A.; Hördt, A.; Radić, T.

    2016-05-01

    Capacitively-Coupled Resistivity (CCR) is conventionally used to emulate DC resistivity measurements and may provide important information about the ice content of material in periglacial areas. The application of CCR theoretically enables the determination of both electrical parameters, i.e. the resistivity and the electrical permittivity, by analyzing magnitude and phase shift spectra. The electrical permittivity may dominate the impedance, especially in periglacial areas or regions of hydrogeological interest. However, previous theoretical work suggested that the phase shift may strongly depend on electrode height above ground, implying that electrode height must be known with great accuracy to determine electrical permittivity. Here, we demonstrate with laboratory test measurements, theoretical modelling and by analysing the Jacobian matrix of the inversion, that the sensitivity towards electrode height is drastically reduced if the electrical permittivity is frequency dependent in a way that is typical for ice. For the fist time, we used a novel broadband CCR device "Chameleon" for a field test located in one of the ridge galleries beneath the crest of Mount Zugspitze. A permanently ice covered bottom of a tunnel was examined. For the inversion of the measured spectra, the frequency dependance of the electrical parameters was parameterized in 3 different ways. A Debye Model for pure ices, a Cole-Cole Model for pure ices and a dual Cole-Cole Model including interfacial water additionally. The frequency-dependent resistivity and permittivity spectra obtained from the inversion, including low and high frequency limits, agree reasonably well with laboratory and field measurements reported in the literature.

  15. Conditional knockout of Mn-SOD targeted to type IIB skeletal muscle fibers increases oxidative stress and is sufficient to alter aerobic exercise capacity

    PubMed Central

    Lustgarten, Michael S.; Jang, Youngmok C.; Liu, Yuhong; Muller, Florian L.; Qi, Wenbo; Steinhelper, Mark; Brooks, Susan V.; Larkin, Lisa; Shimizu, Takahiko; Shirasawa, Takuji; McManus, Linda M.; Bhattacharya, Arunabh; Richardson, Arlan

    2009-01-01

    In vitro studies of isolated skeletal muscle have shown that oxidative stress is limiting with respect to contractile function. Mitochondria are a potential source of muscle function-limiting oxidants. To test the hypothesis that skeletal muscle-specific mitochondrial oxidative stress is sufficient to limit muscle function, we bred mice expressing Cre recombinase driven by the promoter for the inhibitory subunit of troponin (TnIFast-iCre) with mice containing a floxed Sod2 (Sod2fl/fl) allele. Mn-SOD activity was reduced by 82% in glycolytic (mainly type II) muscle fiber homogenates from young TnIFastCreSod2fl/fl mice. Furthermore, Mn-SOD content was reduced by 70% only in type IIB muscle fibers. Aconitase activity was decreased by 56%, which suggests an increase in mitochondrial matrix superoxide. Mitochondrial superoxide release was elevated more than twofold by mitochondria isolated from glycolytic skeletal muscle in TnIFastCreSod2fl/fl mice. In contrast, the rate of mitochondrial H2O2 production was reduced by 33%, and only during respiration with complex II substrate. F2-isoprostanes were increased by 36% in tibialis anterior muscles isolated from TnIFastCreSod2fl/fl mice. Elevated glycolytic muscle-specific mitochondrial oxidative stress and damage in TnIFastCreSod2fl/fl mice were associated with a decreased ability of the extensor digitorum longus and gastrocnemius muscles to produce contractile force as a function of time, whereas force production by the soleus muscle was unaffected. TnIFastCreSod2fl/fl mice ran 55% less distance on a treadmill than wild-type mice. Collectively, these data suggest that elevated mitochondrial oxidative stress and damage in glycolytic muscle fibers are sufficient to reduce contractile muscle function and aerobic exercise capacity. PMID:19776389

  16. Stress-Dependent Matrix Cracking in 2D Woven SiC-Fiber Reinforced Melt-Infiltrated SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2003-01-01

    The matrix cracking of a variety of SiC/SiC composites has been characterized for a wide range of constituent variation. These composites were fabricated by the 2-dimensional lay-up of 0/90 five-harness satin fabric consisting of Sylramic fiber tows that were then chemical vapor infiltrated (CVI) with BN, CVI with SiC, slurry infiltrated with SiC particles followed by molten infiltration of Si. The composites varied in number of plies, the number of tows per length, thickness, and the size of the tows. This resulted in composites with a fiber volume fraction in the loading direction that ranged from 0.12 to 0.20. Matrix cracking was monitored with modal acoustic emission in order to estimate the stress-dependent distribution of matrix cracks. It was found that the general matrix crack properties of this system could be fairly well characterized by assuming that no matrix cracks originated in the load-bearing fiber, interphase, chemical vapor infiltrated Sic tow-minicomposites, i.e., all matrix cracks originate in the 90 degree tow-minicomposites or the large unreinforced Sic-Si matrix regions. Also, it was determined that the larger tow size composites had a much narrower stress range for matrix cracking compared to the standard tow size composites.

  17. Formation of contractile networks and fibers in the medial cell cortex through myosin-II turnover, contraction, and stress-stabilization.

    PubMed

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, H Daniel; Jedlicka, Sabrina S; Vavylonis, Dimitrios

    2015-01-01

    The morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked fibers along the contacting surface. The motor activity and minifilament assembly of non-muscle myosin-II is an important component of cortical cytoskeletal remodeling during mechanosensing. We used experiments and computational modeling to study cortical myosin-II dynamics in adhered cells. Confocal microscopy was used to image the medial cell cortex of HeLa cells stably expressing myosin regulatory light chain tagged with GFP (MRLC-GFP). The distribution of MRLC-GFP fibers and focal adhesions was classified into three types of network morphologies. Time-lapse movies show: myosin foci appearance and disappearance; aligning and contraction; stabilization upon alignment. Addition of blebbistatin, which perturbs myosin motor activity, leads to a reorganization of the cortical networks and to a reduction of contractile motions. We quantified the kinetics of contraction, disassembly and reassembly of myosin networks using spatio-temporal image correlation spectroscopy (STICS). Coarse-grained numerical simulations include bipolar minifilaments that contract and align through specified interactions as basic elements. After assuming that minifilament turnover decreases with increasing contractile stress, the simulations reproduce stress-dependent fiber formation in between focal adhesions above a threshold myosin concentration. The STICS correlation function in simulations matches the function measured in experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. PMID:25641802

  18. Dynamics of electronic transitions and frequency dependence of negative capacitance in semiconductor diodes under high forward bias

    SciTech Connect

    Bansal, Kanika; Datta, Shouvik; Henini, Mohamed; Alshammari, Marzook S.

    2014-09-22

    We observed qualitatively dissimilar frequency dependence of negative capacitance under high charge injection in two sets of functionally different junction diodes: III-V based light emitting and Si-based non-light emitting diodes. Using an advanced approach based on bias activated differential capacitance, we developed a generalized understanding of negative capacitance phenomenon which can be extended to any diode based device structure. We explained the observations as the mutual competition of fast and slow electronic transition rates which are different in different devices. This study can be useful in understanding the interfacial effects in semiconductor heterostructures and may lead to superior device functionality.

  19. Effect of chemically active medium on frequency dependence of magnetic losses in soft magnetic Fe-based amorphous alloys

    NASA Astrophysics Data System (ADS)

    Skulkina, N. A.; Ivanov, O. A.; Stepanova, E. A.; Pavlova, I. O.

    2013-03-01

    The effects of the electrolytic hydrogenation and oxidation and of the interaction of the surface ribbon with water and vapor on the frequency dependence of magnetic losses per magnetization-reversal cycle are studied based on the example of soft magnetic Fe81B13Si4C2 amorphous alloy, which exhibits a positive saturation magnetostriction. It was shown that, after the hydrogenation and oxidation of soft magnetic amorphous alloys, their frequency dependences of magnetic losses per magnetization-reversal cycle, which are reduced to unit induction, exhibit groups of hydrogen- and oxygen-related peaks in the frequency ranges of 35-55 and 55-80 Hz, which can be explained by the formation of O- A and H- A atomic pairs (where A are atoms of alloy components) and their reorientation in a magnetic field in the course of magnetization reversal at certain frequencies. The formation of analogous groups of peaks for samples of soft magnetic Fe-based amorphous alloys was observed after the interaction of the ribbon surface with water and vapor and after heat treatment in air. This fact confirms the possibility of the hydrogenation and oxidation of the alloys during the aforementioned processes.

  20. Frequency-dependent reduction of voltage-gated sodium current modulates retinal ganglion cell response rate to electrical stimulation

    NASA Astrophysics Data System (ADS)

    Tsai, David; Morley, John W.; Suaning, Gregg J.; Lovell, Nigel H.

    2011-10-01

    The ability to elicit visual percepts through electrical stimulation of the retina has prompted numerous investigations examining the feasibility of restoring sight to the blind with retinal implants. The therapeutic efficacy of these devices will be strongly influenced by their ability to elicit neural responses that approximate those of normal vision. Retinal ganglion cells (RGCs) can fire spikes at frequencies greater than 200 Hz when driven by light. However, several studies using isolated retinas have found a decline in RGC spiking response rate when these cells were stimulated at greater than 50 Hz. It is possible that the mechanism responsible for this decline also contributes to the frequency-dependent 'fading' of electrically evoked percepts recently reported in human patients. Using whole-cell patch clamp recordings of rabbit RGCs, we investigated the causes for the spiking response depression during direct subretinal stimulation of these cells at 50-200 Hz. The response depression was not caused by inhibition arising from the retinal network but, instead, by a stimulus-frequency-dependent decline of RGC voltage-gated sodium current. Under identical experimental conditions, however, RGCs were able to spike at high frequency when driven by light stimuli and intracellular depolarization. Based on these observations, we demonstrated a technique to prevent the spiking response depression.

  1. Pervasive recombination and sympatric genome diversification driven by frequency-dependent selection in Borrelia burgdorferi, the Lyme disease bacterium.

    PubMed

    Haven, James; Vargas, Levy C; Mongodin, Emmanuel F; Xue, Vincent; Hernandez, Yozen; Pagan, Pedro; Fraser-Liggett, Claire M; Schutzer, Steven E; Luft, Benjamin J; Casjens, Sherwood R; Qiu, Wei-Gang

    2011-11-01

    How genomic diversity within bacterial populations originates and is maintained in the presence of frequent recombination is a central problem in understanding bacterial evolution. Natural populations of Borrelia burgdorferi, the bacterial agent of Lyme disease, consist of diverse genomic groups co-infecting single individual vertebrate hosts and tick vectors. To understand mechanisms of sympatric genome differentiation in B. burgdorferi, we sequenced and compared 23 genomes representing major genomic groups in North America and Europe. Linkage analysis of >13,500 single-nucleotide polymorphisms revealed pervasive horizontal DNA exchanges. Although three times more frequent than point mutation, recombination is localized and weakly affects genome-wide linkage disequilibrium. We show by computer simulations that, while enhancing population fitness, recombination constrains neutral and adaptive divergence among sympatric genomes through periodic selective sweeps. In contrast, simulations of frequency-dependent selection with recombination produced the observed pattern of a large number of sympatric genomic groups associated with major sequence variations at the selected locus. We conclude that negative frequency-dependent selection targeting a small number of surface-antigen loci (ospC in particular) sufficiently explains the maintenance of sympatric genome diversity in B. burgdorferi without adaptive divergence. We suggest that pervasive recombination makes it less likely for local B. burgdorferi genomic groups to achieve host specialization. B. burgdorferi genomic groups in the northeastern United States are thus best viewed as constituting a single bacterial species, whose generalist nature is a key to its rapid spread and human virulence. PMID:21890743

  2. Changes of nitric oxide synthase-containing nerve fibers and parameters for oxidative stress after unilateral cavernous nerve resection or manuplation in rat penis.

    PubMed

    Ozkara, Hamdi; Alan, Cabir; Atukeren, Pinar; Uyaner, Ilhan; Demirci, Cihan; Gümüştaş, M Koray; Alici, Bulent

    2006-06-30

    After pelvic surgeries such as radical prostatectomy, two major complications--urinary incontinence and erectile dysfunction (ED) may occur. Etiologies for ED are multiple pathologic mediators/systems. Oxidative stress, which is known to be induced after surgical trauma, could be a cause of ED. The purposes of in this study are to investigate the effect of unilateral manipulation/ dissection and resection of the cavernous nerve (neurotomy) to NOS (nitric oxide synthase)-containing nerve fibers and pressure after electro stimulation in rat corpus cavernosum, and to determine whether these procedures would produce oxidative stress within rat cavernous tissue 3 weeks and 6 months after the operation. Male rats were divided into 5 groups. Rats in groups 1 and 2 underwent unilateral cavernous nerve manipulation and sacrificed 3 weeks and 6 months after the operation, respectively. Rats in groups 3 and 4 underwent unilateral neurotomy of a 5-mm. segment of the cavernous nerve, and they were sacrificed 3 weeks and 6 months after nerve ablation, respectively. Group 5 rats were control animals for biochemical analysis. Intracavernous pressure following electro stimulation reduced is significantly 3 weeks after unilateral resection, as compared to that of the manipulated nerve (P < 0.05), and it recovered 6 months after neurotomy. The recovery was also confirmed by NADPH (nicotinamide adenine dinucleotide phosphate) diaphorase staining in neurotomy groups. Lipid peroxidation, which is an indicater of oxidative stress, was determined by measuring thiobarbituric acid reacting substance (TBARS) levels and superoxide dismutase (SOD) activity. These markers indicated that unilateral cavernous nerve manipulation or resection produced oxidative stress within rat corpus cavernosum. Oxidative stress was more prominent 3 weeks after unilateral neurotomy (P < 0.05). Also, compared to the control animal group, oxidative stress was observed three weeks after manipulation of unilateral

  3. Stress

    MedlinePlus

    ... sudden negative change, such as losing a job, divorce, or illness Traumatic stress, which happens when you ... stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  4. Interneuron Transcriptional Dysregulation Causes Frequency-Dependent Alterations in the Balance of Inhibition and Excitation in Hippocampus

    PubMed Central

    Bartley, Aundrea F.; Lucas, Elizabeth K.; Brady, Lillian J.; Li, Qin; Hablitz, John J.; Cowell, Rita M.

    2015-01-01

    Circuit dysfunction in complex brain disorders such as schizophrenia and autism is caused by imbalances between inhibitory and excitatory synaptic transmission (I/E). Short-term plasticity differentially alters responses from excitatory and inhibitory synapses, causing the I/E ratio to change as a function of frequency. However, little is known about I/E ratio dynamics in complex brain disorders. Transcriptional dysregulation in interneurons, particularly parvalbumin interneurons, is a consistent pathophysiological feature of schizophrenia. Peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator that in hippocampus is highly concentrated in inhibitory interneurons and regulates parvalbumin transcription. Here, we used PGC-1α−/− mice to investigate effects of interneuron transcriptional dysregulation on the dynamics of the I/E ratio at the synaptic and circuit level in hippocampus. We find that loss of PGC-1α increases the I/E ratio onto CA1 pyramidal cells in response to Schaffer collateral stimulation in slices from young adult mice. The underlying mechanism is enhanced basal inhibition, including increased inhibition from parvalbumin interneurons. This decreases the spread of activation in CA1 and dramatically limits pyramidal cell spiking, reducing hippocampal output. The I/E ratio and CA1 output are partially restored by paired-pulse stimulation at short intervals, indicating frequency-dependent effects. However, circuit dysfunction persists, indicated by alterations in kainate-induced gamma oscillations and impaired nest building. Together, these results show that transcriptional dysregulation in hippocampal interneurons causes frequency-dependent alterations in I/E ratio and circuit function, suggesting that PGC-1α deficiency in psychiatric and neurological disorders contributes to disease by causing functionally relevant alterations in I/E balance. SIGNIFICANCE STATEMENT Alteration in the inhibitory and

  5. Frequency-dependent hydrodynamic inductance and the determination of the thermal and quantum noise of a superfluid gyroscope

    SciTech Connect

    Chui, Talso; Penanen, Konstantin

    2005-04-01

    We reexamine mass flow in a superfluid gyroscope containing a superfluid Josephson weak link. We introduce a frequency-dependent hydrodynamic inductance to account for an oscillatory flow of the normal fluid component in the sensing loop. With this hydrodynamic inductance, we derive the thermal phase noise, and hence the thermal rotational noise of the gyroscope. We examine the thermodynamic stability of the system based on an analysis of the free energy. We derive a quantum phase noise, which is analogous to the zero-point motion of a simple harmonic oscillator. The configuration of the studied gyroscope is analogous to a conventional superconducting RF SQUID. We show that the gyroscope has very low intrinsic noise (1.9x10{sup -13} rad s{sup -1}/{radical}(Hz)), and it can potentially be applied to study general relativity, Earth science, and to improve global positioning systems (GPS)

  6. Equation-of-motion approach to frequency-dependent nuclear electric shielding tensors in the HF molecule

    NASA Astrophysics Data System (ADS)

    Lazzeretti, P.; Rossi, E.; Zanasi, R.

    1983-03-01

    The frequency dependence of the dipole electric polarizability and electric shielding tensors of hydrogen and fluorine nuclei in the HF molecule has been investigated by means of the lower approximations to the equation-of-motion method-namely, the single-transition approximation (STA), the Tamm-Dancoff approximation (TDA), and the random-phase approximation (RPA)-within the framework of dipole length, velocity, acceleration, and mixed formalisms. Some relations are proved, concerning the relative magnitude of TDA and RPA polarizabilities and Thomas-Reich-Kuhn sum rules in the various formalisms. An interdependence between dynamic polarizabilities and nuclear shielding factors has been found. Good agreement with experimental static shielding factors has been obtained in the RPA calculation.

  7. Quantitative ultrasound monitoring of breast tumor response to chemotherapy by analysis of frequency-dependent attenuation and backscattered power

    NASA Astrophysics Data System (ADS)

    Tadayyon, H.; Sannachi, Lakshmanan; Czarnota, G. J.

    2014-03-01

    Conventional assessment of tumor response to anti-cancer therapy is based on measurements of tumor size (RECIST criteria). However, these measurements are typically a late indicator of tumor response (detectable after several weeks to a few months). There is currently no method to assess tumor response early in the course of therapy. In this study, quantitative ultrasound (QUS) methods were used to characterize the frequency-dependent attenuation and backscatter properties of treatment responding and non-responding tumors in breast cancer patients receiving neoadjuvant chemotherapy. In addition, we assessed the effects of attenuation correction of the power spectrum on the ability to differentiate between responding and non-responding tumors during the course of treatment.

  8. Determination of acoustic properties of thin polymer films utilizing the frequency dependence of the reflection coefficient of ultrasound

    NASA Astrophysics Data System (ADS)

    Tohmyoh, Hironori; Sakamoto, Yuhei

    2015-11-01

    This paper reports on a technique to measure the acoustic properties of a thin polymer film utilizing the frequency dependence of the reflection coefficient of ultrasound reflected back from a system comprising a reflection plate, the film, and a material that covers the film. The frequency components of the echo reflected from the back of the plate, where the film is attached, take their minimum values at the resonant frequency, and from these frequency characteristics, the acoustic impedance, sound velocity, and the density of the film can be determined. We applied this technique to characterize an ion exchange membrane, which has high water absorbability, and successfully determined the acoustic properties of the membrane without getting it wet.

  9. Frequency-dependent study of solid 4He contained in a rigid double-torus torsional oscillator

    NASA Astrophysics Data System (ADS)

    Choi, Jaewon; Shin, Jaeho; Kim, Eunseong

    2015-10-01

    The rigid double-torus torsional oscillator (TO) is constructed to reduce any elastic effects inherent to complicated TO structures, allowing explicit probing for a genuine supersolid signature. We investigated the frequency- and temperature-dependent response of the rigid double-torus TO containing solid 4He with 0.6-ppb 3He and 300-ppb 3He . We did not find evidence to support the frequency-independent contribution proposed to be a property of supersolid helium. The frequency-dependent contribution which comes from the simple elastic effect of solid helium coupled to the TO is essentially responsible for the entire response. The magnitude of the period drop is linearly proportional to f2, indicating that the responses observed in this TO are mostly caused by the overshoot of "soft" solid helium against the wall of the torus. Dissipation of the rigid TO is vastly suppressed compared to that of nonrigid TOs.

  10. Black Beans, Fiber, and Antioxidant Capacity Pilot Study: Examination of Whole Foods vs. Functional Components on Postprandial Metabolic, Oxidative Stress, and Inflammation in Adults with Metabolic Syndrome.

    PubMed

    Reverri, Elizabeth J; Randolph, Jody M; Steinberg, Francene M; Kappagoda, C Tissa; Edirisinghe, Indika; Burton-Freeman, Britt M

    2015-08-01

    Beans (Phaseolus vulgaris) contain bioactive components with functional properties that may modify cardiovascular risk. The aims of this pilot study were to evaluate the ability of black beans to attenuate postprandial metabolic, oxidative stress, and inflammatory responses and determine relative contribution of dietary fiber and antioxidant capacity of beans to the overall effect. In this randomized, controlled, crossover trial, 12 adults with metabolic syndrome (MetS) consumed one of three meals (black bean (BB), fiber matched (FM), and antioxidant capacity matched (AM)) on three occasions that included blood collection before (fasting) and five hours postprandially. Insulin was lower after the BB meal, compared to the FM or AM meals (p < 0.0001). A significant meal × time interaction was observed for plasma antioxidant capacity (p = 0.002) revealing differences over time: AM > BB > FM. Oxidized LDL (oxLDL) was not different by meal, although a trend for declining oxLDL was observed after the BB and AM meals at five hours compared to the FM meal. Triglycerides and interleukin-6 (IL-6) increased in response to meals (p < 0.0001). Inclusion of black beans with a typical Western-style meal attenuates postprandial insulin and moderately enhances postprandial antioxidant endpoints in adults with MetS, which could only be partly explained by fiber content and properties of antioxidant capacity. PMID:26225995

  11. Black Beans, Fiber, and Antioxidant Capacity Pilot Study: Examination of Whole Foods vs. Functional Components on Postprandial Metabolic, Oxidative Stress, and Inflammation in Adults with Metabolic Syndrome

    PubMed Central

    Reverri, Elizabeth J.; Randolph, Jody M.; Steinberg, Francene M.; Kappagoda, C. Tissa; Edirisinghe, Indika; Burton-Freeman, Britt M.

    2015-01-01

    Beans (Phaseolus vulgaris) contain bioactive components with functional properties that may modify cardiovascular risk. The aims of this pilot study were to evaluate the ability of black beans to attenuate postprandial metabolic, oxidative stress, and inflammatory responses and determine relative contribution of dietary fiber and antioxidant capacity of beans to the overall effect. In this randomized, controlled, crossover trial, 12 adults with metabolic syndrome (MetS) consumed one of three meals (black bean (BB), fiber matched (FM), and antioxidant capacity matched (AM)) on three occasions that included blood collection before (fasting) and five hours postprandially. Insulin was lower after the BB meal, compared to the FM or AM meals (p < 0.0001). A significant meal × time interaction was observed for plasma antioxidant capacity (p = 0.002) revealing differences over time: AM > BB > FM. Oxidized LDL (oxLDL) was not different by meal, although a trend for declining oxLDL was observed after the BB and AM meals at five hours compared to the FM meal. Triglycerides and interleukin-6 (IL-6) increased in response to meals (p < 0.0001). Inclusion of black beans with a typical Western-style meal attenuates postprandial insulin and moderately enhances postprandial antioxidant endpoints in adults with MetS, which could only be partly explained by fiber content and properties of antioxidant capacity. PMID:26225995

  12. Forskolin Suppresses Delayed-Rectifier K+ Currents and Enhances Spike Frequency-Dependent Adaptation of Sympathetic Neurons

    PubMed Central

    Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels. PMID:25962132

  13. In Vivo and In Silico Investigation Into Mechanisms of Frequency Dependence of Repolarization Alternans in Human Ventricular Cardiomyocytes

    PubMed Central

    Zhou, Xin; Bueno-Orovio, Alfonso; Orini, Michele; Hanson, Ben; Hayward, Martin; Taggart, Peter; Lambiase, Pier D.; Burrage, Kevin

    2016-01-01

    Rationale: Repolarization alternans (RA) are associated with arrhythmogenesis. Animal studies have revealed potential mechanisms, but human-focused studies are needed. RA generation and frequency dependence may be determined by cell-to-cell variability in protein expression, which is regulated by genetic and external factors. Objective: To characterize in vivo RA in human and to investigate in silico using human models, the ionic mechanisms underlying the frequency-dependent differences in RA behavior identified in vivo. Methods and Results: In vivo electrograms were acquired at 240 sites covering the epicardium of 41 patients at 6 cycle lengths (600–350 ms). In silico investigations were conducted using a population of biophysically detailed human models incorporating variability in protein expression and calibrated using in vivo recordings. Both in silico and in vivo, 2 types of RA were identified, with Fork- and Eye-type restitution curves, based on RA persistence or disappearance, respectively, at fast pacing rates. In silico simulations show that RA are strongly correlated with fluctuations in sarcoplasmic reticulum calcium, because of strong release and weak reuptake. Large L-type calcium current conductance is responsible for RA disappearance at fast frequencies in Eye-type (30% larger in Eye-type versus Fork-type; P<0.01), because of sarcoplasmic reticulum Ca2+ ATPase pump potentiation caused by frequency-induced increase in intracellular calcium. Large Na+/Ca2+ exchanger current is the main driver in translating Ca2+ fluctuations into RA. Conclusions: In human in vivo and in silico, 2 types of RA are identified, with RA persistence/disappearance as frequency increases. In silico, L-type calcium current and Na+/Ca2+ exchanger current determine RA human cell-to-cell differences through intracellular and sarcoplasmic reticulum calcium regulation. PMID:26602864

  14. The stress-strain relationships in wood and fiber-reinforced plastic laminae of reinforced glued-laminated wood beams

    NASA Astrophysics Data System (ADS)

    Tingley, Daniel Arthur

    The reinforcement of wood and wood composite structural products to improve their mechanical properties has been in practice for many years. Recently, the use of high-strength fiber-reinforced plastic (FRP) as a reinforcement in such applications has been commercialized. The reinforcement is manufactured using a standard pultrusion process or alternatively a sheet-forming process commonly referred to as "pulforming". The high-modulus fibers are predominately unidirectional, although off-axis fibers are often used to enhance off-axis properties. The fibers used are either of a single type or multiple types, which are called "hybrids". Unidirectional, single, and hybrid fiber FRP physical properties and characteristics were compared to wood. Full-scale reinforced glulams were tested. Aramid-reinforced plastics (ARP) used as tensile reinforcements were found to be superior in strength applications to other types of FRP made with fiber, such as carbon and fiberglass. Carbon/aramid-reinforced plastic (CARP) was shown to be superior in both modulus and strength design situations. Fiberglass was shown to be suitable only in hybrid situations with another fiber such as aramid or carbon and only in limited use situations where modulus was a design criteria. The testing and analysis showed that the global response of reinforced glulam beams is controlled by localized strength variations in the wood such as slope of grain, knots, finger joints, etc. in the tensile zone. The elemental tensile strains in the extreme wood tensile laminae, due to global applied loads, were found to be well below the strain at failure in clear wood samples recovered from the failure area. Two areas affecting the relationship between the wood and the FRP were investigated: compatibility of the wood and FRP materials and interface characteristics between the wood and FRP. The optimum strain value at yield point for an FRP was assessed to be slightly higher than the clear wood value in tension for a

  15. On the thermally-induced residual stresses in thick fiber-thermoplastic matrix (PEEK) cross-ply laminated plates

    NASA Technical Reports Server (NTRS)

    Hu, Shoufeng; Nairn, John A.

    1992-01-01

    An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. We considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.

  16. The use of lamination analysis and the Tsai-Wu stress criterion in ASME standards for fiber reinforced plastic vessels

    SciTech Connect

    Conlisk, P.J.

    1996-12-01

    The ASME publishes two standards on FRP (Fiber Reinforced Plastic) vessels: Section X of the Boiler and Pressure Vessel Code, and RTP-1 (Reinforced Thermoset Plastic Corrosion Resistant Equipment), which concerns low pressure FRP vessels. The paper describes the application of lamination theory and the Tsai-Wu tensor strength criterion to qualifying designs to the two standards. Numerical examples of application of the theory to typical laminates subjected to pure membrane, pure bending, and combined membrane and bending loads are presented.

  17. Asymmetric and frequency-dependent pollinator-mediated interactions may influence competitive displacement in two vernal pool plants.

    PubMed

    Runquist, Ryan Briscoe; Stanton, Maureen L

    2013-02-01

    A plant species immigrating into a community may experience a rarity disadvantage due to competition for the services of pollinators. These negative reproductive interactions have the potential to lead to competitive displacement or exclusion of a species from a site. In this study, we used one- and two-species arrays of potted plants to test for density and frequency dependence in pollinator-mediated and above-ground intraspecific and interspecific competition between two species of Limnanthes that have overlapping ranges, but rarely occur in close sympatry. There were asymmetric competitive effects; the species responded differently to their frequency within 16-plant replacement series arrays. Limnanthes douglasii rosea experienced stronger reductions in lifetime and per-flower fertility, likely due to pollinator-mediated competition with Limnanthes alba. This effect may be linked to asymmetrical competition through heterospecific pollen transfer. This study demonstrates that pollinator-mediated competition may discourage establishment of L. d. rosea in sites already occupied by its congener. PMID:23134452

  18. Determination of the magnetocrystalline anisotropy constant from the frequency dependence of the specific absorption rate in a frozen ferrofluid

    NASA Astrophysics Data System (ADS)

    Mosher, Nathaniel; Perkins-Harbin, Emily; Aho, Brandon; Wang, Lihua; Kumon, Ronald; Rablau, Corneliu; Vaishnava, Prem; Tackett, Ronald; Therapeutic Biomaterials Group Team

    2015-03-01

    Colloidal suspensions of superparamagnetic nanoparticles, known as ferrofluids, are promising candidates for the mediation of magnetic fluid hyperthermia (MFH). In such materials, the dissipation of heat occurs as a result of the relaxation of the particles in an applied ac magnetic field via the Brownian and Neel mechanisms. In order to isolate and study the role of the Neel mechanism in this process, the sample can be frozen, using liquid nitrogen, in order to suppress the Brownian relaxation. In this experiment, dextran-coated Fe3O4 nanoparticles synthesized via co-precipitation and characterized via transmission electron microscopy and dc magnetization are used as MFH mediators over the temperature range between -70 °C to -10 °C (Brownian-suppressed state). Heating the nanoparticles using ac magnetic field (amplitude ~300 Oe), the frequency dependence of the specific absorption rate (SAR) is calculated between 150 kHz and 350 kHz and used to determine the magnetocrystalline anisotropy of the sample. We would like to thank Fluxtrol, Inc. for their help with this project

  19. Time-domain response of a metal detector to a target buried in soil with frequency-dependent magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Das, Y.

    2006-05-01

    The work reported in this paper is a part of on-going studies to clarify how and to what extent soil electromagnetic properties affect the performance of induction metal detectors widely used in humanitarian demining. This paper studies the specific case of the time-domain response of a small metallic sphere buried in a non-conducting soil half-space with frequency-dependent complex magnetic susceptibility. The sphere is chosen as a simple prototype for the small metal parts in low-metal landmines, while soil with dispersive magnetic susceptibility is a good model for some soils that are known to adversely affect the performance of metal detectors. The included analysis and computations extend previous work which has been done mostly in the frequency domain. Approximate theoretical expressions for weakly magnetic soils are found to fit the experimental data very well, which allowed the estimation of soil model parameters, albeit in an ad hoc manner. Soil signal is found to exceed target signal (due to an aluminum sphere of radius 0.0127 m) in many cases, even for the weakly magnetic Cambodian laterite used in the experiments. How deep a buried target is detected depends on many other factors in addition to the relative strength of soil and target signals. A general statement cannot thus be made regarding detectability of a target in soil based on the presented results. However, computational results complemented with experimental data extend the understanding of the effect that soil has on metal detectors.

  20. Scanning Acoustic Microscopy Investigation of Frequency-Dependent Reflectance of Acid-Etched Human Dentin Using Homotopic Measurements

    PubMed Central

    Marangos, Orestes; Misra, Anil; Spencer, Paulette; Katz, J. Lawrence

    2013-01-01

    Composite restorations in modern restorative dentistry rely on the bond formed in the adhesive-infiltrated acid-etched dentin. The physical characteristics of etched dentin are, therefore, of paramount interest. However, characterization of the acid-etched zone in its natural state is fraught with problems stemming from a variety of sources including its narrow size, the presence of water, heterogeneity, and spatial scale dependency. We have developed a novel homotopic (same location) measurement methodology utilizing scanning acoustic microscopy (SAM). Homotopic measurements with SAM overcome the problems encountered by other characterization/ imaging methods. These measurements provide us with acoustic reflectance at the same location of both the pre- and post-etched dentin in its natural state. We have applied this methodology for in vitro measurements on dentin samples. Fourier spectra from acid-etched dentin showed amplitude reduction and shifts of the central frequency that were location dependent. Through calibration, the acoustic reflectance of acid-etched dentin was found to have complex and non-monotonic frequency dependence. These data suggest that acid-etching of dentin results in a near-surface graded layer of varying thickness and property gradations. The measurement methodology described in this paper can be applied to systematically characterize mechanical properties of heterogeneous soft layers and interfaces in biological materials. PMID:21429849

  1. A frequency-dependent log-quadratic Pn spreading model in the Northeast China and Korean peninsula

    NASA Astrophysics Data System (ADS)

    Hao, J.; Zhao, L.; Xie, X. B.; Yao, Z.

    2015-12-01

    In 9 October 2006, 25 May 2009, and 12 February 2013, North Korea conducted three successive nuclear tests near the China-Korea border. Based on 297 broadband stations distributed in East China, South Korea, and Japan, the digital seismograms from these nuclear tests are collected to investigate the geometric spreading and attenuation of seismic Pn waves in Northeast China and Korean Peninsula. A highly accurate broadband Pn-wave data set generated by North Korean nuclear tests is used to constrain parameters of a frequency-dependent log-quadratic geometric spreading function and a power-law Pn Q model. The geometric spreading function and apparent Pn wave Q is obtained for the studied area between 2.0 and 10.0 Hz. By taking the two-station amplitude ratios of the Pn spectra, followed by correcting it for the known spreading function, we can strip the effects of source and crust legs from the apparent Pn Q, and retrieve the P-wave attenuation information along the pure upper mantle path. We then use a tomographic approach to obtain the upper mantle P-wave attenuation in Northeast China and Korean Peninsula. The Pn wave spectra observed in China are compared with those recorded in Japan, and the result reveals that the high-frequency Pn signal across the oceanic path attenuated faster than those through the continental path. This work was supported by the National Natural Science Foundation of China (grants 41174048 and 41374065).

  2. Frequency-dependent ferroelectric behavior of BaMn3Ti4O14.25 at room temperature

    NASA Astrophysics Data System (ADS)

    Hossain, Muhammad E.; Liu, Shuangyi; O'Brien, Stephen; Li, Jackie

    2015-07-01

    We report the activation field and selective frequency-dependent ferroelectric behavior of BaMn3Ti4O14.25 (BMT-134) at room temperature. BMT-134, a recently discovered multiferroic complex oxide, exhibits antiferromagnetic and ferroelectric behavior and belongs to the hollandite crystal class. The microstructure can be manipulated through processing conditions to prepare a nanocrystalline textured tablet. We measured polarization-electric field (P-E) hysteresis loops and strain-electric field butterfly loops as a function of frequency in order to investigate the AC dynamics of domain switching and strain behavior. Under an electric field loading condition, a clear hysteresis loop of the electric field-displacement curve is obtained at 50 Hz, indicating that room temperature ferroelectricity is attainable under the right processing conditions. When the frequency is increased to 500 Hz, the coercive field also increases, until the frequency reaches 5 kHz, at which point the electric field versus electric displacement becomes linear indicating the limit of domain switching at high frequency.

  3. Measuring the frequency-dependent attenuation in lossy material using large time-bandwidth product ultrasound signals

    NASA Astrophysics Data System (ADS)

    Gordon, Grant A.

    1999-06-01

    Broadband signals are commonly used in ultrasonic spectroscopy to measure the frequency dependent attenuation characteristics of lossy solid media. Compared to narrowband signals, broadband signals are preferred since they do not require tedious frequency scanning and extensive data reduction efforts. Typically these broadband signals take the form of a pulse. Although the spectral range of a pulse is wide, the spectral resolution is limited by the duration of the signal. By employing signals with large time- bandwidth-products, the overall accuracy and resolution of ultrasonic spectroscopy can be improved. Expressions for the interaction of longitudinal waves, with large time- bandwidth-product, and isotropic materials are developed. The approach is effective for evaluating material with signals optimized for a frequency resolution and range of interest, but can also be used when thin materials (

  4. Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity

    PubMed Central

    van der Post, Sietse T.; Hsieh, Cho-Shuen; Okuno, Masanari; Nagata, Yuki; Bakker, Huib J.; Bonn, Mischa; Hunger, Johannes

    2015-01-01

    Because of strong hydrogen bonding in liquid water, intermolecular interactions between water molecules are highly delocalized. Previous two-dimensional infrared spectroscopy experiments have indicated that this delocalization smears out the structural heterogeneity of neat H2O. Here we report on a systematic investigation of the ultrafast vibrational relaxation of bulk and interfacial water using time-resolved infrared and sum-frequency generation spectroscopies. These experiments reveal a remarkably strong dependence of the vibrational relaxation time on the frequency of the OH stretching vibration of liquid water in the bulk and at the air/water interface. For bulk water, the vibrational relaxation time increases continuously from 250 to 550 fs when the frequency is increased from 3,100 to 3,700 cm−1. For hydrogen-bonded water at the air/water interface, the frequency dependence is even stronger. These results directly demonstrate that liquid water possesses substantial structural heterogeneity, both in the bulk and at the surface. PMID:26382651

  5. A DTI-based model for TMS using the independent impedance method with frequency-dependent tissue parameters

    NASA Astrophysics Data System (ADS)

    De Geeter, N.; Crevecoeur, G.; Dupré, L.; Van Hecke, W.; Leemans, A.

    2012-04-01

    Accurate simulations on detailed realistic head models are necessary to gain a better understanding of the response to transcranial magnetic stimulation (TMS). Hitherto, head models with simplified geometries and constant isotropic material properties are often used, whereas some biological tissues have anisotropic characteristics which vary naturally with frequency. Moreover, most computational methods do not take the tissue permittivity into account. Therefore, we calculate the electromagnetic behaviour due to TMS in a head model with realistic geometry and where realistic dispersive anisotropic tissue properties are incorporated, based on T1-weighted and diffusion-weighted magnetic resonance images. This paper studies the impact of tissue anisotropy, permittivity and frequency dependence, using the anisotropic independent impedance method. The results show that anisotropy yields differences up to 32% and 19% of the maximum induced currents and electric field, respectively. Neglecting the permittivity values leads to a decrease of about 72% and 24% of the maximum currents and field, respectively. Implementing the dispersive effects of biological tissues results in a difference of 6% of the maximum currents. The cerebral voxels show limited sensitivity of the induced electric field to changes in conductivity and permittivity, whereas the field varies approximately linearly with frequency. These findings illustrate the importance of including each of the above parameters in the model and confirm the need for accuracy in the applied patient-specific method, which can be used in computer-assisted TMS.

  6. Digging for answers: contributions of density- and frequency-dependent factors on ectoparasite burden in a social mammal.

    PubMed

    Archer, Elizabeth K; Bennett, Nigel C; Faulkes, Chris G; Lutermann, Heike

    2016-02-01

    Due to the density-dependent nature of parasite transmission parasites are generally assumed to constrain the evolution of sociality. However, evidence for a correlation between group size and parasite burden is equivocal, particularly for mammals. Host contact rates may be modified by mobility of the host and parasite as well as social barriers. In the current study, we used the common mole-rat (Cryptomys hottentotus hottentotus), a social subterranean rodent, as a model system to investigate the effect of host density and frequency of contact rates on ectoparasite burdens. To address these factors we used a study species that naturally varies in population densities and intergroup contact rates across its geographic range. We found that ectoparasite prevalence, abundance and species richness decreased with increasing host density at a regional scale. At the same time, measures of parasite burden increased with intergroup contact rates. Ectoparasite burdens decreased with colony size at the group level possibly as a result of increased grooming rates. Equating group size with population density might be too simplistic an approach when assessing parasite distributions in social mammals. Our data suggest that frequency-dependent mechanisms may play a much greater role at a population level than density-dependent mechanisms in determining parasite distributions in social species. We suggest that future studies should explicitly consider behavioural mechanisms that may affect parasite distribution. PMID:26546084

  7. The sound insulation of single leaf finite size rectangular plywood panels with orthotropic frequency dependent bending stiffness.

    PubMed

    Wareing, Robin R; Davy, John L; Pearse, John R

    2016-01-01

    Current theories for predicting the sound insulation of orthotropic materials are limited to a small range of infinite panels. This paper presents a method that allows for the prediction of the sound insulation of a finite size orthotropic panel. This method uses an equation for the forced radiation impedance of a finite size rectangular panel. This approach produces an equation that has three nested integrals. The long numerical calculation times were reduced by using approximate formulas for the azimuthally averaged forced radiation impedance. This reduced the number of nested integrals from three to two. The resulting predictions are compared to results measured using two sample sizes of four different thicknesses of plywood and one sample size of another three different thicknesses of plywood. Plywood was used for all the tests because it is somewhat orthotropic. It was found during testing that the Young's moduli of the plywood were dependent on the frequency of excitation. The influence of the frequency dependent Young's moduli was then included in the prediction method. The experimental results were also compared with a simple isotropic prediction method. PMID:26827045

  8. Frequency dependencies of the complex conductivity of type I and II superconductors are not what they seem

    NASA Astrophysics Data System (ADS)

    Beeli, Pieder

    2002-03-01

    We analyze two illustrative papers: Palmer and Tinkham on Pb [Phys. Rev. 165, 588 (1968)] and Wu, Ong and Li on YBCO [Phys. Rev. Lett. 71, 2642 (1993)]. Palmer and Tinkham claim that the excessive peak height in the transmissivity of Pb in the neighborhood of the gap frequency is “the clearest indication … that there is an anomaly [signifying non-BCS behavior] in lead.” The errors resulting from the standing waves in the quartz substrate--estimated to be less than 0.5% [Phys. Rev. 118, 990 (1960)]--are actually largely systematic and greater than 10%. Further, the failure to independently measure the normal state resistivity at frequencies above the gap may be an even larger source of error which could reconcile the peak height measurement with BCS. Next we show that Wu, Ong and Li confuse the circuit impedance (Z_c≡ V/I) with the surface wave impedance (Z_sw≡ E/H) and thereby incur significant errors when attempting to determine exponents which provide the frequency dependence of the resistivity’s real and imaginary parts.

  9. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3- mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation

    PubMed Central

    1991-01-01

    The synthetic peptide Gly-Arg-Gly-Asp-Tyr (GRGDY), which contains the RGD sequence of several adhesion molecules, was covalently grafted to the surface of otherwise poorly adhesive glass substrates and was used to determine the minimal number of ligand-receptor interactions required for complete spreading of human foreskin fibroblasts. Well- defined adhesion substrates were prepared with GRGDY between 10(-3) fmol/cm2 and 10(4) fmol/cm2. As the adhesion ligand surface concentration was varied, several distinct morphologies of adherent cells were observed and categorized. The population of fully spread cells at 4 h reached a maximum at 1 fmol/cm2, with no further increases up to 10(4) fmol/cm2. Although maximal cell spreading was obtained at 1 fmol/cm2, focal contacts and stress fibers failed to form at RGD surface concentrations below 10 fmol/cm2. The minimal peptide spacings obtained in this work correspond to 440 nm for spreading and 140 nm for focal contact formation, and are much larger than those reported in previous studies with adsorbed adhesion proteins, adsorbed RGD-albumin conjugates, or peptide-grafted polyacrylamide gels. Vitronectin receptor antiserum specific for integrin alpha V beta 3 blocked cell adhesion and spreading on substrates containing 100 fmol/cm2 of surface- bound GRGDY, while fibronectin receptor antiserum specific for alpha 5 beta 1 did not. Furthermore, alpha V beta 3 was observed to cluster into focal contacts in spread cells, but alpha 5 beta 1 did not. It was thus concluded that a peptide-to-peptide spacing of 440 nm was required for alpha V beta 3-mediated cellular spreading, while 140 nm was required for alpha V beta 3-mediated focal contact formation and normal stress fiber organization in human foreskin fibroblasts; these spacings represent much fewer ligands than were previously thought to be required. PMID:1714913

  10. Impact resistance of fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1982-01-01

    Stress-strain curves are obtained for a variety of glass fiber and carbon fiber reinforced plastics in dynamic tension, over the stress-strain range of 0.00087-2070/sec. The test method is of the one-bar block-to-bar type, using a rotating disk or a pendulum as the loading apparatus and yielding accurate stress-strain curves up to the breaking strain. In the case of glass fiber reinforced plastic, the tensile strength, strain to peak impact stress, total strain and total absorbed energy all increase significantly as the strain rate increases. By contrast, carbon fiber reinforced plastics show lower rates of increase with strain rate. It is recommended that hybrid composites incorporating the high strength and rigidity of carbon fiber reinforced plastic with the high impact absorption of glass fiber reinforced plastics be developed for use in structures subjected to impact loading.

  11. Learning to be different: Acquired skills, social learning, frequency dependence, and environmental variation can cause behaviourally mediated foraging specializations

    USGS Publications Warehouse

    Tinker, M.T.; Mangel, M.; Estes, J.A.

    2009-01-01

    ) Offspring can learn foraging skills from their mothers (matrilineal social learning). (6) Food abundance is limited, such that average individual energy reserves are low Additionally, the following factors increase the likelihood of alternative specializations co-occurring in a predator population: (1) The predator exerts effective top-down control of prey abundance, resulting in frequency-dependent dynamics. (2) There is stochastic Variation in prey population dynamics, but this Variation is neither too extreme in magnitude nor too 'slow' with respect to the time required for an individual forager to learn new foraging skills. For a given predator population, we deduce that the degree of specialization will be highest for those prey types requiring complex capture or handling skills, while prey species that are both profitable and easy to capture and handle will be included in the diet of all individuals. Frequency-dependent benefits of selecting alternative prey types, combined with the ability of foragers to improve their foraging skills by learning, and transmit learned skills to offspring, can result in behaviourally mediated foraging specialization, and also lead to the co-existence of alternative specializations. The extent of such specialization is predicted to be a variable trait, increasing in locations or years when intra-specific competition is high relative to inter-specific competition. ?? 2009 M. Tim Tinker.

  12. Frequency dependence of the magnetostrictive phenomenon in Metglas 2605SA1 ribbon: A minor-loop case

    NASA Astrophysics Data System (ADS)

    Jen, S. U.; Liu, C. C.; Lin, H. R.; Chou, S. H.

    2014-12-01

    Frequency dependence of magnetostrictive phenomenon of as-cast 2605SA1 ribbon was studied. We applied a sinusoidal sweeping field (H), with a fixed frequency (f), along length (L) of the ribbon, and simultaneously recorded the longitudinal magnetostriction (λ∥) and the transverse magnetostriction (λ⊥) as a function of time (t), respectively. f was varied from 0.07 to 122 Hz. In the low-f case (f =0.07 Hz), we observed the frequency-doubling (FD) feature in λ∥(t) and λ⊥(t) curves; i.e., only even harmonic magnetostrictive signals showed up. In the high-f case (f = 122 Hz), we observed the no-frequency-doubling (NFD) feature; i.e., both odd and even harmonic magnetostrictive signals showed up. A theory, based on the balance among various torques acting on magnetization, is developed to explain the f dependence of the magnetostriction phenomenon observed. From this theory, we conclude that only when the reflection symmetry of the system is reserved, i.e., when the equivalent easy axis (EEA) is perpendicular to L, will λ∥(t) and λ⊥(t) have the true-frequency-doubling (TFD) feature. However, for the as-cast 2605SA1 ribbon, EEA is not perpendicular to L. Thus, strictly speaking, we should observe the NFD feature only. Nevertheless, in the low-f limit, we can show that the FD feature is somewhat allowed under the condition, b/α being close to 1, where b and α are the two parameters used in the theory. From experimental data, this condition is met for as-cast 2605SA1. To make a distinction from TFD, this low-f feature is called close-frequency-doubling (CFD) in this paper. In general, the theory explains all the experimental results fairly well.

  13. The influence of genetic drift on the formation and stability of polymorphisms arising from negative frequency-dependent selection.

    PubMed

    Zhao, Lei; Waxman, David

    2016-02-21

    We consider the simplest form of negative frequency-dependent selection in a biallelic haploid population, where the selection coefficient of a mutant allele is a linear function of the allele's frequency, and changes from positive to negative as the frequency is increased. In an effectively infinite population this behaviour leads to a stable polymorphism. We present a theoretical investigation of what occurs in a finite population, where a long-lived polymorphism may be formed, but which fluctuates and ultimately disappears due to random genetic drift. We model the dynamics as a branching process and explicitly take into account differences between the census population size and the effective population size, which play different roles in the dynamics. We characterise the behaviour of the population in terms of three distinct timescales associated with: (i) early loss of mutant alleles, (ii) achievement of the long-lived polymorphism, (iii) disappearance of the polymorphism. Timescales (i) and (iii) depend on the effective population size and are, as a consequence, affected by random genetic drift, while timescale (ii) depends primarily on the census size and is relatively insensitive to genetic drift. Analysis and simulations of the branching process clarify the different influences of the census and effective population sizes. One substantial quantitative difference, between populations where the effective and census population sizes coincide and where they differ, lies in the number of mutant alleles in the long-lived polymorphism. This number is approximately proportional to the census size. Thus assuming the census size equals a much smaller effective population size predicts a much smaller number of mutants in the long-lived polymorphism. PMID:26656188

  14. Frequency-Dependent Modulation of Regional Synchrony in the Human Brain by Eyes Open and Eyes Closed Resting-States

    PubMed Central

    Song, Xiaopeng; Zhou, Shuqin; Zhang, Yi; Liu, Yijun; Zhu, Huaiqiu; Gao, Jia-Hong

    2015-01-01

    The eyes-open (EO) and eyes-closed (EC) states have differential effects on BOLD-fMRI signal dynamics, affecting both the BOLD oscillation frequency of a single voxel and the regional homogeneity (ReHo) of several neighboring voxels. To explore how the two resting-states modulate the local synchrony through different frequency bands, we decomposed the time series of each voxel into several components that fell into distinct frequency bands. The ReHo in each of the bands was calculated and compared between the EO and EC conditions. The cross-voxel correlations between the mean frequency and the overall ReHo of each voxel’s original BOLD series in different brain areas were also calculated and compared between the two states. Compared with the EC state, ReHo decreased with EO in a wide frequency band of 0.01–0.25 Hz in the bilateral thalamus, sensorimotor network, and superior temporal gyrus, while ReHo increased significantly in the band of 0–0.01 Hz in the primary visual cortex, and in a higher frequency band of 0.02–0.1 Hz in the higher order visual areas. The cross-voxel correlations between the frequency and overall ReHo were negative in all the brain areas but varied from region to region. These correlations were stronger with EO in the visual network and the default mode network. Our results suggested that different frequency bands of ReHo showed different sensitivity to the modulation of EO-EC states. The better spatial consistency between the frequency and overall ReHo maps indicated that the brain might adopt a stricter frequency-dependent configuration with EO than with EC. PMID:26545233

  15. Frequency-dependent streaming potential of porous media: Experimental measurement of Ottawa sand, Lochaline sand and quartz glass beads

    NASA Astrophysics Data System (ADS)

    Glover, Paul; Walker, Emilie; Ruel, Jean; Yagout, Fuad

    2013-04-01

    High quality frequency-dependent streaming potential coefficient measurements have been made upon Ottawa sand, Lochaline sand and glass bead packs using a new apparatus that is based on an electro-magnetic drive. The apparatus operates in the range 1 Hz to 1 kHz with samples of 25.4mm diameter up to 150 mm long. The results have been analysed using theoretical models that are either (i) based upon vibrational mechanics, (ii) treat the geological material as a bundle of capillary tubes, or (iii) treat the material as a porous medium. In each case we have considered the real and imaginary parts of the complex streaming potential coefficient as well as its magnitude. It is clear from the results that the complex streaming potential coefficient does not follow a Debye-type behaviour, differing from the Debye-type behaviour most markedly for frequencies above the transition frequency. The best fit to all the data was provided by the Pride (1994) model and its simplification by Walker and Glover (2010), which is satisfying as this model was conceived for porous media rather than capillary tube bundles. Theory predicts that the transition frequency is related to the inverse square of the effective pore radius. Values for the transition frequency were derived from each of the models for each sample and were found to be in good agreement with those expected from the independently measured effective pore radius of each material. The fit to the Pride model for all four samples was also found to be consistent with the independently measured steady-state permeability, while the value of the streaming potential coefficient in the low-frequency limit was found to be in good agreement with steady-state streaming potential coefficient data measured using a steady-state streaming potential rig as well as the corpus of steady-state determinations for quartz-based samples existing in the literature.

  16. Numerical calculations for effects of structure of skeletal muscle on frequency-dependence of its electrical admittance and impedance

    NASA Astrophysics Data System (ADS)

    Sekine, Katsuhisa; Yamada, Ayumi; Kageyama, Hitomi; Igarashi, Takahiro; Yamamoto, Nana; Asami, Koji

    2015-06-01

    Numerical calculations were carried out by the finite difference method using three-dimensional models to examine effects of the structure of skeletal muscle on the frequency-dependence of its electrical admittance Y and impedance Z in transversal and longitudinal directions. In the models, the muscle cell was represented by a rectangular solid surrounded by a smooth surface membrane, and the cells were assumed to be distributed periodically. The width of the cross section of the cell, thickness of the intercellular medium, and the relative permittivities and the conductivities of the cell interior, the intercellular medium and the surface membrane were changed. Based on the results of the calculations, reported changes in Y and Z of the muscles from 1 kHz to 1 MHz were analyzed. The analyses revealed that a decreased cell radius was reasonable to explain the Y and Z of the muscles of immature rats, rats subjected to sciatic nerve crush at chronic stage and the amyotrophic lateral sclerosis (ALS) mice. Changes in Y and Z due to the sciatic nerve crush at acute stage were attributable to the decreased cell radius, the increased space between the cells, the increased permittivity of the surface membrane and the increased conductivity of the cell interior. The changes in Z due to contraction were explained by the changes in the cell radius, and the conductivities of the cell interior and the intercellular medium. The changes in Z of meat due to aging were compared with the effects of the increase in the conductivity of the surface membrane.

  17. Complex anisotropy beneath the Peruvian flat-slab from frequency-dependent, multiple-phase shear wave splitting analysis

    NASA Astrophysics Data System (ADS)

    Eakin, C. M.; Long, M. D.

    2013-05-01

    Flat or shallow subduction is a relatively widespread global occurrence but the dynamics remain poorly understood. In particular, the interaction between flat-slabs and the surrounding mantle flow has yet to be studied in detail. In this study measurements of seismic anisotropy are utilized to investigate mantle flow beneath the Peruvian flat-slab segment, the largest present-day region of flat-subduction. A detailed shear wave splitting analysis is conducted at a long-running seismic station (NNA) located near Lima, Peru. Measurements of apparent splitting parameters (fast direction φ and delay time δt) for SKS, ScS and local S phases from 86 events were obtained. Well defined frequency dependence and back-azimuthal variability is observed, indicating the likely presence of complex anisotropy. Forward modeling the observations with two or three layers of anisotropy reveals a likely layer with a trench-parallel fast axis overlying a layer(s) with a more trench-normal fast geometry. In order to further constrain the anisotropic geometry, source-side splitting from events originating within the slab measured at distant stations have been analyzed. Beneath the flat-slab segment, trench-normal fast splitting directions in the sub-slab mantle were found and likely trench-parallel anisotropy within the slab itself. This sub-slab pattern contradicts observations from elsewhere in South America for 'normal' (i.e. more steeply dipping) slab conditions. It is similar, however, to inferences from other shallowly dipping subduction zones around the world. While there is an apparent link between slab dip and the surrounding mantle flow, at least beneath Peru, the precise nature of the relationship requires further investigation.

  18. Complex anisotropy beneath the Peruvian flat slab from frequency-dependent, multiple-phase shear wave splitting analysis

    NASA Astrophysics Data System (ADS)

    Eakin, Caroline M.; Long, Maureen D.

    2013-09-01

    Flat or shallow subduction is a relatively widespread global occurrence, but the dynamics remain poorly understood. In particular, the interaction between flat slabs and the surrounding mantle flow has yet to be studied in detail. Here we present measurements of seismic anisotropy to investigate mantle flow beneath the Peruvian flat-slab segment, the largest present-day region of flat subduction. We conduct a detailed shear wave splitting analysis at a long-running seismic station (NNA) located near Lima, Peru. We present measurements of apparent splitting parameters (fast direction φ and delay time δt) for SKS, ScS, and local S phases from 80 events. We observe well-defined frequency dependence and backazimuthal variability, indicating the likely presence of complex anisotropy. Forward modeling the observations with two or three layers of anisotropy reveals a likely layer with a trench-normal fast direction underlying a layer with a more trench-oblique (to trench-subparallel) fast direction. In order to further constrain the anisotropic geometry, we analyzed the source-side splitting from events originating within the slab measured at distant stations. Beneath the flat-slab segment, we found trench-normal fast splitting directions in the subslab mantle, while within the dipping portion of the slab further to the east, likely trench-subparallel anisotropy within the slab itself. This subslab pattern contradicts observations from elsewhere in South America for "normal" (i.e., more steeply dipping) slab conditions. It is similar, however, to inferences from other shallowly dipping subduction zones around the world. While there is an apparent link between slab dip and the surrounding mantle flow, at least beneath Peru, the precise nature of the relationship remains to be clarified.

  19. Lightning-induced voltages caused by lighting strike to tall objects considering the effect of frequency dependent soil

    NASA Astrophysics Data System (ADS)

    Zhang, Qilin; Chen, Yuan; Hou, Wenhao

    2015-10-01

    In this paper we have analyzed the effect of frequency dependent soil (FDS) on the lightning-induced voltages caused by lightning subsequent return stroke for strike to tall objects ranging from 100 m to 300 m. It is found that the effect of FDS on the induced voltages peak can be approximately ignored when the low frequency conductivity (LFC) is equal to or larger than 0.01 S/m, and with the decrease of LFC, the effect of FDS on the lightning induced voltages is more obvious. Compared with the constant LFC, the induced voltage peak becomes less for FDS. For example, for a constant LFC of 0.001 S/m, the ratio of the induced voltages peak value for FDS to that for LFC is 83.2% at the line center and 66.8% at the line end for strike to 300-m-tall object, respectively. By using the decomposition method, we divide the lightning induced voltages into two components named by the incident induced waves (Vi) related with the vertical field and scattered induced waves (Vs) related with horizontal field, and it is found that FDS results into a less initial peak of tangential horizontal field along the overhead line and further results into a less induced voltage. Also, compared FDS with LFC, the FDS reduces the disparity of lightning induced voltages caused by different tall objects. For example, for the constant LFC, the induced voltage peak for strike to 300-m-tall object is 1.69 times larger than that for strike to 50-m-tall object. However, for the case of FDS, the corresponding ratio is about 1.2.

  20. Subparsec-scale dynamics of a dusty gas disk exposed to anisotropic AGN radiation with frequency-dependent radiative transfer

    NASA Astrophysics Data System (ADS)

    Namekata, Daisuke; Umemura, Masayuki

    2016-04-01

    We explore the gas dynamics near the dust sublimation radius of active galactic nucleus (AGN). For the purpose, we perform axisymmetric radiation hydrodynamic simulations of a dusty gas disk of radius ≈1 pc around a supermassive black hole of mass 107 M⊙ taking into account (1) anisotropic radiation of accretion disk, (2) X-ray heating by corona, (3) radiative transfer of infrared (IR) photons reemitted by dust, (4) frequency dependency of direct and IR radiations, and (5) separate temperatures for gas and dust. As a result, we find that for Eddington ratio ≈0.77, a nearly neutral, dense (≈106 - 8 cm-3), geometrically-thin (h/r < 0.06) disk forms with a high velocity (≈200 ˜ 3000 km s-1) dusty outflow launched from the disk surface. The disk temperature is determined by the balance between X-ray heating and various cooling, and the disk is almost supported by thermal pressure. Contrary to Krolik (2007), the radiation pressure by IR photons is not effective to thicken the disk, but rather compresses it. Thus, it seems difficult for a radiation-supported, geometrically-thick, obscuring torus to form near the dust sublimation radius as far as the Eddington ratio is high (˜1). The mass outflow rate is 0.05 - 0.1 M⊙/yr and the column density of the outflow is NH ≲ 1021 cm-2. To explain observed type-II AGN fraction, it is required that outflow gas is extended to larger radii (r ≳ 10 pc) or that a denser dusty wind is launched from smaller radii (r ˜ 104 Rg).

  1. Polyaniline fibers, films, and powders: X-ray studies of crystallinity and stress-induced preferred orientation

    SciTech Connect

    Fischer, J.E.; Zhu, Q.; Tang, X.; Scherr, E.M.; MacDiarmid, A.G. . Lab. for Research on the Structure of Matter); Cajipe, V.B. . Inst. des Materiaux des Nantes)

    1994-08-29

    Powder (hk0) and four-circle X-ray diffractometry are used to study the effects of hot-stretching on films and fibers of the emeralidine base form of polyaniline (EB-II). It is shown definitively that hot-stretching induces nucleation of new crystalline material rather than growth and/or orientation of pre-existing crystallites. The diffuse scattering from amorphous EB-II is dominated by short-range interchain correlations and develops preferred orientation in response to stretching but with a broader mosaic than the crystalline phase. For the maximally-stretched samples, the crystal fractions was determined by accounting for the different mosaic distributions of crystalline and amorphous phases, correcting for the mass of N-methylphenazolinium plasticizer and ruling out any significant contribution from NMP diffuse scattering to the amorphous EB-II profiles. Films stretched to L/L[sub 0] = 4.25 contain no more than 4% crystalline material while fibers with L/L[sub 0] = 4.5 are 24--30% crystalline. These fractional crystallinity values are significantly small than found for EB-II powder (60%). More importantly, these results have implications for models of electric properties which invoke interchain interactions.

  2. Frequency dependence of delayed and instantaneous triggering on laboratory and simulated faults governed by rate-state friction

    NASA Astrophysics Data System (ADS)

    Elst, Nicholas J.; Savage, Heather M.

    2015-05-01

    Earthquake triggering by transient stresses is commonly observed; however, some aspects remain unexplained. The first is the often-observed delay between the triggered earthquakes and the triggering waves, and the second is the unexpected effectiveness of transient stressing in the seismic frequency band. Previous theoretical and laboratory studies have suggested that seismic transients should have little impact on faults if the duration of the transient is smaller than the timescale for nucleation of slip. We reexamine the dynamics of stress triggering during stick-slip sliding on a laboratory fault and make three important observations that pertain to earthquake triggering. (1) Delayed triggering (clock advance) occurs for both bare granite surfaces and granular gouge prior to the onset of instantaneous triggering. (2) Triggering occurs much earlier in the stick-slip cycle than expected for a simple Coulomb stress threshold. (3) Shorter-period (higher stressing rate) pulses are more effective at triggering than longer-period pulses of the same stress amplitude. We use numerical simulations to show that rate-state friction can explain each of the observed features but not all three simultaneously. Only the Ruina slip law for state evolution, in which faults must slip to heal, can reproduce early-onset and stressing rate-dependent triggering. The laboratory and numerical experiments show that faults can remain relatively weak over much of the seismic cycle and that the triggered response depends on a competition between healing and weakening during triggered slip. Transient stressing at seismic frequencies may be more effective at triggering earthquakes than previously recognized.

  3. Lifetime-applied stress response in air of a SiC-based Nicalon-fiber-reinforced composite with a carbon interfacial layer: Effects of temperature (300 to 1150 C)

    SciTech Connect

    Becher, P.F.; Lin, Hua-Tay; More, K.L.

    1998-07-01

    The lifetimes in air as a function of applied flexure stress and temperature (300--1,150 C) are described for a Si-O-C based (Nicalon) fiber plain-weave cloth reinforced SiC-matrix composite ({approximately}7% closed porosity) with an {approximately}0.3 {micro}m thick carbon interfacial layer. The measured lifetimes of both samples with and without an external SiC seal coating were similar and decreased with applied flexural stress (for stresses greater than {approximately}90 MPa) and with temperature. At temperatures of {ge}600 C, the external CVD SiC coating had negligible effect on the lifetimes; however, at 425 C, a detectable improvement in the lifetime was observed with an external SiC coating. When the applied stress was decreased below an apparent threshold stress (e.g., {approximately}90 MPa) for tests conducted at temperatures {le}950 C, no failures were observed for times of {ge}1,000 H. Electron microscopy observations show that the interfacial carbon layer is progressively removed during tests at 425 and 600 C. In these cases, failure is associated with fiber failure and pull-out. At 950 and 1,150 C, the carbon interface layer is eliminated and replaced by a thick silica layer due to the oxidation of the Nicalon fiber and the SiC matrix. This results in embrittling the composite.

  4. Stress distribution on dentin-cement-post interface varying root canal and glass fiber post diameters. A three-dimensional finite element analysis based on micro-CT data

    PubMed Central

    LAZARI, Priscilla Cardoso; de OLIVEIRA, Rodrigo Caldeira Nunes; ANCHIETA, Rodolfo Bruniera; de ALMEIDA, Erika Oliveira; FREITAS JUNIOR, Amilcar Chagas; KINA, Sidney; ROCHA, Eduardo Passos

    2013-01-01

    Objective The aim of the present study was to analyze the influence of root canal and glass fiber post diameters on the biomechanical behavior of the dentin/cement/post interface of a root-filled tooth using 3D finite element analysis. Material and Methods Six models were built using micro-CT imaging data and SolidWorks 2007 software, varying the root canal (C) and the glass fiber post (P) diameters: C1P1-C=1 mm and P=1 mm; C2P1-C=2 mm and P=1 mm; C2P2-C=2 mm and P=2 mm; C3P1-C=3 mm and P=1 mm; C3P2-C=3 mm and P=2 mm; and C3P3-C=3 mm and P=3 mm. The numerical analysis was conducted with ANSYS Workbench 10.0. An oblique force (180 N at 45º) was applied to the palatal surface of the central incisor. The periodontal ligament surface was constrained on the three axes (x=y=z=0). Maximum principal stress (σmax) values were evaluated for the root dentin, cement layer, and glass fiber post. Results: The most evident stress was observed in the glass fiber post at C3P1 (323 MPa), and the maximum stress in the cement layer occurred at C1P1 (43.2 MPa). The stress on the root dentin was almost constant in all models with a peak in tension at C2P1 (64.5 MPa). Conclusion The greatest discrepancy between root canal and post diameters is favorable for stress concentration at the post surface. The dentin remaining after the various root canal preparations did not increase the stress levels on the root. PMID:24473716

  5. Frequency-dependent facilitation of synaptic throughput via postsynaptic NMDA receptors in the nucleus of the solitary tract.

    PubMed

    Zhao, Huan; Peters, James H; Zhu, Mingyan; Page, Stephen J; Ritter, Robert C; Appleyard, Suzanne M

    2015-01-01

    Hindbrain NMDA receptors play important roles in reflexive and behavioural responses to vagal activation. NMDA receptors have also been shown to contribute to the synaptic responses of neurons in the nucleus of the solitary tract (NTS), but their exact role remains unclear. In this study we used whole cell patch-clamping techniques in rat horizontal brain slice to investigate the role of NMDA receptors in the fidelity of transmission across solitary tract afferent-NTS neuron synapses. Results show that NMDA receptors contribute up to 70% of the charge transferred across the synapse at high (>5 Hz) firing rates, but have little contribution at lower firing frequencies. Results also show that NMDA receptors critically contribute to the fidelity of transmission across these synapses during high frequency (>5 Hz) afferent discharge rates. This novel role of NMDA receptors may explain in part how primary visceral afferents, including vagal afferents, can maintain fidelity of transmission across a broad range of firing frequencies. Neurons within the nucleus of the solitary tract (NTS) receive vagal afferent innervations that initiate gastrointestinal and cardiovascular reflexes. Glutamate is the fast excitatory neurotransmitter released in the NTS by vagal afferents, which arrive there via the solitary tract (ST). ST stimulation elicits excitatory postsynaptic currents (EPSCs) in NTS neurons mediated by both AMPA- and NMDA-type glutamate receptors (-Rs). Vagal afferents exhibit a high probability of vesicle release and exhibit robust frequency-dependent depression due to presynaptic vesicle depletion. Nonetheless, synaptic throughput is maintained even at high frequencies of afferent activation. Here we test the hypothesis that postsynaptic NMDA-Rs are essential in maintaining throughput across ST-NTS synapses. Using patch clamp electrophysiology in horizontal brainstem slices, we found that NMDA-Rs, including NR2B subtypes, carry up to 70% of the charge transferred

  6. Safety, Tolerance, and Enhanced Efficacy of a Bioavailable Formulation of Curcumin With Fenugreek Dietary Fiber on Occupational Stress: A Randomized, Double-Blind, Placebo-Controlled Pilot Study.

    PubMed

    Pandaran Sudheeran, Subash; Jacob, Della; Natinga Mulakal, Johannah; Gopinathan Nair, Gopakumar; Maliakel, Abhilash; Maliakel, Balu; Kuttan, Ramadasan; Im, Krishnakumar

    2016-06-01

    Drug delivery systems capable of delivering free (unconjugated) curcuminoids is of great therapeutic significance, since the absorption of bioactive and permeable form plays a key factor in mediating the efficacy of a substance which undergoes rapid biotransformation. Considering the recent understanding on the relatively high bioactivities and blood-brain-barrier permeability of free curcuminoids over their conjugated metabolites, the present human study investigated the safety, antioxidant efficacy, and bioavailability of CurQfen (curcumagalactomannoside [CGM]), a food-grade formulation of natural curcumin with fenugreek dietary fiber that has shown to possess improved blood-brain-barrier permeability and tissue distribution in rats. In this randomized double-blinded and placebo-controlled trial, 60 subjects experiencing occupational stress-related anxiety and fatigue were randomized to receive CGM, standard curcumin, and placebo for 30 days (500 mg twice daily). The study demonstrated the safety, tolerance, and enhanced efficacy of CGM in comparison with unformulated standard curcumin. A significant improvement in the quality of life (P < 0.05) with considerable reduction in stress (P < 0.001), anxiety (P < 0.001), and fatigue (P < 0.001) was observed among CGM-treated subjects as compared with the standard curcumin group, when monitored by SF-36, Perceived Stress Scale with 14 items, and Beck Anxiety Inventory scores. Improvement in the quality of life was further correlated with the significant enhancement in endogenous antioxidant markers (P < 0.01) and reduction in lipid peroxidation (P < 0.001). Further comparison of the free curcuminoids bioavailability after a single-dose (500 mg once per day) and repeated-dose (500 mg twice daily for 30 days) oral administration revealed enhanced absorption and improved pharmacokinetics of CGM upon both single- (30.7-fold) and repeated-dose (39.1-fold) administrations. PMID:27043120

  7. Stress.

    PubMed

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself. PMID:18846841

  8. Integrated Optofluidic Multimaterial Fibers

    NASA Astrophysics Data System (ADS)

    Stolyarov, Alexander Mark

    The creation of integrated microphotonic devices requires a challenging assembly of optically and electrically disparate materials into complex geometries with nanometer-scale precision. These challenges are typically addressed by mature wafer-based fabrication methods, which while versatile, are limited to low-aspect-ratio structures and by the inherent complexity of sequential processing steps. Multimaterial preform-to-fiber drawing methods on the other hand present unique opportunities for realizing optical and optoelectronic devices of extended length. Importantly, these methods allow for monolithic integration of all the constituent device components into complex architectures. My research has focused on addressing the challenges and opportunities associated with microfluidic multimaterial fiber structures and devices. Specifically: (1) A photonic bandgap (PBG) fiber is demonstrated for single mode transmission at 1.55 microm with 4 dB/m losses. This fiber transmits laser pulses with peak powers of 13.5 MW. (Chapter 2) (2) A microfluidic fiber laser, characterized by purely radia l emission is demonstrated. The laser cavity is formed by an axially invariant, 17-period annular PBG structure with a unit cell thickness of 160nm. This laser is distinct from traditional lasers with cylindrically symmetric emission, which rely almost exclusively on whispering gallery modes, characterized by tangential wavevectors. (Chapter 4) (3) An array of independently-controlled liquid-crystal microchannels flanked by viscous conductors is integrated in the fiber cladding and encircles the PBG laser cavity in (2). The interplay between the radially-emitting laser and these liquid-crystal modulators enables controlled directional emission around a full azimuthal angular range. (Chapter 4) (4) The electric potential profile along the length of the electrodes in (3) is characterized and found to depend on frequency. This frequency dependence presents a new means to tune the

  9. The optimal fiber volume fraction and fiber-matrix property compatibility in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Pan, Ning

    1992-01-01

    Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.

  10. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate.

    PubMed

    Bagheri, Zahra S; Tavakkoli Avval, Pouria; Bougherara, Habiba; Aziz, Mina S R; Schemitsch, Emil H; Zdero, Radovan

    2014-09-01

    Femur fracture at the tip of a total hip replacement (THR), commonly known as Vancouver B1 fracture, is mainly treated using rigid metallic bone plates which may result in "stress shielding" leading to bone resorption and implant loosening. To minimize stress shielding, a new carbon fiber (CF)/Flax/Epoxy composite plate has been developed and biomechanically compared to a standard clinical metal plate. For fatigue tests, experiments were done using six artificial femurs cyclically loaded through the femoral head in axial compression for four stages: Stage 1 (intact), stage 2 (after THR insertion), stage 3 (after plate fixation of a simulated Vancouver B1 femoral midshaft fracture gap), and stage 4 (after fracture gap healing). For fracture fixation, one group was fitted with the new CF/Flax/Epoxy plate (n = 3), whereas another group was repaired with a standard clinical metal plate (Zimmer, Warsaw, IN) (n = 3). In addition to axial stiffness measurements, infrared thermography technique was used to capture the femur and plate surface stresses during the testing. Moreover, finite element analysis (FEA) was performed to evaluate the composite plate's axial stiffness and surface stress field. Experimental results showed that the CF/Flax/Epoxy plated femur had comparable axial stiffness (fractured = 645 ± 67 N/mm; healed = 1731 ± 109 N/mm) to the metal-plated femur (fractured = 658 ± 69 N/mm; healed = 1751 ± 39 N/mm) (p = 1.00). However, the bone beneath the CF/Flax/Epoxy plate was the only area that had a significantly higher average surface stress (fractured = 2.10 ± 0.66 MPa; healed = 1.89 ± 0.39 MPa) compared to bone beneath the metal plate (fractured = 1.18 ± 0.93 MPa; healed = 0.71 ± 0.24 MPa) (p < 0.05). FEA bone surface stresses yielded peak of 13 MPa at distal epiphysis (stage 1), 16 MPa at distal epiphysis (stage 2), 85 MPa for composite and 129

  11. Information content in frequency-dependent, multi-offset GPR data for layered media reconstruction using full-wave inversion

    NASA Astrophysics Data System (ADS)

    De Coster, Albéric; Phuong Tran, Anh; Lambot, Sébastien

    2014-05-01

    Water lost through leaks can represent high percentages of the total production in water supply systems and constitutes an important issue. Leak detection can be tackled with various techniques such as the ground-penetrating radar (GPR). Based on this technology, various procedures have been elaborated to characterize a leak and its evolution. In this study, we focus on a new full-wave radar modelling approach for near-field conditions, which takes into account the antenna effects as well as the interactions between the antenna(s) and the medium through frequency-dependent global transmission and reflection coefficients. This approach is applied to layered media for which 3-D Green's functions can be calculated. The model allows for a quantitative estimation of the properties of multilayered media by using full-wave inversion. This method, however, proves to be limited to provide users with an on-demand assessment as it is generally computationally demanding and time consuming, depending on the medium configuration as well as the number of unknown parameters to retrieve. In that respect, we propose two leads in order to enhance the parameter retrieval step. The first one consists in analyzing the impact of the reduction of the number of frequencies on the information content. For both numerical and laboratory experiments, this operation has been achieved by investigating the response surface topography of objective functions arising from the comparison between measured and modelled data. The second one involves the numerical implementation of multistatic antenna configurations with constant and variable offsets in the model. These two kinds of analyses are then combined in numerical experiments to observe the conjugated effect of the number of frequencies and the offset configuration. To perform the numerical analyses, synthetic Green's functions were simulated for different multilayered medium configurations. The results show that an antenna offset increase leads

  12. Dietary Fiber

    MedlinePlus

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble fiber or insoluble fiber. Both types have important health benefits. Good sources of dietary fiber include Whole grains Nuts ...

  13. Implementation of the CCSD-PCM linear response function for frequency dependent properties in solution: Application to polarizability and specific rotation

    NASA Astrophysics Data System (ADS)

    Caricato, Marco

    2013-09-01

    This work reports the first implementation of the frequency dependent linear response (LR) function for the coupled cluster singles and doubles method (CCSD) combined with the polarizable continuum model of solvation for the calculation of frequency dependent properties in solution. In particular, values of static and dynamic polarizability as well as specific rotation are presented for various test molecules. Model calculations of polarizability show that a common approximation used in the definition of the LR function with solvation models recovers over 70% of the full response while maintaining a computational cost comparable to gas phase LR-CCSD. Calculations of specific rotation for three compounds for which gas phase methods predict the wrong sign of the rotation show that accounting for the electronic response of the solvent may be essential to assign the correct absolute configuration of chiral molecules.

  14. Semi-analytical solution to the frequency-dependent Boltzmann transport equation for cross-plane heat conduction in thin films

    NASA Astrophysics Data System (ADS)

    Hua, Chengyun; Minnich, Austin J.

    2015-05-01

    Cross-plane heat transport in thin films with thicknesses comparable to the phonon mean free paths is of both fundamental and practical interest for applications such as light-emitting diodes and quantum well lasers. However, physical insight is difficult to obtain for the cross-plane geometry due to the challenge of solving the Boltzmann equation in a finite domain. Here, we present a semi-analytical series expansion method to solve the transient, frequency-dependent Boltzmann transport equation that is valid from the diffusive to ballistic transport regimes and rigorously includes the frequency-dependence of phonon properties. Further, our method is more than three orders of magnitude faster than prior numerical methods and provides a simple analytical expression for the thermal conductivity as a function of film thickness. Our result enables a straightforward physical understanding of cross-plane heat conduction in thin films.

  15. Frequency-dependent nonlinear optical properties with explicitly correlated coupled-cluster response theory using the CCSD(R12) model.

    PubMed

    Neiss, Christian; Hättig, Christof

    2007-04-21

    Response theory up to infinite order is combined with the explicitly correlated coupled-cluster singles and doubles model including linear-r(12) corrections, CCSD(R12). The additional terms introduced by the linear-r(12) contributions, not present in the conventional CCSD calculation, are derived and discussed with respect to the extra costs required for their evaluation. An implementation is presented up to the cubic response function for one-electron perturbations, i.e., up to frequency-dependent second hyperpolarizabilities. As first applications the authors computed the electronic polarizabilities and second hyperpolarizabilities of BH, N(2), and formaldehyde and show that the improvement in the one-electron basis set convergence known from the R12 method for ground state energies is retained for higher-order optical properties. Frequency-dependent results are presented for the second hyperpolarizability of N(2). PMID:17461608

  16. Semi-analytical solution to the frequency-dependent Boltzmann transport equation for cross-plane heat conduction in thin films

    SciTech Connect

    Hua, Chengyun; Minnich, Austin J.

    2015-05-07

    Cross-plane heat transport in thin films with thicknesses comparable to the phonon mean free paths is of both fundamental and practical interest for applications such as light-emitting diodes and quantum well lasers. However, physical insight is difficult to obtain for the cross-plane geometry due to the challenge of solving the Boltzmann equation in a finite domain. Here, we present a semi-analytical series expansion method to solve the transient, frequency-dependent Boltzmann transport equation that is valid from the diffusive to ballistic transport regimes and rigorously includes the frequency-dependence of phonon properties. Further, our method is more than three orders of magnitude faster than prior numerical methods and provides a simple analytical expression for the thermal conductivity as a function of film thickness. Our result enables a straightforward physical understanding of cross-plane heat conduction in thin films.

  17. The Drosophila FHOD1-like formin Knittrig acts through Rok to promote stress fiber formation and directed macrophage migration during the cellular immune response.

    PubMed

    Lammel, Uwe; Bechtold, Meike; Risse, Benjamin; Berh, Dimitri; Fleige, Astrid; Bunse, Ingrid; Jiang, Xiaoyi; Klämbt, Christian; Bogdan, Sven

    2014-03-01

    A tight spatiotemporal control of actin polymerization is important for many cellular processes that shape cells into a multicellular organism. The formation of unbranched F-actin is induced by several members of the formin family. Drosophila encodes six formin genes, representing six of the seven known mammalian subclasses. Knittrig, the Drosophila homolog of mammalian FHOD1, is specifically expressed in the developing central nervous system midline glia, the trachea, the wing and in macrophages. knittrig mutants exhibit mild tracheal defects but survive until late pupal stages and mainly die as pharate adult flies. knittrig mutant macrophages are smaller and show reduced cell spreading and cell migration in in vivo wounding experiments. Rescue experiments further demonstrate a cell-autonomous function of Knittrig in regulating actin dynamics and cell migration. Knittrig localizes at the rear of migrating macrophages in vivo, suggesting a cellular requirement of Knittrig in the retraction of the trailing edge. Supporting this notion, we found that Knittrig is a target of the Rho-dependent kinase Rok. Co-expression with Rok or expression of an activated form of Knittrig induces actin stress fibers in macrophages and in epithelial tissues. Thus, we propose a model in which Rok-induced phosphorylation of residues within the basic region mediates the activation of Knittrig in controlling macrophage migration. PMID:24553290

  18. Dynamic multiple scattering theory of the Huggins coefficient for discrete Gaussian chains. II. Numerical computations of the frequency dependence and steady state limit

    NASA Astrophysics Data System (ADS)

    Perico, Angelo; La Ferla, Roberto; Freed, Karl F.

    1987-05-01

    Numerical calculations are presented for the frequency dependent Huggins coefficient based on the formal derivation provided in paper I using the dynamical multiple scattering theory for discrete Gaussian chains. The calculations employ fast Fourier transform methods and confirm the analytic complexity of this frequency dependence as previously anticipated from our calculations of the concentration dependence of the normal mode autocorrelation function. The harmonic spring model is considered because this simple limit is amenable to closed form solution, displaying the frequency dependence of the relaxation rates and providing a useful check on the difficult numerical computations for higher numbers n of beads. The steady state Huggins coefficient is also calculated with carefully optimized Gauss-Laguerre quadrature methods which permit extrapolation to n→∞. The calculated steady state value of 0.33 lies below experimental data for theta solutions, and an extensive discussion of the experimental data is provided to understand the discrepancy. One major factor, suggested by Schrag, arises from a strong concentration dependence of the individual bead friction coefficient.

  19. Quantitative Estimation of the Metal-Induced Negative Oxide Charge Density in n-Type Silicon Wafers from Measurements of Frequency-Dependent AC Surface Photovoltage

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirofumi; Shin, Ryuhei; Ikeda, Masanori

    2006-03-01

    A quantitative estimation of metal-induced oxide charge (Qmi) density is performed on the surface of n-type silicon (Si) wafers rinsed with trivalent aluminum (Al)- and iron (Fe)-contaminated RCA alkaline solution by analyzing the frequency-dependent AC surface photovoltage (SPV). Qmi arises from (AlOSi)- or (FeOSi)- networks in native oxide which are responsible for inducing negative oxide charge. On the basis of Munakata and Nishimatsu’s half-sided junction model [C. Munakata and S. Nishimatsu: Jpn. J. Appl. Phys. 25 (1986) 807], the network densities are estimated in depletion and/or weak inversion in which the cutoff frequencies of the frequency-dependent AC SPV curves are defined. It is found that the charge density Qmi increases with the time of exposure to air and it is calculated that about 4% of Al atoms in the native oxide are activated in the form of an (AlOSi)- network for 1 h of exposure. The (FeOSi)- network density is calculated as a function of Fe concentration. As a result, the frequency-dependent AC SPV measurements carried out here enable a successful evaluation of impurity level in a nondestructive and noncontact manner.

  20. Raman stress sensor for localized stress measurements in composite laminates

    NASA Astrophysics Data System (ADS)

    Arjyal, Bish; Galiotis, Costas

    1995-09-01

    A new stress/strain sensor for localized measurements in polymer based composites, has been developed and tested. The stress/strain dependent property is the frequency of the atomic vibrations of reinforcing fibers which can be proved with laser Raman spectroscopy. Measurements can be conducted in reinforcing fibers near the surface of laminates. For measurements in the bulk of composites, the exciting laser light has to be transported to the reinforcing fibers via an embedded fiber optic cable. The backscattered light is transmitted through the same fiber optic and is sent to the Raman spectrometer for analysis. The effect of the direction of the fiber optic cable with respect to the axis of the reinforcing fibers is examined. Finally, the relationships between the local fiber stress or strain obtained from the Raman sensor and the far field stress or strain measured conventionally, are established.